
VICTORIA ~
UNIVERSITY

•
: ,,
s
z
0
~

0
0 ..

DEPARTMENT OF COMPUTER AND
MATHEMATICAL SCIENCES

Genetic Algorithms for Cutting Stock Problems:
with and without Contiguity

Robert Hinterding & Lutfar Khan
(40COMP12)

August, 1994

TECHNICAL REPORT

VICTORIA UNIVERSITY OF TECHNOLOGY
(P 0 BOX 14428) MELBOURNE MAIL CENTRE

MELBOURNE, VICTORIA, 3000
AUSTRALIA

TELEPHONE (03) 688 4249 I 4492
FACSIMILE (03) 688 4050

Footscray Campus

Genetic Algorithms for Cutting Stock Problems:
with and without Contiguity

Robert Hinterding & Lutfar Khan

Abstract: A number of optimisation problems involve the optimal grouping of a finite
set of items into a number of categories subject to one or more constraints. Such
problems raise interesting issues in mapping solutions in genetic algorithms. These
problems range from the knapsack problem to bin packing and cutting stock problems.
This paper describes research involving cutting stock problems. Results show that the
mapping that is used affects the solution in terms of both quality of the solution found
and time taken to find solutions, and that different mappings are suitable for different
variants of the problem.

1. Introduction

Genetic algorithms(GAs) have been applied to a number of ordering problems, ranging from
the Travelling Salesperson Problem [Goldberg 85] to Job-shop Scheduling [Davis 85].
Typically these problems have been mapped by representing the solutions as ordered lists of
alleles, each allele representing an item. Falkenauer [Falkenauer 91] has defined a sub-set of
these problems as grouping problems. Such problems require the grouping of items into sets.
An example is the classical Bin Packing Problem [Coffman et al 84] where a finite set of items
is to be packed into a minimum number of bins of the same size.

In this paper we look at a variant of the bin-packing problem; the problem of packing a finite
set of items into a number of categories of different sizes. Such problems are common in real­
life in the areas of time-tabling, stock-cutting and pallet loading. The problem chosen is that of

· cutting a set number of rods from stock lengths of different sizes such that wastage is
minimised, called the Cutting Stock Problem (CSP).

In representing solutions to such problems, the standard representation of the solution as a
permutated list has a number of problems. Items to be cut may be represented as a queue in a
permutated list, but the problem remains as to how to represent the different sized stock sizes
(categories). Typically GAs have coped with this problem by using an intelligent decoder
(builder) to assign items to categories. For example, Syswerda [Syswerda 91] uses an
intelligent decoder or scheduler to assign items Gobs) from a queue (represented as a
chromosome string) for a job-shop scheduling problem. Another approach is to use more than
one chromosome per individual [Juliff93][Hinterding & Juliff93]. Different aspects of a
solution are encoded onto separate chromosomes and a decoder builds solutions, taking
specifications from the separate chromosomes.

Another problem is that when chromosomes are used to represent groups of items, crossover
disrupts the groups and convergence to a solution can be very slow. Falkenauer [Falkenauer
92] uses a "grouping" chromosome to overcome this problem. Here each gene represents a
group of items, and hence crossover works with groups of items rather than a list of single

items.

1

In this paper we build on earlier work [Hinterding & Juliff93] [Hinterding 94] to develop GAs
for the CSP using two different mappings. Hinterding & Juliff implemented a multi­
chromosome GA for cutting stock, and we dramatically improve and extend on their work.
Hinterding [Hinterding 94] explored two different mappings for solving the Knapsack
problem. We extend the use of these mappings to the cutting stock problem. Falkenauer has
extended his bin packing GA [Falkenauer 94] by using local optimisation to improve his
results dramatically and we compare our GAs to his.

We restrict ourselves to using GAs with only one chromosome per individual, and by not
using local optimisation. We do this to see the effects of the different mapping on the GAs.
Problems tested range from 20 to 126 items with one to six different stock sizes.

2. The Cutting Stock Problem

The cutting stock problem (CSP) is defined as:

Minimise W = L w1XJ
jE.l

subject to L (JiJXif = Ni
jeJ

i=l,2 , .. ,n
XJ;;:: O,integer for} E J

where, WJ =waste per run of pattern}.

(1)

(2)

(3)

aif = number of pieces of item i in pattern j.
XJ =number of runs of pattern}.
Ni = number of pieces of item i.

If there is only one stock length L, and Ii is the length of order i , then
n

L = L Clij/i + w i, for all j E J
i=1

Then CSP can be written as:
MinX= "Lx1

jeJ

such that (2) and (3)

n

Note: W= LWiXi= X .L-'LNdi
jEJ i =1

The cutting stock problem is one of the first decision problems of Operations Research
modelled in a mathematical programming framework. This model and its variants have been
widely used in the paper industry; paper is produced in standard lengths and then cut into
appropriate sizes to meet customers' demands. Other application areas include steel mills and
cable industries. When the items to be produced vary in one dimension (length), the problem

2

is called I-dimensional CSP. Item sizes specified in two or more dimensions have similarly
been modelled. If there is more than one stock length from which the orders are cut, the
problem is called multiple stock length CSP. A general description and classification of
cutting problems is given in [Dyckhoff90] .

The pioneering work in solving a CSP was by Gilmore and Gomory [Gilmore & Gomory 63] .
They used a linear programming model to solve it; the integrality constraints were relaxed
initially to Xj :2:: 0, and the LP solution was obtained by a clever method of column generation.
To obtain an integer solution from the LP solution, usually simple rounding is used. although
other techniques have also been suggested [e.g., Johnston, 1986].

The LP approach was developed to incorporate factors such as multiple stock lengths, a limit
on the number of items in a pattern and ranges of demands instead of a single demand. This
approach proved generally very useful for the so-called "easy" problems where there are
many orders of small sizes. As there are many alternative solutions, the non-integer solutions
are often close to the integer solutions. However, when there are few orders of a relatively
large size (the so-called "hard" problems) the LP approach has not been very successful.

The I-dimensional CSP can be viewed as a Bin Packing Problem (BPP). Given a set of items
and a set of bins of fixed capacity, the BPP is to assign the items to the bins in such a manner
that each item is assigned to one and only one bin and the total number of bins used is a
minimum. Treating the bin capacity as stock length and the item sizes as order lengths the two
problems are equivalent. BPP is NP-Complete. A number of good heuristics exist for solving
BPP [Coffinan et al I984]. Among the available exact algorithms for BPP, the branch and
bound method of Martello & Toth [Martello & Toth 90], using the reduction procedure is
quite efficient. A good source of reference for all cutting and packing problems is Sweeney &
Paternoster [Sweeney & Paternoster 92].

Traditional methods of Operations Research such as integer programming and branch and
bound have been used for the last few decades to obtain exact and approximate solutions to
the cutting and packing problems. In the last few years, attention has been given to a number
of innovative heuristic search techniques for these problems; these include Genetic Algorithms,
Tahu Search and Simulated Annealing [Glover & Greenberg 89][Falkenauer & Delchambre
92][Hinterding & Juliff 93][Prosser 88][Reeves 93][Smith 85].

Contiguity. By solving a CSP by an LP model or otherwise, a set of patterns and the number
of runs for each of these patterns are determined. To implement this solution at production
floor level, the patterns have to be sequenced and scheduled. This sequencing factor is
important for several reasons: the knife-setting changes required; the consistency in the
quality of the products of the same customer order; and the storage of partly-finished and
unready-for-packaging product stacks. Knife-setting difficulties can be ignored because
automatic knife-changing devices are in use these days, but other problems of product quality
and inventory are important. To alleviate these problems, it is desired that the production of
items be, as far as practicable, " contiguous", ie., a particular size of item should be produced
in successive patterns until that order size is completed. Similar requirements for other
products like steel, glass, films, etc are quite possible.

3

Contiguous sequencing of patterns has not been well-researched. In practice, the sequencing
is done in the 2nd step of a two-step process where in the 1st step, the patterns and their runs
are determined. One example of2-dimensional sequencing in this manner is [Yuen 91].

One approach to deal with contiguity requirements is to include a measure of contiguity in the
objective function of the cutting stock problem. For instance, the maximum number of partly­
finished orders at any instant of a production run can serve as such a measure -- the lower the
number, the more contiguous the solution is. Adding a term "number of partly-finished open
orders" into the objective function of a linear programming problem will make it non-linear
and unwieldy for the existing LP methods for CSP. In this paper, the contiguity factor has
been taken into account in some instances and solved by genetic algorithms.

3. Representing the Problem

Two different representations were used to solve the cutting stock problems using GAs. The
Group based GA which uses a direct representation and an Order based GA which uses and
indirect representation. The Group based GA uses a mapping which focuses on the groups in
a solution. That is, it tries to find the best selection of the possible groups. A group is a
selection of items which will be cut from a single stock length. The Order based GA focuses
on the order of the items such that the items can be grouped into a solution using a decoder.

3.1. Mapping using a Group based GA.

Falkenauer developed the Group based GA for the bin packing and other grouping problems
[Falkenauer 92]. Here the emphasis is changed from the traditional GA where genes represent
a single value and its position or order in relation to other genes is significant, to the situation
where genes represent a group of items, and neither the order nor the position of the genes in
the chromosome or the items in the gene is significant. This is a significant departure from the
traditional GAs.

The problem in extending the Falkenauer's Bin Packing GA to the CSP where there are
multiple stock lengths is how to encode from which stock length a group of items is to be cut
from. Hinterding and Juliff used a multiple chromosome GA where a second chromosome
was used to encode from which stock length the groups were to be cut. The second
chromosome turns out to be unnecessary, as a valid group of items implies the stock length it
should be cut from. This is the smallest stock length from which the group of items can
successfully be cut.

Hence using this mapping we do not need to use a multi-chromosome GA for the Cutting
Stock Problem.

In the Group based GA, each chromosome represents a number of groups of items such that
all items to be cut are represented. Each gene represents a group of items, rather than a single
item. Each group will be cut from a single stock length. This mapping is illustrated in Figure I.
The characteristics of this representation are that the number of genes is variable, the order of
the genes in the chromosome has no significance, and the order of the items in each gene has
no significance. These characteristics are compatible with the characteristics of the bin
packing and cutting stock problems.

4

genotype

item chromosome

110 16.5.2115 16.5 I 7.6 110.51

stock lengths: 12, 13, 15

Items
10

6,5,2

15

6,5

7,6

10,5

phenotype (solution)

to be cut from stock size
12

13

15

12

13

15

Figure I Symbolic representation of mapping

In the Cutting Stock Problem with contiguity, the order of the genes becomes significant. The
mapping does not need to change, but different crossover and mutation operators are used to
reflect the significance of the order of the genes.

3.1.1. The encoder

An intelligent encoder is used to build the initial population, and to build new groups for
crossover and mutation operators. This encoder takes a list of stock lengths and a list of items
in random order. Using a first fit algorithm it groups the items in the item list into groups to
form genes. To build a group the encoder choses a stock length at random and then choses
items without replacement from the list of items using a first fit algorithm. The stock length is
not recorded in the chromosome, but is implied by the group itself (see section 3.1).

3.1.2. The reproduction operators

Crossover.

The crossover operator is a modification ofFalkenauers' Grouping crossover (BPCX)
[Falkenauer & Delchambre 92]. This crossover (called the Grouping crossover GCX) will
work with chromosomes of different lengths, and does not depend on any ordering of the
genes. It was designed so that the child cari inherit meaningful information from both its
parents. In this case it is the selection of genes (groups) the parents have.

The grouping crossover works in the following way: we randomly choose an insertion point
in parent I and a segment in parent 2. The child is constructed by first copying into it the
genes from parent I up to the insertion point. Then we copy the genes from the segment in
parent 2 into the child, and lastly we copy the genes from parent I after the insertion point into
the child. We cannot blindly copy the genes into the child chromosome as a chromosome with

5

duplicated items woll result. A gene is only added to the child chromosome if all its items can
be successfully subtracted from a list of items not yet included in the chromosome. At the end
of crossover the list of items included in the chromosome may not be empty, in this case the
encoder is used to generate new genes (groups) from these items and the resulting gene(s) are
added to the child chromosome. Therefore, if two identical parents are chosen for crossover,
an identical child may not always result.

The Grouping crossover gives no significance to the order of the genes in the parents, so a
new crossover was developed to give greater significance to the order of the genes for the
CSP with contiguity. This new crossover, the Uniform Grouping crossover (UGCX) works as
follows: we generate a template of randomly generated binary bits which has the same length
as the first parent. We then copy for each position in parentl the gene from that position into
the child chromosome, and then the gene from that position from parent2 is also copied into
the child if its corresponding value in the template is a 1 only. Again the copy of a gene into
the child chromosome is only carried out if the items from that genes can be successfully
subtracted from a list of items not yet included in the child chromosome.

Mutation.

The mutation operator is based on Faulkenauer's group mutation operator [Falkenauer &
Delchambre 92]. A number of genes are chosen and deleted. The items from the deleted
genes are then used by the encoder to build new groups. These new groups are then added to
the chromosome. The purpose of mutation in this case is to bring new groups into the
chromosome. The genes to be deleted are chosen from those which do not cut exactly from
the stock length (ie those with some wastage), and then randomly if there are insufficient of
these. Note that we must delete at least two genes, as deleting only one gene and then
rebuilding it would result in exactly the same gene. Our group mutation operator is different
from Falkenauer's as he deleted the gene with the greatest wastage and then some others
chosen at random. He adds the newly built genes to the end of the chromosome, while we
insert them into the chromosome at a randomly chosen site.

For the cutting stock problem with contiguity we use our group mutation operator fifty
percent of the time and we use the Remove and Reinsert mutation operator (RAR) for the
other fifty percent of the time. The mutation operator is chosen randomly.

3.2. Mapping using an Order based GA.

With this mapping the chromosome represents an ordering of all the items to be cut. A
decoder is needed to construct the groups from the ordering of the items, and the GA will
(hopefully) explore orderings which build the best groups.

A problem with this mapping is that we cannot represent the stock length the group is to be
cut from unless we use a second chromosome. As we want to explore the effect of different
mappings, we have restricted ourselves to not using a multi-chromosome GA. For this reason
we shall use only single stock length problems for the order based GA.

6

3.2.1. The decoder

The choice of decoder is very important. If we use the next fit algorithm to build the groups,
then crossover is too disruptive of the groups. The next fit algorithm is to take the next item
from the chromosome and put it into the current group if it will fit and otherwise start a new
group using the item. The basis of this problem is that a minor reordering of the items can
lead to a major change in the decoded groups [Hinterding 94][Falkenauer 91] . The use of a
first fit algorithm was successfully used to overcome this problem with the knapsack problem
[Hinterding 94] and it is used here as well.

3.2.2. The reproduction operators

Crossover We use the Uniform Order Based crossover (UOB) [Davis 91], as relative
rather than absolute order should be more significant.

Mutation We use both swap and RAR mutation.

4. The Fitness Function

The evaluation function for the cutting stock problem is calculated as the result of the
following cost function subtracted from the fitness ceiling of 1. 0.

"""" waste ii + number_ wasted
L..J / stock_ length n

cost=-1~~~~~~~~~~~~~~~~~

where
n

n = number of groups
stock _lengthi = the stock length that groupi will be cut from
waste. = stock length. - sum of items in group.

1 - 1 1

number_ wasted = number of stock lengths with wastage

The fitness function contains two terms. The first is to reduce the wastage, we take the square
root of this term to give values near the limits of the range (0-1) extra weight. This is done as
we wish to concentrate the wastage. The second term encourages solutions where fewer
stock lengths contain wastage, as this leads to better solutions.

4.1. Stock cutting with contiguity

The evaluation function for the stock cutting problem with contiguity is calculated as the result
of the following cost function subtracted from the fitness ceiling of 1. 0.

"""" wastei/ + 10 - -
L..J / stock lengthi , . . (

no open items)
2

1~ - no_ different _item_ lengths
cost=__:_~~~~~~~~~~----==-=..:..._~-=--~~~~--'--

10+n
where

n = number of groups
stock _lengthi = the stock length that groupi will be cut from
waste. = stock length. - sum of items in groupi

1 - 1

number_ wasted = number of stock lengths with wastage

7

The second term in the fitness function is used to maximise the contiguity by minimising the
number of open items. In fact we want to minimise the maximum number of open items. We
square this term, to give values in the middle of the range (0-1) extra weight. The weight of
10 for the second term, was determined experimentally to give best results for Problem 4a.

As stated earlier, contiguity is difficult to quantify. By definition, a set of patterns is either
contiguous or not. When an item, once started is included in all subsequent runs until finished,
the patterns are said to be sequenced contiguously. Id~ally, any breach of this condition will
destroy contiguity.

In practice however, perfect contiguity will not be the ultimate goal because it may raise the
amount of wastage to an unacceptable level. Therefore, the opposing objective functions of
waste minimisation and contiguity have been combined in the fitness function. The number of
open items indicates the number of item sizes started to be produced, but not yet finished at
the end of the current run. Fewer open items means better contiguity.

5. The GA

The basic Genetic Algorithm used in both cases is a steady-state GA based on the description
of OOGA in Davis [Davis 91]. Tournament selection is used with a tournament size of2 as
this was faster and gave comparable results to roulette wheel selection with linear
normalisation. It was developed using Smalltalk/V for Windows. The following parameters
can be set:

•
•

•

•

•

•

•

Population Size - set the size of the population .
Allow Duplicates - set a flag to allow or disallow duplicates to exist in the population. If
duplicates are not allowed, any duplicates produced by reproduction are discarded while
they still count as an evaluation. We determine whether two chromosomes are the same
by comparing their genotypes.
Number of Evaluations - set the number of evaluations for the run. We use evaluations
rather than generations so that we can compare between runs where the population size
and replacement rate are different.
Replacement Rate - set the percentage of the population that will be replaced by
reproduction in one generation. The rate can be set from 0 to 100%.
Crossover Rate - set the percentage of the replacement population that will be replaced by
crossover in one generation. The remainder of the replacement population will be
produced by mutation. The rate can be set from 0 to 100%.
Poisson Mutation - use a Poisson distributed random variable to determine how many
genes to mutate in a chromosome.
Poisson Mean - set the mean(/..,) for the Poisson distributed random variable .

In the Genetic Algorithm used, a new chromosome is produced either by crossover or
mutation but not both. This was done so that the separate effects of these reproduction
operators could be determined.

The mutation rate for the GA is 100 - Crossover rate. The mutation rate is the percentage of
chromosomes of the replacement population that will undergo mutation. If Poisson Mutation
is false, then mutation of one gene is generally carried out. The exceptions are swap mutation

8

where two genes are swapped, and grouping mutation where three genes will be deleted and
rebuilt. If Poisson Mutation is true, then the number of genes to be mutated in a chromosome
is determined by sampling a Poisson distributed random variable with mean 'A.

6. Results

For this study we used mainly five different problems, the first three (Problems 1-3) are from
[Hinterding & Juliff 93] . Problem 4 was derived from Problem 3 and modified to make it
harder. Problem 5 was taken from a paper by Goulimis [Goulimis 90]. Two versions of each
problem was created. One version has multiple stock lengths, and the other uses only a single
stock length. The single stock length problems have an "a" suffix.

All the results were produced by averaging the results of 20 runs. Each run is divided into an
equal number of intervals. The mean and standard deviation of the fitness values are
calculated for each of the intervals over the batch of 20 runs. The parameters for each of the
variants of the GA was optimised for best performance on Problem 4a, and run on all the other
problems using the same settings. Typical solutions are shown in Appendix 2.

We have dramatically improved on the results for Problems 1-3 as reported by Hinterding &
Juliff. They were unable to solve these problems completely within 20,000 evaluations, our
results show these problems solved completely in well under 1, 000 evaluations.

We note that for the cutting stock problem considering contiguity the Group based GA is
clearly better than the Order based GA. In Figure 2, we graph the percentage crossover used
against the maximum fitness reached for Problem 4a using the order based GA. This graph
illustrates that crossover degrades the performance of the GA.

0.96

F 0.955
i
t 0.95 i

n
e 0.945
s
s 0.94

Problem4a

' . '
--Fitness
- •••• std dev

' '

0.009

s
0.008 t

d
0.007

D

0.006 e
v

0.935 .&----+-----+---_.!:===F==----+----+ 0.005

0 10 30 50 70 90

Percent Crossover

Figure 2: Order Based GA, percentage crossover vs average fitness

For the cutting stock problem with contiguity, both GAs give comparable results ~hile the
Group based GA is slightly better. To achieve good results, the number of evaluations had to

be increased significantly.

9

Falkenauer [Falkenauer 94] improved his Bin Packing GA by using local optimisation inspired
by the reduction method of [Mantella & Toth 90]. His paper gives details of generating very
difficult bin packing problems. We ran the Group based GA on a number of these difficult
problems. For each of these problems the optimum solution is known. On the 30 item
problems we were able to solve it completely 75% of the time, and on 60 item problems 25%
of the time. With 100 item problems were able to get within one stock length of the optimum
within 5,000 evaluations. We conclude that his local optimisation method is extremely
effective as Falkenauer was able to solve completely problems of up to 501 items. We also
note that this local optimisation method cannot be used with the Order based GA, as the
groups do not exist in the chromosome.

[Reeves 93] also used a reduction procedure for solving the bin packing problem by a GA. He
reduced the problem size by deleting that subset of items which could fill one or more bins
completely (or near completely). This type of reduction can be done with Order based
mappings, and is easy to execute and can save substantial computation time. However, as
Reeves acknowledges, it can lead to suboptimal solutions. In fact, the greater the number of
items deleted by this reduction procedure, the greater the risk and level of suboptimality.
Falkenauer's use of Martello & Toth's reduction does not lead to suboptimality.

Group based, no contiguity
Population: 75 Allow duplicates: false Replacement rate: 50%
Crossover rate: 30% · Poisson mutation: (A,= 4)
Crossover: grouping
M . utat10n: groupmg
Problem evaluations 1 mean fitness std dev
1 1184 1.0 0.0
2 1184 I 1.0 0.0
3 1184 1.0 0.0
4 2294 0.9995 0.0022
5 2294 0.9998 0.0007

Problem evaluations mean fitness std dev
la 1184 0.9133 1' 0.0
2a 1184 0.9227 0.0018
3a 1184 1.0 0.0
4a 1184 0.9642 0.0
Sa 2294 0.8479 0.007

10

found at
407
740
407

2294
2294

found at
296

1184
407
851

2294

Order based, no contiguity
Population: 100 Allow duplicates: false Replacement rate: 10%
Crossover rate: 0% Poisson mutation: (A.= 4)
Crossover: UOB
Mutation: RAR
Problem evaluations mean fitness std dev found at
la 1200 0.9133 0.0
2a 3200 0.9198 0.0029
3a 4200 1.0 0.0
4a S200 0.9S88 0.0063
Sa 10200 0.8489 0.0048

Group based, with contiguity
Population: 100 Allow duplicates: false Replacement rate: 70% ·
Crossover rate: 70% Poisson mutation: (A. = 4)
Crossover: UGCX
M SOo/c SOo/c RAR utat10n: o groupmg, 0

320
3200
2560
S200

10200

Problem evaluations mean fitness std dev found at
1 215S 0.9860 0.0031 21SS
2 S27S 0.9796 0.013 527S
3 423S 0.9828 0.0041 423S
4 S27S 0.9610 0.014 527S
s 1043S 0.9889 0.0073 1043S

Problem evaluations mean fitness std dev found at
la 21SS 0.9S6 0.0 1739
2a S275 0.9212 0.0171 5275
3a 423S 0.9387 0.0318 423S
4a S27S 0.9335 0.0103 527S
Sa 10600 0.8469 0.0118 10600

Order based, with contiguity
Population: 100 Allow duplicates: false Replacement rate: 70%
Crossover rate: 90% Poisson mutation: (A. = 5)
Crossover: UOB
Mutation· RAR
Problem evaluations mean fitness std dev found at

la 2200 0.9SS4 0.0021 1990

2a S700 0.9190 0.0109 S140

3a 4300 0.9096 0.0127 4300

4a S700 0.9236 0.014S S700

Sa 10600 0.84S4 0.0132 10600

11

7. Discussion

We can see from the results for the cutting stock problem without contiguity that the Group
based GA is significantly better than the Order based GA. It is also evident that with.the Order
Based GA the use of crossover degrades the solutions found. Other order based crossovers
have been tried but better results were obtained with the Uniform Order based crossover. We
attribute this result to the fact that while there are orderings which will map to the best
solution, this is a many to one mapping and there is no ordering information which the
crossover operator can exploit. Any permutation of the groups is a solution is an equivalent
solution, as is any permutation of the items in any group.

This is in contrast to the Knapsack Problem results in [Hinterding 94] where the Order based
GA gave better results than the Selection based GA. Here the ordering performed was to
move "better" genes towards the front of the chromosome.

In fact, the results of the Order Based GA on the CSP could be interpreted as indicating that
reordering performed by the crossover operator interfered with the mutation operator. This
suggests that there is no ordering information to process using this mapping.

For the cutting stock problem with contiguity the relative order of the groups becomes
significant. The performance of the Order based and Group based GAs is roughly the same
on this problem, with the Group based GA giving slightly better results. The Order based GA
now has ordering information to process, as best results were obtained using 90% crossover.
The crossover operator for the Group based based GA was modified so that ordering
information could be processed. This modification was successful as best results were
obtained with a crossover rate of70%.

Comparing the results for the CSP with contiguity to the CSP without contiguity, we see they
differ in three ways for a CSP with contiguity:

• groups with the same pattern are brought together.
• the number of distinct item lengths in groups are reduced.
• the number of distinct patterns are reduced.

All these features are desirable for the solution, but only the first can be achieved by the
second operation of the traditional two-step process.

From the results for the CSP with contiguity, we see that there are some problems with the
fitness function. There are solutions with the same fitness value, but differing contiguity (see
Appendix 2). This occurs because we are optimising two conflicting measures , wastage and
contiguity. Ifwe did not worry about wastage, the contiguity problem is trivial. The solution
is: cut the items in item length order ignoring wastage; perfect contiguity results. The conflict
occurs as to minimise wastage, the GA attempts to concentrate wastage, while to maximise
contiguity the wastage may have to be distributed. These conflicting aims can affect the
quality of the solutions.

12

8. Conclusion

We have shown that the Cutting Stock Problem with and without contiguity can be
successfully solved using Genetic Algorithms. It was relatively easy to ·modify the Group
based and Order based GAs to include consideration of contiguity. Traditional OR methods
do not handle CSP with contiguity well.

We have shown the results of different mappings and crossovers for GAs on these problems.
The Group based GA is obviously better for the Cutting Stock Problem. For the Cutting
Stock Problem with contiguity both the GAs work equally well. Only the Group based GA
can be modified to include the local optimisation used by Falkenauer.

A pattern now starts to emerge as to the suitability of various mappings for different grouping
problems. From [Hinterding 94] we see that an Order based GA is superior as the Knapsack
Problem can be successfully mapped into an ordering problem. For CSP without contiguity the
Group based GA is superior to the Order based GA, as it contains no ordering information for
it to process. Lastly for CSP with contiguity both GAs are equally successful. The Order
based GA as it has ordering information to process. The Group based GA was successful
because the crossover was modified so that it could process ordering information.

References

[Coffman et al 84] Coffman, E.G., Garey, M.R and Johnson, D.S., Approximation Algorithms for Bin­
Packing - an Updated Survey, in G. Ausiello, M. Lucertini and P. Serafini (eds), Algorithm
Design for Computer System Design, Springer Verlag, Vienna, pp.49-106.

[Davis 91] Davis, L.(ed), Handbook of Genetic Algorithms, Van Nostrand Reinhold 1991.

[Dyckhoff 90] Dyckhoff, H., A Typology of Cutting and Packing Problems, European Journal of
Operational Research, Vol 44 (1990), pp. 145-159.

[Falkenauer & Delchambre 92) Falkenauer, E.A, A Genetic Algorithm for Bin Packing and Line
Balancing, Proceedings of 1992 IBEE International Conference on Robotics and
Automation(RA92), pp. 1186-1193, Nice 1992.

[Falkenauer 94] Falkenauer, Emanuel, Setting New Limits in Bin Packing with a Grouping GA Using
Reduction, Technical Report R0108, Department of Industrial Automation, Research Centre
for the Belgium Metalworking Industry, Brussels Belgium, 1994.

[Gilmore & Gomory 63] Gilmore, P.C. and Gomory, RE., A Linear Programming Approach to the
Cutting Stock Problem; Part II, Operations Research, Vol 11 (1963), pp 863-888.

[Glover & Greenberg 89) Glover, F. and Greenberg, H.J., New Approaches for Heuristic Search: A
Bilateral Linkage with Artificial Intelligence, Vol 39 (1989), pp.119-130.

[Goldberg 85] Goldberg, D.E. and Lingle, R Alleles, Loci, and the Travelling Salesman Problem.
Proceedings of an International Conference on Genetic Algorithms and their Applications pp

154-159, 1985.

[Goldberg 89] Goldberg, David E., Genetic Algorithms in Search, Optimization & Machine Learning,
Addison-Wesley 1989.

13

[Goulimis 90] Goulimis, Constantine, Optimal solutions for the cutting stock problem, European Journal
of Operational Research, Vol 44 (1990), pp. 197-208.

[Binterding & Juliff 93] Binterding, Robert and Juliff, Kate, A Genetic Algorithm for Stock Cutting: An
exploration of Mapping Schemes, Technical Report 24COMP3, Department of Computer and
Mathematical Sciences, Victoria University of Technology, Victoria Australia, Feb. 1993.

[Binterding 94] Hinterding, Robert, Mapping, Order-independent Genes and the Knapsack Problem,
Proceedings of the First IEEE Conference on Evolutionary Computation (ICEC'94), pp. 13-17,
Orlando 1994.

[Johnston 86] Johnston, R.E., Rounding Algorithms for Cutting Stock Problems, Asia-Pacific Journal of
Operational Research, Vol 3 (1986), pp 166-171.

[Johnston 86] Johnston, R.E., Rounding Algorithms for Cutting Stock Problems, Asia-Pacific Journal of
Operational Research, Vol 3 (1986), pp 166-171.

[Juliff 93] Juliff, K, A multi-chromosome genetic algorithm for parellel loading, Proceedings of the Fifth
International Conference on Genetic Algorithms, pp 476-73, Urbana-Champaign 1993.

[Prosser 88] Prosser, Patrick. A Hybrid Genetic Algorithm for Pallet Loading, Proceedings of 8th
European Conference on Artificial Intelligence, London 1988.

[Reeves 93] Reeves, Colin. Hybrid Genetic Algorithms for Bin-packing and Related Problems, submitted
to: Annals of Operations Research 1993.

[Smith 85] Smith, D. Bin Packing with adaptive search, Proceedings of an International Conference on
Genetic Algorithms pp.202-206, 1985.

[Syswerda 91] Syswerda, G., Schedule Optimization Using Genetic Algorithms, Handbook of Genetic
Algorithms, Davis, L. (ed), 1991, Van Nostrand Reinhold.

[Sweeney & Paternoster 92] Sweeney, P.E. & Paternoster, E.R., A Categorized, Application-Oriented
Research Bibliography on Citting and Packing Problems, Journal of the Operational Research
Society, Vol 43 (1992), pp.691-706.

[Yuen 91] Yuen, B. J., Heuristics for Sequencing Cutting Patterns, European Journal of Operational
Research, Vol 55 (1991), pp 183-190.

14

APPENDIX 1. The Problems

Problem 1: stock lengths 10, 13, 15
Problem la: stock length 14
20 items I Item Length 13
No. reg . 5 I~ I~ I~ I~
Problem 2: stock lengths 10, 13, 15
Problem 2a: stock length 15
50 items I Item Len!!!h 13
No. reg. 4 1: I ; I ~ I~
Problem 3: stock lengths 10, 13, 15, 20, 22, 25
Problem 3a: stock length 25
60 items I Item Len!!!h 13
No. reg. 6 I ~2 I~
Problem 4: stock lengths 13, 20, 25
Problem 4a: stock length 25
60 items
Item Length 5 6 7
No. req. 7 12 15

I~ I ~5

8 9
7 4

I~ I i I ~o

I~ I~ I !o

1: 1: I !o

10 11 12
6 8 1

Problem 5: stock lengths 4300, 4250, 4150, 3950, 3800, 3700, 3550, 3500
Problem 5a: stock length 4300
126 items
Item Length 2350 2250 2220 2100 2050 2000 1950 1900
No. req . 2 4 4 15 6 11 6 15

Item Length 1700 1650 1350 1300 1250 1200 1150 1100

1850
13

1050
No. req. 5 2 9 3 6 10 ' 4 8 3

15

APPENDIX 2. Typical Solutions

Problem 1 without contiguity
Ord: 7 Ord: 8 Wastage: 0 I 15
Ord: 3 Ord: 10 Wastage: 0 I 13
Ord: 3 Ord: 10 Wastage: 0 I 13
Ord: 7 Ord: 8 Wastage: 0115
Ord: 6 Ord: 7 Wastage: 0 I 13
Ord: 3 Ord: 10 Wastage: 0113
Ord: 4 Ord: 5 Ord: 6 Wastage: 0 I 15
Ord: 4 Ord: 9 Wastage: 0113
Ord: 3 Ord: 3 Ord: 7 Wastage: 0 I 13
Total Wastage: 0 No. waste items: 0 Stock used: 9

Problem 1 with contiguity
Ord: : 4 : 9 Wastage: 0113 Open: 1
Ord: : 3 : 3 : 3 : 4 Wastage: 0 I 13 Open: 1
Ord: : 3 : 3 : 7 Wastage: 0 I 13 Open: 1
Ord: : 6 : 7 Wastage: 0 I 13 Open: 2
Ord: : 6 : 7 Wastage: 0 I 13 Open: 1
Ord: : 7: 8 Wastage: 0115 Open: 1
Ord: : 5 : 8 Wastage: 0 I 13 Open: 0
Ord: : 10 Wastage: 0 l 10 Open: 1
Ord: : 10 Wastage: 0 I 10 Open: 1
Ord: : 10 Wastage: 0 I 10 Open: 0
Total Wastage: 0 No. waste items: 0 Stock used: 10 No. different orders: 8

16

Problem la without contiguity
Ord: : 3 : 3 : 8 Wastage: 0 I 14 Open: 2

Ord: : 5 : 9 Wastage: 0 I 14 Open: 2
Ord: : 4 : 10 Wastage: 0 I 14 Open: 4
Ord: : 7 : 7 Wastage: 0 I 14 Open: 5
Ord: : 3 : 3 : 8 Wastage: 0 I 14 Open: 4
Ord: : 7 : 7 Wastage: 0 I 14 Open: 3
Ord: : 4 : 10 Wastage: 0 I 14 Open: 2
Ord: : 6 : 6 Wastage: 2 I 14 Open: 2
Ord: : 3 : 10 Wastage: 1 I 14 Open: 0
Total Wastage: 3 No. waste items: 2 Stock used: 9 No. different orders: 8

Problem la with contiguity
Ord: : 4 : 10 Wastage: 0 I 14 Open: 2
Ord: : 4 : 10 Wastage: 0 I 14 Open: 1
Ord: : 3 : 10 Wastage: 1 114 Open: 1
Ord: : 3 : 3 : 8 Wastage: O I 14 Open: 2
Ord: : 3 : 3 : 8 Wastage: 0 I 14 Open: 0
Ord: : 6 : 6 Wastage: 2 I 14 Open: 0
Ord: : 7: 7 Wastage: 0 I 14 Open: 1
Ord: : 7: 7 Wastage: 0 I 14 Open: 0
Ord: : 5 : 9 Wastage: 0 'I 14 Open: 0
Total Wastage: 3 No. waste items: 2 Stock used: 9 No. different orders: 8

17

Problem 4 without contiguity
Ord: 6 Ord: 7 Ord: 7 Wastage: 0 I 20
Ord: 10 Ord: 10 Wastage: 0 I 20
Ord: 9 Ord: 11 Wastage: 0 I 20
Ord: 5 Ord: 9 Ord: 11 Wastage: 0 I 25
Ord: 8 Ord: 12 Wastage: 0 I 20
Ord: 9 Ord: 11 Wastage: 0 I 20
Ord: 6 Ord: 7 Wastage: 0 I 13
Ord: 5 Ord: 8 Wastage: 0 I 13
Ord: 5 Ord: 8 Wastage: 0 I 13
Ord: 6 Ord: 7 Wastage: 0) 13
Ord: 6 Ord: 8 Ord: 11 Wastage: 0 j 25
Ord: 6 Ord: 7 Wastage: 0 I 13
Ord: 7 Ord: 7 Ord: 11 Wastage: 0 I 25
Ord: 6 Ord: 7 Wastage: 0 I 13
Ord: 5 Ord: 9 Ord: 11 Wastage: 0 I 25
Ord: 5 Ord: 8 Wastage: 0 I 13
Ord: 6 Ord: 7 Wastage: O j 13
Ord: 6 Ord: 7 Wastage: 0 I 13
Ord: 6 Ord: 8 Ord: 11 Wastage: 0 I 25
Ord: 5 Ord: 10 Ord: 10 Wastage: 0 I 25
Ord: 6 Ord: 7 Wastage: 0 I 13
Ord: 6 Ord: 7 Wastage: 0 I 13
Ord: 5 Ord: 8 Wastage: 0 I 13
Ord: 6 Ord: 7 Wastage: 0 I 13
Ord: 10 Ord: 10 Wastage: 0 I 20
Ord: 7 Ord: 7 Ord: 11 Wastage: 0 j 25
Total Wastage: 0 No. waste items: 0 Stock used: 26

18

Problem 4 with contiguity (Solution A)
Generation: 100 Best at: 79 Ave fit: 0.954 Max fit: 0.972 Min fit: 0.878

REACHED MAX GENERATION Best at: 79

Ord: : 5 : 8 Wastage: 0 I 13 Open: 2
Ord: : 5 : 8 Wastage: O I 13 Open: 2
Ord: : 5 : 8 Wastage: 0 I 13 Open: 2
Ord: : 5: 8 Wastage: 0 I 13 Open: 2
Ord: : 5 : 8 Wastage: 0 I 13 Open: 2
Ord: : 5 : 8 Wastage: 0 I 13 Open: 2
Ord: : 5 : 8 Wastage: 0 I 13 Open: 0
Ord: : 10: 10 Wastage: 0 I 20 Open: 1
Ord: : 10: 10 Wastage: 0 I 20 Open: 1
Ord: : 10 : 10 Wastage: 0 I 20 Open: 0
Ord: : 6 : 7 Wastage: 0 I 13 Open: 2
Ord: : 6 : 7 Wastage: 0 I 13 Open: 2
Ord: : 6 : 7 : 7 Wastage: 0 I 20 Open: 2
Ord: : 6 : 7 Wastage: 0 I 13 Open: 2
Ord: : 6 : 7 Wastage: 0 I 13 Open: 2
Ord: : 6 : 7 Wastage: 0 I 13 Open: 2
Ord: : 6: 7 Wastage: 0 I 13 Open: 2
Ord: : 6 : 7 Wastage: 0 I 13 Open: 2
Ord: : 6: 7 Wastage: 0 I 13 Open: 2
Ord: : 6 : 7 Wastage: 0 I 13 Open: 2
Ord: : 6: 7 Wastage: 0 I 13 Open: 2
Ord: : 6 : 7 Wastage: 0 I 13 Open: 1
Ord: : 7 : 7 : 11 Wastage: 0 I 25 Open: 1
Ord: : 11 : 12 Wastage: 2 I 25 Open: 1
Ord: : 11 : 11 Wastage: 3 I 25 Open: 1
Ord: : 9 : 11 Wastage: 0 I 20 Open: 2
Ord: : 9: 11 Wastage: 0 I 20 Open: 2
Ord: : 9 : 11 Wastage: 0 I 20 Open: 2
Ord: : 9 : 11 Wastage: 0 I 20 Open: 0
Total Wastage: 5 No. waste items: 2 Stock used: 29 No. different orders: 8

19

Problem 4 with contiguity (Solution B)
Generation: 100 Best at: 68 Ave fit: 0.944 Max fit: 0.972 Min fit: 0.856

REACHED MAX GENERATION Best at: 68

Ord: : 5 : 7 : 8 Wastage: 0 I 20 Open: 3
Ord: : 5 : 7: 8 Wastage: 0 I 20 Open: 3
Ord: : 5 : 7: 8 Wastage: 0 I 20 Open: 3
Ord: : 5 : 6 : 6 : 8 Wastage: 0 I 25 Open: 4
Ord: : 5 : 6: 6: 8 Wastage: 0 I 25 Open: 4
Ord: : 5 : 6: 6: 8 Wastage: 0 I 25 Open: 4
Ord: : 5 : 6: 6 : 8 Wastage: 0 I 25 Open: 2
Ord: : 6 : 7 Wastage: 0 I 13 Open: 2
Ord: : 6 : 7 : 12 Wastage: 0 I 25 Open: 2
Ord: : 6 : 7 Wastage: 0 I 13 Open: 2
Ord: : 6 : 7 Wastage: 0 I 13 Open: 1
Ord: : 10 : 10 Wastage: 0 I 20 Open: 2
Ord: : 10: 10 Wastage: 0 I 20 Open: 2
Ord: : 10 : 10 Wastage: 0 J 20 Open: 1
Ord: : 7 : 7: 11 Wastage: 0 I 25 Open: 2
Ord: : 7 : 7 : 11 Wastage: 0 I 25 Open: 2
Ord: : 7: 7: 11 Wastage: 0 j 25 Open: 2
Ord: : 7 : 7: 11 Wastage: 0 I 25 Open: 1
Ord: : 9 : 11 Wastage: 0 I 20 Open: 2
Ord: : 9: 11 Wastage: 0 I 20 Open: 2
Ord: : 9: 11 Wastage: 0 I 20 Open: 2
Ord: : 9: 11 Wastage: 0 j 20 Open: 0
Total Wastage: 0 No. waste items: 0 Stock used: 22 No. different orders: 8

Note: A comparison of the two solutions (A & B) for the same problem illustrates the effect of contiguity.
While both solutions have the same fitness (0.972), A bas a wastage of 5 and B bas O - clearly B is better
than A in terms of wastage. However, A bas a maximum of 2 items open, compared to 4 of B; thus A is
superior in terms of contiguity. This occurs due to the conflicting criteria of wastage and contiguity. It
should also be noted that the different numbers of stock used (29 & 22) has little significance as differing
stock lengths are used in the solutions.

20

Problem 4a without contiguity

Ord: : 5 : 9 : 11 Wastage: 0 I 25 Open: 3
Ord: : 7: 8 : 10 Wastage: 0 I 25 Open: 6
Ord: : 5 : 10 : 10 Wastage: 0 I 25 Open: 6
Ord: : 5 : 6 : 7 : 7 Wastage: 0 I 25 Open: 7
Ord: : 6 : 8: 11 Wastage: 0 I 25 Open: 7
Ord: : 5 : 9 : 11 Wastage: 0 I 25 Open: 7
Ord: : 7 : 7: 11 Wastage: 0 I 25 Open: 7
Ord: : 6 : 9 : 10 Wastage: 0 I 25 Open: 7
Ord: : 7 : 7 : 11 Wastage: 0 j 25 Open: 7
Ord: : 7: 7 : 11 Wastage: 0 I 25 Open: 7
Ord: : 6 : 9 : 10 Wastage: 0 j 25 Open: 6
Ord: : 6 : 7 : 12 Wastage: 0 I 25 Open: 6
Ord: : 6 : 6 : 6 : 7 Wastage: 0 j 25 Open: 6
Ord: : 6 : 8 : 11 Wastage: 0 I 25 Open: 6
Ord: : 5 : 6: 7 : 7 Wastage: 0 I 25 Open: 6
Ord: : 7: 8 : 10 Wastage: 0 I 25 Open: 5
Ord: : 6 : 8 : 11 Wastage: 0 I 25 Open: 4
Ord: : 5: 5 : 7: 8 Wastage: 0 I 25 Open: 2
Ord: : 6 : 8 Wastage: 11 I 25 Open: 0
Total Wastage: 11 No. waste items: 1 Stock used: 19 No. different orders: 8

21

Problem 4a with contiguity

Ord: : 7 : 7 : 11 Wastage: 0 I 25 Open: 2
Ord: : 7: 7 : 11 Wastage: 0 I 25 Open: 2
Ord: : 7: 7 : 11 Wastage: 0 I 25 Open: 2
Ord: : 7 : 7: 11 Wastage: 0 I 25 Open: 2
Ord: : 7 : 7 : 11 Wastage: 0 I 25 Open: 2
Ord: : 7 : 7 : 11 Wastage: 0 I 25 Open: 2
Ord: : 7: 7 : 11 Wastage: 0 I 25 Open: 2
Ord: : 11 : 12 Wastage: 2 j 25 Open: 1
Ord: : 7 : 9 : 9 Wastage: 0 j 25 Open: 1
Ord: : 5: 10 : 10 Wastage: 0 I 25 Open: 3
Ord: : 5 : 10 : 10 Wastage: 0 I 25 Open: 3
Ord: : 5 : 10 : 10 Wastage: O I 25 Open: 2
Ord: : 8 : 9 Wastage: 8 I 25 Open: 3
Ord: : 8 : 8: 9 Wastage: 0 I 25 Open: 2
Ord: : 5 : 6: 6 : 8 Wastage: 0 I 25 Open: 3
Ord: : 5 : 6 : 6 : 8 Wastage: 0 I 25 Open: 3
Ord: : 5 : 6 : 6 : 8 Wastage: 0 I 25 Open: 3
Ord: : 5 : 6 : 6 : 8 Wastage: 0 I 25 Open: 1
Ord: : 6 : 6 : 6: 6 Wastage: 1 I 25 Open: 0
Total Wastage: 11 No. waste items: 3 Stock used: 19 No. different orders: 8

22

