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ABSTRACT 

 
Bluff bodies form ubiquitous components of many engineered structures. They are often 

exposed to turbulent flows, and the subsequent shedding of vortices gives rise to 

aerodynamic forces with large fluctuating components. As a result, significant 

oscillations are induced, which can lead to resonances and structural fatigue. To obviate 

these deleterious effects passive flow control mechanisms can be incorporated into the 

design of bluff bodies. However, to ensure the designs are effective and safe it is 

essential to understand and anticipate the behavior of the turbulent flows around bluff 

bodies.  

The research reported in this thesis is inspired by the owl’s book of aerodynamic 

wisdom. Owls’ flight must be well controlled and silent, and this they achieve in part by 

the comb-like leading edges on the primary feathers of their wings. The leading edge 

comb is a passive flow control mechanism that exists in nature, and it is used in this 

research as a template for engineering designs to control the turbulent flows around 

bluff bodies. In this work, the comb-like features are idealised by spanwise sinusoidal 

profiles (SSPs) on the leading edges of bluff bodies. The research presented in this 

thesis is motivated by the possibility of utilising detailed numerical simulations of the 

flow control phenomena that occurs in nature, in an attempt to design more efficient 

aerodynamic structures.  

To achieve this research objective, turbulent flows around square and rectangular 

cylinders are modelled numerically. Three-dimensional numerical predictions of the 

flow behaviour are obtained using the computational fluid dynamics (CFD) code – 

FLUENT®, based on the mathematical approach of the large eddy simulation (LES) 
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turbulence model. The results have been validated against published experimental and 

numerical observations. Results are presented in the form of time-averaged quantitative 

observations of the turbulent flow fields and power spectral densities of the wakes at a 

Reynolds number of 2.35×104. A significant practical finding of the research is that an 

SSP on the leading edge can reduce the mean drag force by up to 30% compared with a 

plain cylinder. Also, the lift force fluctuations can be reduced by up to 95%. Insights 

into the effectiveness of SSPs are gained by studying the topology of the flow field both 

within the boundary layers and wakes adjacent to the structures.  

A parametric study that examines the role of the governing parameters of an SSP, 

namely the sinusoidal amplitude and wavelength, reveals that the flow regimes 

generated under turbulent flow differ from those of laminar flows. The wave steepness 

of the sinusoidal leading edge assumes more importance when controlling turbulent 

flow fields around bluff bodies, whereas the wavelength has a strong influence on 

laminar flow fields. 

Investigations of the turbulent flow around bluff bodies with large aspect ratio, 

demonstrate that the proximity of the leading edge to the trailing edge does not 

profoundly influence the control of the flow field. In fact, the flow field and resulting 

wake generated by the SSP resembles that of a streamlined body. The sinusoidal 

perturbations are capable of largely dissipating the shear layers to form a narrow wake 

behind the elongated body. In addition, numerical simulations of the flow around square 

cylinders with partially imposed SSPs on the leading edges show that the passive flow 

control mechanism is able to locally control the flow field, in a similar manner to the 

leading edge comb on an owl’s wing. In summary, an SSP is a very practical and 

important mechanism for reducing the aerodynamic forces on bluff bodies.  
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CHAPTER 1 

 

INTRODUCTION 
 

 

 

 

Turbulent flows around three-dimensional obstacles occur frequently and they occur 

around communication towers, buildings, cylindrical support structures, bridges, 

vehicles and so on. The subsequent formation of turbulence and the transport of vortices 

in the wake of the bluff body give rise to aerodynamic forces with large fluctuating 

components. This affects their aerodynamic performance, and can induce significant 

structural oscillations (vortex-induced vibrations), which can lead to fatigue failures and 

resonances. This is detrimental to safety. Therefore, the three-dimensional flow around 

bluff bodies is important in engineering practice, as the forces generated must be 

accounted for in the design. As a result, structures may have to be strengthened or 

reinforced, leading to the design of the structures being quite robust. However, they 

may still be susceptible to fatigue failure. This approach to mitigating the effects of 

vortex shedding is likely to be wasteful of materials, and it may not be aesthetically 

pleasing. An alternative is to modify the aerodynamics of bluff bodies and obviate these 

drawbacks. For these reasons, it is essential to understand and anticipate the properties 

of turbulent flow around bluff bodies, to implement more effective, efficient and safe 

engineering designs (Shah and Ferziger 1997).  

Control mechanisms can alleviate the deleterious effects on bluff bodies caused by 

turbulent flow. They can achieve this by modifying the flow field around the bluff 
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bodies or by adjusting the body’s response to the flow; in either case, the large 

fluctuating forces are attenuated. The latter can include active feedback controllers that 

reduce the high amplitude oscillations of the body in response to the vortex induced 

vibrations. However, this can be an expensive solution as actuators and sensors are 

incorporated into the mechanism; furthermore, active controls are subject to high 

maintenance costs, and they generally consume energy. Hence, an active flow control 

method is not necessarily suitable to achieve an effective and sustainable engineering 

design. Passive control mechanisms may be preferable. The development of flow 

control mechanisms can provide insights to better understand the fluid-to-structure 

interactions. Anticipating the fluid dynamics of the flow field around bluff bodies will 

facilitate the design of structures that are not subjected to damaging forces.  

Numerous approaches for the control of the flow around bluff bodies have been 

implemented successfully. It has been found that flow control techniques, such as 

passive mechanisms are more preferable than active control methods. Passive 

controllers are typically more effective when they are applied adjacent to the point of 

transition (i.e. laminar to turbulent flow) or the separation lines on the surface of the 

body (Anderson and Szewczyk 1997; Bushnell 1994). These correspond to regions in 

which flow instabilities increase rapidly and critical flow regimes exist. The approaches 

to controlling the flow around a bluff body, with the aim of improving the aerodynamic 

performance, must consider controlling the wall-bounded turbulence (i.e. the flow on 

the surface). There are two common categories of flow controls; these are free-shear 

controllers and wall-bounded controllers. A free-shear controller focuses on the flow 

that has separated from the surface, and can have restrictions reducing the surface drag 

force, as the wall-bounded flow is more important in this case. Hence, this research will 

focus on a wall-bounded passive controller.   
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1.1 Passive Flow Control Mechanism 

In order to control the flow around a bluff body, passive controls are often preferred to 

active control methods, as they provide effective solutions and simplified designs, 

without the need for external energy resources. Passive control mechanisms usually 

involve modifications to the structural geometry. An example of the use of passive 

devices include the work of Bearman and Brankovic (2004), in which helical strakes 

and bumps are applied to circular cylinders, in order to control vortex shedding and 

therefore reduce vortex induced vibration. Their application proved effective when 

applied to a fixed cylinder. However, in the case of freely vibrating flexible cylinders, 

the system resonates when the value of the reduced velocity, U/NoD, is in the range in 

which vortex induced resonance would occur if the cylinder were plain. Here U is the 

velocity of the fluid, D is the diameter of the cylinder, and No is the natural frequency in 

vacuo.  

Passive control mechanisms have the potential to control the turbulent flow field. 

However, not all types of passive controllers are practical. For example, helical strakes 

and surface bumps, although effective in flow control with their ability to reduce the 

adverse effects of vortex shedding, can increase the drag force by up to 10% (Griffin 

and Ramberg 1982). If these devices are attached to say, cylindrical towers, the increase 

in drag loading can induce significant bending moments at the base.  

More recently, Kumar et al. (2008) reviewed methods of achieving passive control 

by fitting helical strakes, bumps and streamline fairings to bluff bodies. They agreed 

that these devices provided effective control when applied to single structures. 

However, when individual structures form part of an array of structures, the flow field 

may be modified in a way that promotes vibrations as a result of the fluid-to-structure 
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interactions caused by interference. In addition, these particular modifications can 

significantly affect the fluid dynamic performance, installation and maintenance costs, 

and overall simplicity of the structure.  

Van den Abeele et al. (2008) numerically modelled the effects of helical strakes 

and streamlined fairings on bluff bodies in turbulent flows. Their results agreed closely 

with the experimental observations of Bearman and Brankovic (2004) and Kumar et al. 

(2008). The numerical models demonstrated that the effectiveness of these passive 

devices is dependent on the direction and velocity of the flow. An example of a passive 

control with a dependence on both the free-stream velocity and flow direction is control 

cylinders located on either side of the wake (Saha et al. 2003). Not only does this type 

of control depend on the flow direction, but mechanical attachments that hold the 

control cylinders in place can exacerbate resonance of the structure, and they may be 

subject to fatigue failure. Considerations such as these may limit the applicability of 

these passive control systems and pose an economic impediment to their adoption.   

An effective method of controlling vortex shedding and improving the aerodynamic 

performance of a bluff body is to modify its geometry by incorporating a periodic 

perturbation to the leading and trailing edges, after the manner of Tombazis and 

Bearman (1997), Bearman and Owen (1998) and Owen and Bearman (2001). They 

reported a reduction of up to 34% in the mean drag loading, due to fixed spanwise 

vortex dislocations. Complete mitigation of vortex shedding was also achieved for very 

mild perturbations, regardless of the flow direction (Bearman and Owen 1998). Both the 

mean and unsteady forces were reduced, in which there was independence of the angle 

of attack of the flow; this may be a useful attribute. In addition, reduced forces can be a 

result of stable three-dimensional shear layers that have been found to be associated 
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with a wavy cylinder (Xu et al. 2010). Darekar and Sherwin (2001a, b) determined that 

in laminar flows the drag on wavy cylinders that have a square cross-section and are 

sinusoidal in the direction transverse to the flow is about 30% less than the drag on the 

corresponding straight square cylinder. Importantly, vortices on the length scale of the 

height of the bluff body were absent. They also established that three distinct laminar 

flow regimes result from this geometry, depending on parameters such as the 

wavelength and amplitude of the sinusoidal perturbations along the cylinder.  

Further examples of passive control applications have been reported by Naumann et 

al. (1996) and Dobre et al. 2006, in which periodic changes were applied to the 

separation lines of circular and square cylinders, respectively. It was demonstrated that 

this application mitigated vortex shedding at critical free-stream velocities. Dobre et al. 

(2006) demonstrated that a reduction of up to 78% in the turbulence intensity could be 

achieved in the wake, and this is reflected in a 30% reduction in the mean drag force. 

The vortices in the wake were also observed to decay more rapidly; hence vortices in 

the intermediate to far wake regions were less well defined. In addition, castellation of 

the trailing edge of bluff bodies results in a decrease in the drag loading of up to 64%, 

which is associated with increases in the trailing edge pressure (Tanner 1972). The 

imposition of periodic perturbations is a promising mechanism for passively controlling 

the flow around bluff bodies, and it offers a thriving field of fluid dynamics research to 

understand the phenomena associated with this control method. 

Biomimicry provides inspiration to elucidate the phenomena of the controlled flow 

field around a bluff body. Nature itself can be a template for many engineered 

applications, specifically passive control mechanisms that exhibit periodic 

perturbations. One particular example is the leading edge comb that is located on owls’ 
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wings; these account to their silent flight (Lilley 1998). The comb can be idealised as a 

spanwise sinusoidal profile (SSP) on the leading edge of a bluff body. In fact, the broad 

aspect ratio of an owl's wing makes this passive control mechanism applicable to bluff 

bodies, including those researched in this work. It is the leading edge comb that forms 

the inspiration of the research, and this is discussed in greater detail in the following 

chapters. An SSP provides a very practical and important mechanism for reducing 

aerodynamic and hydrodynamic forces on bluff bodies. Its commercial applications are 

only now being realised, and this renders the work reported in this thesis particularly 

timely.  

 

1.2 Objectives and Contributions of the Thesis  

The principal objective of this research is to use spanwise sinusoidal profiles on the 

leading edges of bluff bodies to control turbulent flow fields. This is achieved by using 

a validated numerical model to simulate the transport phenomena in the flow field. In so 

doing, the numerical analysis can refine the existing knowledge discussed briefly in 

Section 1.1. The research presented in this thesis is motivated by the possibility of 

utilising detailed numerical simulations of the flow control phenomena that occur in 

nature. In particular, it is bio-inspired by the silent flight of owls. The wings of owls 

have special features in the form of a leading edge comb and trailing edge fringe. These 

features have been found to suppress the noise during flight by controlling the wing 

aerodynamics (Lilley 2009). Hence, the mean drag force and lift force variance is 

reduced, and the possibility exists for suppressing vortex-induced resonance. The 

numerical simulations will provide further understanding of the flow dynamics that are 
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associated with applying a leading edge comb to a bluff body, and the SSP is considered 

a generic example, as it exhibits similar characteristics.  

Few important parameters need to be addressed when designing a passive control 

mechanism such as the SSP. These parameters are the amplitude and the wavelength of 

the sinusoidal perturbations. To establish these parameters within an intellectual 

framework, the results of this study are expressed in terms of the Reynolds number, Re, 

the normalised wavelength, λ/D, and wave steepness, ω/λ, where D is the leading edge 

height of the bluff body, and λ and ω are the wavelength and wave height, respectively.  

This research provides a step towards understanding the links between nature and 

engineering, in an attempt to design more efficient aerodynamic structures. To achieve 

this research objective the aerodynamic performance of square and rectangular cylinders 

is examined in detail numerically, and the results are verified against published 

experimental observations. Although the square and rectangular geometries are not a 

direct replication of an owl’s wing, they represent an idealisation of the leading edge 

comb. This approximation is a key to unlocking the aerodynamic wisdom of the owl. 

Hence, modelling the turbulent transport of air travelling around the square and 

rectangular cylinders provides an additional step toward a significant understanding of 

the passive control application. The transport of fluid flow around uncontrolled and 

controlled square and rectangular section bodies is important in a general sense for 

engineering applications. The complexity of the physical phenomena renders this 

approach an excellent candidate for analysis using contemporary methods.  

Three-dimensional numerical predictions are obtained with the computational fluid 

dynamics (CFD) code – FLUENT®. It is essential that the CFD code is validated against 

experimental data for all flow characteristics associated with the investigation in this 
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study. The research reported in this thesis contributes to the validation of a commercial 

CFD package against a range of phenomena associated with turbulence flow control. 

This includes topology of the flow field both adjacent to the structures and within the 

boundary layer. Hence, the wall adjacent flow and near wake flow have been studied in 

detail. The effects of the SSP on mean drag force and lift force variance with different 

arrangements have also been investigated. In the numerical predictions, the 

mathematical approach is based on the Large Eddy Simulation (LES) turbulence model, 

where the large scale flow structures are sufficiently resolved and the small scale 

structures are modelled.  

 

1.3 Thesis Outline  

This research has been contextualised in Section 1.1, and here a more detailed outline is 

provided. As mentioned beforehand, the motivation for the research is bio-inspired from 

the silent flight of the owl. Chapter 2 provides a literature review of the morphological 

adaptations that promote silent flight. This puts the research into perspective. 

Discussion is made specifically on the leading edge comb, in order to elaborate on the 

results to be presented in following chapters, and demonstrate the connection between 

natural phenomena and engineered applications.  

The research presented in this thesis is purely numerical, and the current results 

have been validated against existing experimental and numerical data. The governing 

mathematical equations, physical assumptions and details of the numerical techniques 

are detailed in Chapter 3. The computational domain and mesh generation is discussed, 

and the model validation and setup for experimental comparisons are outlined. A 

validation of the numerical approach using LES is demonstrated. Results from the 
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current numerical data for the turbulent flow around the bluff bodies are shown to agree 

well with other numerical and experimental observations reported in literature.  

The numerical tool has enabled an investigation of physical phenomena that have 

not been previously reported in the literature. Details emerge of the flow field around a 

bluff body that has a spanwise sinusoidal profile attached to the leading edge. In 

Chapter 4, the phenomena of the controlled flow field are elucidated for contrasting 

configurations of an SSP imposed on square cylinders. Results are presented in the form 

of time-averaged quantitative observations for both uncontrolled and controlled flows, 

as well as the power spectral densities of the wake. These results are in good agreement 

with previously published studies. They are interpreted with the help of flow 

visualisations. The aerodynamic forces and their fluctuations acting on a square cylinder 

can be greatly reduced if an SSP is imposed on the leading edge. This is particularly the 

case when the wave steepness, ω/λ, is 0.2 and the normalised wavelength, λ/D, is 

between 2.4 and 5.6.  

In addition, a parametric study is conducted in Chapter 4 to examine the role of the 

governing parameters of the SSP, namely the amplitude and wavelength. The 

motivation for the parametric study is that the literature suggests that the normalised 

wavelength plays an important role in controlling laminar flow fields. In contrast, the 

parametric study suggests that the wave steepness assumes more importance when 

controlling turbulent flow fields. It is to be noted that Chapter 4 establishes the setting 

for future chapters. Hence, the investigation and length of this chapter is larger than 

other chapters in this thesis.    

Many practical applications involve bluff bodies with large aspect ratio, in which 

the geometries are elongated in the direction of the flow. Furthermore, owls’ wings have 
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broad aspect ratio, which provides a further motivation for the investigation into 

elongated bluff bodies. An investigation of the spanwise sinusoidal profile applied on 

the leading edge of elongated cylinders is conducted in Chapter 5. The cylinders are 

elongated forms of the SSP geometries that are explored in Chapter 4. This chapter 

focuses on the effect of the behaviour of the shear layers associated with flat plates, 

namely the separating and reattaching phenomena along the surface. The results given 

in the form of flow visualisations and time-averaged physical quantities demonstrate 

that the aerodynamic forces acting on an elongated bluff body can be greatly reduced 

with an SSP imposed on the leading edge. The flow field and wake of the elongated 

SSP body resembles that of a streamlined body. Additionally, the proximity of the SSP 

leading edge to the trailing edge does not profoundly influence the control of the flow 

field. The sinusoidal perturbations are capable of largely dissipating the shear layers, 

and forming a narrow wake behind the elongated body.   

The spanwise sinusoidal profile on the entire leading edge is a very effective 

passive flow control mechanism. However, in some practical cases, the deleterious 

effects that result from the surrounding flow may only exist at local regions on the span 

of the structure. In these cases, the full span SSP may be considered impractical. 

Furthermore, the leading edge comb is located on only the primary feathers of an owl’s 

wing. Hence, Chapter 6 explores the effectiveness of SSPs applied on only part of the 

spans of square cylinders. In other words, the leading edges experience combinations of 

interrupted regions of plain (uncontrolled) and SSP (controlled) spans. The 

investigations are carried out with the most efficient SSP design that is obtained in the 

previous chapters. Flow visualisations and results of the time-averaged flow data are 

provided. Chapter 7 concludes the research and discusses possible future research 

opportunities.  
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A quantitative topological analysis of the boundary layers for the square, elongated 

and partial SSP cylinders is provided in Appendix A. A cross-correlation analysis of the 

time-averaged velocity and pressure measured at points located on both the leading and 

trailing edges is discussed in detail. The data are provided as an Appendix because a 

refined study is suggested as future work.  

A proposal for a semi-active parameter control mechanism to control the turbulent 

flow surrounding a circular cylinder, and suppressing vortex-induced vibration is 

investigated in Appendix B. Although a passive control is the main focus of the thesis, 

the semi-active parameter control demonstrates an efficient mechanism as an alternative 

approach for flow control. This was investigated at the early stages of the research to 

contrast with the passive control. Through variations in the effective length, and based 

on knowledge of the turbulent flow environment, the control condition can be 

predetermined. This eliminates the need for computing and sensing equipment that is 

usually included with active controls. Hence, the proposed technique provides an 

efficient and reliable alternative.  
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CHAPTER 2 

 

TECHNOLOGY OF OWLS'  SILENT FLIGHT : A 

BIO-INSPIRED SPANWISE SINUSOIDAL PROFILE  
 

 

 

 

The history of technological development has generally been portrayed through 

engineering designs that are products of our sole understandings of engineering 

principles. For example, the development of efficient and safe road vehicles relies on 

the understanding of energy, combustion and mechanics. Furthermore, the design of 

superior commercial aircraft involves knowledge of aerodynamics, material science and 

hydraulics. In recent history however, the application of engineering towards the 

improvement of technology has opened the door to the broad field of biomimetics 

(Benyus 1997; Bar-Cohen 2006; Mueller 2008). Engineering principles have largely 

been used to explain phenomena in biological specimens; however, the case now rests 

on nature itself as a template for many engineered applications and the advancement of 

technology.  

Nature itself holds the key for many, if not all, engineering principles. Even though 

the field of biomimetics is not new, engineers still have much to learn about nature in 

order to unlock and harness all its phenomena. In this research, focus is on aerodynamic 

phenomena, in particular, controlling turbulent flows around bluff bodies. When bluff 

bodies are located in a turbulent flow field, they experience unacceptably large and time 
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varying forces that result from their shedding vortices. In this case, the structure is 

susceptible to fatigue failure, and the fluctuating forces can create significant 

aerodynamic noise. To mitigate the forces on the bluff bodies, bio-inspired passive 

mechanisms can be employed as an effective solution, in which the aerodynamics are 

modified to obviate these drawbacks.   

Passive mechanisms through biomimicry relate to morphological adaptations that 

control the flow around the body. There exist numerous types of passive controls in 

nature; one example is the drag reducing streamline shape that can be observed in many 

marine mammals, such as cetaceans (Bushnell and Moore 1991; Curren, Bose and Lien 

1994; Wolfgang et al. 1999; Pavlov 2006). Their ability to swim efficiently is 

accountable to the fusiform shape of their bodies, flippers, flukes and the dorsal fin; 

these can resemble the shape of airfoils or fuselage found on aircraft. The purpose of 

these streamlined geometries is to maintain an attached smooth flow (boundary layer) 

across the surface, resulting in the lower drag force. Streamlining has been implemented 

on bluff bodies, in which fairings are attached to oil and gas submarine pipelines and 

catenary risers (Kumar et al. 2008; Van den Abeele et al. 2008). This passive control 

mechanism proved effective in most cases; although, it was found to be highly 

dependent on the direction of the flow. Marine mammals are living systems and 

therefore, have the ability to change their direction to the flow as they swim. Hence 

instead, mechanical devices were fixed to the streamline fairing to allow it to rotate 

streamwise around the structure. However, passive control methods are usually 

favoured over such active control methods because active controls require the use of 

mechanical devices which consume energy and can be susceptible to fatigue failure.  
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That a fusiform surface improves the aerodynamic performance of a geometry 

results in it being considered an exceptional means of passively controlling the flow. 

However, there exists other morphological adaptations that can control the flow and 

improve performance quite remarkably, which may not at first be expected to do so. 

These components of the body are eccentric features that create turbulent flow around 

the surface of the body rather than preserving laminar (smooth) flow. In other words, 

they force (trip) the boundary layer to prematurely transition from laminar to turbulent 

flow, in which the higher energy of the flow keeps it attached to the surface. Examples 

of such devices are the bumps that can be depicted on the surface of the pectoral flipper 

of a humpback whale (Megaptera novaeangliae) and the dorsal fin of porpoises 

(Phocoena dioptrica) (Winn and Reichley 1985; Evans, Kemper and Hill 2001; Watts 

and Fish 2001; Custodio 2007; Fish, Howle and Murray 2008). In addition, the 

eccentric morphological adaptations are not limited to marine mammals and are also 

found on the wings of birds such as the owl (Strigiformes) in the form of leading edge 

combs; these can be accountable to their silent flight (Lilley 1998). In fact, the broad 

aspect ratio of an owl's wing makes this passive control applicable to bluff bodies, and 

previous studies have been conducted to apply this silent flight technology to aircraft, in 

order to reduce airport noise during planes takeoff and landing (Roach 2004; Jaworski 

and Peake 2012).  

Surface modifications, in particular leading edge modifications, prove to be an 

effective passive control mechanism, such as a sinusoidal leading edge (Bearman and 

Owen 1998; Owen et al. 2001; Darekar and Sherwin 2001; Dobre et al. 2006). A 

sinusoidally modulating leading edge generally results in flows in the wake of bluff 

bodies becoming incoherent. Hence, the flow field exhibits three-dimensional 
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characteristics which prevent a uniform bulk flow from forming the roll-up of large 

scale vortices. Indeed, the abovementioned corroborates the need to incorporate 

biomimetics of morphological adaptations to control the flow around bluff bodies in an 

effort to reduce the deleterious effects of vortex shedding.  

The aims of this chapter are to highlight the phenomena of the silent flight of owls’, 

which motivates the main research in this thesis; a bio-inspired spanwise sinusoidal 

profile (SSP) to control the turbulent flow around bluff bodies. Taking inspiration from 

the owls' book of aerodynamic wisdom, the SSP represents a simple form of the primary 

flow control mechanism found on an owl's wing; the leading edge comb. The features of 

the passive control mechanisms on owls' wings are explored in detail before elucidating 

the structure of the flow field around a bluff body with and without an SSP in later 

chapters. Hence, this chapter will focus on providing a detailed background on the owl, 

and will identify some practical applications of the technology of owls’ silent flight, to 

demonstrate the potential use on bluff bodies.   

 

2.1 The Phenomena of Silent Flight 

Most birds of prey depend on their capability to fly at great speeds to capture their prey. 

Owls however, flying at relatively lower speeds, require a different strategy to hunt 

successfully. Owls are usually perched close to the ground, at approximately 3 to 6 m, 

therefore relying on stealth to remain undetected by its prey. The mice and voles hunted 

by owls have hearing that is most sensitive between 2 and 20 kHz, and the owl’s bi-

aural sensing system has a frequency range between 3 and 6 kHz (Lilley 2009). Hence, 

owls must remain relatively quiet above a frequency of 2 kHz, if they are not to 

interfere with both the preys’ and their own hearing system.  
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An early work to explore how owls differed from other species of bird was that of 

Lieutenant Commander Graham R. N. (1934). It was observed in this work that the key 

features providing the owl with its stealth attribute are on the wing itself, and can be 

characterised by a leading edge comb, trailing edge fringe and velvety down feathers on 

the upper surface. This chapter will focus on the leading edge comb and trailing edge 

fringe, as we will later explore how these features allow the ability to control 

aerodynamic flows. Furthermore, results from current research presented in following 

chapters demonstrate the effectiveness of the leading edge comb applied to square and 

rectangular bodies in the simple form of a spanwise sinusoidal profile (SSP). 

 

2.1.1 Leading Edge Comb 

The leading edge comb is a hard comb-like structure, located at the front of every 

feather that acts as a leading edge of the wing. The combs are at most approximately 4 

mm long with a spacing of 0.75 mm, and these parameters vary between species of owl 

(Graham 1934). An enlarged view of a leading edge comb from a Barn Owl (Tyto alba) 

is shown in Figure 2.1, where the hard shape and structured comb-like pattern can be 

depicted. That the parameters of the comb differ between species of owl, but 

nonetheless remain fixed for any given wing, suggest that the spacing and height of the 

teeth play an important role in controlling the flow field. In following chapters it is 

found that both the sinusoidal wavelength and amplitude of an SSP are significant 

parameters in effectively controlling the flow field around a bluff body.  

For the Barn Owl, the leading edge comb appears only on the primary wing feather, 

from near the tip of the feather to the root, and has direct contact with the oncoming 

airstream. A diagram indicating the primary and secondary feathers of an owl’s wing is 
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given in Figure 2.2. Lt. Cmdr. Graham (1934) suggested that the leading edge comb 

provides a silencing mechanism for noise generated by fluctuations in the air. The 

leading edge comb can be found on other adjacent primary feathers for other owl 

species, such as the Barred Owl (Strix varia); however, it is only present on the part of 

the wing that interacts with the free-stream flow (Bachmann et al. 2007). A Barred Owl 

in flight is displayed in Figure 2.3 and shows the leading edge comb only on all leading 

edge regions of the feathers that interact directly with the free-stream.  

The leading edge comb of a Barn Owl is in such a way that each tooth is directed 

upward at an angle of approximately 45 degrees towards the tip of the wing (Graham 

1934). This detail is clearly evident in Figure 2.1. In flight, when the wing is angled and 

cambered to the oncoming flow, initial interaction between the flow and wing may be 

concentrated towards the underneath of the leading edge. In this case, the upward 

extension of the leading edge teeth may allow the free-stream flow to firstly interact 

with the passive control by forcing the airstream to travel between the combs before 

reaching the true leading edge of the wing. Therefore, this slows the flow and reduces 

the effect of the sudden decrease in pressure within the upper boundary layer. The 

inclination of the comb deflects the flow in such a way that the boundary layer is much 

thinner on the upper surface (suction surface) than on a conventional wing without a 

comb. Hence, the upper surface boundary layer contains a pattern of small longitudinal 

(streamwise) vortices as a result of the comb (Lilley 2009). The flow remains attached 

along the cord of the wing, producing a stabilised flow on the upper surface during 

flight, as well as preventing the emission of sound from scattered turbulent flow.  
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Figure 2.2: Diagram of a Barn Owl’s wing showing the primary and secondary feathers 

(Bachmann et al. 2007). 

Secondary Feathers 

Primary Feathers 

Figure 2.1: Leading edge comb of a Barn Owl (Tyto alba) feather (Sieradzki 2008).  
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An owl does not have a comparable flight speed to other bird species such as an 

eagle or peregrine. Furthermore, the shape of an owl’s wing is rounded with a very 

broad aspect ratio, allowing the owl to glide slowly. At an average Reynolds number of 

approximately 1.5 × 105 corresponding to a flight velocity of 6 to 8 ms-1, the owl flies 

quite steeply towards its prey at approximately 24 degrees to the horizontal. Adding to 

that, the wings are highly cambered during a rapid acceleration from the perched 

position, and a sudden deceleration when catching the prey (Lilley 1998). In Figure 2.4, 

a typical steep flight profile of a Barn Owl is shown, demonstrating the positioning of 

the wings during an approach to its prey. This typical flight behaviour of an owl would 

produce a stalled flow on the upper surface of the wings, hindering the owl’s ability to 

maintain flight. The leading edge comb is a mechanism that provides effectiveness in 

flow control by stabilising and quietening the flow around the wings, allowing the owl 

to maintain its flight and hunt accurately and successfully.  

 

Figure 2.3: Leading edge comb shown on a Barred Owl (Strix varia) in flight (Kohut 

2009). 
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Lilley (1998) conducted a study of owls silent flight, based on the work of Kroeger, 

Grushka and Helvey (1972) to confirm the owls' remarkable abilities. Kroeger et al. 

(1972) studied the flight behaviours of the Barred Owl both with and without a leading 

edge comb. They found that without the leading edge comb, the Barred Owl 

experienced difficulty maintaining straight flight, and was not able to capture its prey 

accurately. The acoustic range of the owl was well above 10 kHz, which is similar to all 

other birds. The higher frequencies produced during these observations can also be a 

contribution to the Barred Owl's inability to maintain its approach trajectory, as the 

noise would interfere with the bi-aural sensing system. However, as the Barred Owl of 

Kroeger et al. (1972) was trained to hunt its imitation prey for the experiments, the 

difficult flight could very well be the result of stalled flow on the wings.  

The observations of Kroeger et al. (1972) and further work of Lilley (1998) can be 

considered a confirmation of the theory that the flow is stalled across the wing without a 

Figure 2.4: Flight path of a Barn Owl during the day (top) and night (bottom) (Lilley 

2009). 
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leading edge comb, while identifying the prevention of laminar separation along the 

wing upper surface when the leading edge comb is attached. In fact, the observations 

demonstrate how the leading edge comb not only reduces noise levels, but also allows a 

pseudo-turbulent flow at low Reynolds number to remain attached across the wing 

surface (Lilley 1998). Furthermore, when Kroeger et al. (1972) conducted the 

experiments for the normal Barred Owl, the noise was dominant at frequencies well 

below 2 kHz, demonstrating the owl’s silent flight mechanism. This substantiates the 

motivation to apply a form of the leading edge comb to the leading edge of a bluff body 

in order to control the flow across the surface. By maintaining an attached flow, the 

flow field around the bluff body would exhibit the characteristics associated with the 

flow field around streamlined (fusiform) bodies.  

 

2.1.2 Trailing Edge Fringe 

The trailing edge (TE) fringe consists of fibres that extend from the trailing edge of each 

primary feather and the main wing. They are formed from the tips of the barbs (strands) 

that make up the feathers (Bachmann et al. 2007). Barbs can be identified as hair strands 

that are combined together to form the surface of the feather. The length of the trailing 

edge fringes are approximately 5 mm in the case of large owls and the spacing is non-

uniform (Graham 1934). A trailing edge fringe is shown in Figure 2.5, where the 

similarity to fibres can be depicted. Each barb throughout the feather is connected by 

microscopic secondary branches called hook radiates (Bachmann et al. 2007). These 

radiates contain small hooks that connect to the hooks of adjacent radiates and hence 

connect the barbs. At the trailing edge of the feather, the barbs are thinner and lack the 



22 

 

small hooks. Hence, this characteristic forms the fibres, as the barbs exist independently 

to form the fringe.   

One can suggest that the non-uniform nature of the trailing edge fringe and random 

fibre lengths, shown in Figure 2.5, are able to absorb the non-uniform pseudo-turbulent 

flow features that exist within the boundary layers by applying a porous medium to the 

feathers. As the flow along the upper and lower surfaces of the wing sheds from the 

trailing edge, the small turbulent eddies present on each surface and created by the 

presence of the leading edge comb, interact with each other. For a normal wing without 

a trailing edge fringe, the mixing of the upper and lower boundary layers can generate 

vortex shedding and noise. Graham (1934) suggests that as the flow travels through the 

trailing edge fringe, the interaction process is delayed by the porosity of the trailing 

edge fringe, and the resulting near wake stream is smoothed and vortex shedding 

suppressed.  

 

 
 

Figure 2.5: Trailing edge fringe of a Barn Owl (Tyto alba) showing detail of fibre 

extensions of the barbs of the feather (Bachmann et al. 2007). 

Barbs (strands) 

Trailing edge 

TE fringe 
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Another suggestion from Graham (1934) is that the trailing edge fringe also 

behaves as an absorber to fluttering caused by flow induced vibrations at the trailing 

edge, therefore, suppressing the scattered turbulent noise. This suggestion is based on 

the observation that the trailing edge fringe is not only present along feathers that 

behave as a trailing edge, but also overlapping primary feathers. The reason, as an owl 

glides through the air the wing feathers space evenly to allow the air to travel between 

each feather in order to maintain gliding flight. An example of this feather spacing can 

be seen in Figure 2.3 for the Barred Owl.  

Interestingly, Bachmann et al. (2007) also noted a fringe along the leading edge of 

each feather. However, it was not present on the true leading edge of the initial primary 

feather and this fringe was shorter and mostly parallel to the leading edge. It might be 

reasonable to suggest that this additional fringe can be associated with reducing friction 

between the feathers, as well as absorbing turbulence not absorbed by adjacent feathers. 

The current research does not cover a complete study into the effectiveness of the 

trailing edge fringe on bluff bodies, however, it is thought necessary to introduce 

background on this silent flight mechanism as it is plausible to include in future 

research. Hence, following sections in this chapter will briefly demonstrate the practical 

applications of a trailing edge fringe.  

 

2.2 Scaling for Biomimicry 

Passive adaptations such as the leading edge comb and trailing edge fringe allow the 

owl to fly relatively silently by altering the surrounding flow. Indeed, these devices can 

be implemented to enhance the aerodynamics around bluff bodies. An effective 

transition of such biological design to engineering applications requires the use of 
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proper scaling. For example, a particular case of a technological system may be larger in 

size and also operating at a faster speed as compared to that of a biological system; this 

example can exist between a bluff body and an owl. Hence, to obtain the same degree of 

effectiveness in control of the flow field on a bluff body as that of an owl, an overlap in 

performance criteria between the two cases can be established (Fish et al. 2011). 

Examination of the steep approach path of an owl of approximately 24 degrees to 

the horizontal reveals this to be typical of most owls, and resembles the trajectory of 

commercial aircraft during landing (Lilley 2009). The large angle of attack of the flow 

field upon a leading edge can also coincide with conditions on bluff bodies that are 

manifest in a myriad of many engineered structures and applications. Furthermore, an 

additional overlap can exist by comparing the flow speeds. Taking the Reynolds number 

as �� = (���)/
 , where �, �, � and 
, are respectively the fluid density, streamwise 

velocity, wing cord (width) and dynamic viscosity, an owl flying at a Reynolds number 

of 1.5×105 can produce and maintain attached flow across the wing with a coefficient of 

lift, ��, of 1. In the case of a conventional wing or blade operating at the same speed, 

flow separation will be experienced at �� of 0.6 (Lilley 2009). As Kroeger et al. (1972) 

discovered, the inclusion of the leading edge comb provides the owl with stable flight 

by applying the effect of co-rotating vortex generators across the upper surface of the 

wing. The resulting decrease in surface drag prevents a stalled flow from occurring and 

also reduces scattered turbulent noise. In this case, an owl's wing containing a broad 

length/cord (/�) ratio and lower streamwise velocity, �, resulting in a lower flight 

Reynolds number, can achieve a much higher performance in lift. Hence, the limitations 

of performance placed on conventional geometries can be significantly improved. 
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Lilley (1998) derived that the far-field sound intensity was proportional to the 

amount of turbulence crossing the trailing edge of the wing. Therefore, for a highly 

turbulent flow passing over the surface of the wing, a high intensity of sound is also 

expected; the increase of sound can equate to lower aerodynamic performance. 

Reducing the boundary layer thickness across the upper and lower surfaces of the wing 

reduces the turbulent flow and hence, the sound intensity and surface drag.  

The leading edge comb contains uniform spacing between teeth, which produces a 

thin boundary layer on the surface of the wing. Lilley (1998; 2009) deduced that the 

uniform tooth spacing produces a streamwise vorticity field across the surface, 

maintaining an attached flow up to the trailing edge, which mitigates the interaction of 

turbulence intensity at the trailing edge of the wing. He related the even spacing of the 

comb teeth to a non-dimensional spanwise spacing, 

  �∗ =
��	∆�

�
        (2.2.1) 

which is accountable for optimal drag reduction, where �� is the local shearing velocity 

at the leading edge and ∆� is the uniform spacing between each tooth. The value of �∗ 

for the leading edge comb is approximately 18, determined through experiments, and is 

near the value for maximum drag reduction (Lilley 2009). Similarly, Bachmann et al. 

(2007) measured the density of the leading edge comb to be approximately 18 per cm, 

which is equivalent to the density of the barbs abovementioned in Section 2.1.1. Hence, 

it can be anticipated that the non-dimensional spacing of the leading edge comb plays an 

important role in obtaining a controlled flow field, and is also a significant parameter in 

providing an overlap between the biological phenomena of the owl and an engineered 



26 

 

application; this will be the focus of the research and demonstrated by the spanwise 

sinusoidal profiles on the bluff bodies.  

 

2.3 Practical Adaptations of Silent Flight Technology  

The technology associated with silent flight was proposed by Graham (1934) to be used 

for silencing airscrew blades, that is, propellers and turbines. However, it was 

concluded that the light wing-loading of the owl and the slow speed in comparison to 

propellers might prevent the modifications from being applied, but the noise 

characteristics are still worthy of investigating. Nevertheless, silent flight technology, or 

preferably referred owl technology, has been utilised by Liang et al. (2010) to 

investigate noise reduction of fan vanes, while attempting to increase both air flow and 

efficiency. This work involved experiments with the application of a saw-tooth serration 

along the tip region on the leading edge of the fan blades. The serrated fan blades of 

Liang et al. (2010) are shown in Figure 2.6.  

Considering owls’ wing structure, shape and distribution of the leading edge comb, 

Liang et al. (2010) decided the key parameters for designing the saw-tooth leading edge 

were the number of teeth, height of the teeth, and the circular pitch (spacing) of the 

teeth. It was found that a fan blade with less teeth, but large pitch and height, achieved 

the best performance. This configuration is shown in the image on the far left of Figure 

2.6. That the application of a leading edge comb improves the performance of a 

streamlined body (i.e. fan vane), which would already contain good performance criteria 

without any modification, justifies the motivation to investigate this use on bluff bodies. 

Indeed, the abovementioned findings corroborate the current research results for a bluff 

body, which is presented in the following chapters. 
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Dassen et al. (1996) performed acoustic experiments with different planforms and 

orientations of a saw-tooth trailing edge attached to a semi-infinite flat plate and a 

symmetrical NACA0012 airfoil. A schematic representation of each of their models 

investigated is shown in Figure 2.7. Each model contained a saw-tooth edge 50 mm 

long with tooth spacing of 5 mm. The most significant noise reduction was found to be 

above 5 dB for both the flat plate and airfoil containing a trailing edge in the same plane 

and parallel to the leading edge, depicted as their FP2 in Figure 2.7. Other 

configurations produced only a slight decrease in noise levels. A trailing edge fringe 

configured at an angle of 15 degrees with the chord (i.e. FP2_15) increased the sound 

level by 10 dB. However, each configuration did not decrease the performance of the 

models, regardless of the orientation, and had made slight improvements to the 

aerodynamic performance overall.  

The experiments of Dassen et al. (1996) also deduced that the noise reductions 

obtained were not dependent on free stream velocity and are therefore Reynolds number 

independent. These findings were strongly agreed with by Herr (2006), who conducted 

Figure 2.6: Serrated fan blades of Liang et al. (2010), showing their four leading edge 

configurations. 
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trailing edge experiments with flexible polypropylene fibres. Herr (2006) suggests that 

the reduction in noise is a result of viscous damping of unsteady turbulent eddies 

passing over the trailing edge.   

Both the investigations of Dassen et al. (1996) and Liang et al. (2010) demonstrate 

the effects of owl technology in a practical sense. Although the experiments of Liang et 

al. (2010) do not report the Reynolds number, it is nonetheless evident that both 

investigations discovered that the principal phenomena of the technology are applicable 

to similar applications at high and low Reynolds numbers. An important aspect of the 

experiments of Dassen et al. (1996) and Liang et al. (2010) is that having either just a 

trailing edge fringe or leading edge comb would allow an understanding of the separate 

mechanisms of owl technology. If analysis were to be conducted with a combination of 

both the leading edge comb and trailing edge fringe, the separate mechanisms may not 

be as apparent. Hence, their findings provide a lead into this field of research.  

It is apparent that achieving significant aerodynamic performance for a particular 

system relies purely on controlling the flow field effectively at the leading edge. Any 

modifications to the flow field at the trailing edge relates to improving the far-field 

noise characteristics of the system. It goes hand-in-hand that controlling the turbulence 

at the leading edge enhances the mitigation of noise propagation at the trailing edge. 

Hence, to achieve the latter, it is important to establish a complete understanding of the 

phenomenological aspects of the leading edge comb, in which the flow field can be 

precisely controlled for any given application.  
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2.4 The Spanwise Sinusoidal Profile (SSP) 

Flow around a bluff body has drawn out significant interest due to its substantial 

practicality, i.e. flow around communication towers, oil rigs, support structures, 

buildings, and so on. The flow field in the wake behind a bluff body and the resulting 

transport of the vortical structures contain many significant and practical implications; 

examples include vortex-induced vibration and noise. Hence, to control the flow field 

around a bluff structure is quite an important concept. In addition, understanding the 

Figure 2.7: Serrated trailing edges showing (a) Saw-tooth schematic and (b) diagram of 

different saw-tooth configurations (Dassen et al. 1996). 
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phenomena that is associated with flow control so as to implement the concept onto the 

myriad of practical applications, will achieve a significant milestone in engineering. Of 

course, this cannot be realised without the use of biomimicry.  

The leading edge comb can be simply represented by a spanwise sinusoidal profile 

(SSP) applied to the leading edge of a slender bluff body. An example of an SSP 

geometry is shown in Figure 2.8. In an analogous manner to the comb, an SSP can 

control the deleterious effects associated with turbulent flow and vortex shedding. To 

elucidate the mechanisms of the controlled flow arising from an SSP, a comprehensive 

description of the near wake topology of the vorticity field around square and 

rectangular cylinders with and without an SSP is researched.  

The geometry of a spanwise sinusoidal profile is governed by two dimensionless 

parameters, namely a normalised wavelength, λ/D, and the wave steepness, ω/λ, where 

ω and λ are respectively the sinusoidal amplitude and wavelength (Darekar and Sherwin 

2001). Hence, these two parameters represent the tooth length and tooth spacing of the 

leading edge comb, respectively. What will be demonstrated in following chapters is the 

dependency of the configuration of the flow that is present in the wake of an SSP on the 

values generated of ω/λ and λ/D. There may exist a dependence on the wavelength 

similar to the relationship deduced by Lilley (2009) in equation 2.2.1. Under turbulent 

flow conditions, a two-dimensional wake exists when maintaining λ/D constant and 

having low values of ω/λ; hence there is no effect on the flow, and the wake remains 

essentially similar to a plain geometry. Increasing ω/λ obtains substantial spanwise 

incoherence in the wake. Hence, the modified flow field in the form of high three-

dimensionality in the wake is said to be controlled flow. An intermittent wake is 

produced for values of ω/λ in between those associated with control and no control.  
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In this research, several geometries of an SSP are studied that represent geometries 

that do not control, intermittently control, and highly control the flow field. The 

topology of the flow field is obtained by utilising numerical simulations to capture and 

extract the inherently transient features of the flow using a method called large eddy 

simulation (LES). This computational method is beneficial in aiding an understanding 

of the fluid-to-structure interactions associated with an SSP. It is believed that such 

details of the flow around SSP geometries have not hitherto reported in the literature. 

The mathematical and numerical models are discussed in detail in the next chapter. To 

demonstrate the effectiveness of the SSP, three contrasting levels of the SSP are 

presented and compared on square cylinder geometries. Secondly, the flow around 

slender rectangular geometries is presented as a basic representation of an owls' wing. 

 

Figure 2.8: Model of (a) a plain square cylinder (slender bluff body) and (b) a square 
cylinder with an SSP applied to the leading edge.  
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2.5 Summary 

In this chapter, the mechanisms of owls’ silent flight have been explored through a 

literature summary on the Barn Owl (Tyto alba) and Barred Owl (Strix varia). Firstly, 

the effects of a leading edge comb were investigated. This feature of the owl is located 

on all the primary flight feathers that behave as leading edges to the upstream flow. The 

main mechanism of the leading edge comb is to provide the wing with the effect of co-

rotating vortex generators, which creates a surface vorticity field maintaining an 

attached boundary layer across the upper surface of the wing. As owls are known for 

flying in steep trajectories with a relatively low Reynolds number, the flow attachment 

stabilises an owl’s flight. This stabilisation not only controls the owls’ flight, but also 

minimises the energy of turbulence that approaches the trailing edge, therefore reducing 

scattered noise, and can significantly reduce drag and vortex-induced vibrations of bluff 

bodies.  

Secondly, the trailing edge fringe of owls’ feathers was investigated. Being located 

along all trailing edges of the primary and secondary feathers, this porous feature 

enhances the reduction of scattered noise by delaying the interaction between the upper 

and lower flows of the wing, preventing vortices from occurring and hence further 

preventing vortex shedding noise and vibration.  

Several examples of the technology applied to aerodynamic models have been 

given, in order to facilitate an understanding of the effectiveness of the mechanism in 

controlling flow in a practical situation. These models included symmetric airfoils and 

semi-infinite flat plates, which demonstrated the possible application to bluff bodies. 

Specific details of the independent qualities of both the leading edge comb and trailing 
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edge fringe have been given, and these details suggest several avenues of future 

research.  

The following chapters will explore the effectiveness of owl technology, through 

both a quantitative and qualitative investigation. Numerical analysis of a bio-inspired 

spanwise sinusoidal profile (SSP) that represents a leading edge comb applied to square 

and rectangular sections, will provide details of the phenomenal characteristics of owl 

technology. These findings will validate previous experimental observations, as well as 

provide new understandings of the fluid dynamics of owl technology.  
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CHAPTER 3 

 

THE COMPUTATIONAL AND MATHEMATICAL 

MODELS 
 

 

 

 

The power of computer aided technology, particularly within computational fluid 

dynamics (CFD), has improved substantially over time. In early CFD days, the 

processing speeds of most computers limited numerical analysis to simple 

investigations. Now at present, processing speeds are seemingly limitless, and parallel 

computing opens the door to explore complex problems. The area of CFD is pushing the 

boundaries on the way fluid dynamics problems are able to be solved (Slagter 2011). 

With this in mind, it is not difficult to imagine the many exciting opportunities 

involving CFD. The field of fluid mechanics in aerodynamics and wind engineering can 

benefit greatly from this advancement in technology, as the power of CFD has allowed 

numerical modelling to be a more productive method than experimental analysis alone. 

The work in this thesis is purely numerical, containing verification against existing 

experimental data. Before describing the numerical setup, it is felt necessary to firstly 

discuss some background on numerical modelling, in order to establish the effectiveness 

of this methodology and the foundation for selecting this analytical approach.     

Until the advent of readily available computer resources, the theory and application 

of fluid dynamics were quite limited. However, engineering resources are developing in 

a way that enables us to study physical phenomena, such as turbulence, in ever 
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increasing temporal and spatial detail. For example, in preceding times, both 

experimental and theoretical methodologies have widely been employed to explore fluid 

flow. Physical systems are easily represented by deriving and solving equations using a 

theoretical procedure, and these governing equations contain assumptions to provide 

results that have a valid description of the system. The phenomenon of turbulent flow 

however, contains governing equations that are coupled and multi-dimensional. 

Consequently, without sufficient resources, the analytical solutions to a theoretical 

approach can only be obtained for simple cases, limiting the possible case studies 

greatly.  

Experiments have a broad scope, as the multi-dimensional nature of turbulent flow 

can be practically represented. By ensuring the measurements are recorded without 

difficulty and the physical conditions are accurately represented, this methodology can 

provide a complete description of the physical system. However, this is not always the 

case, for some systems, such as flow around complex bluff bodies, can be difficult to 

represent and the measurements must also be obtained in a way as to not interrupt the 

flow. Therefore, experimental procedures can be expensive, and some techniques may 

even provide solutions that are not sufficiently detailed (Shah and Ferziger 1997).  

The ability of CFD to simulate fluid flow calculations and accurately interpret the 

physical system has allowed this methodology to become the new powerful tool in flow 

investigations. For a computational procedure, the theoretical governing equations are 

solved at discrete locations in both space and time. Hence, spatial and temporal 

discretisation is employed using approximate methods to approximate the system 

derivatives (Wilcox 1996). If a sufficient number of discrete points are defined while 
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setting up the problem, the solution can reach an accurate value that would otherwise be 

obtained if an analytical solution of the theoretical methodology is utilised.   

Benefits of employing CFD to solve fluid flow problems include being able to 

obtain analytical solutions to time-dependent and multi-dimensional problems that have 

great practical significance. The governing equations for the flow represent the 

theoretical side of CFD, and the application of the numerical procedure and the solution 

validation represents the experimental side of CFD. Hence, utilising CFD surmounts the 

difficulties for the individual approaches discussed above. Provided that suitable initial 

conditions are chosen and boundary conditions are considered appropriately, the 

numerical model can closely represent a physical system. Virtual monitors can be 

placed at any location throughout the computational domain, eliminating any 

interference to the surrounding flow. Throughout computations, changes to the flow 

parameters can be made both before and during the analysis. CFD has benefits as a flow 

solving methodology, by providing an accurate representation of the flow conditions. 

Computational fluid dynamics is therefore, a suitable choice to consider when 

conducting research in fluid dynamics. Hence, it is the reason for choosing this 

methodology to conduct the work in this thesis.  

Significant attention to detail is required when employing CFD, as a drawback of 

this methodology is the amount of care required to ensure the desired accuracy. For an 

approach to CFD, such as the study of flow around a bluff body, the designer should 

firstly consider the expected results that are to be obtained from the simulation. Keeping 

this in mind, the computational domain and its associated mesh must be created to 

acquire the desired results. One consideration is the domain to be designed in such a 

way to accommodate the flow adequately. The computational mesh should be refined in 
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the regions where steep gradients exist, for accurate approximations, and can be less 

refined in surrounding regions where accuracy is not greatly required (Saha et al. 2001). 

Steep gradients generally occur along wall surfaces. Secondly, the designer should 

consider the physics involved, which includes whether the flow is turbulent or laminar, 

incompressible or compressible. The dynamics are quite different for each problem; 

therefore, specific solvers are employed to solve a particular tailored problem (Tinoco, 

Lindqvist and Frid 2010). Such considerations are employed to generate the models 

throughout this study. For the work in this thesis, the flow is incompressible and 

turbulent.   

At present, flow around a bluff body has elicited significant interest due to both its 

theoretical and practical importance. The turbulence that is formed in the wake behind 

the body and resulting transport of the turbulent structures contain many significant and 

practical implications. Turbulent flow contains irregular and unsteady three-dimensional 

eddies (currents) of varying sizes (Wilcox 1992). Essentially, the size of the large scale 

turbulent eddies is similar to the characteristic length scale, such as the leading edge 

height of the body. The smallest scales of turbulence can be several orders of magnitude 

smaller than their larger counterparts (Landahl and Mollo-Christensen 1992). The small 

scales are generally isotropic at higher flow velocities and acquiescent to modelling, 

whereas the large scales are generally anisotropic. In turbulent flows, the energy is 

transferred from the large scales to the smaller scales. The larger eddies interact and 

extract the energy from the mean flow. Therefore, the large turbulent scales depend on 

the geometry, the particular boundary conditions and loading forces that act on the 

geometry (the large scales are amenable). Hence, turbulent flow is dependent on the 

larger scales of motion, and in order to accurately resolve the turbulence scales, a 

solution to the governing equations is obtained with a numerical model.  
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The numerical model that solves the governing equations in such a way as to 

compute the larger turbulent eddies explicitly, while modelling the smaller scales, is 

known as the Large Eddy Simulation (LES) turbulence model. This turbulence model is 

well suited to wind engineering and aerodynamic studies, as the forces, moments and 

the fluctuations within turbulent flow are dependent on the large scales of transport 

(Shah and Ferziger 1997). In order to achieve the LES approach to the numerical 

treatment of turbulence, a spatial filtering operation is employed that separates the large 

and small eddies. The interactions between the large resolved scales and the smaller 

unresolved scales are determined through sub-grid scale (SGS) models. Through a finite 

volume method, the time-dependent and spatially filtered governing equations are 

solved across control volumes, including the equations to the SGS model that contains 

the unresolved sub-grid stresses.  

Sufficient grid density and time-step sizing is essential for LES, consequently 

making the computing power expensive. Compared to LES, a Reynolds Averaged 

Navier-Stokes (RANS) turbulence model requires much less computing. However, a 

RANS model is not universal, and usually requires empirical adjustments to produce 

accurate results. RANS models are also not preferred for solving turbulent flows, as 

turbulence quantities are not modelled in this approach. A direct numerical simulation 

(DNS) can capture the smallest scales of turbulence. However, as the scales of motion 

decrease with increasing Reynolds number, DNS requires much finer meshing and 

time-steps than LES, as this approach does not employ SGS models. To minimise 

computing expense, DNS is limited to low Reynolds number flows, and therefore also 

limited when applied to practical problems. LES is a universal turbulence model and 

achieves reliable simulations of turbulent flow.  
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Through the advantages that CFD offers as compared to the more traditional 

methods of resolving fluid flow problems, such as experimental and theoretical 

approaches, it is clear that advances in the available tools are improving the pursuit of a 

common methodology. The computing requirements of LES are so expensive that 

simulations are limited to simple geometries (Kato and Ikegawa 1991; Lu et al. 1997a; 

Lu et al. 1997b; Jordan and Ragab 1998; Kravchenko and Moin 2000). Nevertheless, as 

LES resolves the larger scale turbulence, the numerical solution can provide detailed 

information regarding the physics of the flow surrounding a bluff body. Also, for the 

fundamental fluid study of spatial turbulent transition in the boundary layer, LES agrees 

well with both experiments and empirical laws for transitional flow (Xiyun and Guocan 

2002).  

In this chapter, the numerical model and procedure are discussed for simulating the 

flow around square and rectangular cylinders with and without the attachment of a 

passive control device on the leading edges. These geometries are a representation of 

the leading edge comb found on owls’ wings. The passive control device is a spanwise 

periodic perturbation essentially containing the structure of a spanwise sinusoidal 

profile (SSP). The SSP in this study involves the modification of the leading edge in the 

form of a sinusoidal indentation. In the following, the computational domain is 

presented, and the boundary conditions and mesh generation are detailed. The numerical 

description for LES is provided, giving a detailed insight to this methodology. 

Reference to an experimental model is given within the numerical explanation, in order 

to provide details for establishing a close approximation to an experimental setup for 

model verification. Throughout this study, the computational fluid dynamics (CFD) 

code, FLUENT® is employed.  
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3.1 Numerical Description 

The large scale turbulent structures are responsible for loading forces, moments and 

turbulent fluctuations, and momentum and energy are also obtained through the 

transport of large turbulent structures. Therefore, it is necessary to obtain flow details at 

this scale, in order to assist in understanding the fluid dynamics of the passive control 

application. The CFD code, FLUENT® has been used to perform the numerical 

simulations using large eddy simulation (LES) (ANSYS 2009). The decision to utilise 

the LES turbulence model is due to its ability to accurately resolve the large scale eddies 

present in the flow explicitly, while sufficiently modelling the small scale eddies (Shah 

and Ferziger 1997). This section will discuss the methodology behind the LES 

turbulence model and the subsequent choice for the supporting sub-grid scale models. 

Available knowledge in LES will be presented; however, the details will explain the 

relevance to the numerical model. 

 

3.1.1 Mathematical Model 

Throughout the numerical simulations, the flow is considered three-dimensional, 

unsteady and incompressible. The modelling of flow through the domain is governed by 

the fundamental equation of continuity, and three-dimensional Navier-Stokes equations 

of momentum for constant density and viscosity given as 

 

• Continuity equation: 

 

 
��
�� +	���� +	���	 = 0       (3.1.1) 
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• Three-dimensional differential momentum equations: 
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In equations 3.1.1 to 3.1.4, the variables �, � and � are the Cartesian �, � and � 

velocity components, respectively. The variable � is the fluid density, � is the fluid 

pressure and � represents time. It should be noted that the term for gravitational force is 

not included in the momentum equations.  

In the numerical treatment of turbulence for LES, a spatial filtering function is 

applied to the time-dependent incompressible Navier-Stokes equations, in order to 

separate the large and small structures. The filtered momentum equations explicitly 

resolve the large scale turbulence, while the small scale turbulent structures are 

modelled (Shah and Ferziger 1997; Versteeg and Malalasekera 2007; Wilcox 1993). 

This spatial filtering process selects the minimum filter size of the large scale turbulent 

structures equivalent to the minimum grid size within the computational mesh. Hence, 

the large scale structures are resolved on the length scale of the mesh. The filtering 

operation neglects turbulent scales that are smaller than the mesh size while resolving 

the remaining larger scales. Hence, it is necessary to define a relatively fine 
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computational grid near regions of steep gradients, such as a wall, when employing the 

turbulence model.  

Information related to the filtered smaller scales is not considered through the 

spatial filtering algorithm. Therefore, the interaction effects between the larger resolved 

turbulent scales and smaller unresolved scales introduce sub-grid scale stresses, which 

effect on the resolved flow is determined through a sub-grid scale (SGS) model 

(Versteeg and Malalasekera 2007). It is usually typical for a turbulence model to contain 

numerical uncertainty and error, as more scales are modelled rather than solved. 

Reynolds averaged Navier-Stokes (RANS) models are widely applied in practical 

situations because they make modest demands on computer resources. However, when 

phenomena are averaged there is an inevitable loss of information. An advantage of 

LES is that it retains important temporal details of the flow. The filtering process is as 

follows. 

 

• Filtering function: 

 

 G x	,	x'$	=	 1
∆3         (3.1.5) 

 

 where:  ∆	= (∆�∆�∆�)   is the cube root of the grid cell volume.  

 

  hence:   ∆*= +, is the grid cell volume.   (3.1.6) 

 

For finite volume discretisation in LES, equation 3.1.5 is called a box filter and is 

the preferred method for spatial filtering (Wilcox 1993). This is a simple form of spatial 
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filtering functions and is typical for three-dimensional simulations of LES. The limits of 

the box filtering function states 

 

• Box filter limits: 

 

 -(�, �/, ∆) = 1 1 	+,⁄ 								|� − �/| ≤ ∆5		0																	|� − �/| > ∆5			7      (3.1.7)  

 

The box filter function provides the definition to the spatial discretisation and 

separates the resolvable scales from the sub-grid scales. The filtering operation then 

defines the governing equations for the resolvable scales.  

 

• Filtering operation: 

 

 Φ9(�) 	= 	 �:; 	< Φ(�/)= 	>�/	,			�/ ∈ 	�	     (3.1.8) 

    

where:  Φ(�/) is a given unfiltered flow variable.  

 

In equation 3.1.8, the time dependent flow variables are spatially filtered and solved 

across control volumes, �, in the computational domain. The overbar denotes a filtered 

variable. The spatial filtering operation is linearly three-dimensional. It can be assumed 

that the filter function, G, is constant and independent of the grid position. This allows 

commutation of the filtering and differentiation for both temporal and spatial 

discretisation (Krajnovic and Davidson 2002). Bearing in mind this uniform filter 
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function, simplifies the algebra when solving for the filtered momentum equations for 

homogeneous flow. Applying equation 3.1.8, the generic form of the filtered 

momentum equations is given. 

 

• Filtered incompressible Navier-Stokes equations: 

 

 
��9@� 	= 	− �� 	A��̅��@ 	+ 	�CD@E��E 	F 	−	��9@�9E��E 	+ 	 ���E A�	 �G9@E��E F   (3.1.10) 

 

where:   HDIJ ≡	 LM A��9@��E 	+ 	��9E��@FN 	− 	5* 	M ∙ PIJ ��9Q��Q             (3.1.11a) 

          

  R̅IJ ≡ 	��S�TDDDDD 	− 	��DI�DJ            (3.1.11b) 

 

• Filtered incompressible continuity equation: 

 

 
��9@��@ = 0         (3.1.12) 

 

Applying the filter function, G, to a given flow variable, Φ, in the Navier-Stokes 

equations, introduces the additional stress tensors. These are the stress due to molecular 

viscosity, HDIJ, and sub-grid scale stress, R̅IJ, given in equation 3.1.11. In equations 3.1.9 

through to 3.1.12, i and j can assume the values 1, 2, and 3.  

As a result of the interactions between the sub-grid scale turbulences, R̅IJ is 

responsible for the convective momentum transport (Wilcox 1993). If a flow variable, 

Φ(�), is considered as the sum of a filtered variable resolved by the LES, Φ9(�), and a 

sub-grid scale variable containing spatial variations, Φ/(�), it can be determined that 
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the sub-grid scale stresses of LES contain additional contributions to the small scale 

turbulence. Hence, equation 3.1.11b can be expressed as 

 

• SGS stress: 

 

R̅IJ = ��S�TDDDDD − ��S9�T9 = � � �S9�T9DDDDD − �S9�T9$ + �S9�T/DDDDD + �S/�T9DDDDD + �S/�T/DDDDDD�      (3.1.13) 

 

such that: 

 

��S�TDDDDD = �(�S9 + �S/) �T9 + �T/$DDDDDDDDDDDDDDDDDDDDDDD = � �S9�T9DDDDD + �S9�T/DDDDD + �S/�T9DDDDD + �S/�T/DDDDDD$
= � �S9�T9 +  �S9�T9DDDDD − �S9�T9$ + �S9�T/DDDDD + �S/�T9DDDDD + �S/�T/DDDDDD$ 

 

where: 

 

   � �S9�T9DDDDD − �S9�T9$ = UIJ    (3.1.14a) 

   � �S9�T/DDDDD + �S/�T9DDDDD$ = VIJ      (3.1.14b) 

         ��S/�T/DDDDDD = WIJ     (3.1.14c) 

 

In equation 3.1.14, the additional contributions to the sub-grid scale turbulent 

stresses are, the Leonard stress, UIJ, the cross-term stress, VIJ, and the LES sub-grid 

scale Reynolds stress, WIJ. The Leonard stress is due to the resolved scales and is 

implicitly represented at moderate Reynolds number for a second-order finite volume 

method of computation. The cross-term stress is due to the interactions between the 

large resolved structures and the sub-grid scale structures, and the Reynolds stress is 

due to the convective momentum transport.  
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Solving for the sub-grid scale stresses, equation 3.1.13 requires modelling. For this 

reason, sub-grid scale (SGS) turbulence models are employed in conjunction to the 

LES. Each of these models utilises a Boussinesq eddy-viscosity approximation to 

resolve the stress components. This hypothesis states that the turbulent stresses are 

proportional to the mean rate of strain. The relationship would hold true if the turbulent 

stresses remain isotropic. Hence, due to the isotropic nature of the sub-grid scales, the 

local sub-grid scale stresses of equation 3.1.13 can be considered proportional to the 

local rate of strain (Xiyun and Guocan 2002; Krajnovic and Davidson 2002; Versteeg 

and Malalasekera 2007). The sub-grid scale turbulence model is given as 

 

• Sub-grid scale turbulence model: 

 

 R̅IJ −	�* RXXPIJ = −	2MZI̅J       (3.1.15) 

 

 if:   [ = \, PIJ = 1    ;    [ ≠ \, PIJ = 0 

 

  where:  ZI̅J ≡	 �5 	A��9@��E +	��9E��@F       (3.1.16) 

 

The variables PIJ and RXX, represent the terms for filtered static pressure, and the 

isotropic component of the sub-grid scale stresses, respectively. These two terms are 

grouped together with the Reynolds stresses for the LES. In equations 3.1.15 and 3.1.16, 

the variable ZI̅J, is the local rate of strain tensor of the resolved flow. There are four 

distinctive classes of sub-grid scale turbulence models available in LES. In addition to 

solving for the stresses, the turbulence models are applied primarily to resolve the 
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turbulent sub-grid scale viscosity, M. For the purpose of the numerical simulations in 

this study, the Smagorinsky-Lilley SGS turbulence model was chosen. This model is the 

most basic of the available turbulence models within LES and models the SGS turbulent 

viscosity given the equation below. 

 

• Smagorinsky-Lilley SGS turbulence model: 

 

 M = 	�U5̂|_̅|          (3.1.17) 

 

 where:  |_̅| ≡ (2	_̅IJ _̅IJ                 (3.1.18a) 

           
   U5̂ 	= `[a	 b>, V^+c�/*$                (3.1.18b) 

 

The definition provided herein is essentially resolving the sub-grid scale stresses by 

defining them to the resolved scales of the fluid dynamics. In the Smagorinsky-Lilley 

definition, U^, is the characteristic mixing length of the sub-grid scales, and V^ is the 

Smagorinsky constant. The variables b and > represent the von Kármán constant and 

the distance to the cylinder surface, respectively. Equation 3.1.17 essentially determines 

the SGS turbulent kinematic viscosity based on a local equilibrium between the 

transport of turbulent sub-grid scale energy and the transmission of this energy. A fixed 

value for the Smagorinsky constant, V^, equal to 0.1 (Liang and Papadakis 2007; Lam 

and Lin 2008; Sohankar 2008; Lam et al. 2010) was used to determine the turbulent 

viscosity. Deardorff (1970) and Breuer (1998) determined this value of the 

Smagorinsky constant provides the best results when large scale fluctuations in the 
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transitional flow exist near wall boundaries, as well as containing shear flow 

fluctuations.  

Applying a higher order dynamic SGS model will result in the value of V^ 
fluctuating with the given instantaneous resolved scales. This approach can lead to 

numerical instability, as V^ can increase in value to a maximum of 0.23. In contrast, 

compared to the chosen value of V^, a small increase to 0.17 introduces significant 

damping of the fluctuations mentioned above. In order to increase the numerical 

throughput, it is considered suitable to avoid additional requirements, such as dynamic 

sub-computations. Due to the transient conditions of the current numerical simulations 

in this work, the choice for the Smagorinsky constant is appropriate.  

 

3.1.2 LES Boundary Conditions  

Specifying the inlet boundary conditions in FLUENT® is straight forward with the large 

eddy simulation turbulence model. To obtain additional knowledge of the flow 

conditions occurring when being obstructed by a bluff body, especially with the SSP, it 

is desirable to maintain minimal levels of turbulence at the inlet conditions. This 

ensures that only the obstructions to the flow create the turbulence and that the fluid-

structure interactions are revealed clearly. 

The experimental setup of Dobre et al. (2006) contained less than 0.5% streamwise 

turbulence intensity and less than 0.3% cross-stream turbulence intensity. As a steady 

velocity inlet boundary condition is established for the upstream boundary of the 

computational domain, a No Perturbations option is selected in the LES at this 

boundary, in order to set negligible turbulence. The employment of this boundary 

condition sets the instantaneous velocity components equal to the mean velocity at the 
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inlet location. This provides the foundation for obtaining the correct fluid-to-structure 

interactions, and is a similar approach to that of Krajnovic and Davidson (2002). 

Therefore, neglecting the turbulence at the inlet during the simulations ensured a 

comparative model setup between the experimental and numerical investigations.    

As will be discussed in Section 3.3, the lateral boundaries are assigned as symmetry 

boundary conditions, in order to assume a virtual infinite cylinder span. Hence, the 

symmetry surfaces are treated as slip surfaces to give zero flux such that 

 

 
���	 = ���	 = � = 0         (3.1.19) 

 

For the pressure outlet boundary condition specified for the downstream boundary, 

a zero gradient condition is implemented for the mean flow, ef, and convective 

conditions are applied to extrapolate the fluctuating properties. Hence, the outflow 

conditions are such that 

 

 
��@� + eg ��@�� = 0         (3.1.20) 

 

The fluid-structure interactions are quantitatively studied within the near wall 

boundary layers throughout this research. Therefore, as the filtered Navier-Stokes 

equations are to be integrated to the wall, a no-slip boundary condition is applied to the 

geometry walls during the LES. This generally requires fine near wall grids with �h ≤ 

1. As the free-stream flow throughout this study contains moderate to high Reynolds 

number, it is feasible to employ a wall function (Versteeg and Malalasekera 2007). The 

application of a wall function is discussed in Section 3.3.1. 
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3.2 Computational Domain 

When creating a computational domain for simulating flow around a bluff body, 

considerations are required to ensure that the boundaries of the domain are not too close 

to the body. It is important to allow the free-stream flow to travel through the domain 

and around the bluff body without added effects from surrounding domain boundaries 

or walls. These added effects are known as ‘blockage effects’. Taking this into 

consideration for the current models, an example of the full computational domain for 

the numerical simulations in this study is presented in the left of Figure 3.1(a). The 

resulting computational mesh is shown in the right of Figure 3.1(a). The domain is 

similar to that used by Saha et al. (2003), Shah and Ferziger (1997) and Krajnovic and 

Davidson (2002), as it ensures sufficient space for the downstream wake development, 

as well as minimising any blockage effects due to the top and bottom boundaries in the 

vertical y-direction. Taking the height of the body as D, measured in meters, the domain 

extends from the center of the body a distance of 7D both upstream and along the 

vertical y–direction, and a distance of 15D downstream. Hence, the overall dimensions 

of the numerical domain are a length of 0.704 m, width of 0.224 m and a height of 

0.448 m. 

To represent a basic model of an owl’s wing and the leading edge comb, models of 

both square and rectangular cylinders with a leading edge height, D, of 0.032 m are 

considered for numerical analyses. The square models are similar to the experimental 

models of Dobre et al. (2006). These models are a plain square cylinder (for reference 

comparisons) and three additional models, each with a different configuration of the 

spanwise sinusoidal profile (SSP) applied to the leading edge (LE). The SSP in this 

study involves a sinusoidal indentation applied to the leading edge. Similar to Dobre et 
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al. (2006), the three SSP configurations are referred to as W1, W2 and W3 containing 

peak–to–peak sinusoidal amplitudes, ω, of 2, 8 and 15 mm, respectively. W0 refers to 

the plain reference square cylinder. The reason for selecting such parameters is 

discussed in detail in a following chapter. The numerical models of W0 and W3 are 

presented in Figure 3.2, in order to demonstrate the plain reference square cylinder in 

Figure 3.2(a), and the resulting square cylinder with the SSP in Figure 3.2(b), 

respectively. The parameters, the peak-to-peak amplitude, ω, and spanwise wavelength, 

λ, indicated in Figure 3.2, are the two key parameters in this study for designing the 

passive control. These parameters are also discussed in following chapters. 

The numerical models studied in this work were generated using DesignModeler® 

to develop the geometries with alternating configurations of the SSP. The meshing of 

the computational domain was performed Using GAMBIT®. Both DesignModeler® and 

GAMBIT ® are computer aided design (CAD) softwares, which are effective for creating 

basic three-dimensional models. In order to create the sinusoidal leading edge for each 

model, the process adapted was the ‘bottom-up’ technique. This technique required the 

least amount of effort to generate the models, allowing rapid development and 

modifications. Primarily, nodes are distributed across the three-dimensional field at the 

locations of the minimum and maximum of the leading edge sine function. Additional 

nodes are placed across the field at the locations of all intersections and points of 

interest throughout the computational domain. Essentially, the nodes are placed in order 

to represent the model shown in Figure 3.1(a). Therefore, the remaining process for the 

bottom-up technique required connecting all nodes to create the edges (lines) of the 

domain. The edges are then grouped to form faces (surfaces), and then the volumes for 

the domain are formed similarly by grouping the faces. Once creating all the domain 

volumes, Boolean operations are employed to subtract the volume of the cylinder from 
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the surrounding volumes (Modelling and Meshing Guide 2009). The surrounding 

volumes are then grouped and assigned as the fluid domain. To model the square 

cylinder as a hollow section and define only the cylinder walls eliminates the need to 

assign both solid and fluid interfaces for the simulations. This process reduces the 

computational demand, as only a fluid interface is required to be interpreted. 

Considering the computational domain as a rectangular prism, as shown in Figure 

3.1(a), allows the boundary conditions to be simply applied to the six outer faces.  

 

 

 

 

Figure 3.1: Computational domain showing (a) domain schematic (left) and boundary 

conditions with computational mesh (right) and (b) Enlarged view illustrating the fine 

mesh adjacent to the cylinder. 

(a) 

(b) 
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In Figure 3.3, the experimental setup of Dobre et al. (2006) is given, showing the 

top view of their wind tunnel model attached to side end plates at a fixed span of 14λ, in 

Figure 3.3(a). There was no control methods reported for the end effects created by the 

side end plates. Therefore, in order to neglect this factor in the numerical model, 

symmetry boundaries are applied to the ends of the numerical square cylinder. The 

application of symmetry boundaries allows the numerical model to have an infinite 

virtual span, removing any side wall blockage effects. Free-stream velocity, Uo, in both 

the numerical and experimental models is from left to right along the positive x-

direction. As the leading edge is directed left (upstream, negative x-direction), the 

downstream amplitude of the SSP is referred as a peak and the upstream amplitude 

referred as a valley. This definition will be used throughout this study. This is 

demonstrated in Figure 3.3(b). The spanwise wavelength, λ, of the SSP is initially fixed 

at a value of 76.8 mm for each configuration, also shown in Figure 3.3(a). This value is 

later varied to research the effects of both ω and λ, and discussed in following chapters. 

Therefore, W1, W2 and W3 contain steepness ratios, ω/λ, of 0.026, 0.104 and 0.195, 

respectively. Details regarding the selection of these parameters are given in Chapter 4.  

Figure 3.2: Computational model of (a) reference square cylinder (W0) and (b) square 

cylinder with an SSP applied (W3).  

(a) (b) 

D 
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3.2.1 Boundary Conditions 

In order to establish correct observations, one consideration required when creating the 

numerical model is the careful application of boundary conditions. Thought has to be 

given for the type of flow being studied, and more importantly, the expected results that 

are to be obtained. The selection of boundary conditions is ideally based on physical 

and practical conditions, in which effects from external sources exist. These external 

sources can include turbulence intensities, pressure gradients and temperature changes. 

A numerical simulation operates under ideal conditions where external sources can 

either remain constant or are negligible. Therefore, in order to account for the 

practicality of the solution, factors are placed on the boundary conditions. Although the 

numerical model presented in this study is not complex in nature, it is three-dimensional 

and must closely represent the conditions of an experimental model. The flow is to be 

driven and directed across the computational domain similar to a wind tunnel test 

section. Hence, the boundary conditions are set to ensure this effect. 

 

Figure 3.3: Experimental setup of Dobre et al. (2006) showing (a) top view of the wind 

tunnel section and (b) square cylinder model showing near and intermediate wake 

measurement points. 

(a) (b) 
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The boundary upstream from the leading edge of the cylinder is assigned a velocity 

inlet boundary condition, shown in Figure 3.4, as well as Figure 3.1(a). The value of the 

free-stream velocity was set at a fixed value of Uo = 11 ms-1. This corresponds to a 

Reynolds number based on the cylinder height, Wi, of 2.35×104. The definition for 

Reynolds number used throughout this work is 

 

Wi = jkl=           (3.2.1) 

 

where, � is the kinematic viscosity of air. This inlet condition is equivalent to the 

experimental inlet condition of Dobre et al. (2006). While the free-stream flow is force 

driven, the flow still requires being pressure driven along the domain, in order to remain 

streamwise along the positive x-direction. Therefore, to direct the flow as needed, both 

the top and bottom boundaries of the computational domain were assigned a pressure 

inlet boundary condition, and the downstream boundary from the cylinder was assigned 

Pressure Inlet 

Symmetry 
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Figure 3.4: Computational domain indicating the boundary conditions. 
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a pressure outlet boundary condition. These details are shown in Figure 3.4, showing 

the inlet and outlet boundaries represented by the blue and red surfaces, respectively.  

One method to reduce the computational requirements of the simulations is to have 

a computational domain that is small as possible. The computed span of the cylinder 

models in this study is chosen to be 7λ. This span corresponds to half the span of 14λ in 

the experimental models used by Dobre et al. (2006), and contains sufficient length of 

the SSP to conduct accurate analysis. In order to prevent spanwise wall effects, the 

vertical end planes, shown in Figures 3.4 and 3.1(a) as yellow surfaces, were treated as 

symmetry boundaries. Hence, as discussed above, the model contains axial symmetry 

along the horizontal z-direction, eliminating wall effects by assuming a virtual infinite 

span beyond the symmetry boundaries. In addition, Shan et al. (2008) investigated flow 

controls for an airfoil using similar symmetry boundary conditions and a spanwise 

domain length of only 0.1c, where c is the cord length of the geometry.  

Another method to reduce the computational requirements of the simulations is 

modelling the square cylinder as a hollow structure and not as a solid. This was briefly 

discussed in Section 3.2, and shown in Figure 3.5. As the flow travels around the 

cylinder and not inside the cylinder, it is not necessary to model the cylinder internally. 

This consideration assists in minimising the grid elements within the domain for faster 

simulations, as only a fluid interface is imported into the numerical software, and less 

computational memory is required. In later chapters, numerical experiments are 

conducted for different geometries of the SSP, including geometries with a rectangular 

(elongated) cross-section. The generation of these additional computational models 

follow a similar approach towards the details discussed in this chapter.  
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3.3 Model Verification and Mesh Generation 

Having established the governing mathematical equations and their boundary 

conditions, they must be solved. In this section, the methodology employed to obtain a 

numerical solution is discussed. As the small scale turbulence is modelled throughout 

the numerical analysis, the computational domain can contain a larger overall grid size, 

therefore reducing the computational requirements (Shah & Ferziger 1997). However, 

employing the LES turbulence model still requires a relatively fine mesh to solve the 

filtered Navier-Stokes equations. The filtering operation allows the flow scales larger 

than the grid sizing to be resolved. For this reason, a balance must be established to 

ensure the computational grid remains fine enough to resolve a large quantity of flow 

scales and still maintain minimal modelling expense.  

 

3.3.1  Sizing Function and Near Wall Region 

To obtain an accurate result using limited computing resources requires a judicious 

approach to meshing the computational domain. In order to develop a fine mesh while 

Figure 3.5: Computational model of the square cylinder, W3, indicating the hollow 

cross-section to minimise grid elements.  
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still aiming to reduce the computational costs, the mesh was generated with a high 

density of grid elements where the gradients are steep (geometry surface) and a lower 

density elsewhere. A function referred as a sizing function is applied to the mesh in 

order to construct the grid of the computational domain. The sizing function allows a 

concentration of grid elements adjacent to the geometry wall and a consistent growth in 

the spacing between elements moving in a direction away from the wall. Hence, the 

computational grid can begin with a very fine mesh at the surface, which then grows 

courser gradually with distance. The computational mesh near the surface of the 

geometries allows the results to capture and measure the flow details accurately to the 

wall. The detail of the sizing function is shown in Figure 3.6, indicating the meshed 

region surrounding the square cylinder of W3 and the uniform mesh growth away from 

the cylinder.   

Near solid surfaces where velocity gradients are steep, the flow field must be highly 

resolved. The near wall region shown in Figure 3.1(b) is meshed utilising a boundary 

layer technique. In the boundary layer technique, a structured quadrilateral mesh that is 

six layers in depth is placed around the geometry. This is shown in Figure 3.7. Each 

layer has a growth factor of 1.1 with a size limit of 1, and an initial layer height of 0.001 

m. This initial layer height of 0.001 m is sufficiently small to capture details of the flow, 

and corresponds to 3% of the cylinder height, D, in agreement with the initial cell height 

of Sohankar et al. (2000). Hence, the boundary layer mesh controls the growth factor of 

the sizing function, while ensuring the LES can resolve the near wall features. The 

growth of the sizing function was chosen such that the near mesh downstream of the 

geometry is fine enough to also measure the near wake data. Similarly, the upstream 

mesh ensures no disturbance to the steady free-stream flow impacting the leading edge 

of the geometry.  
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To allow the mesh to expand uniformly in all directions normal to the surface of the 

geometries, four meshed faces were generated in each symmetry boundary, located 

perpendicular to the front, upper, back and lower surfaces of the geometry. These four 

faces form the cross pattern within the symmetry planes that are depicted in Figure 3.6, 

and indentified as faces 1, 2, 3 and 4. The sizing function exists along the edges of these 

faces, extending from the geometry surface. Therefore, as can be seen in Figure 3.6, a 

high concentration of grid elements exists around the geometry to the normal directly 

above and below, as well as directly upstream and downstream of the geometry.  

 

 

 

 

1 

2 

3 

4 

Figure 3.6: Symmetry boundary grid showing the uniform mesh expansion away from 

the geometry surface as a result of the sizing function.  
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Three sub-layers exist within the flow most adjacent to the geometry wall, which 

form the inner region of the boundary layer. The log-linear relationship between these 

three boundary layer sub-layers is shown in Figure 3.8 (ANSYS 2009). The mean 

velocity at the near wall region can be expressed in a form that is independent of the 

Reynolds number and geometry in the case where the velocity and distance from the 

wall are normalised by the wall shear stress. Defined as the non-dimensional distance to 

the wall, proportional to the friction velocity along the geometry surface, the wall �h 

characterises the law-of-the-wall. As the boundary layer governs the parameters of the 

sizing function and the near wall region is of particular interest in this work, the value of 

�h must be checked.  

Closest to the cylinder wall is the laminar viscous sub-layer (�h < 5). This law is 

indicated by the curved linear function in Figure 3.8, and in this sub-layer the non-

dimensional velocity, �h, is equal to �h for incompressible flow. Turbulent motions are 

considered negligible in this region. The second sub-layer is a transitional layer or 

buffer layer (5 < �h < 30) between the laminar viscous sub-layer and third inertial 

turbulent sub-layer. In this layer, identified as the logarithmic function in Figure 3.8, the 

Figure 3.7: Enlarged view of the symmetry boundary plane showing the boundary 

layer mesh surrounding the square cylinder, W3.   
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molecular viscosity and turbulence are equally important. The inertial sub-layer is 

formally known as the log-law-of-the-wall region (30 < �h < 200). In this outer 

logarithmic region, the flow is fully turbulent and viscous effects are negligible. 

Calculating the friction velocity throughout the simulations, the average value of wall 

�h is between 11 and 16 for the configurations W0 to W3. According to the theory on 

boundary layer flow over a smooth flat plate, this means that the value of �h 

corresponds to the buffer layer. The definition is given below.  

 

• Wall �h definition: 

 

 �h ≡ �m�=           (3.3.1) 

 

 where:  �C = �Cn� �o�
          (3.3.2) 

 

In equation 3.3.1, � is the distance between the wall and adjacent cell centroid, and 

�C is the friction velocity at the wall. The variable R� is the wall shear stress. The 

relationship for the velocity profile within the near wall region is given in equation 

3.3.3. The near wall velocity profile is equivalent for typical turbulent flow near a wall, 

and any profile variation is mostly due to low Reynolds number. At higher Reynolds 

numbers, the velocity profile will remain constant in the law-of-the-wall and buffer 

layer regions up until approximately �h of 500. Beyond the logarithmic region, the 

velocity profile resembles that of free shear flow (White 2003).  
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• Near wall velocity profile: 

 

 �h = j�m = p		�h,																													�h < 5�s ln �h + v ,												30 < �h < 5007    (3.3.3) 

 

 where:  b ≅ 0.4		; 		v ≅ 5.45 

 

As �h for the geometries in this research is within the buffer layer (�h ≈ 11 to 16), 

a wall function needs to be applied, in order to blend the law-of-the-wall and log-law 

regions. An enhanced wall function in FLUENT® relates �h to �h as given below.    

 

• Law of the wall blending function: 

 

 | = − f.f�(�})~�h��}           (3.3.4) 

Figure 3.8: Semi-log representation of the near wall region showing y+ within the 

buffer layer, between the law-of-the-wall and log-law regions (ANSYS 2009). 
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• Enhanced wall function: 

 

 �h = i� 	����h 	+ 	io�	����h        (3.3.5) 

 

The purpose of this enhanced wall function is to create a link between the viscosity 

dependent region and the fully turbulent region of the boundary sub-layers (Moin 2002; 

Catalano et al. 2003). Hence, as the computational mesh is fine enough to resolve the 

boundary layer; it is not fine enough to resolve the flow all the way within the viscous 

sub-layer. Resolving the boundary layer all the way to the cylinder surface would 

require a very fine mesh. This would create significant computational demand. 

Therefore, applying the wall function provides the LES turbulence model with an 

accurate description of the velocity profile within the wall adjacent sub-layer. The 

depiction from the wall function is dependent on the correct behaviour of �h values 

within the buffer layer (ANSYS 2009). For this reason, the correct application of the 

boundary layer technique and sizing function is essential. In equation 3.3.5, ����h  and 

����h  are the non-dimensional velocities within the laminar law-of-the-wall (�h < 5) 

and turbulent log-law-of-the-wall (�h > 30) regions, respectively.  

 

3.3.2 Grid and Time Step Independence 

Performing extensive CFD simulations to solve turbulent flow problems, it is important 

to establish the validity of the numerical model, in order to determine the numerical 

error from the turbulence model (LES) error (Wilcox 1993). A common way to 

establish model validity is to perform both grid and time step independence checks. In 

this section, the independence checks have been performed for the 3D LES with a 

constant Reynolds number based on the geometry height, Wi, of 2.35 × 104. The 
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maximum absolute lift coefficient, V�, mean drag coefficient, V�̅, and mean of the 

streamwise velocity fluctuations, �D, are observed. It is to be noted that the study was 

conducted only for the plain square cylinder, W0. The coefficients of lift and drag are 

defined in Equations 3.3.6 and 3.3.7, where �� and �� are the fluid forces.  

 

• Coefficients of lift and drag: 

 

 V� = �Qf.��j��l         (3.3.6) 

 

 V� = ��f.��j��l         (3.3.7) 

 

For the grid independence check, three grid sizes were considered, containing 

1.73×105, 2.54×105 and 3.45×105 elements. The computational observations are 

presented in Table 3.1. The results show that suitable convergence is obtained for the 

flow solutions as there is no significant impact on the simulation results with different 

number of elements, where the largest differences are 2.9%, 0.5% and 2.02% for V�, V�̅ 

and �D, respectively. Hence, a grid size of 3.45×105 elements is chosen with confidence 

for the simulations conducted in this thesis. This corresponds to approximately 10 

elements per sinusoidal wave in the spanwise direction. 

The form of the computational grid for all models in this study is a structured 

hexahedron mesh. The commutation of the filtering operation as discussed in Section 

3.1.1 is essentially valid with temporal and spatial discretisation for uniform 

computational grids (Xiyun and Guocan 2002). It should be noted that the chosen grid 

size is near the maximum allowable grid size that can be facilitated with the available 

computer resources. Krajnovic and Davidson (2002) performed LES for flow around a 



65 

 

square cube with a very coarse computational grid containing only approximately 

2.7×105 elements. They found that applying simple inlet boundary conditions with a 

coarse mesh and one-equation SGS model produced accurate results in close agreement 

to experimental observations.  

To check for time step independence, using the chosen grid size, the 3D LES were 

conducted for two time step sizes, >�, of 1×10-4 s and 1×10-5 s. The observations for the 

maximum absolute lift coefficient, V�, mean drag coefficient, V�̅, and mean of the 

streamwise velocity fluctuations, �D, are presented in Table 3.2. There is no significant 

affect on the numerical results with different time step size, as the largest differences are 

2.14%, 0.08% and 1.51% for V�, V�̅ and �D, respectively.  Hence, a time step size, >�, of 

1×10-4 s is chosen. However, both time step sizes used in the independence check are 

required to achieve proper solution convergence of the LES. This is discussed in 

Section 3.3.3. Further validations of the current numerical results are presented in 

following chapters.  

 

Table 3.1: Grid independence check for a plain square cylinder at Wi = 2.35×104. 

Total Number of Cells Absolute �� Mean �9� �9  [ms-1] 

1.73 × 105 2.025 2.406 14.06 

2.54 × 105 2.037 2.415 14.28 

3.45 × 105 2.085 2.418 14.35 

 

 

Table 3.2: Time step independence check for a plain square cylinder at Wi = 2.35×104. 

Time Step Size [s] Absolute �� Mean �9� �9  [ms-1] 

1 × 10-4 2.076 2.416 14.217 

1 × 10-5 2.105 2.418 14.434 
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3.3.3  Solution Convergence 

A fine computational grid and sufficiently small time step are key requirements to 

ensure the computations can resolve the unsteady momentum and energy equations, and 

accurately capture the flow phenomena. This requirement, along with the grid density, 

results in an extensive computing time. All CFD simulations need a considerable 

numerical accuracy, while also considering the demand on computing resources 

(Roache 1990). One method of determining the numerical accuracy is by monitoring the 

solution iterations for convergence. The convergence is evaluated based on the 

difference between the current iterate solution and the exact solution to the flow 

differential equations. However, computations that involve turbulence modelling are 

more irregular and essentially slower to achieve iteration convergence, due to the 

complex nature of these computations. Hence, turbulence models require more precise 

convergence criteria.  

Wilcox (1993) has shown that the actual solution error for simulations involving 

turbulence can be measured as the difference between the exact solution to the 

discretised equations and the numerical solution at the current iteration. This approach 

demonstrates that the actual solution error is larger than the difference between 

successive iterations. Hence, for a turbulence model containing slow rate of 

convergence, the iteration convergence is achieved if sufficiently small difference exists 

between iterates.  

In this sub-section the methodology for determining and maintaining convergence 

when utilising LES is discussed. As LES requires sufficiently high computational 

demand, therefore slower rate of convergence, it is desirable to establish an 

approximation of the flow field on which an LES solution can be based, and improve 
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the computational rate. If the solution to a time-dependent flow problem is dependent 

on the initial conditions, it is essential to accurately indicate the initial conditions that 

have been established from other sources (Versteeg and Malalasekera 2007). 

In order to obtain initial conditions before commencing the LES simulations, an 

approximation of the flow field was achieved by modelling a steady-state flow field 

using a Standard – �� (SKE) turbulence model. The SKE turbulence model is a semi-

empirical; two-equation Reynolds averaged Navier Stokes (RANS) formulation. It is 

based on the transport equations for the turbulent kinetic energy, �, and the turbulent 

energy dissipation rate, �. Therefore, in this way an initial flow field was established. 

For the purpose of brevity, only brief explanation is given regarding the employment of 

the SKE turbulence model, however the details given are suitable for addressing the 

procedure.    

The solution for the SKE simulations of the initial flow field in this work converges 

at approximately 2000 iterations. This is achieved firstly by implementing an enhanced 

wall treatment during the SKE simulations. Similar to the enhanced wall function 

discussed in Section 3.3.1, the wall treatment formulates the laws-of-the-wall as one 

wall law for the RANS solution (ANSYS 2009; Moin 2002). This procedure is accurate 

and suitable to increase the rate of initial convergence for the reasonably high Reynolds 

number flow utilised in this study. Secondly, to resolve the pressure-velocity coupling, 

the SIMPLE pressure-based segregated algorithm is employed. This algorithm 

maintains the continuity equation simply by approximating the pressure-velocity 

corrections through a correction of the face flux in each computational cell. For the 

spatial discretisation of the momentum and energy equations, a second-order upwind 

scheme is employed, which provides sufficient accuracy for obtaining the initial flow 
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field. The SKE turbulence model is not time dependent, being run at a steady state, 

therefore FLUENT® calculates the flow field based on an explicit iterative process to be 

accurate within defined error bounds. To assess the iteration convergence, the lift 

coefficient, drag coefficient and streamwise velocity are monitored for reaching a steady 

state.  

Having achieved convergence through the Standard – �� turbulence model, the 

instantaneous velocity field provides the initial conditions. LES is intrinsically unsteady 

(transient) and the formulation of spatial derivatives is implicitly second-order. For the 

LES turbulence model, the spatial discretisation scheme utilised for the convection of 

momentum and energy is a bounded central-differencing scheme of second-order 

accuracy (Krajnovic and Davidson 2002; Xiyun and Guocan 2002). Applying a central-

differencing scheme is found to provide better agreement with experimental data. A 

bounded central-differencing scheme interpolates the cell center scalar values accurately 

for calculating the face scalars required for convection terms.  

Initially, the time-step selected for the LES was 1×10-5 s. Convergence for this 

turbulence model with the computational considerations explained in this chapter is 

achieved at approximately 0.1 s of simulation run time. As FLUENT® employs an 

iterative time advancement solution method, convergence for the first 0.1 s is 

determined based on the number of iterations required per time-step. As discussed 

above, obtaining sufficiently small difference between successive iterates minimises the 

number of iterations required per time-step. A schematic representing the iterative 

process of the LES simulations is provided in Figure 3.9. Within the solver, the 

maximum number of iterations per time-step can be set, in order to not exceed a certain 

limit of calculations. The maximum allowable iterations throughout the simulations are 
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set to 50. The reason for this choice is based on convergence criteria for FLUENT® 

(ANSYS 2009). Solution convergence is also assessed based on statistically completing 

the flow residence time. The residence time is defined as the ratio between the 

characteristic length of the computational field, U, and the free-stream velocity, ef. The 

first 0.1 s of the simulation corresponds to approximately double the flow residence 

time.  

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.9: Schematic of the iterative time advancement solution method in FLUENT®. 
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When selecting the time-step, the maximum simulated iterations should not exceed 

10. If exceeded, the time-step should be made smaller, as the solution is not accurate 

enough and hence, not reaching convergence due to the large difference between 

iterates (Wilcox 1993). If the simulated iterations remain less than 10, the time-step 

chosen is adequate and the solution can be considered converged. The number of 

simulated iterations for the first 0.1 seconds is 2 iterations.  

As the time-step can be increased if less than 10 iterations are required per time-

step, the time-step is made 1×10-4 s for the remaining time of the simulations. However, 

before adjusting the time-step, the initial flow statistics are made the new initial 

conditions. For this larger time-step, the maximum number of simulated iterations per 

time step remained 9 iterations. It is to be noted that several expensive simulations were 

conducted, in order to determine the correct selection for the time-step size.  

The data is considered to become statistically steady in FLUENT® once achieving a 

total simulation run time equal to a considerable multiple of the mean flow residence 

time. The value of mean flow residence time for the models developed in this study is 

approximately 0.064 s. Therefore, due to this theoretical residence time being small, it is 

considered appropriate to average the time statistics over a substantial simulation run 

time. Hence, the large eddy simulations are considered complete when achieving a total 

simulation time no less than approximately 2 s.  

This overall process for convergence and time-step choice improves the 

performance of the simulations, while still ensuring suitable accuracy is obtained within 

the solution. The methodology is similar to that of Xiyun & Guocan (2002) in obtaining 

faster convergence for LES. Convergence was checked throughout this research by 

monitoring the number of iterations required per time-step and through monitoring the 
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solution residuals. Global convergence is ensured through mesh independence checks 

when creating the numerical models. 

 

3.4 Comparisons in the Wake of Square SSP Cylinders  

It is essential that the numerical model developed in this research generates results that 

accurately reflect reality. Hence, the model is validated by replicating the experimental 

conditions reported by Dobre et al. (2006). Comparisons are made of the computed and 

experimentally observed power spectral densities (PSDs) of the flow fields in the near 

and intermediate wakes produced by bluff bodies with and without SSPs. The model is 

also validated against published drag forces and streamwise turbulence intensities.  

The characteristics of power spectral densities generated by bluff bodies are 

excellent indication of the degree of flow control. This arises because the absence of a 

dominant frequency in the wake is congruent with small fluctuations in the aerodynamic 

forces. Furthermore, the lack of a dominant frequency is associated with a reduction in 

the drag force.  

 

3.4.1 Model Comparisons in the Near Wake 

PSDs in the near wakes generated by square cylinders with and without spanwise 

sinusoidal profiles (SSPs) were measured and analysed by Dobre et al. (2006). Their 

monitoring point was located at (x/D, y/D) = (2, 2) as indicated in Figure 3.10. The 

monitor location in the near wake corresponds to the border of the formation region of 

the streamwise Kármán vortices and was determined to have qualitative similarities at 

both low and high Reynolds numbers (Dobre et al. 2006). In the case of a square 

cylinder with a plain leading edge, W0, the monitoring point was located in a vertical 
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plane co-planar with the mid-span, as shown in Figure 3.10(a). In the cases of square 

cylinders on which SSPs are imposed on the leading edge, cases W1, W2 and W3, 

Dobre et al. (2006) located the near wake monitoring points downstream of the central 

peak and valley as indicated in Figure 3.10(b).  

Power spectral densities (PSD) of the ν-velocity fluctuations are presented in Figure 

3.11. The numerical results compare very well with the experimental observations. Both 

numerical and experimental observations show larger reductions in velocity fluctuations 

co-planar with a valley, shown in green for the numerical data and the lower black 

spectra for the experimental data. The computed results agree clearly with those of the 

experiments, demonstrating the effectiveness of the SSP as steepness ratio increases 

from W0 to W3, as indicated by the decreasing magnitude of the fundamental harmonic 

in Figures 3.11(a) to 3.11(d).  In Figure 3.11(a), both experimental and numerical PSD 

of the reference square cylinder, W0, indicate a fundamental harmonic at approximately 

47 Hz, corresponding to the vortex shedding frequency, ��g. Therefore, the Strouhal 

number, Z�, defined in Equation 3.4.1 for the square cylinder at a Reynolds number of 

2.35 × 104 is 0.14. Recall that � is the cylinder height, and ef is the free-stream 

velocity. 

 

 Z� = ��klj�            (3.4.1) 

 

A Strouhal number of 0.14 is in good agreement with typical values of Z� for a 

square cross-section (Blevins 2009). The Strouhal number is a non-dimensional 

parameter that relates the free-stream velocity to the vortex shedding frequency caused 

by the blockage of a body. Hence, the Strouhal number is also dependent on the 
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characteristic length of the body. In this case, it is the square cylinder height, D. The 

presence of a second harmonic in Figures 3.11(a), 3.11(b) and 3.11(c) indicates some 

radial asymmetry of the vortices in the near wake, corresponding to W0, W1 and W2, 

respectively (Dobre et al. 2006). Both spectral peaks are suppressed for W3 in Figure 

3.11(d).   

The ν-velocity spectra for both experimental and numerical results follow the 

negative 5/3 slope corresponding to the well known Kolmogorov’s law (Wilcox 1993). 

This region of local isotropy is indicated by the straight black and red lines above the 

experimental and numerical spectra, respectively. This law was formulated through a 

dimensional analysis, in order to derive the energy distribution in a turbulent flow. The 

formulation of the energy spectrum relates the wave number, k, to the turbulent energy 

dissipation rate, ε, such that 

 

 �(�) = V	�5/*	���/*       (3.4.2) 

 

where, V is a constant with a value approximately equal to 1. The wave number, �, can 

be considered a frequency component of the local mean velocity, e9. Hence, as can be 

seen in Figure 3.11, Kolmogorov’s law states that the turbulent kinetic energy decreases 

along a negative 5/3 slope with frequency (or wave number).  
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The resolution of the power spectral densities between the numerical and 

experimental observations is different. However, this is due to the difference in 

sampling rates between the two comparisons. An order of magnitude difference exists 

between the two data sets; nevertheless, the effects of applying an SSP to represent the 

leading edge comb are clearly observed. As discussed earlier, considerations are 

required to obtain efficient computations, while ensuring the important flow details are 

still being captured. Consequently, it is shown in this section that the key flow 

characteristics are clearly observed, with close agreement between the numerical and 

experimental cases. In addition, finer detail is captured in the numerical observations, 

depicted in the numerical spectra of Figure 3.11 by the spectral content that appears 

below the distribution. The LES is sensitive to the finer small scale turbulences that are 

present within the flow as a result of the sub-grid scale turbulence. This close agreement 

corroborates the suitability of the LES turbulence model for analysing the adjacent flow 

field and near wake of the SSP models in this research.  

 

Figure 3.10: Square cylinder model showing the measurement points in the near wake; 

(a) W0; (b) W3. 

(a) (b) 

Mid-peak 

Mid-valley 

(x/D, y/D) = (2, 2) 

(x/D, y/D) = (2, 2) 



75 

 

 

101 102                                     103

100

10-1

10-2

10-3

10-4

10-5

Frequency (Hz)

PS
D

W3

100

10-2

10-4

P
S
D

101 102     103

Frequency (Hz)

W2

101 102                                     103

100

10-1

10-2

10-3

10-4

10-5

Frequency (Hz)

PS
D

100

10-2

10-4

P
S
D

101 102     103

Frequency (Hz)

W0

101 102                                    103

100

10-1

10-2

10-3

10-4

10-5

P
S

D

Frequency (Hz)

100

10-2

10-4

P
S

D

Frequency (Hz)

101 102     103

W1

100

10-1

10-2

10-3

10-4

10-5
101 102                                    103

Frequency (Hz)

P
S

D

100

10-2

10-4

P
S

D

101 102     103

Frequency (Hz)

Frequency (Hz) Frequency (Hz) 

Frequency (Hz) Frequency (Hz) 

P
S

D 

P
S

D 

P
S

D 

P
S

D 

Frequency (Hz) Frequency (Hz) 

Frequency (Hz) Frequency (Hz) 

P
S

D 

P
S

D 

P
S

D 

P
S

D 

(c) (d) 

(a) (b) 

Figure 3.11: Comparisons of numerical and experimental (top, ˗˗˗˗, Dobre et al. 

(2006)) PSD of the ν-component velocity spectra at peak (˗˗˗˗) and valley (̠̠ ˗˗) 

locations measured at (x/D, y/D) = (2, 2) for (a) W0, (b) W1, (c) W2 and (d) W3.  
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3.4.2 Model Comparisons in the Intermediate Wake 

It is essential that numerical models are validated against experiments. In this work, the 

validation is achieved by comparing flow observations in the posterior direction to the 

leading edge. Although the discussion throughout this research focuses within the 

boundary layer and near wake regions, verification in these regions is just one check to 

determining the validation of the numerical technique. In order to obtain an additional 

validation, comparisons between numerical and experimental observations within the 

intermediate wake are discussed in this section.  

Experimental measurements were carried out by Dobre et al. (2006) in the 

intermediate wake corresponding to a downstream location of (x/D, y/D) = (9, 0). The 

monitor location in the intermediate wake was chosen to measure and determine the rate 

of vorticity decay downstream of the square cylinder (Dobre et al. 2006). Spanwise (�-

direction) homogeneity between the peak and valley planes occurs both experimentally 

and numerically at this location. Hence, the data collected at the central peak is 

discussed, for brevity. Furthermore, comparisons in the intermediate wake are provided 

only between W0 and W3, as the PSD in Section 3.4.1 showed the best contrast of the 

frequency spectra for these two square cylinders.  

The power spectral densities of the u and ν-velocity fluctuations in the intermediate 

wake between the experimental observations of Dobre et al. (2006) and the current 

numerical results are presented in Figure 3.12(a) for W0 and Figure 3.12(b) for W3. 

The spectral distribution of the u-velocity fluctuations are represented in blue, and the ν-

velocity fluctuations are represented in green. The red and black lines above the 

distributions correspond to the -5/3 Kolmogorov’s law discussed in Section 3.4.1.   
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Minor discrepancies exist between the experimental and numerical comparisons; 

however, the principal features of the flow are captured. It is important to note the large 

distance between the monitoring point and the trailing edge. In Figure 3.12(b), it can be 

seen that the re-emergence of a fundamental peak appears in the intermediate wake of 

W3. This occurs for the numerical observations at a lower frequency than that of the 

experimental observations, corresponding to approximately 1/2fvo. As the computational 

grid is coarse in the intermediate wake region, it can be speculated that the LES was 

unable to capture the true frequency of velocity fluctuations at the measurement 

location. However, it is depicted in Figure 3.12(a) that for W0 the fundamental peak 

occurs at the vortex shedding frequency of approximately 47 Hz. Hence, the LES is 

indeed capable of capturing the correct features of the flow within the coarse mesh 

region. Grid independence studies have been discussed in Section 3.3.2. The reason for 

the frequency shift from the natural shedding frequency is not completely understood. 

Nevertheless, the occurrence of the peak is due to the interaction between the top and 

bottom shear layers. An interaction of this form is expected within the region defined as 

the intermediate wake, as a restructuring of the von Kármán vortices will develop at 

approximately the location of the measuring point (Dobre et al. 2006).   

The fundamental peak for W3 indicates significant three-dimensionality within the 

wake, due to the broad nature of the spectral peak. A sharp spectral peak, as in Figure 

3.12(a) for W0, demonstrates a clearly organised two-dimensional structure. The 

definition of a two-dimensional wake is that it contains only structures that are 

streamwise and normal to the flow (i.e. variables in the x and y-directions); a broad 

spectral peak indicates the presence of a weakened structure due to three-dimensional 

interactions (i.e. flow in the x, y and z-directions). In this work, two-dimensional flow is 

referred as uncontrolled flow, and three-dimensional flow is referred as controlled flow. 
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In the experimental observations, the reduction in magnitude of the fundamental 

peak for W3 in Figure 3.12(b) as compared to W0 is an indication of the lower energy 

of the vortices (Dobre et al. 2006). This is also evident in the PSD generated for the 

numerical data. This confirms that the numerical data captures the relevant flow 

structures that are also evident in the experimental data, and provides further confidence 

in the accuracy of the numerical model.   

The reason for the apparent lower energy of the vortices and flow three-

dimensionality in the intermediate wake of W3 is due to interactions between primary 

and secondary vortex structures occurring for W0 (Dobre and Hangan 2004; Dobre et 

Figure 3.12: Comparisons of numerical and experimental (top, ˗˗˗˗, Dobre et al. 

(2006)) PSD of the u-component (̠̠ ˗˗) and ν-component (̠̠ ˗˗) velocity spectra at the 

mid-peak location measured at (x/D, y/D) = (9, 0) for (a) W0 and (b) W3.   
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al. 2006). These structures are the spanwise Kármán vortices and streamwise 

interconnecting ribs, respectively.  

  

3.4.3 Characteristic Comparisons of Aerodynamic Forces  

Comparisons of the drag coefficient, V�, and streamwise turbulence intensity, �/e9, 

provide an additional avenue for comparing experimental and numerical data, in order 

to obtain a validation of the numerical model.  The numerical data obtained in this study 

for the coefficient of drag, V�, are provided in Table 3.3. Comparisons are made 

between the current numerical data at Re = 2.35×104 and the reported numerical data of 

Darekar and Sherwin (2001) at Re = 100. The data in Table 3.3 agree well; they indicate 

that average values of V�  decrease with increasing wave steepness. However, the 

reduction in drag becomes significant only for large wave steepness. For example, in the 

current numerical results between the configurations W1 and W2 a decrease of only 

12.2% exists with ω/λ of 0.026 and 0.105, respectively. The decrease in drag is 9.6% in 

the published data.  

Reductions in V� of up to 30% are recorded in previous works when applying the 

SSP with a wave steepness, ω/λ, in excess of 0.09 (Bearman and Owen 1998; Dobre et 

al. 2006). The present numerical results agree well with these observations; a wave 

steepness, ω/λ, equal to 0.195, corresponding to W3 causes a reduction in V�  of 33.3% 

from the drag force of the reference square cylinder. This is a significant improvement 

in drag reduction once introducing large wave steepness, and in good agreement with 

previous works. As an additional verification of the current numerical model, a 

comparison of V� is made with the reported data of Sohankar et al. (2000). They 

performed LES using a Smagorinsky sub-grid scale turbulence model at Re = 2.2×104, 
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and recorded an average value of V� for a plain square cylinder to be 2.22. This is in 

good agreement with the current LES results for the plain square cylinder, W0; the 

average value of V� given in Table 3.3 is 2.4 at Re = 2.35×104.  

Numerical data for the streamwise turbulence intensity, �/e9, measured at the peak 

and valley locations within the near wake at (x/D, y/D) = (2, 2), is provided in Table 3.4. 

The average value of �/e9 is slightly higher along the peak plane than the valley plane, 

hence larger reductions in turbulence intensity are observed in a plane that is coincident 

with a valley. It is interesting to note that an increase in �/e9 of approximately 31.8% is 

observed at the peak location for W1, and only marginal reductions of approximately 

6.7% are obtained at a valley location. Both W2 and W3 contain expected trends in the 

reductions in streamwise turbulence intensity with a significant 85.3% decrease 

obtained at the valley location for W3, and 72.7% at a peak location.  

 

 

Table 3.3: Numerical data for the mean drag coefficient, V�; comparison between 

current numerical data at Re = 2.35×104 and reported numerical data of Darekar and 

Sherwin (2001) at Re = 100.  

 Numerical, Re = 2.35×104 Numerical, Re = 100 

Configuration Average  �� �� Reduction 
[%] 

Average  �� �� Reduction 
[%] 

W0 (ω/λ = 0 ) 2.4 - 1.48 - 

W1 (ω/λ = 0.026 ) 2.3 4.2 1.45 2.03 

W2 (ω/λ = 0.105 ) 2.02 15.8 1.31 11.5 

W3 (ω/λ = 0.195 ) 1.6 33.3 1.29 12.8 
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Table 3.4: Streamwise turbulence intensity data measured at (x/D, y/D) = (2, 2); 

comparison between current numerical results and reported experimental observations 

of Dobre et al. (2006). 

 Peak Valley 

 Numerical Experimental Numerical Experimental 

Configuration 
Average  �/e9 

�/e9 
Reduction 

[%] 

Average  �/e9 

�/e9 
Reduction 

[%] 

Average �/e9 

�/e9 
Reduction 

[%] 

Average  �/e9 

�/e9 
Reduction 

[%] 

W0 0.15 N/A 0.17 N/A 0.15 N/A 0.17 N/A 

W1 0.22 - 31.8 0.16 6.4 0.14 6.7 0.158 8.04 

W2 0.11 26.7 0.162 5.7 0.083 44.7 0.13 23.8 

W3 0.041 72.7 0.085 50.5 0.022 85.3 0.04 77.04 

 

3.5 Summary 

The objective of this chapter is to describe the effective procedure developed to conduct 

three-dimensional numerical investigations of the bluff body flow for a square cylinder 

with and without a passive control device; a spanwise sinusoidal profile (SSP). A large 

eddy simulation (LES) turbulence model, in conjunction to the computational fluid 

dynamics (CFD) code, FLUENT® is adopted to conduct the analysis throughout this 

thesis. Detailed discussion has been provided for the methodology and the 

considerations employed to develop the numerical models, while establishing close 

approximation to an experimental model. The computational domain, mesh generation, 

model verification and numerical procedure have been provided.  

In order to improve the computational demand for conducting a LES, it is coupled 

with a sub-grid scale (SGS) turbulence model to resolve the small scale structures 

present in the flow. Suitable selection of the SGS model provides significant influence 

on the three-dimensional flow at moderate to high Reynolds numbers, and allows 
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accurate prediction of the flow physics for bluff body flow. Initial convergence is 

achieved through a steady state Reynolds averaged Navier-Stokes (RANS) solution.  

Spatial filtering of the governing flow equations for momentum and energy 

accurately resolves the large scale motion. Hence, the LES turbulence model is well 

suited to study flow problems in wind engineering and aerodynamic applications, as 

forces, moments and their fluctuations are governed by the large scales. For the case of 

bluff body flow in this study, LES is a suitable approach for determining the common 

three-dimensional characteristics, boundary layer separation and large scale 

unsteadiness. It has been demonstrated in this chapter that the LES turbulence model is 

a strong tool for capturing the structures of the flow field, and provides a means to 

analyse flow control methods such as the spanwise sinusoidal profile (SSP). Future 

chapters will develop the LES of turbulent flow and scalar transport mechanisms for the 

control of bluff body flow. The results will provide details of the fluid-structure 

interactions not presently available.  
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CHAPTER 4 

 

CONTROLLING FLOW BY MEANS OF SPANWISE 
SINUSOIDAL PROFILES ON THE LEADING EDGE 

OF BLUFF BODIES 
 

 

 

 

Bluff bodies are manifest in a myriad of structures and artefacts such as communication 

towers, oil rigs, cylindrical support structures, louvres, gates and fences, fans, air 

conditioning components and so on. When located in a fluid flow field, bluff bodies 

may experience unacceptably large and time varying forces that result from their 

shedding vortices. As a result, structures may have to be strengthened or reinforced, and 

in these cases they may still be susceptible to fatigue failure. An alternative is to modify 

the aerodynamics of bluff bodies and obviate these drawbacks. To achieve this, passive 

flow control mechanisms are embodied into the design of bluff bodies. A fairly simple 

and well established passive approach to reducing the forces on bluff bodies, in 

particular the drag force, is to streamline them, but in some circumstances 

manufacturers may find this an expensive solution. Furthermore, streamlining is 

directional (Van den Abeele et al. 2008).  

An alternative is to fit helical strakes and bumps to the body in a manner similar to 

Bearman and Brankovic (2004). These devices reduce the vortex shedding induced 

vibrations. Their application proved effective when applied to a fixed cylinder. 

However, in the case of freely vibrating flexible cylinders, the system resonates when 



84 

 

the value of the reduced velocity is in the range in which vortex induced resonance 

would occur if the cylinder were plain. Although helical strakes may reduce the adverse 

effects of vortex shedding, they can increase the drag coefficient by up to 10% (Griffin 

and Ramberg 1982; Kumar et al. 2008).  

An effective method of controlling vortex shedding and improving the aerodynamic 

performance of a bluff body is to embody a spanwise sinusoidal profile (SSP) to the 

leading edge. Bearman and Owen (1998) and Owen and Bearman (2001) 

experimentally reported a reduction of up to 30% in the mean drag and a suppression of 

vortex shedding when applying a sinusoidal leading edge. Hence, both the mean and 

unsteady forces were reduced, and there was independence on the angle of attack. 

Darekar and Sherwin (2001a, b) determined that in laminar flows the drag on wavy 

square cylinders is about 30% less than the drag on the corresponding straight square 

cylinder. They established that three laminar flow regimes result from this geometry, 

depending on parameters such as the wavelength and amplitude of the sinusoidal 

perturbations along the span. Dobre et al. (2006) conducted experimental investigations 

of the flow over square cylinders fitted with a sinusoidally perturbed leading edge and 

straight trailing edge. Their work demonstrated that a reduction of up to 78% in the 

turbulence intensity could be achieved in the wake, and this is reflected in a 30% 

reduction in the mean drag force. A sinusoidal leading edge also causes the vortices in 

the wake to decay more rapidly; hence vortices in the intermediate to far wake regions 

are less well defined.  

The studies conducted on a sinusoidal periodic perturbation by Darekar and 

Sherwin (2001a, b) were limited to laminar flows. In addition, they carried out the 

analysis on square cylinders that were sinusoidal in the spanwise direction; i.e. both the 
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leading and trailing edges undulated sinusoidally. Their work established that three 

laminar flow regimes result from this geometry. However, most practical flow 

conditions are turbulent. Although, Bearman and Owen (1998), Owen and Bearman 

(2001) and Dobre et al. (2006) studied the wake behaviour downstream of several 

geometries subject to turbulent flows, some aspects of the resulting flow fields remain 

obscure, and there is still much to explore regarding an SSP. For example, what are the 

critical parameters of an SSP to effectively target the fluctuating drag and lift forces, 

and what phenomena constitute a controlled flow field?   

The research presented in this chapter demonstrates that spanwise sinusoidal 

profiles (SSPs) have profoundly beneficial effects on reducing the aerodynamic forces 

on bluff bodies. The reasons for this are investigated by numerically modelling the flow 

fields generated by square cylinders with and without SSPs imposed on their leading 

edges. This is achieved by interpreting the vorticity magnitude distributions and 

pathlines of the flow around the bodies, which capture the features of the near wake 

topology. In addition, time-averaged flow properties are recorded. These numerical 

studies indicate that turbulent flows in the wakes of bluff bodies with sinusoidal 

perturbations on their leading edges have topologies that are quite different from those 

generated by plain square cylinders. Furthermore, the wakes generated by an SSP 

geometry are dependent on the physical parameters of the sinusoid, and this will be 

explored.  

Two principal findings are presented in this chapter, namely, 

1) The aerodynamic forces (i.e. drag and lift) and their fluctuations acting on a 

square cylinder can be greatly reduced if an SSP is imposed on the leading edge. 
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This is particularly the case when the wave steepness, ω/λ, is 0.2 and the 

normalised wavelength, λ/D, is between 2.4 and 5.6.  

2) Previous studies suggest that the normalised wavelength plays an important role 

in controlling laminar flows. In contrast, the research presented herein suggests that 

the wave steepness assumes more importance when controlling turbulent flows.  

 

4.1 Effects of Spanwise Sinusoidal Profiles on Flow Fields 

The effective control of a flow field depends on the geometry of the SSP bluff body and 

its effect on vortex shedding. As discussed briefly in earlier chapters, a square cylinder 

that has an SSP leading edge is capable of controlling flows. This has been reported in 

the literature for laminar flows and is also evident under turbulent flows in the current 

work (Antiohos et al. 2010). The basic features of an SSP, along with those of a square 

cylinder are portrayed in Figure 3.2 of Chapter 3. Recall that the geometry of an SSP is 

defined by two parameters, namely the sinusoidal amplitude, ω, and the wavelength, λ, 

depicted in Figure 3.2. The wave steepness is defined by ω/λ, and a normalised 

wavelength by λ/D.  

At a Reynolds number of 100, the flow is laminar and the geometries of the SSP 

promote distinctive flow regimes within the wake of the bluff body (Darekar and 

Sherwin 2001a, b). The flow regimes in the wake are characterised by being either 

predominantly two-dimensional coherent flow fields, i.e. the flow field is uniform in the 

spanwise direction, or as giving rise to incoherent three-dimensional flow fields. The 

former, coherent case is associated with flow around a plain square cylinder and the 

latter is the result of applying an SSP to bluff bodies. However, the geometry of the SSP 

must satisfy defined constraints to be effective.  
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Darekar and Sherwin (2001a, b) reported three principal flow regimes that obtain in 

the wake of an SSP under laminar flow conditions and they are governed by ω/λ and 

λ/D. The three flow regimes are designated as Regimes I, II and III, and they are 

depicted in Figure 4.1. Regimes I and III represent the two distinct regions that 

respectively correspond to no control and control of the flow field. Between these two 

regions exists Regime II, in which the wake is unsteady such that there is spanwise 

incoherence, but vortices are nonetheless shed. It should also be noted that Regime III 

contains two sub-regimes, namely Regimes IIIa and IIIb, which correspond respectively 

to highly controlled flow, and highly controlled flow that intermittently displays 

features of Regime II (Darekar and Sherwin 2001b).  

Geometries of an SSP that give rise to Regime I-type flows at Re = 100 are shown 

in Figure 4.2. Each of the three cases depicted is characterised by having a normalised 

wavelength, λ/D, of unity and the three values of the wave steepness, ω/λ, are 0.1, 0.2 

and 0.3, as well as zero that corresponds to a straight leading edge. The key issue 

associated with the geometries shown in Figure 4.2 is that they do not control the flow 

as indicated by Figure 4.1, and coherent vortices are shed synchronously from the 

trailing edge. The leading edge approaches planarity, in which the wave height, ω, and 

wavelength, λ, are too small and are therefore unable to affect the flow field. Further 

insights into geometries that lead to the control of the flow field at Re = 100 can be 

gained from Figure 4.3 which includes the conditions that result in desired control of the 

flow. A series of sinusoidally spatially periodic leading edges is shown, each with λ/D 

of 3. In the cases when ω/λ = 0 (ω0) or ω/λ = 0.01 (ω1) the flow is not controlled and it 

produces Regime I-type flow; however, when ω/λ is 0.1 (ω2), 0.2 (ω3) or 0.3 (ω4), 

Regime IIIa prevails and vortices are not shed coherently. In these latter cases, the 
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values of ω and λ are large enough to result in a high wave steepness, which disturbs the 

flow approaching the leading edge.  

 

 

 
 

 

Figure 4.1: An adaptation of Darekar and Sherwin (2001b), of the three flow regimes 

produced in the wakes of wavy square cylinders at a Re of 100. The hatched upper-

right area represents a physically invalid region for an SSP with a plain trailing edge. 

W1, W2 and W3 are SSP geometries associated with the three laminar regimes. The 

nine SSP geometries in this study are depicted in relation to the regimes. Geometries 

coincide with λ/D of 2.4, 3.2 and 5.2, and ω/λ of around 0.026, 0.105 and 0.195.  
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It is to be noted that the work of Darekar and Sherwin (2001b) was carried out with 

a wavy square cylinder; i.e. both the leading and trailing edges have SSPs.  However, in 

this research, a square cylinder with only the leading edge consisting of an SSP has 

been considered. Therefore, the wave height, ω, cannot physically exceed the width, D, 

of the square cylinder, such that 
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Figure 4.2: A schematic representation of SSP bodies with a constant wavelength, λ/D, 

of 1 and wave steepnesses, ω/λ, of 0 (ω0), 0.1 (ω1), 0.2 (ω2) and 0.3 (ω3). All of these 

geometries give rise to Regime I when the flow is laminar at a Reynolds number of 

100. 

Figure 4.3: A schematic representation of SSP geometries at a constant wavelength, 

λ/D, of 3, and wave steepnesses, ω/λ, of 0 (ω0), 0.01 (ω1), 0.1 (ω2), 0.2 (ω3), and 0.3 

(ω4). When the Reynolds number is 100, ω0 and ω1 result in Regime I, and ω2, ω3 and 

ω4 give rise to Regime III.   
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where values of ω/D ≥ 1 correspond to the physically invalid region (hatched area) in 

the upper right of Figure 4.1. This region limits the selection of the parameters of the 

SSP that coincide with Regime IIIa. It is worthwhile to consider the impact of ω/λ and 

λ/D on the geometry of the leading edge alone for turbulent flow.  

 

4.2 Turbulent Flow Field around a Square Cylinder SSP 

As discussed in Chapter 2, the comb located on the leading edge of an owl’s wing can 

be idealised by a spanwise sinusoidal profile (SSP). In an analogous manner to the 

comb, an SSP can control the deleterious effects associated with the shedding of 

vortices from the trailing edge and the resulting turbulent flow. To elucidate the 

mechanisms of the controlled flow arising from an SSP, a comprehensive description of 

the near wake topology of the vorticity field around square cylinders with and without 

an SSP is researched in this chapter. The effectiveness of the SSP is demonstrated by 

comparing the aerodynamic performance of three contrasting configurations of the SSP 

and a plain square cylinder.  

Three configurations of the square cylinder SSPs that are considered are referred to 

as W1, W2 and W3, and each has a normalised wavelength, λ/D, of 2.4 and wave 

steepnesses, ω/λ, of 0.026, 0.105 and 0.195, respectively. W0 represents a plain cylinder 

(i.e. ω/λ = 0). These geometries are similar to those studied by Dobre et al. (2006). The 

computational models are shown in Figure 4.4. The SSPs represent geometries that 

respectively do not control, intermittently control, and effectively control the flow field. 

A comparison between W0 and W3 provides the most marked contrast of uncontrolled 

and controlled flow; comparisons between W1 and W2 provide insights to the nature of 

the transition of flows generated by SSPs that are intermediate between W0 and W3. 
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The flow fields of vorticity magnitude are shown for W0, W1, W2 and W3 in 

Figure 4.5; the flow is from left to right. In the left column of Figure 4.5, isometric 

views of the cylinders are shown to detail the phenomena of the flow in vertical planes 

across the span that coincides with peaks and valleys of the SSP. The vorticity 

demonstrates the flow field is increasingly incoherent as the wave steepness increases 

(i.e. examining Figure 4.5(a) through to 4.5(d)). The figures on the right of Figure 4.5 

show the resulting flow field for each case. The flow approaches the leading edge 

coincident with a plane 0.25D below the upper surface. Recall that in this work an SSP 

leading edge is defined in the direction of the free-stream flow; peaks are points on the 

SSP that are furthest downstream, and valleys are regions of the SSP that are furthest 

upstream.  

Figure 4.4: Computational models of the plain and SSP square cylinders; (a) W0, (b) 

W1, (c) W2 and (d) W3. The wave height (peak-to-peak), ω, and wavelength, λ, of the 

sinusoidal leading can be depicted.  
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The vortices shed from a plain square cylinder, W0, depicted in Figure 4.5(a), retain 

their coherence in the wake of the cylinder. This coherence forms a predominantly two-

dimensional flow field that is typical for a square bluff body. The shedding of vortices 

is quite uniform in the spanwise direction; i.e. there are only small phase differences 

along the length of the cylinder. Similar coherence to that of a plain cylinder can be 

discerned for W1, although a spanwise structure is somewhat evident, as shown by the 

slight irregularity of vorticity. Nonetheless, vortex shedding is clearly illustrated in the 

wake of this very mild SSP geometry. It can be seen in Figure 4.5(b) that a spanwise 

variation of the phase between vortices is more definitive for W1 than that of W0. 

However, it is clear that the flow field has not been significantly affected with the small 

wave steepness, ω/λ, of 0.026. 

The flow field around W2 demonstrates vortices being somewhat detached from the 

upper and lower surfaces at the peaks of the SSP, while the vortices remain adjacent to 

the surfaces at the valleys. It would appear that an interruption to the coherence of the 

flow field has been introduced and hence a degree of control achieved; however, vortex 

shedding is clearly shown in the vertical x-y planes coincident with the peaks and 

valleys. In fact, two distinct structures are present in the wake of a mildly sinusoidal 

profile. Kármán vortex shedding is evident, but a stretching of the upper and lower 

boundary layers exists at valleys; whereas, the roll-up of the boundary layers occurs 

much closer to the trailing edge at peaks. It is these phenomena that cause vortices in 

the spanwise direction to be quite incoherent, but distinct vortices are nonetheless shed 

from the cylinder. A mild level of this passive control marks a transition between the 

flow field of a plain cylinder and a completely controlled wake. 



93 

 

 

Figure 4.5: Contours of the vorticity fields around (a) W0, (b) W1, (c) W2 and (d) W3; 

(left) vertical x-y planes coincident with peaks and valleys of the SSP, and (right) 

isometric views of the resulting flow field.  
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The vorticity field shown in Figure 4.5(d) provides striking evidence of a dissipated 

vorticity field around the SSP geometry, W3. It can be seen that the flow field exhibits a 

well defined spanwise structure, in which the wake displays a three-dimensional nature 

that arises from the sinusoidal shape of the leading edge. The flow is detached from the 

upper and lower surfaces, depicted in x-y planes corresponding to peaks. This is due to 

the flow being channelled towards the center of the peaks as the flow is forced to travel 

obliquely at the leading edge. This will be discussed in more detail. As a result, small 

scale streamwise vortices exist coincident to the peaks, in a manner similar to the flow 

field across an owl's wing as observed by Lilley (2009). These small scale vortices 

depicted in Figure 4.5(d) are essentially the commonly known Kelvin-Helmholtz 

instabilities (Bloor and Gerrard 1966).  

At the valleys, the flow remains close to the surfaces, in which separation is 

delayed up to the trailing edge. This is due to significantly lower local adverse pressure 

gradient; as a result of the leading edge geometry, the flow diverges from the valleys 

towards the peaks. This pattern emerges in the resulting flow field in Figure 4.5(d) that 

reflects the sinusoid of the SSP, and it is these phenomena that lead to the spanwise 

incoherence of the wake. The flow remaining attached to the upper and lower surfaces 

of W3 at the valleys enhances the aerodynamic performance of the bluff body by 

increasing the base pressure and reducing the drag forces. Hence, analogous to features 

of an owl’s wing, the conventional properties of the bluff body are significantly 

improved.  

 

 



95 

 

 
 

It is important to address the impact of the SSP on the performance of bluff bodies, 

namely the effect on lift and drag. The coefficient of mean drag, 	
, is plotted against 

the non-dimensional time, �/�, for the SSP geometries, W0, W1, W2 and W3; this is 

shown in Figure 4.6. It would be expected from the vorticity fields of each geometry 

shown in Figure 4.5 that the mean drag will decrease monotonically with the SSP 

geometries. The value of mean drag is respectively 2.35, 2.3, 2.02 and 1.6 for each case, 

demonstrating significant reduction in the mean drag observed for W3, in which a 

decrease of up to 32% is achieved. This is associated with a significant reduction of the 

fluctuations about the mean drag; approximately, 88% reduction in the standard 

deviation is achieved.  

Figure 4.6: Coefficient of drag, Cd, for the plain square cylinder, W0 (̠ ˗˗˗), and the 

three SSP geometries, W1 (̠ ˗˗˗), W2 (̠ ˗˗˗) and W3 (̠ ˗˗˗); highlighting a significant 

reduction of up to 32% in the mean drag and corresponding reduction of the 

fluctuations as a result of the SSP with wave steepness, ω/λ, of 0.195 associated with 

W3. 
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The coefficient of lift, 	�, is plotted for each SSP case in Figure 4.7. As might be 

expected, large fluctuations of lift about the zero mean value exist for the plain square 

cylinder. The fluctuations are seen to decrease when an SSP is applied and ω/λ is 

increased. Figure 4.7(d) portrays the remarkable fact that fluctuations of the lift are 

negligible in the case of W3. The reduction in the fluctuations of lift is about 95%; this 

clearly demonstrates the practical benefits of applying SSPs to bluff bodies. 

The remarkable reduction in the aerodynamic forces, particularly the drag force, is 

corroborated by the distribution of the time-averaged pressure coefficient, 	�, in Figure 

4.8. The distributions are measured on both the upper and lower surfaces of the plain 
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Figure 4.7: Coefficient of lift, Cl, for the plain square cylinder, W0 (a, ̠ ˗˗˗), and the 

three SSP geometries, W1 (b, ˗˗˗˗), W2 (c, ˗˗˗˗) and W3 (d, ˗˗˗˗); highlighting the 

significant reduction in the fluctuations of lift as a result of the SSP with wave 

steepness, ω/λ, of 0.195 associated with W3.  
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square cylinder, W0, and the SSP cylinder, W3, at locations corresponding to the center 

of the span, and the central peak and valley, respectively. In addition, the numerical 

results of Yu and Kareem (1998) for a plain square cylinder at Re = 1×105 is presented 

for comparison. The mean pressure distribution for the current model, W0, displays a 

local maximum pressure at the leading edge due to the sharp corner of the leading edge, 

and then follows a flat profile, which is indicative of absent flow reattachment. This is 

typical for a square cylinder with an aspect ratio below 2.5 (Sohankar 2008), and is in 

reasonably close agreement with the profile of Yu and Kareem (1998).  

The mean pressure distribution for the SSP geometry, W3, displays different flow 

behaviour at the leading edge. Coincident to the valley, a maximum local pressure can 

be depicted followed by a flat profile (i.e. no pressure recovery similar to a plain leading 

edge). Likewise, the flow at a peak has absent flow reattachment towards the trailing 

edge. However, a significant local pressure maximum at the leading edge indicates the 

presence of a high pressure gradient, and almost stagnant flow as a result of a sharp 

flow separation. In addition, this high pressure is sustained up to the mid region of the 

surface of the square cylinder before suddenly decreasing to the value of the free-stream 

flow. It is to be noted that the minimum x for a peak and valley is taken at the leading 

edge location.  

The pressure distributions given in Figure 4.8 provide a useful insight to the 

behaviour of the flow field generated by the SSP. It is notable that the pressure 

distribution that is coincident to a valley of the SSP leading edge resembles a profile 

similar to that of a plain square cylinder. Nevertheless, the observation at a location of 

the peak demonstrates the very incoherent nature of the flow field in the spanwise 

direction, in which a three-dimensional behaviour clearly exists.  
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In Figure 4.9, the time-averaged pressure coefficient, 	�, is shown in the wake of 

both W0 and W3. The numerical measurements are made behind the center of trailing 

edge in the streamwise direction along the wake centerline, y = 0. For the SSP cylinder, 

W3, the distribution corresponds to the central peak and valley. The numerical results of 

Sohankar (2006) are also given for a square cylinder at a Re = 2.2×104; the current 

numerical results for W0 agree reasonably well. The pressure distributions coincident to 

a valley and a peak of W3 both follow the same profile. Hence, the SSP leading edge 

appears not to adversely affect the pressure distribution in the wake transverse to the 

direction of the flow; unlike the observations along the cylinder surface. The lower drag 

force observed with the SSP geometry is corroborated by the higher value of the 

pressure coefficient in the wake of W3. A base pressure closer to the value of the free-

stream flow obtains a better pressure recovery. A lower pressure in the wake (or base 

pressure) results in a higher drag force (Sohankar 2008).  

Figure 4.8: Distribution of the time-averaged pressure coefficient, Cp, on the upper and 

lower surfaces of the plain square cylinder, W0, and SSP cylinder, W3. Comparison is 

shown for a plain square cylinder between the current results and the numerical 

distribution of Yu and Kareem (1998), at Re = 1×105.   
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Figure 4.5 graphically illustrates how the SSP renders the vorticity field 

substantially incoherent and the vorticity directly downstream of peaks and valleys of 

an SSP are quite different. Hence, deeper insights of the drag mitigating phenomena and 

distinct characteristics of the vorticity are obtained by examining the flow in vertical 

planes coincident with the peaks and valleys of the SSP.  

Figure 4.10 portrays perspective views of a square cylinder with and without an 

SSP; the direction of flow is from left to right. The planes shown for W0 correspond to 

identical planes shown for the SSP geometries. As expected, the vorticity in the wake of 

a plain square cylinder appears to be quite independent of spanwise location; Kármán 

vortex shedding occurs along the length of the cylinder in a quite consistent manner in 

Figure 4.10(a). In contrast, the vorticity downstream of an SSP, namely W3 in Figure 

4.10(d), is highly dependent on its spanwise location. Downstream of peaks, the sudden 

Figure 4.9: Distribution of the time-averaged pressure coefficient, Cp, in the wake of 

the plain square cylinder, W0, and the SSP cylinder, W3. Comparison is shown 

between the current results and the mean pressure distribution of Sohankar (2006), at 

Re = 2.2×104.  
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separation of flow from the horizontal surface at the leading edge causes instability 

within the shear layers and results in the formation of Kelvin-Helmholtz vortices, 

commonly known as Bloor-Gerrard vortices (Bloor and Gerrard 1966; Sheridan 1992; 

Khor 2011}. Bloor-Gerrard vortices are characteristic of disturbed boundary layer 

flows, and are therefore associated with instability in the shear layers (Bloor and 

Gerrard 1966). These small scale instabilities occur with a frequency of about 3fvo, 

where fvo is the vortex shedding frequency of a plain square cylinder of approximately 

47 Hz, corresponding to a Strouhal number, St, of 0.14 (Wilcox 1993). This is depicted 

in the left of Figure 4.10(d). These small scale vortices are also discernable downstream 

of valleys in the right Figure 4.10(d); however, they appear to be less distinct than those 

associated with peaks.  

In the wakes of W1 and W2, changes to the flow field resulting from a mildly 

undulating SSP are not as evident as the changes depicted between W0 and W3. In the 

case of W1, the shear layers roll-up into Kármán vortices in a similar manner to the 

wake of W0; the wake also appears to be independent of spanwise location and displays 

a predominantly two-dimensional flow field. The vorticity distribution in the wake of 

W2 appears to portray the topology associated with the plain square cylinder and W1. 

However, upon closer inspection of Figure 4.10(c) it can be seen that coincident to the 

peak, the roll-up of the shear layer occurs closer to the trailing edge than at the valley. 

At the valley, the shear layers stretch further downstream before forming Kármán 

vortices. Hence, the wave steepness, ω/λ, of 0.105 and normalised wavelength, λ/D, of 

2.4 generates a flow field that exhibits slight three-dimensionality (i.e. variations in the 

spanwise direction). Nevertheless, the mild form of the SSP of W2 does not affect the 

flow field as greatly as the SSP of W3 with ω/λ of 0.195 and λ/D of 2.4.  
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Figure 4.10: Contours of instantaneous vorticity magnitude in the wake of the SSP 

square cylinders. The flow field is shown in the mid-span vertical x-y plane coincident 

with a peak (left), and the mid-span vertical x-y plane coincident with a valley (right); 

(a) W0, (b) W1, (c) W2 and (d) W3.  
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The vortices downstream of peaks and valleys have largely dissipated at a distance 

of approximately 4D downstream of the SSP cylinder, W3. This phenomenon also 

contrasts with the vortices downstream of a plain cylinder, which retain their coherence 

for a greater distance. Figure 4.10(d) shows that the shear layers downstream of peaks 

diverge from a horizontal plane coincident with the centerline of the wake. However, 

the shear layers downstream of valleys remain relatively parallel to the mean direction 

of flow. In both cases, the shear layers are symmetrical about the horizontal, but their 

characteristics are periodic in the spanwise direction. Hence, this is evidence of a 

vorticity field in the wake of an SSP structure that is associated with the Mode-A type 

(Meiburg and Lasheras 1988; Williamson 1996). 

The observations made regarding the vorticity fields are corroborated by 

considering the instantaneous flow field around the SSP geometries. Figure 4.11 shows 

the instantaneous vectors of velocity that approach the leading edge in a horizontal x-z 

plane coincident to 0.25D below the upper surface. The view is normal to the flow that 

is from left to right. It can be seen that for the case of the plain square cylinder in Figure 

4.11(a), the velocity vectors interacting with the leading edge are parallel and 

streamwise. In contrast, for the SSP geometries, as the wave steepness, ω/λ, increases 

from 0.026 to 0.195 in Figures 4.11(b), 4.11(c) and 4.11(d), the vectors turn towards the 

centerline of the peaks and demonstrate a channelling of the flow at these locations. 

This channelling becomes more evident as the wave steepness of the SSP become large. 

Hence, the SSP with large wave steepness has the ability to capture and channel the 

flow. Coincident with valleys, the flow remains streamwise and parallel to the free-

stream flow. These phenomena maintain the independent regions of streamwise flow at 

peaks and valleys. This three-dimensional incoherence in the flow field delays spanwise 
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interactions at the leading edge and therefore provides substantial control as interactions 

are established much further downstream; hence, the effectiveness of the SSP.  

 

 
 

Figure 4.11: Velocity vectors demonstrating the channelling of flow at peaks of the SSP 

geometry as the wave steepness, ω/λ, increases from (a) ω/λ of 0, W0; (b) ω/λ of 0.026, 

W1; (c) ω/λ of 0.105, W2 and (d) ω/λ of 0.195, W3. The velocity is shown in a 

horizontal x-z plane that approaches the leading edge at 0.25D below the upper surface.   
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Figure 4.12: Time-averaged streamwise velocity, ū, profile measured mid-span along 

the line x/D = 0.5, on the upper side of the plain and SSP cylinders, at Re = 2.35×104, 

(a) W1, (b) W2 and (c) W3. Comparison is made between the averaged numerical 

velocity profile of Sohankar (2006), at Re = 2.2×104.  
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Figure 4.12 shows the time-averaged streamwise velocity, ��, profiles on the upper 

surface of both the plain and SSP cylinders. The measurements are made at the center of 

the span along the vertical line at x/D = 0.5. In the cases of the SSP geometries, the data 

corresponds to the central peak and valley; whereas in the case of the plain square 

cylinder the data corresponds to the center of the span. For comparison and verification 

of the numerical model, the velocity profile for a plain square cylinder is also shown 

from Sohankar (2006) in Figure 4.12(a). Sohankar (2006) studied the flow around 

square cylinders at Re = 2.2×104 using LES. Figures 4.12(a), 4.12(b) and 4.12(c) 

compare the velocity profiles for W1, W2 and W3, respectively, with the velocity 

profile of the plain square cylinder, W0.  

The streamwise velocity profiles for the SSP cylinders show markedly different 

characteristics. In Figure 4.12(a), the streamwise velocity is unaffected by the presence 

of the mild perturbation (ω/λ = 0.026) on the leading edge of W1, as the streamwise 

velocity coincident to a peak and a valley follows the trend of the plain square cylinder. 

These profiles also agree well with the numerical velocity profile of Sohankar (2006). 

When the wave steepness of the SSP is increased to that of W2 (ω/λ = 0.105), a change 

in the velocity profiles corresponding to a peak and valley can be seen with respect to 

W0. Although a similar trend can be depicted, there is a shift in the value of streamwise 

velocity near the upper surface. This is indication of an average SSP slightly affecting 

the behaviour of the flow field around the bluff body. Hence, the channelling effect of 

an SSP is beginning to take place.  

In Figure 4.12(c), the streamwise velocity profiles for W3 show a clear difference, 

in which the value of the normalised velocity near the upper surface of the SSP 

geometry is less in a plane coincident to a peak, but higher coincident to a valley. 



106 

 

Furthermore, the magnitude of the velocity is equivalent to the free-stream velocity near 

the surface at the peak, indicating that flow separation is indeed present from the surface 

at this location. Therefore, the velocity is slowed to the free-stream velocity near the 

wall. The flow slows gradually from the surface to the free-stream flow. The use of the 

large eddy simulation in this research has captured the unique details of the flow field 

created by the application of the SSP that hitherto been provided, and can lead to a more 

in depth understanding of the phenomena that is the leading edge comb.  

The time-averaged profiles of �� measured in the wakes of the plain square cylinder, 

W0, and the SSP cylinder, W3, are given in Figure 4.13. They demonstrate the highly 

controlled flow field associated with the sinusoidal perturbations on the leading edge of 

large wave steepness, ω/λ, of 0.195 aft of the trailing edge. The streamwise velocity is 

measured at several locations downstream from the trailing edge, corresponding to the 

central peak and valley for W3, and the center of the span for W0. In Figure 4.13(a) at 

x/D = 0, noticeable flow reversal of the streamwise velocity exists at the trailing edge 

coincident to the peak of W3. This is due to the separation of the shear layers aft of the 

leading edge. Coincident to a valley, the velocity profiles resemble that of the plain 

square cylinder, W0, in which flow reversal is absent and the flow appears to remain 

adjacent to the surface. This discrepancy of the flow between a peak and a valley clearly 

identifies the independent fluid structures that would affect the downstream evolution of 

the wake behind an SSP geometry.  

In Figure 4.13(b), 4.13(c) and 4.13(d), corresponding to respectively x/D = 0.5, 1.5 

and 3, the streamwise velocity at the centreline of W0 recovers towards the free-stream 

value. Whereas for W3, the streamwise velocity at both the peak and valley experiences 

flow reversal and tends away from the free-stream value. The initial flow reversal 
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occurring at the peak at x/D = 0 and the existing spanwise three-dimensionality as a 

result of the SSP, draws the fluid being shed at a valley towards the peak. It is these 

phenomena that delays the onset of the centreline velocity recovery, and hence 

attenuates the energy of the flow in the wake of the SSP body. It is not until a 

downstream distance between x/D = 4.5 and 6 that the spanwise flow associated with 

the peak and valley merges, and the centreline velocity is matched. In addition, the 

recovery of the streamwise velocity for the wake behind an SSP is delayed until 

approximately x/D = 4.5.  

The streamwise velocity profile for the plain square cylinder becomes completely 

developed into the wake at a downstream distance of x/D = 6. This is in contrast to W3, 

in which the velocity profiles continue to develop until a downstream distance of x/D = 

10.5. This is clear evidence of the lower energy flow produced in the wake of W3, as a 

result of the higher diffusion of vorticity. The wake behind W0 broadens rapidly due to 

the transport of the oppositely apposed vortices shed from the trailing edge, shown in 

Figure 4.10 (Dutta et al. 2008). The entrainment of the fluid in the wake is significantly 

greater for W0 than for W3, hence, the reason for the streamwise velocity profiles 

associated with the SSP cylinder remaining narrow into the wake. At the downstream 

locations corresponding to the fully developed streamwise flow (x/D = 6 and 10.5 for 

W0 and W3, respectively), the size of the wake has reached a limiting value as the 

viscous dissipation diffusion weakens the vorticity.  
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Figure 4.13: Time-averaged streamwise velocity, ū, profiles measured downstream from 

the trailing edge along the centerline of the wake of the plain, W0, and SSP, W3, 

cylinders, at Re = 2.35×104; (a) x/D = 0, (b) x/D = 0.5, (c) x/D = 1.5, (d) x/D = 3, (e) x/D 

= 4.5, (f) x/D = 6, (g) x/D = 7.5, (h) x/D = 9, (i) x/D = 10.5, (j) x/D = 12.  
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The geometry of the SSP is highly dependent on the wavelength, λ, in that its 

presence in both ω/λ and λ/D affects the selection of the wave height, ω, to obtain the 

desired steepness. This is especially important in the case of a slender bluff body with a 

plain trailing edge, as indicated in Equation 4.1.1. Furthermore, the dependence on λ 

suggests it is likely to be a factor in the effectiveness of controlling the flow. This 

conjecture is motivated by the non-dimensional pitch (i.e. wavelength) of the leading 

edge comb observed by Lilley (2009) and described in Equation 2.2.1 of Chapter 2. The 

flow regimes depicted under laminar flow at Re = 100 demonstrate that changes to both 

ω/λ and λ/D affect the outcome of the flow field. However, under turbulent flow 

conditions at higher Reynolds number, the flow regimes may be more or less 

susceptible to any changes in both parameters. Indeed, maintaining the wavelength, λ/D, 

constant and changing the wave steepness, ω/λ, has been shown in this section to induce 

the differences in the flow regimes at Re = 2.35×104. 

At this stage of the research, it is believed that under turbulent flow conditions, the 

wave steepness plays an important role in controlling the flow and mitigating the 

vortices in the wake. Depending on the choice of the wavelength, λ, and the 

corresponding selection of the wave height, ω, if the gradient (i.e. ω/λ) of the SSP is 

mild, the leading edge approaches that of a plain square cylinder. Hence, no significant 

control of the flow is expected. On the other hand, if the gradient of the SSP is steep, the 

leading edge is disturbed and controlled effects are expected to take place. Recall that 

the values of both ω and λ in determining the wave steepness must be sufficient to affect 

the flow field. 

The abovementioned can be illustrated by considering four configurations of an 

SSP in Figure 4.14; firstly, two geometries at λ/D = 2.4 and 5.2, and with identical 
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steepness of ω/λ = 0.1 (Figure 4.14(a)); secondly, two geometries λ/D = 2.4 and 5.2, but 

in this case with ω/λ = 0.2 (Figure 4.14(b)). Each of the four cases demonstrates pairs of 

SSPs that have the same gradient. Recalling the channelling effect that is evident with 

the SSP cylinder, W3, and discussed earlier, it can be seen that the sharper gradient of 

the pair of SSPs in Figure 4.14(b) is more likely to disturb the flow and localise it at the 

center of the peaks than for the pair of SSPs in Figure 4.14(a). At a high Re = 2.35×104, 

it has been shown that to avoid planarity in the leading edge of the SSP body and to 

obtain notable control of the flow, the wave steepness, ω/λ, must be substantial to allow 

the leading edge to capture and modify the flow. This implies that the flow regimes for 

turbulent flow may be strongly dependent on the wave steepness. The wave steepness in 

turn is highly dependent on the wavelength, in which the wave height is affected for a 

bluff body with a plain trailing edge. This is explored in the following sections.  

 

 

 
 

  

  

(a) 

(b) 

TE 

TE 

Figure 4.14: A schematic representation of SSP bodies demonstrating similarities in 

wave steepness (gradient), as indicated by the dashed lines; (a) SSP geometries with 

identical ω/λ of 0.1, and λ/D of 2.4 (̠ ˗˗˗) and 5.2 (̠̠ ˗˗); (b) SSP geometries with 

identical ω/λ of 0.2, and λ/D of 2.4 (̠ ˗˗˗) and 5.2 (̠̠ ˗˗).  
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4.3 A Parametric Study of Turbulent Flow Regimes 

4.3.1 Performance of Aerodynamic Forces 

An objective of this research is to determine whether the flow regimes identified with 

laminar flow past bluff bodies that have sinusoidally spatial perturbations have any 

analogues when the flow is turbulent. In this case, bluff bodies with sinusoidally spatial 

perturbations will be considered, and they are somewhat different to the wavy 

geometries studied by Darekar and Sherwin (2001b). If there are analogues between 

laminar and turbulent flows then this rather odd juxtaposition, along with their 

interactions with basically different geometries might reveal commonalities associated 

with flows generated by objects that have spatially periodic geometries. 

Four measures have been used to determine the effects of wave steepness, ω/λ, and 

normalised wavelength, λ/D, on the flow regimes, namely the mean drag coefficient, 	
, 

and the lift coefficient, 	�, and their fluctuations. Results were obtained for three values 

of the normalised wavelength, λ/D, namely 2.4, 3.2 and 5.2. Values of the wave 

steepness, ω/λ, shown in Figure 4.1 correspond to Regimes I, II or IIIa of Darekar and 

Sherwin (2001b), and they do not violate the physically possible because the amplitude 

of the sinusoidal perturbations are less than the thickness, D, of the bluff body.  

The variation of the mean drag coefficient, 	
, with ω/λ for the three values of 

normalised wavelength is shown in Table 4.1, for Re = 2.35×104. It can be observed that 

under the conditions studied that the drag coefficient decreases monotonically as the 

wave steepness increases, but it appears to be relatively insensitive to the normalised 

wave length, λ/D. The standard deviation of the drag coefficient also appears to be 

relatively insensitive to the normalised wavelength, but the standard deviation of the 
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drag coefficient decreases by a factor in the order of 7 as the wave steepness increases 

from 0.026 to 0.195.  

 

 
 

Table 4.1 presents the dependence of the mean absolute lift coefficient, 	�, on ω/λ 

and λ/D. It can be observed that the lift coefficient is strongly dependent on the wave 

steepness, and it decreases from about 1.57 when ω/λ = 0.026 and λ/D = 2.4 to 0.087 

when ω/λ = 0.195 whilst the normalised wavelength remains unaltered. The lift 

coefficient appears to decrease somewhat as the normalised wavelength increases. The 

standard deviation of the lift coefficient is strongly dependent on the geometry of the 

SSP, and remarkably, a greater than 30-fold reduction from 0.366 when λ/D = 2.4 and 

ω/λ = 0.026 to 0.012 when λ/D = 5.2 and ω/λ = 0.18 is obtained. In general, the standard 

Table 4.1: The mean drag coefficient, Cd, and the mean absolute lift coefficient, Cl, and 

their standard deviations for SSPs with a range of ω/λ and λ/D.  
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deviation of the variations in the lift coefficient decreases markedly with increasing 

wave steepness, and there also appears to be a diminution as the normalised wavelength 

increases from 2.4 to 5.2, although this latter spans a range a little over 2:1.  

 

4.3.2 Topologies of Wakes of Spanwise Sinusoidal Profiles 

The results presented above indicate that SSP geometries can give rise to significant 

reductions in the lift and drag forces on bluff bodies. Insights of the mechanisms 

associated with the reductions will be achieved by contrasting the topographies of the 

flow fields generated by bluff bodies that have plain leading edges, and SSP leading 

edges with different values of ω/λ and λ/D. The degree of coherence of the flows will be 

quantified by comparing the wakes generated by the bodies. It will be observed that the 

topographies of the wakes shed by the bluff bodies that have plain and strongly 

sinusoidal leading edges (i.e. high wave steepness, ω/λ) contrast quite sharply, as 

compared to other configurations. This study indicates that the flow regimes of bluff 

bodies immersed in turbulent flows are less sensitive to the normalised wavelength than 

observed by Darekar and Sherwin (2001b) in cases of laminar flows.  

The numerical values of the mean drag and its deviation appear to vary with ω/λ but 

they are relatively insensitive to the dimensionless wavelength, λ/D. This observation, 

made when the flow is turbulent, is quite different from the situation that pertains when 

the flow is laminar. In the latter case, the wavelength appears to be particularly 

important in controlling flows. In this work investigations are carried out on the effect 

of maintaining the wave steepness almost constant and doubling the wavelength. The 

flow fields generated by two SSP geometries, namely W2 (ω/λ = 0.105, λ/D = 2.4) and 

W2A (ω/λ = 0.09, λ/D = 5.2) are investigated. These geometries are indicated in Figure 
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4.1. This choice is motivated by the expectation that these geometries will control the 

flow in a manner that is intermediate between a plain square cylinder, W0, and W3 (ω/λ 

= 0.195, λ/D = 2.4). Figure 4.15(a) highlights the vorticity field in a vertical plane that is 

co-planar with the trailing edge of the two cylinders. It can be seen that in this plane the 

vorticity fields display vortex loops that are adjacent to the horizontal surfaces 

downstream of the regions of the peaks. Based on overall magnitude, the vortices 

generated by W2 and W2A appear to be similar, and the topology of the overall flow 

field surrounding the two geometries are quite similar as depicted in Figure 4.15(b).  

 

 

Figure 4.15: Contours of vorticity magnitude for the SSP geometries, (above) W2 (ω/λ 

= 0.105 and λ/D = 2.4) and (below) W2A (ω/λ = 0.09 and λ/D = 5.2); (a) vertical y-z 

plane coincident to the trailing edge and (b) spanwise vertical x-z planes coincident to 

peaks and valleys. 
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The vorticity fields in the wakes of the cylinders W2 and W2A that are characterised 

principally by having different wavelengths share several characteristics. These are 

illustrated in Figure 4.16, as well as in Figure 4.15(b). Firstly, the vorticity fields do not 

display the same degree of mid-plane symmetry as that observed when considering the 

strongly sinusoidal leading edge, W3. The shear layers coincident with the valleys, 

Figure 4.16(b), are stretched downstream before they roll up into vortices. This is due to 

the flow remaining adjacent to the surface of the cylinder at valleys, resulting in a lower 

pressure gradient. As a consequence, the standard deviations of the drag and lift 

coefficients are reduced because the temporal disturbances in the shear layers occur at a 

Figure 4.16: Contours of vorticity magnitude for W2 (left) and W2A (right); (a) vertical 

x-y planes at peaks and (b) vertical x-y planes at valleys. 
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distance of about 3D downstream from the cylinders. However, the condition 

downstream of the peaks is somewhat different. In both the W2 and W2A cases, vortices 

are shed in close proximity to the trailing edge, and this is likely to contribute to 

temporal fluctuations in the lift and drag forces. Hence, the flow begins to separate from 

the cylinder surface at peaks. The net effect of the weak interactions near the trailing 

edge at the valleys, and strong interactions at the peaks would still result in the temporal 

variations in the drag and lift forces being reduced overall, however the effectiveness of 

a mild SSP would result in mitigation of aerodynamic forces; this is intermediate 

between plain cylinders and cylinders with a more marked SSP. This is corroborated by 

the findings. 

A perhaps unexpected difference between the wakes generated by W2 and the 

longer wavelength cylinder, W2A, is evident in the power spectral densities (PSD) of the 

vertical y-component of velocity portrayed in Figure 4.17. In the case of W2, the 

spectral peak occurs at the full vortex shedding frequency, fvo, of approximately 45 Hz. 

However, the spectral peak occurs at half this frequency in the wake generated by W2A. 

Furthermore, the PSD measured at a peak associated with W2A is less than that observed 

for W2. This is due to the strength of the shear layers in the wake of W2A especially at 

peaks and at the measuring point, given the somewhat higher rate of wake decay 

depicted in Figure 4.16. However, the maximum magnitude of the PSD is about one-

third that observed in the case of the plain cylinder which also explains why the 

standard deviations of the drag and lift coefficients are still reduced in the two SSPs 

considered.  
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This parametric investigation is continued by maintaining a constant wave 

steepness, ω/λ, and doubling the normalised wavelength, λ/D; the two SSP geometries 

now studied are W3 (ω/λ = 0.195, λ/D = 2.4) and W3A  (ω/λ = 0.18, λ/D = 5.2), also 

indicated in Figure 4.1. These two cases result in physically quite different geometries. 

The W3A  geometry not only has an SSP with a larger wavelength, but its amplitude is 

also larger and as a result the dimensionless distance between the peaks and the trailing 

edge is very small, namely 0.0625D. To recall, the geometry of W3A  is chosen so as to 

not violate physical reality. This is likely to have a profound effect on the nature of the 

wakes produced by the two cylinders. The drag coefficients are nonetheless similar, 

namely 1.6 and 1.5 in the W3 and W3A  cases, respectively, and their standard 

deviations are almost equal, i.e. 0.017 and 0.016, respectively. However, the mean 

absolute lift coefficients of the two geometries differ and they assume values of 0.087 

and 0.056 in the W3 and W3A  cases, respectively. This observation is expected due to 

the lower surface area of W3A  that results in a lower pressure distribution across the 

upper and lower surfaces. Nonetheless, the standard deviations of the lift are 

Figure 4.17: PSD of the ν-component velocity spectra at peak (˗˗˗˗) and valley (̠̠ ˗˗) 

locations measured at (x/D, y/D) = (2, 2); (a) W2 (ω/λ = 0.105 and λ/D = 2.4); (b) W2A 

(ω/λ = 0.09 and λ/D = 5.2).  
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proportional to their absolute values being 0.019 and 0.012 respectively for W3 and 

W3A  and they are remarkably over 30 times less than those associated with plain 

cylinders operating under the same conditions. 

The characteristics of the vorticity fields of W3 and W3A  are very similar, 

although at first inspection the vorticity in a plane coincident with the trailing edge of 

W3A  is qualitatively different from that observed in the case of W3, as can be observed 

in Figure 4.18. This figure shows the vorticity in a plane coplanar with the trailing edge, 

as well as in vertical planes coplanar to peaks and valleys. In the former case, W3A  

loops of vorticity are adjacent to the upper and lower surfaces of the cylinder 

downstream of the valleys and are less apparent downstream of the peaks. This is in 

contradistinction to the W3 case in which the vortex loops are present and are separated 

downstream of the peaks. Due to the flow being channelled towards the peaks by the 

sinusoidal leading edge, there exists an adverse pressure gradient in the streamwise 

direction, giving the flow a high vertical component of velocity when exiting the peaks 

regions. This causes the flow to diverge from the horizontal mid-plane quite rapidly, but 

with relatively low vorticity. As a result of the proximity of the peaks to the trailing 

edge for W3A , the illusion is given of an opposite spanwise topology emerging between 

W3 and W3A  in the vertical y-z plane. However, the wakes are strikingly similar, as 

depicted in Figure 4.18(b).  

Perspective views of the vorticity field in vertical x-y planes coincident with peaks 

and valleys are presented in Figure 4.19. In the case of W3, the flow downstream of the 

peaks, as well as valleys contains Bloor-Gerrard (Kelvin-Helmholtz) vortices. These 

convective small scale instabilities are less evident in the wake of W3A. Nonetheless, 

both wakes display the upper and lower shear layers at peaks to be divergent about the 
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horizontal mid-plane due to the abrupt flow separation. The shear layers dissipate at a 

downstream distance from the cylinder of approximately 3D. At valleys the flow is 

attached to the surface and the upper and lower shear layers remain parallel before 

diverging and dissipating at a downstream distance of 2D. A likeness to the Mode-A 

wake instability is present for both wakes of W3 and W3A, which is attainable from the 

highly symmetric upper and lower small scale vortices (Meiburg and Lasheras 1988). 

 

 

 
 

Figure 4.18: Contours of vorticity magnitude for the SSP geometries, (above) W3 (ω/λ 

= 0.195 and λ/D = 2.4) and (below) W3A (ω/λ = 0.18 and λ/D = 5.2); (a) vertical y-z 

plane coincident to the trailing edge and (b) spanwise vertical x-z planes coincident to 

peaks and valleys. 
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The flow fields of both W3 and W3A have common characteristics. The mitigation 

of vortex shedding and resulting flow topology is more apparent for W3A, due to the 

proximity of the leading edge to the trailing edge. However, the observations presented 

throughout this work confirm the similarity in wake topologies between SSP geometries 

that have similar wave steepnesses, ω/λ, but not necessarily the same wavelength, λ/D. 

Hence, it can be stated that the ratio of ω/λ is an important parameter for controlling the 

flow field when employing the spanwise sinusoidal profile. 

 

 

 
 

Figure 4.19: Contours of vorticity magnitude for W3 and W3A; (a) vertical x-y plane 

coincident with a peak and (b) vertical x-y plane coincident with a valley. 
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To further corroborate the importance of the wave steepness on the control of 

turbulent flow, the topologies of the flow fields around the SSP configurations are 

compared. In Figure 4.20, the flow fields are given for the SSP bodies, W2A (ω/λ = 0.09 

and λ/D = 5.2), and an SSP cylinder, W2B (ω/λ = 0.105 and λ/D = 3.2). Both these 

geometries have close wave steepness and the flow fields also show resemblance to 

each other. Clearly, an intermediate wake is present in both cases which is similar to 

that wake of W2 (Figure 4.15). The flow coincident to the valleys experiences stretching 

of the shear layers aft of the trailing edge; whereas, the flow coincident to the peaks 

rolls up into vortices near the trailing edge. This was discussed earlier in relation to the 

Figure 4.20: Contours of the vorticity fields around SSP square cylinders; (left) vertical 

x-y planes coincident with peaks and valleys of the SSP, and (right) isometric views of 

the resulting flow field. (a) SSP with ω/λ = 0.105 and λ/D = 3.2 (W2B), (b) SSP with ω/λ 

= 0.09 and λ/D = 5.2 (W2A).  

(a) 

(b) 
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wake of W2. Hence, a three-dimensional flow field is present, in which vortex shedding 

is highly discernable. The SSP cylinders, W2A and W2B, demonstrate Regime-II type 

flow.  

 

 

 

 
 

 

Figure 4.21: Contours of the vorticity fields around SSP square cylinders; (left) vertical 

x-y planes coincident with peaks and valleys of the SSP, and (right) isometric views of 

the resulting flow field. (a) SSP with ω/λ = 0.195 and λ/D = 3.2 (W3B), (b) SSP with ω/λ 

= 0.18 and λ/D = 5.2 (W3A).  

(a) 

(b) 
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In Figure 4.21, the flow fields are shown around W3A (ω/λ = 0.18 and λ/D = 5.2), 

and an SSP geometry, W3B (ω/λ = 0.195 and λ/D = 3.2). Under very similar wave 

steepness, the flow fields for both geometries clearly demonstrate Regime-III type 

instability. The flow coincident to the peaks contains Kelvin-Helmholtz instabilities as a 

result of the flow separation at the leading edge. This is highly discernable in Figure 

4.21(b) for W3A due to the closer proximity between the leading and trailing edges 

(discussed earlier). At valleys, the flow remains attached to the surface of the cylinders 

and dissipates shortly after shedding from the trailing edge. The dissimilarities depicted 

in Figure 4.21 are only the cause of the geometry of the leading edges and the distance 

of the peaks to the trailing edge. Nevertheless, an incoherent flow field exists similar to 

that of W3. The topologies portrayed in Figures 4.20 and 4.21 support the notions 

discussed in this chapter that wave steepness governs the topology of the controlled 

turbulent flow.  

 

4.4 Summary 

It has been shown that the mean drag force on square cylinders immersed in turbulent 

flow can be reduced by about 30% if spanwise sinusoidal profiles (SSPs) are imposed 

on their leading edges. Furthermore, a validated numerical model indicates that an SSP 

is able to reduce the magnitude of lift forces by up to 95%. The imposition of an SSP on 

the leading edge can also reduce the magnitude of the fluctuations of the mean drag and 

lift by an order of magnitude, and this has potential benefits for reducing fatigue failure 

of structures exposed to turbulent flows.  

Vortices shed along the span of plain square cylinders cause large temporal 

variations in the lift and drag. However, the wake generated by a square cylinder with 
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an SSP imposed on the leading edge is found to have a quite different topology. A 

cylinder with an SSP leading edge with a wave steepness, ω/λ, of 0.195 and a 

normalised wavelength, λ/D, of 2.4 contains a wake with small-scale Kelvin-Helmholtz 

instabilities being shed from the cylinder. This is reflected in the power spectral density 

of the v-component of the velocity that shows a clear vortex shedding frequency in the 

wake of plain cylinders but not in the case of the SSP geometry. The peaks of the SSP 

channel the flow and this increases the mass flux at these regions. Vortices shed 

downstream of valleys are shed predominantly in the direction of the free-stream flow. 

Results of the studies indicate that the wavelength of a spanwise sinusoidal profile 

appears to be of less importance in suppressing the synchronous shedding of vortices in 

turbulent flow than in laminar flow. Comparisons are made between flow regimes that 

exist for laminar flow and the wake topologies elucidated for turbulent flows. 

Numerical simulations suggest that the wave steepness, ω/λ, plays a more important role 

in suppressing vortex shedding in turbulent flows that in laminar flows.   
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CHAPTER 5 

 

THE EFFECT OF ASPECT RATIO ON A 

SPANWISE SINUSOIDAL PROFILE 
 

 

 

 

To date, the research on turbulence generated by bluff bodies has focussed on vortex 

shedding and flow control around slender bodies such as circular and square cylinders 

(Griffin and Ramberg 1982; Williamson 1996; Bearman and Owen 1998; Darekar and 

Sherwin 2001; Catalano et al. 2003; Bearman and Brankovic 2004; Dobre et al. 2006; 

Xu et al. 2010). On the other hand, many practical applications involve bluff bodies 

with a large aspect ratio in which the geometries are elongated in the direction of the 

flow. In contrast to slender bodies, the flow around an elongated bluff body experiences 

two types of shear layer interactions; flow separation and reattachment. The shear layers 

are likely to separate aft of the bluff leading edge, then reattach to the surface of the 

structure some distance downstream, before detaching from the trailing edge after 

having been shed from the body. Modifying the typical behaviour of the shear layer 

phenomena may enhance the flow around the elongated bluff body. This can be 

achieved by applying a spanwise sinusoidal profile (SSP) to the leading edge. However, 

in addition, the effectiveness of an SSP on the leading edge may be mitigated as a result 

of the increased distance to the trailing edge. 

The research presented in this chapter highlights features of turbulent flow fields 

around elongated bluff bodies with and without a spanwise sinusoidal profile (SSP) on 
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their leading edge. The effects of the geometry of the SSP on the coherence of the shear 

layers and the vorticity field downstream of the structure will be described. Results are 

interpreted by making use of vorticity magnitude distributions and pathlines, which 

characterise the topology of the wake. In addition, time-averaged flow properties are 

provided. Numerical studies indicate that the nature of turbulent flows around elongated 

SSP geometries differ from that generated by square geometries. The principal findings 

presented in this chapter are namely, 

1) The aerodynamic forces (i.e. drag and lift) and their fluctuations acting on an 

elongated bluff body can be greatly reduced if an SSP is imposed on the leading edge. 

The flow field and wake of the elongated SSP body resembles that of a streamlined 

body, and as a result, a significantly higher base pressure is achieved.   

2) The proximity of the SSP leading edge to the trailing edge does not profoundly 

influence the control of the flow field. The sinusoidal perturbations are capable of 

largely dissipating the shear layers, and forming a narrow wake behind the elongated 

body.   

 

5.1 Flow Field around an Elongated SSP Cylinder 

In this research, the effectiveness of the SSP has been confirmed and it has been 

observed that the vortices in the upper and lower shear layers merge in the near to 

intermediate wake of a square cylinder (slender body) that has an SSP applied to the 

leading edge. This occurs in the turbulence generated by the body and has been 

discussed in Chapter 4. However, in many practical applications, cylinders are not 

square, but they are elongated in the direction of the flow. In other words, they are 

rectangular and they approach the geometry of flat plates. In this case, it might be 
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expected that the disturbances in the flow caused by the SSP become attenuated as the 

cylinder becomes more elongated. As a consequence, the vortical structures downstream 

of the trailing edge may be anticipated to become less dependent on the geometry of the 

leading edge.  

The square geometries of W0 and W3 have been elongated in the direction of the 

flow (i.e. positive x-direction). Hence, two models, namely W0E and W3E are presented 

herein to explore the topology of the flow field around a plain rectangular prism and a 

rectangular prism with an SSP applied to the leading edge. The computational models 

are shown in Figure 5.1. Both SSP geometries have aspect ratios D1/D of 5 (where D1 is 

the full width of the elongated cylinders), to examine the behaviour of the flow on the 

surface of an elongated SSP geometry, and whether or not the detaching-reattaching 

phenomena can be controlled (modified). Therefore, it is desired to extract details of the 

flow field that demonstrate the ability of the SSP to passively control the boundary layer 

developed over a flat surface. In this research, highly effective control of the flow field 

has been demonstrated to coincide with a largest possible wave steepness, ω/λ, of the 

spanwise sinusoidal profile. Hence, in the case of W3E, the wave steepness, ω/λ, and 

normalised wavelength, λ/D, remains identical to that of the square cylinder, W3, at 

values of 0.195 and 2.4, respectively.  

As the shear layers reattach to the surface of the elongated SSP geometry, it is 

expected that this will promote the development of vorticity. Recall that in the wake of 

a square cylinder, the shear layers coincident to peaks and valleys merge at a 

downstream distance from the trailing edge of approximately 4D. In the case of the 

elongated cylinder, W3E, maintaining the free-stream velocity, ��, of 11 ms-1, 

corresponding to a Reynolds number, Re, equal to 2.35×104 can generate the same flow 
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conditions as that of the square cases, and therefore, the shear layer merging on the 

surface of the rectangular prism at approximately 4D. It may be that the merging of the 

shear layers at a downstream distance of 4D allows the re-establishment of Kármán 

vortices. In fact, the convective Kelvin-Helmholtz instabilities (Bloor-Gerrard vortices) 

have been characterised to eventually form into Kármán vortices (Sheridan et al. 1992). 

In addition, Dobre (2006) also reported the reoccurrence of vortices within the 

intermediate wake of a square cylinder at a distance of 9D as a result of the shear layers 

merging at this location. Nevertheless, the energy of the vorticity was reported to be 

somewhat attenuated due to the passive controller. Whether or not the fluid structures 

generated on the surface of the elongated body are less dependent on the sinusoidal 

leading edge as a result of the increased proximity between the leading and trailing 

edges are to be investigated.  

 

 

 
 

D1 

D 
λ 

ω 

(a) (b) 

Figure 5.1: Computational models of the plain and SSP elongated cylinders; (a) W0E 

and (b) W3E. The wave height (peak-to-peak), ω, and wavelength, λ, of the sinusoidal 

leading can be depicted.  
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5.1.1 Performance of Aerodynamic Forces of an Elongated SSP 

Achieving control of the flow field as a result of the spanwise sinusoidal profile is 

associated with a significant reduction of the drag force. In Figure 5.2(a), the coefficient 

of the mean drag, ��, is plotted against the non-dimensional time, �/��, for both W0E 

and W3E. The value of the mean drag coefficient for the plain and SSP geometries is 

respectively 1.17 and 1.06. Hence, it is clear that the elongated SSP geometry 

experiences up to 10% decrease in mean drag; this in turn corresponds to a significant 

reduction in the fluctuations of the drag. The reduction in �� for the elongated SSP 

geometry is not as large as that of the square geometry, as might be expected priori.  

 

 

 

Figure 5.2: (a) Coefficient of drag, ��, for the plain elongated cylinder, W0E (blue), and 

the elongated SSP geometry, W3E (red), which highlights the reduction of up to 10% in 

the mean drag and related reduction of the fluctuations as a result of the SSP. This is 

corroborated by the time-averaged contours of the pressure coefficient, ��, for (b) W0E 

and (c) W3E, taken on the upper horizontal surface of the geometries. W3E has greater 

percentage of high pressure across the surface, particularly the highly discernable larger 

base pressure that is associated with the decrease in mean drag.  
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The reduction in mean drag can be demonstrated by contours of the time-averaged 

pressure coefficient, ��, across the upper surfaces of the geometries. In Figure 5.2(b), 

higher pressure exists across the trailing edge of W0E, while the pressure elsewhere on 

the surface displays significantly lower values. In stark contrast, higher pressure regions 

exist across approximately 60% of the surface of W3E, depicted in Figure 5.2(c); this 

visual representation of �� helps to corroborate the remarkable difference in mean drag 

between an uncontrolled (W0E) and controlled (W3E) flow field. 

Figure 5.3: Coefficient of lift, ��, for (a) the plain elongated geometry, W0E, and (b) the 

elongated SSP geometry, W3E; highlighting the significant reduction in the fluctuations 

of lift as a result of the SSP. 

W0E 

W3E 
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A significant reduction is achieved in the fluctuations of the lift. Figure 5.3 displays 

the coefficient of lift, �	, plotted against �/��. Large fluctuations about the zero mean 

lift are depicted for W0E. However, these fluctuations become almost negligible for the 

case of an SSP geometry, W3E, as shown in Figure 5.3(b); this corresponds to an 

approximately 83% decrease. This ability of the spanwise sinusoidal profile on an 

elongated geometry to steady the forces acting on the bluff body is indeed a remarkable 

characteristic.  

The significant reduction in the drag force, is corroborated by the distribution of the 

time-averaged pressure coefficient, ��, shown in Figure 5.4. The measurements are 

made on the upper and lower surfaces of both W0E and W3E, at locations corresponding 

to the center of the span, and the central peak and valley, respectively. Figure 5.4(a) 

compares the pressure distribution for the current plain elongated cylinder, and the plain 

cylinder of Yu et al. (2013), which contains an aspect ratio similar to the current case of 

D1/D = 5, and at Re = 1×105. A very close agreement exists between the current 

numerical distribution and the LES distribution of Yu et al. (2013), especially the 

prediction of the pressure recovery approximately mid-way along the surface of the 

prism. This is due to a concomitant flow reattachment at this region as a result of the 

streamwise aspect ratio, and both profiles display a similar maximum mean pressure 

near the trailing edge. In addition, both distributions demonstrate local peak pressures at 

the leading edge. 
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Figure 5.4(b) compares the mean pressure distribution for the plain, W0E, and SSP, 

W3E, elongated cylinders. A high pressure gradient exists at the leading edge coincident 

to a peak of W3E, as noted by the local maximum pressure above a �� of 0, indicating a 

Figure 5.4: Distribution of the time-averaged pressure coefficient, Cp, on the upper and 

lower surfaces of the plain and SSP elongated cylinders with aspect ratio, D1/D, of 5. (a) 

Comparison for a plain elongated cylinder between the current numerical model at Re = 

2.35×104 and that of Yu et al. (2013) at Re = 1×105, and (b) distributions measured at 

mid-span for the plain elongated cylinder, W0E, and coincident to a peak and valley at 

the mid-span region for the SSP elongated cylinder, W3E.     
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separated almost stagnant flow. A local maximum mean pressure is also present at the 

leading edge coincident to a valley of W3E, as well as for W0E, typical when the flow 

travels around a sharp corner such that of a square cylinder. The mean pressure 

distributions coincident to a peak and valley display identical flow behaviour after the 

leading edge (i.e. they follow the same trend). Furthermore, a discernable pressure 

recovery exists at approximately one quarter the length of the prism aft of the leading 

edge, which signifies flow reattachment. Hence, not only does an elongated cylinder 

with a large aspect ratio contain low values of drag force due to flow reattachment; an 

SSP applied to the leading edge obtains a pressure recovery on the surface much earlier 

downstream, contributing to an even lower drag force.  

In Figure 5.5, the distribution of the time-averaged pressure coefficient, ��, in the 

wake of the plain, W0E, and SSP, W3E, elongated cylinders is shown. Similar to the 

observations for a square cylinder SSP (Figure 4.9), the distributions coincident to a 

peak and valley of W3E show close behaviour. As a result of the SSP on the leading 

edge of the elongated cylinder, the recovery of the pressure to the value of that of the 

free-stream flow occurs earlier than for W0E. However, the plain and SSP elongated 

cylinders exhibit similar base pressure at the trailing edge, and the distributions follow 

closely agreed profiles. This indicates that the aspect ratio of the bluff body affects the 

characteristics of the flow field downstream of the leading edge. The incoherent three-

dimensional flow that is typically generated by an SSP on the leading edge is clearly 

attenuated towards the trailing edge with a large aspect ratio, in this case D1/D = 5. 

Nevertheless, a lower drag force exists with W3E than with W0E as a combined result of 

the inherently low drag associated with a large aspect ratio, and the higher base pressure 

from the application of the SSP.  
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The curvature of the separated shear layer adjacent to the trailing edge affects the 

base pressure and also the pressure recovery into the wake (Sohankar 2008). If the shear 

layer is forced to remain close to the surface of the cylinder and therefore contains low 

curvature, such as that observed for W3E, this generates a significant reduction in the 

drag force (Bearman and Trueman 1972). The instantaneous flow visualisations given 

in this chapter corroborate these observations.  

 

5.1.2 Topology of the Flow Field around an Elongated SSP 

Contrasting evidence of the effectiveness of an SSP on an elongated geometry is 

demonstrated in Figure 5.6, showing the flow in vertical x-y planes across the span that 

coincide with peaks and valleys of the sinusoidal leading edge (left of Figure 5.6), and 

pathlines of the flow representing the magnitude of vorticity (right of Figure 5.6). The 

Pathlines are approaching the leading edge coincident to a plane 0.25D below the upper 

Figure 5.5: Distribution of the time-averaged pressure coefficient, Cp, in the wake of 

plain elongated cylinder, W0E, and the elongated SSP cylinder, W3E.  
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surface. This horizontal plane provides strong evidence of the phenomena associated 

with the flow near the surface of an elongated prism with and without an SSP.  

In Figure 5.6(a), the flow around the plain elongated geometry is two-dimensional, 

passing coherently over the prism and rolling up into vortices at the trailing edge. Recall 

in this work the definition of a two-dimensional wake is where the flow field 

experiences changes in only the x-y planes; i.e. there is only slight phase difference in 

the vortical structures in the spanwise direction. Under idealised conditions the 

development of the boundary layer on the upper and lower surfaces of the plain 

elongated prism would indeed be completely two-dimensional. However, in reality the 

flow field displays some three-dimensional characteristics. Phenomena associated with 

that of an elongated bluff body (i.e. rectangular prism) are present in Figure 5.6(a), in 

which the shear layers separate from the horizontal surface aft of the leading edge and 

reattach to the surface downstream at approximately 3D to 4D. The flow reattaching 

prior to the trailing edge results in strong circulation of the entrained shear layers to 

induce vortices. The vortices contain substantial kinetic energy as a result of the high 

energy mixing of the upper and lower shear layers aft of the trailing edge; i.e. a Kármán 

vortex street is formed. 

Figure 5.6(b) provides a graphic demonstration of the phenomena resulting from an 

SSP. The fluid-to-structure interaction at the sinusoidally modulated leading edge and 

the evolving vorticity field aft of the leading edge are clearly evident. The pathlines of 

iso-vorticity are elevated above the surface of W3E downstream of the peaks. These 

regions are associated with a rapid flow separation occurring at the leading edge. 

Coincident with valleys, the pathlines remain close to the upper and lower surfaces. The 

spanwise periodic nature depicted in the pathlines is a result of the channelling of the 
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flow at peaks, as evidenced by the velocity vectors that were evident in the case of the 

square geometries. It can be seen that the substantial channelling of the flow is localised 

at the center of the peaks at the leading edge. Hence, the flow at these locations 

experiences a large pressure gradient and separates abruptly from the surface. The 

interference of the flow field depicted in Figure 5.6(b) introduced by applying an SSP 

hinders the development and interaction of the shear layers that would otherwise form a 

Karman vortex street.  

 

 

 
 

(a) 

(b) 

Figure 5.6: Contours of the vorticity fields around (a) W0E and (b) W3E; (left) vertical 

x-y planes coincident with peaks and valleys of the SSP, and (right) isometric views of 

the resulting flow field. 
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Observing from the top of the vorticity field of Figure 5.6, the pathlines in Figure 

5.7 demonstrate stark evidence of spanwise periodic phenomena. At peaks, the pathlines 

at a location directly behind the leading edge diverge from a line coincident with the 

center of the peak. This phenomenon causes the pathlines to converge aft of valleys. 

This is in contrast to the pathlines shown for a plain elongated geometry in Figure 

5.7(a), in which they remain parallel. To explain the flow topology associated with the 

SSP geometry, W3E, the channelling of the flow and the related increase in pressure 

Figure 5.7: Pathlines highlighting the magnitude of vorticity for (a) W0E and (b) W3E, 

observed from the top of the horizontal x-z plane coincident with the upper surface of 

the elongated cylinders.  
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drives the flow to disperse behind the leading edge in reaction to the channelling. This 

in turn establishes an interaction between the pathlines coincident with both peaks and 

valleys and causes convergence at valleys. At the trailing edge, the vorticity is 

dissipated as a result of the lower energy vortical structures. It can be seen that the 

pathlines converge slightly at the trailing edge to be equally spaced, reflecting the 

geometry of the leading edge. This three-dimensional behaviour across the span and the 

streamwise evolution of the pathlines demonstrates significant disturbance to the flow, 

and it can be seen that the development of the flow field is delayed.  

An examination of the vorticity only in planes that are coincident with the peaks 

and valleys of the SSP provides a clearer idea of the flow phenomena around the 

elongated prisms. Figure 5.8 shows perspective views of the magnitude of vorticity 

contours in vertical x-y planes that are coincident with the central peak and valley of the 

elongated SSP cylinder, W3E. In the case of the plain geometry, W0E, the vorticity is 

presented in vertical planes coinciding with similar planes to those of W3E. The view is 

from the side of the prism and the flow direction is from left to right. 

The vorticity field around the elongated cylinders display very similar behaviour 

near the leading edge as that produced by the square SSP cylinder. However, the 

topology of the wake differs somewhat as a result of the larger aspect ratio. In Figure 

5.8(a), it is clear to see the shear layers detach from the surface of W0E aft of the leading 

edge. However, the flow appears to remain relatively close to the surface of the 

cylinder, which allows the flow to reattach immediately upstream to the trailing edge; 

the entrainment of the fluid forms the roll-up of the shear layers into vortices.  
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In contrast, the vorticity at peaks of the elongated SSP cylinder, W3E, indicates 

flow separation directly at the leading edge and this is followed by the roll-up of the free 

shear layers into what appears to be Kelvin-Helmholtz instabilities (Bloor-Gerrard 

vortices) in both the upper and lower halves of the prism. These vortices are then shed 

into the wake, and are shown in Figure 5.8(a). The shedding frequency of the Bloor-

Gerrard vortices is about 3fvo, where fvo is the vortex shedding frequency of the plain 

square cylinder corresponding to a Strouhal number, St, of 0.14. This is similar to the 

case of an SSP square cylinder geometry, and is probably a result of employing the 

same Reynolds number. The SSP interupts the flow field to cause the small scale 

vorticity behind a peak of W3E, to be largely dissipated at a downstream distance from 

the trailing edge of approximately 2D; whereas the wake behind a plain elongated prism 

retains its coherence for a greater distance. 

Figure 5.8: Perspective views of the vorticity field around W0E (left) and W3E (right); 

(a) mid-span vertical x-y plane coincident to a peak, and (b) mid-span vertical x-y plane 

coincident to a valley.  
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In Figure 5.8(b), the same observations as those in Figure 5.8(a) can be made for 

W0E regarding the vorticity around the plain elongated geometry. Hence, the vorticity 

field around W0E is independent on the spanwise location; this was addressed in earlier 

observations in Figure 5.6, and is similar to the flow field characteristics around a plain 

square cylinder. In Figure 5.8(b), in a vertical x-y plane coincident with a valley of the 

elongated SSP, the flow remains attached to the horizontal surfaces of W3E up to the 

trailing edge. In addition, the boundary layer is thin across the upper and lower surfaces. 

As a consequence, a narrow wake is formed when the flow is shed from the trailing 

edge and remains parallel to the average flow direction. The energy of the flow in the 

wake is attenuated at a location of approximately 3D downstream from the trailing edge. 

The loss in energy is a result of the spanwise interaction between the shear layers as the 

Kelvin-Helmholtz instabilities form coincident with peaks. In contrast to a square 

cylinder with an SSP, there is an absence of Bloor-Gerrard vortices coincident with a 

valley for W3E. Nonetheless, it is clear that for an elongated bluff body with the passive 

controller applied to the leading edge, a periodic structure of the shear layers is 

generated in the spanwise direction. This is indeed characteristic of a spanwise 

sinusoidal profile.  

The streamwise development of the flow around an elongated SSP cylinder can be 

explored in great detail by exploring the velocity profiles coincident to the peaks and 

valleys. Figure 5.9 shows the time-averaged streamwise velocity, 
�, profiles at different 

streamwise locations on the upper surface of both the plain, W0E, and SSP, W3E, 

elongated cylinders. The profiles are measured along the center of the span in both 

cases, in which the streamwise velocity is examined at the central peak and valley of 

W3E, and the center of W0E. The transition of the flow across the surface with and 

without the influence of the SSP is demonstrated.  



141 

 

 
 

At the leading edge, x/D = 0 (i.e. location of a valley for W3E), in Figure 5.9(a), 

typical behaviour of flow separation can be identified as the streamwise velocity of both 

W0E and W3E approach the value of the free-stream velocity quite abruptly near the 

surface of the leading edge. Furthermore, the velocity profile coincident to the valley of 

W3E displays flow reversal close to the surface at approximately y/D = 1.25. This may 

be a repercussion of the channelling phenomena existing at the peak, discussed in 

Chapter 4 and readdressed in Section 5.1.2. It should be noted that coincident to a peak, 

the actual leading edge location is x/D = 0.47, due to the wave height, ω, of the SSP 

Figure 5.9: Time-averaged streamwise 

velocity, ū, profiles measured along the 

center of the span on the upper surface of 

the plain, W0E, and SSP, W3E, elongated 

cylinders, at Re = 2.35×104; (a) x/D = 0, 

(b) x/D = 1.25, (c) x/D = 2.5, (d) x/D = 

3.75 and (e) x/D = 5.  
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equal to 0.015 m. Aft of the leading edge at x/D = 1.25 (Figure 5.9(b)), the flow is still 

detached from the surface at the peak of W3E, and likewise for W0E. There exists a 

region of flow reversal near the surface due to the entrained fluid in the separated shear 

layers. At the valley of W3E, the flow is adjacent to the surface as depicted by the higher 

streamwise velocity, 
�, closer to the surface than for the peak, and also by the absent 

flow reversal.  

It is remarkable that the characteristic of the streamwise velocity at the peak of W3E 

follows a similar trend to the velocity profile observed with a plain elongated cylinder, 

although the flow at a peak experiences larger flow separation. This remains the case for 

the additional monitored locations downstream from the leading edge along the upper 

surfaces. However, at x/D = 3.75, the velocity profiles shows that the free shear layer 

identified at the location of the peak reattaches to the surface just before the trailing 

edge. A boundary layer is formed as a result of the entrained fluid. At the trailing edge, 

x/D = 5, the shedding phenomena can be predicted by the abrupt matching of the 

streamwise velocity profiles to the value of the free-stream flow. The velocity profiles 

in Figure 5.9 clearly illustrate quantitatively the continuous attached flow at a valley, 

and the detaching and reattaching characteristics at a peak, in which a three-dimensional 

incoherence is generated.  

 

 

 

 

 



143 

 

 
 

The wake behind an elongated SSP cylinder is depicted as being quite narrow. It is 

clear that the application of the SSP to the leading edge of a bluff body causes the flow 

field to resemble that of a streamlined geometry, such as an airfoil. Indeed, the 

phenomena of the shear layers are modified to obtain this characteristic. Figure 5.10 

demonstrates the phenomenal comparison between the wakes of W0E and W3E with the 

use of pathlines of the time-averaged velocity field, taken in a plane coincident to 0.25D 

below the upper surface. In the case of the plain elongated geometry, the velocity 

remains high up to the trailing edge as a result of the flow separation at the leading edge 

and the development of the boundary layers. The circulation of the shear layers at the 

trailing edge results in the shedding of vortices into the wake. The flow field and hence 

Figure 5.10: Pathlines illustrating the time-averaged velocity field around (a) W0E and 

(b) W3E. It can be depicted that an SSP causes the flow field to resemble that of a 

streamlined geometry. 
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the wake associated with W3E is remarkably streamlined and narrow about the 

horizontal in much a similar manner as that of a symmetric airfoil. At a streamwise 

location of approximately half the length of the prism downstream from the leading 

edge, a decrease in the magnitude of the velocity can be discerned. This indicates a 

lower energy of the flow field and lower velocity gradients at this location, causing the 

shear layers to remain close to the surface and form the streamlined wake behind the 

prism. The SSP is therefore highly effective for application on a practically elongated 

bluff body. 

 

5.2 Summary 

In this chapter, it has been demonstrated that the flow field around elongated bluff 

bodies is effectively controlled by applying a spanwise sinusoidal profile (SSP) to the 

leading edge. Namely, the effects of control on rectangular prisms have been researched 

in detail. The SSP studied on the elongated cylinder has a wave steepness, ω/λ, of 0.195 

and a normalised wavelength, λ/D, of 2.4. Significant reductions of up to 10% and 83% 

in the mean drag and fluctuations of lift are respectively obtained with this geometry. 

The flow around an elongated SSP cylinder is essentially three-dimensional and this is 

due to independent regions of the flow in the spanwise direction that are coincident to 

peaks and valleys.  

The aerodynamic properties of the elongated bluff body with an SSP are 

corroborated by the adumbration of the flow topology, particularly the distribution of 

high pressure regions. A striking contrast is obtained in which the phenomena of the 

shear layers render the flow field and wake of the elongated SSP geometry to resemble 

those of a streamlined geometry. Due to a channelling of the flow at peaks in much a 
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similar manner to that observed with square cylinders, a spanwise incoherence develops 

and mitigates spanwise interactions at these locations. This in turn weakens the shear 

layers and obtains a thin boundary layer across the surface.  

The effect of the proximity of the trailing edge to the SSP leading edge does not 

appear to have a profound influence on the control of the flow. Nevertheless, the flow 

field at the trailing edge is largely dissipated and as a result, a narrow wake is formed 

behind the elongated SSP geometry. An SSP proves to be a significant method of 

controlling the flow field around a practical elongated bluff body and enhances the 

fluid-to-structure performance of the geometry.  
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CHAPTER 6 

 

TOPOLOGY OF THE FLOW FIELD AROUND A 

PARTIAL SPANWISE SINUSOIDAL PROFILE 
 

 

 

 

The flow field around bluff bodies can be effectively controlled by applying a spanwise 

sinusoidal profile (SSP) to their leading edge. It has been demonstrated that vortex 

shedding can be suppressed with an SSP with a wave steepness, ω/λ, in excess of 0.1 

(Antiohos et al. 2010). Achieving a controlled flow field has so far been established 

with an SSP applied across the entire span of the geometry (i.e. a leading edge that is 

entirely sinusoidal). In some practical cases however, a continuous SSP across the 

leading edge may not be an appropriate choice. This can be due to deleterious effects 

from the surrounding flow field existing only at local regions along the span of the 

structure, therefore rendering a full span SSP unnecessary. Examples of such cases 

could encompass the flow around the tower of wind turbines and communication 

towers. In these cases, the flow field has a strong influence on the aerodynamic 

performance and structural integrity at only one or two locations along the span; this 

could be at the distal region of the towers. Furthermore, recall the leading edge comb is 

located on only the primary feathers of the wing. In this chapter, bluff bodies with 

spanwise sinusoidal profiles applied to sections of the leading edges are researched to 

elucidate the topology of the flow field at the boundary of sinusoidal and plain leading 

edges. This study has revealed phenomena that were hitherto unobserved.   
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6.1 Effectiveness of a Partial Spanwise Sinusoidal Profile 

It has been shown that a full-span sinusoidal profile has the ability to control the flow 

and prevent vortex shedding and their associated deleterious effects. However, the 

question remains as to whether or not effective control can still be achieved using a 

partially applied SSP. For example, might there be some spanwise interactions between 

the flow over the plain and SSP regions? Hence, the topology of the flow associated 

with three different configurations of a partial SSP is researched. These configurations 

include a partial SSP applied in only the central region of the span; a partial SSP applied 

to the two end regions of the span (i.e. the center of the span is plain); and a partial SSP 

that continually occupies half the span. These can be seen in Figure 6.1 and are denoted 

as PSSP1, PSSP2 and PSSP3. The choice of PSSP1 is to explore the effectiveness of a 

partial SSP that is adjacent to a coherent uncontrolled flow field on both sides. In a 

similar manner, the choice of PSSP2 is to explore the effectiveness of partial SSPs if 

placed on both sides of the coherent flow field. The geometry of PSSP3 is to elucidate 

the likelihood of a partial SSP being able to control the flow when applied to 

approximately half the span; in this case both coherent and incoherent flow fields are of 

equivalent strength across the span.  

In previous chapters, it has been demonstrated that highly effective control of the 

flow field is achieved with a wave steepness, ω/λ, of the SSP in excess of 0.1 (Dobre et 

al. 2006; Antiohos et al. 2010). The three partial SSP geometries each contain a wave 

steepness equal to 0.195, which is identical to that of the full SSP geometry, W3. Hence, 

the wavelength, λ, and wave height, ω, across the partial spans are respectively 76.8 mm 

and 15 mm.  
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6.1.1 Performance of Aerodynamic Forces of a Partial SSP 

The principal motivation for applying SSPs is to reduce the absolute and fluctuating 

components of drag force, and the fluctuating components of the lift force. It has been 

shown that SSPs result in technologically highly significant reductions in these forces. 

However, it is essential that we consider the situation when an SSP is imposed only on a 

section of the leading edge of a bluff body.  

Figure 6.1: Schematic of the partial SSP geometries; (a) plain geometry, (b) PSSP1, (c) 

PSSP2 and (d) PSSP3.  

(a) (b) 

(c) (d) 
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Figure 6.2 shows the coefficient of mean drag, ��, plotted against normalised time, 

�/��, where �� is the time step. The plots of �� are presented for a bluff body with a 

plain leading edge and for the three partial SSP geometries, PSSP1, PSSP2 and PSSP3. 

The values of mean drag, ��, are 2.35, 1.95, 1.81 and 1.98 respectively for W0, PSSP1, 

PSSP2 and PSSP3. It is discernable that significant reductions are achieved with the 

partial application and the largest decrease observed for PSSP2, as expected, as a higher 

ratio of the partial SSP on the leading edge exists for this geometry. The highest drag 

coefficients of 1.95 and 1.98 associated with PSSP1 and PSSP3 respectively is also 

expected, as these configurations contain a larger ratio of uninterrupted plain span in 

comparison to PSSP2; a more organised coherent flow structure would be present.  

As noted in Chapter 4, the coefficient of mean drag varies on two distinct time 

scales. The high frequency variations are associated with the vortex shedding frequency, 

and the lower frequency appears to arise from some cyclic disturbance in the flow field. 

However, in the case of the partial SSPs, the low frequency disturbances appear to be 

more regular than in the corresponding case where the SSP extends across the entire 

surface of the leading edge. This suggests a spanwise interaction between coherent and 

incoherent flows of respectively plain and SSP regions. Without performing Fourier 

analysis on the histories of the force coefficients it is difficult to pinpoint the exact 

frequencies. By inspection, the histories of �� display an irregular fluctuation about the 

mean value; this is more evident for the cases of PSSP1 and PSSP2. Where the drag 

coefficient associated with a base pressure has alternatively low and high values that 

occur at irregular intervals throughout the sequence, this corresponds to abrupt 

interactions between two different flow patterns (Ohya 1994; Sohankar 2008). In the 

cases of partially applied SSPs, it is believed that the phenomena of the two time scales 

associated with the fluctuations of �� have not been previously observed so starkly.  
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In Figure 6.3, the coefficients of lift, ��, are plotted for all three partial SSP 

geometries. It is clear that large fluctuations in lift exist for a plain geometry. However, 

once applying a partial spanwise sinusoidal profile to the leading edge of the plain 

geometry, a significant decrease in the fluctuations is achieved. The magnitude of the 

fluctuations is quite similar in Figures 6.3(b) and 6.3(d) for PSSP1 and PSSP3, 

respectively. This may be due to the similar ratio of partial SSP across the span for the 

two cases. A higher reduction in lift fluctuation can be seen in Figure 6.3(c) which is 

associated with PSSP2. This quantitatively corroborates the effectiveness of a partial 

SSP with a higher partial ratio, and the observations of Figure 6.3 demonstrate that 

obtaining a controlled flow field is independent of the spanwise location and ratio to the 

plain span.  

Figure 6.2: Coefficient of drag, ��, for the plain square cylinder, W0 (˗˗˗˗), and the 

three partial SSP geometries, PSSP1 (˗˗˗˗), PSSP2 (˗˗˗˗) and PSSP3 (˗˗˗˗); highlighting 

the significant reduction in the mean drag and related reduction of the fluctuations as a 

result of the partial SSP with wave steepness, ω/λ, of 0.195 associated with W3.  
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A remarkable observation is made in Figure 6.3, in which beats exist in the �� 

history. These beats are superimposed on the high frequency fluctuations, and this is 

clearly evident in Figure 6.3(d), which corresponds to PSSP3. This may have a profound 

effect on the engineering of the structure with a partial SSP. Reasoning behind the 

highly discernable beat phenomenon with PSSP3 can be due to the planform area, in 

which the plain and SSP regions both occupy approximately half the span. In this case, 

the phenomena (vortex shedding and Kelvin-Helmholtz instabilities) associated with 

these regions interact more strongly. The alternative partial SSP geometries studied, 

×104 ×104 

×104 ×104 t / dt t / dt 

C
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C
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PSSP2 PSSP3 
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Figure 6.3: Coefficient of lift, ��, for the plain square cylinder, W0 (a, ˗˗˗˗), and the 

three partial SSP geometries, PSSP1 (b, ˗˗˗˗), PSSP2 (c, ˗˗˗˗) and PSSP3 (d, ˗˗˗˗); 

highlighting the significant reduction in the fluctuations of lift as a result of the partial 

SSP with wave steepness, ω/λ, of 0.195 associated with W3.  
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PSSP1 and PSSP2, have discontinued (interrupted) regions along the span; hence, these 

geometries have a less developed flow field in the spanwise direction.  

  

6.1.2 Topological Study by Means of Flow Visualisations 

The phenomena that give rise to the effectiveness of an SSP partially applied to the 

leading edge of a bluff body can be elucidated by visualising the topology of the flow. 

The images on the left of Figure 6.4 display contours of vorticity in a vertical y-z plane 

coincident with the trailing edge of the geometries, as well as the vorticity along the 

front, upper and lower surfaces. To the right hand side of Figure 6.4, the vorticity field 

is presented in evenly distributed vertical x-y planes along the span that are coincident 

with the peaks and valleys of a full span SSP under the same parameters for the wave 

height and wave steepness.   

Vorticity is chosen for the exploration herein rather than velocity, as vorticity is 

associated with the curl of the velocity vector, and hence the phenomena associated with 

vortex shedding are more apparent within a vorticity field (White 2003). In Figure 6.4, 

the colour scale represents the magnitude of the vorticity, with the largest magnitude in 

red being located along the upper and lower corners of the leading edge (i.e. the 

connecting edges between the leading edge and horizontal surfaces).  

The vorticity in Figure 6.4 displays phenomena that are associated typically with 

both plain and SSP geometries. This is to be expected. However, the topology of the 

flow field provides useful insights into the phenomena. At the boundaries of the plain 

spans and partial SSPs, the coherent flow may transfer over into the region of the partial 

SSP, and eventually become rendered incoherent towards the center of the SSP (i.e. the 

partial SSP will only be effective at its center). It is the incoherence of the SSP that is 
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transferred into the coherent region. Instead, of there being a sharp distinction of the 

SSP / plain boundary, there is a transitional region in between.  

 

 

(a) 

(b) 

(c) 

Figure 6.4: Contours of vorticity magnitude for the TE plane (left) and spanwise peak 

and valley planes (right); (a) PSSP1, (b) PSSP2 and (c) PSSP3.  
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At the locations of the partial SSPs, the contours of vorticity that are present in the 

vertical y-z plane of Figure 6.4 coincident with the trailing edge resemble the sinusoidal 

pattern of the SSP. Therefore, in the case of the three geometries, this pattern emerges at 

the center of the span, two outer ends of the span, and across half the span, respectively 

for PSSP1, PSSP2 and PSSP3. Elsewhere along the spans is indication of the flow field 

that is associated with a plain leading edge. In the vertical x-y planes that are coincident 

with peaks of the partial SSP, the flow is detached directly aft of the leading edge, and 

at valleys the flow is attached. Furthermore, at the boundary of the plain and partial 

SSP, the vorticity in the vertical y-z plane contains significantly less energy, as indicated 

by the absence in vorticity magnitude. There appears to be a cut-off region between the 

interaction of the coherent and incoherent flow fields along the span. Observing the 

flow field in the vertical x-y planes, the flow coincident to the boundary of the plain and 

SSP spans displays characteristics that are associated with an intermittent flow; hence, a 

Regime II-type pattern. Therefore, it would seem that the two partial spans (plain and 

SSP) contain independent flow fields that are adjoin by an interacting flow at the 

boundary.  

It is evident that the flow field around the partial SSP geometries contains regions 

of flow structures that are independent in the spanwise direction. The three-dimensional 

flow field associated with the spanwise incoherence as a result of the partial SSP can 

only be depicted at the partial regions. At the regions of the plain leading edge, the flow 

exhibits coherence and therefore vortex shedding. Hence, the characteristics of both 

uncontrolled and controlled flow fields are present; however, it can be seen in the 

topology of the overall flow field that the two individual structures of the flow are quite 

independent. At the vertical x-y plane intersecting the span of the plain leading edge and 

partial SSP, and also including the adjacent vertical x-y planes, it can be seen in Figure 
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6.4 that negligible interaction seems to exist between the coherent and incoherent flow 

fields. Hence, from this observation alone, it is suggested that there is no evident 

transfer or blending of the flow structures other than intermittency detected at the 

boundary. The intermittency is the same as Regime II, discussed in Chapter 4. These 

phenomena may suggest an effective control of the local flow field can be achieved with 

a partial SSP. 
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Figure 6.5: Vectors of the magnitude of 

velocity for the three partial SSP 

geometries; (a) PSSP1, (b) PSSP2 and (c) 

PSSP3. The velocity is shown across a 

horizontal x-z plane coincident with the 

upper surface. At peaks along the span of 

the partial SSPs, it can be seen that the 

flow is channelled towards the center of 

the peaks. Adjacent to the intersecting 

plane, the flow coincident with the plain 

leading edge is channelled only slightly 

in the direction of the SSP. 
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In Figure 6.5, the instantaneous vectors of velocity magnitude are displayed for the 

three partial SSP geometries. The vectors are approaching the leading edge in a 

horizontal x-z plane coincident to the upper surface of the geometries; the view is from 

the top and the flow is from left to right. Across the spans with the plain leading edges, 

the velocity vectors are parallel to the streamwise direction. Coincident to valleys, the 

vectors are also parallel to the streamwise direction. It is only at the intersecting region 

between the plain and SSP spans that the vectors change direction and become 

channelled towards the center of the adjoining peak of the partial SSP. Likewise, the 

flow is channelled at the remaining peaks. It is evident that in a similar manner to the 

full span SSP geometry with large wave steepness (ω/λ > 0.1), a partial SSP under the 

same parameter has the ability to capture the flow across its span and mitigate a 

coherent flow field from occurring. It should be noted that as it has been discussed in 

previous chapters, the effect of channelling of the flow will only occur when the wave 

steepness, ω/λ, is significant (i.e. ω/λ > 0.1). It is a stark observation that both the 

coherent (uncontrolled) and incoherent (controlled) flow fields co-exist independently 

across the span containing a partial spanwise sinusoidal profile.  

Pathlines representing the vorticity field in a horizontal plane approaching the 

leading edge coincident with the upper surface of the three geometries of the partial SSP 

are displayed in Figure 6.6. It is desired to observe the fluid-to-structure interactions 

within the vorticity field and the impact of the partial leading edges on the flow. The 

vorticity in this plane provides significant details of the flow topology associated with a 

partial SSP near the surface of the geometry. Across the spans of the plain leading edge 

of PSSP1 in Figure 6.6(a), the development of the boundary layers and mixing of the 

shear layers induces vortex shedding into the wake. However, contrast to prior 

observations for a plain geometry in which vortices are shed uniformly along the span, 
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the instantaneous shedding of vortices on either side of the partial SSP occurs 

oppositely. For example, it can be seen in Figure 6.6(a) that to one side of the partial 

SSP, vortices are shed from the upper surface; whereas, to the other side they are being 

shed from the lower surface. A partial SSP located mid-way along a plain leading edge 

is shown to disrupt the uniformity of the coherent shedding process, or at least prevent a 

spanwise communication of the coherent structures.  

In the case of placing two partial spans of the SSP along the geometry, the flow 

field coincident with the plain span of PSSP2 in Figure 6.6 does not appear to hold any 

adverse effect. The shear layers roll-up into vortices uniformly across the uncontrolled 

region. Along the spans of the partial SSP, the sinusoidal pattern emerges in the flow 

field. The separation of the flow from the upper surface of the geometry being 

coincident to peaks and the flow attachment at valleys is clearly discernable. As a result 

of the flow being channelled at the regions of peaks, this concentration of flow causes a 

high pressure gradient at this location and hence flow separation at the leading edge. 

The dispersion of flow concentration in line with the location of the valleys results in a 

decrease in the pressure gradients and allows the flow at these regions to remain fixed to 

the surface of the geometry. In Figure 6.6(c), the placement of a partial SSP across half 

the span of the geometry has no direct impact on the flow field associated with the plain 

half of the span. The two halves of the geometry exhibit the coherent and incoherent 

flow fields associated with the plain and SSP spans, respectively.  
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Figure 6.6: Pathlines highlighting the vorticity field approaching the leading edge of 

the three partial SSP geometries in a horizontal x-z plane coincident with the upper 

surface; (a) PSSP1, (b) PSSP2 and (c) PSSP3.   
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Another insight of the topology of the flow field around the partial SSP geometries 

is taken from the above view. As the vorticity pathlines are a lot clearer to visualise in 

this perspective. In Figure 6.7, the vorticity field is shown in the same horizontal plane 

coincident with the upper surface of the geometries. At the spans associated with the 

plain leading edge, the pathlines of vorticity remain parallel and streamwise (this is 

expected and demonstrated with the velocity vectors). The channelling of the flow at 

peaks of the partial SSP that ultimately results in an adverse pressure gradient at the 

leading edge is seen to cause a reaction in the flow field in the form of flow 

convergence in line with the valleys. At the regions where the plain and partial SSP 

spans intersect, the pathlines coincident to the adjoining valley of the SSP merge with 

the streamwise pathlines that are coincident to the plain leading edge. This establishes 

somewhat of a void in the flow field, in the wake and directly in-line with the 

intersecting point. The one case that demonstrates this void the largest is for PSSP3; the 

streamlines are quite divergent from this location about the spanwise direction. The 

pathlines in Figure 6.7 indicate the independent structures of both the uncontrolled and 

controlled flow fields; not only across the bluff geometry, but especially in the wake.  

In order to corroborate the above observations, the vorticity field is presented in 

vertical x-y planes that are coincident with both a peak and a valley across the span of 

the partial SSP, a vertical x-y plane coincident along the span of the plain leading edge, 

and a vertical x-y plane at the intersection between these two spans. This is primarily to 

demonstrate the independent flow structures, as well as the spanwise transition of the 

flow field more clearly.  
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Figure 6.7: Above view of 

the three partial SSP 

geometries showing the 

pathlines of the vorticity 

field approaching the 

leading edge in a 

horizontal x-z plane 

coincident with the upper 

surface; (a) PSSP1, (b) 

PSSP2 and (c) PSSP3. 

TE 
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The contours of vorticity are presented in Figure 6.8 for PSSP1. In Figure 6.8(a), 

vortex shedding is evident in a plane that is coincident with a plain leading edge. Hence, 

the partial SSP does not have an impact at this region. The vorticity depicted in Figure 

6.8(c) coincident with a peak indicates the separation of the boundary layer at the 

leading edge and shear layer instabilities in the form of Bloor-Gerrard vortices, or 

otherwise known Kelvin-Helmholtz instabilities (Bloor and Gerrard 1968). The 

frequency of these small scale vortices is in the order of approximately 3fvo, where fvo is 

the vortex shedding frequency for a plain square section. The wake at this plane remains 

divergent about the mid-horizontal plane behind the cylinder. In Figure 6.8(d), the 

vorticity clearly shows attached boundary layers to the upper and lower horizontal 

surfaces of the geometry; this is depicted in the vertical x-y plane coincident with a 

valley. The wake in this case remains relatively parallel about the horizontal and shows 

only very slight indication of shear layer instability in the wake at this plane.  

At the vertical x-y plane that is coincident with the intersection between the plain 

leading edge and partial SSP in Figure 6.8(b), signs of an intermittent structure are more 

evident. Both upper and lower boundary layers remain attached to the surface of the 

geometry; however, there is absent stretching of the shear layers in the streamwise 

direction, which in turn prevents the roll-up of vortices into the wake, and results in a 

high rate of dissipation. Nevertheless, intermittently the shear layers tend to stretch and 

form vortex like structures into the wake. Hence, the partial SSP does not have a 

complete influence on the flow at this spanwise location, but begins to change the 

coherent fluid properties at this spanwise point.  
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The observations gathered from the visualisations of the flow field appear to 

suggest that the passive control is independent of spanwise location. Hence, applying a 

partial SSP at any location along the span of the geometry will result in achieving 

control of the flow at the local position and mitigating the shedding of vortices across 

the entire partial SSP span. The presence of the uncontrolled coherent flow adjacent to 

the partial SSP does not appear to adversely affect the outcome of the application.  

 

 

Figure 6.8: Contours of vorticity magnitude for PSSP1 showing the spanwise flow 

transition in vertical x-y planes coincident to (a) the plain leading edge, (b) the 

intersecting plane, (c) a peak of the partial SSP, and (d) a valley of the partial SSP.  
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6.2 Summary 

The work in this chapter demonstrates that a spanwise sinusoidal profile (SSP) 

embodied only partially to the leading edges of square cylinders is an effective, and 

more importantly, a practical adaptation. The partial SSPs have a wave steepness, ω/λ, 

of 0.195 and a normalised wavelength, λ/D, of 2.4. It is shown that a three-dimensional 

flow field occurs around the bluff bodies at local regions where the SSP is present. 

Elsewhere, a two-dimensional flow field exists which is associated with the plain 

leading edges. Remarkably, at the boundary between the plain and SSP spans, the flow 

exhibits an intermediate characteristic similar to the Regime-II type instability, which 

was introduced in Chapter 4. Hence, there are independent regions of controlled and 

uncontrolled flow that are adjoined by a small region at the boundaries, in which the 

flows interact.  

Reductions are obtained in the mean drag and the fluctuations of lift force of up to 

23% and 71%, respectively. This is attributed by the independent regions of three-

dimensional flow coincident to the spans of the partial SSP. The aerodynamic properties 

are corroborated by visualisations of the flow topology. The shear layers around the 

partial SSP bodies clearly demonstrate the presence of both the two-dimensional and 

three-dimensional flow fields corresponding to plain and SSP spans, respectively. The 

channelling of the flow at the peaks of the SSP is responsible for the interaction 

between the two independent flow regions, as the field reacts in a divergent manner 

from the convergence at peaks. Overall, an SSP proves to be an outstanding mechanism 

for reducing the deleterious effects and modifying the flow field at the local regions 

where the sinusoid exists.   
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CHAPTER 7 

 

CONCLUSIONS AND FUTURE WORK 
 

 

 

 

7.1  Contributions of the Thesis 

In this thesis, investigations are made into the control of turbulent flow around bluff 

bodies by means of bio-inspired spanwise sinusoidal profiles (SSPs) on the leading 

edges. This is achieved by numerically modelling the transport phenomena using large 

eddy simulation (LES). The numerical analysis contributes to the existing understanding 

of the three-dimensional flow around bluff bodies; in particular, the phenomena 

associated with a controlled flow field. The contributions of this research are 

summarised as follows.   

• It has been shown that the mean drag force on square cylinders immersed in 

turbulent flows can be reduced by about 30% if spanwise sinusoidal profiles (SSPs) 

are embodied on their leading edges.  

• The validated numerical model indicates that an SSP is able to reduce the lift force 

fluctuations by up to 95%. This has potential benefits for reducing fatigue failure of 

structures exposed to turbulent flows.  

• Vortices shed along the span of plain square cylinders cause large temporal 

variations in the lift and drag. A cylinder with an SSP leading edge with a wave 

steepness, ω/λ, of 0.195 and a normalised wavelength, λ/D, of 2.4 contains a wake 
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with small-scale Kelvin-Helmholtz (Bloor-Gerrard) instabilities being shed from 

the cylinder.  

• The peaks of the SSP channel the flow and this increases the mass flux at these 

regions. Vortices shed downstream of valleys are shed predominantly in the 

direction of the free-stream flow. 

• A parametric study indicates that the wave steepness of a spanwise sinusoidal 

profile appears to be of greater importance in suppressing the synchronous 

shedding of vortices in turbulent flow than in laminar flow.  

• A spanwise sinusoidal profile (SSP) not only controls the flow field around square 

cylinders, but it effectively renders the flow field around elongated bluff bodies to 

resemble that of a streamlined geometry. This is demonstrated in Chapter 5.  

• The SSP studied on the elongated cylinder has a wave steepness, ω/λ, of 0.195 and 

a normalised wavelength, λ/D, of 2.4. Reductions of up to 10% and 83% in the 

mean drag and fluctuations of lift are respectively obtained with this SSP geometry.  

• The flow around an elongated SSP cylinder is three-dimensional due to a 

channelling of the flow at peaks in a similar manner to that observed in the case of 

square cylinders. A spanwise incoherence develops, and this in turn weakens the 

shear layers and results in a thin boundary layer adjacent to the surface. As a result, 

a narrow wake is formed behind the elongated SSP geometry.  

• The effect of the proximity of the trailing edge to the SSP leading edge does not 

profoundly influence the control of the flow field around elongated bluff bodies.  
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• When an SSP is embodied only partially to the leading edges of square cylinders, a 

three-dimensional flow field occurs around the bluff bodies at local regions where 

the SSP is present. Elsewhere, a two-dimensional flow field exists which is 

associated with the plain leading edges.  

• At the boundary between spans with plain and SSP leading edges, there are 

independent regions of controlled (three-dimensional) and uncontrolled (two-

dimensional) flow that are adjoined by a small region where the two flow regimes 

interact.  

• In a specific case considered, the mean drag and the fluctuations of the lift force are 

reduced by up to 23% and 71%, respectively, for a partial SSP.  

• The channelling of the flow at the peaks of the SSP region triggers the interaction at 

the boundaries between plain and SSP regions. This is because flows in the latter 

region are three-dimensional.  

• Overall, an SSP demonstrates to be an outstanding practical mechanism for 

reducing the deleterious effects produced by turbulent flows around bluff bodies.   

 

7.2  Suggestions for Future Work 

The research presented in this thesis has demonstrated the effectiveness and practicality 

of bio-inspired spanwise sinusoidal profiles (SSPs) in reducing the fluctuating forces on 

bluff bodies. This study has revealed avenues of further research that would be 

important from both fundamental and practical points of view.  
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The bluff bodies in this work were maintained at a zero angle of attack to the 

approaching fluid, i.e. the leading edge of the bodies is normal to the upstream flow at 

all times. It is suggested that investigations be carried out on bluff bodies fitted with 

SSPs that have a range of angles of attack – possibly ranging from 0° as at present to 

180°. It is possible that SSPs are effective to some degree at all angles of attack, but this 

is of course speculative. This would also align the research with flow over an owl’s 

wing, and the effect of angle of attack would be particularly useful in dealing with 

practical cases associated with elongated bluff bodies. In addition, it is most important 

to increase the range of Reynolds numbers studied, as this could reveal as yet 

unsuspected phenomena.  

This research has considered only an idealised form of the leading edge comb. 

However, the potential of the trailing edge fringe as a flow control mechanism has been 

discussed in Chapter 2, where its ability to suppress trailing edge noise is highlighted. 

This prompts a further study in which a trailing edge fringe is attached to square and 

elongated bluff bodies; the trailing edge fringe could be idealised as a porous medium 

that absorbs the turbulent flow structures and mitigates the aerodynamic noise. 

Furthermore, the trailing edge fringe and spanwise sinusoidal profile can be 

implemented simultaneously to elucidate their combined effectiveness in controlling the 

turbulent flow field and aerodynamic forces. Additionally, the SSP can be modified to 

take a different geometric form such as a sawtooth or square tooth pattern. Rather than a 

porous medium, the trailing edge can be castellated, in which both the leading and 

trailing edges have identical or different geometries. 

Preliminary studies on these suggestions for future work can be carried out 

numerically. However, it is essential that the effectiveness of the leading and trailing 
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edge passive controls are integrated with practical ‘real-life’ models, such as towers, 

buildings, bridges, and so on. Furthermore, the research can be extended to 

hydrodynamic problems, such as water currents around marine risers, oil rig platforms, 

off-shore wind turbine towers, weather stations and the keels of ships and boats.  
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APPENDIX A 

 

CORRELATION ANALYSIS OF THE BOUNDARY 

LAYERS AROUND SSP BLUFF BODIES 
 

 

 

 

A.1 Boundary Layer Topology Analysis of a Square SSP 

Additional research of the flow topology was conducted by analysing the near wall flow 

features at the leading and trailing edge of each corresponding peak and valley plane for 

both W0 and W3. Hence, a comparative analysis is presented herein between the natural 

undisturbed flow topology and best controlled flow topology, respectively. The 

topology analysis in this section is performed through a cross-correlation of data at the 

near wall. This discussion will aim to demonstrate of the features and structures that are 

present within the flow while applying the passive control.  

 Both velocity and pressure histories have been measured. The data has shown 

similar trends are observed at each peak and valley plane. Therefore for brevity, only 

the two central peak locations and the two central valley locations are discussed. As a 

comparison to W3, four corresponding points located at the center of W0 have also been 

selected. The points for both W0 and W3 are indicated as 1 through to 4 in Figure A.1. 

The locations of the leading edge points correspond to the first grid cell above and in 

front of the leading edge, while the locations of the trailing edge points correspond to 

the first grid cell directly above the trailing edge. Hence, the measuring points are 

located 1×10-3 m away from the cylinder surface.  
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The process of correlation analysis allows specific coherent structures within the 

flow to be identified between particular physical quantities. In this case, the analysis 

focuses on the relationship between streamwise u-velocity and pressure. The correlation 

function filters the many spectral components that exist within the data due to non-

stationary structures in the flow. Only the dominant frequencies corresponding to the 

coherent structures are presented, allowing a relationship to be formulated. The standard 

cross-correlation sequence is defined as 

 

��∙���� = ∑ 
���� ∙ ��� +��
�
���  (A.1.1) 

 

where � is a predefined lead or lag, ��, equal to the time step size, ���� − ��. In order to 

achieve a more accurate estimate of the cross-correlation, a normalised cross-correlation 

is obtained as 

 

��∙�,����������� =
�

��|�|
��∙����   (A.1.2) 

 

This normalisation prevents any bias from occurring, as well as preventing any gradient 

within the sequence due to bias normalisation. The velocity-pressure histories and 

resulting unbiased cross-correlation function are given next for both W0 and W3 at 

1 
2 

3 
4 

(a) 

1 
2 

3 
4 

Fig

Figure A.1: Data points for the boundary layer topology analysis; (a) W0; (b) W3. 
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points 1 to 4. The following section will firstly discuss each of the four points in 

succession at the leading edge. The details at each trailing edge location will then follow 

with a similar approach.  

 

A.1.1 Correlations at the Leading Edge of the Square Cylinder  

In Figure A.2(a), u-velocity and pressure are plotted against time for both W0 and W3 at 

the leading edge at point 1, which corresponds to a peak plane. It should be noted herein 

that the history plots in this section show only 1 s of the complete data set, in order to 

clearly demonstrate the contrast between the compared histories. However, the analysis 

is still conducted with the full range of the data. The blue curve represents the velocity 

data, while the green curve represents the pressure data. The unbiased cross-correlation 

sequence, ��∙�,��������, between the streamwise u-velocity and pressure is presented in 

Figure A.2(b). Similar to the time histories, the correlations are plotted for 1 s of the 

data set with leading time, �� + ��. Therefore, the time axis represents lead, and zero 

time represents the initial cross-correlation at neither lead nor lag.  

The history in Figure A.2(a) for W0 clearly shows the presence of an organised 

periodic structure between the velocity-pressure coupling, as a constant half cycle phase 

difference exists. A periodic structure is not as clear within the data history for W3, as 

few distinct frequencies occur. Both u-velocity and pressure do not acquire the exact 

phase difference which exists for W0. This behaviour for W3 indicates interference to 

the coherent flow structure. The magnitude of the overall data confirms this flow 

disturbance, as the average maximum velocity magnitude between W0 and W3 is 

approximately 1.5 ms-1 and 0.3 ms-1, respectively. The average maximum magnitude for 

pressure between the two comparisons is approximately 70 Pa and 8 Pa, respectively. 

Therefore, a decrease is obtained for the streamwise velocity and pressure of 

approximately 80 percent and 88 percent, respectively. This is a significant contribution 

to the mitigation of the original coherent structures. It should be noted here that the 

values of average maximums are taken for the complete data sets from the simulations.  
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The cross-correlation function in Figure A.2(b) shows a strong correlation between 

the u-velocity and pressure for W0 occurring at zero time delay. This strong correlation 

is further supported by the comparably high correlation magnitude throughout the time 

delay sequence. A clear periodic structure exists with a clear single frequency existing 

between the interactions of the two data sets. For W3, the strength of the correlation 

between the data can be considered negligible in comparison to that of W0. The 

correlation function of W3 reveals a periodic structure with a high frequency density. 

Although the largest correlation occurs at zero time delay for W3, the overall magnitude 

is approximately less than one percent of the magnitude for W0.  

Power spectral density (PSD) calculations are performed for the data, in order to 

determine the specific coherent structures that are present within the flow between W0 

and W3. Hence, conducting a Fourier transform verifies the degree of correlation 

existing for both cases. The PSD of u-velocity, pressure, and unbiased cross-correlation 

function at point 1 are given in Figures A.3(a), A.3(b) and A.3(c) for W0, and Figures 
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Figure A.2: Cross-correlation between u-velocity (−−−−−−−−−−−−−−−−) and pressure (−−−−−−−−−−−−−−−−) at the 

leading edge of point 1 for W0 (left) and W3 (right); (a) data history and (b) unbiased 

cross-correlation sequence.   
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A.3(d), A.3(e) and A.3(f) for W3. The horizontal axis of these plots has a frequency 

range up to approximately 7fvo.  

For W0, the dominant structures in both the velocity and pressure data occur at 

approximately 0.5fvo in Figures A.3(a) and A.3(b). In Figure A.3(c), correlation clearly 

exists between these two flow variables at only 0.5fvo. For W3, spectral peaks occur at 

approximately 0.2fvo, 2.5fvo and 3fvo. This is shown in Figures A.3(d) and A.3(e) for both 

u-velocity and pressure. However, the spectral density in Figure A.3(f) shows only 

spectral peaks at approximately 0.2fvo, 2.5fvo and 3fvo. The presence of a fundamental 

peak occurring at 0.2fvo indicates the shift in frequency content of the typically 

dominant coherent structures. The spectral peaks at approximately 2.5fvo and 3fvo 

correspond to the shear layer instabilities in the form of Bloor-Gerrard vortices. 

 
 

The time histories of u-velocity and pressure at point 2 of the leading edge of both 

W0 and W3 are provided in Figure A.4(a). This point corresponds to a valley plane for 

the controlled cylinder, W3. As expected during the analysis, a similar periodic 

structure within the data as to that at point 1 emerges for W0. This is clearly the result 

of maintaining an undisturbed leading edge. The maximum average magnitudes for the 

streamwise velocity and pressure throughout the simulations also remain the same at 

approximately 1.5 ms-1 and 70 Pa, respectively.  

P
SD

 

Frequency [Hz] 

P
SD

 

Frequency [Hz] 

Figure A.3: PSD of u-velocity (−−−−−−−−−−−−−−−−), pressure (−−−−−−−−−−−−−−−−) and unbiased cross-correlation 

function (−−−−−−−−−−−−−−−−) at the leading edge of point 1 for (a, b, c) W0 and (d, e, f) W3. 

(a) (b) (c) 

(d) (e) (f) 
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For W3, the data in Figure A.4(a) contains a dissimilar structure to that at point 1 in 

Figure A.2(a). The histories are much clearer, allowing the identification of two or three 

frequencies within the content more apparent. This is evident of the boundary layer 

three-dimensionality along the span, as structures between peak and valley planes differ 

periodically. The overall magnitudes remain relatively similar to the peak plane, in this 

case. The maximum average streamwise velocity and pressure are approximately 0.35 

ms-1 and 7 Pa, respectively. Therefore, the reductions in velocity and pressure 

fluctuations achieved at the leading edge of a valley plane are approximately 76 percent 

and 90 percent, respectively.  

The cross-correlation sequence for the leading edge of W0 at point 2 shows high 

correlation between the streamwise u-velocity and pressure in Figure A.4(b). Larger 

correlation than that of the peak location exists throughout the sequence, with the 

presence of a clear single frequency. For W3, the cross-correlation sequence in Figure 

A.4(b) is slightly larger than that of point 1, and the magnitude at the largest correlation 

Figure A.4: Cross-correlation between u-velocity (−−−−−−−−−−−−−−−−) and pressure (−−−−−−−−−−−−−−−−) at the 

leading edge of point 2 for W0 (left) and W3 (right); (a) data history and (b) unbiased 

cross-correlation sequence.   
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at zero time delay is approximately two percent that of W0. Therefore, the correlation 

magnitude indicates an interruption to the coherent flow at a valley. It is clear that the 

velocity-pressure coupling for W3 is correlated at one or two distinct frequencies at the 

leading edge at the valley.  

 
 

Obtaining the power spectral densities for u-velocity, pressure and the cross-

correlation function of both W0 and W3 produces the plots shown in Figure A.5. For 

W0, a clear spectral peak appears again at a frequency equal to approximately 0.5fvo. 

This is shown in Figures A.5(a), A.5(b) and A.5(c). For the PSD of W3 at point 2, the 

velocity-pressure coupling is correlated only at a frequency of approximately 0.2fvo. 

This is shown in Figures A.5(d), A.5(e) and A.5(f). This frequency shift observation is 

indicative of the vortex-shedding mitigation achieved, and the observed structure at 

only 0.2fvo is characteristic to the attached boundary layer at a valley plane. Hence, there 

is no obvious additional shear layer instabilities present at a valley.  

Continuing along the span of the square cylinders to the leading edge at point 3, 

corresponding to another peak plane for the controlled cylinder, W3, it is expected to 

observe quite similar behaviour as to that established at point 1. The time histories for 

the streamwise velocity and pressure in Figure A.6(a), confirm this. Average maximum 
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Figure A.5: PSD of u-velocity (−−−−−−−−−−−−−−−−), pressure (−−−−−−−−−−−−−−−−) and unbiased cross-correlation 

function (−−−−−−−−−−−−−−−−) at the leading edge of point 2 for (a, b, c) W0 and (d, e, f) W3. 

(a) (b) (c) 

(d) (e) (f) 
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magnitudes for velocity and pressure remain relatively similar to the values at point 1 at 

approximately 1.5 ms-1 and 70 Pa, respectively. For W3, the magnitude for the time 

history also remains consistent between the two peak locations, at approximately 0.35 

ms-1 and 7 Pa for velocity and pressure, respectively. Therefore, reductions are 

approximately 76 percent for velocity and 90 percent for pressure.  

Considering the plots for the cross-correlation function, Figure A.6(b) demonstrates 

a high correlation between u-velocity and pressure at zero time delay, and a comparable 

magnitude throughout the sequence for W0. Few distinct frequencies are clearly being 

correlated between the data for W3. The observations from the cross-correlation 

sequence suggest the same frequencies occur at the leading edge for both points 1 and 3. 

Similar correlation magnitude is obtained, which also demonstrates the consistency 

between the two points, and accuracy of the numerical model.  

 

 
 

Figure A.6: Cross-correlation between u-velocity (−−−−−−−−−−−−−−−−) and pressure (−−−−−−−−−−−−−−−−) at the 

leading edge of point 3 for W0 (left) and W3 (right); (a) data history and (b) unbiased 

cross-correlation sequence.   
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The PSD plots in Figure A.7(a), A.7(b) and A.7(c) for W0 at point 3 indicate the 

coherent structures occurring at approximately 0.5fvo. For W3, spectral peaks appear at 

approximately 0.2fvo and 2.5fvo to 3fvo. It should be noted that within Figure A.7(f), the 

streamwise u-velocity and pressure are only correlated at 0.2fvo, as negligible spectral 

content surrounds 3fvo. Hence, the significant difference between the two peak planes 

discussed for points 1 and 3 is observed in the strength of the spectral content at 3fvo. As 

coherent structures exist dominantly at 0.2fvo for both u-velocity and pressure at both 

peak leading edge locations, it is quantitatively corroborated that similar coherent 

structures occur along peak planes. The presence of the small scale Bloor-Gerrard 

vortices occurring at approximately 3fvo do not appear to influence the correlation at the 

leading edge.  

 
 

At the leading edge at point 4, the trends for W0 show the constant half cycle phase 

lead and average maximum velocity and pressure magnitudes of approximately 1.5 ms-1 

and 60 Pa, respectively. For the controlled square cylinder, W3, a similar trend in the 

time history exists at the leading edge between the valley plane at point 2 and that of 

point 4. The average maximum magnitudes for streamwise velocity and pressure are 

approximately 0.35 ms-1 and 7 Pa, respectively. Therefore, the reductions in fluctuations 

achieved for both velocity and pressure are approximately 76 percent and 88 percent, 

P
SD

 

Frequency [Hz] 

P
SD

 

Frequency [Hz] 

Figure A.7: PSD of u-velocity (−−−−−−−−−−−−−−−−), pressure (−−−−−−−−−−−−−−−−) and unbiased cross-correlation 

function (−−−−−−−−−−−−−−−−) at the leading edge of point 3 for (a, b, c) W0 and (d, e, f) W3. 

(a) (b) (c) 

(d) (e) (f) 
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respectively. The cross-correlation sequence in Figure A.8(b) for W0 at point 4 

indicates the high correlation usually observed between the streamwise velocity and 

pressure for this configuration. The trend throughout the time sequence is also similar 

between each leading edge point. For W3, the magnitude of the correlation function is 

comparable to that of the valley plane at point 2, with similar frequency content 

observed. 

The spectral distribution at point 4 for W0 shows the correlation at a frequency of 

approximately 0.5fvo. This can be seen in Figures A.9(a), A.9(b) and A.9(c). The 

frequency distribution for W3 shows the correlation occurring at 0.2fvo. This observation 

is identical to that made at point 2 for the corresponding valley plane, and is shown in 

Figures A.9(d), A.9(e) and A.9(f).  

 

 
 

 

Figure A.8: Cross-correlation between u-velocity (−−−−−−−−−−−−−−−−) and pressure (−−−−−−−−−−−−−−−−) at the 

leading edge of point 4 for W0 (left) and W3 (right); (a) data history and (b) unbiased 

cross-correlation sequence.   
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Table A.1: Summary of observations for the spanwise boundary layer topology analysis. 

 W0 W3 

LE 
Point 

u-velocity 
[ms-1] 

Pressure 
[Pa] 

Correlated 
Frequency 

[Hz] 

u-velocity 
[ms-1] 

Pressure 
[Pa] 

Correlated 
Frequency 

[Hz] 

Velocity 
reduction 

[%] 

Pressure 
reduction 

[%] 

1 1.5 70 0.5fvo 0.3 8 0.2fvo, 
3fvo 

80 88 

2 1.5 70 0.5fvo 0.35 7 0.2fvo 76 90 

3 1.5 70 0.5fvo 0.35 7 0.2fvo, 
3fvo 

76 90 

4 1.5 60 0.5fvo 0.35 7 0.2fvo 76 88 

 

 

Table A.1 provides a summary of the observations discussed in this section. Similar 

reductions in the velocity and pressure fluctuations are obtained throughout all the 

leading edge points 1 to 4. As the histories of the velocity-pressure coupling are random 

time-dependent data sets, it is expected that some slight differences in overall percent 

reductions are obtained. Nevertheless, it is important that the reductions compare well. 

It can be observed that the key difference across the four points is the shift in frequency 
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Figure A.9: PSD of u-velocity (−−−−−−−−−−−−−−−−), pressure (−−−−−−−−−−−−−−−−) and unbiased cross-correlation 

function (−−−−−−−−−−−−−−−−) at the leading edge of point 4 for (a, b, c) W0 and (d, e, f) W3. 

(a) (b) (c) 

(d) (e) (f) 
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content between the uncontrolled and controlled cases. This is a clear quantitative 

representation of the mitigation of the coherent bluff body flow.  

 

A.1.2 Correlations at the Trailing Edge of the Square Cylinder  

In Figure A.10(a), u-velocity and pressure are plotted against time for both W0 and W3 

at the trailing edge at point 1 from Figure A.1. This point corresponds to a peak plane. 

The history in Figure A.10(a) for W0 clearly shows the presence of an organised 

periodic structure between the velocity-pressure coupling. However, when inspecting a 

period of 0.5 s for the data, instead of the histories remaining at a constant half cycle 

phase difference, the data appears to be almost in phase.  

A periodic structure is not as clear within the data history for W3 at the trailing 

edge, as few distinct frequencies are clearly present. The velocity-pressure coupling 

appears to contain similar features and coherent structures to that of point 1 at the 

leading edge. Observing only 0.5 s of the history in Figure A.10(a), it is revealed that 

the velocity-pressure coupling is almost completely in phase for W3. There is however, 

slight indication that the fundamental frequency is out of phase. The average maximum 

velocity magnitude for W0 and W3 in Figure A.10(a) is approximately 8 ms-1 and 2.5 

ms-1, respectively. These average magnitudes are taken across the whole simulated data 

range. The average maximum magnitude for pressure between the two comparisons is 

approximately 80 Pa and 16 Pa, respectively. Therefore, a decrease is obtained for the 

streamwise velocity and pressure of approximately 69 percent and 80 percent, 

respectively. 

The cross-correlation function in Figure A.10(b) shows a strong correlation 

between the u-velocity and pressure for W0 occurring at zero time delay. Correlation 

diminishes slightly for larger lead time; however there remains a comparably high 

correlation magnitude throughout the correlation sequence. It is clear that correlation for 

W0 between u-velocity and pressure exists at two distinct frequencies. For W3, the 

strength of the correlation is highly mitigated and approximately three percent that of 

W0. The correlation function of W3 reveals an unclear periodic structure with a high 

frequency density, which is a somewhat similar observation to that made at the leading 

edge.  
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Power spectral density (PSD) calculations at the trailing edge at point 1 are given in 

Figures A.11(a), A.11(b) and A.11(c) for W0, and Figures A.11(d), A.11(e) and A.11(f) 

for W3. The horizontal axis of these plots has a frequency range up to approximately 

6fvo. The dominant structures in both the velocity and pressure data of W0 are equally 

present at approximately 0.5fvo and fvo. This is indicated in Figures A.11(a) and A.11(b). 

At the trailing edge, the effects of the Strouhal number, St, for the square section 

geometry are clearly apparent, due to the full presence of the vortex-shedding structures 

caused by some development of the boundary flow. In Figure A.11(c), correlation also 

exists at 0.5fvo and fvo. For W3, correlation occurs at the frequency of approximately 

0.2fvo, 2.5fvo and 3fvo. This is shown in Figures A.11(d), A.11(e) and A.11(f), 

respectively. The spectral peaks at approximately 2.5fvo and 3fvo correspond to the 

Bloor-Gerrard shear layer instabilities. 

 

 

u-
ve

lo
ci

ty
 [

m
/s

] 

P
re

ss
ur

e 
[P

a]
 

R
u·

P
, 

un
bi

as
ed
 

Time [s] Time [s] 

Time [s] Time [s] (b) 

(a) 

Figure A.10: Cross-correlation between u-velocity (−−−−−−−−−−−−−−−−) and pressure (−−−−−−−−−−−−−−−−) at the 

trailing edge of point 1 for W0 (left) and W3 (right); (a) data history and (b) unbiased 

cross-correlation sequence.   
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Figure A.12: Cross-correlation between u-velocity (−−−−−−−−−−−−−−−−) and pressure (−−−−−−−−−−−−−−−−) at the 

trailing edge of point 2 for W0 (left) and W3 (right); (a) data history and (b) unbiased 

cross-correlation sequence.   
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Figure A.11: PSD of u-velocity (−−−−−−−−−−−−−−−−), pressure (−−−−−−−−−−−−−−−−) and unbiased cross-

correlation function (−−−−−−−−−−−−−−−−) at the trailing edge of point 1 for (a, b, c) W0 and (d, e, f) 

W3. 

(a) (b) (c) 

(d) (e) (f) 
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The time histories of u-velocity and pressure at point 2 at the trailing edge are 

provided in Figure A.12(a). This point corresponds to a valley plane for the controlled 

cylinder, W3. Similar history to that at point 1 for W0 is shown, with maximum average 

magnitudes of u-velocity and pressure at approximately 8 ms-1 and 80 Pa, respectively. 

For W3, the data in Figure A.12(a) shows the maximum average streamwise velocity 

and pressure are approximately 3 ms-1 and 18 Pa, respectively. Therefore, the reductions 

in velocity and pressure fluctuations achieved at the trailing edge of a valley plane are 

approximately 62 percent and 78 percent, respectively.  

In Figure A.13, the PSD at point 2 reveals dominant flow structures occurring at 

approximately 0.5fvo and fvo for W0 within both velocity and pressure data. This is 

shown in Figures A.13(a) and A.13(b). Hence, correlation also occurs at these two 

frequencies in Figure A.13(c). For W3, the coherent structures primarily exist at 

approximately 0.2fvo for both u-velocity and pressure in Figures A.13(d) and A.13(e). 

Correlation of the velocity-pressure coupling exists at only 0.2fvo in Figure A.13(f).   

 
 

At the trailing edge at point 3, corresponding to a peak plane for the SSP cylinder, 

W3, the histories for the streamwise velocity and pressure in Figure A.14(a) show 

average maximum magnitudes for velocity and pressure remain relatively similar to the 
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Figure A.13: PSD of u-velocity (−−−−−−−−−−−−−−−−), pressure (−−−−−−−−−−−−−−−−) and unbiased cross-

correlation function (−−−−−−−−−−−−−−−−) at the trailing edge of point 2 for (a, b, c) W0 and (d, e, f) 

W3. 

(a) (b) (c) 

(d) (e) (f) 
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values at point 1 at approximately 2 ms-1 and 15 Pa, respectively. For W0, the same 

consistent behaviour to that at previous points along the trailing edge is observed. The 

average maximum magnitudes are 8 ms-1 and 80 Pa for velocity and pressure, 

respectively. Hence, reductions are achieved at approximately 75 percent for velocity 

and 81 percent for pressure.  

The PSD plots in Figure A.15(a), A.15(b) and A.15(c) for W0 at point 3 indicate 

the dominant structures and correlation occurring at approximately 0.5fvo and fvo. For 

W3, the dominant flow structures are present at 0.2fvo. As point 3 corresponds to a peak 

plane, it is expected that evidence of the shear layer instabilities caused by the leading 

edge flow separation will exist in the data. The significant difference between the 

frequency distribution for the trailing edge at both peak locations is the strength of the 

coherent structures corresponding to the shear layer instabilities.   
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Figure A.14: Cross-correlation between u-velocity (−−−−−−−−−−−−−−−−) and pressure (−−−−−−−−−−−−−−−−) at the 

trailing edge of point 3 for W0 (left) and W3 (right); (a) data history and (b) unbiased 

cross-correlation sequence.   

W0 W3 

W0 W3 



196 

 

 
 

At point 4, the expected trend in the histories for the plain square cylinder, W0, 

which are present for all previous trailing edge points are apparent. This is shown in 

Figure A.16(a). These trends are the phase similarities in the velocity-pressure coupling, 

and average maximum velocity and pressure magnitudes of approximately 8 ms-1 and 

80 Pa, respectively. For the controlled square cylinder, W3, a similar trend in the time 

history exists at the trailing edge between the valley plane at point 2 and that of point 4. 

The fundamental frequency is clearly out of phase, while the higher frequencies appear 

to be in phase. The average maximum magnitudes for the streamwise velocity and 

pressure are approximately 3 ms-1 and 15 Pa, respectively. Reductions in fluctuations 

achieved for both velocity and pressure are therefore, approximately 62 percent and 81 

percent, respectively. The cross-correlation sequence in Figure A.16(b) indicates 

approximately 97 percent decrease in the correlation strength between the data sets is 

observed at point 4, and similar frequency content to that at point 2.  

The power spectral density at point 4 indicates correlation occurring for W0 at both 

approximately 0.5fvo and fvo. This can be seen in Figures A.17(a), A.17(b) and A.17(c). 

The frequency distribution for W3 shows the correlation occurring at 0.2fvo. Slight 

indication of spectral content within the frequency distribution is present between 
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Figure A.15: PSD of u-velocity (−−−−−−−−−−−−−−−−), pressure (−−−−−−−−−−−−−−−−) and unbiased cross-

correlation function (−−−−−−−−−−−−−−−−) at the trailing edge of point 3 for (a, b, c) W0 and (d, e, f) 

W3. 

(a) (b) (c) 

(d) (e) (f) 
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approximately 2fvo to 3fvo. As mentioned for point 2, the occurrence of content at this 

frequency range is due to the shear layer instabilities occurring at the trailing edge of 

valley planes. The measuring point is located directly above the trailing edge of the 

square cylinder; hence, the boundary layer separates at this location, due to the 

influence of shedding flow.  

 

 
 

Table A.2 below provides a summary of the observations discussed in this section. 

Similar reductions in the velocity and pressure fluctuations are obtained throughout all 

the trailing edge points 1 to 4. This is a clear quantitative representation of the 

mitigation of the coherent and incoherent bluff body flow. Correlation at point 3 does 

occur at approximately 3fvo, however, the presence at this frequency is considered 

negligible in comparison to that of point 1. This is due to the weak spectral content at 

3fvo within the velocity PSD. Nevertheless, the observations show the same overall 

coherent structures appearing between valley planes and peak planes.  
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Figure A.16: Cross-correlation between u-velocity (−−−−−−−−−−−−−−−−) and pressure (−−−−−−−−−−−−−−−−) at the 

trailing edge of point 4 for W0 (left) and W3 (right); (a) data history and (b) unbiased 

cross-correlation sequence.   
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Table A.2: Summary of observations for the spanwise boundary layer topology analysis. 

 W0 W3 

LE 
Point 

u-velocity 
[ms-1] 

Pressure 
[Pa] 

Correlated 
Frequency 

[Hz] 

u-velocity 
[ms-1] 

Pressure 
[Pa] 

Correlated 
Frequency 

[Hz] 

Velocity 
reduction 

[%] 

Pressure 
reduction 

[%] 

1 8 80 0.5fvo,  

fvo 

2.5 16 0.2fvo, 3fvo 69 80 

2 8 80 0.5fvo,  

fvo 

3 18 0.2fvo 62 78 

3 8 80 0.5fvo,  

fvo 

2 15 0.2fvo 75 81 

4 8 80 0.5fvo,  

fvo 

3 15 0.2fvo 62 81 

 

 

P
SD

 

Frequency [Hz] 

P
SD

 

Frequency [Hz] 

Figure A.17: PSD of u-velocity (−−−−−−−−−−−−−−−−), pressure (−−−−−−−−−−−−−−−−) and unbiased cross-

correlation function (−−−−−−−−−−−−−−−−) at the trailing edge of point 4 for (a, b, c) W0 and (d, e, f) 

W3. 

(a) (b) (c) 

(d) (e) (f) 
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APPENDIX B 

 

CORRELATION ANALYSIS OF THE BOUNDARY 

LAYER AROUND AN ELONGATED SSP 
 

 

 

 

B.1 Boundary Layer Topology Analysis of an Elongated SSP 

Additional investigation of the flow topology is conducted by analysing the near wall 

flow features at the leading and trailing edges of the rectangular prisms. Histories of u-

velocity and pressure are obtained at leading and trailing edge spanwise points 

corresponding to peak and valley planes for the elongated SSP cylinder, W3E, as well as 

the plain elongated cylinder, W0E. Cross-correlation analysis is performed between the 

velocity and pressure data at each individual point, in order to determine the fluid 

structures that are present within the boundary layers of the prisms. For brevity, only 

five spanwise points are discussed for both W0E and W3E. The purpose for selecting 

such points is to demonstrate the symmetry of flow structures within the boundary layer 

about the mid-span location. The points discussed herein are indicated for the elongated 

cylinders in Figure B.1.  

The monitor points along the leading edge of both prisms correspond to the first 

grid cell above and in front of the leading edge, while the monitor points along the 

trailing edge correspond to the first grid cell directly above the trailing edge. Therefore, 

the measurement locations are placed at a distance of 1×10-3 m from the cylinder wall. 

The cross-correlation observations in the following section will firstly discuss the 

leading edge locations for W0E and W3E. The details at the trailing edge locations will 

then follow with a similar approach, in order to demonstrate the flow structures 

concisely.  
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B.1.1 Correlations at the Leading Edge of the Elongated Cylinder   

Histories for u-velocity and pressure fluctuations are plotted against time for W0E and 

W3E at the leading edge points in Figures B.2 and B.5, respectively. The history plots in 

this section show one complete second of the data set, in order to clearly demonstrate 

the topology variation between each location. It should be noted however, that the 

analysis is still conducted with the full range of the simulated data of 4 s. The blue 

curve in the time histories represents the u-velocity data, while the green curve 

represents the pressure data.  

The unbiased cross-correlation sequence, ��∙�,����	
��, between the streamwise u-

velocity and pressure for both prisms at the leading edge points are presented in Figures 

B.3 and B.6. Similar to the time histories, the correlations are plotted for 1 s of leading 

and lagging time, � + �� and � − ��, respectively. The positive time in the correlation 

plots representing lead, and the negative time representing lag. The initial cross-

correlation at neither lead nor lag is at zero time delay.  

 The time histories for W0E are presented in Figure B.2 below. Each plot represents 

points 1 through to 5 of Figure B.1. It can be clearly seen that the flow exhibits a 

consistent structure of the velocity-pressure coupling along the span, as well as a 

constant half cycle phase difference and one clear distinct frequency dominating the 

fluctuation at each point. It can also be seen that beats exist within the periodic 

1 
2 

3 
4 

5 5 

1 
2 

3 
4 

(a) (b) 

Figure B.1: Data points for the boundary layer and wake topology analysis; (a) W0E; 

(b) W3E.  
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structures. The maximum magnitudes of both u-velocity and pressure fluctuations are 

approximately between 0.25 to 0.5 ms-1 and 7 to 16 Pa, respectively.  

The plots for unbiased cross-correlation between u-velocity and pressure at the 

leading edge points 1 to 5 for W0E present high correlation existing only at zero time 

delay. The velocity-pressure coupling does not acquire a consistently constant 

correlation magnitude. The expected observations however, indicate a singular 

correlated frequency between u-velocity and pressure of approximately fvo.  

 

 

 
 

Figure B.2: Histories of u-velocity (−−−−−−−−−−−−−−−−) and pressure (−−−−−−−−−−−−−−−−) at the leading edge 

locations of W0E; (a) point 1; (b) point 2; (c) point 3; (d) point 4; (e) point 5. 
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The power spectral densities (PSD) for u-velocity, pressure and unbiased cross-

correlation function, reveal in Figure B.4, frequency content at approximately fvo. 

Presence of additional spectral content within the frequency distributions also surrounds 

fvo, with comparable spectral peaks occurring at 0.2fvo for points 2 and 3 of W0E. This is 

shown in Figures B.4(b) and B.4(c), respectively.  

 

 

Figure B.3: Unbiased cross-correlation between u-velocity and pressure at the leading 

edge locations of W0E; (a) point 1; (b) point 2; (c) point 3; (d) point 4; (e) point 5.  
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In Figure B.5, the time histories of u-velocity and pressure are presented at the 

leading edge points 1 to 5 for W3E. Points 1, 3 and 5 correspond to monitor points at 

peak locations, while points 2 and 4 correspond to monitor points at valley locations. At 

all peak monitors in Figures B.5(a), B.5(c) and B.5(e), the velocity-pressure history 

Figure B.4: PSD of u-velocity (−−−−−−−−−−−−−−−−), pressure (−−−−−−−−−−−−−−−−) and unbiased cross-correlation 

function (−−−−−−−−−−−−−−−−) at the leading edge of W0E; (a) point 1; (b) point 2; (c) point 3; (d) 

point 4; (e) point 5.  
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contains a periodic structure with a dominant low frequency and presence of higher 

frequency components. The maximum fluctuating magnitudes for both velocity and 

pressure are approximately between 0.2 to 0.6 ms-1 and 5 to 17 Pa, respectively. These 

magnitudes compare well with those for W0E. Therefore, the reduction in fluctuations 

for u-velocity and pressure between W0E and W3E are only approximately 20 percent 

and 29 percent, respectively.  
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Figure B.5: Histories of u-velocity (−−−−−−−−−−−−−−−−) and pressure (−−−−−−−−−−−−−−−−) at the leading edge 

locations of W3E; (a) point 1; (b) point 2; (c) point 3; (d) point 4; (e) point 5. 
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 At both the valley monitors in Figures B.5(b) and B.5(d), the data contains a 

periodic structure with a predominantly low frequency distribution. The maximums of 

the fluctuations for the velocity-pressure coupling are approximately between 0.15 to 

0.8 ms-1 and 2.5 to 14 Pa, respectively. Hence, reductions in fluctuations exist between 

W0E and W3E for u-velocity and pressure up to approximately 40 percent and 12 to 43 

percent, respectively. The overall maximum magnitudes at both peak and valley 

locations are less than those for the plain elongated cylinder. This observation and also 

the presence of high frequency content demonstrate the mitigation of the coherent flow.  

Observing the unbiased cross-correlation between u-velocity and pressure for W3E, 

at peak locations 1, 3 and 5, strong correlation exists at zero time delay with much 

lower correlation occurring throughout the remaining correlation sequence. This is 

shown in Figures B.6(a), B.6(c) and B.6(e). In comparison to the correlations for W0E, 

the magnitudes are much less, and the few distinct frequencies are apparent with a 

dominant lower frequency. In Figures B.6(b) and B.6(d), corresponding to valley 

monitor locations, the velocity-pressure coupling is highly correlated at zero time delay 

and less correlated in the remaining time delay sequence. Similar to the peak locations, 

the magnitude of correlation function at the valleys is much less than that for W0E. The 

correlation between u-velocity and pressure primarily occurs at a low frequency with 

only minor frequency content present in the higher range.  

Plots for the PSD at each leading edge location of W3E are presented in Figure B.7. 

Consecutive plots correspond to the monitor points 1 through to 5. In Figures B.7(a), 

B.7(c) and B.7(e), the PSD at peak locations contains a frequency distribution with 

spectral content between 0.2fvo to 3fvo. The dominant structures and correlation occur at 

approximately 0.2fvo. Spectral peaks are also present between approximately 2fvo and 

2.5fvo. This occurrence is more apparent at point 3, in Figure B.7(c). It is associated with 

the vortices present within the separated boundary layers at peak planes, due to shear 

layer instability.  
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The PSD at valley locations displays a frequency distribution between 0.2fvo and fvo. 

This is shown in Figures B.7(b) and B.7(d). Unlike the peak locations, the dominant 

flow structures within the velocity and pressure data exist at approximately 0.4fvo to 

0.5fvo. Correlation between u-velocity and pressure occurs at approximately 0.4fvo.  
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Figure B.6: Unbiased cross-correlation between u-velocity and pressure at the leading 
edge of W3E; (a) point 1; (b) point 2; (c) point 3; (d) point 4; (e) point 5.  
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A summary of the observations presented herein for the leading edge of W3P is 

provided in Table B.1. It should be noted that the values of maximums for both u-

velocity and pressure are taken as average values across the whole data range. Higher 

reductions are obtained at valley planes as a result of the attached boundary layer. The 
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Figure B.7: PSD of u-velocity (−−−−−−−−−−−−−−−−), pressure (−−−−−−−−−−−−−−−−) and unbiased cross-correlation 

function (−−−−−−−−−−−−−−−−) at the leading edge of W3E; (a) point 1; (b) point 2; (c) point 3; (d) 

point 4; (e) point 5.  
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presence of vortices within the shear layers at peak planes results in only minor 

reductions occurring between the plain square prism and controlled prism.  

 

Table B.1: Summary of leading edge correlation observations for W0E and W3E. 

 W0E W3E 

LE 
Point 

u-velocity 
[ms-1] 

Pressure 
[Pa] 

Correlated 
Frequency 

[Hz] 

u-velocity 
[ms-1] 

Pressure 
[Pa] 

Correlated 
Frequency 

[Hz] 

Velocity 
reduction 

[%] 

Pressure 
reduction 

[%] 

1 
0.25 – 

0.5 
7 - 16 fvo 

0.25 – 
0.9 

6 - 17 0.2fvo 20 ± 4 29 ± 4 

2 
0.25 – 

0.5 
7 - 16 fvo 0.3 – 0.8 4 - 14 0.4fvo 40 ± 4 43 ± 4 

3 
0.25 – 

0.5 
7 - 16 

fvo 0.25 – 
0.9 

6 - 17 0.2fvo 20 ± 4 29 ± 4 

4 
0.25 – 

0.5 
7 - 16 

fvo 0.3 – 0.8 4 - 14 
0.4fvo 40 ± 4 43 ± 4 

5 
0.25 – 

0.5 
7 - 16 

fvo 0.25 – 
0.9 

6 - 17 0.2fvo 20 ± 4 29 ± 4 

 

 

B.1.2 Correlations at the Trailing Edge of the Elongated Cylinder   

Histories for u-velocity and pressure are plotted against time for W0E and W3E at the 

trailing edge points in Figures B.8 and B.11, respectively. The blue curve represents the 

velocity data, while the green curve represents the pressure data. The unbiased cross-

correlation sequence, ��∙�,����	
��, between the streamwise u-velocity and pressure at 

the trailing edge for the uncontrolled square prism and the controlled square prism are 

presented in Figures B.9 and B.12, respectively.  

The time histories of u-velocity and pressure for W0E along the trailing edge are 

presented in Figure B.8. Each plot displays identical features, indicating an undisturbed 

flow field around W0E. The phase difference between the velocity and pressure appears 

to remain at mostly a half cycle, and the maximums of the fluctuations range from 

between approximately 4 to 8 ms-1 and 20 to 50 Pa for u-velocity and pressure, 

respectively.  
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The unbiased cross-correlation function at points 1 through to 5 at the trailing edge 

of W0E is presented in Figure B.9. The velocity-pressure coupling is highly correlated at 

a constant magnitude through the time delay sequence. Each point clearly contains a 

single correlated frequency between the velocity and pressure at approximately fvo. In 

comparison to the leading edge observations for W0E, the flow structure at the trailing 

edge is clearly developed and organised, as the interactions between u-velocity and 

pressure are well correlated. 
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Figure B.8: Histories of u-velocity (−−−−−−−−−−−−−−−−) and pressure (−−−−−−−−−−−−−−−−) at the trailing edge 

locations of W0E; (a) point 1; (b) point 2; (c) point 3; (d) point 4; (e) point 5. 
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The power spectral densities at the trailing edge for W0E are presented in Figure 

B.10, and show clear structures existing at approximately fvo at each point 1 to 5. The 

plots for u-velocity show this behaviour existing quite dominantly. However, the PSD 

of pressure contains a frequency distribution with high spectral content adjacent to the 

peak at fvo. This observation is present between approximately fvo to 2fvo. The presence 

of additional, but smaller spectral content within the frequency distribution of the 

pressure data is a result of the boundary layer separation occurring just before the 

trailing edge. Hence, the shear layer instabilities cause the high fluctuations in the air 

pressure at this instance, and are reflected in the trailing edge analysis.  

(a) (b) 

(c) (d) 

(e) 

R
u·

P
, 

un
bi

as
ed
 

R
u·

P
, 

un
bi

as
ed
 

R
u·

P
, 

un
bi

as
ed
 

Time [s] 

Time [s] 

Figure B.9: Histories of u-velocity (−−−−−−−−−−−−−−−−) and pressure (−−−−−−−−−−−−−−−−) at the trailing edge 

locations of W0E; (a) point 1; (b) point 2; (c) point 3; (d) point 4; (e) point 5.  
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The time histories of the u-velocity and pressure data at the trailing edge for W3E 

are presented in Figure B.11. Strong mitigation of the flow parameters is achieved at 

each point 1, 3 and 5, corresponding to peak monitor points. This can be seen in Figures 

B.11(a), B.11(c) and B.11(e), respectively. The range of maximum fluctuations for u-
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Figure B.10: PSD of u-velocity (−−−−−−−−−−−−−−−−), pressure (−−−−−−−−−−−−−−−−) and unbiased cross-correlation 

function (−−−−−−−−−−−−−−−−) at the trailing edge of W0E; (a) point 1; (b) point 2; (c) point 3; (d) 

point 4; (e) point 5.  
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velocity and pressure are approximately 1.5 to 6 ms-1 and 7 to 15 Pa, respectively. 

Therefore, reductions are approximately obtained between 25 to 63 percent and 65 – 70 

percent for u-velocity and pressure, respectively. 

 

 
 

At valley monitors, points 2 and 4, similar observations to a peak plane can be 

made in Figures B.11(b) and B.11(d), respectively. The frequency content and the range 

of magnitudes for both velocity and pressure are identical. However, the overall 

fluctuations for the velocity are higher than at a peak plane, as they occur predominantly 
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Figure B.11: Histories of u-velocity (−−−−−−−−−−−−−−−−) and pressure (−−−−−−−−−−−−−−−−) at the trailing edge 

locations of W3E; (a) point 1; (b) point 2; (c) point 3; (d) point 4; (e) point 5. 
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at a higher scale. This is unexpected, due to the attached boundary layer determined at 

valleys. Nevertheless, due to the placement of the trailing edge monitors at the valleys, 

the scale for velocity is larger. The maximum fluctuations for the velocity-pressure 

coupling at the valley locations of the trailing edge are approximately between 2 to 6 

ms-1 and 5 to 20 Pa. Hence, the obtained reductions for u-velocity and pressure are 

approximately 25 to 50 percent and 60 to 75 percent, respectively. 

 

 
 

Figure B.12: Unbiased cross-correlation between u-velocity and pressure at the trailing 

edge locations of W3E; (a) point 1; (b) point 2; (c) point 3; (d) point 4; (e) point 5.  
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For each trailing edge point 1 to 5, the unbiased cross-correlation sequences appear 

quite similar, unlike the observations made at the leading edge. The sequences are 

presented in Figure B.12. Correlation between u-velocity and pressure is somewhat 

higher at the trailing edge, and the dominant frequency of the periodic structure that is 

present between the interactions also contains additional higher frequencies. These 

observations are the same between peak and valley locations. Therefore, it is important 

to address the fluid structures present within the flow through a frequency analysis.  

The PSD of the u-velocity, pressure and unbiased cross-correlation function are 

presented in Figure B.13. The frequency distributions of both peak and valley locations 

are identical. The u-velocity and pressure contain high spectral content between 0.2fvo to 

2.5fvo. However, at peak locations in Figures B.13(a), B.13(c) and B.13(e), the 

frequency distributions contain dominant structures at approximately 0.2fvo and 0.5fvo, 

and also between 2fvo and 2.5fvo. This observation is similar to that at the leading edge; 

however it is more prominent in this case. The observation is also only present for the 

velocity PSD. For pressure, the dominant structures exist at approximately fvo and 2fvo to 

2.5fvo. The occurrence at higher frequencies is due to the presence of the shear layer 

instabilities. Correlation exists between the velocity-pressure coupling at fvo and 2.5fvo 

for peak monitors. 

For the valley monitor points, Figures B.13(b) and B.13(d) contain frequency 

distributions with dominant spectral content at and around approximately 0.2fvo for 

velocity. Spectral content exists at a frequency equivalent to 0.5fvo and between fvo to 

2fvo for pressure. The presence of high frequencies is evident of the interference within 

the flow, as a result of the passive control. In the case of point 4, the velocity and 

pressure are correlated at approximately 0.5fvo and fvo at point 2, and 0.5fvo and 1.5fvo. 

This is shown in Figures B.13(b) and B.13(d), respectively.  
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A summary of the observations presented herein for the trailing edge of both W0E 

and W3E is provided in Table B.2. It should be noted that the values of maximums for 

both u-velocity and pressure are taken as average values across the whole data range. It 
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Figure B.13: PSD of u-velocity (−−−−−−−−−−−−−−−−), pressure (−−−−−−−−−−−−−−−−) and unbiased cross-

correlation function (−−−−−−−−−−−−−−−−) at the trailing edge locations of W3E; (a) point 1; (b) point 

2; (c) point 3; (d) point 4; (e) point 5.  



216 

 

is observed that slightly fewer reductions are obtained at valleys. Nevertheless, the 

overall reductions obtained between peak and valley planes agree well, and for this 

reason it is clear to see the effectiveness of the spanwise sinusoidal profile (SSP) on an 

elongated cylinder. The frequency of the fluid structures is shifted to comparable lower 

frequencies due to the SSP. The turbulent properties are expected to be dominant at the 

trailing edge, especially for rectangular prisms such as W0E and W3E, and interaction 

between the planes is also expected. The resulting reductions and close frequency 

content demonstrate this observation to be the case.   

 

 

Table B.2: Summary of trailing edge correlation observations for W0E and W3E. 

 W0E W3E 

LE 
Point 

u-velocity 
[ms-1] 

Pressure 
[Pa] 

Correlated 
Frequency 

[Hz] 

u-velocity 
[ms-1] 

Pressure 
[Pa] 

Correlated 
Frequency 

[Hz] 

Velocity 
reduction 

[%] 

Pressure 
reduction 

[%] 

1 4 – 8  20 – 50  ≈ fvo 1.5 – 6  7 – 15  0.2fvo 25 – 63  65 – 70  

2 4 – 8  20 – 50  ≈ fvo 2 – 6  5 – 20  0.4fvo 25 – 50  60 – 75  

3 4 – 8  20 – 50  ≈ fvo 1.5 - 6 7 – 15  0.2fvo 25 – 63  65 – 70  

4 4 – 8  20 – 50  ≈ fvo 2 – 6  5 – 20  0.4fvo 25 – 50  60 – 75  

5 4 – 8  20 – 50  ≈ fvo 1.5 - 6 7 – 15  0.2fvo 25 – 63  65 – 70  
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APPENDIX C 

 

CORRELATION ANALYSIS OF THE BOUNDARY 

LAYER AROUND A PARTIAL SSP 
 

 

 

 

C.1 Boundary Layer Topology Analysis of a Partial SSP 

Investigation of the flow topology around the partial SSP geometries from Chapter 6 

was conducted by analysing the near wall flow features at the leading and trailing edge 

of corresponding peaks and valleys. Histories of u-velocity and pressure are obtained, in 

order to perform the cross-correlation analysis, and for brevity, only seven spanwise 

points are discussed for PSSP1 and PSSP2, and only five spanwise points are discussed 

for PSSP3. The purpose for selecting such points is to demonstrate the symmetry of flow 

structures within the boundary layer about the mid-span location. Emphasis is made on 

the similarities between each peak and valley of the partial SSP regions, and the 

consistent topology for the uncontrolled (plain) spanwise regions. Detail is also 

focussed on the structures that are present at the boundaries between the SSP and plain 

regions. The points discussed in this Appendix are indicated for each partial SSP 

configuration in Figure C.1.  

The locations of the leading edge measuring points correspond to the first grid cell 

above and in front of the leading edge, while the locations of the trailing edge points 

correspond to the first grid cell directly above the trailing edge. This corresponds to 

measurement locations at a distance of 1×10-3 m from the cylinder wall. In order to 

discuss the work in a concise manner, the topology of flow structures that exist along 

the span of the partially controlled square cylinders are addressed firstly at the leading 

edge locations for PSSP1, PSSP2 and PSSP3. The details at the trailing edge locations 

will then follow with a similar discussion.  
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C.1.1 Correlations at the Leading Edge of the Partial SSP Cylinder  

Histories for u-velocity and pressure fluctuations are plotted against time for PSSP1, 

PSSP2 and PSSP3 at the leading edge points in Figures C.2, C.5 and C.8, respectively. It 

should be noted herein that the history plots in this section show 1 s of the data set, in 

order to clearly demonstrate the topology variation between each location. However, the 

analysis is still conducted with the full range of the data. The blue curve represents the 

velocity data, and the green curve represents the pressure data.  

The unbiased cross-correlation sequence, ��∙�,����	
��, between the streamwise u-

velocity and pressure for all three partial control configurations at the leading edge 

points are presented in Figures C.3, C.6 and C.9. The correlations are plotted for 1 s of 
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Figure C.1: Data points for the boundary layer and wake topology analysis; (a) PSSP1; 

(b) PSSP2; (c) PSSP3.  
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the data with leading and lagging time, � + �� and � − ��, respectively. Therefore, 

positive time representing lead and negative time representing lag, with zero 

representing the initial cross-correlation at neither lead nor lag.  

The time histories for PSSP1 are presented in Figure C.2. Each plot corresponds to 

each consecutive point along the span at the leading edge, as indicated in Figure C.1(a). 

At points 1 and 7 the velocity-pressure coupling has a constant half cycle phase 

difference. This behaviour is an expected characteristic of what has been observed for a 

plain square cylinder and can be seen in Figures C.2(a) and C.2(g). The maximum 

magnitudes for velocity and pressure are approximately between 1 to 1.7 ms-1 and 25 to 

40 Pa, respectively.  

The histories at the junction points 2 and 6 for PSSP1 also contain a periodic 

structure. The presence of periodicity in Figures C.2(b) and C.2(f) is not as clear and 

organised as that of the uncontrolled span of the square cylinder, and therefore indicates 

interference of the coherent structure exists at these locations. From close observation of 

the time histories at the boundaries, the presence of both uncontrolled and controlled 

frequency content that has typically been observed in the previous appendices is 

observed again here. It demonstrates that the direct effectiveness of the passive control 

to interrupt the coherent flow structure at the intersection of the partial SSP and plain 

regions.  

In Figures C.2(c) and C.2(e), the characteristics that are typical at a valley plane can 

be observed. The magnitudes of both u-velocity and pressure between each leading edge 

observation point within the controlled span in Figure C.2 are somewhat similar. The 

maximum magnitude for u-velocity remains between approximately 0.75 and 1.5 ms-1 

for both peak and valley locations. The maximum magnitude for pressure remain 

between approximately 15 and 25 Pa. Overall magnitudes between each monitor 

location demonstrate slight decrease at valley and peak locations, as compared to the 

uncontrolled regions. This slight variation begins at the boundary locations. Decreases 

in velocity and pressure fluctuations are obtained between approximately 11 to 25 

percent and 37 to 40 percent, respectively.  
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Figure C.2: Histories of u-velocity (−−−−−−−−−−−−−−−−) and pressure (−−−−−−−−−−−−−−−−) at the leading edge 

locations of PSSP1; (a) point 1; (b) point 2; (c) point 3; (d) point 4; (e) point 5; (f) 

point 6; (g) point 7. 
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Figure C.3: Unbiased cross-correlation between u-velocity and pressure at the leading 

edge of PSSP1; (a) point 1; (b) point 2; (c) point 3; (d) point 4; (e) point 5; (f) point 6; 

(g) point 7.  
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The unbiased cross-correlation function between u-velocity and pressure is 

presented for the leading edge points of PSSP1 in Figure C.3. A consistently high 

correlation exists between the velocity and pressure along the plain span of PSSP1 at 

point 1. This is indicated throughout the time delay sequence in Figure C.3(a). A clear 

periodic relationship is observed between the velocity-pressure interactions at a single 

frequency. Similar observations are shown in Figure C.3(g) at point 7. However, 

negligible correlation occurs at approximately 0.3 s lead and lag, causing a beat 

phenomenon to appear within the correlation sequence. The reason for this is not 

completely understood. Nevertheless, inspection of the time history plot of Figure 

C.2(g) indicates large magnitudes occurring for the minima of the pressure history. 

Therefore, this asymmetry about the zero mean data may account for this anomaly.  

A clear frequency can be observed in Figures C.3(b) and C.3(f) corresponding to 

the boundary locations. However, the magnitude of correlation between the data sets at 

these locations is significantly less than that of the uncontrolled span, and although the 

frequency content appears similar to Figures C.3(a) and C.3(g), the periodicity is not 

clear. This corroborates the effectiveness of the configuration for the passive control 

application, as the correlation between u-velocity and pressure contains interference 

directly at the border of the partial SSP. At peak and valley locations for PSSP1, high 

correlation only occurs at zero time delay. This is indicated in Figures C.3(c), C.3(d) 

and C.3(e). The magnitude of correlation at zero time delay for the uncontrolled span is 

orders of magnitude larger than the zero time delay for the controlled span. A non-

periodic correlation exists at the controlled span with the suggestion of two or three 

clearly distinct frequencies. These observations are not as evident within the time 

histories.  

Power spectral density (PSD) calculations are performed, in order to determine 

exactly, the specific fluid structures that are present within the flow for the plain 

(uncontrolled) span of the partial SSP configurations, and whether or not these same 

structures are also present for the controlled span. The PSD of u-velocity, pressure and 

unbiased cross-correlation function at the leading edge locations are given in Figures 

C.4, C.7 and C.10, respectively. The horizontal axis of these plots has a frequency range 

up to approximately 6fvo. For the plain span of PSSP1, a spectral peak occurs at 

approximately fvo in Figures C.4(a) and C.4(g), for both u-velocity and pressure. The 
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magnitude of the spectral peak is representative of the corresponding magnitudes for the 

velocity and pressure histories.  

In Figures C.4(b) and C.4(f), a dominant spectral peak is also present at a frequency 

of approximately fvo for the boundary points. The dominant correlated flow structures at 

the junctions of the partial control are associated with the plain span. However, the 

magnitude of the spectral peak at fvo is significantly smaller than that for the plain span, 

and the occurrence of the surrounding spectra within the PSD of the cross-correlation 

function indicates disturbance to the coherent flow. The appearance of comparable 

spectra between 0.2fvo and fvo in Figure C.4(f) is evidence that the boundaries of the 

partial SSP cylinder contain flow characteristics from both the uncontrolled and 

controlled frequency distributions.  

At the leading edge points corresponding to valleys for PSSP1, the dominant 

frequency content occurs at approximately 0.2fvo. This is shown in Figures C.4(c) and 

C.4(e). The frequency distribution also contains spectral content at frequencies between 

0.2fvo and fvo. However, there is an absence of any identifiable spectral peaks. At the 

peaks correlation occurs at 0.2fvo. The shift in frequency content from fvo at the 

uncontrolled span to 0.2fvo at the controlled span demonstrates the effectiveness of 

embodying a partial SSP. As for the spanwise symmetry that occurs, it suggests that the 

flow characteristics for both uncontrolled and controlled spans exist independently and 

only interact at the boundaries. The correlation analysis at the leading edge for the 

remaining two partial control configurations, PSSP2 and PSSP3 are discussed below to 

confirm this observation.  

The time histories for streamwise u-velocity and pressure at the leading edge of 

PSSP2 are presented in Figure C.5. In Figure C.5(d), corresponding to point 4, the 

velocity-pressure coupling has a constant half cycle phase difference. The maximum 

magnitudes for u-velocity and pressure are approximately between 1.5 to 2.5 ms-1 and 

40 to 70 Pa, respectively. At the valley locations of points 2 and 6 for PSSP2, two to 

three distinct frequencies can be observed in the time histories of Figures C.5(b) and 

C.5(f). The maximum magnitudes at the peaks and valleys are approximately between 

0.75 to 1.5 ms-1 and 15 to 20 Pa for velocity and pressure, respectively. Therefore, 

reductions in velocity and pressure fluctuations are obtained between 40 to 50 percent 

and 63 to 71 percent, respectively.    
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Figure C.4: PSD of u-velocity (−−−−−−−−−−−−−−−−), pressure (−−−−−−−−−−−−−−−−) and unbiased cross-correlation 

function (−−−−−−−−−−−−−−−−) at the leading edge of PSSP1; (a) point 1; (b) point 2; (c) point 3; (d) 

point 4; (e) point 5; (f) point 6; (g) point 7.   
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Figure C.5: Histories of u-velocity (−−−−−−−−−−−−−−−−) and pressure (−−−−−−−−−−−−−−−−) at the leading edge 

locations of PSSP2; (a) point 1; (b) point 2; (c) point 3; (d) point 4; (e) point 5; (f) 

point 6; (g) point 7. 
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At the boundaries, points 3 and 5, of PSSP2, the maximum magnitudes for the 

velocity-pressure coupling are approximately 0.5 to 0.75 ms-1 and 10 to 20 Pa, 

respectively. This detail is noted for Figures C.5(c) and C.5(e). It is very interesting at 

this stage to observe a complete mitigation of the coherent flow through the application 

of a partial SSP, regardless to the position of the passive control along the span. It 

appears that overall flow control is slightly greater for PSSP2 than for PSSP1. 

Nevertheless, both configurations show starkly similar behaviour, and flow structures 

that co-exist independently across the span.  

A high correlation exists between u-velocity and pressure for PSSP2 along the 

uncontrolled span. This is shown in Figure C.6(d) for the leading edge monitor point 4, 

as the magnitude remains relatively constant throughout the cross-correlation sequence. 

The velocity and pressure are clearly correlated at a single frequency. Equally high 

correlations exist at zero time delay between the velocity-pressure coupling at both 

peaks and valleys, with negligible correlation throughout the remaining cross-

correlation sequence. The details are shown in Figures C.6(a) and C.6(g), and C.6(b) 

and C.6(f). This is important not only due to magnitude; however due to similar 

structures appearing between each point 1, 2, 6 and 7. At the boundaries, points 3 and 5, 

in Figures C.6(c) and C.6(e), the periodic structure is clear with the presence of one 

distinct frequency similar to that of the plain span of PSSP2.  

In Figure C.7(d), a distinctly clear correlation is present at fvo at point 4 within the 

uncontrolled span. At the boundaries, points 3 and 5, there is presence of a spectral peak 

at fvo. This is presented in Figures C.7(c) and C.7(e). Correlation also exists for 

frequencies between 0.2fvo and fvo at the boundaries of the partial SSP and plain spans. 

In Figures C.7(a) and C.7(g), correlation of the dominant flow structures occur at 

approximately 0.2fvo, with a secondary peak occurring at fvo for the peak monitor points 

1 and 7 of PSSP2. Smaller spectral content is also present throughout the frequency 

range, and for both u-velocity and pressure, slightly larger content is present at 

approximately 4fvo. At the valley locations 2 and 6, the dominant correlation occurs at 

approximately 0.2fvo, with much smaller spectral content existing at fvo. The detail that 

cannot be observed within the cross-correlation sequence plots of Figure C.6 is the 

absence of spectral content beyond 2fvo at valley planes. There is no harmonic of fvo 

occurring at 4fvo for the valley locations, as is observed for the peak locations. 
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Figure C.6: Unbiased cross-correlation between u-velocity and pressure at the leading 

edge of PSSP2; (a) point 1; (b) point 2; (c) point 3; (d) point 4; (e) point 5; (f) point 6; 

(g) point 7.  



228 

 

 

(g) 

(f) 

(e) 

(d) 

(c) 

(b) 

(a) 

Frequency [Hz] 

P
SD

 

Figure C.7: PSD of u-velocity (−−−−−−−−−−−−−−−−), pressure (−−−−−−−−−−−−−−−−) and unbiased cross-correlation 

function (−−−−−−−−−−−−−−−−) at the leading edge of PSSP2; (a) point 1; (b) point 2; (c) point 3; (d) 

point 4; (e) point 5; (f) point 6; (g) point 7.  
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The time histories for u-velocity and pressure at the leading edge of PSSP3 are 

presented in Figure C.8. It is to be noted that this configuration only contains five 

monitor points, as shown in Figure C.1. Hence, there are two monitors within both the 

plain (uncontrolled) and SSP (controlled) regions, and one monitor at the intersection of 

the half spans. At points 4 and 5 shown in Figures C.8(d) and C.8(e) the maximums for 

u-velocity and pressure are between 1.5 to 2 ms-1 and 40 to 60 Pa, respectively. For the 

monitor point 1, corresponding to a peak, the maximum magnitudes for the velocity-

pressure coupling at this location are approximately between 0.3 to 0.6 ms-1 and 10 to 

20 Pa, respectively. At a valley, Figure C.8(b) includes a somewhat periodic structure 
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Figure C.8: Histories of u-velocity (−−−−−−−−−−−−−−−−) and pressure (−−−−−−−−−−−−−−−−) at the leading edge 

locations of PSSP3; (a) point 1; (b) point 2; (c) point 3; (d) point 4; (e) point 5. 
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containing two to three apparent distinct frequencies. The maximums for the velocity 

and pressure at the monitor point 2 are approximately 0.4 to 0.8 ms-1 and 5 to 15 Pa, 

respectively. Reductions in fluctuations for u-velocity and pressure are obtained 

between 70 to 80 percent and 67 to 75 percent at a peak location, respectively. The 

reductions at a valley location are between 60 to 73 percent and 75 to 87 percent for u-

velocity and pressure, respectively. In Figure C.8(c), a periodic structure similar to that 

of the plain span is present for the velocity-pressure coupling of PSSP3. The presence of 

additional frequencies can be observed within the time history plot at point 3, indicating 

the presence of both uncontrolled and controlled flow structures. The maximum 

magnitudes for u-velocity and pressure are as previously observed between 

approximately 0.4 to 0.75 ms-1 and 10 to 25 Pa, respectively.  

The cross-correlation sequences for u-velocity and pressure are presented in Figure 

C.9 for PSSP3. High correlation exists between the velocity-pressure coupling along the 

uncontrolled span at points 4 and 5. This is also similar to the observations for the 

previous two partial SSP configurations. This correlation is observed to also occur at the 

vortex-shedding frequency, fvo and the details are provided in Figures C.9(d) and C.9(e). 

At the boundary, point 3, in Figure C.9(c), the periodicity of the natural structure is 

correlated, as well as few additional frequencies that cause the variable correlation 

magnitude throughout the cross-correlation sequence.  

At the monitor points 1 and 2 corresponding to a peak and valley, a slightly higher 

correlation is present between the velocity and pressure at zero time delay for a point 2. 

However, both plots in Figures C.9(a) and C.9(b) show the presence of similar 

frequency content and negligible correlation throughout the time delay sequence. The 

cross-correlation plot for point 1 shows the presence of at least one additional 

frequency.  

Observing the PSD for u-velocity, pressure and the cross-correlation function for 

PSSP3, the plots of Figure C.10 consecutively demonstrate the transition from the 

controlled incoherent flow structures through to the uncontrolled coherent structures. In 

Figure C.10(a), the dominant structures for both velocity and pressure occur at 

approximately 0.2fvo, with a mitigated flow structure at fvo. However, correlation is only 

present at 0.2fvo for the peak location, as a much smaller, negligible spectral peak is 

present at fvo. At the given valley location, there is no clear indication of dominant flow 
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structures for the PSD of both velocity and pressure in Figure C.10(b). The PSD of the 

cross-correlation sequence however, shows only a clear dominant flow structure at 

0.2fvo.  

 
 

In Figure C.10(c), the presence of a spectral peak exists at approximately fvo for the 

boundary location. Additional smaller spectral content is also present surrounding 0.5fvo. 

Correlation exists dominantly at this location at fvo, while also containing a structure at 

approximately 0.2fvo, as well as 0.5fvo. The observations for this particular boundary 

point herein contain the strongest evidence of co-existing structures between plain and 

SSP characteristics. At the monitor points 4 and 5 within the plain span of the cylinder, 
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Figure C.9: Unbiased cross-correlation between u-velocity and pressure at the leading 

edge of PSSP3; (a) point 1; (b) point 2; (c) point 3; (d) point 4; (e) point 5.  
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a very clear spectral peak is obtained at fvo. Minor spectral content is also present at 

approximately 2fvo for both the u-velocity and pressure PSD. Nonetheless, correlation is 

only present at fvo in Figures C.10(d) and C.10(e). Table C.1 provides a summary of the 

leading edge observations.  
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Figure C.10: PSD of u-velocity (−−−−−−−−−−−−−−−−), pressure (−−−−−−−−−−−−−−−−) and unbiased cross-

correlation function (−−−−−−−−−−−−−−−−) at the leading edge of PSSP3; (a) point 1; (b) point 2; (c) 

point 3; (d) point 4; (e) point 5.  
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Table C.1: Summary of leading edge correlation observations for the partial SSPs. 

 Uncontrolled Span Controlled Span 

LE 
Points 

u-velocity 
[ms-1] 

Pressure 
[Pa] 

Correlated 
Frequency 

[Hz] 

u-velocity 
[ms-1] 

Pressure 
[Pa] 

Correlated 
Frequency 

[Hz] 

Velocity 
reduction 

[%] 

Pressure 
reduction 

[%] 

PSSP1 1 – 1.7 25 - 40 fvo 
0.75 – 

1.5 
15 - 25 0.2fvo 11 - 25 37 - 40 

PSSP2 1.5 – 2.5 40 - 70 fvo 
0.75 – 

1.5 
15 - 20 0.2fvo 40 - 50 63 - 71 

PSSP3 1.5 - 2 40 - 60 fvo 0.3 – 0.8 5 - 20 0.2fvo 60 - 80 67 - 87 

 
 

C.1.2 Correlations at the Trailing Edge of the Partial SSP Cylinder   

Histories for u-velocity and pressure are plotted against time for PSSP1, PSSP2 and 

PSSP3 at the trailing edge points in Figures C.11, C.14 and C.17, respectively. The 

unbiased cross-correlation sequence, ��∙�,����	
��, between the streamwise u-velocity 

and pressure at the trailing edge for all three partial SSP configurations are presented in 

Figures C.12, C.15 and C.18. The time histories at each point along the trailing edge of 

PSSP1 are presented in Figure C.11. The presence of a periodic structure is apparent and 

the histories appear to be in phase. These details of the flow structure are shown at 

points 1 and 7 in Figures C.11(a) and C.11(g). The maximum magnitudes for the 

velocity and pressure are approximately between 5 to 10 ms-1 and 40 to 60 Pa, 

respectively.  

The histories at the junction points 2 and 6 for PSSP1 contain a periodic structure. 

However, this periodicity in Figures C.11(b) and C.11(f) is not as apparent due to the 

presence of high frequency content and interference of the natural structure at these 

locations. Close observation of the time histories at the boundaries between the plain 

and partial SSP spans reveals the data continually in and out of phase. This indicates the 

possibility that two flow structures are still effectively present at the trailing edge 

coincident to the boundaries.  

From Figures C.11(c) and C.11(e), the velocity-pressure coupling appears to 

contain a consistent half cycle phase difference, which is similar to the structure at the 

leading edge. The maximums for u-velocity and pressure are approximately between 0.5 

to 1.5 ms-1 and 10 to 25 Pa, respectively. Therefore, the reductions in fluctuations 
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obtained at the trailing edge of a valley location for PSSP1 are between approximately 

85 to 90 percent and 58 to 75 percent for velocity and pressure, respectively. 

At the trailing edge location at point 4, corresponding to a peak of the partial SSP, 

the velocity-pressure histories also appear to be consistently in and out of phase, instead 

of remaining out of phase, such as the observations at the leading edge. The magnitude 

appears mitigated as compared to that at a valley location. The maximum magnitudes at 

the peaks are on average between approximately 2 to 6 ms-1 and 25 to 60 Pa for the 

velocity and pressure, respectively. Hence, at the trailing edge of the peak location, the 

fluctuations are reduced by approximately 40 to 60 percent and 17 to 38 percent for u-

velocity and pressure, respectively. 

An examination of the unbiased cross-correlation function between u-velocity and 

pressure is presented for the trailing edge points of PSSP1 in Figure C.12. A consistently 

high correlation similar to the leading edge exists between the velocity-pressure 

coupling along the uncontrolled span at point 1. This is indicated in Figure C.12(a). A 

periodic correlation is observed between the velocity and pressure at what appears to be 

fvo. Similar observations can be made for Figure C.12(g) at point 7. However, there is 

the presence of almost negligible correlation occurring at approximately 0.3 s lead and 

lag. It appears that the structures existing at the leading edge also translate to the trailing 

edge of PSSP1.  

 At the boundaries, large correlation also exists between the velocity and pressure 

data at zero time delay. However, similar frequency content can be observed between 

these locations and the peak. Hence, Figures C.12(b), C.12(d) and C.12(f) display 

identical correlation at points 2, 4 and 6. The only difference being the clearer 

appearance of a periodic structure and much lower correlation magnitude at the location 

of the peak. At the valleys of PSSP1, high correlation only occurs at zero time delay. 

This is indicated in Figures C.12(c) and C.12(e). Both peaks and valleys experience 

large mitigation of correlation between the velocity-pressure coupling. 
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Figure C.11: Histories of u-velocity (−−−−−−−−−−−−−−−−) and pressure (−−−−−−−−−−−−−−−−) at the trailing edge 

locations of PSSP1; (a) point 1; (b) point 2; (c) point 3; (d) point 4; (e) point 5; (f) 

point 6; (g) point 7. 
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Figure C.12: Unbiased cross-correlation between u-velocity and pressure at the 

trailing edge of PSSP1; (a) point 1; (b) point 2; (c) point 3; (d) point 4; (e) point 5; (f) 

point 6; (g) point 7.  
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The power spectral densities of u-velocity, pressure and unbiased cross-correlation 

function at the trailing edge locations of the three partial SSP configurations are given 

in Figures C.13, C.16 and C.19. The horizontal axis of these plots has a frequency range 

up to approximately 6fvo. For the plain span of PSSP1, a spectral peak is clearly present 

at approximately fvo in both Figures C.13(a) and C.13(g), for both u-velocity and 

pressure. The magnitude of the spectral peaks is representative of the corresponding 

magnitudes for the velocity and pressure histories. In Figure C.13(g), small spectral 

peaks are present at approximately 2fvo and 3fvo within the pressure PSD. The slight 

appearance of these harmonics of fvo is indicative of the harmonic structure that is 

correlated between the data at point 7 in Figure C.12(g).  

In Figure C.13(b), corresponding to point 2, very large spectral density is present 

and dominant structures within the velocity-pressure coupling are not apparent. The 

frequency content is broadband, however only slight indication is given to structures 

occurring at approximately 0.2fvo and fvo within the u-velocity PSD. Correlation between 

the velocity and pressure is therefore apparent at 0.2fvo. At point 6 in Figure C.13(f), the 

frequency content is broadband. However, observations indicate a correlation at 

approximately fvo for u-velocity and 3.5fvo for pressure. Therefore, these observations 

indicate that the location of the boundaries situated at the trailing edge is affected by the 

flow generated by the partial SSP span. At the trailing edge points corresponding to 

valleys the dominant frequency content for both u-velocity and pressure occur at 

approximately 0.2fvo. This is shown in Figures C.13(c) and C.13(e). The frequency 

distribution also contains additional content that is broadband. However, there is an 

absence of any identifiable spectral peaks, and large spectral magnitudes occur at and 

adjacent to 0.5fvo. At the peaks, both velocity and pressure contain spectral content 

throughout the frequency distribution. This is shown in Figure C.13(d). However, 

dominant structures occur at 0.2fvo with frequency scatter up to fvo. Within the PSD for 

u-velocity, large spectral content is also present at approximately 3fvo to 4fvo. Correlation 

occurs at 0.2fvo with negligible correlated content at surrounding frequencies. The shift 

in frequency content from fvo at the plain span to 0.2fvo at the SSP span demonstrates the 

interruption to the flow.  
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Figure C.13: PSD of u-velocity (−−−−−−−−−−−−−−−−), pressure (−−−−−−−−−−−−−−−−) and unbiased cross-correlation 

function (−−−−−−−−−−−−−−−−) at the trailing edge of PSSP1; (a) point 1; (b) point 2; (c) point 3; (d) 

point 4; (e) point 5; (f) point 6; (g) point 7.  
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The time histories for streamwise u-velocity and pressure at the trailing edge of 

PSSP2 are presented in Figure C.14. In Figure C.14(d), a clear periodic structure is 

present for the monitor point 4, located within the plain span at the center of the square 

cylinder. The velocity-pressure coupling appears to be consistently in phase. The 

maximum magnitudes for u-velocity and pressure are approximately between 5 to 10 

ms-1 and 50 to 110 Pa, respectively. At the peaks, the maximum magnitudes for the 

velocity and pressure fluctuations are between approximately 3 to 5 ms-1 and 20 to 50 

Pa, respectively.  

At the valleys, points 2 and 6, of PSSP2, a periodic structure is slightly more 

evident containing few distinct frequencies. This can be observed in the time histories 

of Figures C.14(b) and C.14(f). The maximum magnitudes at the valleys are 

approximately between 3 to 7.5 ms-1 and 20 to 50 Pa for velocity and pressure, 

respectively. Therefore, reductions in velocity and pressure fluctuations at the trailing 

edge for both peak and valley locations are similarly obtained between 25 to 50 percent 

and 40 to 55 percent, respectively. At the boundaries, points 3 and 5, of PSSP2, the 

velocity-pressure coupling is continually in and out of phase. Hence, the occurrence of 

two distinct flow structures is evident. The maximum magnitudes for the velocity-

pressure coupling are approximately 4 to 8 ms-1 and 30 to 60 Pa, respectively. This 

detail is observed in Figures C.14(c) and C.14(e).  

A high correlation exists between u-velocity and pressure for PSSP2 along the plain 

span, and this is shown in Figure C.15(d) at the trailing edge for point 4. High 

correlation exists at zero time delay between the velocity-pressure coupling at the 

valleys, points 2 and 6, and negligible correlation throughout the remaining cross-

correlation sequence. It should be noted herein that high correlation exists in Figures 

C.15(b) and C.15(f). However, this is only due to less averaging occurring between the 

final values in the data sets towards the ends of the sequences. Therefore, only the 

cross-correlation at zero time delay and the adjacent sequence information are true 

observations of the interactions. The cross-correlation at the peaks is shown in Figures 

C.15(a) and C.15(g). Negligible correlation exists between u-velocity and pressure 

throughout the cross-correlation sequence. However, few distinct frequencies can be 

observed at points 1 and 7. At the boundaries, points 3 and 5, shown in Figures C.15(c) 
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and C.15(e), a periodic structure can be observed with a similar frequency distribution 

to both the peaks and valleys.  
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Figure C.14: Histories of u-velocity (−−−−−−−−−−−−−−−−) and pressure (−−−−−−−−−−−−−−−−) at the trailing edge 

locations of PSSP2; (a) point 1; (b) point 2; (c) point 3; (d) point 4; (e) point 5; (f) point 

6; (g) point 7. 
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The frequency distributions of the power spectral densities for PSSP2 are presented 

in Figure C.16. A spectral peak is clearly observed at approximately fvo in Figure 

Figure C.15: Unbiased cross-correlation between u-velocity and pressure at the trailing 

edge of PSSP2; (a) point 1; (b) point 2; (c) point 3; (d) point 4; (e) point 5; (f) point 6; 

(g) point 7.  
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C.16(d), at the plain span. Harmonics of fvo are also present at approximately 2fvo and 

3fvo for u-velocity and only 3fvo for pressure. However, strong correlation only exists at 

fvo. In Figures C.16(b) and C.16(f), both boundaries, points 3 and 5, display spectral 

peaks at frequencies fvo for u-velocity and pressure. However, the frequency distribution 

of the pressure data also contains spectral content between 3fvo and 4fvo. The PSD for 

pressure is also accompanied with spectral content at approximately 0.2fvo. Correlation 

between the velocity-pressure coupling exists primarily at fvo, with interactions also 

occurring at 0.2fvo. Hence, it appears that for PSSP2, the structures that exist at the 

trailing edge at the boundaries are dominated by the coherent flow. 

For Figures C.16(b) and C.16(f), corresponding to points 2 and 6, respectively, the 

spectral density is broadband for both u-velocity and pressure at valleys. The dominant 

structures within the velocity-pressure coupling occur at approximately 0.2fvo, although 

the frequency distribution shows content between 0.2fvo to fvo. At the peaks, points 1 and 

7, large spectral distribution exists for the velocity fluctuations throughout the 

frequency domain and the pressure fluctuations are also broadband. However, clear 

structures exist at 0.2fvo, as well as fvo within the pressure PSD. The characteristics of 

the spectral distributions in Figure C.16 indicate the apparent effectiveness of the 

partially applied SSP. Similarly for PSSP1, the shift in the frequency distribution of the 

structures for PSSP2 demonstrates the mitigation of the coherent structures. In addition, 

the symmetry that can be achieved about the central span location corroborates the 

independent flow structures, and the accuracy of the numerical model. 

The time histories for u-velocity and pressure along the trailing edge of PSSP3 are 

presented in Figure C.17. At the plain spans, points 4 and 5 in Figures C.17(d) and 

C.17(e) there is a phase difference within the velocity-pressure coupling. The 

maximums for u-velocity and pressure fluctuations are approximately between 5 to 10 

ms-1 and 60 to 115 Pa, respectively. At point 1, corresponding to a peak, there is a slight 

phase difference between the velocity and pressure histories; however a close match in 

phase exists. The maximum magnitudes for the velocity-pressure coupling at this 

location are approximately between 1.5 to 5 ms-1 and 15 to 40 Pa, respectively. The 

reductions in turbulent fluctuations achieved for velocity and pressure at this location 

are between approximately 50 to 70 percent and 65 to 75 percent, respectively.  
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Figure C.16: PSD of u-velocity (−−−−−−−−−−−−−−−−), pressure (−−−−−−−−−−−−−−−−) and unbiased cross-

correlation function (−−−−−−−−−−−−−−−−) at the trailing edge of PSSP2; (a) point 1; (b) point 2; (c) 

point 3; (d) point 4; (e) point 5; (f) point 6; (g) point 7.  
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At a valley, in Figure C.17(b), the phase between u-velocity and pressure at point 2 

is at a half cycle phase difference. The maximums for the velocity and pressure at this 

location are approximately 2.5 to 7.5 ms-1 and 25 to 80 Pa, respectively. The reductions 

are between 25 to 50 percent and 30 to 58 percent for u-velocity and pressure, 

respectively. Higher reductions are obtained at the peak, point 1. At the boundary, point 

3, Figure C.17(c) contains a periodic structure similar to that of the plain span at points 

4 and 5.  The presence of additional frequencies similar to the content for peaks and 

valleys can also be observed. The maximum magnitudes for u-velocity and pressure are 

as previously observed between approximately 4 to 8 ms-1 and 30 to 60 Pa, respectively.  
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Figure C.17: Histories of u-velocity (−−−−−−−−−−−−−−−−) and pressure (−−−−−−−−−−−−−−−−) at the trailing edge 

locations of PSSP3; (a) point 1; (b) point 2; (c) point 3; (d) point 4; (e) point 5.  
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The cross-correlation sequences for the velocity and pressure data are presented in 

Figure C.18 for PSSP3. High correlation exists between the velocity-pressure coupling 

along the plain span at points 4 and 5. The correlation magnitude increases with time 

lead, causing asymmetry about the zero time delay. This can be seen in Figure C.18(d).  

At the peak, point 1 of PSSP3, a periodic structure is clearly evident containing few 

distinct frequencies. The magnitude of cross-correlation is significantly less than that 

for the uncontrolled span. This observation is given for Figure C.18(a). At the valley, 

point 2, there is high correlation at zero time delay between u-velocity and pressure. The 

magnitude throughout the remaining correlation sequence is similar to that at a point 1.  
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Figure C.18: Unbiased cross-correlation between u-velocity and pressure at the trailing 

edge location of PSSP3; (a) point 1; (b) point 2; (c) point 3; (d) point 4; (e) point 5.  
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At the boundary, point 3, in Figure C.18(c), the periodicity of the coherent structure 

is correlated with the structures of the SSP span. This causes high correlation at zero 

time delay, and similar correlation magnitude to points 1 and 2 elsewhere throughout 

the sequence.  

 

(e) 

(d) 

(c) 

(b) 

(a) 

Frequency [Hz] 

P
SD

 

Figure C.19: PSD of u-velocity (−−−−−−−−−−−−−−−−), pressure (−−−−−−−−−−−−−−−−) and unbiased cross-

correlation function (−−−−−−−−−−−−−−−−) at the trailing edge of PSSP3; (a) point 1; (b) point 2; (c) 

point 3; (d) point 4; (e) point 5.  
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The PSD for u-velocity, pressure and the cross-correlation function for PSSP3 

demonstrate the transition from the SSP (controlled) incoherent flow structures through 

to the plain (uncontrolled) coherent structures in Figure C.19. In Figure C.19(a), the 

dominant structures for both velocity and pressure occur at approximately 0.2fvo, with a 

broadband frequency distribution. However, correlation is present at approximately 

0.2fvo and 0.5fvo at the peak.  

At the valley, point 2, there is presence of spectral peaks at approximately 0.2fvo, 

0.5fvo and fvo for the u-velocity, and approximately 0.2fvo and fvo for pressure. This is 

shown in Figure C.19(b). The correlation occurs at the peaks at 0.2fvo, 0.5fvo and fvo. In 

Figure C.19(c), the boundary, point 3, contains a frequency distribution with spectral 

peaks occurring at approximately fvo, as well as between 3fvo and 4fvo. This is indicated 

for both u-velocity and pressure. In both Figures C.19(d) and C.19(e), the spectral 

content within the plain span of PSSP3 contains peaks at approximately fvo and its 

harmonics 2fvo, 3fvo and 4fvo for u-velocity. Whereas, frequency content occurs at fvo, 2fvo 

and 3fvo for pressure. Correlation exists between the velocity-pressure coupling at fvo 

and 2fvo. The summary of the trailing edge observations for the partial SSPs is given in 

Table C.2. 

 

 

 

Table C.2: Summary of trailing edge correlation observations for the partial SSPs. 

 Uncontrolled Span Controlled Span 

LE 
Points 

u-velocity 
[ms-1] 

Pressure 
[Pa] 

Correlated 
Frequency 

[Hz] 

u-velocity 
[ms-1] 

Pressure 
[Pa] 

Correlated 
Frequency 

[Hz] 

Velocity 
reduction 

[%] 

Pressure 
reduction 

[%] 

PSSP1 5 - 10 40 - 60 fvo 0.5 – 6 10 - 60 0.2fvo 40 - 90 17 - 75 

PSSP2 5 - 10 50 - 110 fvo 3 – 7.5 20 - 50 0.2fvo,  fvo 25 - 50 40 - 55 

PSSP3 5 - 10 60 - 115 fvo, 2fvo, 
3fvo 

1.5 – 7.5 15 - 80 0.2fvo, 
0.5fvo,  fvo 

25 - 70 30 - 75 
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APPENDIX D 

 

EXPLORATION OF A SEMI-ACTIVE CONTROL 

METHOD FOR VORTEX-INDUCED RESONANCE 
 

 

 

 

As flow passes over a resonant structure, such as a marine riser used for off-shore 

drilling, the vortices that are shed as a result of obstructing the flow, may induce 

significantly large levels of vibration. This vibration is caused by the force exerted on 

each side of the structure, as vortices are shed alternatively from each side, giving rise 

to oscillatory motion. When the vortex shedding frequency approaches the natural 

frequency of the structure, the structural oscillations grow and start establishing a strong 

interaction with the shedding mechanism in the flow (Blevins 2009). Allowing such 

structural resonance to occur is detrimental for safety. Therefore, it is important to 

develop concepts for controlling fluid-structure interactions.   

Hover et al. (1997) implement a hybrid analysis through numerically controlled 

oscillations of elastically mounted circular cylinders and marine cables in cross-flow. 

The numerical model simulates the structural resonance using input data of real time 

load-cell measurements from the experimental setup. This approach establishes the 

fluid-structure interactions through a closed-loop feedback system that can identify 

distinct wake details experimentally through a numerical control principle. The hybrid 

technique of Hover et al. (1997) obtains accurate details of frequency and response 

amplitude of an oscillating structure in cross-flow. This work provides insights for using 

numerical methods to obtain a design procedure for a generic control of vortex-induced 

resonance.  

The objective of this appendix is to present observations of numerical predictions 

for a proposed control technique, designed to prevent the formation of organised vortex-
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induced resonance. The proposed technique is a semi-active parameter control, which 

results in a variable natural frequency through a variable structural stiffness.  Its design 

advantage is pre-determining the timing and magnitude of actuation, in order to remove 

the need for sensing and computing. This study was conducted in parallel to the work of 

this thesis. It was intended to apply a spanwise sinusoidal profile (SSP) to the separation 

lines of circular and square cylinders, in order to compare active and passive control 

methods. Hence, the combined application of an SSP and a semi-active control is 

recommended as a future work.  

 

D.1 Model Description   

The model of the circular cylinder for the two-dimensional flow simulations is shown in 

Figure D.1. The cylinder is assigned a mass (m), stiffness (k) and a viscous damping 

coefficient (c). The model represents the dynamics of a simple structure at one vibration 

mode, possibly the fundamental one. This single degree of freedom (SDOF) system is 

allowed to oscillate in the y-direction in Figure D.1, perpendicular to the flow which 

travels from left to right. The model is fixed in the flow direction.    

 

 
 

The spring constant and mass were chosen such that the structural resonance 

frequency corresponds to the vortex shedding frequency at a Reynolds number, �� of 

1000. The definition for the Reynolds number regarding the circular cylinder is 

y 

k 

c 

  m 

Figure D.1: Schematic representation of the elastically mounted circular cylinder in 

cross-flow. 



 
 

250 

 

 �� =
���

�
                  (D.1.1) 

 

where �	  is the free stream velocity, 
 is the circular cylinder diameter and � is the 

kinematic viscosity. This assertion of structural resonance is possible due to the 

Strouhal number, �, having the value of 0.2 for a wide range of �� of up to 105 for a 

circular cross-section [Blevins 2009; Griffin and Ramberg 1982; Blevins 1990]. The 

definition of Strouhal number for the circular cylinder is 

 

  � =
����

��
                  (D.1.2) 

 

 where, ��	 is the vortex shedding frequency. The viscous damping coefficient, c, was 

chosen to represent a critical viscous damping ratio, �, of 1%, where 

 

  � =
�

������/�
                (D.1.3) 

 

Numerical investigations were performed with FLUENT® (ANSYS 2009) for a 

stationary circular cylinder in cross-flow, in order to confirm the Strouhal number. The 

value of St obtained was approximately 0.21, in good agreement with Blevins (1990, 

2009) and Griffin and Ramberg (1982). 

As flow travels over the elastically mounted circular cylinder, unsteady pressure 

fluctuations act on its surface as a result of vortex shedding, causing it to oscillate in the 

y-direction. FLUENT® is capable of simulating the fluid dynamics around static 

structures by default, but requires an additional source code to implement a moving 

boundary. To obtain the flow field predictions with the moving boundary of the 

elastically mounted cylinder, a user defined function (UDF) was written in C++ 

language (ANSYS 2009).  The objective of this UDF is to communicate with 

FLUENT® to determine the position of the SDOF system using the equation of motion 

 

 �� = �� + "�# + $�               (D.1.4) 
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In equation D.1.4, �� is the sum of the pressure and viscous forces acting on the 

cylinder boundary in the y-direction. Over-dots represent time derivatives. The UDF 

calculates y in response to the fluid loading, ��, at every time step. This is performed by 

rearranging equation D.1.4 to give the instantaneous change in velocity as 

 

 %�# =
�&'(�)#(�)�

�
%                (D.1.5) 

 

The resulting velocity calculated in equation D.1.5 is interpreted by FLUENT® to 

update the position of the cylinder boundary. The computational domain is re-meshed in 

response to the new position of the boundary at each time step.    

The full computational domain for the numerical simulations is presented in Figure 

D.2(a). The domain is similar to that used by Tutar and Holdo (2000), as it extends from 

the center of the cylinder a distance of 7D both upstream and along the y-direction and a 

distance of 15D downstream. This domain ensured sufficient space for the downstream 

wake development, as well as minimising blockage effects due to boundaries in the y-

direction.  

The velocity inlet boundary condition was set for �� ranging from 800 to 1100. 

Pressure inlet boundary conditions were applied to the top and bottom boundaries and a 

pressure outlet boundary condition was applied to the downstream boundary, as shown 

in Figure D.2(a). This arrangement of boundary conditions allowed the flow to be 

directional from left to right while avoiding a wall bounded flow condition.   

The mesh used is an unstructured triangular mesh of 36338 cells, to allow for a 

fixed-grid configuration during the simulations, as the mesh moved with the cylinder 

motion. This approach is similar to the fixed-grid approach implemented by Blackburn 

and Karniadakis (1993). The fixed-grid configuration is achieved by assigning a spring 

constant factor and a boundary node relaxation factor to the edges of each triangular cell 

within the mesh, which allowed a smoothing function to be applied for the re-meshing 

sequence during each time step. As the cylinder boundary moves in the vertical 

direction, it exerts a deformation in the edges of the near boundary layer cells, causing 

the adjacent edges to react outwards in a wave propagation pattern. Therefore, the mesh 
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elements behave as interconnecting springs. The application of suitable input variables 

for the spring constant factor and boundary node relaxation factor allow the mesh to 

follow the path of the moving cylinder boundary.  

A size function was used starting from the cylinder wall, in order to ensure a fine 

enough mesh to sufficiently resolve the boundary layer, while having a large enough 

mesh in the surrounding wake region to minimise the effect on computational time. This 

mesh sequence is shown in Figure D.2(b). In order to capture the vortex shedding 

accurately, the time step, %, was set at 0.001 s, to ensure that at least 600 time steps 

were used per shedding cycle.   

In order to verify the present numerical model, comparisons were made with the 

numerical results of Lu and Turan (2000) and the experimental results of Griffin and 

Ramberg (1982). These works focused on the response amplitude of an elastically 

mounted circular cylinder. As a test case, they chose a spring-damper mounted cylinder 

in water having a mass ratio, �∗, of 7.6, and a damping ratio, �, of 5%. The mass ratio 

is given as 

 

  �∗ =
�

�+
                  (D.1.6) 

 

where:  �� = ,-.�                (D.1.7) 

 

In equation D.1.7, �� is the added mass of the entrained fluid, and . is the cylinder 

radius. The simulation of Lu and Turan (2000) and the experiment of Griffin and 

Ramberg (1982) were replicated using the UDF approach discussed previously. At 

resonance, the maximum cylinder displacement, y/D, was within 10% of the maximum 

displacement given in both Lu and Turan (2000) and Griffin and Ramberg (1982). Due 

to the close agreement between the results of the present numerical procedures and that 

in Lu and Turan (2000), as well as the validation with Griffin and Ramberg (1982), the 

UDF approach was considered to be acceptable.  
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D.2 Numerical Observations 

D.2.1 Uncontrolled Vortex-Induced Resonance 

Simulations were conducted with the elastically mounted circular cylinder for �� of 

800, 850, 900, 1000 and 1100, in order to determine the free stream velocity at which 

vortex-induced resonance occurred. A �� of 1000 is designed to correspond to 

structural resonance, without considering the effect of the added mass of the entrained 

fluid, �� (Blevins 2009). The simulations required a reasonably significant fluid 

density, ,, of 150 kgm-3, in order to observe the fluid-structure interactions.  As a result, 

it is expected that the effect of added mass on the cylinder to be a factor in causing the 
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Figure D.2: Showing (a) full computational domain with imposed boundary conditions 

and (b) enlarged view with concentrated computational nodes. 
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vortex resonance to occur at a smaller �� than 1000. The variation of �� from 1000 can 

also be interpreted as a frequency ratio of excitation, ��	/�/, where �/ is the structural 

natural frequency in vacuum. The ratio ��	/�/ therefore corresponds to 0.8, 0.85, 0.9, 1 

and 1.1, for the range of ��. 

In Figure D.3, the displacement histories for the uncontrolled circular cylinder are 

given. Non-dimensional time, /0/, is shown along the horizontal axis, where 0/ is the 

undamped natural period of the structure. Vertical axes indicate both the lift coefficient, 

12, and the non-dimensional displacement magnitude, y/D. Simulations are performed 

for 25 natural periods to maintain reasonable computational times.   

Oscillations of the elastically mounted circular cylinder generally occur 

simultaneously at the vortex shedding frequency and the structural frequency. 

Therefore, the close existence of the forced response and transient response frequencies 

creates a beat envelope of different periods, depending on the value of the frequency 

ratio, ��	/�/. In Figures D.3(a) and D.3(c), the beat period is approximately 150/ in 

Figure D.3(d) it is 70/ and finally in Figure D.3(e) it is 40/. A long beat period 

indicates two spectral components of comparable magnitudes at close frequencies, 

whereas a short beat period is the result of these frequencies moving away from each 

other.   

In Figure D.3(b) no beat is observed, as there is close agreement between the vortex 

shedding and structural frequencies, therefore, suggesting the presence of structural 

resonance. This suggestion is supported by the existence of the growing envelope of the 

displacement history and the consistent quarter cycle phase lead between the lift 

coefficient and cylinder displacement histories (Dimarogonas and Haddad 1992). 

Hence, vortex-induced resonance is observed at a frequency ratio ��	/�/ of 0.85, not at 

1. A shift in the structural resonance frequency of approximately 15% can be attributed 

to the added mass of the fluid. Relatively large displacement magnitudes of the cylinder 

also contribute to this effect.   
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Figure D.3: Histories of the uncontrolled lift coefficient 12  (----) and cylinder 

displacement (----) for � of 0.01 and �� of (a) 800, (b) 850, (c) 900, (d) 1000 and (e) 

1100. 
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D.2.2 Proposed Semi-Active Control  

The implementation of the control involves applying fluctuations the structural stiffness, 

$��, in a square wave fashion, at a pre-determined control period, 0�. The choice for 

the square wave is purely for simplicity, which may well be altered during the later 

development stages. It is believed this application should provide an effective 

suppression technique, as it interferes with the organisation of vortex induced 

resonance. Simply changing the structural resonance frequency instead of fluctuating it, 

will only allow the problem to occur at another free-stream velocity and ��.  

The proposed control is a semi-active parameter control technique (Antiohos et al. 

2009). It contains a significant simplification, such that the actuation period is decided 

as part of design, not as part of flow or oscillation conditions.  Therefore, no sensing or 

computing would be required for actuation of the control. For this reason, it is important 

to determine the most practical magnitude and period of actuation as key design 

variables. 

Simulations were performed with variations in the spring constant from $, as the 

starting point, up to a magnitude of 3$. The smallest 3 to provide a significant enough 

suppression of vortex induced resonance was determined to be 2. It is beneficial to have 

a small value of 3 to maintain the structural stiffness as near to its original value as 

possible, therefore, obtaining effective control with only small changes to the system. 

This ensures the practicality of the application.   

For practical applications, it is also desirable that the actuation frequency of the 

stiffness fluctuations is small, while still maintaining effectiveness in control. Therefore, 

different control periods, 0�, were analysed, in order to determine the largest period 

suitable to achieve control. The displacement history of the controlled response for 

control intervals 0� of  0/, 20/, 30/, 40/, 50/ and 60/  at the frequency ratio, ��	/�/ of 

0.85 is shown in Figure D.4. The axes are the same as in Figure D.3. The sharp peaks 

shown in the lower half of the 12 history indicate the actuation of the control. An initial 

delay of 50/ was applied before the first actuation, in order to let the initial transients of 

the numerical solution to settle.     
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It can be seen in Figure D.4 that applying a fluctuation to the stiffness prevents the 

organised resonance structure, as the amplitude ratio, y/D is significantly smaller than 

that of the uncontrolled case in Figure D.3(b). The most effective case is presented in 
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Figure D.4: Histories of the controlled lift coefficient 12  (----) and cylinder 

displacement (ـــــ) for � of 0.01, �� of 850 and for actuation periods, 0� of (a) 0/, (b) 

20/, (c) 30/, (d) 40/, (e) 50/ and (f) 60/. 
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Figure D.4(a) with the control applied at every natural period, 0/, with the largest y/D 

of 0.25. As the displacement and 12 histories shown in Figure D.4(a) are now in-phase, 

as compared to the quarter cycle phase lead in Figure D.3(b), the structural resonance is 

prevented successfully. However, an actuation period equal to the natural period of the 

structure may be too rapid for a mechanical system to operate reliably.  

In Figures D.4(b), D.4(c) and D.4(d), corresponding to 0� of 20/, 30/ and 40/, 

respectively, the maximum magnitudes of oscillation for the elastically mounted 

circular cylinder are comparable. The displacements do not increase and the motion is 

non-resonant. Therefore, a control period as long as 40/ can still be an effective 

solution.    

The reduced amplitudes, �/�	, for different control periods are shown in Figure 

D.5. Here, �	 is the uncontrolled cylinder displacement at ��	/�/ of 0.85, obtained at 

/0/ of 25. As the maximum uncontrolled cylinder displacement does not occur at 25 

natural periods, these reduced amplitudes should represent conservative estimates of 

effectiveness. The envelope indicates the variation between the maximum and minimum 

amplitudes observed for each case after 10 natural periods. The vertical axis represents 

the effectiveness of control, as values of 1 and 0 represent an uncontrolled cylinder and 

the perfectly controlled cylinder, respectively. As expected, effectiveness in control 

decreases gradually for an increasing control period. In addition, the envelope of 

controlled displacements fluctuates by wider margins for increasing control periods, 

indicating a less consistent response.    

It is noted in Figures D.3 and D.4 that the 12 histories display very similar patterns 

for all simulations. The maximum amplitude of lift is approximately 1.5 for both the 

uncontrolled and controlled cases. Similar 12 history is obtained for the stationary 

cylinder simulations. This suggests that there may be significant similarities in the 

vortex wake pattern for all these cases.  
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Contours of vorticity magnitude for the uncontrolled and controlled cylinder at 

��	/�/  of 0.85 are presented in Figure D.6. The uncontrolled cylinder vortices are 

represented in Figure D.6(a). In Figures D.6(b) and D.6(c), vorticity contours for the 

controlled cylinder at a control period, 0�, of 0/  and 40/  are presented, respectively. 

Each illustration in Figure D.6 is obtained near /04 of 20. This instance corresponds to 

when a vortex is about to shed from the top of the cylinder. The colour scale represents 

the magnitude of vorticity. The largest magnitude of vorticity is located along the 

leading edge surface of the cylinder, near the stagnation point. The vortex pattern shown 

in Figure D.6 remains almost constant for all uncontrolled and controlled cases.  This is 

also similar to that of a stationary circular cylinder, not shown for brevity. This suggests 

that the shedding of vortices occurs for the same cylinder position during oscillations in 

the vertical direction. The shedding occurs when the cylinder reaches zero displacement 

and the vortices are developed as the cylinder experiences peak displacements.  

The vortex pattern shown in Figure D.6 corresponds to the 2S vortex wake mode 

defined as two single vortices per cycle of motion by Williamson and Govardhan 

(2004). They show experimentally that the 2S mode occurs for amplitude ratios y/D 

between 0.2 and 0.4. Numerical observations for the controlled cylinder are in close 

agreement, as the maximum amplitude ratios shown in Figure D.4 are between 0.25 and 

0.85 for 0� of 0/ to 40/, respectively. However, for the uncontrolled case at ��	/�/ of 

0.85 the cylinder displacement is significantly larger than the suggested range of y/D, 

yet the same 2S vortex wake pattern is predicted numerically. This anomaly is currently 

under investigation.     
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Figure D.5: Variation of the amplitude ratio, �/�	 with control period, 0�. 
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(a) 

(b) 

(c) 

Figure D.6: Contours of vorticity magnitude for � of 0.01 and �� of 850 near /0/ of 

20; (a) Uncontrolled cylinder, (b) 0� = 0/ and (c) 0� = 40/. 
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The frequency distributions of the predicted cylinder displacement at ��	/�/ of 

0.85 for the uncontrolled and controlled cases at 0� of  0/ and 40/ are presented in 

Figure D.7. The uncontrolled cylinder predominantly oscillates at a peak frequency of 

1.36 Hz, close to the vortex shedding frequency of 1.33 Hz for a � of 0.2. For the 

controlled cases, a dominant frequency is not as clear to identify as many spectral 

components co-exist with comparable magnitudes. This behaviour is a result of 

successfully preventing an organised structural resonance with the implementation of 

stiffness variations. As discussed earlier in relation to Figure D.4, a control period of 0/ 

results in significantly smaller displacements than those for 40/.  

 

 

D.3 Practical Implementation 

The proposed control could benefit a cantilevered structure, or a structure with a 

significant free span between supports, for example, a tower or marine riser that is 

exposed to vortex induced resonance. A mechanical system could implement the 

control, possibly by applying and removing a support to change the effective free 

length, therefore, varying the effective stiffness. The location and the timing of the 

clamp are pre-determined as part of the controller design and not from flow or 

Frequency (Hz) 
 

a 

b 

c 

y 
/ D

 

Figure D.7: Frequency distribution for the uncontrolled cylinder (a, ----) and controlled 

cylinder at 0� of 40/ (b,ـ  ــــ  ,and 0/ (c (ـــ ).  
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oscillation conditions. Therefore, no sensing or computing would be required for 

actuation.  

 

D.4 Summary 

A numerical investigation to avoid the organisation of vortex induced resonance 

through a semi-active parameter control principle is presented in this paper. An 

elastically mounted circular cylinder exposed to cross-flow was modelled using 

FLUENT® to investigate both uncontrolled and controlled vibration conditions.  

The proposed control is implemented practically by varying the effective stiffness 

at resonance. It has been observed that a square wave fluctuation between the original 

and doubled structural stiffness and an actuation period equal to the structural natural 

period provides the best control for resonance. The proposed application effectively 

prevents the organised resonance structure due to vortex shedding. 

Numerical observations show similar vortex wake patterns for all studied cases 

with a 2S vortex wake mode. This mode is in good agreement with published 

experimental results for the controlled cases. However, the uncontrolled case at 

resonance also contains the 2S mode with a significantly larger amplitude ratio than 

what has been reported in literature. It is considered at this point that this anomaly may 

be due to not reaching a steady state pattern of oscillations at the time of the 

comparison, as computational requirements were considered.  

The observations presented in this paper are encouraging for the continuation of the 

investigation to consider the aerodynamic performance, cost and practicality of the 

proposed control of vortex induced resonance.  

 

 




