
VICTORIA ~
UNIVERSITY

•
..
~

" ..
z
0
~

0
0
~

DEPARTMENT OF COMPUTER AND
MATHEMATICAL SCIENCES

Taxonomy of Skew in Parallel Databases

K. Liu, C. H. C. Leung and Y. Jiang

(45 COMP 15)

December, 1994

(AMS : 68P15)

TECHNICAL REPORT

VICTORIA UNIVERSITY OF TECHNOLOGY
(P 0 BOX 14428) MELBOURNE MAIL CENTRE

MELBOURNE, VICTORIA, 3000
AUSTRALIA

TELEPHONE (03) 688 4249 I 4492
FACSTh1ILE (03) 688 4050

Footscray Campus
'

Taxonomy of Skew in Parallel Databases

K. Liu, C.H. C. Leung*, and Y. Jiang

TERABYTE DATABASE GROUP

Department of Computer & Mathematical Sciences

Victoria University of Technology, Melbourne, Australia

*Email: clement@matilda. vut. edu. au

*Tel: +61 3 688 5020 Fax: +61 3 688 4050

ABSTRACT

A major obstacle to performance improvement m parallel database

processing ts the presence of skew, which in extreme cases, can

contribute to performance degradation to a level below that of

uniprocessing. Here, a new taxonomy of skew for parallel database

systems is presented, witl1 attention focused on the relational model

operating in a shared-nothing distributed memory environment in SPMD

mode. Three types of skews are identified: data skew, load skew, and

operations skew. Data skew is an intrinsic property of the attributes

related to the naturally occurring replication and clustering of the

underlying data values irrespective of how the data are eventually

processed. Load skew is related to how the data are allocated to

different processing nodes, and is caused by the non-uniform spread of

input workload and output across different processors. Operation skew

is caused by the combined effects of a number of input relations, which

may accumulate and reinforce each another. Load skew may further be

distinguished into I/O skew, relational operation skew, and output

selectivity skew. These different types of skews are quantitatively

analysed and expressions are provided for their evaluation. In addition,

performance bounds on best and worst case behaviour are also

presented.

2

1. Introduction

In parallel systems, parallelisation may be applied to either data or programs. It is

generally considered that the parallelisation of data offers much greater scope for

concurrent operation than the parallelisation of control, since for a large data file, the

degree of parallelism through horizontal table fragmentation can be orders of

magnitude higher than that for control parallelisation. In addition, the codes for

control parallelisation can be significantly more complex than the corresponding

serial codes [Thin93]. Due to the relative ease and benefits of data parallelisation,

database systems have become important targets for parallel processing. In addition,

the demand for increasingly complex and flexible queries contribute to the adoption

of high-performance platforms for database processing.

Data parallelism consists of partitioning input relational tables into fragments which

are then allocated to different processors to be operated on. Ideally, the partitioning

could be done in such a way that the workload of the processors are balanced; that

is, the processors are allocated equal sized data fragments, in which case the speedup

of query execution can be made to be approximately linearly proportional to the

number of processors. However, the linear speedup is hard to achieve because of

not only the overheads induced by adding parallel processors, but also the workload

skew, since some domain values for a given attribute may occur much. more

frequently than others. If an unbiased partitioning strategy based on such an attribute

is used, the resulting fragments will vary in size, resulting in skewed workloads over

the processors. The skewed workload may degrade the speedup since the operation

cannot be completed until the heaviest loaded processor finishes. In extreme cases,

the heaviest loaded processor is assigned with the entire input relation. The

execution time of the operation in this case will be even longer than that of using a

single processor because of the additional overheads for coordinating multiple

processors.

3

The problem of load skew in parallel database processing has attracted increasing

attention from researchers in recent years. A number of algorithms that take into

account the skew factors in relational operations have been proposed [Wolf93a,

Kits90, Omie90, Hua91, DeWi92]. Most of these algorithms are designed to

improve the existing algorithms by adding some skew handling phases. Moreover,

since each of these algorithms is designed to tackle particular skew circumstances,

none of them appears to consistently outperform the others.

This paper presents a framework by which various skew handling algorithms may be

evaluated and compared. The paper by Walton et al. [Walt91] follows a similar approach.

They indicated some issues of data skew, and also classified the data skew effects.

However, their approach is less formal and less general than ours. Our work includes

three parts: first, the key aspects and issues in skew handling are identified; second,

the skew handling approaches are classified and some alternatives are indicated;

finally, a model of load skew distribution is presented which may be applied to the

evaluation of skew handling effectiveness.

2. Taxonomy

In general, several types of skew may be identified, these are data skew, load skew,

and operation skew. Data skew is a property of the attributes without reference to the

mode of processing involved. It is concerned with the clustering and replication of

the underlying attribute values. Load skew is related to how the data are allocated to

different processors, and is linked to the uneven spread of input workload and output

across different nodes. Operation skew signifies the combined skew resulting from

the skew effects of a number of input relations.

To provide a concrete illustration of the principles, we make use of the following

example. Two relations of the database, customer and sales_ order. are shown in

4

Tables I and II. For these relations, we may have a natural join on the attribute

customer_no. The result of the join will have nine tuples. We cluster the two

relations by customer _no and thus may present the join as shown in Table III (where

next to the attribute value is the number of times the value occurs).

2.1 Data Skew

The data skew relates to the intrinsic distribution and occurrences of data values of

particular attributes, and its presence is unrelated to whether a single processor or

multiprocessors are used to process the data. It is caused by the non-uniform

distribution and multiple occurrence of attribute values. When a relational operation

is applied to such an attribute, the number of result tuples may vary significantly, as

compared to a value distribution without data skew. In the above example, data skew

is present in attribute customer _no of the relation B, where the tuple value 1002

occurs more frequently than that of 1001. The data skew is inherent in the dataset

and solely depends on the database applications. The knowledge about the data

skew is essential to study the skew behaviour in parallel databases and to develop

truly efficient algorithms for database operations. Data skew could be given a priori

based on certain distributional assumptions, or by carrying out sampling of actual

data values. The skewness of the tuples within the relation can be described· in terms

of coloured balls in an um, where the colours correspond to the domain values. The

question on how to estimate the number of colours present in the um on the basis of

sampling and knowledge of the total number of balls in the um has been studied in

[Good49]. The parent distribution of known size may be subdivided into an

unknown number of mutually exclusive classes. In taking a random sample of n

elements without replacement from the population, we can estimate the total number

of classes. In other words, the number of domain values of the relation can be

worked out from sampling and its cardinality. Therefore, data skew can be

described in terms of duplicate values of the partitioning attribute.

5

Customer (hereafter called relation A).

Customer No Name Address

1000 Smith A. B. ABC, Victoria

1001 WhiteB. C. BCD,N.S.W.

1002 Naugh.C.D. CDE, Queensland

1003 Young. D.E. DEF, South Australia

1004 Hua E.F. EFG, Tasmania

1005 DeWitt. F.G FGH,N.T.

Table I

Sales_ Order (hereafter called relation B).

Sales_ Order_ No Customer N Order Status Date

0

AlOl 1005 O.K. 1-1-94

Al02 1002 O.K. 2-2-94

Al03 1002 O.K. 3-3-94

A104 1002 O.K. 3-3-94

A105 1002 O.K. 3-3-94

A106 1000 O.K. 3-3-94

B102 1002 O.K. 3-4-94

B103 1002 O.K. 3-4-94

0456 1002 O.K. 3-8-94

0478 1002 O.K. 3-9-94

ElOO 1005 O.K. 4-4-94

E200 1002 O.K. 4-4-94

Table II

6

Customer Relation (A) Sales_ Order Relation (B) Join Result (# tuples)

(1000, 1) (1000, 1) 1

(1001, 1) (1001, 0) 0

(1002, 1) (1002, 9) 9

(1003, 1) (1003, 0) 0

(1004, 1) (1004, 0) 0

(1005, 1) (1005, 2) 2

Table ill

Denoting by r the number of tuples in the relation R, and n the sample size. We let

xi signify the number of tuples for each domain value in the samples, and y the

estimated number of domain values of relation R Then the data skew factor Tvs is

given by
y

Tvs = -
r

(1)

where 0 < Tvs ~ 1, and the lower the data skew factor, the higher is the data skew

present in the relation for that particular attribute. The estimated number of domain

values y is given by

(2)

where

(. l)(Q _ -(-)i r-n+1-
Ai - I 1 n<i> ' (3)

with the notation m<i> = m (m - 1) (m - 2) ... (m - i + 1), so that

{

n [(• l)(i)] } 1 i r-n+1-
Tvs = - ~ 1-(-1) (i) xi .

r i=I n
(4)

7

Generally, more samples will result in better accuracy, but the extra cost of sampling

will need to be taken into account. Sampling issues can be found in [Sesh92]. In

addition, we note that there is no data skew if the partitioning attribute is the primary

key of the relation since y ~ r and Tns ~ 1.

2.2 Load Skew

While data skew is unrelated to the processing mode, load skew is directly related to

parallel processing and does not exist in the case of conventional uniprocessor

operation. When a relational operation is allocated to more than one processor,

skewness may occur because of the uneven load distribution. Again consider the

join example given above and assume three processors participating in the join. Let

the join domain be Customer _No, and tuples of the two input relations are allocated

according to this with two values assigned to each processor. Then three tuples (with

values 1000 and 1001) will go to the first processor, eleven tuples (with 1002 and

1003) will go to the second, and four tuples (with 1004 and 1005) will go to the

third. All three processors receive different volume of tuples with a consequent

effect on processing time. This non-uniform load distribution is referred to as load

skew. Clearly, the load skew limits processor utilisation and the speedup of the

operations.

Since a relational operation involves several processing steps, the load skew may be

further classified as follows based on its physical operations:

• JO load skew (IOLS}, which is caused by uneven I/O costs imposed for the

processors to read input relations into their local memory. The I/O cost of

each processor is mainly determined by the size of the fragment(s) of the

input relation(s) that is allocated to it. In addition, the access paths of the

relations may also affect the 1/0 cost. A relation with an index usually

8

involves less 110 costs than that without an index since only the blocks that

contains the required tuples will be retrieved.

• operation load skew (OLS), which is determined by non-uniform CPU costs

for searching tuples that belongs to the result relation among the processors.

Therefore, OLS depends not only on the partitioning of the input relations,

but also on the processing algorithms that are used at different processors.

For example, when one of the input relations is small or has index, the

nested-loop join involves the smallest cost; otherwise the hash join may

perform better than the nested-loop join.

• result load skew (RLS), which refers to the skewed loads for the processors

generating the result of the operation. In the case of RLS, some processors

may generate a large number of result tuples while others may only have a

few, leading to different CPU costs. RLS depends on the selectivity factor of

the operation over the fragments allocated to the processors.

Figure 2.1 shows the three different load skews over some common relational

operations and associated processing methods. In Figure 2.1, the following

assumptions are made.

The input relations are Rand S, with r = IRI, s = jSj, and r < s.

The length of predicates and the number of columns to be projected are one;

Sel and Join_ Sel are the selectivities for Selection and Joining;

To save memory, hash-based join algorithms build hash table with the smaller

input relation;

Memory size is large enough to hold entirely either R or S

For set theoretic operations (Union, Intersection, and Difference), the two

input relations (R and S) are compatible with R c S .

9

We primarily focus on a shared-nothing distributed memory architecture. In such an

architecture, the total load skew may be obtained as follows. We let N denote the

number of nodes, where a node includes the I/O as well as processor components.

In this study, we assume that there is a single processor to each node. In the general

case, a node may consist of a collection of heterogeneous processors operating on a

shared memory basis. The following notations are used.

ri : the number of tuples in the ith node after the partitioning of relation R

> >O ·-1 N r _ r; _ , 1 - , . .. , .

cr R : selectivity factor of the relation R

cr i: selectivity factor of the ith fragment of the relation R after partitioning

]\ : total load of the ith node of relation R

~ : the maximum imbalanced load associated with relation R

T LS : load skew factor (0 $; T LS).

The total output from an operation is

N

rcrR = ~)riai)=r1cr1 +r20'2+ ... +rNO'N .
i=I

Now, the workload of each node consists of three components

w;: loading cost for each tuple (including disk access time and transfer time)

w;: processing cost for each tuple (mainly comparison and computation

time as reading time from RAM should be comparatively small)

~ : writing cost for each tuple.

10

Relational Algebraic Operations

Loading Tuples

Selectio n (r Tuples

Projecti on (rTuples

((r + s) Tuples Joining
Nested L oops

Joining
Hashin g

Union

lntersecti

Differen

on

ce

Produc t

(

(

(

(

(
·on (Aggregati

(Min I Ma x)

·on (Aggregati
(Sum/ A :vg)

(r + s) Tuples

(r + s) Tuples

(r + s) Tuples

(r + s) Tuples

(r + s) Tuples

rTuples

rTuples

·on (r * Q Tuples Aggregati

(Group b
(Q-> No

y I Count)
. of Groups

Processig Tuples

O(r) Comparisons

O(r) Comparisons

O(rs) Comparisons

O(s) Comparisons

O(rs) Comparisons

O(rs) Comparisons

O(rs) Comparisons

No Comparison

O(r) Comparisons

O(r) Comparisons

O(r) * Q Comparisons

Access Path Initial Placement of the Number
of Tuples over Processors

(Partitioning method] Relational

7·~
~------::._

Figure 2.1

Writing Tuples

Sel * r Tuples

Sel * r Tuples

Join_Sel * r * s

Join_Sel * r * s

s Tuples

r Tuples

0

r * s Tuples

One Tuple

One Tuple

Q Tuples

Records of Processo
the Number of Matchi ..

rs
ng

(Selectivity factor)

11

A high IOLS does not necessarily mean high total load skew as processing and

writing cost (OLS and RLS) need to be taken into account. The total load is the

weighted arithmetic mean

~ = w;rj + Wirj + W/;cr;
w;+Wi+~ '

(5)

and the total load imbalance as represented by the deviation from the perfectly

balanced situation is given by

RSkew = max(R1 , ... ,RN)-_!_(±~)
N i=I

(6)

The load skew factor is given by

T, = max(R1 , ... ,RN)
LS }(N) ' - LR;

N i=1

(7)

where I ~ T LS ~ N, and the larger this factor, the higher the load skew occurs over

the nodes. For a shared-nothing architecture, since load skew is caused by non

uniform placement of data over processors, the methods which partition the input

relation(s) onto the nodes will significantly contribute to the load skew. However, a

partitioning method may not be the sole cause of all the above load skews. For

example, the round-robin partitioning for a unary operation such as selection, does

not involve IOLS and OLS since the tuples of the input relation(s) are evenly spread

over the processors. However, hash join partitioning would involve all types of load

skews. In summary, the IOLS would be caused by allocating the tuples with the

identical join attribute values to the same processors in the presence of data skew.

The various relational algebraic operations and the existence of the data skew create

12

OLS. In comparison, the RLS should only occur when the number of matching

records of processors are different, and depends on selectivity factor.

2.3 Operation Skew
.

Given a relational operation, skew may also be classified into no operation skew

(NOS), single operation skew (SOS), and double operation skew (DOS) depending ,

on how many input relations are skewed (i.e. the skew dimension) after partitioning.

Multiple operations can always be regarded as a series of binary operations. If the

tuples of both operands are evenly allocated over the processors, it is NOS. The

SOS indicates that one input relation has load skew in the attribute(s) related to the

operation, whereas the DOS relates to the load skew on both input relations for

binary operations, such as join. Evidently, unary relational operations, such as

selection and projection, may have either SOS or NOS, while binary operations are

likely to have any one of them. In our example, there is only a SOS (due to relation

B) in the join operation described above.

It is worth noting that DOS is complex but normally only appears in the operations

which use the intermediate results of other operations. For the base relations, it is

pointed out in [Elma94] that when a binary 1: 1 or 1 :N relationship type is involved,

a single join operation is usually needed; For a binary MN relationship type, two

join operations are needed. For example, joining Sales_Order and Product ts

actually doing two joins, Sales_ Order and Order _Product Goin attribute 1s

Sales_ Order _No), and Order-Product and Product Goin attribute is Product _No).

Therefore, it is not a join of DOS but two joins of SOS. Furthermore, duplicate

attributes (except foreign keys) are avoided in the database design because they

cause anomalies (deletion, insertion, and update). Therefore, the operations on the

normalised database relations does not often involve DOS.

13

If we adopt the following notations

si : the total load of the ith processor after partitioning relation S

u R: the average load associated with relation R over N nodes

UR= __!_(±~)
N i=I

us: the average load associated with relation S over N nodes

us = _!_(f si)
N i=I

S Skew : the maximum imbalanced load associated with relation S

fas : operation skew factor,

then for unary operations such as selection (relation R), we have

NOS: 1 for each processor

SOS: fas= TLS (same as load skew);

and for binary operations ~uch as Nested-Loops Join (relation Rand S), we have

NOS: 1 for each processor

SOS: TLS x 1 = TLS

DOS: max(R1S1> ... ,RNSN)! (uR us).

That is,
max(~)

unary operations

(8)

binary operations

where T
0
s ;;:::: 1, and the larger this factor, the higher is the operation skew over the

nodes.

3. Performance Degradation

Data skew, load skew, and operation skew are not isolated but closely related. Their

relationships are presented in Figure 3 .1 . Data skew cannot usually be changed,

14

whereas load skew and operation skew could be avoided usmg vanous skew

management approaches (see Section 4).

Data Skew Load Skew Operation Skew

Figure 3.1

In equation (5), the parameter ri is the tuple allocation over processors, and clearly

data skew has significant influence on ri . Supposing there is no data skew, load

skew can still occur because of uneven partitioning and variation of the selectivity

factor. Assuming a perfect hash function is employed in a situation where data skew

is absent, we obtain the following bounds

Lower Bound:

Upper Bound:

roR
a .r . = --

11 N

r 1 (N) =--- L:~,
N N i=l

where the last equality is obtained by noting that 'i = r I N. The question arise is

"If there is data skew, what effect does data skew have on load skew?". Our answer

is data skew affects load skew through partitioning method. Round-robin, range

partitioning and hashing are the three most common partitioning strategies. Among

15

them, in terms of load balancing, round-robin is the best policy as it destroys the

effect of data skew entirely if it exists. Unfortunately, round-robin policy can only

be feasibly adopted with unary operations, if significant inter-node communication

is to be avoided. On the other hand, data skew has influence on range partitioning

and hashing, and in most cases, data skew exacerbates load skew except where

proper splitting function is employed in which case data skew can offset the impact

of load skew.

Skew degrades the system performance in a number of ways. It causes bucket

overflow in parallel processors with shared-nothing or shared-disk architecture. If a

highly skewed relation is partitioned into N parts without any load balancing

mechanism, it is possible for one processor get all the work while all other

processors have nothing in the extreme case. The individual bucket (memory such

as RAM) of the processors may 'not have enough space to store the entire relation,

resulting in bucket overflow, in which case it may be necessary to re-partition the

relation.

Skew also causes load imbalance by directing different tuple volumes to different

processors. The most lightly loaded processor has to wait till the heaviest loaded

one finishes. Thus scaleup and speedup cannot achieve the expected linear results,

and it is possible that system performance may be even worse than that of the

uniprocessor case since the use of multiple processors involves extra overheads.

Skew may also cause problem on the network and connecting processors. If one

processor is over utilised, the corresponding I/O operations and the CPU time for the

processor outweigh others. Clearly, disk I/O is a particular problem in database

systems because of its slow access time, typically 10,000 times of main memory

access time. In addition, various processors must exchange information such as

synchronisation data, concurrency control messages and some of the intermediate

16

results. Eventually, the heavily loaded processor becomes the bottleneck (hot spot)

of the system and can even cause congestion of the communication network.

4. Skew Management

Skew management involves two basic steps, skew estimation and skew handling.

Skew estimation attempts to identify the existence of the skew among parallel

processors and, if exist, estimate the degree of the skew. Based on the knowledge of

the skew, the skew handling procedure then attempts to avoid or solve skewed load

distribution using various approaches.

4.1 Skew Estimation

Parametric estimation vs. non-parametric estimation

Both parametric and non-parametric estimation apply statistical methods to estimate

the skew. When the distribution of the skew is known or somehow predictable, the

parametric method can be used to determine which processors would be heavily

loaded or lightly loaded. Zipf distribution has been widely adapted for skew

estimation [Wolf93a, Kell91] . However, if the skew distribution is not known, non

parametric method which relies on profiles of the data collected experimentally may

be used. The histogram is the most known example of this method [Mura88]. In the

histogram method, the frequency distribution of domain values are stored in the

database and are used to determine the upper bound and lower bound of the

workload over the processors. Other estimation methods that falls in these two

categories may be found in [Seli79, Sun93, Ioan93].

Sampling

Sampling is another general estimation method. It has been shown to be efficient in

estimating query result size, and has been applied to multi-processor systems

[Sesh92]. By taking samples from the relations/fragments to be allocated, the

skewness of the loads may also be calculated by various standard sampling methods

17

such as random sampling and stratified sampling, from which the heaviest, the

average, and the most lightly loaded processors can be detennined. As compared to

the other estimation methods, sampling is usually more accurate, especially for

complex applications, but could involve significant costs.

4.2 Skew Handling

Static skew handling

Static skew handling aims at avoiding non-unifonn load distribution of an operation

over processors before the operation begins. Depending on the degree of skewness,

the algorithms are mainly concerned with handling either high skew or low skew.

The high skew handling algorithms often involve a scheduling phase after the input

relation(s) is partitioned into fragments. If some fragments-are larger than the others

due to skew, more processors will be assigned to them such that the execution time

of the processors remains unifonn [Leun93, Omie91, Wolf93a, Wolf93b]. In

contrast, the low skew handling algorithms often involve a tuning of bucket sizes

before the buckets are spread to the processors equally [Kits90, Hua91]. The high

skew and low skew handling algorithms may be combined to fonn hybrid

algorithms. The idea behind hybrid algorithms is that no single algorithm proposed

always outperforms the others, and therefore selection of the proper algorithm to

handle a certain degree of the skew would be beneficial. In a hybrid algorithm

proposed by DeWitt et al., a sampling phase is first applied to estimate the

skewness, followed by selection of the best join methods from five alternatives, i.e.

hybrid hash, simple range partitioning, weighted range partitioning, virtual processor

partitioning and round-robin (DeWi92].

Dynamic skew handling

Unlike static skew handling, the dynamic skew handling attempts to either allocate

workload dynamically during operation execution or re-allocate the workload from

heavily loaded processors to lightly loaded ones [Lu92, Hua91] . In other words, it is

18

waiting for skew occurrence and then striving to solve skew during execution. In

dynamic load allocation, the number of buckets used for relation partitioning is

much larger than the number of processors. Each processor is assigned with one

bucket at a time for execution, with the rest of the buckets put in a waiting queue.

Once a processor finishes, it takes another bucket from the queue for execution until

all buckets on the queue have been processed. In dynamic load re-allocation, in

contrast, the workload is first partitioned and allocated to the processors. The skew

is then monitored during the execution. If the skew is found to rise above a certain

threshold, the processor with the heaviest load will split its load and migrate some

load to other processors.

The static skew handling method approaches the problem -before dividing the total

workload. It is normally feasible for simple operations such as unary operation and

binary join. However, it will becorile very complicated as the number of processors

increases and in situations where multiple queries with multiple operations are

involved. The static handling method will need to perform estimation for every

input relations and intermediate result relations. As it is not always possible to

estimate precisely the host of parameters, it often leads to unrealistic bounds on the

results.

The dynamic skew handling approaches the problem at run time by waiting for skew

occurrence and resolving the skew. Generally, it does not require preprocessing and

relies on no distribution assumptions. However, taking overheads into account, the

extent of performance gain of this approach is not always certain with the result that

few systems will take the risk of adding in extra complexity and cost to the existing

system through the deployment of these algorithms.

Most of the existing skew handling algorithms can not dealing with no skew case

properly with adding in significant overheads. Another problem is skews stochastic

19

feature. Our suggestion goes to skew estimation. Therefore, we believe skew

estimation should be emphasised along with skew handling. Then, viewing the

system as a whole, the workload can be further balanced and the system

performance can be further improved.

5. Summary and Conclusion

We have provided a new taxonomy of skew for parallel database systems, with

attention focused on the relational model operating in a shared-nothing distributed

memory architecture in SPl\iID mode. Three types of skews are identified: data

skew, load skew, and operations skew. Data skew is an intrinsic property of the

attributes related to the naturally occurring replication and clustering of the

underlying data values irrespective of how the data are pr<:1cessed. Load skew is

related to how the data are allocated to different processing nodes, and is caused by

the non-uniform spread of input workload and output across different processors.

Operation skew is caused by the combined effects of a number of input relations,

which may reinforce or neutralise each another. Load skew may further be

distinguished into 110 skew, relational operation skew, and output selectivity skew.

These different types of skews have been quantitatively analysed and expressions are

provided for their evaluation. In addition, performance bounds on best and worst

case behaviour are also derived.

References

[DeWi90] DeWitt D. J., Ghandeharizadeh S., Schneider D. A., Bricker A.,

Hsiao H. I., and Rasmussen R., The Gamma Database Machine Project, IEEE

Transactions On Knowledge and Data Engineering, Vol. 2, No. 1, March 1990.

[DeWi92] DeWitt D.J., Naughton J.F., Schneider D.A., Seshadri S., Practical

Skew Handling in Parallel Joins, Proceedings of the eighteenth International

Conference on Very Large Data Bases, Vancouver, British Columbia, Canada 1992.

20

[Elma94] Elmasri R., Navathe S.B., Fundamentals of Database Systems.

Benjamin/Cummings, 1994.

[Good49] Goodman B. L. A., On the Estimating of the Number of Classes in a

Population, Annals of Mathematical Statistics, Volume XX, 1949, pp 572-579

[Hua91] Hua K. A., Lee C., Handling Data Skew in Multiprocessor Database

Computers Using Partition Tuning, In Proceedings of the 17th International

Conference on Very Large Data Bases, Barcelona, September, 1991, pp 525-535

[Ioan93] Ioannidis Y. E., Christodoulakis S., Optimal Histograms for

Limiting Worst-Case Error Propagation in the Size of Join Results, ACM

Transactions on Database Systems, No.4, Dec 1993.

[Kell91] Keller A. M., Roy S., Adaptive Parallel Hash Join in Main-Memory

Databases, Proceedings of the first International Conference on Parallel and

Distributed Information Systems, Dec 1991.

[Kits90] Kitsuregawa M., Ogawa Y., A New Parallel Hash Join Method with

Robustness for Data Skew in Super Database Computer (SDC), Proceedings of the

sixteenth International Conference on Very Large Data Bases, 1990, pp. 210-221.

[Leun93] Leung, C. H. C. and H. T. Ghogomu A high-performance parallel

database architecture, Proc. 7th ACM International Conference on

Supercomputing, Tokyo, July 1993, pp. 377-386.

[Mura88] Muralikrishna M., DeWitt D. J., Equi-Depth Histograms for

Estimating Selectivity Factors for Multi-Dimensional Queries, Proceedings

SIGMOD International Conference on Management of Data, Chicago Illinois, June

1988.

[Omie91] Omiecinski E., Performance Analysis of a Local Balancing relational

hash-join algorithm for a main-memory databases, Proceedings of the first

International Conference on Parallel and Distributed Information Systems, Dec

1991, pp. 58-67.

[Seli79] Selinger P.G., Astrashan M.M., Chamberlin D.D., Lorie R.A., Price

T.G., Access path selection in a relational database management system,

21

Proceedings of the ACM SIGMOD International Conference on the Management of

Data, Boston, Mass., June, 1979, pp. 23-34.

[Sesh92] Seshadri S., Naughton J.F ., Sampling Issues in Parallel Database

Systems, Advances in Database Technology - EDBT'92, 3rd International

Conference on Extending Database Technology, Yienna, Austria, March, 1992

Proceedings, Springer-Verlag.

[Sun93] Sun W., Ling Y. B., Rishe N., and Deng Y., An Instant and Accurate

Size Estimation Method for Joins and Selection in a Retrieval-Intensive

Environment, Proceedings of the 1993 ACM SIGMOD International Confe_rence

on Management of Data, Washinton D. C., May 1993.

[Thin93] Thinking Machines Corporation, Connection Machine CM-5

Technical Summary. 1993.

[Walt91] Walton B., Dale A., and Jenevein R., A Taxonomy and Performance

Model of Data Skew Effects in Parallel Joins. In Proceedings of the 17th

International Conference on Very Large Data Bases, Barcelona, September, 1991,

pp. 537-548.

[Wolf93a] Wolf J. L., Dias D. M., and Yu P. S., A Parallel Sort-Merge Join

Algorithm for Managing Data Skew, IEEE Transactions On Parallel And

Distributed Systems, Vol. 4, No. 1, January 1993.

[Wolf93b] Wolf J. L., Yu P. S., Turek J. and Dias D. M., A Parallel Hash Join

Algorithm for Managing Data Skew, IEEE Transactions On Parallel and

Distributed Systems, Vol.4, No. 12, December 1993.

