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ABSTRACT 

A major obstacle to performance improvement m parallel database 

processing ts the presence of skew, which in extreme cases, can 

contribute to performance degradation to a level below that of 

uniprocessing. Here, a new taxonomy of skew for parallel database 

systems is presented, witl1 attention focused on the relational model 

operating in a shared-nothing distributed memory environment in SPMD 

mode. Three types of skews are identified: data skew, load skew, and 

operations skew. Data skew is an intrinsic property of the attributes 

related to the naturally occurring replication and clustering of the 

underlying data values irrespective of how the data are eventually 

processed. Load skew is related to how the data are allocated to 

different processing nodes, and is caused by the non-uniform spread of 

input workload and output across different processors. Operation skew 

is caused by the combined effects of a number of input relations, which 

may accumulate and reinforce each another. Load skew may further be 

distinguished into I/O skew, relational operation skew, and output 

selectivity skew. These different types of skews are quantitatively 

analysed and expressions are provided for their evaluation. In addition, 

performance bounds on best and worst case behaviour are also 

presented. 
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1. Introduction 

In parallel systems, parallelisation may be applied to either data or programs. It is 

generally considered that the parallelisation of data offers much greater scope for 

concurrent operation than the parallelisation of control, since for a large data file, the 

degree of parallelism through horizontal table fragmentation can be orders of 

magnitude higher than that for control parallelisation. In addition, the codes for 

control parallelisation can be significantly more complex than the corresponding 

serial codes [Thin93]. Due to the relative ease and benefits of data parallelisation, 

database systems have become important targets for parallel processing. In addition, 

the demand for increasingly complex and flexible queries contribute to the adoption 

of high-performance platforms for database processing. 

Data parallelism consists of partitioning input relational tables into fragments which 

are then allocated to different processors to be operated on. Ideally, the partitioning 

could be done in such a way that the workload of the processors are balanced; that 

is, the processors are allocated equal sized data fragments, in which case the speedup 

of query execution can be made to be approximately linearly proportional to the 

number of processors. However, the linear speedup is hard to achieve because of 

not only the overheads induced by adding parallel processors, but also the workload 

skew, since some domain values for a given attribute may occur much. more 

frequently than others. If an unbiased partitioning strategy based on such an attribute 

is used, the resulting fragments will vary in size, resulting in skewed workloads over 

the processors. The skewed workload may degrade the speedup since the operation 

cannot be completed until the heaviest loaded processor finishes. In extreme cases, 

the heaviest loaded processor is assigned with the entire input relation. The 

execution time of the operation in this case will be even longer than that of using a 

single processor because of the additional overheads for coordinating multiple 

processors. 
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The problem of load skew in parallel database processing has attracted increasing 

attention from researchers in recent years. A number of algorithms that take into 

account the skew factors in relational operations have been proposed [Wolf93a, 

Kits90, Omie90, Hua91, DeWi92]. Most of these algorithms are designed to 

improve the existing algorithms by adding some skew handling phases. Moreover, 

since each of these algorithms is designed to tackle particular skew circumstances, 

none of them appears to consistently outperform the others. 

This paper presents a framework by which various skew handling algorithms may be 

evaluated and compared. The paper by Walton et al. [Walt91] follows a similar approach. 

They indicated some issues of data skew, and also classified the data skew effects. 

However, their approach is less formal and less general than ours. Our work includes 

three parts: first, the key aspects and issues in skew handling are identified; second, 

the skew handling approaches are classified and some alternatives are indicated; 

finally, a model of load skew distribution is presented which may be applied to the 

evaluation of skew handling effectiveness. 

2. Taxonomy 

In general, several types of skew may be identified, these are data skew, load skew, 

and operation skew. Data skew is a property of the attributes without reference to the 

mode of processing involved. It is concerned with the clustering and replication of 

the underlying attribute values. Load skew is related to how the data are allocated to 

different processors, and is linked to the uneven spread of input workload and output 

across different nodes. Operation skew signifies the combined skew resulting from 

the skew effects of a number of input relations. 

To provide a concrete illustration of the principles, we make use of the following 

example. Two relations of the database, customer and sales_ order. are shown in 
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Tables I and II. For these relations, we may have a natural join on the attribute 

customer_no. The result of the join will have nine tuples. We cluster the two 

relations by customer _no and thus may present the join as shown in Table III (where 

next to the attribute value is the number of times the value occurs). 

2.1 Data Skew 

The data skew relates to the intrinsic distribution and occurrences of data values of 

particular attributes, and its presence is unrelated to whether a single processor or 

multiprocessors are used to process the data. It is caused by the non-uniform 

distribution and multiple occurrence of attribute values. When a relational operation 

is applied to such an attribute, the number of result tuples may vary significantly, as 

compared to a value distribution without data skew. In the above example, data skew 

is present in attribute customer _no of the relation B, where the tuple value 1002 

occurs more frequently than that of 1001. The data skew is inherent in the dataset 

and solely depends on the database applications. The knowledge about the data 

skew is essential to study the skew behaviour in parallel databases and to develop 

truly efficient algorithms for database operations. Data skew could be given a priori 

based on certain distributional assumptions, or by carrying out sampling of actual 

data values. The skewness of the tuples within the relation can be described· in terms 

of coloured balls in an um, where the colours correspond to the domain values. The 

question on how to estimate the number of colours present in the um on the basis of 

sampling and knowledge of the total number of balls in the um has been studied in 

[Good49]. The parent distribution of known size may be subdivided into an 

unknown number of mutually exclusive classes. In taking a random sample of n 

elements without replacement from the population, we can estimate the total number 

of classes. In other words, the number of domain values of the relation can be 

worked out from sampling and its cardinality. Therefore, data skew can be 

described in terms of duplicate values of the partitioning attribute. 
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Customer (hereafter called relation A). 

Customer No Name Address 

1000 Smith A. B. ABC, Victoria 

1001 WhiteB. C. BCD,N.S.W. 

1002 Naugh.C.D. CDE, Queensland 

1003 Young. D.E. DEF, South Australia 

1004 Hua E.F. EFG, Tasmania 

1005 DeWitt. F.G FGH,N.T. 

Table I 

Sales_ Order (hereafter called relation B). 

Sales_ Order_ No Customer N Order Status Date 

0 

AlOl 1005 O.K. 1-1-94 

Al02 1002 O.K. 2-2-94 

Al03 1002 O.K. 3-3-94 

A104 1002 O.K. 3-3-94 

A105 1002 O.K. 3-3-94 

A106 1000 O.K. 3-3-94 

B102 1002 O.K. 3-4-94 

B103 1002 O.K. 3-4-94 

0456 1002 O.K. 3-8-94 

0478 1002 O.K. 3-9-94 

ElOO 1005 O.K. 4-4-94 

E200 1002 O.K. 4-4-94 

Table II 
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Customer Relation (A) Sales_ Order Relation (B) Join Result (# tuples) 

( 1000, 1) (1000, 1) 1 

( 1001, 1) (1001, 0) 0 

( 1002, 1) (1002, 9) 9 

( 1003, 1) (1003, 0) 0 

( 1004, 1) (1004, 0) 0 

( 1005, 1) (1005, 2) 2 

Table ill 

Denoting by r the number of tuples in the relation R, and n the sample size. We let 

xi signify the number of tuples for each domain value in the samples, and y the 

estimated number of domain values of relation R Then the data skew factor Tvs is 

given by 
y 

Tvs = -
r 

(1) 

where 0 < Tvs ~ 1, and the lower the data skew factor, the higher is the data skew 

present in the relation for that particular attribute. The estimated number of domain 

values y is given by 

(2) 

where 

( . l)(Q _ -(- )i r-n+1-
Ai - I 1 n<i> ' (3) 

with the notation m<i> = m ( m - 1) ( m - 2) ... ( m - i + 1), so that 

{ 

n [ ( • l)(i) ] } 1 i r-n+1-
Tvs = - ~ 1-(-1) (i) xi . 

r i=I n 
(4) 
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Generally, more samples will result in better accuracy, but the extra cost of sampling 

will need to be taken into account. Sampling issues can be found in [Sesh92]. In 

addition, we note that there is no data skew if the partitioning attribute is the primary 

key of the relation since y ~ r and Tns ~ 1. 

2.2 Load Skew 

While data skew is unrelated to the processing mode, load skew is directly related to 

parallel processing and does not exist in the case of conventional uniprocessor 

operation. When a relational operation is allocated to more than one processor, 

skewness may occur because of the uneven load distribution. Again consider the 

join example given above and assume three processors participating in the join. Let 

the join domain be Customer _No, and tuples of the two input relations are allocated 

according to this with two values assigned to each processor. Then three tuples (with 

values 1000 and 1001) will go to the first processor, eleven tuples (with 1002 and 

1003) will go to the second, and four tuples (with 1004 and 1005) will go to the 

third. All three processors receive different volume of tuples with a consequent 

effect on processing time. This non-uniform load distribution is referred to as load 

skew. Clearly, the load skew limits processor utilisation and the speedup of the 

operations. 

Since a relational operation involves several processing steps, the load skew may be 

further classified as follows based on its physical operations: 

• JO load skew (IOLS}, which is caused by uneven I/O costs imposed for the 

processors to read input relations into their local memory. The I/O cost of 

each processor is mainly determined by the size of the fragment(s) of the 

input relation( s) that is allocated to it. In addition, the access paths of the 

relations may also affect the 1/0 cost. A relation with an index usually 
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involves less 110 costs than that without an index since only the blocks that 

contains the required tuples will be retrieved. 

• operation load skew (OLS), which is determined by non-uniform CPU costs 

for searching tuples that belongs to the result relation among the processors. 

Therefore, OLS depends not only on the partitioning of the input relations, 

but also on the processing algorithms that are used at different processors. 

For example, when one of the input relations is small or has index, the 

nested-loop join involves the smallest cost; otherwise the hash join may 

perform better than the nested-loop join. 

• result load skew (RLS), which refers to the skewed loads for the processors 

generating the result of the operation. In the case of RLS, some processors 

may generate a large number of result tuples while others may only have a 

few, leading to different CPU costs. RLS depends on the selectivity factor of 

the operation over the fragments allocated to the processors. 

Figure 2.1 shows the three different load skews over some common relational 

operations and associated processing methods. In Figure 2.1, the following 

assumptions are made. 

The input relations are Rand S, with r = IRI, s = jSj, and r < s. 

The length of predicates and the number of columns to be projected are one; 

Sel and Join_ Sel are the selectivities for Selection and Joining; 

To save memory, hash-based join algorithms build hash table with the smaller 

input relation; 

Memory size is large enough to hold entirely either R or S 

For set theoretic operations (Union, Intersection, and Difference), the two 

input relations (R and S) are compatible with R c S . 
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We primarily focus on a shared-nothing distributed memory architecture. In such an 

architecture, the total load skew may be obtained as follows. We let N denote the 

number of nodes, where a node includes the I/O as well as processor components. 

In this study, we assume that there is a single processor to each node. In the general 

case, a node may consist of a collection of heterogeneous processors operating on a 

shared memory basis. The following notations are used. 

ri : the number of tuples in the ith node after the partitioning of relation R 

> >O ·-1 N r _ r; _ , 1 - , . .. , . 

cr R : selectivity factor of the relation R 

cr i: selectivity factor of the ith fragment of the relation R after partitioning 

]\ : total load of the ith node of relation R 

~ : the maximum imbalanced load associated with relation R 

T LS : load skew factor ( 0 $; T LS). 

The total output from an operation is 

N 

rcrR = ~)riai)=r1cr1 +r20'2+ ... +rNO'N . 
i=I 

Now, the workload of each node consists of three components 

w;: loading cost for each tuple (including disk access time and transfer time) 

w;: processing cost for each tuple (mainly comparison and computation 

time as reading time from RAM should be comparatively small) 

~ : writing cost for each tuple. 
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A high IOLS does not necessarily mean high total load skew as processing and 

writing cost (OLS and RLS) need to be taken into account. The total load is the 

weighted arithmetic mean 

~ = w;rj + Wirj + W/;cr; 
w;+Wi+~ ' 

(5) 

and the total load imbalance as represented by the deviation from the perfectly 

balanced situation is given by 

RSkew = max(R1 , ... ,RN)-_!_(±~) 
N i=I 

(6) 

The load skew factor is given by 

T, = max(R1 , ... ,RN) 
LS }(N ) ' - LR; 

N i=1 

(7) 

where I ~ T LS ~ N, and the larger this factor, the higher the load skew occurs over 

the nodes. For a shared-nothing architecture, since load skew is caused by non­

uniform placement of data over processors, the methods which partition the input 

relation(s) onto the nodes will significantly contribute to the load skew. However, a 

partitioning method may not be the sole cause of all the above load skews. For 

example, the round-robin partitioning for a unary operation such as selection, does 

not involve IOLS and OLS since the tuples of the input relation(s) are evenly spread 

over the processors. However, hash join partitioning would involve all types of load 

skews. In summary, the IOLS would be caused by allocating the tuples with the 

identical join attribute values to the same processors in the presence of data skew. 

The various relational algebraic operations and the existence of the data skew create 
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OLS. In comparison, the RLS should only occur when the number of matching 

records of processors are different, and depends on selectivity factor. 

2.3 Operation Skew 
. 

Given a relational operation, skew may also be classified into no operation skew 

(NOS), single operation skew (SOS), and double operation skew (DOS) depending , 

on how many input relations are skewed (i.e. the skew dimension) after partitioning. 

Multiple operations can always be regarded as a series of binary operations. If the 

tuples of both operands are evenly allocated over the processors, it is NOS. The 

SOS indicates that one input relation has load skew in the attribute(s) related to the 

operation, whereas the DOS relates to the load skew on both input relations for 

binary operations, such as join. Evidently, unary relational operations, such as 

selection and projection, may have either SOS or NOS, while binary operations are 

likely to have any one of them. In our example, there is only a SOS (due to relation 

B) in the join operation described above. 

It is worth noting that DOS is complex but normally only appears in the operations 

which use the intermediate results of other operations. For the base relations, it is 

pointed out in [Elma94] that when a binary 1: 1 or 1 :N relationship type is involved, 

a single join operation is usually needed; For a binary MN relationship type, two 

join operations are needed. For example, joining Sales_Order and Product ts 

actually doing two joins, Sales_ Order and Order _Product Goin attribute 1s 

Sales_ Order _No), and Order-Product and Product Goin attribute is Product _No). 

Therefore, it is not a join of DOS but two joins of SOS. Furthermore, duplicate 

attributes (except foreign keys) are avoided in the database design because they 

cause anomalies (deletion, insertion, and update). Therefore, the operations on the 

normalised database relations does not often involve DOS. 
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If we adopt the following notations 

si : the total load of the ith processor after partitioning relation S 

u R: the average load associated with relation R over N nodes 

UR= __!_(±~) 
N i=I 

us: the average load associated with relation S over N nodes 

us = _!_(f si) 
N i=I 

S Skew : the maximum imbalanced load associated with relation S 

fas : operation skew factor, 

then for unary operations such as selection (relation R), we have 

NOS: 1 for each processor 

SOS: fas= TLS (same as load skew); 

and for binary operations ~uch as Nested-Loops Join (relation Rand S), we have 

NOS: 1 for each processor 

SOS: TLS x 1 = TLS 

DOS: max(R1S1> ... ,RNSN )! (uR us). 

That is, 
max(~) 

unary operations 

(8) 

binary operations 

where T
0
s ;;:::: 1, and the larger this factor, the higher is the operation skew over the 

nodes. 

3. Performance Degradation 

Data skew, load skew, and operation skew are not isolated but closely related. Their 

relationships are presented in Figure 3 .1 . Data skew cannot usually be changed, 
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whereas load skew and operation skew could be avoided usmg vanous skew 

management approaches (see Section 4). 

Data Skew Load Skew Operation Skew 

Figure 3.1 

In equation (5), the parameter ri is the tuple allocation over processors, and clearly 

data skew has significant influence on ri . Supposing there is no data skew, load 

skew can still occur because of uneven partitioning and variation of the selectivity 

factor. Assuming a perfect hash function is employed in a situation where data skew 

is absent, we obtain the following bounds 

Lower Bound: 

Upper Bound: 

roR 
a .r . = --

11 N 

r 1 ( N ) =--- L:~, 
N N i=l 

where the last equality is obtained by noting that 'i = r I N. The question arise is 

"If there is data skew, what effect does data skew have on load skew?". Our answer 

is data skew affects load skew through partitioning method. Round-robin, range 

partitioning and hashing are the three most common partitioning strategies. Among 
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them, in terms of load balancing, round-robin is the best policy as it destroys the 

effect of data skew entirely if it exists. Unfortunately, round-robin policy can only 

be feasibly adopted with unary operations, if significant inter-node communication 

is to be avoided. On the other hand, data skew has influence on range partitioning 

and hashing, and in most cases, data skew exacerbates load skew except where 

proper splitting function is employed in which case data skew can offset the impact 

of load skew. 

Skew degrades the system performance in a number of ways. It causes bucket 

overflow in parallel processors with shared-nothing or shared-disk architecture. If a 

highly skewed relation is partitioned into N parts without any load balancing 

mechanism, it is possible for one processor get all the work while all other 

processors have nothing in the extreme case. The individual bucket (memory such 

as RAM) of the processors may 'not have enough space to store the entire relation, 

resulting in bucket overflow, in which case it may be necessary to re-partition the 

relation. 

Skew also causes load imbalance by directing different tuple volumes to different 

processors. The most lightly loaded processor has to wait till the heaviest loaded 

one finishes. Thus scaleup and speedup cannot achieve the expected linear results, 

and it is possible that system performance may be even worse than that of the 

uniprocessor case since the use of multiple processors involves extra overheads. 

Skew may also cause problem on the network and connecting processors. If one 

processor is over utilised, the corresponding I/O operations and the CPU time for the 

processor outweigh others. Clearly, disk I/O is a particular problem in database 

systems because of its slow access time, typically 10,000 times of main memory 

access time. In addition, various processors must exchange information such as 

synchronisation data, concurrency control messages and some of the intermediate 
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results. Eventually, the heavily loaded processor becomes the bottleneck (hot spot) 

of the system and can even cause congestion of the communication network. 

4. Skew Management 

Skew management involves two basic steps, skew estimation and skew handling. 

Skew estimation attempts to identify the existence of the skew among parallel 

processors and, if exist, estimate the degree of the skew. Based on the knowledge of 

the skew, the skew handling procedure then attempts to avoid or solve skewed load 

distribution using various approaches. 

4.1 Skew Estimation 

Parametric estimation vs. non-parametric estimation 

Both parametric and non-parametric estimation apply statistical methods to estimate 

the skew. When the distribution of the skew is known or somehow predictable, the 

parametric method can be used to determine which processors would be heavily 

loaded or lightly loaded. Zipf distribution has been widely adapted for skew 

estimation [Wolf93a, Kell91] . However, if the skew distribution is not known, non­

parametric method which relies on profiles of the data collected experimentally may 

be used. The histogram is the most known example of this method [Mura88]. In the 

histogram method, the frequency distribution of domain values are stored in the 

database and are used to determine the upper bound and lower bound of the 

workload over the processors. Other estimation methods that falls in these two 

categories may be found in [Seli79, Sun93, Ioan93]. 

Sampling 

Sampling is another general estimation method. It has been shown to be efficient in 

estimating query result size, and has been applied to multi-processor systems 

[Sesh92]. By taking samples from the relations/fragments to be allocated, the 

skewness of the loads may also be calculated by various standard sampling methods 
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such as random sampling and stratified sampling, from which the heaviest, the 

average, and the most lightly loaded processors can be detennined. As compared to 

the other estimation methods, sampling is usually more accurate, especially for 

complex applications, but could involve significant costs. 

4.2 Skew Handling 

Static skew handling 

Static skew handling aims at avoiding non-unifonn load distribution of an operation 

over processors before the operation begins. Depending on the degree of skewness, 

the algorithms are mainly concerned with handling either high skew or low skew. 

The high skew handling algorithms often involve a scheduling phase after the input 

relation(s) is partitioned into fragments. If some fragments-are larger than the others 

due to skew, more processors will be assigned to them such that the execution time 

of the processors remains unifonn [Leun93, Omie91, Wolf93a, Wolf93b]. In 

contrast, the low skew handling algorithms often involve a tuning of bucket sizes 

before the buckets are spread to the processors equally [Kits90, Hua91]. The high 

skew and low skew handling algorithms may be combined to fonn hybrid 

algorithms. The idea behind hybrid algorithms is that no single algorithm proposed 

always outperforms the others, and therefore selection of the proper algorithm to 

handle a certain degree of the skew would be beneficial. In a hybrid algorithm 

proposed by DeWitt et al., a sampling phase is first applied to estimate the 

skewness, followed by selection of the best join methods from five alternatives, i.e. 

hybrid hash, simple range partitioning, weighted range partitioning, virtual processor 

partitioning and round-robin (DeWi92]. 

Dynamic skew handling 

Unlike static skew handling, the dynamic skew handling attempts to either allocate 

workload dynamically during operation execution or re-allocate the workload from 

heavily loaded processors to lightly loaded ones [Lu92, Hua91] . In other words, it is 
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waiting for skew occurrence and then striving to solve skew during execution. In 

dynamic load allocation, the number of buckets used for relation partitioning is 

much larger than the number of processors. Each processor is assigned with one 

bucket at a time for execution, with the rest of the buckets put in a waiting queue. 

Once a processor finishes, it takes another bucket from the queue for execution until 

all buckets on the queue have been processed. In dynamic load re-allocation, in 

contrast, the workload is first partitioned and allocated to the processors. The skew 

is then monitored during the execution. If the skew is found to rise above a certain 

threshold, the processor with the heaviest load will split its load and migrate some 

load to other processors. 

The static skew handling method approaches the problem -before dividing the total 

workload. It is normally feasible for simple operations such as unary operation and 

binary join. However, it will becorile very complicated as the number of processors 

increases and in situations where multiple queries with multiple operations are 

involved. The static handling method will need to perform estimation for every 

input relations and intermediate result relations. As it is not always possible to 

estimate precisely the host of parameters, it often leads to unrealistic bounds on the 

results. 

The dynamic skew handling approaches the problem at run time by waiting for skew 

occurrence and resolving the skew. Generally, it does not require preprocessing and 

relies on no distribution assumptions. However, taking overheads into account, the 

extent of performance gain of this approach is not always certain with the result that 

few systems will take the risk of adding in extra complexity and cost to the existing 

system through the deployment of these algorithms. 

Most of the existing skew handling algorithms can not dealing with no skew case 

properly with adding in significant overheads. Another problem is skews stochastic 
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feature. Our suggestion goes to skew estimation. Therefore, we believe skew 

estimation should be emphasised along with skew handling. Then, viewing the 

system as a whole, the workload can be further balanced and the system 

performance can be further improved. 

5. Summary and Conclusion 

We have provided a new taxonomy of skew for parallel database systems, with 

attention focused on the relational model operating in a shared-nothing distributed 

memory architecture in SPl\iID mode. Three types of skews are identified: data 

skew, load skew, and operations skew. Data skew is an intrinsic property of the 

attributes related to the naturally occurring replication and clustering of the 

underlying data values irrespective of how the data are pr<:1cessed. Load skew is 

related to how the data are allocated to different processing nodes, and is caused by 

the non-uniform spread of input workload and output across different processors. 

Operation skew is caused by the combined effects of a number of input relations, 

which may reinforce or neutralise each another. Load skew may further be 

distinguished into 110 skew, relational operation skew, and output selectivity skew. 

These different types of skews have been quantitatively analysed and expressions are 

provided for their evaluation. In addition, performance bounds on best and worst 

case behaviour are also derived. 
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