
VICTORIA ~
UNIVERSITY

DEPARTMENT OF COMPUTER AND
MATHEMATICAL SCIENCES

Mapping, Order-independent
Genes and the Knapsack

Problem

Robert Hinterding

(35 COMP 8)

TECHNICAL IlliPOl{T

VICTORIA UNIVERSITY OF TECHNOLOGY
(P 0 BOX 14428) MELBOURNE MAIL CENTRE

MELBOURNE, VICTORIA, 3000
AUSTRALIA

TELEPHONE (03) 688 4249 I 4492
FACSIMILE (03) 688 4050

::c
z
0
~

0

Cl

Footscray Campus

Mapping, Order-independent Genes and the Knapsack Problem

Robert Hinterding
Victoria University of Technology

PO Box 14428 MMC,
Australia 3000

Email: rhh@matilda.vut.edu.au

Abstract - This paper uses the simple structure of
the knapsack problem to study the issues of
mapping and representation for genetic
algorithms. Two genetic algorithms using different
mappings were implemented to solve the problem.
In one of these neither the order or position of
genes is significant. Both of the genetic algorithms
perform well on the problem, and we attribute the
divergent parameter settings to the different
mappings.

1. Introduction

The knapsack problem can be described as selecting from
among various items those items which are most useful to
you, given that the knapsack has limited capacity.
Knapsack problems have been intensively studied because
of their simple structure and because they can model
many classical industrial problems such as capital
budgeting, cargo loading and stock cutting.[Martello &
Toth 90].

Genetic Algorithms (GAs) are stochastic search methods
inspired by the genetics of real populations. A population
of individuals (chromosomes which decode to solutions)
evolves with selection processes favouring the 'fittest'
individuals. Cla<>sical genetic algorithms (Goldberg 89]
use a binary alphabet and fixed length chromosomes
(binary strings). Binary strings are theoretically tractable
and form the basis of the theory underlying GAs.
However GAs using larger alphabets and variable length
chromosomes have been developed.

This paper studies the issues of mapping and
representation associated with GAs by using two different
GAs to solve the knapsack problem. As more direct
methods already exist to solve the knapsack problem in
polynomial time it's not the aim of this study to compete
with these. Instead we use the knapsack problem as a
vehicle to investigate effects of different mappings on the
behaviour and the efficiency of GAs. The motivation was
to further explore GAs where neither the position or
ordering of genes in the chromosome is significant. Such
GAs were used to solve the bin packing problem
[Falkenauer & Delchambre 92] and stock cutting
problems [Hinterding & foliff 93].

Two GAs using different mappings were implemented to
solve the Knapsack Problem. One uses variable length
chromosomes, an encoder to generate valid (legal)
knapsacks as chromosomes with new crossover and
mutation operators. The other uses a fixed length
chromosome with Uniform Order Based crossover, swap
mutation and a decoder to map from the chromosome to

legal knapsacks.

Both GAs performs well on the problems. The parameter
settings for the two GAs differ markedly and this can be
attributed to the different mappings. The GA where
neither the position or order of the genes in the
chromosome are significant is shown to be viable,
although the current theory of schemata does not cover
this type of GA.

2. The Knapsack Problem

The knapsack problem under consideration is the 0-1
Knapsack problem which is classified as NP-hard [Garey
& Johnson 79]. The 0-1 knapsack problem has been
solved using a number of mathematical techniques
including dynamic programming, and branch and bound
algorithms.

The 0-1 Knapsack Problem (KP) is described as:

Given a set of n items and a knapsack, with:
p; =profit of item},
W ; =weight of item},
c = capacity of the knapsack,

select a subset of the items so as to
n

maximise z = L p1X1

j=I

n

subject to L w ;x, $ c,
j=l

Xj = 0 or 1, j E N = { 1.. n},

{
I if item j is selected;

where X1 =
0 otherwise.

The knapsack problem was chosen as a problem with the
following features:

• The solution is not numerical.
• The alphabet is larger than the number of genes.
• The number of items in a solution is not fixed.
• The order of the items in a solution is of no

significance.

A problem where the structure and the restraints usually
associated with GAs were absent was desired. The
knapsack problem fits these requirement<> very well. The
problem is to select the most valuable set of items from a
larger set, satisfying a simple capacity constraint.

Other researchers have solved the 0-1 knapsack problem
using GAs. Watannabe et al [Watannabe 92], looks only

mailto:rhh@matilda.vut.edu.au

at small problems (16 and 24 items) using a bit string
representation. Gordon at al [Gordon & Whitley 93]
[Gordon, Bohn & Whitley 93] use a much larger range of
problem sizes (20 to IOOO items) comparing the results of
different serial and parallel GA models with the results
obtained from more direct methods such as branch-and­
bound and depth-first search. They also use a bit string
representation and report disappointing results compared
to the more direct methods.

3. Representing the Problem.

Two different representations were used to solve the
knapsack problem using GAs. The Selection based GA
which uses a direct representation and dense encoding,
and an Order based GA which uses an indirect
representation. This GA uses an encoding with genes in
tlie chromosome which are not expressed in the
phenotype.

The following example knapsack problem is used in this
section. The capacity of the knapsack is IOO. The
numbers used in the text refer to the item numbers in the
example problem.

Item No. 1 2 3 4 5 6 7
Wei!!ht 40 50 30 IO 10 40 30
Profit 40 60 IO 10 3 20 60

Table 1: Example knapsack problem.

3.1. Mapping using a Selection based Genetic
Algorithm

The most direct mapping is to let the chromosomes
represent legal knapsacks directly. The genes in the
chromosome will represent tlle items in tlle knapsack, and
as tlle number of items in a legal knapsack is not fixed,
we need to use a variable length chromosome. The order
of tlle items in a legal knapsack has no meaning, so the
order of tlle genes in our chromosome will also have no
meaning. This means tllat we don't have alleles in our
chromosome. Hence (4 5 7 3) and (2 6 5) are both
legal knapsacks and both (2 6 5), (6 2 5) represent tlle
same legal knapsack.

Repeat
Search left to right for first item that does
not violate the capacity constraint.
If item found

add to knapsack,
else

tenninate algoritllm

Fi oure 1: First fit al!!oritllm e ~

As we use a direct representation, we do not need a
decoder to map from tllc genotype to tlle phenotype. To
!!eneratc tlic initial population we need an encoder to
~cnerate random legal knapsacks. The encoder we use is
; first fit al!!oritllm (see fig. 1), which given an ordering
of items will select in order tllose that meet tlle capacity

2

constraint and reject items resulting in a constraint
violation. The initial population is generated from
random orderings of the items using tlle first fit
algorithm.

3 .1. 1. Reproduction

The reproduction operators we use can not be any of the
standard ones as these rely on the position or the ordering
of the genes in the chromosome being significant.

3.1.1.1. Crossover
The crossover operator used is the Injection crossover,
which is a simplification of Falkenauers' Grouping
crossover(BPCX) [Falkenauer & Delchambre 92]. This
crossover will work witll chromosomes of different
lengtlls, and does not depend on any ordering of tlle
genes. It was designed so tllat tlle child can inherit
meaningful information from both its parents. In tllis
case it is tlle selection of items tlle parents have. It also
behaves as expected; if the parents are identical they will
produce a child that is the same as the parents.

The Injection crossover works in the following way: we
randomly choose an insertion point in parent 1 and a
segment in parent 2. The child is constructed by first
copying into it the genes from parent 1 up to tlle insertion
point. Then we copy the segment from parent 2 into the
child, and lastly we copy the genes after the insertion
point till tlle end of the chromosome. Note that when
copying genes into tlle child we do not add genes that
already exist in the child. The proto-child chromosome
which we have now constructed may contain too many
items(in term of the capacity of tlle knapsack). So we
now apply a fix-up step by applying the first fit algorithm
to the proto-child chromosome to produce the child
chromosome, which is a legal knapsack.

Parent 1

Parent 2

Proto-child

Child

J,lnsertion Point

ffiEJ

''f''7f'
Segment

I 2 I s I 7 I 6

11 2 I 5 I 7

Weight: 100 Profit: 83

Weight: 80 Profit: 83

Weight: 90 Profit 123

Figure 2: Injection Crossover

3.1.1 .2. Mutation
Mutation is based on Faulkenauer's group mutation
operator [Falkenauer & Delchambre 92]. A number of
genes are chosen at random and these are deleted. We
tllen append the items in random order that were not
present in tlle chromosome, and use tlle first fit algorithm
to generate a chromosome which is a legal knapsack. The

purpose of mutation in this case is to bring in new items
into the chromosome.

3.2. Mapping using an Order hased Genetic
Algorithm

Here we let the chromosomes represent orderings of all
the items. We use a decoder which utilises the first fit
algorithm to generate a legal knapsack from the ordering
of items. Hence a chromosome of (1 6 4 7 3 2 5) would
decode to the knapsack (1 6 4 5) which has a profit of 73;
items 7, 3 and 2 are rejected because their individual
inclusion would result in constraint violation (see table 2).
Here the genotype represents an ordering of the items,
and the phenotype is a legal knapsack. We can use an
order based chromosome and choose suitable crossover
and mutation operators. Using this method we convert
what is a selection problem into an ordering problem.

Knapsack Items left Weil!ht Profit
empty 1647325 0 0
1 647325 40 40
1 6 47325 80 60
1 6 4 7325 90 70
1 6 4 5 732 100 73

Table 2: First fit decoding

One of the features of this representation is that not all the
genes in the chromosome are represented in the solution.
That is, there are genes in the genotype that are
unexpressed in the phenotype, and the number of such
genes will depend on the capacity of the knapsack and the
items used in the knapsack.

The crossover operator used is Uniform Order Based
crossover[Davis 91], and mutation is the swapping of two
randomly chosen genes in the chromosome.

3.3. The Fitness Function

The fitness function that we maximise is the profit of the
items in !lie knapsack divided by the profit of all the
items. This gives us a value in the range 0 to 1, but it will
always be less than 1 for this example, and depend on the
capacity of the knapsack. Hence the smaller the capacity
of the knapsack the smaller the maximum fitness will be.

4. The GA

The ba-;ic Genetic Algorithm used in both cases is a
steady-state GA ba-;ed on the description of OOGA in
Davis (Davis 91] . It was developed using SmalltalkN
for Windows and then translated into C++. The following
parameters can be set:

•
•

•

Population Size - set !11e size of the population .
Replacement Rate - set the percentage of the
population that will he replaced hy reproduction in
one generation.
Number of Evaluations - set the number of
evaluations for the run. We use evaluations rather

3

than generations so that we can compare between
runs where the population size and replacement rate
are different.

• Mutation Rate - set the percentage of the
replacement population that will be produced by
mutation. The remainder of !lle replacement
population will be produced by crossover.

• Allow Duplicates - set a flag to allow or disallow
duplicates to exist in the population. If duplicates are
not allowed, any duplicates produced by reproduction
are discarded while they still count as an evaluation.
We determine whether two chromosome are !lle same
by comparing !lleir genotypes.

In the Genetic Algori!llm used, a new chromosome is
produced either by crossover or mutation but not both.
This was done so that !lle separate eff ecL'> of these
reproduction operators could be determined.

The mutation rate for the order based GA is the mutation
rate of the chromosomes, and mutation will swap two
genes in the chromosome. The mutation rate for the
selection GA is the mutation rate of the genes. It was felt
that this reflected better what happens in nature, in that
we would expect more genes to mutate in a long
chromosome !llan in a short one, rather !llan the same
number of chromosomes mutating in a chromosome
regardless of its length. This was done by using a random

generator with a Poisson distribution. We set A to be the
gene mutation rate multiplied by the leng!ll of the
chromosome. The values returned are the number of
genes in the chromosome which are to mutate. A value of
zero indicates that mutation does not occur and crossover
is to be used to generate the new chromosome. Further
research needs to be done on this, but the results indicate
that using this method produces superior performance.

5. Results

For this study we generated a 50 item and a 100 item
problem. We used three different knapsack capacities
expressed as a percentage of the total weight of the items
for each of the problems. The global maximum fitness for
each of the problems is summarised in the following
table:

Capacity/ 25% 50% 75%
Problem
50 0.64781 0.861296 0.960133
100 0.57001 0.81889 0.959883

Table 3: Problem configurations and global maximums

For the 50 item problem the GA was run for 10,000
evaluations, and for the 100 item problem it was run for
20,000 evaluations. All the results were produced by
averaging the data of 20 runs.

Replacement Rate: this was varied from 15% to 95<7< and
a replacement rate of 25% was found to give best results.
All the results shown were run with a replacement rate of
25%.

Duplicates Allowed: It was found that not allowing
duplicates in the population significantly improved the
results. All results shown are from runs where duplicates
were not allowed.

A range of values for the other parameters was tried in
order to find the values which maximised the efficiency of
the GA. The results are summarised in tables 4 and 5.
Comparative performance of the GAs on the l 00 items
75% capacity problem is shown in Figure 3. The
Selection based GA did not find the global maximum for
the 100 item problem, however the values found are
within 99.8% of the global maximum.

Prob/Cap Pop size Gene Best fitness Evals
mutation needed

50125 50 2 0.64781 6,000
50150 50 2 0.861296 5.000
50175 50 2 0.96013 2,000
100/25 50 1.8 0.569823 20,000

I

100150 50 1.2 0.817624 20,000
100175 50 I 0.958861 20,000

Table 3: Selection Based GA results

Prob/Cap Pop size Chrom. Best fitness Evals
mutation needed

50/25 200 0 0.64781 4,000
' 50/50 150 0 0.861296 2,000

50175 150 0 0.96013 2,000
100/25 700 0 0.57001 19,000
100/50 700 0 0.81889 17,000
100175 600 0 0.959883 15,000

Table 4: Order Based GA results

The mutation rates for the selection based GA are
observed to be very high. Table 5 relates the gene
mutation rates used to chromosome mutation rates. For
the 50 item problem, only integer values for the gene
mutation rates were used.

Prob/Cap Gene Avchrom Poisson Chrom.
mutation size means mutation

50125 2 16 0.31 27%

50/50 2 27 0.55 42%

50175 2 38 0.77 54%

100125 1.8 29 0.51 40%

100/50 1.2 52 0.55 46%

100175 I 77 0.77 53%

Table 5: Selection Based GA mutation

Mutation rates for the order based GA showed some
unexpected trends. For population sizes found to be less
than optimum, the mutation rate had to be very high to
!!et the best results (up to 50%). While with population
~izes greater or equal to the optimum, mutation rates less
than 10% did not degrade the efficiency of the GA. but
did not improve it either. Table 4 shows the maximum
fitness reached after 20,000 evaluations when no mutation
is used for a range of population sizes for the order hascd
GA on the 100 item 50% capacity problem.

4

0.56

F
i 0.51

t

n 0.46
e
s

s 0.41

Comparative Performance 100 items, 25%capacity

' ,,,,..
\ './

\ ,.
). "·

\ . '
'
'

---Ord GA
fitness

- - -SelGA
fitness

- - - - - Ord GA std
dev

- • • - Sel GA std

0.014

0.012

0.01 s
t

0.008 d

0.006 d

e
0.004

v

0.002

0.36 -+-+--+-....... -+-+--+-~,_+;;.+.~~p..aj...;+~ 0

F

n

0 2 4 6 8 10 12 14 16 18 20

Evaluations (thousands)

Figure 3: Comparative results of the GAs

0.82

0.815

0.81

Order based GA, no mutaUon: 100 Items, 5CJ%
capacity

---Fitness

Std Dev

e 0.805
s
s 0.8

0.795
... ,,, -

50 150 250 350 450 550 650

Population size

Figure 4: Population size for Order based GA

0.012

0.01

0.008

0.006

0.004

0.002

0

The time taken for the order based GA running on a
Spare 10 workstation was 4 seconds for the 50 item
problem to 2,000 evaluations and 110 seconds for the 100
item problem to 17,000 evaluations.

6. Discussion

Both the GAs performed well, while the order ba....,ed GA
was better on the 100 item problems. The difference in
the population size and mutation rate for the two GAs is
very marked.

The selection based GA uses a high mutation rate and
small population. A small population with a set number
of evaluations will result in more generations being run,
than for a larger population. As the chromosomes only
contain items that are in the knapsack, mutation is
essential to bring in new items and a larger number of
generations is needed to explore selections using these
items. As the mutation rate is so high, further research is
needed to see the effect of allowing both mutation and
crossover to produce new chromosomes. This may
increase the G As efficiency.

s
t
d

d
e
v

The order based GA uses a large population size and does
not need mutation for populations sufficiently large.
When the population is not large enough it converges
very rapidly on to a phenotype and all members of the
population will decode to the same phenotype. When this
is lhe case, mutation rates high enough to stop
convergence Lo the phenotype are also too disruptive for
lhe GA to find the global maximum. What appears to
happen here is that the many to one mapping of genotype
Lo phenotype effectively reduces the diversity of lhe
population. Hence a large population size must be used to
increase the population diversity. When a population size
larger than the optimum is used the efficiency of lhe GA
is reduced. Also if sufficient diversity . is present no
mutation is needed as Uniform Order Ba11ed crossover
can generate the missing orderings.

Conclusions

We have shown that the mapping chosen for a GA can
dramatically effect the parameter settings of the GA for
best efficiency. We have also shown that a GA (the
selection based GA) which uses a large alphabet, has
variable length chromosomes and does not have alleles
compares favourably with a more traditional GA (the
order based GA). In the selection based GA, the size of
the chromosomes decreases as the capacity decreases for
the same sized problem, and we consequently need a
higher mutation rate to explore the solution space. Also
as neither the order or position of genes is significant lhe
current theory of schemata does not hold in this case.

Acknowledgments

The author wishes to thank Emmanuel Falkenaur for
interesting and useful discussions, and Clement Leung for
his help and suggestions with writing the paper.

References

[Davis 911 Davis, L., Handbook of Genetic Algorithms, Van Nostrand
Reinhold

[Garey & Johnson 79! Garey, Micheal R. and Johnson David S.,
Co111puters and Intractability· A Guide to the Theory of NP­
co111pleteness, W.H. Freman Co., San Francisco.

[Goldberg 89] Goldberg, David E., Genetic Algorithms in Search,
Opti111ization & Machine Learning, Addison-Wesley

[Gordon & Whitley 93! Gordon, V. Scott and Whitley, Darrell, Serial
a11d Parallel Genetic Algorithms as Functions Optimizers,
Proceedings of ICGA-93, pp 177-183, Urbana-Champaing
1993

[Gordon, Bohn & Whitley 93! Gordon, V. S., Bohm, A. P. W. and
Whitely, D., A 11ote on the performance of Genetic
Algorithms on Zero-One Knapsack Problems, Technical
Report CS-93-108, Department of Computer Science,
ColorAdo State University.

[Hinterding & JulilT 93! Hinterding, Robert and .Julilf, Kate, A
Get1etic Algorit/1111 for Stock Culling: An exploration of
Mapping Schemes, Technical Report 24COMP3,
Department of Computer and Mathematical Sciences,
Victoria University of Technology, Victoria Australia.

5

[Falkenauer & Delchambre 92! Falkenauer, E.A, A Genetic Algorithm
for Bin Packing and Line Balancing, Proceedings of 1992
IEEE International Conference on Robotics and
Automation(RA92), pp. 1186-1193, Nice 1992.

[Martello & Toth 90! Martello, S. and Toth, P., Knapsack Problems,
John Wiley & Sons 1990, p 2,13.

[Watannabe et al 92! Watannabe, K., Ikeda, Y., Matsuo, S. and Tsuji,
T. Improvement of the Genetic Algorithm and its
Application, Memoirs • Faculty of Engineering Fuki
University 1992, Vol 40 Issue 1.

