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A PARALLEL ALGORITHM FOR THE CALCULATION OF KRONECKER 
PRODUCTS/SUMS ON HYPERCUBE PROCESSOR TOPOLOGIES 

Roderick White 
Charles Osborne 

ABSTRACT 

Kronecker algebra is widely used in the field of reliability. Calculation of Kronecker 

products and sums is a cumbersome exercise requiring calculations of order O(N4
). This 

paper shows that Kronecker products/sums can be viewed as simple algebraic operations 
performed on the elements residing on (n,b,k)-hypercubes.This technique provides a 
simple algorithm for the parallel calculation of Kronecker products and sums using 
hypercube processor topologies. This method minimises the algorithm complexity usually 
associated with parallel architectures as well as providing calculation speedup. 



1. INTRODUCTION 

Kronecker algebra is widely used in the field of reliability when modelling the behaviour of 
systems. Both Kronecker product and Kronecker sum operations are extensively 
employed when building transition rate matrices (Amoia[l],Cafaro[2]). 

A characteristic of Kronecker algebra is that the size of calculations grows rapidly, given 
a matrix A of size (m x m) and a matrix B of size (p x p) the Kronecker product or sum of 
the two matrices will be of size (mp x mp). Modelling a realistic system requires a large 
number of Kronecker operations, which results in a computationally intensive task 
handling large matrices. Applications such as this can benefit from a parallel processing 
algorithm which decreases processing time without adding extra complexity to the 
program implementation. 

2. KRONECKER PRODUCTS 

Given a matrix A of size m x n and a matrix B of size p x q the Kronecker product is a 
matrix of size mp x nq determined as shown by ( 1) 

A®B= (1) 

, a B ml 

Rao[5] shows that given (1) the following results 

(2) 

where At>A2 ,Bt>B2 are matrices of the type defined above. Choosing A1 = IA,B2 = IB 
gives 

(3) 

Kronecker products are thus expressable as the product of Kronecker products of the 
original matrix and the appropriate identity matrix. Thus repeated Kronecker products can 
be calculated as matrix products by implementing (3) recursively. 
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Equation (3) can be viewed as the product of two matrices which have undergone a 
restructuring operation. An alternative method is available for effecting the matrix 
restructuring performed by the identity-matrix Kronecker products shown in (3). The 
Kronecker product can be expressed as 

p2:! m 

p<m (4) 

whereB* =Bform=l, A* =Aforq=l, B# =Bforn=l, A# =Aforp=l 

given that A* ,B* ,A# ,B# are restructured forms of the original matrices A and B. 

Equation ( 4) shows that the Kronecker product can be viewed as two distinct operations, 
a matrix mapping or restructuring operation and an algebraic operation. If the matrices can 
be restructured appropriately the Kronecker product can be reduced to a matrix 
multiplication. 

Where restructuring is required the structure of the matrices is determined by altering the 
binary representation of the matrix row and column indices by adding a new "dummy" 
variable with the required number of bits to the row and column indices to create a matrix 
of the same size as the Kronecker product resultant matrix. This is illustrated with the 
following example. 

Example 1: 

the row and column indices of matrix B can be represented in binary form as 

R0 = 0 ~ 1, C0 = 0 ~ 1 as shown in table 1. Addition of the dummy bit x0 to the row and 

column indices x0R0 =00~11, x0C0 =00~11 creates the matrix B* as shown in table 
2. 

Expressing these tables in matrix form gives 

bll bl2 0 0 

[bll b12] B*= b21 h22 0 0 
B= 

b21 b22 0 0 bu b12 

0 0 b21 b22 
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The matrix A* is formed by moving the dummy bit one place to the right in the row and 

column indices to give R0x0 , C0x0 . Expressing this in matrix form gives 

all 0 au 0 

[an ~2] A*= 
0 all 0 a12 A= 

a21 a22 a21 0 a22 0 

0 a21 0 a22 

The product of these restructured matrices is B *A* = A® B . 

When p<m the restructuring uses the same technique as for the case p ~ m with the 
exception that the position of the dummy bits added to the column index are reversed in 
position. For example given 

Example 2 : 

The matrix B# has the row index R0x0 , and the column index x0C0 , this gives the matrix 

The Kronecker product can then be given as A® B =AB#. For the case of square matrices 
of size 2n the above method can be expressed as 

1 

cl ®C2® ... ®Cn =IT c; (5) 
i=n 

where the binary row-column indices restructuring is given by 

Matrix Row index Column index 

en xj ... x0Ri ... R0 xj .. . x0Ci ... C0 

C2 xj~ ... R0 • •. x0 xjCi ... C0 ••• x0 

c1 Ri ... R 0xj ... x0 Ci .. . C0xj ... x 0 

4 



Kronecker products can be reduced to a matrix multiplication of matrices which have been 
restructured by the addition of an independant dummy variable to the row and column 
index values of the matrix elements. This can be taken a step further. The introduction of 
two independant dummy variables in the matrix restructuring results in the algebraic 
operations which have to be performed on the matrices being reduced to a simple element
element multiplication. 

Example 3. 

. . • • • h 
given Browindex = X1Ro, Bcolumnindex = XoCo, Arowindex = Rox1' Acolumnindex = CoXo, and w ere 
the dot product operator represents the multiplication of corresponding matrix elements. 
This element mapping results in the matrices given in ( 6) 

• bll bl2 bll b12 all a11 a12 a12 

A®B= 
b21 b22 b21 b22 all a11 a12 a12 

(6) 
bll bl2 bu bl2 I I a21 a21 a22 az2 

b21 b22 b21 b22 az1 a21 a22 az2 

3. KRONECKER SUMS 

The Kronecker sum of A (mxm) and B (p xp) is defined as 

(7) 

The similarity between equations (7) and (3) indicates that Kronecker sums can be treated 
in a similar manner to Kronecker products, thus Kronecker sums can be expressed as 

n 

cl ffi C2 67 .. . E9Cn = L c: (8) 
i=l 
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4. HYPERCUBE IMPLEMENTATION 

The matrix restructuring operations can be given a geometric interpretation by combining 
the matrix row-column indices to give the address of the corresponding matrix element in 
a geometric structure. For example the binary representations of the row and column 
indices of matrix B in the first example can be considered as the addresses of the elements 
on a two-dimensional cube. 

Figure 1. 

00 

10 

bll bl2 
t------- 01 

b21 
11 

b22 
Hypercube representation of matrix B. 

From this viewpoint the matrix restructuring in this example represents a mapping of the 
matrices A and B onto a four dimensional base 2 hypercube, and the matrix multiplications 
required to determine the Kronecker product correspond to data transfers and 
multiplication of matrix elements or vertex values. 

The introduction of the dummy variable provides a partial mapping to the hypercube, 
requiring a matrix multiplication to perform the Kronecker product. If the matrices A and 
B are mapped onto the hypercube using two independant dummy variables the Kronecker 
product reduces to a simple multiplication of each of the elements at each hypercube 
vertex. This can be illustrated using example 3. Combining the row-column indices of the 
matrix elements and mapping the elements onto a four dimensional hypercube results in 
the structure given in figure 2. 
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a22bl1 
1010 

a22 b21 
1110 

Figure 2. Mapping of matrix elements to a four dimensional hypercube. 

a21 bl2 
1001 

1101 
a21 b22 

The Kronecker product can now be found by multipliying the elements residing on each 
node of the cube. 

Kronecker products of matrices of size other than 2a x 2b can be represented as 
elementwise multiplications on (n,b,k) cubes (Laksmivarahan[4]) of which the base 2 
complete hypercube is a member. 

Similarly Kronecker sums can be mapped to hypercube structures, the only variation in the 
operation being that the elements mapped to cube nodes are added rather than multiplied. 
These algorithms could be easily ported to either l\1IMD or Sil\ID architectures 

If the number of processors does not match the size of the resultant matrix each node may 
be loaded with more element operations by mapping onto the hypercube the restructured 
matrices determined for the matrix multiplication technique. 
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Example4 
Calculating a Kronecker product on a four node hypercube 

The matrix rows are divided between the available hypercube processors 

bll b12 0 0 all 0 a12 0 Processor 1 
--------------- --------------
b21 b22 0 0 0 all 0 a12 Processor 2 
--------------- --------------
0 0 bll b12 a21 0 a22 0 Processor 3 

--------------- --------------
0 0 b21 b22 0 a21 0 a22 Processor 4 

Processor 1 Processor 2 

al l,al2,bl l,b12 all,al2,b21,b22 

a21,a22,bl 1,bl2 a21,a22,b2 l,b22 

Processor 3 Processor 4 
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Multiplication of elements on each processor results in the following resultant matrix 
distributed over the hypercube. 

a11 b11 a11b12 a12 bu a12b12 Processor 1 
-----------------------
a11h21 a11h22 a12h21 a12h22 Processor 2 
-----------------------
a21b11 a21b12 a22 bu a22 h12 Processor 3 
-----------------------
a21b21 a2Ib22 a22b21 a22b22 Processor 4 

Kronecker sums can be calculated in a similar manner, the matching matrix elements of 
each matrix resident on a processor are summed to give the row elements of the 
corresponding Kronecker sum matrix. 

Conclusion 
The Kronecker product can be determined by means of either a matrix multiplication, or a 
set of simple scalar multiplications dependant upon the structure of the constituent 
matices. Kronecker sums can be determined in a similar manner. This ability makes them 
amenable to parallel calculation on hypercubes utilising a simple mapping algorithm. The 
advantages of these techniques are that Kronecker product/sum applications can be 
calculated in parallel without employing application specific processor topologies and 
avoiding programming complexity. 
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Appendix 

Table I: 

Matrix B 
Row Column Matrix 

Ro Co Element 

i 
0 0 bll 
0 I bl2 
I 0 

b21 
I 1 

b22 

Table 2: 

Matrix B* 
Row 11 Column Matrix 

XoRo XoCo Element 

00 00 bu 
10 10 bu 
00 01 b12 
10 I 11 b12 
01 00 b21 
11 10 b21 
01 01 b22 
11 11 b22 
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