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Summary 

Attention is drawn to the need to consider the point of sampling in 
situations where a single sample is used to estimate the mean flow of 
a continuous stream. When the flow rate is varying and where the 
stochastic process, representing the quality characteristic of the 
stream, has a linear or exponential variogram, the extent of variation 
in the location of the optimal sampling point is illustrated using 
linear and exponential flow rate models and some numerical 
examples. 
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1. Introduction 

Many industrial applications of statistics are related to issues of 

process evaluation, process improvement, process control and 

quality assessment. In fact, the current hightened interest in quality 

management has fostered a growth in the use of statistical 

techniques. 
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Companies manufacturing continuous or flowing streams of 

product typically, if their processes are not totally automated, sample 

at regular time intervals for the purposes of monitoring and control. 

Sampling at regular times is frequently preferable to other sampling 

strategies because it is organisationally convenient both from the 

perspective of collecting samples and for scheduling laboratory tests. 

This regime is sometimes interupted, however, when sample test 

values of one or more particular product characteristics indicate that 

further appraisal or corrective action is necessary. Sets of generated 

sample test results, which are likely to be highly correlated, are 

frequently used collectively to describe the quality of the product 

over a particular manufacturing period. From the perspective of 

maintaining control of the process, it is usually individual test values 

that are of prime concern. With this in mind, it is important to 

consider how well individual sample test values apprais~ the 

performance of the process over the time interval which they 

represent. It is often sufficient that a single test value is a good 

representative of the mean of an important product characteristic 

over a period equal in length to the sampling interval. 

Specifically, given a fixed sampling interval, and the fact that 

the mean of a characteristic of the continuous stream, over a period 

equal in length to the sampling interval is to be estimated by a single 

sample test value, then where in the interval is the best point to 

sample? This paper represents a response to this question, taking the 

optimal point to mean the point at which the estimation error 

variance is minimised. 
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2. Assumptions and Practical Context 

Use of the term, 'sampling point' reflects the assumption that a 

product sample can be collected instantaneously, or at least in a time 

interval that is negligable compared with the time between 

commencing the collection of successive samples. The location of the 

optimal sampling point depends on the flow pattern in the particular 

interval and on the stochastic behaviour of the product characteristic 

over the same period. It is assumed, in the following, that the flow 

pattern is deliberate and deterministic. It is also assumed to be 

monotonic within the given interval. The situation under 

consideration is typified by processes whose throughputs are 

progressively increased to a maximum as manufacturing parameters 

approach their optimal performance level. Three flow rate patterns 

will be considered, constant flow, linear flow and negative 

exponential flow. A likely practical production cycle can be 

approximately represented by a linearly increasing flow rate from 

zero to a constant level, maintenance at this level for a period and 

then by a linearly decreasing flow rate to zero.Two adjacent stages 

can be treated as a single one by using an exponential approximation. 

The actual product characteristic of concern , X(t) which can be 

considered to define the quality of the product at time t, is a 

continuous time stochastic process which may indeed be non­

stationary. Optimality of location of the sampling point will be 

obtained on the basis of achieving minimum error variance for 

estimating the mean characteristic of the flow over a given interval 
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using just a single sample value taken within the interval. It has been 

shown, for example by Saunders et al (1989), that for essentially 

constant flows, the error variance is totally expressible in terms of the 

variogram of X(t). When the flow rate is deterministic and 

independent of X(t), this characteristic is preserved. In the 

subsequent analysis, therefore, it is only necessary to make 

stipulations about the form of the variogram of the process, X(t). It 

should be noted, as pointed out by Robinson (1990), that the 

variogram can be stationary even when the stochastic process itself is 

non-stationary. Two cases of stochastic process will be considered in 

conjunction with the flow patterns described above, one having a 

stationary linear variogram and the other having a stationary 

exponential variogram. 

The assumed deterministic nature of the flow pattern is, of 

course, n6t a realistic representation of every situation that can occur 

in practice. Other possible scenarios include those where the actual 

throughput flow rate itself is a stochastic process and under these 

circumstances it may well be necessary to consider the flow and 

quality characteristic as a joint stochastic process in continuous ti.me. 

Another variant is the continuously monitored process, for which the 

flow rate is subject to automatic adjustment in order to accommodate 

other changes taking place in operations. 

3. Fundamentals 

The variogram of X(t) is defined, for the stationary case, as:-
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1 
V(u) = -E[(X(t)-X(t+ u)) 2

]. 
2 

Clearly, V(O) = O and V(-u) = V(u). It would be expected also, that V(u) is 

strictly increasing. When X(t) is stationary then 

V(u) = cr2 
- Cov(u), 

where cr2 is the process variance and Cov(u) the process covariance of 

lag u . If the mean characteristic of the flow over the interval ( which 

is equal in length to the sampling interval) is denoted by x and 

assuming, without loss of generality, that the period over which it is 

desired to estimate this mean is (O,d), then the error variance 

resulting from estimating the mean by a single observation, X(t) 

taken at time t (O < t < d) is given by, E[(X -X(t))2
]. The remainder of 

this paper, having developed an expression for this, deals with 

finding the values of t that minimize it for five combinations of flow 

rate function and process variogram. 

4.1 Case (i): Constant Flow Rate, Stationary Variogram 

Clearly, 
1 d 1 d d 

E[(X -X(t))2
] = E[(-J X(u)du-X(t)) 2

] =-2 E[j f (X(u)-X(t))(X(v)-X(t))dudv] 
d 0 d 0 0 

and using an identity provided by Saunders et al (1989), this reduces 

to:-
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1 d d 2 d 

--2 J J V(v-u)dudv+-J V(u-t)du 
d 0 0 d 0 

1 d d 2 t d-t 

= --2 J J V(v-u)dudv+-{J V(u)du+ J V(u)du} . 
d 00 d 0 0 

Equating to zero the derivative of this, with respect to t, gives, 

V(t) = V(d-t) 

and hence the optimal sampling location at t = o. 5d, irrespective of 

the form of the process variogram. 

4.2 Non-constant flows: 

For situations where the flow rate at time t is some function of t , Y(t) 

units of volume (or mass) per unit of time, then 

d 

J Y(u)X(u)du d 

E[(X-X(t))2 ]=E[( 0 
d -X(t))2 ]= d l E[(JY(u)(X(u)-X(t))du)2

], 

J Y(u)du Cf Y(u)du) 2 0 

0 0 

d 

where J Y(u)du is the total volume (or mass) of the product 
0 

throughput in the interval (O,d), 

d d 

- d l E[f J Y(u)Y(v)(X(u)- X(t))(X(v)-X(t))dudv], 

Cf Y(u)du)
2 0 0 

0 

1 d d 

- d J J Y(u)Y(v)(-V(u-v)+ V(u-t)+ V(v-t))dudv. 

Cf Y(u)du)
2 0 0 

0 
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The optimal sampling point is thus given by solving the equation:-
d t d-t 

-{JY(t-u)V(u)du+ Jrcu+t)V(u)du}=O ........... (1) 
dt 0 0 

4.3 Case (ii): Linear Flow Rate, Linear Variogram. 

Let the flow rate function be Y(t) =Ct+ D, o <ts d where there are two 

distinct cases, (a) Os C,D and Cd+ D s K, where K is the maximum 

possible flow rate and (b) c < O,D > O and -Cd s D s K. Cases (a) and (b) 

correspond respectively to increasing (and constant) and decreasing 

rates of flow over (0, d). 

If the variogram is denoted by V(t) =A+ Bt for t > O and with A,B > O 

then (1) becomes, 

d t t d-t d-t 

-{(Ct+ D) J (A+ Bu)du-cf (Au+ Bu2 )du+(Ct+ D) J (A+ Bu)du+ CJ (Au+ Bu2 )du} = 0 
dt 0 0 0 0 

giving, the equation Ct2 +2Dt-d(D+ Cd)=O which has solutions, 
2 

t= 
-D±~D'+Cd(D+ ~d) 

when c :;t 0 c 
and 

d 
when C=O. t= 

2 

For case (ii)(a), it can be seen that there is only one positive solution 

in (0, d) lying between t = ~ and t = d. For case (ii)(b) there is just one 

solution between t = o and t = d and further,this can be shown to lie 
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between t = o and t = d . It should be noted that neither parameters of 
2 

the variogram appear in the expression that gives the optimal 

sampling point. When D= o, the solution can be seen to bet=~ · 

Table 1. Some Numerical Results:-

Let K = 1 o tonnes per hour and d = 1 hour, 

o/cCC< 0) 
Optimal Sampling 

o/cCC> 0) 
Optimal Sampling 

Location Location 

-9 0.49 0 0.71 

-4 0.46 0.25 0.65 

-2 0.42 1 0.58 

-1.5 0.38 4 0.53 
I 

-1 0.29 8 0.51 

4.4 Case (iii): Linear Flows, Exponential variogram. 

Let the flow rate function be as defined for case (ii) and the 

variogram be of the form, 

V(u) =A+ B(l-e-Eu) for E > 0 and A,B > 0. 

Again, applying equation (1) and simplifying, the following 

quadratic equation is obtained, 

y2e-Ed (DE+dCE+C)-2Cy-(ED-C) = 0 where y = eEt, 
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providing the solutions Y = C±~C2 
+(ED-C)(DE+dCE+C)e-Ed 

e-Ed (DE+ dCE + C) 

For the case where c = o the solution t = d is retrieved. 
2 

Table 2. Some Numerical Results:-

Let K = 10 tonnes per hour, d = 1 hour and E = 5, 

o/cCC < O) 
Optimal Sampling 

o/cCC>O) 
Optimal Sampling 

Location Location 

-9 0.46 0 0.78 

-4 0.41 1 0.67 

-2 0.33 4 0.57 

-1 0.22 8 0.54 

4.5 Case (iv): Exponential Flow Rate, Linear Variogram. 

Let the flow rate function be given by:-

Y(t)=C+(K-C)(l-e-v1
) with 05'C5'K and D'2:.0, 

which is the case of increasing (and constant) flow rate over the 

interval (O,d). Let the variogram be defined as in case (ii). Applying 

equation (1) yields the simplification, 
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-Dt DK 1 (1 dDK -Dd e + t-- + +e ) = 0 
(K - C) 2 (K - C) I 

which can be solved numerically, for example by using the method 

of Newton-Raphson. For the case where c = o this reduces to, 

e-Dt + Dt-_!_(I +dD+e-Dd) = o which can be shown, for the constraints 
2 

assumed on the parameters, to have a single solution in the interval 

(0, d) and lying to the right of centre. 

Table 3. Some Numerical Results:-

Let K =Io tonnes per hour and d =I hour and c = o, 

D Optimal Sampling Location 

0.1 0.70 

1 0.67 

5 0.59 

4.6 Case (v): Exponential Flow Rate, Exponential Variogram. 

Let the flow rate be defined as in case (iv) and the variogram as in 

case (iii) with the added condition that D -:F- E. Application of equation 

(1) yields, 

eEt e-Ed (D- E)(K(D + E)- (K - C)Ee-dD )- e-Et (D + E)(KD- CE)+ 2e-vr (K - C)ED = 0 

When c =Kor D = O or D--::, oo this reduces to case (i). As in case (iv), a 

solution is only possible by numerical means. 
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When D=E application of equation (1) yields, 

e2Dce-Dd (2K -(K -C)e-Dd)-2D(K -C)t-C-K = 0. 

Table 4. Some Numerical Results:-

Let K = 10 tonnes per hour and d = 1 hour, c = o and E = 1 

D Optimal Sampling Location 

0.1 0.72 

1 0.69 

2 0.66 

5 0.60 

5. Concluding Remarks 

The variation in the location of the optimal sampling point, for mean 

flow estimation, has been demonstrated using some flow rate and 

variogram models that have some practical merit. For a 

monotonically increasing flow rate, the optimal sampling point 

moves to the right of the interval centre and for a monotonically 

decreasing one, it moves to the left of centre. It follows then, that for 

situations where the rate of process throughput is largely regulated, 

there may well be a case for carefully considering the time at which 

samples are taken, particularly in the 'warm-up' and 'close-down' 

periods. From a practical stand-point, a decision on the sampling 

time needs to be made with regard to the importance of getting a 
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greater error variance by virtue of not sampling at the optimal point. 

For case (i), for example, when the process variogram is linear and 

the flow rate constant, the estimation error variance varies between 
Bd d 2Bd d d" h . th 1 . k A+6 an A+-

3
- epen mg on w ere m (O,d) e samp e 1s ta en. 
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