
VICTORIA ~
UNIVERSITY

•
:
n ,.
z
0
~

0
0 ..

DEPARTMENT OF COMPUTER AND
MA THEMA TI CAL SCIENCES

Aditi Deductive Database System
and its Applications

Refyul Fatri, N alin K. Sharda
(44COMP14)

October, 1994

(AMS : 68P20)

TECHNICAL REPORT

VICTORIA UNIVERSITY OF TECHNOLOGY
(P 0 BOX 14428) MELBOURNE MAIL CENTRE

MELBOURNE, VICTORIA, 3000
AUSTRALIA

TELEPHONE (03) 688 4249 I 4492
FACSIMILE (03) 688 4050

Footscray Campus

Aditi Deductive Database System and its Applications

ABSTRACT

Refyul Fatri, N alin K. Sharda

Department of Computer and Mathematical Sciences

Victoria University of Technology

PO Box 14428 MMC, Melbourne, VIC 3000, Australia

{ refyul, nalin }@matilda.vut.edu.au

This report presents an overview of the fundamental concepts used in deductive databases.

Deductive databases use logic programming technology to generalise relational database by

providing support for recursive views and non-atomic data. This technology makes database

programming easier for many applications. Aditi is a deductive database system built by

researchers at the University of Melbourne. It uses some implementation methods and

optimisation techniques that m3ke its processing time faster than current relational databases. We

are investigating the suitability of deductive database technology for network management-type

applications. This paper also presents the structure and components of Aditi system and Xqsh, its

graphical user interface.

1. INTRODUCTION

Deductive database systems have developed largely from the combined application

of the ideas of logic programming and relational database systems. They are called

"deductive" because they are able to make deductions from known facts and rules

when answering user queries.

Deductive database theory subsumes the more popular relational database theory. A

relational database consists of a collection of facts. Deductive databases contain not

only facts, but also general rules[Kris92].

http://vut.edu.au

The other inspiration for deductive database systems comes from logic

programming. This is based on the premise that first order logic can be used as a

programming language. One of the main results of research into logic programming

has been the programming language PROLOG (PROgramming in LOGic).

Deductive databases use PROLOG-like languages for programming. Deductive

database languages are also known as declarative relational language[Brod90].

A deductive database is, from a conceptual point of view, simply a PROLOG

program. However, there is a practical difference between PROLOG programs and

deductive databases. A PROLOG program generally consists of many rules,

together with some facts. On the other hand, a deductive database would normally

consist of only a small number of rules, but thousands, even hundreds of thousands,

of facts[Nuss92]. PRO LOG programs are usually small enough to be kept in certain

data structures in main memory so that they can be easily accessed by the

interpreter. A deductive database must be kept on disk and only those parts of it

required to answer the current query are read into main memory. Thus a deductive

database system requires file structures similar to a relational database system so

that the interpreter can quickly access any fact or rule it requires[Lloy83].

It can be shown that a relational database is a special case of deductive database. To

illustrate this point, we use the supplier-part relational database from (Date88,

page 46).

This database has three relations: a relation s of suppliers, a relation p of parts, and

a relation sp, which contains both supplier and part information. More precisely, the

relations have the following form (where the domain names are self-explanatory).

s(sno, sname, status, city)

p(pno, pname, colour, weight, city)

sp(sno, pno, qty)

Relations are usually represented by tables containing tuples as shown

below[Date88]:

2

Table S: Table SP:

S# SN AME STATUS CITY S# P# QTY

Sl Smith 20 London SI Pl 300
S2 Jones 10 Paris SI P2 200
S3 Blake 30 Paris SI P3 400
S4 Clark 20 London SI P4 200
S5 Adams 30 Athens SI P5 100

SI P6 100
S2 Pl 300

Table P: S2 P2 400
S3 P2 200

P# PNAME COLOR WEIGHT CITY S4 P2 200
S4 P4 300

Pl Nut Red 12 London S4 P5 400
P2 Bolt Green 17 Paris
P3 Screw Blue 17 Rome
P4 Screw Red 14 London
P5 Carn Blue 12 Paris
P6 Cog Red 19 London

Here is the supplier-part database written using the syntax generally used m

deductive databases:

Relation s of suppliers
s(sl, smith, 20, london) ,
s(s2, jones, 10, paris)
s(s3, blake, 30, paris)
s(s4, dark, 20, london)
s(s5, adarns, 30, athens)

Relation p of parts
p(pl, nut, red ,12, london)
p(p2, bolt, green, 17, paris)
p(p3, screw, blue, 17, rome)
p(p4, screw, red, 14, london)
p(p5, cam, blue, 12, paris)
p(p6,cog, red, 19, london)

Relation sp of suppliers & parts
sp(sl, pl, 300)
sp(sl ,p2, 200)
sp(sl ,p3, 400)
sp(sl, p4, 200)
sp(sl, p5, 100)
sp(sl, p6, 100)
sp(s2, pl, 300)
sp(s2, p2, 400)
sp(s3, p2, 200)
sp(s4, p2, 200)
sp(s4, p4, 300)
sp(s4, p5, 400)

The tuples of the relations have been written as facts in a PRO LOG program. The

supplier-part database could be made into a deductive database by adding some

rules. For example, we might add

3

london_s(X, Y, Z) :- s(X, Y, Z, london)

major_s(X) :- sp(X, pl, Z), Z >=JOO

Sometimes such relations are called virtual relations because when a tuple from

such a relation is required, it must be computed rather than retrieved. The first rule

states that a london-supplier is any supplier based in London. The second rule

states that a supplier is a major-supplier if it supplies more than 300 of part

number pl . These rules implicitly define two new relations

london_s(sno, sname, status)

major_s(sno)

For example the following query in SQL:

select sname

from s, sp

where s.sno = sp.sno

and sp.pno ='p2';

is translated into a deductive database query as:

?- sp(X, p2, U), s(X, Y, Z, W)

This query asks for the names of all suppliers which supply part p2. When

answering this query, the PROLOG interpreter must "answer" each of the "sub

queries" :- sp(X, p2, U) and :- s(X, Y, Z, W).

PROLOG interpreter answers the sub queries of a query by applying its

computation rules. Standard PROLOG systems have a fixed left to right

computation rule. However, NU-Prolog - which is designed to manipulate large

number of facts efficiently - has a more sophisticated computation rule, which

essentially allows it to reorder sub queries during the process of answering a query

[RaSh88, Harl92a] .

Unlike relational database systems, deductive databases allow tuples (facts) to

contain structured data. For example, one relation can state that unit 101 is taught

4

by John Doe and is attended by three students with student numbers 890001,

890002 and 890003:

course (101, john_doe, [890001, 890002, 890003)).

The same data requires at least two relations in SQL, one linking units to lecturers

and one linking units to students.

The following section shows how deductive databases use logic as a database

language. First we show how logic can be used to represent data [Vagh92].

We represent four facts as:

edge(a, b).

edge(a, c).

edge(b, c).

edge(b, d).

These four facts say that there are edges from a to b, from a to c, from b to c and

from b to d. The equivalent SQL statements are:

create table edge (source char(20) not null , sink char(20) not null);

insert into edge values ('a', 'b') ;

insert into edge values ('a', 'c') ;

insert into edge values ('b', 'c');

insert into edge values ('b', 'd');

In a deductive database, a query on the relation edge is

?- edge(a, Y).

asks for the names of all nodes Y that are at the ends of edges from a. Its answer is:

Y = {b, c}.

The answer is the set containing b and c; which implies that there exist edges ab and

ac. An equivalent SQL query is:

5

select sink from edge where source= ' a';

Its answer will be:

'b'

'c'

We can define a new relation as a view on existing relations as:

twoedges(X, Y) :- edge(X, Z), edgc(Z, Y) .

This derivation rule defines a new relation called twoedges. It states that nodes X

and Y are separated by two edges if there is an edge from X to a third node Z, and

an edge from Z to Y. The equivalent SQL view definition is:

create view twoedges(el.source, e2.sink) as

select el . source, el. sink

from edge e I, edge e2

where el .sink= e2.source;

Deductive databases allow 'database designers to generalise this notion. Using logic,

one can define a relation path such that a tuple (X, Y) is in this relation if and only

if there is a sequence of one or more edges in relation edge leading from X to Y.

path(X, Y) :- edge(X, Y).

path(X, Y) :- edge(X, Z), path(Z, Y).

The above derivation rules state that if there is an edge between X and Y then there

is a path between X and Y~ and that if there is some node Z such that there is an

edge between X and Z, and a path between Z and Y, then there is a path between X

and Y. Relation path is thus the transitive closure of edge~ any changes to the edge

relation will also be reflected in the path relation.

A user of this database can make queries on the relation path as if it were a normal

relational database relation. For example, to find out which nodes are reachable

from a using the edges in the relation edge, and which nodes one can reach node c

6

from, one would write:

?- path(a, Y). and the answer would be:

y = {b, c, d}.

?- path(X, c). and the answer would be:

X ={a, b}.

These queries cannot be expressed directly in standard SQL because they involve

recursion and SQL does not cater for recursion, at least directly. To allow users to

ask recursive queries such as the first type of query given above, the database

designer must write a program in a procedural programming language such as C

using embedded SQL:

Some advantages of using predicate logic as a database language are [Harl92a,

Nuss92]:

• Most of the database concepts of interest: queries, views and integrity

constraints, as well as the data can be represented in a unique approach

using logic. This allows the database to present a single unified interface

to its users.

• Deductive databases provide more expressive power than most relational

databases. In relational terms, they can naturally represent

non-first-normal-form relations, and they allow the definition of a view to

depend on itself (this comes in particularly handy when dealing with

transitive closure problems).

• Due to the similarity of their basic concepts, it is a relatively simple matter

to create a programming interface to a deductive database in a

general-purpose logic programming language such as PROLOG, thus

simplifying the process of writing application programs. PROLOG suits

many problem domains that need the extra expressive power of a

deductive database. As for applications that are not suited to PROLOG, it

is no harder to access a deductive database from a C or a COBOL

program than it is to access a relational database from those languages.

7

2. ADITI DEDUCTIVE DATABASE SYSTEMS

2.1 The Structure of Aditi

Aditi is based on the client/server model found in many commercial relational

database systems[Harl92b]. Users interact with a front-end process (FE) that is

regarded as a client of the system. The client communicates with a back-end process

(server) that performs the usual set of database operations, such as joining, merging,

and subtracting relations, on behalf of the clients. Some systems have one server per

client, while others have one server supporting multiple clients. Aditi is a hybrid of

these two schemes: some of its server processes are dedicated to clients while

others are shared by all clients. Figure 1 illustrates the structure of Aditi .

Figure 1: The structure of Aditi.

The dedicated server process, called a Database Access Process (DAP), performs

the initial authorisation clearance of the client as well as all tasks connected with

query evaluation except the execution of relational algebra operations. The

relational algebra operations are performed by a pool of server processes called

Relational Algebra Processes (RAPs). These provide the relational operations

required for query evaluation. The pool of RAPs is managed by a master process

called the Query Server (QS)[Vagh92].

8

Brief description of the various processes is given below.

FE The clients of Aditi are the Front End (FE) processes. When making

interactive queries on the database, the user would use the query shell as a

front end. When one wants to write applications using Aditi embedded in an

interpreted language such as NU-Prolog, the front end would be the

(modified) NU-Prolog interpreter.

DAP Aditi requires each Front End process to access Aditi through a Database

Access Process or DAP. DAPs are responsible for database Security and they

oversee the execution of queries. There is one DAP per live Front End

process. A new DAP is created every time a FE tries to access ADITI.

QS The Query Server or QS is responsible for managing the load on the machine.

In operational environments, there will be one QS per machine .

RAP Relational Algebra Processes or RAPs carry out relational algebra operations

on behalf of the DAPs. RAPs are allocated to DAPs for the duration of each

relational algebra operation.

2.2. The Database Interface

An Aditi database is a set of relations implemented as files and subdirectories. Every

database must have a data dictionary relation, which contains schema information

about all relations in the database. The Database Interface (DBI) library is a set of

routines within Aditi that are used by both DAPs and RAPs to access these

database. The interface provides routines for creating and deleting temporary or

permanent relations, as well as, inserting, deleting, retrieving tuples from

relations[Harl92b]. The most important function of the DBI layer is to act as a

switch between different indexing methods and to hide the differences between

these methods. The indexing methods currently supported are B-trees, sequential

files without indexing (flat files), and superimposed coding with and without

multi-attribute hashing. The lowest layer of Aditi is the system interface library,

which provides a set of services to the rest of Aditi which are independent of the

operating system used. Figure 2 gives the structure of the database interface for

9

Adi ti.

Database Interface Library

Indexing Methods)
Flat SIMC

B-Tree
Files (Tuple hashing) (

Tuple Library

System Interface Library

File Access Functions

Disc Buffer Cache (global and local)

Message Passing

Figure 2: Database interface structure.

2.3. Aditi Compiler

The compiler that turns programs written in Aditi-Prolog into RL is written in NU

Prolog. RL is Aditi's relational language, a simple procedural language augmented

with algebra relational operations. Unlike most compilers, it represents programs in

not one but two intermediate languages: HDS and LDS ("high-level data structure"

and "low-level data structure", respectively). HDS provides an easy-to-manipulate

representation of PROLOG rules while LDS provides an easy-to-manipulate

representation of RL programs.

The compiler works in three stages[RaSh88] : The first stage, Aditi-Prolog to HDS

translation is concerned mainly with parsing the input and filling in the slots in the

HDS representation of the program. If the compiler implements some optimisation

techniques (e.g. magic set transformation), then HDS will transforms to another

HDS level. The second stage, HDS to LDS transformation is responsible for

converting a predicate calculus oriented representation into relational algebra

operations. And the third stage, LDS to RL, is a translator that can convert a

sequence of LDS operations into a single RL instruction.

10

2.4 Setting Up the Aditi Environment

Aditi is a multi-user system with its own security mechanisms. The first thing one

must do to set up Aditi is to create a Unix user account and a Unix group, both

named "aditi". Files whose security should be controlled by Aditi have "aditi" as

their owner and group. The intention of the Aditi security system is that no ordinary

user should have the aditi user-id or group-id; not even the database administrator.

The home directory of the aditi user should be the directory in which the Aditi

distribution is installed; let's say this is "/users/aditi" . Every Aditi user should have

one of the following lines in the startup files:

.cshrc: setenv ADITI HOME -aditi

This environment variable is used by some Aditi programs to construct paths to

other Aditi programs: scripts are assumed to be located in 11 $ADITI HOME/bin"

and binary executable in "$ADITI HO:rvffi/bin/sun4" .

3. ADITI QUERY SERVER

The heart of Aditi is the process called the query server. This process is responsible

for allocating the necessary resources, initialising internal data structure, starting

other system processes and then managing their activities. The query server must be

running if Aditi facilities are to be available to users.

There may be several independent query servers active simultaneously and each

query server would represent a different incarnation of Aditi. The users must put

the incarnation name in startup file, e.g.: .cshrc: setenv ADITI aditi . This means

the incarnation on the machine has the name 'aditi'.

11

3.1. Starting Up the Query Server

Once the ADITI HOME and ADITI environment variables and the configuration

and authorization files have been set up, issue the following command as an Aditi

superuser:

% aditi start

This command starts the Aditi query server for the incarnation named in the ADITI

environment variable. The following messages are displayed: ·

Aditi Deductive Database System (Beta)

Copyright University of Melbourne 1988-1992

The selected incarnation is aditi.

Checking for existing query servers ...

None exist.

Starting new query server •••

Query server started.

When we have finished working with Aditi for a while, we can shut down the query

server in an orderly manner by the command

% aditi stop

The following messages are displayed:

Aditi Deductive Database System (Beta)

Copyright University of Melbourne 1988-1992

The selected incarnation is aditi.

Stopping any existing query servers .••

Query server stopped.

12

3.2. Setting Up a Database

To create a new database, a command such as the following must be issued.

% oewdb /users/aditi/exam1>le

This command will create the directory "/users/aditi/example" if it does not already

exist. It will then create two subdirectories "db" and "rl" within it.

The "rl" subdirectory will initially be empty. Later, it will contain Aditi object files

giving the definitions of derived predicates. The name of the directory is "rl"

because the object code is a bytecode version ofRL, the Aditi Relational Language.

4. MANAGING BASE RELATION

This section describes facilities for managing base relations in Aditi .

4.1. Creating a relation

The command for creating a base relation is "newrel". For example, to create a

relation to store the location of the headquarters of each known airline, issue the

command [HaRa92]:

% oewrel hq 2

The response would be:

Creating relation hq in /users/aditi/example

using schema tlex-2 and index type data ...

Created hq/2 in /users/aditi/example with

index type data and schema tlex-2

Creation completed.

13

The first argument gives the name of the relation being created, while the second

gives, directly or indirectly, the name of the schema that determines the shape of the

new relation. In this case, the second argument is a number (an arity), so the newrel

command converts it into a schema name by inserting the prefix "flex-" . Thus the

arity "2" is a shorthand for the schema name "flex-2" .

4.2. Creating a schema

A schema gives three things: an arity, a tuple type, and a list of key attributes. The

arity is number of attributes in a relation. In the current version of Aditi the tuple

type must be flexible ("flex"); later versions will support "fixed" and "free" tuple

types as well. Flexible tuples are general, each attribute can be an arbitrary term and

arbitrary size. Fixed tuples have attribute that have a predefined type and fixed size.

Free tuples are intended for the storage of compiled RL procedures in Aditi

relations. The list of key attributes is currently used only when the relation has a B

tree index: the list provides the ordering function, and optionally prevents the

inclusion of duplicates.

The command to create such a schema is:

% newschema flight 2 flex

We can verify that the definition of flight schema entered the data dictionary by

displaying the contents of the data dictionary by using the command:

% showdict

The output of this command may look like:

Aditi 1.0: Show Dictionary Information

Aditi Dictionary Information for '/users/aditi/example/db':

Relations

hq/2 Schema: flex-2 Index type: Data

14

predmode/3

rlregister/2

Schemas

flight

predmode-3

rlregister-2

Display completed.

Schema: 1>redmode-3

Schema: flex-2

Type: Flexible Arity: 2

Type: Flexible Arity: 3

Ty1>e: Flexible Arity: 2

Index type: BTree

Index type: BTree

Key Attributes: 1,2

Key Attributes: 1,2

Key Attributes: 1

From the contents of data dictionary we can find out information about relations

and schemas, such as : relations name, types of schema, indexes type, and key

attributes.

4.3. Inserting data into a relation

The newrel command creates empty relations. The command to insert tuples into

relations is newtups:

% newtups flight 2

Aditi 1.0: Add Tuples

sydney, honolulu

honolulu, toronto

sydney, melbourne

melbourne, honolulu

"D

4 tuple(s) inserted

Addition completed.

*Command for entering tuples of arity 2 to flights relation

*Aditi prompts the user to add tuples

*User enters tuples. Attributes are separated by commas

and the tuples are separated by CR

*Exit newtups

*Message displayed by the newtups command.

In all Aditi commands except the newrel command, relations are identified by their

name and arity.

The next example shows that we can insert complex terms into Aditi relations and

that there are no restrictions on the structure of these terms:

15

% newtups hq 2 *Command for entering tuples of arity 2 to hq relation

Aditi 1.0: Add Tuples *Aditi prompts to the user

qantas, city(sydney, australia) *Enter attributes, where the second attribute has two

delta, city(atlanta, usa) constants

cathay_pacific, city(hongkong) *Enter attributes, where the second attribute has one

lufthansa, airport(frankfurt) constant.

"D

4 tuple(s) inserted

Addition completed.

From the example above, we can see both of the function symbols are used;

attribute city which has 1 or 2 constants.

4.4. Looking at the contents of a relation

To check that the tuples entered with the newtups command were inserted

correctly into the hq relation, we use the seerel (see relation) command as follows:

% seerel hq 2

Aditi 1.0: See relation

Relation name: hq

Arity: 2 Cardinality: 4

Nkeys: 1 Ntkeys: 0 TupSorted: 0

(1) cathay_pacific, city(hongkong)

(2) qantas, city(sydney, australia)

(3) lufthansa, airport(frankfurt)

(4) delta, city(atlanta, usa)

Display completed.

*Command to see the relation of hq with arity 2

*Aditi prompt

*Show the information about arity and cardinality

*Nkey is #of keys of the relation according to its

schema

*Ntkeys is #of temporary keys

*TupSorted is non-zero if the relation is sorted.

16

4.5. Deleting data from a relation

The simplest way to delete tuples from a relation is via the deltups command. Input

to the deltups command is in the same format as used with the newtups command.

A list of tuples is given, one tuple per line. To delete one tuple from the hq database

the command is issued as followed:

% deltups hq 2

Aditi 1.0: Delete Tur>les

delta, city(atlanta, usa)

"D

1 tuple(s) deleted

Deletion completed.

*Command for deleting tuples of relation ofhq with

arity 2

*Aditi prompt

*User enters the tuple to be deleted

*Exit from deltups

*Aditi message.

The input to deltups is in the same format as used by newtups; a list of tuples and

one per line. In the current version of Aditi, the tuples must be ground tuples (the

tuple that contains no variables), i.e. one cannot specify patterns such as "Airline,

city(hongkong)" .

Deltups does not work as' an inverse of newtups. If the relation has two or more

copies of a given tuple, deltups will delete all copies. This is consistent with the idea

that Aditi actually implements set semantics, but represents sets as multisets for

implementation reasons.

To delete all the tuples in a relation, using deltups is inefficient. Use the clearrel

command instead:

% clearrel hq 2 *Command to delete all tuples in hq relation which

has arity 2

Aditi does not allow tuples to be modified directly. If we wish to do so, we must

delete the tuple and insert the new version.

17

4.6. Deleting a relation

To delete a relation completely, use the command delrel :

% delrel hq 2 *Command/or deleting the relation ofhq

Aditi will not let the user delete the system relations predmode and rlregister.

4.7. Deleting a schema

To delete a schema, use the command delschema:

% delschema flex-16 *Command/or deleting schemajlex-16

Aditi will let you delete the schemas of existing relations, even the schemas of

system relations. Nothing untoward will happen on deleting a schema. The reason

being that an Aditi relation requires its schema to exist only at the time when the

relation is created. At that time, the relevant information is copied into the data

dictionary record of the relation.

4.8. Security

Aditi implements a simple security system. Base relations newly created by newrel

are accessible only to the user who created them. Only the owner of a relation can

read that relation, write to it and delete the same. The owner of the relation can

however grant these rights to other users via the command aditiperms. The

following command grants all users read access to the relation flight/2 :

% aditiperms +read flight/2

Aditi 1.0: Change/Show Relation Permissions

*This command grants all users read access

to the relation jlight/2

*Aditi prompt

Changing permissions for flight/2 in /users/aditi/example ...

Permissions are now: *Aditi shows the permission status

18

Owner Id:

Relation Type:

public read:

public write:

public delete:

superuser delete:

Change Permissions completed.

6

User

yes

no

no

no

With respect to the right to delete a relation, users are classified into not just two

but three classes: the owner of the relation, Aditi superusers, and others. The owner

always has the right to delete her own relation, and she can grant the right

separately to the two other classes of users, via commands such as:

% aditiperms +delete superuser flight/2

Aditi 1.0: Change/Show Relation Permissions

*Command to grant the superuser delete

relation jlight/2.

*Aditi prompts

Changing permissions for flight/2 in /users/aditi/example ...

Permissions are now:

Owner Id:

Relation Type:

public read:

public write:

public delete:

superuser delete:

Change Permissions com1>leted.

6

User

yes

no

no

yes *The superuser has the right to delete the

relation

Only the owner of a relation can change the permissions on that relation, but every

user can have a look at what those permissions are:

% aditiperms show flight/2 *Command for looking the permission status

Aditi 1.0: Change/Show Relation Permissions *Aditi prompts

19

Showing permissions for flight/2 in /users/aditi/example ...

Owner Id: 6

Relation Type:

public read:

public write:

public delete:

superuser delete:

Show Permissions completed.

User

yes

no

yes

no

5. MANAGING DERIVED RELATIONS

The power of deductive databases lies in derived relations, relations that can infer

information at run-time. In Aditi, users define derived relations by writing programs

in Aditi-Prolog.

The file "stops.al" is an example from the flight database:

?- mode(stops(f,f,f)).

?- flag(stops, 3, diff).

stops(Origin, Destination, []) :-

*Aditi-Prolog declaration for the relation of stops

*Aditi uses differential evaluation to answer the query

flight(Origin, Destination).

stops(Origin, Destination, [StoplStoplist]) :

flight(Origin, Stop),

*Relation gives all possible routes between

all origin-city and destination-city

*Relation checks whether its first argument is

a member of the list that is its second

(stops) argument stops(Stop, Destination, Stoplist),

not in_list(Stop, Stoplist).

?- mode(in_list(f,b)).

?- flag(in_list, 2, magic).

?- flag(in_list, 2, diff).

in_list(Head, [HeadLTail]).

in list(Item, [HeadlTail]) :

in_ list(Item, Tail).

*Aditi-Pro/og declaration for the relation of in _list

*Aditi uses magic set optimisation in the in_list

*Recursive rule of in_list relation

20

5.1. Compiling Aditi-Prolog Programs

The Aditi-Prolog compiler is called "ape". Its interface is intentionally similar to the

interface of other compilers on Unix systems, e.g. cc. As arguments, one just names

the files to be compiled:

% ape stops.al

Aditi-Prolog Com1>iler 1.0

Compiling stops.al . . .

*Aditi command to compile 'stop.al' file.

*Aditi prompts

------ Compiler Statistics ---------

Read: [490, 60) Mode:[570, 80] Hds2Hds: [590, 20] Strata: [600, 10]

Compile: [910, 310) Lds2Lds: [1050, 140] Lds2 RL: [1330, 280]

Compilation finished.

The compiler statistics report user and system time in milliseconds for each part of

the compilation stage (the time values are accurate at most to the resolution of the

system clock). By convention, source files containing Aditi-Prolog programs must

have the suffix '.al' . The ape compiler leaves the corresponding object program in

'stop.ro', the suffix standing for "relational object" file.

5.2. Registering Derived Relations

Before a newly created ".ro" file can be used by all users of a database to help

answer queries, it must first be registered in the database. The command for doing

this is :

% newderived stops.ro

Registering file stop.ro in /users/aditi/example

Registration completed.

*Registered 'stops.ro'fi/e to the database

*Aditi responses

This copies "stops.ro" from the current directory to the "rl" subdirectory of the

database, and puts.the mode information from "stops.rm" into the predmode system

relation. The latter action allows other Aditi-Prolog predicates to refer to the

predicates defined in "stops.ro" .

21

http://'stop.ro'
http://stops.ro
http://'stops.ro'
http://stop.ro
http://stops.ro
http://stops.ro

To de-register a ".ro" file from the database; for example, if we want to edit the file,

use the following command:

% delderived stoJ>s.ro *Deregistered 'stops.ro'file from the database

Deregistering file stoJ>.ro from /users/aditi/examJ>le

Deregistration comJ>leted.

6. QUERYING THE DATABASE

The query shell has two slightly different user interfaces. One is part of xqsh, the

graphical front-end to Aditi . The other, which is described in this section, is for use

from dumb terminals and from workstation windows running terminal emulation

programs (e.g. xterm and xwsh). This version is started via the command:

%qsh *Command to activate query shell

Before it can do anything else, the query shell must log the user into Adi ti, 1. e.

present his credentials to the query server for checking. If this checking is

successful, qsh prints - as confirmation - the login name of the invoker and his

numeric ids for Aditi and for Unix. (The login process is actually performed by the

Database Access Process or DAP created by the query shell.)

6.1. Making Queries

The simplest kind of query is an open query on a single atom. The following query

asks for the headquarters of all known airlines[HaRa92] :

1 <- hq(Airline, Headquarters).

Answer Set for Airline, Headquarters:

(1) cathay_pacific, city(hongkong)

(2) qantas, city(sydney, australia)

(3) lufthansa, airport(frankfurt)

*Query all of airlines and their headquarters

*Aditi shows all the possible answers.

22

http://stops.ro
http://'stops.ro'
http://stop.ro

Specifying some constants causes Aditi to perform a selection. This query asks for

the headquarters of Qantas:

2 <- hq(qantas, Headquarters).

Answer Set for Headquarters:

(1) city(sydney, australia)

*Query the headquarter of Qantas airline.

*Aditi response

If the query contains no variables, then the result is a zero arity relation. If the

answer to such a query is "true", then the answer relation will have cardinality one:

it will contain the special tuple "<true>". Otherwise the answer relation will have a

cardinality of zero. In the flight database, there is a direct flight from Honolulu to

Toronto but not from Sydney to Toronto:

3 <- flight(honolulu, toronto).

Answer Set:

<true>

4 <- flight(sydney, toronto).

Answer Set:

*Query is there any flight from Honolulu to Toronto

*The answer is that there is flight from Honolulu to

Toronto

*Query is there any flight from Sydney to Toronto

No Answers *There is no flight available

Queries that contain conjunctions implicitly ask for joins. This one asks for all

possible one-stop trips:

5 <- flight(Orig, Stop), flight(Stop, Dest).

Answer Set for Orig, Stop, Dest:

(1) sydney, honolulu, toronto

(2) sydney, melbourne, honolulu

(3) melbourne, honolulu, toronto

*Query for flight that has one stop trips

*Aditi response

Queries that contain negation implicitly ask for a set difference operation:

23

6 <- flight(Orig, Stop), flight(Sto11, Dest), not flight(Orig, Dest).

Answer Set for Orig, Stop, Dest:

(1) melbourne, honolulu, toronto

(2) sydney, honolulu, toronto

*This query asks for all city-pairs that have one-stop

flights but no direct flights between them

If we are interested only in the origin and destination cities, and not in the location

of the intermediate stop, we can tell Aditi to project the result relation onto the

variables representing those cities:

7 <-Orig, Dest: flight(Orig, Stop), flight(Stop, Dest), not flight(Orig, Dest).

Answer Set for Orig, Dest:

(1) melbourne, toronto

(2) sydney, toronto

*Query the origin and destination cities

Queries can include arithmetic calculations as well as comparisons. If we have a

relation that records the distance between city-pairs, we can ask queries such as:

8 <- Orig, Dest, D: flightdist(Orig, Stop, Dl), flightdist(Stop, Dest, D2), Dl > 1000, D is Dl + D2.

*This query asks the total distance of all one-stop trips where

the first leg is longer than 1000 kilometres.

Answer Set for Orig, Dest, D:

(1) sydney, toronto, 15629

(2) melbourne, toronto, 15964

Queries can even include disjunctions (represented by semicolons) and grouping to

override precedence (negation highest, then conjunction, then disjunction) :

24

9 <- Orig, Dest: (flight(Orig, Dest) ; flight(Orig, Stop), flight(Stop, Dest)), not flight(Dest,

melbourne).

Answer Set for Orig, Dest:

(1) sydney, honolulu

(2) sydney, melbourne

(3) sydney, toronto

(4) honolulu, toronto

(5) melbourne, honolulu

(6) melbourne, toronto

*This query asks for all city pairs with non-stop or one-stop

flights where there is no direct flight from the destination to

Melbourne.

The explicit projection is essential. Without it, the query shell would try to include

the variable Stop in the answer relation, and would fail because Stop exists in only

one arm of the disjunction. In the terminology of modes, Stop has no producer in

the other arm.

In Aditi, derived relations may be queried the same way as base relations; the query

reference to a derived relation causes its RL object code to be loaded into the DAP:

10 <- stops(sydney, Dest,_), not flight(sydney, Dest).

*This query asks for all cities that are reachable from Sydney

but to which there are no direct flight.

Procedure file </users/aditi/example/rl/stops.ro> has 2 entries. *Aditi load the derivation

rule

Loading stops_J_l

Loading in list_2_1

Answer Set for Dest:

(1) toronto

25

6.2. Assignments and Updates

The query shell allows the result of a query to be assigned to a temporary relation

that lasts for remainder of the current query shell session:

11 <-Dest: country(Orig, australia), sto1>s(Orig, Dest, Stops).

*This query asks for all destinations reachable from Australia

using a relation that associates cities with their countries

Answer Set for Dest:

(1) honolulu

(2) melbourne

(3) toronto

The next two queries redirect a flight from Toronto to Montreal. Each reports the

tuple being deleted or inserted :

12 <- flight(honolulu, toronto) -=true.

Deleting answers from flight/2

Answer Set for honolulu, toro~to:

(1) honolulu, toronto

13 <- flight(honolulu, montreal) += true.

Inserting answers into flight/2

Answer Set for honolulu, montreal:

(1) honolulu, montreal

These queries illustrate the simplest way to insert or delete single tuples. For

example, the following query states that every city that has a direct flight to

Montreal now also has a direct flight to Toronto:

14 <- flight(Origin, toronto) += flight(Origin, montreal).

Inserting answers into flight/2

26

Answer Set for Origin, toronto:

(1) honolulu, toronto

We can ask for the destinations reachable from Melbourne together with the

intermediate stops required:

15 <- stops(melbourne, Dest, Stops).

Answer Set for Dest, Stops:

(1) toronto, [honolulu]

(2) montreal, [honolulu]

(3) honolulu, [)

7. THE X INTERFACE TO ADITI (XQSH)

Xqsh is a graphical user interface (GUI) that provides access to almost all the

facilities of Aditi, including the starting and stopping of query servers and log on

and log off Aditi . It works on machines using the X-window system. Xqsh is built

with the Tk/Tcl toolkit (public domain).

The main xqsh window has six main parts. From top to bottom, they are the menu

bar, the name of the current database, a window onto the query shell and an output

window. The query shell window and the output window are independently

scrollable using the standard mouse operations. The dividing line between these two

windows can be moved by dragging the small pane control box near the right side

astride the dividing line.

The options from the main menu are: Database, Relation, Schema, Security,

Load/Compile, and Edit.

The commands available through the Database menu are:

Database Info

Create Database

Change Database

Delete Database

27

The commands available through the Relation menu are:

Create Relation

Modify Relation

Show Relation

Delete Relation

The commands available through the Schema menu are:

Create Schema

Show Schema

Delete Schema

Through the Security menu there are two commands available:

Show permissions

Set permissions

Two other options are Load/Compile and Edit. Load/Compile is used to register

or deregister the file to a particular database and Edit is used to edit the file in NU

Prolog editor format.

8. CONCLUSION

Deductive database systems are based on logic programming. Logic serves as a

language which can be used for giving data definitions, integrity constrains, views,

queries, and rules/programs. Programs written in a logic language are more

declarative than any other programming language, in the sense that one can express

algorithmic ideas at a very high level, without having to specify many of details of

order of computation.

Aditi was built to prove that deductive database systems can achieve performance

comparable to that of commercial relational database systems, especially with a very

large number of facts.

The queries used to illustrate the above points are some of the simple query in Aditi

for flight database. The complexity of a query is depends on how many relations the

28

database has and how we write the derivation rules. With simple derivation rules

and appropriate optimisation methods, the compiler determine one suitable

transformation from the various algorithms in Aditi to reduce execution time to

answer the queries.

Future work will focus on building network management systems in which

management information base will be developed using the Aditi deductive database

system.

9. ACKNOWLEDGMENT

Aditi Deductive Database System has been installed in the Department of Computer

and Mathematical Sciences, Victoria University of Technology under licence

agreement withDepartment of Computer Science, the University of Melbourne.

29

REFERENCES:

[Brod90]

[Date88]

[HaRa92]

[Harl92]

[Krish92]

[Lloy83]

[Nuss92]

[RaSh88]

[Vagh92]

Brodie, M.L., et al, Next Generation Database Management Systems

Technology, Deductive and Object-Oriented Databases, Elsevier

Science Publishers, 1990

Date, C.J., An Introduction to Database Systems, Addison Wesley,

1988.

Harland, J. , Kotagiri Ramamohanarao, Experiences with a Flights

Database, CITRI-Technical Report 62, November 1992.

Harland J., et al , Aditi-Prolog Language Manual, CITRI-Technical

Report 64, November 1992.

Krishna, S., Introduction to Database and Knowledge-Base Systems,

World Scientific, 1992.

Lloyd, J.W., An Introduction to Deductive Database Systems, The

Australian Computer Journal, 15(2), pp. 52-57, May 1983 .

Nussbaum, Miguel, Building a Deductive Database, Ablex

Publishing, 1992

Ramamohanarao, K., John Shepperd, et al, The NU-Prolog

Deductive Database System, Prolog and Database, Ellis Horwood,

1988

Vaghani, Jayen, et al, Introduction to Aditi Deductive Database

System, The Australian Computer Journal, 23(2), pp. 37-52, May

1991.

30

