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ABSTRACT

Kronecker algebra is widely used in the field of reliability. Calculation of Kronecker

products and sums is a cumbersome exercise requiring calculations of order O(N*). This
paper shows that Kronecker products/sums can be viewed as simple algebraic operations
performed on the elements residing on (nb,k)-hypercubes.This technique provides a
simple algorithm for the parallel calculation of Kronecker products and sums using
hypercube processor topologies. This method minimises the algorithm complexity usually
associated with parallel architectures as well as providing calculation speedup.



1. INTRODUCTION

Kronecker algebra is widely used in the field of reliability when modelling the behaviour of
systems. Both Kronecker product and Kronecker sum operations are extensively
employed when building transition rate matrices (Amoia[1],Cafarc 2]).

A characteristic of Kronecker algebra is that the size of calculations grows rapidly, given
a matrix A of size (m x m) and a matrix B of size (p x p) the Kronecker product or sum of
the two matrices will be of size (mp x mp). Modelling a realistic system requires a large
number of Kronecker operations, which results in a computationally intensive task
handling large matrices. Applications such as this can benefit from a parallel processing
algorithm which decreases processing time without adding extra complexity to the
program implementation.

2. KRONECKER PRODUCTS

Given a matrix A of size mXxn and a matrix B of size px g the Kronecker product is a
matrix of size mp X nq determined as shown by (1)
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Rao[5] shows that given (1) the following results
A/A,®BB,=(A, ®B,)A,®B,). (2)

where A,,A,,B,,B, are matrices of the type defined above. Choosing A, =1,,B, =1,
gives

I,A®BI, =A®B=(I, ®B)(A®I}). 3)
Kronecker products are thus expressable as the product of Kronecker products of the

original matrix and the appropriate identity matrix. Thus repeated Kronecker products can
be calculated as matrix products by implementing (3) recursively.



Equation (3) can be viewed as the product of two matrices which have undergone a
restructuring operation. An alternative method is available for effecting the matrix

restructuring performed by the identity-matrix Kronecker products shown in (3). The
Kronecker product can be expressed as

B'A’ p=m
|A"B? p<m 4)
where B' =B form=1, A'=Aforq=1, B*=Bforn=1, A*= Aforp=1

given that A",B", A*, B* are restructured forms of the original matrices A and B.

Equation (4) shows that the Kronecker product can be viewed as two distinct operations,
a matrix mapping or restructuring operation and an algebraic operation. If the matrices can
be restructured appropriately the Kronecker product can be reduced to a matrix
multiplication.

Where restructuring is required the structure of the matrices is determined by altering the
binary representation of the matrix row and column indices by adding a new "dummy"
variable with the required number of bits to the row and column indices to create a matrix
of the same size as the Kronecker product resultant matrix. This is illustrated with the
following example.

Example 1:

Given A='a11 ap; B-____|:b11 b12-l
I_a21 A by, bzz_

the row and column indices of matrix B can be represented in binary form as
R,=0-1, C,=0—1 as shown in table 1. Addition of the dummy bit x, to the row and

column indices x,R, =00 — 11, x,C, =00— 11 creates the matrix B" as shown in table
2.

Expressing these tables in matrix form gives

[bn b12 0 0]

B__:[bu blzjl B - by by O 0
b21 2 O O bll b12

|0 0 by byl
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The matrix A" is formed by moving the dummy bit one place to the right in the row and
column indices to give Ryx,, C;x,. Expressing this in matrix form gives

A _ |:all a]z} X _ O all 0 a'12

a, a,

The product of these restructured matricesis BA" = A®B.

When p<m the restructuring uses the same technique as for the case p>m with the

exception that the position of the dummy bits added to the column index are reversed in
position. For example given

A_[all alzj'
a 2,

The matrix B* has the row index R x,, and the column index x,C,, this gives the matrix

B* = by, b, 0 0
0 0 b, b,

Example 2:

B= [bll bu]

The Kronecker product can then be given as A ® B = AB*. For the case of square matrices
of size 2" the above method can be expressed as

1
C,®C,0..0C, =] C] (5)

i=n

where the binary row-column indices restructuring is given by

Matrix Row index Column index
C. X;...XoR;... Ry X;...%,C;...C,
C, XR;...Ry... X, X;C;...Cy... %4
C, R;..RyX;...%, C;...Cox;..%,




Kronecker products can be reduced to a matrix multiplication of matrices which have been
restructured by the addition of an independant dummy variable to the row and column
index values of the matrix elements. This can be taken a step further. The introduction of
two independant dummy variables in the matrix restructuring results in the algebraic

operations which have to be performed on the matrices being reduced to a simple element-
element multiplication.

Example 3.
A= [311 au} B-= by blZ]
ay Ay l_b21 b,,
A®B=B" A’
given B:ow index = XIRO’ B:olumnindex = XOCO’ A:owindex = ROXI’ A:olumn index = COXO’ and Where

the dot product operator represents the multiplication of corresponding matrix elements.
This element mapping results in the matrices given in (6)

127 I—all a11 a12 a12

b, b
b, b
A®B=| 2 2
b, b
b, b

(6)
1 12 (|81 821 8y ap
| 021 D2 DOy bzzJ Ay Ay 8y Ay |
3. KRONECKER SUMS
The Kronecker sum of A (mXxm) and B (p X p) is defined as
A@B=(AQ®L)+(I,®B) @)

The similarity between equations (7) and (3) indicates that Kronecker sums can be treated
in a similar manner to Kronecker products, thus Kronecker sums can be expressed as

C,9C0..0C, =) C, (8)

i=1



4. HYPERCUBE IMPLEMENTATION

The matrix restructuring operations can be given a geometric interpretation by combining
the matrix row-column indices to give the address of the corresponding matrix element in
a geometric structure. For example the binary representations of the row and column
indices of matrix B in the first example can be considered as the addresses of the elements
on a two-dimensional cube.

b1l bl2
00 ? 01
10 ‘ 11

b21 b22
Figure 1. Hypercube representation of matrix B.

From this viewpoint the matrix restructuring in this example represents a mapping of the
matrices A and B onto a four dimensional base 2 hypercube, and the matrix multiplications
required to determine the Kronecker product correspond to data transfers and
multiplication of matrix elements or vertex values.

The introduction of the dummy variable provides a partial mapping to the hypercube,
requiring a matrix multiplication to perform the Kronecker product. If the matrices A and
B are mapped onto the hypercube using two independant dummy variables the Kronecker
product reduces to a simple mult lication of each of the elements at each hypercube
vertex. This can be illustrated using example 3. Combining the row-column indices of the
matrix elements and mapping the elements onto a four dimensional hypercube results in
the structure given in figure 2.



a21bl1 a2l bl12

1000 1001
a22 bll
1010
al2 b
0010
all
010
al2 b21
0110
1100 N2t 1101
aZ1 b21 a2l b22
a22 b21
1110 1111
a22 b22
Figure 2. Mapping of matrix elements to a four dimensional hypercube.

The Kronecker product can now be found by muitipliying the elements residing on each
node of the cube.

Kronecker products of matrices of size other than 2°x2° can be represented as
elementwise multiplications on (n,b,k) cubes (Laksmivarahan[4]) of which the base 2
complete hypercube is a member.

Similarly Kronecker sums can be mapped to hypercube structures, the only variation in the
operation being that the elements mapped to cube nodes are added rather than multiplied.
These algorithms could be easily ported to either MIMD or SIMD architectures

If the number of processors does not match the size of the resultant matrix each node may
be loaded with more element operations by mapping onto the hypercube the restructured
matrices determined for the matrix multiplication technique.



Example 4
Calculating a Kronecker product on a four node hypercube

A=|:3-11 a-12:| B:[b“ b12i|
dy; Ay by by

A®B=B'A’

The matrix rows are divided between the available hypercube processors

by, b, 0 07a, 0 a, 0 |Processor 1

b, b, 0 0| 0 a, O a,|Processor2

0 0 b,; b,la, 0 a, O [Processor3

0 0 by by, 0 a, 0 a,|Processor4

Processor 1 Processor 2
all,al2,b11,b12 ‘ . all,a12,b21,b22

a21,222b1112  (@)— % a21,a22,b21,b22
Processor 3 Processor 4



Multiplication of elements on each processor results in the following resultant matrix
distributed over the hypercube.

-
[a;by a;,b, ayb, a,b,, |Processor 1

agb, agby, ayb, a,b,, Processor 2

a,by; a,b, a,b, a,b, |Processor3

a,b, ayb,, ayb, a,,b,, |{Processor 4

Kronecker sums can be calculated in a similar manner, the matching matrix elements of
each matrix resident on a processor are summed to give the row elements of the
corresponding Kronecker sum matrix.

Conclusion

The Kronecker product can be determined by means of either a matrix multiplication, or a
set of simple scalar multiplications dependant upon the structure of the constituent
matices. Kronecker sums can be determined in a similar manner. This ability makes them
amenable to parallel calculation on hypercubes utilising a simple mapping algorithm. The
advantages of these techniques are that Kronecker product/sum applications can be
calculated in parallel without employing application specific processor topologies and
avoiding programming complexity.
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Appendix

Table 1:
Matrix B
! Row ! Column I Matrix

R, C, Element
| 0 0 b,,
0 1 b,,
1 0 b,,
1 1 by,

Table 2:
Matrix B’
Row Column Matrix

xR, %,C, Element
00 00 b,
10 10 b,,
00 01 by,
10 11 by,
01 00 b,,
11 10 b,
01 01 b,,
11 11 })12
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