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VISUALISATIONS OF BAIRSTOW'S BASINS 

Alan R. Glasson 
Department of Computer and Mathematical Sciences 

Victoria University of Technology 

Summary. Computer experiments with dynamical systems generated by 

Bairstow's method for finding quadratic factors of a polynomial have been 

carried out. Basins of attraction for the known factors of some low degree 

polynomials have been obtained. The method is applied to polynomials 

with real coefficients where only real quadratic factors are considered 

giving a variety of pictures, some exhibiting a fractal-like property of 

self-similar regions at different scales. Others have chaotic characteristics. 

Convergence of the algorithm is not dependent on the coefficients of the 

quadratic factors being real and some results allowing for complex 

coefficients are presented. 

1. Introduction 

Iteration, a technique associated with many numerical methods, has found a 

new application in recent years - the basis for the creation of pictures (or images). 

These pictures may be used to convey information about the mathematical problem 

underlying the iterative process or merely looked upon as a form of art for which no 

mathematical knowledge is required. 

Since the generation of a crude black/white picture by B. Mandelbrot, of an 

image now named after him, the development of this area of research has 

continued aided by the improved quality and availability of modern computers and 

their graphics displays .. A description of the discovery of the Mandelbrot set may be 

found in Peitgen and Richter (1986). Numerous pictures, both black/white and color, 

generated by iterative processes may be seen in that reference and also in 

Barnsley (1988), Becker and Dorfler(1989), Devaney (1989), and Peitgen and 

Saupe (1988). Even undergraduate texts such as Berkey and Blanchard (1992) and 

Ellis and Gulick (1990) contain iteratively generated pictures, with accompanying 

explanations of their source. 
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2. Preliminaries 

Dynamical systems of the form 

(1) 

( n = 0, 1,2,3, ... ) 

will be used to generate sequences of points {(r0 ,s0)} starting with an initial point 

(r0,s0). If the sequence converges to (r*,s*) then this limit is a fixed point of the 

dynamical system since it satisfies f(r*,s*) = r* and g(r*,s*) = s*. When there is more 

than one fixed point the choice of initial values (r0,s0) will determine which fixed 

point, if any, is obtained as the limit of the sequence. Of course, it is also possible 

for some choices of (r0,s0) that the sequence does not converge or that either of the 

functions f(r,s) and g(r,s) become undefined at one of the sequence points. 

The basin of attraction for a fixed point is defined as the set of initial points 

such that the sequence {(r0 ,s0 )} generated by (1) converges to that fixed point. 

For a given dynamical system the basins of attraction are visualised by 

performing the calculations on a Cartesian grid of (r0 s0) values corresponding to 
I 

pixel locations on a computer graphics monitor and setting the color of each pixel 

according to which fixed point is obtained. Examples 1-42 are reproductions of 

images generated by this method. 

Bairstow's iterative algorithm, commonly referred to as Bairstow's method, is 

used on polynomials of low degree with known quadratic factors to generate 

dynamical systems of the above type whose fixed points are in one-one 

correspondence with coefficients of the quadratic factors. The algorithm is a special 

application of Newton's method for solving non-linear equations. 

3. Newton's method 

Newton's method for finding a solution of the non-linear equations 

u(r,s) = O v(r,s) = O (2) 

starting with an initial approximation (r0,s0) is to successively calculate the sequence 

{(r0 ,sn)} from the iterative scheme 

(n=0,1,2, ... ) 
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where Ar0 , As0 are obtained by replacing u(r,s} and v(r,s} in (2} with their Taylor 

expansions at {r0 ,sn} and solving the resulting linear approximations 

4. Synthetic division 

(3} 

In Bairstow's method for finding quadratic factors of a given polynomial p(x) 

the source of the functions u and v are the two components of the linear remainder 

term when the polynomial is divided by x2 - rx - s : 

p(x} = (x2 - rx - s)q(x) + u(x - r) + v. (4) 

This quadratic wil.I be a factor of p{x) when both u(r,s) = 0 and v(r,s) = 0, non-linear 

equations which may be solved by Newton's method described above. Evaluation of 

the functions and their partial derivatives for numerical values of r and s, as required 

by (3), for a general p(x} does not need explicit formulas for u and v as the Bairstow 

iterative algorithm uses a synthetic division technique similar to Homer's synthetic 

division evaluation of a polynomial and its derivative at a specified x-value. 

Let 

and 

then substituting into (4) and equating coefficients of powers of x gives 

(5) 

( 'k = m, m - 1, ... , 1, O } 

where u = b1, v = b0 and we define bm+1 = bm+z = 0. 

Further, dividing xq(x) by x2 - rx - s gives 

xq(x} = (x2 - rx -s)t(x) + Cz(X - r) + c1 (6) 

where 
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Equating powers of x in (6) gives 

(7) 

( k = m, m - 1, ... , 1 ) 

where we define Cm+1 = Cm+2 = 0. 

It is proved that Vr = c1, vs= ~ = Ur and us= ~ in Mathews (1987) from which 

the following summary of Bairstow's method is taken. 

unless 

5. Bairstow's iterative algorithm 

The steps in Bairstow's method for a given p(x) are : 

(i) Start with an initial quadratic x2 - rx - s. 

(ii) Calculate the coefficients bk and ck from (5) and (7). 

(iii) Solve the equations 

D = C1~ - ~2 = 0 

when the algorithm fails. 

(iv) Form new values r' and s' from 

s' = s + ~s 

which become the coefficients of the new quadratic x2 - r'x - s'. 

(v) Repeat steps (i) - (iv) with r' and s' replacing r and s respectively until the 

iteration process converges, or some specified maximum number of iterations have 

been performed. 

If the algorithm converges then it does so to a quadratic factor of the given 

polynomial, but if the polynomial has more than one distinct quadratic factor then 

the factor obtained will depend on the choice of the starting values of r and s in (i). 
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6. Examples 

The above Bairstow algorithm is a dynamical system of the form (1), with the 

subscripts on rands omitted for reasons of convenience only, except it is not 

necessary to obtain explicit formulas for f(r,s) and g(r,s). The quadratic x2 - rx - s 

corresponds to the point (r,s) in an r-s plane and if x2 - r*x - s* is a factor of the 

polynomial then (r*,s*) is the corresponding fixed point of the dynamical system, and 

vice-versa. It follows that the basins of attraction of the fixed points may 

interchangeably be referred to as basins of attractions for the quadratic factors. 

In the following examples, calculations were performed to double precision 

and the images reproduced from a PC monitor in VGA 640 X 480 mode. Each pixel 

location corresponds to a single (r,s) point and the screen represents a rectangular 

grid of points. 

The window refers to the domain of initial (r,s) values and it should be 

emphasised that the images are discrete approximations to the true situation, since 

calculations are only started at points in the window corresponding to pixel 

locations, but the whole pixel is colored once the algorithm is terminated. For this 

reason basins that actually are continuous narrow bands may appear as a collection 

of un-connected points and a family of narrow bands as a dust of points. Similarly, 

some basins appear to have rough edges, but closer inspection would show that 

this is due to narrow bands of the same color being in close proximity to the main 

basin boundary. 

Examples 1-13 have exactly two fixed points and the images are shown in 

black/white. The basin of the fixed point with the asterisk (*) is colored black. 

Examples 1-35 only consider quadratic factors with real coefficients, the domain of 

(r,s) values being 2-dimensional. There is no real reason why this restriction on the 

coefficients cannot be removed, except that visualisation of the basins of attraction 

becomes difficult since they are 4-dimensional in their most general form. Imposing 

two constraints reduces the problem back to 2-dimensions and allows the 

presentation of examples 36-41. 
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Polynomial : 

Factors/ 
Fixed points : 

Window: 

Comments: 

Example 1. 

x4 - 1 

- 2 < r < +2 

I 
I 

( 0, 1) 
(0,-1)* 

- 3 < s < +1 

Points in the black region belong to the basin of attraction for 
the fixed point (0,-1). Alternatively, if the starting quadratic in Bairstow's 
algorithm has its coefficients taken from the same black region then it 
converges to the factor x2 + 1. Under magnification the boundary appears to 
be a smooth curve except at cusps. 
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Polynomial : 

Factors/ 
Fixed points : 

Window: 

Comments: 

Example 2. 

x4 - 1 

x2 - 1 
x2 +1 

- 4 < r < +4 

I 
I 

( 0, 1) 
( 0,-1)* 

- 4 < s < +4 

A different window to example 1. The shaded parts in the 
previously all white basin of the fixed point (0, 1) illustrate how the number of 
iterations required for convergence to a specified accuracy, varies with the 
initial point. Progression from white to light grey to dark grey to white etc., 
Indicates extra iterations 
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Polynomial : 

Factors/ 
Fixed points : 

Window: 

Comments: 

Example 3. 

x5 - 1 

x2 +0.5(1 - '15)x + 1 I 
x2 +0.5(1 +'15)x + 1 I 

( 0.616,-1)* 
(-1.616,-1) 

- 4 < r < +4 - 6 < s < +2 

In common with examples 4-7 the two fixed points lie on the 
line s = -1 and the basin for the fixed point with positiver is shown in black. 
Unlike examples 5-7 the fixed points are not symmetrically placed about the 
vertical axis. 
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Polynomial : 

Factors/ 
Fixed points : 

Window: 

Comments: 

,· 
I 
I 

i 
I 

I 
I 

Example 4. 

x4 + x3 + x2 + x + 1 

x2 +0.5(1 - "15)x + 1 I 
x2 +0.5(1 +-VS)x + 1 I 

( 0.616,-1)* 
(-1.616,-1) 

- 4 < r < +4 - 6 < s < +2 

Removing the linear factor from the previous example does 
not alter the fixed points and similar basins are obtained, but the number of 
iterations required for convergence is generally less. 
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... 
I • ' .. · .. : 

Polynomial : 

Factors/ 
Fixed points : 

Window: 

Comments: 

... ... 
l' ... . .. 

. · . . :·· , . •.. 
.. "'·· . ·: 

.· 

Example 5. 

x4 + x2 + 1 

x2 - x + 1 
x2 +x + 1 

- 4 < r < +4 

I 
I 

( 1,-1)* 
(-1,-1) 

- 4 < s < +4 

" 
• . 

The basin for (1,-1) is shown in black. Like examples 6 and 7 
the s-axis does not belong to either basin, successive iterates remaining on 
the axis without converging. 
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Polynomial : 

Factors/ 
Fixed points : 

Window: 

Comments: 

Example 6. 

x4 + 1 

x2 - .../2x + 1 
x2 +.../2x + 1 

- 4 < r < +4 

I 
I 

( '12,-1)* 
(-'12,-1) 

- 4 < s < +4 

The number of iterations required for convergence is 
generally more than the number required in the previous example, and less 
than the number required in the next example. 
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Polynomial : 

Factors/ 
Fixed points : 

Window: 

Comments: 

Example 7. 

x4 - x2 + 1 

x2 - ...J3x + 1 
x2 +...J3x + 1 

- 4 < r < +4 

I 
I 

( ...J3,-1)* 
(-...J3,-1) 

- 4 < s < +4 

As the fixed points get further from the vertical axis, while 
remaining on s = -1, the basins become more chaotic. Example 31 has an 
additional fixed point at (0,-1). 
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Polynomial : 

Factors/ 
Fixed points : 

Window: 

Comments: 

Example 8. 

x2 - x 
x2 +x + 1 

- 3 < r < +1 

I 
I 

( 1, 0) 
(-1,-1)* 

- 3.5 < s < +0.5 

Has some similarities with the green basin in Example 26. 
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Polynomial : 

Factors/ 
Fixed points : 

Window: 

Comments: 

. . 
f . 

, . . 

, , , , 
/ 

i ,. 
/. 

v : 

Example 9. 

x3 - 2x2 + x 

x2 - x I 
x2 - 2x + 1 I 

- 4 < r < +4 

( 1, 0) 
( 2,-1)* 

- 4 < s < +4 

Taking the initial point as (1 - s, s), arbitrarily close to the fixed 
point (1,0), gives as successive iterates (2, 2e + s2) and (2,-1), i.e., 
convergence to the other fixed point. 
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Polynomial : 

Factors/ 
Fixed points : 

Window: 

Comments: 

Example 10. 

x3 - x2 

- 4 < r < +4 

I 
I 

' 

{ 0, O)* 
{ 1, 0) 

. . . . 
·. ·~ . . .. 
·\ 

- 4 < s < +4 

Examples 11-13 have the same two fixed points as here but 
the basins show significant differences as the multiplicity of the linear 
x-factor increases. Similar to example 9 in that starting arbitrarily close to 
(1,0), this time at (1 + c, 0), convergence to the other fixed point occurs in 
two steps. 
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Example 11. 

Polynomial : x4 - x3 

Factors/ x2 I ( 0, O)* 
Fixed points : x2 - x I ( 1, 0) 

Window: - 2 < r < +2 - 2 < s < +2 

Comments: 
A similar shape occurs in example 29. 
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Polynomial : 

Factors/ 
Fixed points : 

Window: 

Comments: 

Example 12. 

xs - x4 

- 2 < r < +2 

I 
I 

( 0, O)* 
( 1, 0) 

- 2 < s < +2 

....... . , 
' 

The mountain shaped part of the basin for x2 is similar, 
although not symmetric, to the basin for xz in example 17. In both examples 
the polynomial has x4 as a factor. 
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Polynomial : 

Factors/ 
Fixed points : 

Window: 

Comments: 

Example 13. 

x6 - xs 

- 2 < r < +2 

I 
I 

( 0, O)* 
( 1, 0) 

- 2 < s < +2 

The same fixed points as in the previous two examples. 
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Polynomial : 

Factors/ 
Fixed points/ 
Colors: 

Window: 

Comments: 

Example 14. 

x2 - 1 I 
x2 - x I 
x2 +x I 

- 3.2 < r < +3.2 

( 0, 1) I white 
( 1, 0) I blue 
(-1, 0) I green 

- 2.4 < s < +2.4 

Typical of odd degree polynomials with fixed points symmetric 
about the vertical axis, see also examples 15 and 16, the off axis fixed 
point basins extend indefinitely upwards and down. Bairstow's algorithm fails 
on the parabola r2 + 1 = 2s, where D = O, but this curve only becomes visible 
at points which coincide with the exact pixel coordinates. These are colored 
black. 
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Polynomial : 

Factors/ 
Fixed points/ 
Colors: 

Window: 

Comments: 

Example 15. 

x2 - 1 I 
x2 - x I 
x2 +x I 
x2 + 1 I 

- 3.2 < r < +3.2 

( O, 1) I white 
( 1, 0) I blue 
(-1, 0) I green 
( 0,-1) I red 

- 2.4 < s < +2.4 

The presence of another fixed point, in addition to the same 
three as in example 14, shows the usual effect of having two fixed points on 
the vertical axis, regardless of the parity of the degree of the polynomial. The 
basin for the lower one only extends downwards, and does not appear in 
outer regions unlike the irregular and chaotic nature of the basins for the off 
axis fixed points. 
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Polynomial : 

Factors/ 
Fixed points/ 
Colors: 

Window: 

Comments: 

.... ! .... . . . 

~ ::: 

·········· ' ·· . . . . . . . . . . 

. . ' ' . . . . ' ' ....... , .. ...... .. ······ 
······· t ....... •. ...... 

. . ·.•· . : : : : : :"""';.:: 

... • . .... ·· ' ·· 
..... . : .. ~,, ;~ . . .. . "\.~~ : . 

. '' .. :: : ~ · ' f : .. ' .. : . : : ~. : : ~ :: ... .. . . ... 
. . : : : : : : : : : :· :~: : '. ' . : : : . : ·:; ~.~ : ' 

.. ' .. . ...... . ;.~ .. . . ~ -.... . 

.. ·, ;. 
······· · ···•· ...... . ·'· ....... . ....... . ..... . ·•· .... . . 

• ·,. ;y : .• • ..... . 

Example 16. 

xs - x3 

x2 - 1 I 
x2- x I 
x2 +x I 
x2 I 

- 2.56 < r < +2.56 

( 0, 0) I white 
( 1, 0) I blue 
(-1, 0) I green 
( 0, 0) I yellow 

- 1.92 < s < +1.92 

The same three fixed points as example 14 and an additional 
one at the origin gives a pattern with similar features to example 15, but the 
lower axial basin having narrow intrusions of regions involving the other 
basins. Similar intrusions can also be seen in examples 11, 24 and 29. 
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Polynomial : 

Factors/ 
Fixed points/ 
Colors: 

Window: 

Comments: 

Example 17. 

- 2.56 < r < +2.56 

I 
I 
I 
I 

( 0, 1) I white 
( 1, 0) I blue 
(-1, 0) I green 
( 0, 0) I yellow 

- 1.92 < s < +1.92 

The same fixed points as examples 16 and 18 but shows the 
features common to even degree polynomials with two fixed points on the 
vertical axis and symmetrically located off axis points. The basin for the 
lower point still extends downwards but the basin for the upper point 
becomes the "sky" surrounding the other basins, and the off axis basins, 
unlike for odd degrees, also only extend downwards 
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Polynomial : 

Factors/ 
Fixed points/ 
Colors: 

Window: 

Comments: 

.. ····· . . . . . . - . . . . . . . . 
. . . . . . . . . 

..... ·· · ···· 
.......... 

····· ..... . . . . . . . . . . . . . 
... .... · · -

...... 
····· . ···· · ··-···-·· · ·· . .... . ..... . 

··- . 
. ··· · ······· 

. . . . . . 
·········· .. . . . . . . . . . . . 

::: : :::::: : : • 

Example 18. 

x4- x2 

x2 - 1 I 

- 2.56 < r < +2.56 

I 
I 
I 

( 0, 1) I white 
( 1, 0) I blue 
(-1, 0) I green 
( 0, 0) I yellow 

-1.92 < s < +1.92 

The same fixed points as examples 16 and 17 and showing 
the even degree characteristics previously described. Also similar to 
example 17, but more noticeable here, the "necks" of the off axis basins 
correspond to the fixed points. Starting Bairstow's algorithm with a quadratic 
arbitrarily close to one of these fixed points, but still on the horizontal axis, 
will lead to convergence to a different fixed point (the upper one). Similar 
behavior was noted for example 10 and also can be seen in example 19. 
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Polynomial : 

Factors/ 
Fixed points/ 
Colors: 

Window: 

Comments: 

Example 19. 

xa- x2 

x2 - 1 I 
x2 - x I 
x2 +x I 
x2 
x2 + 1 I 

- 2.56 < r < +2.56 

( 0, 1) I white 
( 1, 0) I blue 
(-1, 0) I green 
I ( 0, 0) I yellow 
( 0, -1) I red 

- 1.92 < s < +1.92 

Progressing from examp'le 18 there are now three fixed points 
on the vertical axis. The basin for the top one giving the "sky" and the lower 
one intruding into the middle point's basin with "nodules" attached to it's 
cusps. The off axis basins retain their general shape with their fixed point 
"necks". Alternatively, comparison with example 15 shows the changed 
nature of the image when the additional fixed point is due to the transition 
from a polynomial of odd degree to even. 
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Polynomial : 

Factors/ 
Fixed points/ 
Colors: 

Window: 

Comments: 

Example 20. 

x6 - x2 

Same as example 19. 

- 0.072 < r < +0.072 +0.438 < s < +0.582 

The window for this image is about a 30x magnification of the 
region at the apex of the yellow basin in example 19. In the cusp of the 
lowest nodule attached to the above large red basin.and on the vertical axis, 
a smaller red region can be observed. Magnification of this region would 
produce an image almost identical to the above, also including a small red 
region in the analogous location which when enlarged produces a similar 
image with a small red region ... 
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Polynomial : 

Factors/ 
Fixed points/ 
Colors: 

Window: 

Comments: 

Example 21. 

Same as example 19. 

- 0.0108 < r < +0.0108 - 0.4672 < s < - 0.4456 

Similar to example 20 exept that the region in example 19 that 
has been magnified by a factor of about 200x is located in the cusp of the 
nodule attached to the apex of the large red basin. Successive 
magnifications of the small red region near the top of the above image will 
again produce a sequence of apparently self -similar images. 
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Polynomial : 

Factors/ 
Fixed points/ 
Colors: 

Window: 

Comments: 

- . . 

7 , 
. :· . 

. ;' . 
. './ ' . 

// ;; /, 
I ., 

./ 
./ 

, . 

. : 

Example 22. 

x4 - 2x2 + 1 

x2 - 1 
x2 - 2x + 1 
x2 +2x + 1 

- 3.2 < r < +3.2 

-.~~ 
.. ' . . 
. .. 

.. .. 
. ··: 

. 

. . ··.:· . 
.. •. · .. · .. · ... 

·. 

- --

. ·• \\\ ...... 
·, .... '\~ 

:· \ 

I 
I 
I 

. . •. 

·. · 

\ 
\.,_ 

( 0, 1) I white 
(2,-1) /blue 
(-2,-1) I green 

- 2.6 < s < +2.2 

This polynomial can be considered as generating the image 
that is the transition from the chaotic two basin shapes like example 7 to the 
six basin shapes like example 35. Magnification of the central region would 
show narrow bands of blue and green extending towards (0, 1). A small 
number of black points are visible when the pixel coordinates correspond 
exactly to points on the curves r2 = 2[ s +/- ~(2s -1)] where Bairstow's 
method breaks down because D = O on these curves. 
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Polynomial : 

Factors/ 
Fixed points/ 
Colors: 

Window: 

Comments: 

Example 23. 

x6 - x4 - x2 + 1 

x2 - 1 
x2 - 2x + 1 
x2 +2x + 1 
x2 +1 

- 3.2 < r < +3.2 

I 
I 
I 
I 

( 0, 1) I white 
(2,-1) /blue 
(-2,-1) I green 
( 0,-1) I red 

- 2.6 < s < +2.2 

The additional fixed point on the vertical axis on the same 
horizontal lines= -1 as two other fixed points produces the red basin 
extending downwards. This image contrasts with example 31 which also has 
three horizontally aligned fixed points, but no upper axial fixed point. 
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Polynomial : 

Factors/ 
Fixed points/ 
Colors: 

Window: 

Comments: 

Example 24. 

x6 - 3x4 + 3x2 - 1 

x2 - 1 
x2 - 2x + 1 
x2 +2x + 1 

- 3.2 < r < +3.2 

I 
I 
I 

( 0, 1) I white 
( 2,-1) I blue 
{-2,-1) I green 

- 2.6 < s < +2.2 

The polynomial being (x2 - 1 )3 has the same quadratic factors 
as examples 22 and 25. Other examples which show narrow intrusions of 
other basins into colored basins are 11, 16, and 29. The common feature of 
the polynomials associated with these images is that they all have linear 
factors of multiplicity three. 
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Polynomial : 

Factors/ 
Fixed points/ 
Colors: 

Window: 

Comments: 

.... ~ ,,# 

,• 

.• .: r' .' • . ' • "' • •, · . 
• ,,,,' .. : : <\, ... , • 

. . . .:: .. :.: '..:., <:· .. ~ ~ "/-.. ~.\. · .. · . .'. ::· -,::. 
. ,: ~· . . . : . . . . . ·.. . . .... 

.. .. . . 
~·~·,... . -.... , . ·):;.[.: --:/~\.: . ' . . ~ 

- · !·.: ~it' ~':\,· .' 
: : .. : ·.:. ·. 

': . . /. /:. :.\.\ . _:· 

/
. !)( }.\,-

, .. . . .·. 
, ; _. . ... . , 
I • ' I 

. . · .. ; •,. : ' . 
1 ~ : :. ,· -.._: •• : r 

• 1 • • I . 
I • • • • t 

: / .: : : . . ·, ... ·:· 
I . , • . 

I . :::: :· 

Example 25. 

xs - 4x6 +6x2 - 4x2 +1 

x2 - 1 
x2 - 2x + 1 
x2 +2x + 1 

I 
I 
I 

( 0, 1) I white 
( 2,-1) I blue 
(-2,-1) I green 

- 3.2 < r < +3.2 - 2.6 < s < +2.2 

Again the same fixed points as examples 22 and 24 but being 
the expansion of (x2 - 1 )4, an even power, the image is more like the former. 
Also, the presence of narrow bands of color associated with the off axis fixed 
points can be seen extending towards the axial fixed point. This indicates 
that an initial quadratic in Bairstow's algorithm may be close to the factor x2 -
1, but the sequence of subsequent quadratics converges to one of the other 
factors. 
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Polynomial : 

Factors/ 
Fixed points/ 
Colors: 

Window: 

Comments: 

Example 26. 

x2- x 
x2 +0.5(1 - ...JS)x + 1 
x2 +0.5(1 +...JS)x + 1 

- 3.2 < r < +3.2 

I ( 1, 0) 
I ( 0.616,-1) 
I (-1.616,-1) 

/white 
I blue 
I green 

- 2.4 < s < +2.4 

The location of the three fixed points has no obvious 
symmetries, hence the distortion of the colored basin shapes. Two of the 
fixed points also occur in examples 3 and 27, the latter having a different 
third fixed point. A title for this image could be "Battle of the Bugs". 
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Polynomial : 

Factors/ 
Fixed points/ 
Colors: 

Window: 

Comments: 

Example 27. 

x2-1 /(0, 1) /white 
x2 +0.5(1 - ~5)x + 1 I ( 0.616,-1) I blue 
x2 +0.5(1 +~5)x + 1 I (-1.616,-1) I green 

- 3.2 < r < +3.2 - 2.4 < s < +2.4 

Has two fixed points in common with example 26, but the third 
is now located on the vertical axis rather than the horizontal axis. If the 
previous example is the battle then perhaps this image is "after the battle". 
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Polynomial 

Factors/ 
Fixed points/ 
Colors: 

Window: 

Comments 

Example 28. 

xs - x2 

x2- x 
x2 
x2 + x + 1 

- 3.2 < r < +3.2 

I 
I 
I 

( 1, 0) I white 
( 0, 0) / light blue 
(-1,-1) I purple 

- 2.4 < s < +2.4 

The same fixed points as example 29, but shows the usual 
characteristics of basins associated with odd degree polynomials and 
asymmetric location of these points. 
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Polynomial : 

Factors/ 
Fixed points/ 
Colors: 

Window: 

Comments: 

Example 29. 

xs - x3 

x2 - x I 
x2 I 
x2 +x + 1 / 

- 3.2 < r < +3.2 

( 1, 0) I white 
( 0, O) I light blue 
(-1, -1) I purple 

- 2.4 < s < +2.4 

An even degree polynomial with the same quadratic factors 
as example 28 but now the image has intrusions common to cases where 
there is a linear factor of multiplicity three. 
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Polynomial : 
Factors/ 
Fixed points/ 
Colors: 

Window: 

Comments: 

Example 30. 

x6 - x4 + x2 
x2 
x2 - °'J'3x +1 
x2 +°'J'3x +1 

- 3.2 < r < +3.2 

I ( 0, 0) 
I ( °'13,-1) 
I (-°'13,-1) 

I white 
I purple 
/light blue 

- 2.4 < s < +2.4 

Examples 7 and 31 have the same two lower fixed points on the line 
s = -1, but the presence of the higher fixed point "stabilises" their basins. 
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Polynomial 

Factors/ 
Fixed points/ 
Colors: 

Window: 

Comments: 

Example 31. 

xs + 1 

x2 + 1 
x2 - "13x +1 
x2 +"13x +1 

- 3.2 < r < +3.2 

I ( 0, -1) 
I ( "13,-1) 
I (-"13,-1) 

I white 
I purple 
I light blue 

- 2.4 < s < +2.4 

All three fixed points are on the same horizontal line and the 
"sky" effect of the basin for the axial point is not present. A similar image is 
obtained in example 7 (the above polynomial with the x2 + 1 factor divided 
out) except the above white basin points are replaced by a chaotic random 
looking arrangement of the remaining two basins. 
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Polynomial : 

Factors/ 
Fixed points/ 
Colors: 

Window: 

Comments: 

Example 32. 

x4 - 5x2 + 4 

x2- 4 
x2 - 1 
x2 - x - 2 
x2 +x- 2 
x2 - 3x + 2 
x2 +3x + 2 

-

16.4 < r < +6.4 

I 
I 
I 
I 
I 
I 

( 0, 4) I white 
( 0, 1) /light blue 
( 1, 2) I purple 
(-1, 2) I red 
( 3,-2) I green 
(-3,-2) I blue 

- 6.0 < s < +6.0 

Two axial and two pairs of off axial fixed points give 
similarities with previous examples and example 34 which also has six fixed 
points. 
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Polynomial : 

Factors/ 
Fixed points/ 
Colors: 

Window: 

Comments: 

Example 33. 

x4- Sx2 + 4 

Same as example 32. 

- 0.00790 < r < - 0.00726 +2.4394 < s < +2.4400 

A magnification factor of 20,000x has been used on a region 
adjacent to the left edge of the light blue basin in example 32. This image 
illustrates a property that can also be observed in some of the previous 
examples under magnification - that the boundaries of some basins have a 
large number of narrow bands of color in close proximity. 
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Polynomial : 

Factors/ 
Fixed points/ 
Colors: 

Window: 

Comments: 

Example 34. 

x6 - 2x4 + x2 

x2 - 1 
x2 
x2- x 
x2 +x 
x2 - 2x + 1 
x2 +2x + 1 

- 2.56 < r < +2.56 

I 
I 
I 
I 
I 
I 

( 0, 1) I white 
( 0, 0) / light blue 
( 1, 0) I purple 
(-1, 0) I red 
( 2,-1) I green 
(-2,-1) I blue 

- 1. 92 < s < + 1. 92 

. The red and purple basins at their fixed points show two 
directions in which arbitrarily close points belong to the basin of the upper 
axial fixed point, one direction being horizontal as in examples 18 and 19, 
the other along the line of fixed points. 
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Polynomial : 

Factors/ 
Fixed points/ 
Colors: 

Window: 

Comments: 

Example 35. 

x4 - (2 + 4E + E2)x2 + 1 

x2 - (2 + E)X + 1 
x2 +(2 + E)X + 1 
x2 - (1 +2YE)* 
x2 - (1 - 2YE)* 
x2 +2YEX - 1 * 
x2 - 2YEX - 1* 

- 3.2 < r < +3.2 

I ( 2 +E, -1) I blue 
I (-2 - e, -1) I green 
I ( 0, 1 +2YE) I white 
I ( 0, 1 - 2Ye) I light blue 
I (- 2.Ye, 1) I red 
I (+2.Ye, 1) I purple 

- 2.6 < s < +2.2 

The four factors marked by an asterisk are approximations for 
small E. The corresponding fixed points are arbitrarily close to (0, 1). The 
above image has been generated using e = 1 o-a. Comparing with example 
22, the green and blue basins are not visibly different, whereas the red, 
purple and light blue basins slot in between the narrow green and blue 
bands referred to in that example. Larger values of e give images similar to 
example 32. 
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Polynomial : 

Factors/ 
Colors: 

Window: 

Comments: 

Example 36. 

x2 +x + 1 
x2 - 0.5(1 +i"3)x - 0.5(1 - i"3) 
x2 - 0.5(1 - i"3)x - 0.5(1 +i"3) 

/white 
I blue 
I red 

s = 0 , - 2.4 < Re(r) < +2.4 , - 2.4 < lm(r) < +2.4 

In the field of real numbers there is only one quadratic factor of x3 - 1, 
but allowing for complex coefficients there are three factors. Starting with an initial 
quadratic x2 - rx, the basins in the complex r-plane show a different character to all 
the previous examples. 
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Polynomial : 

Factors/ 
Colors: 

Window: 

Comments: 

Example 37. 

Same as example 36. 

r=O , -1.2<Re(s)<+1.2 , -1.2<1m(s)<+1.2 

The starting quadratic in this case is x2 - s, where values of s 
are taken from the window region in the s-plane. 
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Polynomial : 

Factors/ 
Colors: 

Window: 

Comments: 

Example 38. 

x4 - 1 

x2 - 1 
x2 +1 
x2 - (1 +i)x +i 
x2 +(1 +i)x +i 
x2 - (1 - i)x - i 
x2 +(1 - i)x - i 

/white 
I yellow 
I blue 
I green 
I red 
I purple 

s = 0 , -1.92 < Re(r) < +1.92 , -1.92 < lm(r) < +1.92 

Example 1 in the real r-s domain has only the two quadratic 
factors but in the field of complex numbers there are the above six. 
Bairstow's algorithm starting with x2 - rx produces the above image in the 
complex r-plane. 
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Polynomial : 

Factors/ 
Colors: 

Window: 

Comments: 
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Example 39. 

x4 + x2 + 1 

x2 - x + 1 
x2 + x +1 

. .. 

.<• 

x2 + 0.5(1 +i.../3) 
x2 + 0.5(1 - i.../3) 
x2 - i.../3x - 1 
x2 +i.../3x - 1 

" 

"' 

~ 

... 

I blue 
I green 
I yellow 
/white 
I red 
I purple 

s = 0 , -1.92 < Re(r) < +1.92 , -1.92 < lm(r) < +1.92 

The same starting quadratic and complex r-plane domain as 
example 38. Example 5 shows the real r-s plane basins. 
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Polynomial : 

Factors: 

Window: 

Comments: 

to any factor. 

r = O 

Example 40. 

x3 - 1 

Same as example 36. 

- 2.4 < Re(s) < +2.4 - 2.4 < lm(s) < +2.4 

Variation of the number of iterations required for convergence 
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Polynomial : 

Factors: 

Window: 

Comments: 

to any factor. 

Example 41. 

x3 - 1 

Same as example 36. 

s = 0 , - 2.4 < Re(r) < +2.4 , - 2.4 < lm(r) < +2.4 

Variation of the number of iterations required for convergence 
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Example 42. 

Polynomial : x4 - 1 

Factors/ Same as example 38 
Colors: 

Window: s = 0 , -1.92 < Re(r) < +1.92 , -1.92 < lm(r) < +1.92 

Comments: 
An illustration of the different basins when the 

alternative form of the remainder term is used in Bairstow's method. 
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7. Concluding example 

If. in the division of p(x) by x2 - rx - s, the remainder is taken as u'x + v' 

instead of u(x - r) + v then, as shown in Froberg (1972), Bairstow's iterative 

algorithm still follows the steps described in section 5 but the equations to be solved 
in (iii) are 

(c1 - b1)6r + ~L\s = - b0 ~L\r + C:36S = - b1 

and the algorithm fails when (c1 - b1)C:3 - ~2 = 0. 

The basins of attraction for this version of the algorithm are different to those 

presented in examples 1-41, however example 42 is the only picture included for 

this alternative form of Bairstow's method. 
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