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Abstract - This paper uses the simple structure of 
the knapsack problem to study the issues of 
mapping and representation for genetic 
algorithms. Two genetic algorithms using different 
mappings were implemented to solve the problem. 
In one of these neither the order or position of 
genes is significant. Both of the genetic algorithms 
perform well on the problem, and we attribute the 
divergent parameter settings to the different 
mappings. 

1. Introduction 

The knapsack problem can be described as selecting from 
among various items those items which are most useful to 
you, given that the knapsack has limited capacity. 
Knapsack problems have been intensively studied because 
of their simple structure and because they can model 
many classical industrial problems such as capital 
budgeting, cargo loading and stock cutting.[Martello & 
Toth 90]. 

Genetic Algorithms (GAs) are stochastic search methods 
inspired by the genetics of real populations. A population 
of individuals (chromosomes which decode to solutions) 
evolves with selection processes favouring the 'fittest' 
individuals. Cla<>sical genetic algorithms (Goldberg 89] 
use a binary alphabet and fixed length chromosomes 
(binary strings). Binary strings are theoretically tractable 
and form the basis of the theory underlying GAs. 
However GAs using larger alphabets and variable length 
chromosomes have been developed. 

This paper studies the issues of mapping and 
representation associated with GAs by using two different 
GAs to solve the knapsack problem. As more direct 
methods already exist to solve the knapsack problem in 
polynomial time it's not the aim of this study to compete 
with these. Instead we use the knapsack problem as a 
vehicle to investigate effects of different mappings on the 
behaviour and the efficiency of GAs. The motivation was 
to further explore GAs where neither the position or 
ordering of genes in the chromosome is significant. Such 
GAs were used to solve the bin packing problem 
[Falkenauer & Delchambre 92] and stock cutting 
problems [Hinterding & foliff 93]. 

Two GAs using different mappings were implemented to 
solve the Knapsack Problem. One uses variable length 
chromosomes, an encoder to generate valid (legal) 
knapsacks as chromosomes with new crossover and 
mutation operators. The other uses a fixed length 
chromosome with Uniform Order Based crossover, swap 
mutation and a decoder to map from the chromosome to 

legal knapsacks. 

Both GAs performs well on the problems. The parameter 
settings for the two GAs differ markedly and this can be 
attributed to the different mappings. The GA where 
neither the position or order of the genes in the 
chromosome are significant is shown to be viable, 
although the current theory of schemata does not cover 
this type of GA. 

2. The Knapsack Problem 

The knapsack problem under consideration is the 0-1 
Knapsack problem which is classified as NP-hard [Garey 
& Johnson 79]. The 0-1 knapsack problem has been 
solved using a number of mathematical techniques 
including dynamic programming, and branch and bound 
algorithms. 

The 0-1 Knapsack Problem (KP) is described as: 

Given a set of n items and a knapsack, with: 
p; =profit of item}, 
W ; =weight of item}, 
c = capacity of the knapsack, 

select a subset of the items so as to 
n 

maximise z = L p1X1 

j=I 

n 

subject to L w ;x, $ c, 
j=l 

Xj = 0 or 1, j E N = { 1.. n}, 

{
I if item j is selected; 

where X1 = 
0 otherwise. 

The knapsack problem was chosen as a problem with the 
following features: 

• The solution is not numerical. 
• The alphabet is larger than the number of genes. 
• The number of items in a solution is not fixed. 
• The order of the items in a solution is of no 

significance. 

A problem where the structure and the restraints usually 
associated with GAs were absent was desired. The 
knapsack problem fits these requirement<> very well. The 
problem is to select the most valuable set of items from a 
larger set, satisfying a simple capacity constraint. 

Other researchers have solved the 0-1 knapsack problem 
using GAs. Watannabe et al [Watannabe 92], looks only 

mailto:rhh@matilda.vut.edu.au


at small problems (16 and 24 items) using a bit string 
representation. Gordon at al [Gordon & Whitley 93] 
[Gordon, Bohn & Whitley 93] use a much larger range of 
problem sizes ( 20 to IOOO items) comparing the results of 
different serial and parallel GA models with the results 
obtained from more direct methods such as branch-and­
bound and depth-first search. They also use a bit string 
representation and report disappointing results compared 
to the more direct methods. 

3. Representing the Problem. 

Two different representations were used to solve the 
knapsack problem using GAs. The Selection based GA 
which uses a direct representation and dense encoding, 
and an Order based GA which uses an indirect 
representation. This GA uses an encoding with genes in 
tlie chromosome which are not expressed in the 
phenotype. 

The following example knapsack problem is used in this 
section. The capacity of the knapsack is IOO. The 
numbers used in the text refer to the item numbers in the 
example problem. 

Item No. 1 2 3 4 5 6 7 
Wei!!ht 40 50 30 IO 10 40 30 
Profit 40 60 IO 10 3 20 60 

Table 1: Example knapsack problem. 

3.1. Mapping using a Selection based Genetic 
Algorithm 

The most direct mapping is to let the chromosomes 
represent legal knapsacks directly. The genes in the 
chromosome will represent tlle items in tlle knapsack, and 
as tlle number of items in a legal knapsack is not fixed, 
we need to use a variable length chromosome. The order 
of tlle items in a legal knapsack has no meaning, so the 
order of tlle genes in our chromosome will also have no 
meaning. This means tllat we don't have alleles in our 
chromosome. Hence ( 4 5 7 3 ) and ( 2 6 5 ) are both 
legal knapsacks and both ( 2 6 5 ), ( 6 2 5 ) represent tlle 
same legal knapsack. 

Repeat 
Search left to right for first item that does 
not violate the capacity constraint. 
If item found 

add to knapsack, 
else 

tenninate algoritllm 

Fi oure 1: First fit al!!oritllm e ~ 

As we use a direct representation, we do not need a 
decoder to map from tllc genotype to tlle phenotype. To 
!!eneratc tlic initial population we need an encoder to 
~cnerate random legal knapsacks. The encoder we use is 
; first fit al!!oritllm (see fig. 1 ), which given an ordering 
of items will select in order tllose that meet tlle capacity 
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constraint and reject items resulting in a constraint 
violation. The initial population is generated from 
random orderings of the items using tlle first fit 
algorithm. 

3 .1. 1. Reproduction 

The reproduction operators we use can not be any of the 
standard ones as these rely on the position or the ordering 
of the genes in the chromosome being significant. 

3.1.1.1. Crossover 
The crossover operator used is the Injection crossover, 
which is a simplification of Falkenauers' Grouping 
crossover(BPCX) [Falkenauer & Delchambre 92]. This 
crossover will work witll chromosomes of different 
lengtlls, and does not depend on any ordering of tlle 
genes. It was designed so tllat tlle child can inherit 
meaningful information from both its parents. In tllis 
case it is tlle selection of items tlle parents have. It also 
behaves as expected; if the parents are identical they will 
produce a child that is the same as the parents. 

The Injection crossover works in the following way: we 
randomly choose an insertion point in parent 1 and a 
segment in parent 2. The child is constructed by first 
copying into it the genes from parent 1 up to tlle insertion 
point. Then we copy the segment from parent 2 into the 
child, and lastly we copy the genes after the insertion 
point till tlle end of the chromosome. Note that when 
copying genes into tlle child we do not add genes that 
already exist in the child. The proto-child chromosome 
which we have now constructed may contain too many 
items( in term of the capacity of tlle knapsack). So we 
now apply a fix-up step by applying the first fit algorithm 
to the proto-child chromosome to produce the child 
chromosome, which is a legal knapsack. 

Parent 1 

Parent 2 

Proto-child 

Child 

J,lnsertion Point 

ffiEJ 

''f''7f' 
Segment 

I 2 I s I 7 I 6 

11 2 I 5 I 7 

Weight: 100 Profit: 83 

Weight: 80 Profit: 83 

Weight: 90 Profit 123 

Figure 2: Injection Crossover 

3.1.1 .2. Mutation 
Mutation is based on Faulkenauer's group mutation 
operator [Falkenauer & Delchambre 92]. A number of 
genes are chosen at random and these are deleted. We 
tllen append the items in random order that were not 
present in tlle chromosome, and use tlle first fit algorithm 
to generate a chromosome which is a legal knapsack. The 



purpose of mutation in this case is to bring in new items 
into the chromosome. 

3.2. Mapping using an Order hased Genetic 
Algorithm 

Here we let the chromosomes represent orderings of all 
the items. We use a decoder which utilises the first fit 
algorithm to generate a legal knapsack from the ordering 
of items. Hence a chromosome of (1 6 4 7 3 2 5) would 
decode to the knapsack ( 1 6 4 5) which has a profit of 73; 
items 7, 3 and 2 are rejected because their individual 
inclusion would result in constraint violation (see table 2). 
Here the genotype represents an ordering of the items, 
and the phenotype is a legal knapsack. We can use an 
order based chromosome and choose suitable crossover 
and mutation operators. Using this method we convert 
what is a selection problem into an ordering problem. 

Knapsack Items left Weil!ht Profit 
empty 1647325 0 0 
1 647325 40 40 
1 6 47325 80 60 
1 6 4 7325 90 70 
1 6 4 5 732 100 73 

Table 2: First fit decoding 

One of the features of this representation is that not all the 
genes in the chromosome are represented in the solution. 
That is, there are genes in the genotype that are 
unexpressed in the phenotype, and the number of such 
genes will depend on the capacity of the knapsack and the 
items used in the knapsack. 

The crossover operator used is Uniform Order Based 
crossover[Davis 91 ], and mutation is the swapping of two 
randomly chosen genes in the chromosome. 

3.3. The Fitness Function 

The fitness function that we maximise is the profit of the 
items in !lie knapsack divided by the profit of all the 
items. This gives us a value in the range 0 to 1, but it will 
always be less than 1 for this example, and depend on the 
capacity of the knapsack. Hence the smaller the capacity 
of the knapsack the smaller the maximum fitness will be. 

4. The GA 

The ba-;ic Genetic Algorithm used in both cases is a 
steady-state GA ba-;ed on the description of OOGA in 
Davis ( Davis 91 ] . It was developed using SmalltalkN 
for Windows and then translated into C++. The following 
parameters can be set: 

• 
• 

• 

Population Size - set !11e size of the population . 
Replacement Rate - set the percentage of the 
population that will he replaced hy reproduction in 
one generation. 
Number of Evaluations - set the number of 
evaluations for the run. We use evaluations rather 
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than generations so that we can compare between 
runs where the population size and replacement rate 
are different. 

• Mutation Rate - set the percentage of the 
replacement population that will be produced by 
mutation. The remainder of !lle replacement 
population will be produced by crossover. 

• Allow Duplicates - set a flag to allow or disallow 
duplicates to exist in the population. If duplicates are 
not allowed, any duplicates produced by reproduction 
are discarded while they still count as an evaluation. 
We determine whether two chromosome are !lle same 
by comparing !lleir genotypes. 

In the Genetic Algori!llm used, a new chromosome is 
produced either by crossover or mutation but not both. 
This was done so that !lle separate eff ecL'> of these 
reproduction operators could be determined. 

The mutation rate for the order based GA is the mutation 
rate of the chromosomes, and mutation will swap two 
genes in the chromosome. The mutation rate for the 
selection GA is the mutation rate of the genes. It was felt 
that this reflected better what happens in nature, in that 
we would expect more genes to mutate in a long 
chromosome !llan in a short one, rather !llan the same 
number of chromosomes mutating in a chromosome 
regardless of its length. This was done by using a random 

generator with a Poisson distribution. We set A to be the 
gene mutation rate multiplied by the leng!ll of the 
chromosome. The values returned are the number of 
genes in the chromosome which are to mutate. A value of 
zero indicates that mutation does not occur and crossover 
is to be used to generate the new chromosome. Further 
research needs to be done on this, but the results indicate 
that using this method produces superior performance. 

5. Results 

For this study we generated a 50 item and a 100 item 
problem. We used three different knapsack capacities 
expressed as a percentage of the total weight of the items 
for each of the problems. The global maximum fitness for 
each of the problems is summarised in the following 
table: 

Capacity/ 25% 50% 75% 
Problem 
50 0.64781 0.861296 0.960133 
100 0.57001 0.81889 0.959883 

Table 3: Problem configurations and global maximums 

For the 50 item problem the GA was run for 10,000 
evaluations, and for the 100 item problem it was run for 
20,000 evaluations. All the results were produced by 
averaging the data of 20 runs. 

Replacement Rate: this was varied from 15% to 95<7< and 
a replacement rate of 25% was found to give best results. 
All the results shown were run with a replacement rate of 
25%. 



Duplicates Allowed: It was found that not allowing 
duplicates in the population significantly improved the 
results. All results shown are from runs where duplicates 
were not allowed. 

A range of values for the other parameters was tried in 
order to find the values which maximised the efficiency of 
the GA. The results are summarised in tables 4 and 5. 
Comparative performance of the GAs on the l 00 items 
75% capacity problem is shown in Figure 3. The 
Selection based GA did not find the global maximum for 
the 100 item problem, however the values found are 
within 99.8% of the global maximum. 

Prob/Cap Pop size Gene Best fitness Evals 
mutation needed 

50125 50 2 0.64781 6,000 
50150 50 2 0.861296 5.000 
50175 50 2 0.96013 2,000 
100/25 50 1.8 0.569823 20,000 

I 

100150 50 1.2 0.817624 20,000 
100175 50 I 0.958861 20,000 

Table 3: Selection Based GA results 

Prob/Cap Pop size Chrom. Best fitness Evals 
mutation needed 

50/25 200 0 0.64781 4,000 
' 50/50 150 0 0.861296 2,000 

50175 150 0 0.96013 2,000 
100/25 700 0 0.57001 19,000 
100/50 700 0 0.81889 17,000 
100175 600 0 0.959883 15,000 

Table 4: Order Based GA results 

The mutation rates for the selection based GA are 
observed to be very high. Table 5 relates the gene 
mutation rates used to chromosome mutation rates. For 
the 50 item problem, only integer values for the gene 
mutation rates were used. 

Prob/Cap Gene Avchrom Poisson Chrom. 
mutation size means mutation 

50125 2 16 0.31 27% 

50/50 2 27 0.55 42% 

50175 2 38 0.77 54% 

100125 1.8 29 0.51 40% 

100/50 1.2 52 0.55 46% 

100175 I 77 0.77 53% 

Table 5: Selection Based GA mutation 

Mutation rates for the order based GA showed some 
unexpected trends. For population sizes found to be less 
than optimum, the mutation rate had to be very high to 
!!et the best results (up to 50%). While with population 
~izes greater or equal to the optimum, mutation rates less 
than 10% did not degrade the efficiency of the GA. but 
did not improve it either. Table 4 shows the maximum 
fitness reached after 20,000 evaluations when no mutation 
is used for a range of population sizes for the order hascd 
GA on the 100 item 50% capacity problem. 
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Figure 3: Comparative results of the GAs 
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The time taken for the order based GA running on a 
Spare 10 workstation was 4 seconds for the 50 item 
problem to 2,000 evaluations and 110 seconds for the 100 
item problem to 17,000 evaluations. 

6. Discussion 

Both the GAs performed well, while the order ba....,ed GA 
was better on the 100 item problems. The difference in 
the population size and mutation rate for the two GAs is 
very marked. 

The selection based GA uses a high mutation rate and 
small population. A small population with a set number 
of evaluations will result in more generations being run, 
than for a larger population. As the chromosomes only 
contain items that are in the knapsack, mutation is 
essential to bring in new items and a larger number of 
generations is needed to explore selections using these 
items. As the mutation rate is so high, further research is 
needed to see the effect of allowing both mutation and 
crossover to produce new chromosomes. This may 
increase the G As efficiency. 
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The order based GA uses a large population size and does 
not need mutation for populations sufficiently large. 
When the population is not large enough it converges 
very rapidly on to a phenotype and all members of the 
population will decode to the same phenotype. When this 
is lhe case, mutation rates high enough to stop 
convergence Lo the phenotype are also too disruptive for 
lhe GA to find the global maximum. What appears to 
happen here is that the many to one mapping of genotype 
Lo phenotype effectively reduces the diversity of lhe 
population. Hence a large population size must be used to 
increase the population diversity. When a population size 
larger than the optimum is used the efficiency of lhe GA 
is reduced. Also if sufficient diversity . is present no 
mutation is needed as Uniform Order Ba11ed crossover 
can generate the missing orderings. 

Conclusions 

We have shown that the mapping chosen for a GA can 
dramatically effect the parameter settings of the GA for 
best efficiency. We have also shown that a GA (the 
selection based GA) which uses a large alphabet, has 
variable length chromosomes and does not have alleles 
compares favourably with a more traditional GA (the 
order based GA). In the selection based GA, the size of 
the chromosomes decreases as the capacity decreases for 
the same sized problem, and we consequently need a 
higher mutation rate to explore the solution space. Also 
as neither the order or position of genes is significant lhe 
current theory of schemata does not hold in this case. 
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