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Investigation of the topological nature of digitized knot structures is necessary for laying the foundations of a 
theory for dealing with the processing of such images. Images containing knots arise, for example, in the electron 
microscopy of DNA and RNA. The classical theory of knots is well developed, and one important result is that 
two knots are equivalent if their planar representations can be deformed into each other by a sequence of knot 
moves. We show here that digital knots, suitably defined, can be considered equal if they can be deformed into 
each other by a sequence of digital moves. 
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1 CLASSICAL BACKGROUND 

A knot is a continuous embedding K : si --+ R3 . In some of the literature, the embedding is required to be 
differentiable,2 or just piecewise linear.4 One of the fundamental problems in knot theory is to determine whether 
two knots Ki and K2 are equivalent, and to give a suitable definition for equivalence. For our purposes, we are 
interested in ambient isotopy. Suppose there is a continuous function H: [O, 1] x R3 --+ R3 which satisfies: 

1. H(O, x) = x, 

2. for each t E [O, 1], H ( t, x) is a homeomorphism, 

3. H(l, x) = h(x), with ho Ki = K2. 

Then the function his an ambient isotopy, and the knots Ki and K2 are said to be ambient isotopic. 

It is convenient to refer to knots not by their embedding functions, but by a projection of the image of the 
knot onto a plane, with the provision that crossings are clearly distinguished. For example, the trefoil knot can be 
described by the projection shown on the left in figure 1 which gives an intuitive understanding of the structure 
of the knot . 

The right hand diagram shows the same knot, slightly deformed so that all lines in the projection are parallel 
to coordinate axes. This is an example of a planar isotopy. 



-----EP 
Figure 1: A trefoil knot. 

Using projections such as these, knots can be determined up to ambient isotopy by means of the Reidemeister 
moves, of which there are three: 
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Reidemeister4 has shown that two knots Ki and K2 are ambient isotopic if and only if their projections can be 
deformed into each other by a sequence of Reidemeister moves. 

2 DIGITAL DEFINITIONS 

In Z 3 , a 6-connected digital knot (hereafter called a digital knot), is a sequence of points p0 ,p1 , . .• , pn for 
which Pi and Pi· are 6-adjacent3 if and only if i = j (mod n - 1). 

Given a digital knot, its continuous image is the union of all the unit line segments [pi, Pi] connnecting adjacent 
points. The continuous image can be obtained by replacing each point Pi with a unit cube Ci centred at Pi and 
performing a deformation retract on the resulting structure. In order to ensure that this operation gives the 
required result, we have to ensure that the knot does not brush past itself. Thus if two points Pi and Pi are not 



Figure 2: A double corner. 

6-adjacent but are 18-adjacent,3 then we require that there is a point q which is 6-adjacent to both Pi and Pi. 
That is, two points 18-adjacent but not 6-adjacent must be adjacent to a corner point. Similarly, if two points Pi 
and Pi are neither 6-adjacent nor 18-adjacent but are 26-adjacent, then we require that there are two points q1 
and q2 for which Pi, q1, q2, Pi forms a 6-adjacent path. In this case Pi and Pi are points on either side of a "double 
corner" as shown in figure 2. 

A digital knot satisfying these further criteria will be called proper. We will in general make no distinction 
between the points of a knot and the structure obtained by replacing each point with a unit cube; but will use 
the two forms interchangeably, the use being dictated by the context. An example of a proper digital knot is 
given in figure 3. 

' 
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Figure 3: A digital trefoil knot. 

2.1 Constructing a digital knot 

Given a projection of (the image of) a classical knot K, we can obtain a digital knot by first deforming the 
projection by planar isotopy so that the result contains just straight lines and right angles. 

We then ensure that every crossing has the form as shown in figure 4. 

Such a crossing may be represented as: 
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Figure 4: A crossing in a proper digital knot. 
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where the number represent the level of the cubes; 1 is a first or top level cube, 2 a middle and 3 a bottom level 
cube. The terms 1-3 and 1, 3 represent a vertical tower of three cubes and a crossing respectively. We must 

ensure that all crossings are separated to the extent that no new, unwanted adjacencies occur, and we may have 
to include some vertical towers to ensure that the knot "joins up" properly. Using this notation, a proper digital 
trefoil is : 

1-3 3 3 3 3 3 3 
1 3 
1 1 1 1 1 1,3 1 1 
1 1 3 1 
1 1-3 1-3 1-3 
1 3 1 1 
1 1 1,3 1 1-3 3 1,3 3 3 

3 1 
3 3 1-3 1 1 

Using the same notation, another proper digital trefoil is: 

1 1 1-5 
1 5 

3 3 1,3 3 3,5 3 3-7 
3 1 5 7 
3 1-7 7 5, 7 7 7 
3 5 

3-5 5 5 5 5 

2.2 Equivalence of digital knots 

We can now give a definition as to the equivalence of two digital knots. 

DEFINITION 2.1. Two digital knots Di and D2 are ambient isotopic if and only if their continuous images 
are ambient isotopic. 



The main aim of this paper is to show that ambient isotopy can be determined entirely digitally, that is , 
without recourse to the continuous image. To do this,, we define some digital moves. 

DEFINITION 2 .2. A handle move is performed by taking a line of three points (cubes) and shifting it one unit 
in a direction perpendicular to itself, and then adding a point (cube) at each end to y'oin the moved line to its old 
position. 

Figure 5 illustrates this in the plane. 

• • • 
• • • • • • • • • 

Figure 5: An example of a handle move. 

The move can of course be performed in reverse, by "collapsing" a handle down to a straight line. A handle move 
is proper if no cube in the new line is adjacent to any cubes outside the line except for the two added cubes at 
each end . 

DEFINITION 2.3 . A reflection move is performed by taking a corner cube, removing it, and attaching to the 
corner a cube in the only other position which preserves 6-connectedness . 

An example of a reflection move is given in figure 6. 

• • 
• • • 
• • • • • 

Figure 6: An example of a reflection move. 

Again, such a move is proper if it introduces no extra adjacencies other than those in the corner itself. We 
will show in the next section that these are the ony two moves we need. We first show that these moves can be 
easily extended. 

LEMMA 2.4. Using digital moves a line of any length can be lifted, as shown in the following diagram . 

line of length n line of length n 

• • • • • • 
• • • • • • • • 

Proof. By elementary induction; the result is true for lines of length 3, by definition, and if it is true for lines of 
length k, then it is true for lines of length k + 1, by making a reflection move at one end. D 

LEMMA 2.5. Using digital moves, two consecutive sides of a rectangle can be moved to the other two sides. 



Proof. Again, by induction; this time double induction on the lengths of the sides of the rectangle. The sides of 
a rectangle of length 2 x 2 can be so swapped, by a single reflection move. Suppose the result is true for rectangles 
of length k x l. Then given (k + 1) x l rectangle, we can produce such a side swap by first swapping the sides of a 
k x l rectangle, and then performing a line lift of length l to bring the remaining side out to its required position . 
Similarly we can swap the sides of a k x (l + 1) rectangle. D 

LEMMA 2. 6. Using digital moves, three sides of a rectangle can be flattened down to the fourth side. 

Proof. Using lemma 2.4, we can pull the middle of the three sides down by using an extended handle move. 
Repeating this as many times as necessary will flatten the rectangle as desired. Of course this can also be done 
m reverse. D 

3 MAIN RESULT 

We can now state the main theorem of this paper. 

THEOREM 3 .1. Two proper digital knots Di and D2 are ambient isotopic if and only if they can be transformed 
into each other by a sequence of proper handle moves and proper reflection moves. 

Proof. We will demonstrate this by showing that each Reidemeister move can be performed by a sequence of 
digital moves. We must therefore make the assumption that the digital knots Di and D2 can be projected onto 
a plane in such a way that there is no point in the plane which is the image of more than two points of the knot . 
With this assumption we can then investigate each of the Reidemeister moves . 

Move nti: The projection of the continuous image of a loop will be a Jordan curve in the plane. We note here 
that the points themselves may not from a digital Jordan curve in the sense of Rosenfeld5 ; an example of this is 
given in the left most diagram in figure 7, for which the projetion of the loop is a square of four points. We define 
a point (X, Y, Z) on the loop as follows: X is the largest x value taken by all points on the loop, Y is the largest 
y value taken by all points whose x coordinate is X, and Z is the largest z value taken by all points whose x and 
y coordinates are X and Y respectively. We shall refer to the point (X, Y, Z) as the outer point. Let n be the 
number of points on the loop, excluding the points at the crossing. Following Stout, 6 we will refer to the ordered 
quadruple (n, X, Y, Z) as the rank of the loop. Since ranks can be ordered lexicographically, we can proceed by 
strong induction. 

Given the properness of the knot, the smallest possible loop is that shown in the left most diagram in figure 7, 
for which n = 5. 

The sequence of diagrams in figure 7 show how such a loop can be transformed, by digital moves, into a 
non-loop, for which the projection onto the (x, y) plane is just a single point . 

The result is thus true for all loops with length 5. Note that by lemma 2.4 this is also true for all loops with 
the same projection, no matter what their height. 

We consider the different configurations at the outer point (X, Y, Z), and show that at each configuration 
a digital move (or series of such moves) can be made which reduces the rank. Diagram 8 shows all possible 
configurations (viewed from above), where • represents a point on the knot, · represents a point not on the knot, 
and o a point which could be either. Similarly, a solid line indicates part of the projection of the knot, and the 
dashed lines possible extensions of the projection. 

Case (i). Suppose that all the o points are not part of the knot projection. Then a corner move at the outer 
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Figure 7: Digital moves transforming a small loop . 
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Figure 8: Possible configurations at the outer point. 

point, shifting (X, Y, Z) to (X - 1, Y - 1, Z), will maintain properness, as well as reducing the rank. Suppose 
however that the top right o point (X - 1, Y - 1, z) was part of the projection. Its vertical distance must be at 
least two from the outer point, otherwise the knot would not be proper. The other possibility is that the top 
right o point (X -1, Y - 1, z) is the crossing point itself, in which case, by properness of the knot , we will have a 
small loop similar to the example shown on the left in figure 7, for which corner moves and handle moves can be 
made. If the point is not the crossing, the projection will change to include a point which, although not strictly 
a crossing point, will be the image of two points on the knot. To avoid this, we may first make a corner move at 
this point. A corner move on the outer point will then maintain properness, correct projection, and will reduce 
the rank. We must thus ensure that we can make a corner move at the point (X - 1, Y - 1, z), and that this 
move will not affect the properness of the knot, or produce any forbidden aspects of the projection. There are 
two cases to consider: 

1. A corner move will not produce any double points in the projection. In this case the corner move will 
maintain properness, and we are done. 

2. A corner move will produce a double point at on the projection. In which case we have a further "inner 
point" with (x, y) coordinates (X - 2, Y - 2). It is clear that we may consider the number of such "inner 
points"; if there are none, we are done; if there are more than one we just perform corner moves on each 
one starting at the inner most point. If the inner most point is the crossing point , then as we have seen, 
moves can be made which will deal with the other inner points. 

Case (ii). A handle move along the top row will reduce the rank, and maintain properness. 



Case (iii). We will have part of a loop as shown in figure 9, and it is readily seen that a sequence of handle and 
corner moves will both reduce the rank, and produce a loop which is proper, and whose projection contains no 
double points . 

Figure 9: Part of a loop . 

Moves n~~: We treat these moves together; in each case the move can be effected by taking the upper strand 
of the kn~t and moving it over the lower strand or strands. We must ensure that the upper strand is high 
enough so as not to bump into any of the lower strand(s) which may be sticking up. Our first step is to 
demonstrate how a given knot segment can be lifted, using digital moves, to any desired level. More formally, 
given a segment po = (xo,Yo,zo),p1, . .. ,pn = (xn,Yn,zn), we show how digital moves can transform it to 
p~ = (xo,Yo,z'),pi, .. . ,p~ = (xn,Yn,z'), where z' ~ max{zo,z1, . . . ,zn}· We will do this by induction on the 
number of corners between po and Pn in the projection of the segment. 

Suppose that the projection has no corners; that is, it is a straight line . We then have either the x or y 
coordinates constant along the line; suppose it to be x. We then have effectively a two dimensional situation, 
with the knot segment lying entirely in a plane parallel to the (y, z) plane. We now perform an induction argument 
on the number of corners in this planar segment. If none, we can lift up the line by lemma 2.6 to any height we 
require. Similarly, if there is only one corner, we can do the same thing. Suppose that there are two or more 
corners. Then we choose any two consecutive corners. As shown in figure 10, the corners may turn in the same 
direction, as in (i), or in different directions, as in (ii). 

(i) (ii) 

Figure 10: Different consecutive corners. 

In case (i), suppose that there are corners "outside" the two circled (as shown in the diagram). In this case, a 
combination of moves will pull the segment between the corners down to the level of the closest corner, and thus 
reduce the number of corners . If there are no outside corners, then one (or perhaps both) of the end points p0 

and Pn will be the points at the end of the outside segments. In which case the inner segment can be moved to 
the level of either the end point or a consecutive corner (if there is one); whichever is closest to the inner segment. 
Again the number of corners is reduced. 



In case (ii) we have a similar situation, but instead of moving a segment , we change two sides of a rectangie 
to the two opposite sides by lemma 2.5, and again the number of corners can be seen to be reduced . 

This deals with the case of the projection having no corners. 

Suppose now that the projection has some number of corners. We may consider the segment being composed 
of a number of sub-segments; each of which has a projection without corners, as shown in figure 11. We can apply 
the previous result and, by a combination of digital moves, build up each subsegment to any required height. 
That this can be done is an immediate consequence of lemmas 2.5 and 2.6 

Figure 11:· A segment whose projection has corners, and its transformation. 

This needs to be done in stages, so as to maintain adjacencies. At each stage, we transform each subsegment 
in two sides of a rectangle, the end points of which are the end points of the the subsegment. We choose which 
two sides of the rectangle to use so as not to use either of the sides of the previous rectangle. The right hand 
diagram in figure 11 illustrates the result . We can now build up each rectangle to any desired height. 

Having pulled our segment up to the height we desire, we now have to pull it across the lower segment or 
crossing, depending on which of the Reidemeister moves we are performing. But this is simply the previous 
result-moving a segment, this time within a different plane. 

This completes the discussion of the Reidemeister moves, and the proof. D 

4 CONCLUSION 

We have seen that knots can be defined in digital space, and can be classified on their points alone. In 
particular, if a scanning electron microscope image of a molecule exhibits a knotted structure, we can classify the 
structure by the method given. 
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