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Abstract 

Three configurations of block edge detections based on the third level of the conjugate classification 

for binary images of the hexagonal grid, are investigated in this paper. Constructing an operation 

of three configurations, it is necessary to collect a state set contained 48, 66 and 90 states as 

the structuring patterns respectively. To represent the selected state set in equivalent detecting 

functions, cellular logic and conjugate functions are illustrated and compared. Because a conjugate 

function uses a class representation for structuring patterns, its real implementation is very efficient. 

For three configurations of 0 (or 1) block edge detections, a speed-up ratio 6-15 compared with the 

same activity performed by a standard implementation in a cellular logic function, can be measured. 

Sample processed pictures and their timing measurements are illustrated and analyzed. 

Key Words: cellular logic computation, structuring patterns, pattern recognition, block edge 

detection, computational complexity, conjugate classification and transformation. 

1 Introduction 

For any binary image, various edge and line structur~ components play the most--eminent role in 

analyzing binary images [Kong and Rosenfeld 1989, Serra 1982]. Many practical analysis tasks strongly 

depend on different edge detections such as in computer vision and pattern recognition applications. 

An efficient scheme of simple block edge detection for the hexagonal grid has been investigated by 

the author (Zheng 1993a]. The conjugate transformation for binary images of the hexagonal grid was 
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proposed by Zheng and Maeder (1993). An efficient scheme for simple 'line component detections (or 

simple network detection) on the hexagonal grid is examined by Zheng (1993b) and three configurations 

of network detections for binary images of the hexagonal grid are investigated by Zheng (1993c). In 

this paper, three configurations of block edge detections are presented. Their detecting functions and 

time complexity measures of the implementations are compared. 

How to separate 0 or 1 block edge components - block edges- from other parts is a difficult and practical 

problem in many image analysis and pattern recognition applications. Since multiple structuring 

patterns of a 2D binary image have to be selected from a given grid, it is possible to use different 

invariants such as rotational invariant to organize all involved states into classes [Golay 1969, Zheng 

and Maeder 1992]. The possible number of structuring patterns for general block edge points is 

larger than the possible number of structuring patterns for specific block edge points. It is necessary 

to investigate the family of block edge detections from simple to complex in a hierarchy to deeply 

understand the properties involved in these operations. 

For most practical applications, operations of block edge detections are relevant to operations 

detecting all clear block edge-oriented patterns (or simple block edges). However, huge practical 

applications of computer vision and pattern recognition depend on either intermediate or final results 

of thinning or skeleton operations. During thinning or skeleton procedures, if we want to perform a 

block edge detection, then in addition to simple block edge points, it is essential to concern other mixed 

points such as line and block edge intersection point's to identify extensive block edge points contained 

more intersection patterns than simple block edge detection. Using cellular logic expression, there is 

a standard implementation to detect a selected state set. In a canonical form of these expressions, if 

there are n states selected and each state requires t binary operations, then a total of n x t binary 

operations are expected to determine a block edge point dependent on the selected state set. 

Three configurations of block edge detections for binary images of the hexagonal grid is investigated 

in this paper which is divided into following sections. In section two, three clumps (primitive classes 

of states) of block edge detections on the hexagonal grid are defined and examined. The state sets 
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needed to be selected for a family of block edge detections are investigated. In addition, the symmetric 

operations used to manage the relevant state set are investigated. In section three, cellular logic and 

conjugate equations are used to express each detection function-in a canonical expression. Their 

theoretical complexities and speed-up ratios are analyzed. In section four, sample pictures of three 

configurations of block edge detections and their real time measurements are illustrated. Theoretical 

and real speed-up ratios are illustrated; and finally in section five the main contributions of the paper 

are summarized. 

2 Primitive Classes of Block Edge Detections 

To gain a clear explanation of block edge detection, it is convenient to start from a relevant example. 

First, the problem of block edge detection is examined using sample pictures in Figure 1 (a)-( c ). 

Figure l(a) is a sample image composed of other structures (isolated, inner and network components) 

and 1-block edges. It has been separated into other structures in Figure l(b) and 1-block edges in 

Figure 1( c). If we restrict the image to the hexagonal grid, is it feasible to perform similar operations 

mechanically? 

2.1 The Kernel Form of the Hexagonal Grid 

To answer this question, it is necessary to analyze how many structuring patterns are required for 

block edge detection. 

Let X denoted a binary image on the hexagonal grid, x E X be a given point of the image. The 

simplest scheme for block edge detection on the hexagonal grid uses seven adjacent grid points (the 

kernel form of the hexagonal grid) as the structuring form. The kernel form is a regular form composed 

of seven grid points for which one point x is at the centre and another six neighbouring points x 0 - x5 

are around it. The kernel form can be denoted by ]( ( x) shown in Figure 2. Each point is allowed to 

assume values of only 1 or O; seven points have fixed values as a state (structuring pattern), and there 

is a total of 128 states as a state set denoted as Q(K(x)) for the kernel form. 

3 



(a) Original Image 

(b) Other Components 
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( c) 1-Block Edges 
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Figure 1: Identifying 1-Block Edge Components from a Binary Image (a)-(c). 
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K(x) = Xs x X = (x .•. X· .•• X1 Xo) - (xs .•. X· ... Xi Xo) 
2 ' ' " ' ' - ' ' " ' ' ' 

Xi E {0, l}, 0 ~ i ~ 6, x EX. 

Figure 2: The Kernel Form of the Hexagonal Grid 

2.2 Different Block Edge Points 

For any point x of a binary image on the hexagonal grid, it is a block edge point if it has at least two 

neighbouring points in a run which have the same value as x and there is at least one neighbouring 

point in opposite value. It is a simple block edge point, if it is a block edge point and all neighbouring 

points which have the same value as x are arranged as one run and other neighbouring points with 

the opposite value in another run. It is an extensive block edge point, if it is a block edge point and 

there are more than two runs of neighburing points in the same value as x. 

2.3 Three Clumps of Block Edge Patterns 

In order to satisfy the requirements of detecting 1-block edges, the following state sets have to be 

selected as the structuring patterns. There are eight rotational invariant classes with a total of 45 

states in three clumps - first clump: 24 states in four classes for simple block edge patterns; second 

clump: nine states in two classes for extensive block edge patterns with two runs (3-1 and 2-2 runs) 

and third clump: 12 states in one class for extensive block edge patterns for two runs (2-1 and 1-2 

runs) respectively shown in Figure 3. Conversely, for describing 0-block edges, another three clumps 

of the conjugate state sets have to be selected as the structuring patterns. There are eight rotational 

invariant classes with a total of 45 states too shown in Figure 4. 

Because a. block edge is composed of three clumps of states in 16 rotational invariant classes, it is 

necessary for representations of both 0 and 1 block edges to select a. total of 90 states as structuring 
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Structuring Patterns of 1-Block Edges: 
First Clump - 24 Patterns in Four Classes 

{ 
0 0 

}· 0 0 • 0 1 • • 1 0 

0 0 0 0 0 0 

{ ' 
1 0 

' } 1 • 0 1 1 • • 1 

0 0 0 0 0 

{ 
0 1 

}· 0 1 1 • 0 1 • 1 1 

0 0 0 

{ ' 
0 1 

' } 1 • 1 1 1 • • 1 

1 0 

Second Clump - Nine Patterns in Two Classes 

{ ' 0 

' } ; 1 • 1 1 • • 1 

0 0 0 

{ ' 
1 0 1 0 

' } ; 
0 • 1 1 1 • 1 

0 0 

Third Clump - 12 Patterns in Two Classes 

{ 
0 0 

}· 0 0 • 1 1 • • 1 0 

0 0 0 0 

{ ' 0 0 

' } ; 
0 • 0 1 • • 1 

0 0 0 0 

Figure 3: Three Clumps of Structuring Patterns for 1-Block Edges 
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Structuring Patterns of 0-Block Edges: 
First Clump - 24 Patterns in Four Classes 

{ 0 0 0 0 }; 0 1 • 1 0 0 • • 0 0 

{ o - 0 0 0 0 }; 0 0 • 1 0 0 • • 0 0 

0 

{ 0 0 0 0 0 }; 0 0 • 1 0 0 • • 0 0 0 

0 0 0 

{ ' 
0 0 0 0 0 . } 0 0 • 0 0 0 • • 0 0 

0 0 0 0 0 

Second Clump - Nine Patterns in Two Classes 

{ ' 
0 0 0 0 0 

' } ; 
0 0 ' 0 0 0 • • 0 0 

0 0 0 

{ ' 
0 0 0 0 . } ; 0 1 • 0 0 0 • 0 0 

0 0 0 1 0 

Third Clump - 12 Patterns in Two Classes 

{ 
0 0 0 0 1 }; 0 1 • 1 0 0 • 0 0 0 

0 0 

{ ' 0 0 0 0 

' } ; 
0 1 • 0 0 0 ' • 0 0 

0 0 

Figure 4: Three Clumps of Structuring Patterns for 0-Block Edges 
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patterns. If we could get a simpler organization to identify these block edge states, then it is helpful for 

block edge detection to get an efficient algorithm. Therefore, the requirements of looking for efficient 

operations of block edge detections force us to investigate proper representations of the state set of the 

kernel form of the hexagonal grid. From the above discussion, we can establish the following lemma. 

Lemma 2.3.1 For any binary image of the hexagonal grid, if the kernel form of the grid is selected as 

the structuring form and three clumps of block edge patterns need to be identified, then it is necessary 

to select 90 structuring patterns from its 128 state set. The selected structuring patterns belong to 16 

rotational invariant classes and each class contains three to six states. 

Proof: No other states can be identified as block edge state from the hexagonal grid in relation to 

the kernel form except selected states in Figures 3-4. Three clumps of state sets shown in Figures 3-4 

contain all state set relevant to 0 and 1 block edge points. Each number of a class can be counted 

directly. D 

From an algebraic viewpoint, three operations can be identified to transform the structuring patterns 

of block edge detections. The first one is the conjugation which establishes 0 to 1 and 1 to 0 symmetry. 

The second one is the number of connections and the third one is the number of branches. Three 

conditions play the key role for the problem of block edge detections. 

2.4 The Conjugate Classification of the Kernel Form 

The conjugate classification of the kernel form of the hexagonal grid is established by Zheng and Maeder 

{1992) and further systematic investigations are shown in [Zheng Thesis 1994]. For a convenience in 

description, the classification can be briefly described as follows: 

The kernel form ]( ( x) of the hexagonal grid is a point x with six neighbouring points around it. 

When each point is allowed to assume values of only 0 or 1, there is a total of 128 states corresponding 

to unique instances of the kernel form. From the state set Q(K(x)) of 128 states and the inclusion 

relation of set theory, we can use a hierarchy of six levels to represent the conjugate classification. 

Each level contains 128 states and each node is a subset of states. Any two nodes in the same level do 
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not contain the same state. If we let Q(K(x)) be the root, then the first level can be divided into one 

state set G and one conjugate state set G dependent on the value of the centre point x, x E { 0, 1}. The 

second level of 14 nodes {pG,P G} can be distinguished by p, the number of connections, 0 ::; p ::; 6, 

that is, the number of six neighbouring points with the same value of the centre point. The third level 

of 22 nodes U G} and {~ G} is related to q which corresponds to the number of branches, O ::; q ::; 3 (the 

number of runs of the six neighbouring points with the same value of the centre point in each state). 

The fourth level of 28 nodes {~G'} and UG'} has the property of rotational invariant in which any two 

states in a node can be congruent by rotation, and s denotes the number of spins, s E { -1, 0, 1 }. Only 

six nodes for q = 2 need to be identified using s. The fifth level of 128 leaves {:G:} and {:G:} has a 

simple relation to the respected state, and r denotes the number of rotations 0 ::; r ::; 6. In short, the 

conjugate classification is a hierarchy of six levels: one root, two nodes, 14 nodes, 22 nodes, 28 nodes 

and 128 leaves. Each node of the hierarchy is a class of states with 1-5 calculable parameters. The 

whole structure of the classification has been represented by (x,p,q,s,r) which denote five calculable 

parameters of this classification [Zheng and Maeder 1992]. For convenience, each intermediate node 

is called a class too. 

2.5 The Proper Level for Block Edge Detections 

The hierarchical structure of the conjugate classification provides a :flexible framework for supporting 

different applications. It is obvious that x or ( x, p) is not enough to describe the selecting block edge 

classes. However, it is possible to use three parameters (x,p, q) for the description. 

We need some explanations to determine which level is a proper level of the conjugate classifi.cation 

for an arbitrary operation of block edge detections. If states in first to third clumps need to be selected, 

it is necessary and sufficient to use the third level: (x,p,q). Owing to this reason, we use the third 

level of the conjugate classification to implement required operations, that is, the substructure of the 

conjugate classification involving 22 nodes {:G} and {:G}. 

The third level of the conjugate classification is illustrated in Figure 5. Some details of two nodes are 

explained in Figure 5( a), and their 22 nodes are shown in Figure 5(b). 
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1 1 0 1 0 0 1 0 1 1 1 1 xs.1. lG = { 0 1 1 • 0 1 1 • 1 1 1 1 1 0 1 1 0 • 1 1 1 } p. 4, four oonnections; 
0 l 1 l 1 1 1 1 1 0 0 0 

q • 1, one branch. 

~ 
0 1 1 0 xs.o; = { 1 0 0 0 0 1 -} 
0 1 1 0 

p • 3, three connections; 

q • 3, three branches. 

(a) Two Nodes of !he Third Level of !he Conjugate C!llsificaticn 

0 0 1 1 1 1 0 0 
0 1 0 1 1 1 1 0 1 0 0 0 

0 0 1 1 1 1 0 0 

gG 1 0 1 1 1 1 1 1 1 1 ~ gG 0 1 0 0 0 0 0 0 0 0 o(l 
0 1 0 0 1 0 0 1 1 0 1 1 0 1 1 

8 
1 0 1 1 0 1 1 0 0 l 0 0 l 0 0 

0 0 0 0 0 0 0 1 1 1 1 l l 1 l 1 1 0 0 0 

,G ,G ,G !G ,G ,G ,G ,G ,G ,G 
1 2 3 5 1 2 3 4 5 

1 0 1 0 1 0 0 1 0 1 0 1 
0 l l 0 l l 0 1 1 l 0 0 1 0 0 l 0 0 

0 0 0 l l l 1 1 l 0 0 0 

l 0 1 0 l l 0 1 0 1 0 0 
0 1 0 0 1 0 0 1 0 l 0 1 1 0 1 1 0 1 

0 1 1 1 1 1 1 0 0 0 0 0 

kl ~ ~ ~ ~ ~ 
1 0 0 1 

0 1 1 1 0 0 
1 0 0 1 

~ ~ 
(b) The 22 Nodes of !he Third Level of !he Conjugate C!llsificaticn 

Figure 5: The Third Level of the Conjugate Classification 

In order to describe the selected structuring patterns, only flG, ~G,~G, JG,lG,;G, ~G, ~G,~G, ~G,lG,;G} 

nodes of the third level of the conjugate classification, are relevant. Their combinations can satisfy 

the most applications of block edge detection relevant to the first to third clumps. 

Proposition 2.5.1 The third level of the conjugate classification can provide a necessary representa-

tion for the 16 classes of block edge points of the hexagonal grid. 

Proof: The third level of structure contains 12 nodes relevant to selected 16 classes that can be 

distinguished from each other. It is necessary to support most combinations of these classes. Neither 

(x,p),(x,q),(p,q) nor (x),(p),(q) can represent the required classes. So it is necessary for a block 

edge detection to use the third level. D 
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2.6 Three Configurations of Block Edge Detections 

Since we can select a subset of 12 nodes from the third level to generate an operation of block edge 

detections. It is necessary to declare what are three configurations in our investigation. 

Let Ai or Bi C 9(K(x)) denote the block edge state set of the i-th configuration, 0 ~ i ~ 2. Six 

block edge state sets can be defined as follows: 

Ao {~(;,~(;,~(;,~(;}; (1) 

Bo 
l_l_l_l_ 

(2) - {2(;, 3Ci, 4Ci, sli}; 

A1 {Ao,;Ci}; (3) 

B1 {Bo,;G}; (4) 

A2 - {Ai,ili}; (5) 

B2 - {Bi,iG}. (6) 

As for the previous investigations for block edge points of three clumps, three configurations 

correspond the best possibility to use three clumps on the third level of the conjugate classification 

for block edge detection. 

Let I Ai I denote the number of states in Ai, we have 

IAol - IBol = 24; (7) 

IAd - IBd = 33; (8) 

(9) 

For convenience in representations on the third level, we use above three configurations to construct 

six operations for block edge detections. 

3 Expressions for Block Edge Detections 

In this section, detecting expressions in relation to both cellular logic and conjugate functions are 

illustrated. 
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3.1 Cellular Logic Computation 

For a given configuration Ai or Bi, we can use each state in the state set as a mask to represent 

a detecting expression in one of two canonical forms. Let I E 9(K(x)) be a state, Ji E {O, 1}, 

x{' =(xi I- Ji)= (-ixi n Ji) u (xi n -,Ji) and x;'1' =(xi= Ji)= (xi n Ji) u (-ixi n -,Ji)· The detecting 

expression for x point needs to contain all variables in K(x). An expression can be denoted by either 

CL(K(x),A;) or CL(K(x),B;). 

In convenience, let Xs = x and x,,I, E {O, 1 }, i E {O, .. ·, 6} and let Y; be a detecting function of 

the j-th configuration for 1-block edges and Y; be a detecting function of the j-th configuration for 

0-block edges, j E {O, 1, 2}. We have two expressions. 

Y; - CL(K(x),A;) (10) 

- U1e.A,(nT=oxf'); 

Y; - CL(K(x),B;) (11) 

- ( 6 ..,/ · ) n/EB; Ui:OXi • · 

It is evident that the first detecting expression determines a 1 block edge point and the second 

expressions determines a 0 block edge point on the image. There is one-one corresponding relationship 

between a configuration of block edge detection and a detecting expression in cellular logic compu-

tation. However it is well known that there is no simple method to simplify a canonical Boolean 

expression into its optimal form when the expression contains rotational invariant classes [Dougherty 

1992, Serra 1982]. For most applications, it is most convenient to use two canonical expressions. Ow-

ing to intrinsic difficulties of simplification of cellular logic expressions, it is reasonable to assume that 

a running time measurement of a detecting function is proportional to the number of states contained. 

3.2 Conjugate Functions for Block Edge Detections 

The third level of the conjugate classification uses three invariants: ( x, p, q) representing different 

classes of the state set, Two parameters p and q are not Boolean variables. It is necessary to use 

arithmetical operations representing the respected expression. 
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For any class of the third level of the conjugate classification, there are three parameters ( x, p, q ): 

conjugation, connection and branch, x E {0,1},pE {0,1,···,6} and q E {0,1,2,3}.- Three configura-

tions correspond top= q, p ~ 1 plus q = 2, q = {3, 4} conditions. 

Two parameters p and q can be evaluated by following expressions. 

5 

P - l:(xi=f:x); (12) 
i=O 

(13) 

In order to describe the selected nodes of 1 or 0 block edge points, we can use the following 

expressions to project each (x, p, q) index into a 0-1 value. 

Let { =, =/:, 5, ~} be arithmetic logic operations. For any x and y, 

l 1, if x = y; 
x::y -

0, otherwise. 

l 1, if x =/: y; 
x=f:y 

0, otherwise. 

l 1, if x 5 y; 
x5y -

0, otherwise. 

11, if x ~ y; 
x~y -

0, otherwise. 

Using four operations plus three Boolean logic operations, we can express all three configurations of 

0 or 1 block edges through six functions. 

Using the same Y; (or Yi) function as output value for a 1 (or 0) block edge point of the j- th config-

uration and any configuration Ai (or Bi), let Yi= CT(K(x),Ai) (or Yi= CT(K(x),Bi)) denote the 

detection function for the given condition, We have six functions (Type A). 

Yo = CT(K(x),Ao) (14) 
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- ( ( x = 1) n ( q = 1) n (p = 2)) u ( ( x = 1) n ( q = 1) n (p = 3)) u 

( ( x = 1) n ( q = 1) n (p = 4)) u ( ( x = 1) n ( q = 1) n (p = 5)); 

Yi - CT(]((x),Ai) (15) 

- Yo u ( ( x = 1) n ( q = 2) n (p = 4)); 

Y2 = CT(]((x ), A2) (16) 

- Yiu (x = 1) n (q = 2) n (p = 3)); 

Yo - CT(K(x ), 8 0) (17) 

- ( ( x "I 1) u ( q "I 1) u (p "I 2)) n ( ( x "I 1) u ( q "I 1) u (p "I 3)) n 

( ( x "I 1) u ( q "I 1) u (p "I 4)) n ( ( x "I 1) u ( q "I 1) u (p "I 5)); 

Yi - CT(]((x ), Bi) (18) 

= Yo n ( ( x "I 1) u ( q "I 2) u (p "I 4)); 

Y2 - CT(K(x),81) (19) 

- Y1 n ( ( x -I 1) u ( q -I 2) u (p -I 3)) . 

The six functions can be simplified further (Type B). That is, 

Yo - CT(K(x ), Ao) (20) 

= ( x = 1) n ( q = 1) n (p ~ 2); 

Y1 - CT(K(x),A1) (21) 

= Yo u ( ( x = 1) n ( q = 2) n (p = 4)); 

Y2 = CT(K(x ), A2) (22) 

= Yo u ( ( x = 1) n ( q = 2) n (p ~ 3)); 

Yo - CT(]((x),Bo) (23) 

= ((x "I 1) U (q "I 2) U (p < 2)); 

Y1 - CT(K(x),Bi) (24) 
:::.. 

= Yo n ( ( x "I 1) u ( q "I 2) u (p "I 4)); 
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Y2 - CT(K(x),82) (25) 

- Yo n ( ( x :j:. 1) u ( q :j:. 2) u (p < 3)) . 

Compared the simplified expressions (Type B) and original expressions (Type A), it is evident 

that two functions Yo, Yo can be simplified equivalent to involving one class and another two functions 

Y2, Y2 can also be reduced to contain two classes. Two intermediate functions y1 , jj1 can be expressed 

as two classes too. These situations inform us that not only could conjugate functions concentrate 

configurations using classes, but also their expressions could be further simplified depending on specific 

distributions among involving classes. 

For three configurations, six functions from two cellular logic expressions are equivalent to six 

functions of the conjugate expressions. 

Proposition 3.2.1 The six detecting functions of the cellular logic expressions of three configurations 

for block edge detections coTTespond to the six detecting functions of the conjugate expressions. 

Proof: A pair of two corresponding functions contains the same state set . Multiple variables determine 

the same output values. They can be verified directly. D 

Using the proposition, we have following corollaries. 

Corollary 3.2.2 x is a 1-block edge point of the i-th configuration, if Yi - 1; otherwise Yi - 0, 

0 ::; i ::; 2. 

Corollary 3.2.3 x is a 0-block edge point of the i-th configuration, if Yi - 0; otherwise Yi - 1, 

0 ::; i ::; 2. 

Three functions correspond to 1 block edge points and another three functions determine 0 block 

edge points. 

4 Complexity Analysis for Block Edge Detections 

There are obvious differences between a cellular logic function and a conjugate function. A cellular 

logic function uses Boolean variables and logic operations, however a conjugate function uses hybrid 
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Boolean plus arithmetical variables and logic plus arithmetical logic operations. In modern computer, 

an instruction takes a unit time either a logic, arithmetical logic or simple arithmetical operation. In 

relation to this equivalence, we can just calculate how many binary operations are required in each 

function. Using these complexity measurements, it is sufficient to compare two corresponding functions 

theoretically. Let TB denote a unit time for a binary operation, Tp, Tq denote the number of binary 

operations evaluating p and q parameters, T(CT(K(x),A)) denote the number of binary operations 

involved in CL and CT equations, N = IAil = IBd be the number of states and n = llAill = llBill be 

the number of classes. We have following equations. 

T( C L(K(x ), Ai)) T( C L(K(x ), Bi)) (26) 

- 14 x N x iB' 0 ~ i ~ 2; 

To( CT( K( x ), Ai)) T(CT(K(x),Bi)),O ~ i ~ 2; (27) 

- ip + Tq = 14 X TB + 14 X TB 

28 X TBj 

T1 (CT( K( x ), Ai)) - T(CT(K(x),Bi)),O ~ i ~ 2; (28) 

- 7 X n X iBi 

T( CT(K(x ), Ai)) - T0 ( CT) + T1 (CT) (29) 

- (28 + 7 X n) X iB• 

Using T(CL) and T(CT) measurements, we can investigate a speed-up ratio between two equa­

tions. Let SpfL=CT = T(CL)/T(CT) be a theoretical speed-up ratio of CL and CT for the i configu­

ration. Three configurations correspond three speed-up ratios: No = 24, no = 4; N1 = 33, n1 = 6 and 

N2 = 45, n2 = 8 

SpfL:CT 14 x Nd ( 28 + 7 x ni) 

2 x Ni/(4 + ni)· 

Sp~L :CT - 2 x 24/(4 + 4) =' 6; 

Spf L:CT 2 x 33/( 4 + 6) = 6.6; 

16 
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SpfL:CT = 2 x 45/(4 + 8) = 7.5. (33) 

From the equation of a speed-up ratio for two schemes, it is evident that the conjugate function 

could have a speed-up ratio 6-7.5 faster than the corresponding cellular logic function. To use further 

simplified forms of the equations, a higher speed-up ratio can be achieved. We have N0 = 24, n0 = 1; 

Ni = 33, n1 = 2 and N2 = 45, n 2 = 2. 

2x24/(4+1) = 9.6; 

SpfL:CT - 2 x 33/(4 + 2) = 11; 

Sp~L :CT - 2 x 45/(4 + 2) = 15. 

In general, three configurations have a theoretical speed-up ratio 6-15. 

5 Using the Conjugate Functions 

(34) 

(35) 

(36) 

In order to illustrate the advantage of the conjugate functions for block edge detections, two sets 

of sample pictures of binary images for three configurations of block edge detections are shown in 

Figure 6 and Figure 7 for 1-block edges and 0-block edges respectively in Appendix A. The pictures 

are generated from an implemented prototype of the conjugate transformation of the hexagonal grid 

[Zheng and Maeder 1993]. The conjugate transformation can support any combination of the selected 

classes from the 22 nodes of the third level of the conjugate classification. In Figures 6-7, pictures 

(b )-( c) illustrate three configurations for 1 (or 0) block edges respectively. Pictures (b) are simple 

block edges; both pictures ( c) contain more block edge points and two pictures ( d) provide the most 

details of block edge points. A specific application can correspond to one of three configurations. 

Because of the capability of the class representation to efficiently identify states, the implementation 

of the conjugate transformation on the hexagonal grid is very efficient. A speed-up ratio 6-15 for real 

measurements, compared with the same activity (0 or 1 block edge detection) performed by a standard 

implementation of cellular logic functions, can be observed. Both theoretical and real speed-up ratios 

are illustrated. The results shown in Table 1 provide numerical measurements of the speed-up ratio 
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Table 1: Time Measurements of Two Schemes 

Function ni Ni CT CL SpcL :CT SpCL :CT Sample 

Full Edges 1 1 86 38 0.44 0.4 Fig.6&7(e) 

One Class 1 6 86 230 2.6 2.4 

i=O 4 24 146 970 6.6 6 Fig.6&7(b) Type A 

i=O 1 24 86 970 11.2 9.6 Fig.6&7(b) Type B 

i = 1 6 33 186 1367 7.3 6.6 Fig.6&7( c) Type A 

i = 1 2 33 105 1367 13 11 Fig.6&7( c) Type B 

i = 2 8 45 226 1920 8.4 7.5 Fig.6&7( d) Type A 

i = 2 2 45 105 1920 18.2 15 Fig.6&7( d) Type B 

Note: ni is the equivalent number of classes for the i-th configuration, Ni is the number of involved states, CT 

is the average number of time units taken by a conjugate function, CL is the average number of time units 

taken by a cellular logic function, SpcL :CT is equal to CL/CT for a speed-up ratio of real measurements, 

SpCL:CT is a speed-up ratio for theoretical measurements and Sample indicates sample figures. 

of running times of two compared programs on Model: CMN-BOOl, !RIX 4.0.5 System V, Silicon 

Graphics Iris 4D /25. The unit of the measurement time is 1/60 second. 

6 CONCLUSION 

From both representation and implementation, the proposed solution of three configurations of block 

edge detections based on conjugate functions is superior to cellular logic functions in the condition of 

representing composed classes in multiple structuring patterns. Using the proper class information, the 

48, 66 and 90 states of the structuring patterns for block edge detections can be drastically reduced to 

simple expressions. This detection, therefore, provides a general structural description of relationships 

between adjacent spatial data points and block edge points as a fundamental paradigm for image 
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analysis and processing operations of binary images on the hexagonal grid. 
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Appendix A 

! . 

(a) 

(b) 

Figure 6: Sample Pictures of Black-ground (a)-(e). 

(a) original image (256 by 256), (b)-(e) sample 

images; (b) Ao Block Edge; ( c) A1 Block Edge; 

( d) A2 Block Edge; ( e) Full Edges for 1 Points. 
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(a) 

(b) 

Figure 7: Sample Pictures of White-ground (a)-

( e). (a) original image (256 by 256), (b )-( e) sample 

images; (b) 8 0 Block Edge; (c) 8 1 Block Edge; (d) 

8 2 Block Edge; ( e) Full Edges for 0 Points. 

(c) 

(d) 

(e) 
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