Modeling Group Communication
in a Complex System for

Achieving Group Goals

Paul Darbyshire

B.Sc (Hons), Grad Dip Computer Science, MEng

College of Business

Victoria University

Submitted in fulfillment of the requirements of the degree of
Doctor of Philosophy
(July, 2013)

Declaration of Candidate

"I, Paul Darbyshire, declare that the PhD thesis entitled Modeling Group
Communication in a Complex System for Achieving Group Goals is no more
than 100,000 words in length including quotes and exclusive of tables, figures,
appendices, bibliography, references and footnotes. This thesis contains no
material that has been submitted previously, in whole or in part, for the award
of any other academic degree or diploma. Except where otherwise indicated,

this thesis is my own work”.

Signature

Date L)/(g/%’%

Dedication

In many respects the task of putting together a dedication for such a significant
piece of work can be harder to begin than the work itself. There are so many
people to thank for the supervision and help I have received along the way,
that looking back, you realize how much you have relied on colleagues and

family.

I would like to thank Professor Glenn Lowry (Retired) and Dr Bob McKay,
formerly at the University of New South Wales for both getting me started on
the PhD and for many interesting conversations. I would also like to thank Dr
Justin Wang from Latrobe University and Dr Stephen Burgess from Victoria
University for being a listening post over many years. In particular, I would
like to thank my supervisors Professor Michael McGrath and Professor John
Zeleznikow for all their help throughout the duration of the thesis. A special
thanks John for picking up the pieces and the dedication and support over the
last couple of years without which I am sure this would not have come to

fruition. I am in debt to you.

Additionally, I would now like to thank those closest to me who have been
with me on the many journeys I've undertaken to finish this work. My family,
without whose support none of this would be possible. To my wife Kay who
has stood with me and given support without question for the many long years
this has taken, hopefully I can make up for this. To my son Adam for help and
support over the years as I worked on this. It's your turn now. Finally to my
beautiful daughter Mai-Ling, who always made me happy with her smiles. I

love you all.

Paul

il

ABSTRACT

This thesis investigates the effect of communication as a function of time on a
multi-agent simulation based on a military distillation utilizing reinforcement learning
for a group of agents. The original contribution to knowledge is a new model of
cooperative learning developed as an enhanced Q-learning update function which also
includes learning events communicated by other agents. Further contributions lie in the
detailed analysis of simulation results establishing evidence of the cause-effect
relationship between communication and improved performance. The improvement in
performance is visualized by utilizing surface plot diagrams of the agents state-action
matrix. These diagrams show the how group communications reinforce effective
actions for the agents at an early stage in the simulation.

Classic reinforcement learning allows us to study the behavior of a single agent in
an environment where the learning is governed by a reward function and is developed
around a state-space conforming to a Markov assumption. In this environment the state
signal observed by the agent is only influenced by the previous state signal.
Reinforcement learning has been applied to multi-agent systems by a number of
researchers with promising results. One class of simulation highly suited for use in
multi-agent reinforcement learning is that of a military distillation. This allows us to
model the cognitive ability of a team of agents, allowing them to adapt to the opposing
team. Such a distillation represents a highly hostile environment and despite the
inclusion of a learning ability, a team of agents utilizing a reinforcement-learning
paradigm does not learn at a sufficient rate for agents to adapt to the hostile
environment. Unless individual agents learn to survive they die, significantly affecting
their team’s chances of success.

We can increase the learning rate of the agents by allowing them to communicate
between team members and thus increase the team’s survival and success chances.
Reinforcement learning has been utilized to investigate the distributed learning problem
in many different multi-agent team-based scenarios. The communication between the
agents then becomes a focal point of study when investigating group learning success.
Invariably, using a distributed learning approach by allowing agents to exchange what
they have learned the team does better in terms of achieving its goals. While the cause-
effect relationship between communication and improved performance has been
previously studied, it is difficult to find a detailed analysis of the effect the
communication has as a function of time on the elements of the simulation. There is a
gap in the literature on how this observed effect is realized within individual agents over
time. This research addresses this gap in the literature.

v

Contents

CONTENTS

CHAPTER 1 INTRODUCTION.....uuuursersssssnnssssssssnnssssssssnnnssnsssssnssssssssnsnsssssssnnnsssnsssnnnnsnnns 1
1.1 RESEARCH DESCRIPTION....ccoiuttiiitiiiiieiiieeniteeeiee ettt ettt e st siee e sete e st e s it e s bt e aeeesbeessneeenane 2

1.2 RESEARCH TOPIC AND CENTRAL RESEARCH QUESTION........cceeeiiiiiiiriiiiireeeeeeeeeeeeeeeeenaeeeeees 4

1.3 RESEARCH DIESIGN......utiiiiiiiiiiiiitteeiiitee ettt ettt ettt e e et e e ettt e s sttt e e sabeeeesbbaeeesnaeeeeenans 6

1.4 CONTRIBUTION. ...ccouuttiuiitenitteeteestee ettt ettt e et e st e st et e eaet et e e seteesabeeeneeenaeeennneesmneesaneesanee 8

1.5 PUBLICATIONS. ¢ttt ettt ettt ettt ettt et e sab et et e bt e bt e nate e sateesmeeesabeesanee 9

1.6 THESIS LAYOUT.c...iiiiiiiit ettt ettt ettt et st sbe e e bt e s b e saeees 11
CHAPTER 2 LITERATURE REVIEW......cuuuusssnsssnnnnnns 14
2.1 HUMAN GROUP COOPERATION......ccettteautteetteenuteesateeesieeestaeeaneeasaseeanseeesnseesansessseesnseeesnees 15
2.1.1 Benefits of Groups COOPEFALION.ccceeveereerieiiesesieeee et 17

2.2 AGENTS AND MULTI-AGENT SYSTEMS...cccutttiitenieeniieenieenreeniteenieeesseesiteesieeenseessmeeenseeennes 19

2. 2.1 AGOHICY ..ot 19

2.2.2 Multi-Q@ENt SYSIEIMS.........ceeiueieiie et ettt ettt 22

2.2.3 AGeNt SIUALEANESS............cceeieiiiieeieieie ettt 24

2.3 SIMULATION. ..c.ttiiteeiitte ettt ettt ettt ettt ettt et e st e sab e st e e sate e sttt ettt sabaeebeeebaeenneeeneees 26
2.3.1 Monte Carlo SimuUIQLiONS.cccceeeeeiiiiiiiiiiiee e e 29

2.3.2 Continuous SiMULALIONS.ccccooeeeeeeiiieeeiiii e eeeiee e 30

2.3.3 Discrete Event SIMUIALION.c....cccouiiieiiieieiiee e 31

2.4 AGENT BASED MODELING AND SIMULATION....ccuttirtttenitieniteeniteenireeniteenteeenieeenmeeenmeeenaneenane 32
2.4.1 Multi-Agent Based STMUIQLIONS..................cccceiiiiiiiiiiiiiiie e 33

Contents

2.4.2 Simulation and COMPLEXTLY............cccovviviiiiiiiieiie ettt 35
2.4.3 ET@ GONCE.vee oottt ettt e et e e 36

2.5 COMBAT SIMULATION...c.utttetteatteentteeiteesuteesuteesuseesateeaateeabeesaseeeabeeesaeeensseesnseesabeesnseesseas 38
2.6 LEARNING AGENTS IN SIMULATIONS. ... uuttteeruttteenitteeenteeesansreeesseeeesssseeesaseeesnseeeesssseeessnnees 42
2.6.1 Reinforcement LleArNINgG...............cccoeeeeeuieeiieeeie ettt e e aae e 43
2.6.2 O-LOATTING.ccviieeiiee ettt et e e ettt e et e et e et e e ebbaeeentaeeennnes 46
2.6.3 Multi-Agent Reinforcement LEATRING..............c.....cccueeeviuieeiiiiieeiiiieeeeiieeeeveeeens 47

2.7 COOPERATIVE LEARNING IN MULTI-AGENT SYSTEMS...ccceiuttterureernurieernireeesieeeesnieeeesnueeesnan 51
2.8 NEURAL NETWORKS. c...eeerutttetteentteenieeeiteenteesteeestteesaneesabeeenmeeesmseesaneesnseeesmseesnseeenseeeneees 53
2.8.1 NEURAL NETWORKS AND REINFORCEMENT LEARNING..........c..ccociimeiiiniiiniiiniiieeneen, 57
CHAPTER 3 IMETHODOLOGY....ceuuusnsssssssssssssssssmmmmmmmmmmnmmnssssssssssssssssssssssmmmsnmsnnnnnnnssnns 60
3.1 RESEARCH QUESTION REVISITED.......cceiiiiiiiiiiiiiiieeeciiieiee e e e eeetite e e e eeeiaeae e e e e eeeitaeeeeaeeeannes 60
3.2 THE RESEARCH PROCESS....ccciiitiiiiiiiiie ittt ettt e et e e e s 62
3.3 RESEARCH METHODOLOGY ...cceuutteruitteniteenieeenttteniteenieeenaieeeiteesateeebaeesaneesameeesmeeesneeesaneens 68
3.3.1 Qualitative vS QUARTIIATIVE.cccueeieeiieeeiiiieesiie e e e 68
3.3.1.1 Action ReS@arch.........coocuuiiiiiiiiiiiiiii e 70
3.3.1.2 Experimental Research...........ccccooviiiiiiiiiiiiiiiieie e 70
3.3.1.3 Case Study MethOds.........ccovieriieriieiiiieeiie et ciee et e st e sraeesenee e 71
3.3.1.4 SUIVEY MEthOdS......ccviiiiieiie ettt ettt e reeser e e beeseraesereenes 73

3.3.2 Simulation as a research TOOL..................c.c..cccouvieviiiiiiiiiiiiecciie e 74

3.4 RESEARCH DESIGN.....ceiiiiiiiiiiiitteeiitte ettt ettt ettt e ettt e ettt e ettt e e ettt e e snatbeeesnabeeeesans 80
CHAPTER 4 SIMULATION TOOL DESIGN......ccetieeremmnnnnnsssssssssssssesssssssssssssnssssnssssssssas 85
4.1 LANGUAGE AND VERSIONING DETAILS......cctiiiiiiiiieiiiieieeniiieeesiiieeeeneeeeseneeeeessnnneeesennees 86
4.2 ARCHITECTURE OF THE SIMULATION.ttetttteiuttentiteateeenteeesiteentreesateesseesaseeenseeesseeesnneesanes 88
4.2.1 Simulation Parameter CONIOL...............cccocuooveiiiiiiieiiiiieeciiie e 89
4.2.2 PArameter GFOUPDS.cc.cocuieeuiiioiiiiie et ettt ettt ettt e et 91
4.2.2.1 World Parameter GrOUD.........ccueeeveererierrierriesreeseeesieesseessreesssesseesseessesssses 91
4.2.2.2 Simulation Parameter GIOUP..........cccvveerrieirieieiieeerreeerreeerreesraeesenaeeseneessnnens 92
4.2.2.3 Agent Parameter GIrOUP........cceevueeiitireiiieeniee st eiee et e eiee et et e sbeeeaeeas 93

4.3 THE SIMULATION ENGINE.......coiittiiiiiiiiie ittt ettt ettt ettt e e e s 95
4.3.1 Sim Manager AVCRILECIUT@.................cc..cccuveeeiieeeiiieeciiieeiie et e et eveeesae e 97
4.3.2 Action Manager AVCRILECIUTe..................cc..ceeeueieeeieiieeeiiie et 98

4.4 REPRESENTATION OF TIME.......tiiiiiiiiiiiiiieiniiteeeeittee ettt ee et e e et e e et ee et e e snatbeeesnebeees 99
4.5 THE THINKING CYCLE..c.uuttiiittiiiteriteeniitenite et eetee et eeteeesneeesereessneeesaneeeeneeesaneesneeenane 102

vi

Contents

4.6 REPRESENTATION OF STATE....ccccutttrtteriteenieeeteeenteeentteenteeestaeesseeensneessseeesseessmeeessseeenn 106
4.7 COMMUNICATION.....eeuutteuteetteetteetee ettt ebeeeabeesateesateenseeasteesateenbeeebeeenbeesabeeeabeesnbeesareenane 109
4.8 IMPLEMENTATION OF AN AGENTS WEAPON.......etiittiiiiieiiieenieeenitteeiteetieesibeesebteesieeesieeens 114
4.9 CONTROL (GROUP DESCRIPTION.uutttteiritieeeniiieesatieeesnitteessnuteeeesusseeesssreeeesnseeessnueseesanns 115
4.10 SIMULATION OUTPUT ..ceeutteriieenittenteeniteeeieesteeesteeeiteesieeesaseesateesaneesaseesabeesaneeenbeesnneeenne 118
CHAPTER 5 SIMULATION RESULTS....uuuuuuummemnreneririniissssssssssssssssssss s s ssss s sssnssnnnns 123
5.1 MESSAGING AND LEARNING EVENTS.....coiutiiiiiiiiiiiiiiieieceiecee et 124
5.2 MODEL FOR CO-OPERATIVE LEARNINGuttetttteitieetieeatteenieeeteeenbeeesbbeesnteeenbeeseaeanns 129
5.2.1 Task Performance GQINS..............ccceucuereuiioiiiie ettt ettt 133

5.3 SIMULATION DESCRIPTION.....c..tttiiiiiiiiitiniieeiiteeniieeeeitee st sttt et et e st saieeesanee e 133
5.3.1 INGtial STALE SPACE..........cc.ooooviiieiiiiciiieeie et 134
5.3.2 ReWATd FUNCHION.ocooeueieeeiiis e ettt e e 137

5. 3.3 INGtIAL ACHION LISt ... 138
5.4 EXPERIMENTAL DESIGN...cuuttiiiiiiiiiiiiiiiiie ettt ettt 139
5.5 INITIAL BENCHMARK RESULTS.coiuitiiiiiiiiiiiiiiieite ettt 142
5.6 STATE SPACE VARIABLES AND ACTIONS REFINEMENT.........uttiiiiiiieeniiieniieeiiee e eieee e 145
5.6.1 ACtION REfINEIEHLS............ooeeieeieeeie ettt ettt e 148

5.7 EXPERIMENTAL TRIALS.....eeeuteertttenteteteeeteeeniteentteenmeeenteeeseesaseeeseesseesnseesaseesmneesneesseesanes 150
5.7 1 Benchmark TrIQL............c....ccc.oooiuiiviiiiiiiiieiiie e 151
5.7.2C0oMMST TFIQL.............ooooeveiiiiiiiiieiie et 153
5.7.3COMMS2 TFIQL.............ooooveeeeeee e 154
5.7.4 COMMSI THIQL.....ooeoeiiieiieeieee ettt eeane e 156
5.7.5 INItIAL DISCUSSTON.ooeeveieeiiieeciie ettt ettt 156

5.8 INVESTIGATING SIMULATION ARTIFACTS.eeetteeteeenuteeeteesieeeateeesseeensteesseesseesnseeenseesnnne 162
5.8.1 Agent ACtUALION RATe.............cccoooviiiiiiiiiiiiie ettt 163
5.8.2 ROWATA RATES.........cceoeeeieeii ettt e s 164

5.9 EXAMINING AGENT KNOWLEDGE LANDSCAPES.......ccovtiimiiiiiiieiiieenieeeniieeeiiee e 167
5.9.1 Benchmark TriaL...........c.....cccoeeiiviiiiiiiiii e 171
5.9.2 COMMSI TFIQL..........c..ooooveeeeeie e 179
5.9.3 COMMST THIQL.......coovieiieeiieeieeie ettt ettt e b e eane e 186
5.9 4 COMMS 2 THIQL.........oooovveoiieeiiiciie ettt et 190
5.10 DISCUSSION.teeitieetteetee ettt ettt et e e bt e et ee e ebee e bt e ettt e sbee e bt e e aateeabeeebeeeambeenseeeseeenane 194

Vil

Contents

CHAPTER 6 MODELING COMMUNICATION....ccciterrsserennnnssssssssssssssssssssmmssnsssnnnnnnnnnssnns 202
6.1 COMMUNICATION IN A COMPLEX ADAPTIVE SYSTEM....uutteitiieniieaieeeniieenieesieesnveeenneeenaees 203
6.2 COMMUNICATIONS SYSTEMS VIEW....uutttiiiiiitieiniiiteeeniitteeenitteeesnitteeesnteeeesnuraeeesnnnseessnneses 204
6.3 MODELING COMMUNICATION WITH A NEURAL NETWORK.......ceceerurireraniiieerenireeesaninneeennnns 206
6.4 DEFINING THE OBJECTIVE FUNCTION......ccoictiiiiiiiiieeeeiiiee s einiee s ereee s eveee e s irree s eenaae s e 210

CHAPTER 7 CONCLUSION......uuuuunmmrnnnessesssssssssssssnsnnsssssssssssssssssnnnnssnsssssssssssssssnnnnnns 213
71 SUMMARYctieiiittee ettt ettt ettt e ettt e e ettt e e s s ettt e s ettt e e e bbe e e e abb e e s bbeeesabbeeesnbaeesaanees 214

7.2 CRITICAL APPRAISAL....uuttiruieertieaiteetiteniteesteeeteee sttt ettt esateeebeeesbeeesaneesmteesaneeebeeenaeeenane 218
7.3 CONTRIBUTION. ...ceeuttieiteeitteeatte ettt estteesateeebteesbeeesabeesabeeeabeeebbeesabeesabeeebeeesateesabeesnbeeennne 222
7.4 FURTHER RESEARCH.ttiitttiititiitteeitieette ettt et ettt e et e et e ebt e st e sabeesabaeenbeeesaeeeenee 223

BIBLIOGRAPHYcciiiiiiiiinssinnsssnnnnnnnnnsnssssssssssssssssssasssss s s s s s s sa s s e s s s s s n s s naannnnnnnnnnnnns 226

APPENDIX A SIMULATION CODE.......ccssssuunnnrrnnnsrrsssssssssssssssnnsssssssssssssssssssssssnsssssssees A1
A.1 ARES APPLICATION MAIN CLASS....ceiruttimittiiiiinieenittenieesiee sttt st sbee e e A2
A.2 ARES APPLICATION MAIN GUI FORM CLASS......ccccctiiiiiiiiieeiieieeeieeeeeireeeeeiree e A3
A.3 PARAMETER GROUP CHECKING CLASS..cc.uuttiitiieiiiieeiieeitieesiteesieeeieeeniteesieeeseeessnee e Al3
A4 AGENT PARAMETER GROUP INPUT CODE.......ccciiiiiiriiiiiiieeiniiieeeeriiieeeeieeeeeeieee e Al7
A.5 SIMULATION ENGINE CODE LISTING......cccctuttieiiiiieeeeiiiieeeeniiieeeeneineeessnreeeessnnneaesenns A26
A.6 SIM MANAGER CODE LISTING.......uvvtiiiiiieeisiiiieesiiieeeesireesesereesesssseesssssseessssssseessssenes A29
A.7 SIM CLASS CODE LISTING....ceiutttiittteiieeetee ettt esteeesiteeette ettt e steeebeeesiaeesaeeesnbeessneeennne A32
A.8 SIMMIND OBJECT CODE LISTING....cuuttiietiiriiiiieeiitieeeeitieeeiiteeesiiteeesiaeessiveeeseaeee e A34
A.9 ACTION MANAGER CODE LISTING.....cccictiiiiiiiiiiiiiiiienieceiieeeee ettt e A35

A.10 ACTION OBJECT CODE LISTING.....cciitiiiiiiiiniiieiiiee ittt e A37
A.11 BLUEMIND CODE LISTING.....cetittiiitiiititiieeetie ettt site ettt ettt seee it e bt e et e e A38
A.12 RLSTATEACTION OBJECT CODE LISTING.......vttiiiiiiiiiiiieeeniiiiee et eeiiee et eeeieee e A52
A.13 RLSTATE OBJECT CODE LISTING. ..ccuutiritiiiiiiiieiieeieeeitesieeete ettt AS53
A.14 RLUTIL OBJECT CODE LISTING.....ceittiiitiniiieiiienitesiee sttt sttt et s AS5
APPENDIX B SIMULATION ELEMENTS......ccciiiiiinnnnnmnnnnrnse s s s s nssssss s ssssmmsssnssnssssnes B1
B.1 STATE ACTION IMAP....cootiiiiiiiitiiitt ettt ettt sttt sttt ebeesne e e B2

Contents

B.2 CRT OUTPUT FILE...ccoiuttiitiiiiiteniiteite ettt ste e ettt ettt et et satee s e s sbae e e e B4
B.3 CRE OUTPUT FILE...cceitttiitiiiiiieitieeite ettt ettt ettt ettt sttt ettt e sate e sateesbee s ebeeenbeesanee B6
B4 ACTVAL FILE OUTPUT....ceitttitttatie ettt eite e ettt estte e st e site e siteesiteesateesabeesbeesaeeeenbeesbeeennes B8
B.5 SCREEN FILE OUTPUT......ceititttteiiiiieeaitteeeniiteesnitteeeeteeeesitteessbbeessabeeessaeeessbseessnnseeens Bl11
APPENDIX C PUBLISHED PAPERS........cccessssmmmrrmrrrrrnsssssssssssnnnssssssssssssssssssssnnnsnsnnnes C1
Gl ABSTRACTS. .ottt ettt ettt ettt ettt ettt st e sbt ettt e sb et e bt e e st e e sat e e mteesateesaneenaneesanees C2

1X

Contents

Index of Figures

FIGURE 1.1: TRADITIONAL REINFORCEMENT LEARNING UPDATE CYCLE.......uuuvvvieeeeeeeeeeeeenrrveeeenanss 8
FIGURE 2.1: EMERGING INTERDISCIPLINARY FIELDS..........cccoiiiiiiiiiiiiiiiiiiieieeeeeeeeeeeeeeeeaans 15
FIGURE 2.2: AGENT TYPOLOGY ...cceiiiiiiiuttteieeeeeeeeititeeeeeeeeeseeitsrseesaeeeeaesasssssseseesssessssesseseeesasssnns 20
FIGURE 2.3: 3D-SPACE MODEL OF AGENCYuuuuuutuuururrirrrerrerrerereeerearaaaaeeeeeeeeeeeseeessesesnssssssssssses 21
FIGURE 2.4: CLASSIFICATION FOR MULTI-AGENT SYSTEM APPLICATIONS..........cccvvvvrurunieeeeeanannnns 23
FIGURE 2.5: SITUATED AGENTS FROM AN ORGANIZATIONAL PERSPECTIVE...........cuuuuueeeeeeeeenenennnns 25
FIGURE 2.6: MODELING VS. SIMULATION.ccceeeiiiuttrteeeeeeeitrreeeeeeeaisresseaeesaeesssssaeseessossssseseesnnnses 27
FIGURE 2.7: MODEL REPRESENTATION OF A SYSTEM.......cccceeiiiiiiiiiiiiieieeieeeeeeeeeeeeeeeeeeeeveeaeeeeeaaaes 27
FIGURE 2.8: SIMULATION ABSTRACTION LEVELS......cccevviiiiiiieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeennnsnnnsesnnnnns 28
FIGURE 2.9: REPRESENTATION OF DETERMINISTIC MODEL......0uuuuuuueeeeeeeeeeeeeeeeeeeeseeseeeeeeeennreennnnes 29
FIGURE 2.10: REPRESENTATION OF MONTE CARLO SIMULATION MODEL.........ccccvvvvvreeerreeeeeerennnns 29
FIGURE 2.11: ELEMENTS MODELED IN MULTI-AGENT SYSTEM.......0uuuuuuuurvrrereresrerereerseesseesseeeseeenes 35
FIGURE 2.12: TRADITIONAL REINFORCEMENT LEARNING UPDATE CYCLE.........cccvvuvuuieeeeeeeeeaennnnns 44
FIGURE 2.13: BIOLOGICAL NEURONccceiiiiitiireeeeeeeieirreeeeeeaesiesssseseeeessosnssessssssssssssssssseessnsnnnns 54
FIGURE 2.14: GENERAL FORM OF AN ABSTRACT ARTIFICIAL NEURONccevvvvriiiiiiiieeeeeeeenennnns 55
FIGURE 2.15: FORM OF DIFFERENT ACTIVATION FUNCTIONScccvvviririrenrernnnnnnieaeeeeeeeeaaaaaaseeenens 56
FIGURE 2.16: MCCULLOCH-PITTS EARLY MODEL OF A NEURONcccevvvvvrrrrurnneneeeeeeeeaaeaananenns 57
FIGURE 3.1: THEORETICAL CONSTRUCTS USED IN RESEARCH.......ccceeeeiiiurirereeeeeeinireeeeeeeeeinnssneess 64
FIGURE 3.2: THE RESEARCH CYCLE.....ccvtttiiiiiiiiiieeieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeenansannssnsssssssssessneeees 65
FIGURE 3.3: SPIRAL DIAGRAM OF THE RESEARCH PROCESS........ccoeeeuuuururrrrrereeeeeeeeaeeeeeeeeeeeenennnnns 66
FIGURE 3.4: RELATIONSHIP BETWEEN ELEMENTS OF THE RESEARCH PROCESS...........ccceeeveeeeeennnnn. 67
FIGURE 3.5: CYCLIC NATURE OF ACTION RESEARCH.......cceiiieeeiiiirrieereeeeeeeiiisnreeeeeseeesssnnsseessaeens 70

DATA COMPLEXITY ...tvvteeeeeettueeeesasensseeeeeaaaessseseessssnssssseessssssssseesassssssssssssssssssseessssssssssssesasns 72
FIGURE 3.7: THE SURVEY PROCESSvvtveeeeeeiiiiiurereeeeeeesaaiinnsssesesseesssoassnsssesssessssasssssssssesseesannns 73
FIGURE 3.8: FRAMEWORK FOR SIMULATION METHODOLOGY «..uuuuuunneeeeeeeeeeeeeeeeeeeeeeeeeereeeeseensnennes 77
FIGURE 3.9: EXPANDED FRAMEWORK FOR SIMULATION METHODOLOGYcccceeeveeeeeeeeeeaeeeeeannnn. 78
FIGURE 3.10: GENERIC STAGES IN THE SIMULATION RESEARCH PROCESS..........uuueeeeeeeeeeneeernrennnns 79
FIGURE 3.11: MAJOR ELEMENTS OF THE SIMULATION........ccevvtttteriieeeeeeeeeeeeeeeeeeeeaeeeseeesnnnnsssnnnnns 81
FIGURE 4.1: OVERALL ARCHITECTURE OF THE SIMULATION..........cccceeiiiiiiiiiiieiieeeeeeeeeeeeeeeeeee 88
FIGURE 4.2: ARES GUI BASED MAIN MENUL........ccoeieeuunuuuuerrrrereeeeerrerreeeseeeeeeeeeeeseeeeaesesssnnnnsssnnes 89

Contents

FIGURE 4.3: PARAMETER GROUPS ACCESSIBLE FROM THE PARAMETER MENU ITEM..........ccccuvu..... 91
FIGURE 4.4: STRUCTURE OF THE SIMULATION PARAMETER FILE..............ccccvvviiieiiiieiiiieeeeeeeeeeeenens 92
FIGURE 4.5: SIMULATION PARAMETER INPUT FORM........cuuvtieeeeeeiiureeeeeeeeiiusreeeeessisssseeseeeesnssssseaens 93
FIGURE 4.6: AGENT PARAMETER GROUP INPUT FORM........cceeeeieeieeieieeeeeeeeieieennnnnnnnnnnsnnnnnnnnnnnnnns 94
FIGURE 4.7: ARCHITECTURE OF THE SIMULATION ENGINE AND COMPONENTS.......0uceeeeeeeeeeeeennnnnnn 95
FIGURE 4.8: SCREEN CAPTURE OF A SIMULATION TRIAL IN PROGRESS.........cceeeeeeeenerennernrenereneennns 96

.. 98
FIGURE 4.10: AGENT ITERATION LOOP.......uuttteeeeeiiurrreeeeessasinrsreeeeeesssssssseeessassssssessssssssnssesens 102
FIGURE 4.11: IMPLEMENTATION OF QQ, STATE-ACTION MATRIX......cescuvereeeserreeessnrereesssnnneeesnnnns 105
FIGURE 4.12: DEPICTION OF AGENTS SENSORY RANGES.....ccccceiiiiuiiieeeeeeiitieeeeeeeeeiireeeeeeeeessnenens 107
FIGURE 4.13: BUILDING THE AGENTS Q[] ARRAY FROM THE STATEACTIONMAP...........cccee...... 109
FIGURE 4.14: COMMUNICATIONS SENT AS ACTIONS IN THE SIMULATION.......cccceeeeeeeeeeeeeeanaaannnn.. 113
FIGURE 4.15: CONTROL GROUP WEIGHTED BEHAVIORAL INPUT SCREEN...........ccuvvevreremnennnnnnnnnnes 116
FIGURE 4.16: CONTROL GROUP WEIGHTED INPUT SCREEN SECTION.......ccccceeeeeeeeeeenrnnrrrreeneeeennss 117
FIGURE 5.1: TRADITIONAL REINFORCEMENT LEARNING UPDATE CYCLE........cuuvuuvurvueennennnnnnnnnnnns 126
FIGURE 5.2: UPDATED REINFORCEMENT LEARNING INPUT SIGNAL.........ccceevvveeeeeeiieneeeeeieeeeeennnns 129
FIGURE 5.3: AGENT TEAM INITIALIZATION.uuuttieeeeeeeiitteeeeeeeeeaisssseseeeeeeaesssrseseseessassseseseeens 140
FIGURE 5.4: PLOT OF DAMAGE OVER TIME FOR INITIAL BENCHMARK TRIAL.......uuuuuunuunnrieeeannnnn 143
FIGURE 5.5: INITIAL BENCHMARK TRIAL INDIVIDUAL SIMULATION RUN ANALYSIS.......ccceeeennenn. 144
FIGURE 5.6: DAMAGE VS TIME PLOT FOR UPDATED BENCHMARK TRIAL...........cccceeveeeeeeneeneeenannn. 152
FIGURE 5.7: DAMAGE VS TIME PLOT FOR COMMS] TRIAL.........ccceeiiiiiiiieeeieeeeeeeeeece e 154
FIGURE 5.8: DAMAGE VS TIME PLOT FOR COMMS2 TRIAL.........cccceeeeeeiieeeeeeeeeeeeeeeeeeeeeeeeeeeeennnnns 155
FIGURE 5.9: DAMAGE VS TIME PLOT FOR COMMS3 TRIAL......uvvteeeeeiieerrrreeeeseenennrreeeeeeesesnnnseeeens 156

FIGURE 5.10: COMPARATIVE BAR GRAPH SUMMARIZING Q-LEARNING AGENT TEAM WINS VS
INSTINCTUAL AGENT TEAM WINS FOR ALL TRIALS.......cceeiiiiiiieiiieieieeeeeeeeeeeeeeee e e 157
FIGURE 5.11: Z TEST FOR 2 POPULATION PROPORTIONS......ccevvvrreerererereeeeeeeeeeeeeeeeeeeeeeeeeeeeesennnns 158
FIGURE 5.12: COMPARATIVE GROUP LEARNING RATES OF THE Q-LEARNING TEAM (BLUE TEAM)
FOR THE FOUR SIMULATION TRIALS......uvtteeeeeiieuttreeeeeeeeieereseeeeeessisssssssessesssssssssesessssnnsesens 160
FIGURE 5.13: ACTUATION RATE OF AGENTS IN THE QQ-LEARNING TEAM FOR THE BENCHMARK
COMPARED TO THE COMMS3 TRIAL......cevvvurereerrrereeereessessssrsssssnrsssssnnsennnensnnnnnnnnnnnnnsnnnnnnnnnnns 163
FIGURE 5.14: COMPARATIVE PLOT OF THE RATE OF POSITIVE REWARDS RECEIVED FROM THE
SIMULATION FOR THE Q-LEARNING BENCHMARK AND COMMS3 TRIALS........ccvvvrreeeeensnnennnnns 165
FIGURE 5.15: COMPARATIVE PLOT OF THE RATE OF NEGATIVE REWARDS RECEIVED FROM THE

SIMULATION FOR THE Q-LEARNING BENCHMARK AND COMMS3 TRIALS.........ccceveeeerreeeeeeannnn. 166

X1

Contents

FIGURE 5.16:
FIGURE 5.17:

FIiGURE 5.19:
FIGURE 5.20:
FiGURE 5.21:
FiGURE 5.22:
FIGURE 5.23:
FIGURE 5.24:
FIGURE 5.25:
FiGURE 5.26:
FiGURE 5.27:

RESCALED

IMPLEMENTATION OF Q, STATE-ACTION MATRIX

BENCHMARK TRIAL KNOWLEDGE LANDSCAPE DIAGRAM - LEAST SUCCESSFUL AGENTS

CoOMMS3 TRIAL KNOWLEDGE LANDSCAPE DIAGRAM - LEAST SUCCESSFUL AGENTS 180
COMMS3 TRIAL KNOWLEDGE LANDSCAPE DIAGRAM - MOST SUCCESSFUL AGENTS. 182
CoMMS1 TRIAL KNOWLEDGE LANDSCAPE DIAGRAM - LEAST SUCCESSFUL AGENTS 187
CoMMS1 TRIAL KNOWLEDGE LANDSCAPE DIAGRAM - MOST SUCCESSFUL AGENTS. 189
COMMS2 TRIAL KNOWLEDGE LANDSCAPE DIAGRAM - LEAST SUCCESSFUL AGENTS 191
COMMS2 TRIAL KNOWLEDGE LANDSCAPE DIAGRAM - MOST SUCCESSFUL AGENTS. 193
BENCHMARK TRIAL CONTOUR DIAGRAM - MOST SUCCESSFUL AGENTS.................. 195

CoOMMS3 TRIAL CONTOUR DIAGRAM - MOST SUCCESSFUL AGENTS......ceevuueeernnnn.. 196

FIGURE 6.1: COMMUNICATIONS SYSTEMS VIEW......eiittiuiineeeeeeeeuiieeeeeeeeesmnneeeeesessnnnneeessseesnnns 204

FIGURE 6.2: OVERVIEW OF NEURAL NETWORK MODEL WITH 5 NODES.......cccuuueeeeieeiiiniieeeeeeeennns 207

FIGURE 6.3: DETAIL OF NODES IN NEURAL NET MODEL......uuoviiiiiiuiieeeeeriuiieeeseesessnieeseessennnnnns 208

Xii

Contents

Index of Tables

TaBLE 3.1:

DISTINGUISHING CHARACTERISTICS OF QUANTITATIVE AND QUALITATIVE

METHODOLOGIES ..vuuueeeeeeeeeeeieeeeettttataaeeeeeeeeeseeeessstssamansesesesseseressssaertnnneeseseesersessrrrnnnn.. 69

TABLE 5.1:
TABLE 5.2:

TABLE 5.3:

INITIAL STATE SPACE VARIABLES....uuuiiiiiitttieeeeeeetteeeneeeeeeertstanneseeesssssnnnnesesseens 135
REWARD FUNCTION FOR THE SIMULATION.......ccuuuuiiitnneeiuneeiinneeiineeesnneeesnneesannnns 137

INITIAL SET OF POSSIBLE ACTIONS. ...uutttuuuneettueeeeeteeeeeesneeeeeesaneeessanneseesnneesessans 138

TABLE 5.4: LIST OF PARAMETERS AND THEIR VALUES FOR SIMULATION TRIALS..............cvvue..... 141
TABLE 5.5: MODIFIED LIST OF STATE SPACE VARIABLES...........ccevvvttiieeeeereerenensnnnnnnneneeeeeenes 146
TABLE 5.6: UPDATED SET OF POSSIBLE AGENT ACTIONS......ccceeeiieiiuerinernrrrrrerrrrerereeereeeeeaaaaaaeeas 148
TABLE 5.7: BRIEF DESCRIPTION OF THE FOUR COMPARATIVE SIMULATION TRIALS TO MEASURE THE
EFFECTS OF COMMUNICATION ON GROUP LEARNING AND SUCCESS.......cuvvvrurerreerrnnnnnnnnnnnnnnnns 150
TABLE 6.1: REWARD FUNCTION FOR THE SIMULATION........c0uuuvturerunnnneeaaeeeeeeaeeaaaaaeeeseeeesesessssnnes 211

Xiii

Contents

Index of Listings

LisTING 2.1:

LISTING 4.1:
LisTING 4.2:
LisTING 4.3:
LISTING 4.4:
LISTING 4.5:
LIsTING 4.6:
LisTiNG 4.7:

LISTING 4.8:

LISTING 5.1:

LISTING 5.2:

Q-LEARNING ALGORITHM......uvteeeeeeeesuereesnureeesseeessnsseeessnseessseeeessnseessnsseessssseeesnns 47

SIMULATION ENGINE MAIN LOOP.......cceittttiieeeeeeeeittrreeeeeeeeeeisrsereseeeseeasssssesaeeeesinns 100
SIM MANAGER COGNITION LOOP......cccccetieieeeeeeeeeeeeeeeeeeeeeeecnennsnnssasseesseseeereeeeeeens 101
REINFORCEMENT LLEARNING AGENT THINK() METHOD.......cuvveeeserreenrnnreensnreeennnns 103
PROCESSREWARD() METHOD LISTING.00eeeeutrreeesereeessereeessnseessssseeessssseeessssees 111
FORMAT OF THE CRT FILE......ccciiiiiiiiiiieieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeettaevaassavassesaaesanes 119
FORMAT OF THE CRE FILES.........ccceiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeeeeeeeee e eeeeeeeeeeaeeaaeseeeanans 120
FORMAT OF THE ACTVAL FILE.....ccetiiiiiiutrreeeeeesierrreeeeeeasnnnreeeeeessssnsssessasssssnsesees 121

FORMAT OF THE SCREEN TEXT FILE......cuuuuuitieeeetiieemneeeeeeereennneeeeesessssnnneeseeseens 122

EXCERPT OF STATE ACTION MAP TEXT FILE......cuuuiiiiueeiieeeiieeeieeeineeeeaneeeennns 149

STATE-ACTION MATRIX OF AGENT AGENT 27 IN SIMULATION RUN 271 — STATES 0 TO

.. 175
STATE-ACTION MATRIX OF AGENT AGENT 27 IN SIMULATION RUN 271 — STATES 34 TO
.. 176
STATE-ACTION MATRIX OF AGENT AGENT 19 IN SIMULATION RUN 271 — STATES 0 TO

.. 177
STATE-ACTION MATRIX OF AGENT AGENT 19 IN SIMULATION RUN 271 — STATES 34 TO
.. 178
STATE-ACTION MATRIX OF AGENT AGENT 26 IN SIMULATION RUN 203 — STATES 0 TO

... 183
STATE-ACTION MATRIX OF AGENT AGENT 26 IN SIMULATION RUN 203 — STATES 34 TO
... 184
STATE-ACTION MATRIX OF AGENT AGENT 15 IN SIMULATION RUN 203 — STATES 0 TO

... 185
STATE-ACTION MATRIX OF AGENT AGENT 15 IN SIMULATION RUN 203 — STATES 34 TO
... 186

X1V

Chapter 1 - Introduction

INTRODUCTION

Every new beginning comes from some other beginning's end.

— Seneca (Roman Philosopher, mid I* century AD)

As humans we intuitively understand the benefits of cooperation between
individuals, or between large groups of individuals. Indeed cooperative behavior has
played a pivotal role in human evolutionary history. In their paper, “The Origins of
Human Cooperation” (Bowles and Gintis, 2003), Bowles and Gintis note that
populations which are composed of groups characterized by high levels of interaction
between their members tend to be successful in evolutionary terms. They also indicate
that group characteristics and the behavior of individuals in cooperative groups can have
a synergistic effect. In such cases, the group becomes more than just the sum of its
parts. The synergy created by cooperation can often mean that the achievements of the
group is beyond the capabilities of the individuals. Indeed, societies and groups can be
compared to organisms as they are composed of many individuals working together to

increase their survival chances (Boyd and Richerson, 2005).

While it had long been known by early researchers that cooperative behavior
within groups facilitates the achievement of goals more efficiently, it wasn't until almost
mid twentieth century that the first detailed theory on the subject was established (May
and Doob, 1937). There was a renewed interest in the study of groups in the 1970's

stimulated by empirical research, particularly in the area of the use of groups for

Chapter 1 - Introduction

cooperative learning. Further research showed that group cooperation promotes higher
achievement and productivity than individual efforts (Johnson et al., 1981). Within the
learning process cooperation takes on many forms, but often manifests itself as a form
of communication. Individuals learn skills, techniques and sometimes environmental
conditions by communicating with others. Indeed “communication is a cooperation
problem”, (Sterelny, 2008). The quintessential links between evolving cooperation and
communication can be found in the modern structured learning environment we create
for children. Although there has been some research effort to measure empirically the
importance of communication and learning time on individual skills, the results have
not been persuasive due to limited measurement techniques (Sterelny, 2008). However
new technologies and advances in computer simulation techniques have evolved over
the past decade which allow us to investigate these important issues using computer

modeling.

Humans have been using simulation for a long time. Early cave paintings in the
caves of Lascuax in France demonstrate the unique human ability to abstract and imitate
reality. However, most simulation has its roots in military simulation, with early
military simulation as simple as gladiators training with swords against wooden
dummies. With the advent of computer technology, we are able to take a far more
abstract approach to simulations, and we are not constrained by time. Many research
methods must make assumptions regarding the nature of cause and effect within the
system they are studying. However, with simulation techniques, researchers can assume
the complexity of the system and study this relationship in detail by moving forward in
time in a controlled manner (Dooley, 2002). Additionally simulations tend to be
quantitative tools allowing us to collect empirical data on elements of the simulation, as

the simulation progresses through time.

1.1 Research Description

In the last decade, agent-based simulations have been increasing in popularity as a
research tool for studying a variety of problems from social and economic issues
(Nakano, 2007) to elements of complexity theory (Saoud and Mark, 2007). The

application of learning techniques applied to multi-agent systems is a growing field

Chapter 1 - Introduction

(Claus and Boutilier, 1998), and an exciting, emerging area of research is Multi-agent
Reinforcement Learning. Multi-agent reinforcement learning is concerned with how an
agent can learn to act optimally in an unknown environment through trial and error
interaction, and in the presence of other adaptable agents (Khoussainov, 2004). A multi-
agent system, while generally Markov-like in nature is essentially a non-Markov
decision process, as the interaction between the agents themselves and concurrent
learning affect the state transition probabilities (Arai et al., 2000). Convergence is one
of the measurements of performance often used in many applications utilizing
traditional reinforcement learning techniques (Hirashima, 2008). While learning is not
guaranteed to converge in a non-markovian environment, the main problem stems from
the non-stationary nature of the task due to hidden variables caused by other agents
affecting the environment. However, reinforcement learning, and in particular temporal
difference (TD) algorithms such as Q-learning, can perform well in multi-agent systems
(Preux et al., 2004).

In the coordination of team-based approaches to problem solving, a number of
research publications have reported results using simple communication to share
reinforcement rewards (Kelly and Keating, 1998, Mataric, 1998, Nunes and Oliveira,
2003, Sen et al., 1994, Tan, 1993). In most cases, communication of rewards was used
to implement a low level cooperation among the agents which resulted in accelerated
learning rates and improved group performance. The broad aspects of the 'cause-effect'
relationship between agent communication (cooperation) and performance has been
extensively studied. However, there still exists a gap in the detailed analysis of the
effect that communication has as a function of time on the elements of the simulation.
This information can be important for a new class of conceptual simulations utilizing
intelligent agents. These conceptual simulations are often used for studying adaptive
human behavior in complex systems, such as social, economic and military systems. For
example, traditional simulation models of combat environments have sought linear
solutions and are deterministic. But military conflicts (particularly land combat) possess
almost all the main features of complex adaptive systems (Ilachinski, 1996), and if an
opposing side is capable of adapting to the combat efforts of the other, then the resulting
combat is unlikely to be linear. This is also true of all complex systems involving many

interacting components. The interaction between agents allows for the adaption of those

Chapter 1 - Introduction

agents to the changing environment.

A major complaint often leveled at such simulations is that they don't explain
what happens at the micro level (van der Hoog, 2004). When we are modeling a system
of living individuals, human or otherwise, we are effectively trying to model a complex
system. A complex system is a system composted of many interacting components,
where the overall system activity is non-linear. Thus traditional deterministic
simulations were not wholly effective in modeling these complex systems where a
butterfly effect, due to the interaction can often produce quite different outcomes. Multi-
Agent based simulations allow us to take a non-deterministic approach to modeling
complex systems. Using a multi-agent based approach, the individuals become the basic
building blocks of the simulation (Mazher, 2001). We can then specify the interaction
between the individuals and observe the effects as the simulation unfolds. The
specification of the interaction between the components (or individuals) effectively

describe, or model the behavior of the individuals in the system being simulated.

Multi-Agent Systems (MAS) are at the heart of modern conceptual simulations,
and provide us with a mechanism to simulate the non-linear local interaction between
the individuals. By studying the details of precisely how the performance gain is
realized between cooperating agents at the micro level, we can relate the results back to
the underlying domain theories. This could allow us to enhance any existing domain

rules of practice to achieve better real-world outcomes.

1.2 Research Topic and Central Research Question

The purpose of this research is to study agent communication in a complex
system, where the agents are cooperating to achieve a common goal. A complex system
is utilized as the agent environment since this provides a more realistic foundation for
simulations designed to study realistic scenarios at the conceptual level. We know from
previous research that cooperating agents generally do better in achieving group out-
comes. However, what is lacking in the literature is a detailed analysis of the effect the
communication between cooperating agents has as a function of time on the elements of

the simulation. Given a lack of detailed analysis in the literature on this cause-effect

Chapter 1 - Introduction

relationship, the central question then becomes, exactly where and how the resultant
effect is realized within the simulation? Once this is analyzed, further interesting
questions arise related to the central question. If we study the effects of communication
over time can we see the relationship between performance and communication as a
linear relationship or otherwise? Are the effects cumulative or do they degrade over

time as the simulation progresses and the landscape changes?

More formally, the central question can be framed as: if we denote the set of

agents in a Multi-Agent System (MAS) by X, then a MAS with n agents is given by
X=[x,,x,,..x,

Assuming communication is a function of discrete time, we denote a message

between two agents x; and x; at time ¢ as

m, (t):x,—x,

then the total communication for X at time ¢ is then given by

Now we know from previous research that allowing agents to communicate

generally increases the groups chances of success, thus the communication M(?) at time
¢t must have a discernible effect on the group at time #+17, say A, X . As the simulation

progresses in time, we can denote the change in the group from time ¢ to time #+/ as

Chapter 1 - Introduction

To analyze the effects of agent communication as time progresses, in particular,
the effects on the group X, we consider the progression of changes (A, X |_, ; where
the end of the simulation time is denoted by 7. These changes will be realized in the

individual agents, thus Vx,€X, A, X={d,,,x;] where X, are the resultant

changes in x; at time t+/ caused by M,(t). Thus the central research question then

becomes a complete description (or analysis) of

Additionally, we need to be able to visualize each of the A, X descriptions in
order to better understand the effects of communication. So a method to visualize these
descriptions will also be developed. Once an analysis of the effect of communication is
complete, a method to model the communication is then developed to provide a
foundation for general understanding and formal reasoning about the dynamics of group
communication. This has not been effectively achieved to date at this level for Multi-
Agent Systems. A thorough understanding of the cause-effect relationship between
communication and performance will enable us to design agent-based communication

systems which maximize the learning potential.

1.3 Research Design

This research is designed to investigate the cause effect relationship between
agent communication and group outcomes using a Multi-Agent based simulation
approach. The architecture of the simulation is a non-supervised multi-agent system
representing a military distillation with two opposing teams who combat for survival.
The simulation world is a continuous world where agent movement is determined by a
vector consisting of angle and distance (based on a speed variable). The simulation is
modeling a specific problem and utilizes a finite state and action space. Time is discrete,
and for each time step, each agent observes the world, determines its current state, and

chooses an appropriate action to perform. All actions are performed at the end of each

Chapter 1 - Introduction

time step, with the sequence randomized before execution to prevent bias.

The specific environment, the battlefield, was chosen as a battlefield contains all
the elements of a complex system, many interacting components, with a non-
deterministic outcome. The problem is generally well understood, and allows us to
simulate a realistic scenario with possible feedback to the real, underlying domain. As
mentioned, there are two groups of agents being simulated in the environment. One
group represents the control group where the agents do not communicate, but have a
common goal. The other group will represent the study group, also with a common goal,
where the communication between the group members and its effects on the group

outcome will be the focus of study.

Each of the individual agents will implement a reinforcement learning algorithm.
Reinforcement learning is concerned with how an agent can learn to act optimally in an
unknown environment through trial and error interaction with the environment and
elements of the environment. There are many different reinforcement learning
algorithms allowing many forms of learning. Most of these are episodic in nature with
the simulation being performed many times and the agent learning taking place at the
end of each episode. This type of Monte-Carlo approach is excellent for specific types
of problems, but to simulate a more realistic scenario, a Temporal Difference
reinforcement learning approach known as Q-learning (Sutton and Barto, 1998) was
chosen. Q-learning is a well known reinforcement learning algorithm with the agent

learning taking place as the simulation progresses.

Traditionally, reinforcement learning is for a single agent learning to perform a
task in its environment. Utilizing Reinforcement learning in a multi-agent system
requires adjustment to the algorithm. In particular, traditional reinforcement algorithms
do not allow for the sharing of information or for communication with other agents. The
traditional ~ Reinforcement learning update algorithm defined in Sutton and Barto

(Sutton and Barto, 1998) is based on the following cycle shown in Figure 1.1:

Chapter 1 - Introduction

Figure 1.1: Traditional reinforcement learning update cycle

where x; is an agent, s€S (set of states), a€4, (set of actions for state §), r is the
reward received and s'€S is the resulting state. Time is represented by 7. However,
with other agents communicating with each other at each time step, the traditional
learning update cycle needs to be modified to accommodate the additional

communication in the simulation.

A multi-agent based simulation package initially developed at the Australian
Defence Force Academy was heavily modified to accommodate Reinforcement
Learning agents developed for this research. It was also modified to allow for agent
based communication, and the reinforcement learning updates to take place based on a
modified Q-learning update equation developed for this research. Simulation runs using
this multi-agent simulation tool were conducted with a control group and an
experimental group to obtain the quantitative data used in this research. Additionally
from this experimental data, an initial model for the communication which takes place
within the complex system simulation, was developed utilizing a Neural Network based

description.

1.4 Contribution

This research makes a number of contributions to the field of study.

A new model of cooperative learning is developed through the implementation of

Chapter 1 - Introduction

an enhanced Q-learning update function which also includes learning events
communicated by other agents. This is a modified version of the update function
displayed in Sutton and Barto (Sutton and Barto, 1998). The original update function is
for a single agent learning in an environment without the presence of other learning
agents. The updated learning equation shown in the Methodological Approach above
was specifically developed for this research. This updated function is a model that
allows not only for the reinforcement learning agent to update its own learning events,
but also allows further updates to the agent knowledge based on the the communication
input signals from the other agents in the group. This model has been tested in the

simulation with good results showing enhanced learning by the group.

Further contributions also lay in the detailed analysis of the simulation runs. This
analysis pinpoints the effects of the communication on the agents, and visualizes these
using knowledge landscape diagrams of the agents state-action matrix. These diagrams
show how group communications reinforce effective actions for the agents at an early
stage in the simulation. However, as the multi-agent system is non-markovian in nature,
this becomes a moving target, and the surface diagrams evolve over time to reflect the

changing nature of effective actions.

Finally, a Neural Network based model of the group communications is developed
to effectively represent the communication in a more coherent form for further research.
Such communication has always been difficult to represent at a micro level in a
complex system, due to the non-linear nature of the systems. However, Neural

Networks provide us with a good modeling tool to represent this information.

1.5 Publications

As a result of this research a number of Journal articles and conference papers
have been published. All publications are blind peer reviewed papers and articles. The
Titles and Abstracts of these articles and papers can be viewed in Appendix C. These

arc:

Chapter 1 - Introduction

Journal Articles and Chapters

Darbyshire, P., Wang,D., “Effects of Communication in Cooperative Q-Learning”,
International Journal of Innovative Computing, Information and Control (IJICIC), Vol
6, No. 5, pp 2113-2126, May 2010, ISSN 1349-4198

Darbyshire, P., “Using XML to Help Isolate Software Systems and Agents from
Change Due to Communications ”, Journal of Business Systems, Governance and
Ethics (JBSGE), Vol 1 No. 4, 2006, pp 59-68, ISSN 1833-4318

Darbyshire, P., Wang, D., “Learning to Survive: Increased Learning Rates by
Communication in a Multi-agent System”, Lecture Notes in Artificial Intelligence
(LNAI 2903), Springer, ISBN 3-540-20646-9 pp 601-611, 2003

Darbyshire, P., “Effects of Communication on Group Learning Rates in a Multi-agent
Environment”, Advances in Complex Systems, Special Issue: Agent-Based Approaches
in Complex Systems, Vol 6 No 3, September 2003, pp 405-426, ISSN 0219-5259

Darbyshire, P., “Modeling Agent Communication in a Complex System as a Neural
Net”, Lecture Notes in Engineering and Computer Science, Intentional Association of
Engineers, Vol 2194 Issue 1, 2011, pp 1032-1037, ISSN 2078-0958

Conference papers

Darbyshire, P., “Using a Neural Net to Model Agent Communication in a Complex
System”, IEEE, Proceedings of the 2010 International Conference on Modeling,
Simulation and Control, Cairo, Egypt, November 2010, pp 454-458, ISBN 978-1-4244-
8823-0

Darbyshire, P., Wang, D., “What did they Learn?: the Effect on Learned Behavior of

Increased Learning Rates in a Multi-agent System”, 7th Asia-Pacific Conference on

Complex Systems, Carins Australia, Dec 2004. pp 476-488 , ISBN 1-876674-96-2

10

Chapter 1 - Introduction

Darbyshire, P., “Using XML for Simple Hierarchical Communication between Agents”,

IRMA’ 2004, New Orleans, USA, May 2004, pp 686-689, ISBN 159140-279-4

Darbyshire, P., McKay, B., “Bringing Intelligence to the Battlefield”, Modelling and
Simulation (MS’02) 2002, Melbourne, Australia, 2002, ISBN 1-86272-617-5

Darbyshire, P., McKay, B, “Using Communication to Increase Learning in a Hostile

Multi-Agent Environment”, Complex Systems 2002, Tokyo, Japan, 2002

Darbyshire, P., Abbass, H., Barlow, M., McKay, B., “A Prototype Design for Studying
Emergent Battlefield Behaviour through Multi-Agent Simulation”, The 4th Japan-

Australia Joint Workshop on Intelligent and Evolutionary Systems, Hayama-machi,
Japan, 2000

1.6 Thesis Layout

Chapter 2 of this thesis presents the literature review which provides the
background of this research. The early interest of researchers into communication and in
the development of a theory on human communication and how communication within
groups can lead to more efficient goal achievement is explored. This phenomenon has
also been observed in multi-agent simulations employing artificial intelligence
techniques, but the cause-effect relationship has not been explored in detail. The history
of simulation techniques is discussed which culminates in the agent-based techniques
currently used by researchers to explore the non-linear local interaction between
individual elements of a complex system simulation. We also present background
literature on Complex Systems research and Reinforcement Learning, an Artificial
Intelligence technique often used within multi-agent simulations. Additionally we also
discuss Neural Networks and their relevance to Reinforcement Learning. Neural
Networks will be used in a later chapter to Model the communication within the agent
based simulations, however the work with Neural Networks does not form a core

component of the research.

11

Chapter 1 - Introduction

In Chapter 3 we discuss the methodological approach to the research undertaken
for this thesis. The approach is essentially a quantitative methodology based on an
experimental study to investigate a cause-effect phenomenon. The experimental study
utilizes a discrete time simulation to model complex agent behavior. In this chapter, the
use of simulations in research will be discussed and a formal framework for the research

is developed.

Chapter 4 provides a detailed description of the project undertaken for this
research. We discuss in particular the development of the simulation artifact used within
the research to model the communication. We also provide a detailed explanation of the
implementation of Reinforcement Learning agents used in the project, and their
relationship to the theory outlined in Chapter 2. Given the many types of reinforcement
learning algorithms, we also discuss the implementation methods used to facilitate the
communication which takes place between the agents within the simulation. The
different reinforcement learning algorithms will necessitate different techniques to share

information.

In Chapter 5 we present the first of the results obtained from the research. In this
chapter we discuss a model that was developed in this research to allow for
communication to take place within a multi-agent system, based on reinforcement
learning. The model was developed to facilitate communication in a non-episodic
reinforcement learning simulation. This type of simulation best mimics reality, and
provides for more realistic results which enable us to relate the simulation results back
to the underlying domain. The model of communication allows the reinforcement
learning agents to effect a multi-update on their action-value matrices instead of the
single update per learning event, fundamental to the standard theory on reinforcement
learning. This then allows the agents to learn from these learning events initially
experienced by their peers. Using this model for communication we present the results
of simulation runs and the effect that the communication has on group learning and the
achievement of group goals. We also explore in detail these effects and pinpoint how
the communication of learning events alters the reinforcement learning agents. To
visualize these effects we use a variation of surface plot diagrams to visualize what the

agents have learned over time.

12

Chapter 1 - Introduction

In Chapter 6, after having detailed the effects of communication on the agents in
the previous chapter, we develop a method for modeling the communication which
takes place within a complex system, specifically the agent environment being utilized.
We use a Neural Network to develop this model. A neural network provides a
convenient mechanism to model the communication, with the agents represented an
nodes in the neural network, the communication channels between the agents can be
represented by weighted input vectors into the nodes. The weights on the input vectors
then determine whether communication takes place at any specific discrete time within
the simulation. By manipulating the weights in the neural network we can construct

models of varying degrees of complexity.

In the final chapter, Chapter 7, we present and discuss the conclusions reached
from the research undertaken in Chapters 4 and 5, We undertake a critical appraisal of
the research presented in this thesis and relate the results back to the underlying domain
of the simulation. Additionally we also outline some possible future directions of this

research and present a plan or an immediate follow-up research project.

13

Chapter 2 - Introduction

2

LITERATURE REVIEW

Only by not forgetting the past can we be the master of the future.

— BaJin

Many areas of research are becoming increasingly interdisciplinary in nature
which makes it difficult if not impossible to research effectively within the confines of a
conventional scientific discipline (Arimoto and Ueta, 2009). This is based on the
premise that increasingly, many of the research problems we face involve Complex
Systems. A complex system is essentially one that is non-linear in nature and thus
traditional linear solutions are not available. The composition and hybrid nature of
many current research problems involves the integration of a number of traditional
disciplines around the research question. This is necessary to tackle the problem from

different perspectives which is often the best way forward (Conole et al., 2010) .

In their report “Emerging and Interdisciplinary Research Fields”, Arimoto and
Utes (Arimoto and Ueta, 2009) identify a number of emerging fields of research and
show their links to existing traditional discipline fields. See Figure 2.1. The common
element among these emerging fields is that fundamentally they are based on complex

systems.

14

Chapter 2 - Introduction

ﬁm;rnmodalinn to
| evolution,

mutations and
\jegenemﬁon
Existing

disciplines

- ndevstaru:llng -
mndllnglhutge hurnan Overcoming User—onemed Rlsk
amounts of system services design
\ data c;omplex and evaluation gcwen-lanr;e
7 — 2 '\
&A_ = s__ = f ™ A

,/,-:'——-'-:' = A N P s A — \ e \
|Engineen'ng| ‘ Medicine | ‘ Biology | |Chemistry| | Physics | Mathematical| | Information | |Social science The
science science humanities

Figure 2.1: Emerging interdisciplinary fields (adapted from Arimoto and Utea, 2009)

This research is based on an emerging multi-disciplinary field, the Multi-agent
System approach (MAS). The multi-agent system approach when combined with
simulation techniques draws on many disciplines, including distributed artificial

intelligence, artificial life, social simulation.

2.1 Human Group Cooperation

One of the more puzzling aspects of evolution is that organisms are essentially
competitive, yet throughout nature we continually see widespread cooperation. In some
animal societies we see extreme cooperation where a collective action arises as an
emergent behavior from cooperation between the individuals (Rubenstein and Kealey,
2010). This is not an uncommon phenomenon and exists in not only flightless animal
groups, but additionally in birds, and insect species such as ants and honeybees.
However, in animal groups, complex cooperation only exists where all members of the
group are closely related. While complex cooperation does exist in large societies of
insects, these are eusocial societies where the individuals are closely related (Boyd and
Richerson, 2005). In direct contrast to this almost all human societies are formed by the

cooperation of large groups of unrelated individuals (ibid.).

Although instinctively humans are competitive in nature, we also understand the
benefits of cooperation to achieve common goals. Indeed, cooperative behavior has
played a pivotal role in human evolutionary history. In their paper, “The Origins of
Human Cooperation” (Bowles and Gintis, 2003), Bowles and Gintis note that

populations which are composed of groups characterized by high levels of interaction

15

Chapter 2 - Introduction

between their members tend to be successful in evolutionary terms. They also indicate
that group characteristics and the behavior of individuals in cooperative groups can have
a synergistic effect. In such cases, the group becomes more than just the sum of its
parts. The synergy created by cooperation can often mean that the achievements of the
group is beyond the capabilities of the individuals. High-level comparisons are often
made where societies and groups are compared to organisms as they are composed of
many individuals working together to increase their survival chances (Boyd and
Richerson, 2005).

Given the propensity of humans towards group cooperation, despite our inherent
competitive nature, there must be advantages to the individual. There have been many
attempts to explain this in terms of human and social evolution, but perhaps less
subjective answers may be found in elements of Game Theory (Dresher 1981). Stephen
Frank explains that the conditions required for an evolution towards group cooperation
is that a change in the individual payoff with an increase in cooperation effort be greater

than zero (Frank, 2009). This can be translated into the inequality:

rB, — C,, >0

in the above inequality B, is the marginal benefit term that measures the way in which a
marginal increase in cooperation within the group affects marginal change in the
individuals success. The quantity 7 is applied as a weight to the marginal benefit term
and measures the group behavior change rate relative to the individual behavior change.
The term C,, refers to the marginal cost of cooperation to the individual. Thus if the
above inequality holds, then there is a positive payoff to the individual in group
cooperation. This inequality is also a variation of the well known Hamilton's rule, which
was used to detail the conditions for the evolution of altruistic behavior in organisms
(Hamilton, 1963).

The above variation to Hamilton's rule suggests a marginal increase in payoff to
the individual through group cooperation, but the inequality above has no constants and
relies on terms such as marginal benefit, marginal cost and behavior change rate. These

quantities become difficult to quantify, especially when applied to subjective human

16

Chapter 2 - Introduction

behavior. Before Hamilton published his rule, earlier researchers established the first

theories of cooperating groups.

21.1 Benefits of Groups Cooperation

It has long been known that cooperative behavior between groups of individuals
facilitate the achievement of goals more efficiently, and sometimes allow groups of
cooperating individuals to achieve goals beyond the capability of a single agent. Early
20th century researchers found that the quality of an individual's work increased when
working in groups and that a group will 'think' more efficiently than the brightest
individual of the group when alone (Gilles and Ashman, 2003). Not only did the quality
of the individuals working in groups improve, but additionally the output of individuals
within the group improved (Shaw, 1932). The early work by Shaw (ibid) was later
duplicated in experiments where a waiting time model was developed to demonstrate
the superior speed at which problems can be solved by group cooperation (Restle and
Davis, 1962).

In 1937, May and Doob (May and Doob, 1937) established the first detailed
theory on the subject of cooperative groups and studied the different behavior between
groups and individuals. They found that groups of cooperating individuals were more
successful in achieving goals than individuals working to achieve the same goal (May
and Doob, 1937). There was a renewed interest in the study of groups in the 1970's
stimulated by empirical research, particularly in the area of the use of groups for
cooperative learning. Further research confirmed and extended the earlier work that
group cooperation promotes higher achievement and productivity than individual efforts
(Johnson et al., 1981). In fact, Johnson and Johnson (Johnson and Johnson, 1985)
identified a number of variables that potentially affect the relationship between
cooperation, productivity, and inter-group dynamics. These were clustered into three
groups, Cognitive Processes (quality of learning), Social (mutual support) and
Instructional (type of task). Much of this is difficult to quantify given the subjective
nature of the variables, and there was not universal agreement between social scientists
on the conclusions of such studies. But what was generally agreed upon was that groups

had an effect on the individuals.

17

Chapter 2 - Introduction

This “effect” of the group on the individual becomes an important aspect to study,
given that groups of cooperating individuals generally fare better. Indeed, not only are
groups that cooperate more efficient, but can also achieve goals that individuals cannot.
The early work of Shaw (Shaw, 1932), described experiments where problems were
given to individuals and small groups of individuals that cooperated. The problems were
designed so that it was almost impossible for an individual to arrive at an early solution,
but rather the problems were better solved with an interchange of ideas. The outcomes
of these experiments showed that when a number of these experiments were conducted,
the groups were far more likely to return a correct solution than the individuals.
Examples of problems where groups of cooperating individuals are needed to achieve
goals and solve problems can be found through history, such as exploration, warfare,
scientific achievements and building civilizations. We can see smaller more mundane
forms on a daily basis in government, business, large projects and almost any area
where humans work together. The group has an effect on the individuals and enhances
the learning process (Gilles and Ashman, 2003, Johnson and Johnson, 1985, Shaw,
1932, Dérnyei, 1997, Gokhale, 1995).

Within the learning process cooperation takes on many forms, but often manifests
itself as as a form of communication. Individuals learn skills, techniques and sometimes
environmental conditions by communicating with others. Indeed “communication is a
cooperation problem” (Sterelny, 2008). The quintessential links between evolving
cooperation and communication can be found in the modern structured learning
environment we create for children. Although there has been some research effort to
measure empirically the importance of communication and learning time on individual
skills, the results have not been persuasive due to limited measurement techniques
(Sterelny, 2008). However new technologies and advances in computer simulation
techniques have evolved over the past decade which allow us to investigate these
important issues using computer modeling and simulation in conjunction with Multi-

Agent Systems.

18

Chapter 2 - Introduction

2.2 Agents and Multi-Agent Systems

Over the last decade. the term Agent has been increasingly used by computer
science researchers, engineers and software developers and has even crept into general
user terminology. Yet when pressed, many would be unable to give a satisfactory
explanation of just what an Agent really is. This can be readily forgiven, as even the
experts cannot agree on a definition for an agent (Wooldridge and Jennings, 1995,
Nwana, 1996). Agent software research was an emerging technology in the late 1990's,
which promised to be many things to many people, however while the technology is no
longer in its embryonic stage, it can still be considered an emerging discipline. Over the
last decade, the programming languages and the maturity of the support technology
used to build agents has developed to a level where agents have migrated from the
laboratory to real world applications. The more recent notable applications for agents
include e-Commerce, Web marketing and Internet search agents. However, apart from
the more popular applications of the discipline, Agents and Multi-Agent systems are

used extensively in military and social simulations.

In the following section the essence of agency is explored and a classification is
provided. The notion of autonomous agents somewhat expands on the base idea of

agency and is also discussed.

221 Agency

Agent technology emerged from the field of Al research, so often the term
Intelligent Agent is used. However, agents need not be intelligent, in fact most people
do not need 'smart agents' (Nwana, 1996). Other adjectives often used to describe
agents are, interface, autonomous, mobile, Internet, information and reactive. The term
agent can be thought of as an umbrella under which many software applications may
fall, but is in danger of becoming a noise term due to over use (Wooldridge and
Jennings, 1995).

What makes agents different from standard software is the characteristics that

agents must possess in order to be termed agents. There are a number of classifications

19

Chapter 2 - Introduction

schemes that can be used to type-cast existing agents, for example mobile or static,
deliberative or reactive, but Nwana (Nwana, 1996) classifies agents according to
primary attributes which agents should exhibit, see Figure 2.2. The three primary
attributes are cooperation, learning and autonomy. These attributes are laid out as
intersecting circles in Figure 2.2, and to be classified as an agent, software must exhibit

characteristics from any of the intersecting areas as shown.

collaborative
learning agents

interface
agents

autonomous

collaborative agents

Figure 2.2: Agent typology (Nwana, 1996)

Nwana uses the diagram in Figure 2.2 to derive four types of agents, Collaborative,
Interface, Collaborative Learning and Smart agents. However, Nwana recognizes that
the categories in the diagram are not definitive and agents can also be classified by their

roles, and so adds to the list Mobile, Information/Internet, Reactive and Hybrid agents.

Wooldridge and Jennings (Wooldridge and Jennings, 1995), take a more formal
approach to the definition of agent, falling back to the more specific meanings from Al
researchers. However, they note that as the AI community cannot agree on the question
of “what is Intelligence?”, a less formal definition may be needed to include many
software applications being developed by researchers in related fields. To this end,
Wooldridge and Jennings introduce the notions of weak and strong agency. Strong
agency takes on the specific meaning from Al research, implying that agents must

exhibit mentalistic notions such as knowledge, belief, intention and obligation, with

20

Chapter 2 - Introduction

some researchers considering emotional characteristics as a requirement. If this
definition of agent is strictly adhered to, many software applications claiming to use

agent technology would be rejected as such.

In the weak notion of agency, the term agent can be applied to software that

exhibits the following characteristics:

* Autonomy: agents operate without direct human intervention and have some
control over their actions and internal state.

* Social Ability: agents interact with other agents and humans through some
defined protocol.

* Reactivity: agents can perceive their environment and can respond to it in a
timely fashion.

* Pro-activeness: agents do not just respond to the environment, but can take a
proactive role and exhibit some goal-oriented behavior.

Autonomy

pro-ackive —

reactive —

passive —
preference reasoning learning

| | | Intelligence

with hurmans

with agents

Social ability

Figure 2.3: 3D-Space model of agency

The definitions of Nwana and Wooldridge above are not wholly incompatible.
They do identify common characteristics which agents should exhibit, but most of the
agent types identified by Nwana would come under Wooldridge and Jennings weak-

agent classification. = The characteristics of autonomy, cooperation, intelligence,

21

Chapter 2 - Introduction

reactivity and pro-activity have also been identified by other researchers. Gilbert et.al.
(Gilbert et al., 1995) provide a model where the degree of agency can be crudely
measured by an agents position in a three-dimensional space relative to a 3-D axis.
This model has been refined from Odell (Odell, 2010 pp58) with the refined version
using the three dimensions of Intelligence, Autonomy and Social Ability defined from

the list above. This model is shown in Figure 2.3.

In order to qualify as an agent in this model, software must exhibit at least the minimal
characteristics in each dimension. That is, it must be able to communicate with the
user, allow users to specify preferences, and be able to work out how to accomplish
tasks assigned to it. While this model may not be ideal, it does provide for a more
simplistic definition based on the common agent characteristics identified by a number

of researchers.

2.2.2 Multi-agent Systems

As the technology matures and we apply agent based solutions to increasingly
complex problems, we find an obvious need to develop solutions involving more than
one agent (Sycara, 1998). One of the most powerful tools we have to reduce complexity
is modularity. Building an agent based systems with more than one agent (Multi-agent
System), allows us to introduce modularity into a solution. Further, as the problems
become more complex we can address the modularity by increasing the number of
agents in the system designed to address the solution. Thus, for many complex
problems. a multi-agent system approach provides us with a natural technique which is
immediately scalable to suit the complexity of the problem. Depending on the problem,
the multi-agent system can he highly homogenous in nature, or heterogeneous if

different agent types are needed for different aspects of the problem at hand.

The Multi-Agent System approach draws on many disciplines, in particular those
of Distributed Artificial Intelligence, and Artificial Life (Ferber, 1999, Gilbert and
Troitzsch, 2005). The driving force behind Distributed Artificial Intelligence is to create
organizations of systems capable of solving problems by cooperative reasoning. Thus

displaying a form of Artificial Intelligence generated from the synergy of the

22

Chapter 2 - Introduction

organization. The intention of Artificial Life (ALife) is to understand systems that
possess life (i.e. survive, adapt and reproduce), by modeling them and the environment

they are situated in. These environments are sometimes hostile, such as a battlefield.

Multi-agent systems differ from single-agent systems in that several agents exist
which model each others goals and actions (Stone and Veloso, 1997). From a single
agent’s perspective, a multi-agent systems differs from a single-agent system in that the
environment’s dynamics can be determined by other agents. However, Ferber (Ferber,
1999) gives a more precise definition, and defines a multi-agent system as one

comprising the following elements:

* “An environment, E, that is a space and generally has a volume.
* A set of objects, O, that are situated (by position) in E.

* An assembly of agents, A, which are specific objects (ASO), representing the
active entities of the system.

* An assembly of relations, R, which links objects and agents to each other.

* An assembly of operations, Op, making it possible for the agents of A to
perceive, produce, consume, and manipulate the objects from O.

* Operators with the task of representing the applications of these operations, and
the reaction of the world to this attempt at manipulation, which are the laws of
the agent’s universe.”

o

Multi-agent

System
l v L) v v
Multi-agent . Collective .
robmsabing Smiden hGhi e Peoemisie

Figure 2.4: Classification for multi-agent system applications
There are many areas in which multi-agent systems may be applied, and as the

discipline is evolving, new areas are being added. However, Ferber classifies these

applications into five main categories, and these are shown in Figure 2.4. One of the

23

Chapter 2 - Introduction

areas of intense interest by researchers is that of multi-agent simulation. We will
discuss Multi-agent simulations in detail in section 2.4, but they bring a new paradigm
to the field of modeling and simulation, particularly in systems that involve simulation
of living entities. By using a multi-agent system we have the possibility of directly
representing individuals and their interaction in a simulation. In fact, central to the
above definition of a multi-agent system are the concepts of an environment, and the
interaction (relations) between agents. What characterizes a multi-agent system from
other approaches is the dynamics of interaction between agents in the system (Ferber,
1999, Stone and Veloso, 1997, Gilbert and Troitzsch, 2005)

2.2.3 Agent Situatedness

The concept of agent situatedness has become important as agent based
simulations (discussed in a later section) modeling agents in specific environments have
become important tools for researchers (Kannengiesser and Gero 2005). Zambonelli
Jennings and Wooldridge (Zambonelli et.al 2005) describe agent situatedness as being a
key characteristic of a Multi-Agent System. Agents that exhibit the characteristic of
“situatedness perform their actions while situated in a particular environment. The
environment may be a computational one or a physical one and an agent can sense and
effect some portion of it” (Zambonelli et.al 2005). This definition somewhat updates the

Autonomy axis of the 3D-Space model of agency shown in Figure 2.3.

The concept of situatedness then invokes other important notions such as
autonomy and implies design characteristics such as Memory and State. If an agent is
situated in an environment, then it must be able to interact with that environment by
choosing to perform actions that affect the environment and hence its own future
interactions with the environment. The agent must be able to model the environment,
either fully or partially, thus retain some memory of that environment. In order for the
agents to choose meaningful actions when interacting with the environment, there must
be a state space which allows the agents to perceive something about the environment in

order for it to choose an appropriate action.

24

Chapter 2 - Introduction

With the characteristic of situatedness, agents become coupled to the environment
and all their actions and goals become oriented to the environment itself. For instance,
choosing actions that affect the environment, cooperate with other agents in the
environment, perceiving the environment, modeling the environment or moving about

the environment in some way,

L e

- —
~ Orgamzalion ~. [——

{ Inter-agent
Interactions

Access 1o the
Environment

Figure 2.5: Situated agents from an organizational perspective

Figure 2.5 (Jennings 2001), show situated agents using an Organizational
metaphor. Agents can be viewed as situated is a specific environment with other agents
and belonging to an organization. It is possible for agents to belong to one or more
organizations, and agents can interact with other agents and the environment itself. The
organizational metaphor provides us with a powerful framework to utilize Multi-agent
systems for studying complex real-world problems. In these important underlying

domains, we are utilizing situated agents to model behavior in a specific environment.

25

Chapter 2 - Introduction

2.3 Simulation

Humans have been using simulation for a long time. Early cave paintings in the
caves of Lascuax in France demonstrate the unique human ability to abstract and imitate
reality. However, most simulation has its roots in military simulation, with early
military simulation as simple as gladiators training with swords against wooden
dummies. With the advent of computer technology, we are able to take a far more
abstract approach to simulations, and we are not constrained by time. The recent history
of computer simulation began with John Von Neumann and Stanislaw Ulam working on
the Manhattan Project during World War II (Balachandran et al., 2000). Despite this
beginning, computer simulation was not regarded as a very useful tool in the 1950's as
computer models were expensive to develop and results were too long in coming
(Reitman, 1988). However during the 1960's, with developments and research at IBM
Corporation, along with a number of conferences taking place, simulation began to be
regarded as an important tool for understanding and prediction (Balachandran et al.,
2000, Reitman, 1988).

With the increasing sophistication of computer technology we have seen a rise in
the development of computer models and thus computer simulation for real-world
understanding. In particular, computer simulations allow us to quantify the performance
of a system we are studying using different values for the input parameters. This
provides valuable information to assist in decision making processes (Perros, 2009).
There are a number of benefits in using computer simulations: we can conduct “what-if”
type scenarios by varying input parameters; many alternatives can be tested before
choosing the best option in the case of some simulations; results can be produced and
analyzed in less time than real-world observations; we can maintain better control of the
experimental conditions (McHaney, 1991). Additionally simulations tend to be
quantitative tools allowing us to collect empirical data on elements of the simulation, as

the simulation progresses through time.
Often the terms Simulation and Model are used interchangeably, but there is a

subtle difference. A Model is an abstract representation of a “System” in the real world.

The System can be either natural or artificial, such as an ecosystem or a financial

26

Chapter 2 - Introduction

system. A Simulation is the use of a Model to to formulate conclusions and provide
some insight on the underlying real-world system, see Figure 2.6. The application of
the simulation results in output which we can observe and analyze to reason about the

underlying physical system.

Physical Mathematical Simulation > Observed

. User Runtime
interface interface

Figure 2.6: Modeling vs. Simulation (adapted from Cellier and Kofman,
2006)

The model is never a prefect representation, but rather an abstract representation
of the system, where unimportant details are abstracted out. This is depicted in Figure
2.7, adapted from (McHaney, 1991).

Parameters

[—

Model
(Approximate)

Real World Level of Detail

System

B —

Results

Figure 2.7: Model representation of a System

When we develop models of systems for simulation, the entire system is never
simulated, rather, the simulation or model is a scaled down version of reality. This is
necessary in order to reduce complexity and increase understanding. Thus, the model
only includes as much detail of the real world system as necessary in order to study the
aspects in which we are interested and produce results that correlates with the real world

system. We can model the elements of the system we are including at varying levels of

27

Chapter 2 - Introduction

detail in order to increase or decrease the abstraction level of the model. This is depicted
in Figure 2.8 which was adapted from Perros (Perros, 2009). If the model we develop
requires more detail, we can model the included elements from the real-life system in
further detail. Modeling the elements of the system in less detail increases the
abstraction level. Simulations at varying levels of abstraction are useful for gaining

different levels of insights into the study of a system.

increasing
abstraction

Figure 2.8: Simulation abstraction levels

Simulations can be classified using a number of criteria. They can be either
Deterministic ot Stochastic. A deterministic simulation relies on an underlying
mathematical model and does not contain any elements of probability (Perros, 2009). A
deterministic simulation will behave predictably, and if the same input values are
retained, it will produce the same results each time it is run. A stochastic simulation
involves elements of probability. Thus even if the initial conditions and inputs are
retained from one simulation run to the next, it may result in different outcomes. Many
simulation techniques rely on this element of probability because the simulation of real-

life systems if often based on the simulation of random external events.

Additionally, there are a number or broad categories that different types of

28

Chapter 2 - Introduction

simulations tend to fall into. While the list is not definitive it includes Monte Carlo,

Continuous, and Discrete Simulations.

2.31 Monte Carlo Simulations

The term Monte Carlo simulation was first coined by John Von Neumann and
Stanislaw Ulam working on the Manhattan Project. This method was named after the
city in Monaco, well known for its casinos, as this simulation involves the input of
random variables (or chance). In a standard deterministic simulation as depicted in
Figure 2.9, the model takes in several variables and produces a specific output.
Executing the simulation with the same variables will always produce the same output

as indicated.

X Model f(x) ¥

Figure 2.9: Representation of deterministic model

However, if the system we are modeling is stochastic (non-deterministic) in nature
then the same inputs will not produce the same output on subsequent runs of the
simulation. Additionally, if we have an essentially deterministic system which is
inherently complex in nature, or takes in many complex parameters, then a deterministic
simulation may be unrealistic due to time constraints or computational power needed.

We need a different method for simulation of these types of processes.

ik X Model f(x) y /o

Figure 2.10: Representation of Monte Carlo simulation model

29

Chapter 2 - Introduction

A Monte Carlo simulation allows us to address these problems by using statistical
sampling to approximate a solution over many iterations of the simulation. As depicted
in Figure 2.10, a Monte Carlo simulation takes in variables whose values are generated
randomly and examines the performance of the system. When examined over many
iterations of the simulation (usually measured in hundreds or thousands), the output will
be a statistical distribution which we can use to estimate the performance of the system
given future inputs. Thus the Monte Carlo method allows us to essentially analyze

uncertainty. Such a method is extremely useful when simulating complex systems.

2.3.2 Continuous Simulations

Often we are concerned with systems where the state of the system is constantly
changing, but time is important. We wish to observe the behavior of the system due to
its changing state over time. In such cases we utilize continuous simulation techniques.
Continuous simulation is concerned with modeling a system over time where the system
is represented by a model whose state variables are continually changing with respect to
time (Cellier and Kofman, 2006, Duivesteijn, 2006). In such cases the system is
normally modeled by algebraic equations whose output varies over time (McHaney,
2009).

These simulations typically use a continuous simulation clock which is
incremented in time-intervals. Depending on the nature of the simulation, we make the
time intervals as fine as possible so as to capture all the relevant state changes within
the system. If the time intervals are to far apart, then the simulation may miss important

state changes affecting our observations of the putput.

A typical example of this type of simulation is the predator-prey problem. This

simple example can be simulated by two equations with respect to time:

x'(2) = ax(t) — bx(t) y(1)
V') = -cy®) + dx(®) y(t)

30

Chapter 2 - Introduction

Where the prey population can be given at time ¢ by x(?z), and the predator
population can be given by y(?). if x'(z) represents the growth of the prey population
over time, then this can be determined by assuming that the prey will grow over time by
ax(t) in the absence of predators (for some a > () and the death rate of the prey due to
interaction with the predators will be proportional to x(2)y(), that is, bx(?) y(t) (for some
b > 0). Conversely, we can assume that the predators will die by the rate cy(?) (for some
¢ > 0) and the birth rate of the predators depends on both of the population sizes
according to dx(?) y(¢) (for some d >). Thus we can use a continuous simulation to
observe over time the effects of changing the parameters, a, b, ¢ and d in the above

equations (Duivesteijn, 2006).

2.3.3 Discrete Event Simulation

With Continuous simulations techniques, often the simulation can be very
inefficient depending on what we are interested in. For example, there may be large
periods of time within the simulation where nothing happens and no changes will be
observed in the system. In these types of simulations we may not be interested primarily
in what happens over time, but in what happens at the points when the system changes.
In these instances we can utilize Discrete Event Simulations. Discrete Event
Simulations differ in so far as we don't simulate the passage of time, but rather the
processing of events which change the state of the system, as they occur within the
model. Consequently in these simulations, large blocks of time may occur in between
events, but the passage of time is not modeled, but rather the event arrivals and

subsequent changes to the system (McHaney, 2009).
Discrete event simulations are often applied to queuing problems such as

production queues, network traffic queuing and simple problems such as bank queue

analysis.

31

Chapter 2 - Introduction

2.4 Agent Based Modeling and Simulation

Agent Based Modeling is a relatively new and revolutionary approach to
modeling specific types of systems (Bankes, 2002). Traditionally, models or simulations
have sought linear solutions to problems that can be very complex. For example, the
predator-prey problem discussed in section 2.3.2 models the growth rates over time of
the populations of predators and prey as they interact. However the model is based on
equations which model the interaction as a function of time based on input parameters.
These types of models can be very sophisticated and if the interaction proceeds in a

linear fashion then the models can produce predictable outcomes.

In reality, such interaction is rarely linear in nature and the linear models are
unable to account for this non-linear behavior often observed. Agent-based modeling
allows us to address this non-linear behavior by directly representing individuals or
objects in the model and defining their interaction behavior. In an agent-based model, a
system is modeled as a collection of autonomous agents, where each agent evaluates its
situation periodically and will make decisions on how to act based on pre-defined rules
(Bonabeau, 2002).

Agent-based models usually have the following elements in common (McHaney,
2009):

“Multiple agents modeled and scaled with various levels of detail
Decision-making heuristics and rules

Adaptive behaviors or learning

Interaction rules or topology

Environment for interaction often consisting of constrained resources”

The first of the elements above, “Multiple agents”, implies that when discussing agent
based models, we are invariably talking about Multi-agent models, and hence Multi-

agent simulation.

32

Chapter 2 - Introduction

241 Multi-Agent Based Simulations

The difference between multi-agent models and multi-agent simulations are
analogous to the difference between Simulations and Models we discussed in Section
2.3 . A multi-agent simulation is the use of a multi-agent model to study the output of
the model as the simulation progresses. Multi-agent simulations require the
development of multi-agent models that try to capture the essence of complex real-
world systems within the model (Ruas et al., 2011). There is an inherent relationship
between complex systems and multi-agent simulations and we will explore this briefly
in the following section. However multi-agent modeling and simulation is a field of
research at the crossroads of simulation and distributed artificial intelligence, the latter
providing an infrastructure for the modeling and understanding of the interactions

between agents in the model (Ruas et al., 2011).

At the heart of multi-agent models, there are four general concepts which make
them extremely useful as a research tool, especially when applied to studying any

system based on human interaction (Michel et al., 2009). These are:

* “Autonomous activity of agents”: That is, the degree of autonomy that the
agents exhibit while trying to achieve their objective. This will also include their
ability to modify their own behavior as the simulation progresses in order to

repress unsuccessful actions.

* “Sociability of agents”: This is a measure of the ability of the agents to interact
socially with other agents. This centers on the fact that in a multi-agent systems,
agents are not isolated, and there is a duality in that the interactions between
agents form societies or groups and additionally the organizations of the groups

will help define the behavior of the agents.

* “Interaction between agents”: This concept essentially forms the connection
between the previous two. The term interaction here does not refer to actual
communication between agents, but rather the effect on each agent by the

interleaving of all the agents actions. During their autonomous activity, each

33

Chapter 2 - Introduction

agent will decide on their own actions with the resultant sum of the individual
actions affecting the state of the system. This in turn will influence the
individual agents behavior, possibly changing their future choice of actions.
Through effects of the individual actions we can see forms of cooperation or

conflict arise.

* “Situatedness of agents’’: This refers to the environment in which the agents are
placed. The environment itself is an important construct as the conditions
present in the environment will help determine the agents current state and how
the agents interact and affect each other throughout the simulation. We can
consider the environment as a common thread grouping the agents together into

a common setting defined by a set of possible states.

The utility and the effectiveness of multi-agent simulations to model specific
types of real-world problems lies in the underlying repetitive processes determined by
the above four concepts. The agents are first placed into an environment which
determines their state. From their current state an autonomous agent will determine a
course of action to undertake. During their processing (or 'thinking') cycle, the agents
may communicate directly or indirectly with other agents. Once having determined the
final course of action, the agent will proceed with this action, which in turn may place
the agent in a new state as well as affect the current state of other agents in the
simulation. As each agent follows this cyclic approach, the combination of interactions
and agent actions act together which results in a complex simulation of the underlying

system.

In multi-agent simulations, it is the interactions between the agents that become
important to the model. In contrast to the traditional deterministic simulations, by
modeling the interactions between agents at the local level we can often observe a more
realistic simulation output. The interactions between agents can often lead to a
modification of behavior which is not taken into account by deterministic solutions. As
a result of this model, the global behavior of the system being modeled is a direct result

of the local interactions between the modeled agents. This is depicted in Figure 2.11.

34

Chapter 2 - Introduction

agents

environment

interactions

Figure 2.11: Elements modeled in multi-agent system (adapted
from (Michel et al., 2009))

In a multi-agent system, each agent is just one member of a population, and the overall
goal of an agent may be a shared goal among a subset of the population, or an
individual goal. In each case, the agents goal may be best achieved through cooperation

with one or more other agents.

242 Simulation and Complexity

It is the intrinsic nature of multi-agent systems that is driving researchers to apply
them as simulation techniques, when building models of systems viewed as non-linear
complex systems. The term complex system comes from the relatively new field of
Complexity Science (Macal and North, 2005). Complexity science is an intersection of
many diverse fields, including mathematics, Al, computing, engineering, sociology,
biology, and many others. The emergence of complexity science has led us to seek
different methods to simulate systems that are too complex for deterministic

mathematical solutions.

What makes a system complex? The best known definition of complexity is the

KCS (Kolmogorov-Chaitin-Solomonoff) definition (Smith, 1995), which places

35

Chapter 2 - Introduction

complexity somewhere between order and randomness. However, a less rigorous
definition defines a complex system as one in which an algorithm could describe the
behavior, but where mathematical models do not provide efficient solutions to
understand and then predict underlying phenomena (Marcenac, 1996). Put very simply,
complexity theory deals with systems that have many parts that interact in non-linear

ways.

Many traditional approaches to simulation and modeling have been linear in
nature, that is, processes and actions are directly proportional to, or related to input. As
in Newtonian science, in such systems, cause and effect are usually separate (Lucas,
2000). In many simulations this is a valid model, but in complex systems that have
many components that interact, cause and effect cannot be separated, and positive non-
linear feedback results. In these situations, a non-linear approach to simulation may

prove more desirable.

A non-linear system is one in which the output is not proportional to the input. Or
in other words, the output of the system is determined from not only the output of the
components, but also from the complex interactions of the system components
(Ilachinski, 1996, Bossomaier and Green, 1999). Traditional linear simulations find it
difficult at best to model this behavior, but by using a MAS, the components of a non-
linear system can be modeled by the agents, and the interactions between the

components are modeled by the local interactions between agents.

The overall behavior of a MAS simulation caused by the local interaction of the
agents is called the emergent properties (or behavior) of the simulation (Hunt and Saias,
1998).

24.3 Emergence

One of the most important ideas to come from complexity theory is the formal
notion of emergence (Gilbert and Troitzsch, 2005). A system of objects displays
emergence when the interactions between objects at one level produce objects of a

different type at another level. Or, results in objects displaying a collective behavior

36

Chapter 2 - Introduction

that they would not otherwise display individually.

The emergent properties of a simulation are the outcomes of behavior that we
cannot reliably predict from the initial conditions. In fact the non-linearity of MAS
simulations imply that when beginning a simulation with what seems like almost the
same initial conditions, any difference is amplified by the agent's interactions and
different emergent behavior can result. This is commonly referred to as the ‘Butterfly
Effect’.

Interaction between agents is central to the design of a Multi-agent System
(Ferber, 1999), and is a consequence of their plural nature. Interaction occurs when two
or more agents interact through a series of events during which the agents are in contact.
We normally think of interaction in terms of human communication (as in speech),
which is usually modeled as messaging passing between the agents, but interaction may
take on other forms. If interaction is a consequence of the nature of MASs, then we
should ask the question, “Do we always get quantifiable emergent behavior as

consequence of the interaction”?

The answer depends on the patterns of interaction within the MAS. Green
(Green, 1993), discusses this in terms of connectivity in Graphs. That is, we can model
the interaction between agents as a directed graph, where our directed graph is a pair G
=<V, E>. V represents a list of nodes in the graph, and E represents a set of ‘edges’
connecting two elements of V. In a MAS, V would represent the agents in the
simulation whereas E represents the current interaction between the agents. For a MAS,
G changes over time as V and E change. If over time, G displays relatively low
connectivity and only small fluctuations in connected sub-graphs, the MAS can be
considered in a steady (or freeze) state, and is unlikely to produce emergent behavior.
Also if the changes in G are such that it displays very high connectivity, and E displays
randomness from one state of G to another, the MAS can be considered chaotic, and

again unlikely to display emergent behavior.

Emergent behavior is likely to occur in models where the changes in G are such

that G displays near critical connectivity, and changes in E display only local

37

Chapter 2 - Introduction

fluctuations. This point in-between a steady state and chaos (instability with order), is
called the ‘Edge of Chaos’ (Lucas, 2000). Once emergent behavior becomes evident,
we need to know whether a particular emergent behavior is a necessary consequence of

the system or just a contingent one.

There are a number of ways that we can analyze and understand emergent
behavior of a MAS, but broadly speaking they fall into two overall categories, design
techniques, and inspection. Good design techniques based on well formed models of
behavior help us understand the behavior patterns of individual agents. However such
techniques cannot foresee all types of emergent behavior as even an MAS with simple
rules can generate very complex emergent behavior which can be difficult to understand
and predict. Analyzing such behavior is usually done via either a detailed scenario
analysis, or by a Monte Carlo approach. Teran, Edmonds and Wallis (Teran et al.,
2000), describes a constraint-based architecture approach for searching possible models
of a MAS and testing the necessity of certain emergent behavior over a range of system

parameters.

Emergent behavior in a MAS is particularly important because of its potential use
as a tool for discovery and formalism (Gilbert and Troitzsch, 2005) The use of MASs
for simulation and study of social phenomenon relies heavily on emergent behavior to
test theories in the underlying domain. Simulation of battlefield behavior, is basically a

social simulation, where the environment is hostile for agents inhabiting it.

2.5 Combat Simulation

Military organizations exploit simulation techniques extensively and in fact
simulation has its roots in military history. The Australian Army utilizes approximately
70 live, virtual and constructive simulations (Colton, 2001). These simulations are
layered in a hierarchy from the conceptual to physical levels, with conceptual
simulations used for overall insights into scenarios, and physical simulations utilized to

concentrate on the results (Barlow and Easton, 2002). With the recognition of land

38

Chapter 2 - Introduction

combat as a complex adaptive system, simulations at the conceptual level using multi-
agent techniques, called distillations, have of late, received much attention (Brandstein,
2001).

Distillations represent a move away from the traditional constructive combat
simulations, which are usually based on linear models of attrition. Such simulations
often must embody the details of what they are trying to show, whereas the agent-based
approaches attempt to produce the macro-level behavior by micro-level interactions
(Goldspink, 2002). At the conceptual level, these simulations provide insights into land
combat by allowing the strategist to specify the local interaction between the
combatants and then observe the emergent behavior of the system. There are several of
these distillations currently used by the Australian, New-Zealand and U.S. army, and
these include, ISAAC, EINSTEIN, MANA and Socrates (Barlow and Easton, 2002).

There have been many simulation models of combat environments, but
traditionally these models have sought linear solutions. For example, the “Lanchester
Mechanism” uses coupled differential equations to model attrition rates in combat

(Beckerman, 1999). The equations:

dB/dt =krR(t) and dR/dt = kb B(t)

model constant kill rates k. and &, for Red and Blue teams whose weapons stock
R and B respectively is a function of time . In this linear solution, increasing the

weapons stock of a particular team, increases the kill rate linearly.

Combat may be modeled by linear simulations, and if both teams proceed in a
linear fashion then such simulations may produce predictable outcomes. However, if an
opposing side is capable of adapting to the combat efforts of the other, then the resulting
combat is unlikely to be linear. In fact, military conflicts (particularly land combat)

possess almost all the main features of complex adaptive systems (Ilachinski, 1996).

39

Chapter 2 - Introduction

They are composed of a large number on non-linearly interacting parts; these parts are
usually organized into a hierarchical structure; action generally proceeds with
decentralized control; there is a high degree of self-organization; and in order to survive

the parts must adapt to the changing environment.

SunTzu (SunTzu, 2005) , described combat with an analogy to that of fluid
dynamics, which is also an appropriate comparison of combat to a complex system. So
in simulating combat on the battlefield, it is appropriate to use non-linear models. In
particular, Multi-Agent Systems provide us with a means to simulate individual
combatants on the battlefield, and the non-linear local interaction between the
combatants by communication between respective agents. With such a simulation, the

emergent behavior then becomes an important consequence of the model.

There are a number of Multi-Agent System simulations of land combat currently
in use or under development. ISAAC (Irreducible Semi-Autonomous Adaptive
Combat), is an agent based model used by the US Marine Corps Combat Development
Command. ISAAC was built as a “proof of concept” system (Ilachinski, 1999) , and is
based loosely on mobile Cellular Automata rules. Each agent in ISAAC (called an
ISAACA) is equipped with four main characteristics, Doctrine, Mission, Situational
Awareness and Adaptability. Each ISAACA is also given a personality, which is
defined by a six element weighted vector. It is the personality that each of the

ISAACASs has, which help determine its action at each time instance in the simulation

(Ilachinski, 1997).

EINSTein (Enhanced ISAAC Neural Simulation Toolkit) is a follow-on
improvement to ISAAC. It is agent based (as ISAAC) and among its enhancements
include a GUI interface, Object oriented code base, genetic algorithm and neural net
reinforcement learning, and pattern recognition toolkits. Both ISAAC and EINSTein

include command structures (or hierarchy of information levels) “hardwired” into the

code (Ilachinski, 1999) .

SWarrior is an agent based simulation, based on ISAACs agents, but utilizing the

SWARM modeling environment (Hunt and Saias, 1998). SWARM was developed at

40

Chapter 2 - Introduction

the Santa Fe Institute and the basic architecture of Swarm is the simulation of
collections of concurrently interacting agents. That is, it provides a simulation
environment for agents independently specified, to run in. The goal of SWarrior is to
enable the adaptation of SWARM into an analytical tool that uses multiple run agent

based simulations. The aim is to help provide insights into future operations.

Hunt (Hunt and Saias, 1998), discusses ACME (Adaptive Collection Management
System). This is an agent based simulation that models a mobile enemy command post.
The aim is to use this simulation to aid in the development of a temporal information
management system on battlefield positioning. This is especially important in a mobile
situation when the map of the battlefield degrades over time. While this is not a
battlefield simulation as in the previous examples, it does contain elements of a combat

situation.

With all the current Modeling and Simulation, is there room for yet another
simulation? It is only through a diversity of simulation techniques and experimentation
that progress and understanding can proceed. The application of multi-agent simulations
to combat simulation is still in the early stages, and there is still much we don’t know.

This is particularly true with emergent behavior from such simulations.

At the heart of these military distillations are the agent control paradigms used to
control the behavior of the agents during the simulation. These paradigms effectuate
“low-level” observable behavior, or human control strategies, by implementing a blend
of action and reaction skills (Henninger et al., 2001). These skills are effected by
weighted factors that represent various attributes such as attraction, repulsion,
aggression, cooperation etc... and ultimately determine the action an agent will take
(Barlow and Easton, 2002). Agents controlled by these human control strategies
represent highly instinctual entities, acting quickly based on the current local dynamics
of the environment. Cognitive behavior is not directly observable in these simulations

but can be inferred from the low-level behaviors.

The decision making process on the battlefield is complex, and while soldiers

react to situations based on years of training and experience, decisions are not made

41

Chapter 2 - Introduction

within a cognitive void. Agents that are capable of learning in these simulations may
provide a more realistic basis for representing individuals in multi-agent system (Gugel
et al., 2001b, Sun, 2001). One of the significant characteristics of learning agents that is
motivating their use in simulations, is their ability to adapt in a complex dynamic
environment (Vaughan and Connell, 2000). However, Petty (Petty, 2001) questions the
use of learning paradigms in Computer Generated Forces, arguing that many such
systems produce unrealistic human behavior or perhaps improved behavior but resulting

in confounded results.

Provided that the distillations facilitate realistic environments based on the
physics of the world they are simulating, agents’ resulting actions should be sufficiently
restricted to plausible human behavior. The results of a learning experiment involving
learning agents may not be reproducible. However, that is also the nature of what we are

dealing with in a complex adaptive system.

2.6 Learning Agents in Simulations

When considering the problem of incorporating learning techniques into agents in
a multi-agent simulation, we have a number of Artificial Intelligence (AI) techniques to
chose from. However, it is essential we chose a technique applicable to the multi-agent
framework. That is, we have agents situated in an environment which interact, and learn
as the simulation unfolds. Being an essentially complex system, small fluctuations in
the initial conditions or even the interactions between agents can lead to vastly different
outcomes, and hence the progression of states that agents can be in as the simulation

progresses. This can have an effect on the choice of learning techniques.

Concept learning is used to induce general functions from specific training
examples (Mitchell, 1997a). While this learning techniques would allow an agent to
search through a set of training examples looking for a best fit in deciding a course of
action, the number of training examples required to effectively work in a complex
system may be prohibitive. Bayesian learning takes a probabilistic approach to deciding
optimal courses of actions. However, the assumption underlying the use of Bayesian

learning is that the choices of actions which are effective would be based probability

42

Chapter 2 - Introduction

distributions (Mitchell, 1997a). Again, given that the underlying simulations is
complex, we could not guarantee such distributions. In fact, any evident distributions

are liable to change as the simulation progresses.

Other possible choices for learning techniques include a Genetic Algorithm
approach, or the use of Artificial Neural Networks. While Artificial Neural Networks
are promising, Reinforcement Learning is a technique particularly suited to, and often
utilized when we have autonomous agents that sense and act in their environment, and

learn by interaction with the environment (Mitchell, 1997b).

2.6.1 Reinforcement learning

Distillations create a virtual environment where the agents move around and
interact with each other and the environment, and thus are good candidates for the
application of reinforcement learning techniques. In reinforcement learning, an agent
perceives the world as a series of states, and then chooses actions based on those states.
In the next time frame, the agent receives a reward from the environment, and updates
an action value function based on the reward, which will affect its choice of actions in

future steps. The goal of the agent is then to maximize the overall reward.

There are a number of elements required in a Reinforcement Learning approach.
These are, the agent, the environment (being the main elements) along with a policy, a
reward function, a value function and possibly a model of the environment, depending
on the reinforcement learning approach. The agent is situated within the environment
and perceives itself as being within one of a number of possible states. The policy
determines the agents' behavior as it essentially maps from a set of states to a set of
possible actions. The reward function essentially defines the goal of the agent as it maps
the combination of the current state and chosen action to a reward. The agents
overriding mission is to maximize the reward. Thus, over time the agent learns the

optimal action to take given its current state (Sutton and Barto, 1998).

The traditional reinforcement-learning update cycle is shown in Figure 2.12. This

illustrates that at time #z, an agent will sense it's current state S, at time ¢, and choose

43

Chapter 2 - Introduction

action a, at time ¢ to maximize its reward . This will result in a possibly new state S,
and time time #+/, and a corresponding reward r;+;, which then feeds back into the agent

so it can new choose a new action based on the new state.

el | Mee1

Environment ™

Figure 2.12: Traditional reinforcement learning
update cycle (Sutton and Barto, 1998)

One of the main differences of reinforcement learning is that it is essentially
unsupervised learning. Most learning techniques are classed as supervised learning, in
that the learning takes place from examples provided during a training phase. While this
is suitable for many types of applications, in problems involving interaction between the
agent and the environment, often satisfactory training cannot be provided. The agent
must learn by experience and thus the reward function is crucial in defining the agents
goals. This additionally highlights another major difference between reinforcement
learning and other types of learning. In reinforcement learning, the objective is to
maximize the reward function by choosing actions which the agent has already
discovered to yield a high reward. However, in order to find these actions it has to try
actions it may not yet have tried. Thus the agent must balance actions between
‘exploration and exploitation' (Sutton and Barto, 1998). In exploration the agent will
randomly select an action regardless of reward considerations in the hope of finding a
new high reward action. An agent cannot exclusively follow an exploration or
exploitation policy and be successful, it must use both. Thus the action selection policy

is normally one of 3 common policies:

44

Chapter 2 - Introduction

* € - greedy — most of the time the action returning the possible reward will be
chosen. Occasionally with small probability € an action will be selected

uniformly at random regardless of the reward.

* ¢ - soft — this is similar to the € -greedy policy, with the optimal action selected
with probability (1- €) and a random action being chosen uniformly at other

times.

* Softmax — with the softmax option, when a random action is chosen it is done so
on a fuzzy basis with regards to a weighting assigned to each action. Thus the

worst actions are less likely to be chosen.

While there are a number of different reinforcement learning techniques, Sutton
and Barto (Sutton and Barto, 1998) classify these into three broad categories: Dynamic
Programming techniques; Monte Carlo Methods; Temporal Difference learning.
Dynamic programming techniques describe a number of reinforcement algorithms that
find optimal policies but require a perfect model of the environment. In many situations
this can be unrealistic, particularly if we are modeling an agent exploring an unknown
environment, or we are modeling a battlefield scenario where the 'fog of war' prevails.
The Monte Carlo methods are episodic in that they solve the reinforcement learning
problem by letting the agent learn from experience gained by averaging the performance
based on a number of episodes. That is, in a reinforcement learning simulation, the
agent learns at the end of the simulation-run (or episode) by examining the rewards
received throughout the episode as a result of the actions. A number of episodes are then
utilized to let the agent average the returns. However, the purpose of a simulation is to
provide an abstraction of a real system, thus the ultimate goal is to mimic reality as
closely as possible. In many situations, agents will learn as the simulation unfolds. This
suggests a non-episodic learning approach where the agents learn from direct

experience as the simulation progresses.

Temporal Difference Learning algorithms allow an agent to learn from direct
experience without having to possess a model of the environment. The agent does not

need to wait for the end of an episode and can update its estimates of reward based in

45

Chapter 2 - Introduction

part on its previous estimates (Sutton and Barto, 1998). Such algorithms best mimic the
learning which occurs when we are modeling social environments where humans learn
by interacting with the environment, and other humans without the luxury of repeating
an episode if they fail at the first. While there are a number of temporal difference
learning algorithms, Q-Learning represents an off-policy control algorithm, relatively
easy to implement, and this algorithm is often used to incorporate intelligent behavior
into agents (Gugel et al., 2001b, Gugel et al., 2001a, Lapin et al., 2001, Tan, 1993).

2.6.2 Q-Learning

The development of the Q-learning algorithm was an important milestone for
reinforcement learning (Sutton and Barto, 1998). The Q-Learning algorithm was
developed by Watkins (Watkins, 1989) and is considered an off-policy control
algorithm. This means that the Q-Learning algorithm can update the estimated value
functions for those actions that may not have been tried. That is, off-policy algorithms
can distinguish between exploration and exploitation whereas on-policy algorithms
cannot. The action selection policy of the Q-Learning algorithm is relatively easy to

implement.

The equation representing the basic one-step Q-Learning is given below in
Equation (2.1) (Sutton and Barto, 1998). In this equation, an agent will receive a
reward, r, at time ¢+1/, for choosing action a when in state s at time . Thus the agent
learns at each time step by processing this information and updating its own action-

value matrix.

Q(St’ at) « Q(St’ at)+(x rt+1+ymaxQ(Sz+1’a)_Q(Sw at) (2.1)

In Equation (2.1), O(S,.a,) represents the current estimate of the action-value
pair, action « in state s at time z. This is updated from the current value of Q(S,,qa,),

the reward r,,, received from taking action a while in state s at time ¢, (received at time

46

Chapter 2 - Introduction

t+1), and the maximum action-value (over all possible actions) of the resultant state
at time t+/. The values @ and y represents the values of the step-size, and

discount factors respectively.

The step-size is a small fraction that influences the rate of learning, and if
constant, allows us to effectively track the optimal action-value function Q* as a non-
stationary problem. The discount factor determines the present value of future rewards
and lies in the range O<y <1 . If y is set at zero (0), then the agent is only concerned
with maximizing the immediate reward, and as it approaches one (1), the agent becomes

more prudent and takes into account future rewards.

The algorithm implementing Q-Learning is given below in Listing 2.1:

Initialize Q(s,a) arbitrarily
Initialize s
Repeat for each step of the episode
Choose a from s using policy derived from (eg € -greedy)
Take action a, observe r, s’
Q(sl’ al) — Q(SI’ al)—‘ra rl+]+ymaxQ(sl+| ’ a)_Q(Sl’ al)]

s—s'
until s is terminal

Listing 2.1: Q-Learning algorithm (Sutton and Barto, 1998)

2.6.3 Multi-Agent Reinforcement Learning

The application of learning techniques applied to multi-agent systems is a
growing field (Claus and Boutilier, 1998), and an exciting, emerging area of research is
Multi-agent Reinforcement Learning. Multi-agent reinforcement learning is concerned
with how an agent can learn to act optimally in an unknown environment through trial
and error interaction, and in the presence of other adaptable agents (Khoussainov,
2004). Traditionally, reinforcement learning is a technique particularly suited to, and

often utilized, when we have autonomous agents that sense and act in their environment,

47

Chapter 2 - Introduction

and learn by interaction with the environment (Mitchell, 1997b). However, as indicated,
the formal theory of Reinforcement Learning is based around a state-space conforming
to a Markov assumption, and thus limited to a single agent. The practical applications of
reinforcement learning utilizing a single agent are generally specialized and limited in

nature, particularly with recent trends in Al research towards Agent Based Systems.

A multi-agent system, while generally Markov-like in nature is essentially a non-
Markov decision process, as the interaction between the agents themselves and
concurrent learning affect the state transition probabilities (Arai et al., 2000). Shoham,
Powers and Grenager (Shoham et al., 2003), argue that utilizing reinforcement learning
for multi-agent learning systems is fundamentally flawed due to the uncertain nature of
the problems being tackled. One of the measurements of performance often used for
reinforcement learning algorithms is convergence. Yet, in multi-agent reinforcement
learning, convergence is not guaranteed. Bowling and Veloso (Bowling and Veloso,
2002), also discuss the two desirable properties for multi-agent learning systems,
rationality and convergence. They show that in multi-agent systems using reinforcement
learning, while rationality exists, generally convergence does not. The normal notion of
an optimal policy does not exist, since at any time during a learning trial the optimal

policy will depend on the policies of other agents.

Under such conditions, the optimal policy becomes a moving target, and the
reward function can return a reward to the agent which seems arbitrary in nature. This is
a particular difficulty for temporal difference algorithms that assume that past rewards
are a prediction of future rewards given the same state/ action combination (Bowling
and Veloso, 2002). Notwithstanding such arguments, a number of researchers have

attempted to formalize a theoretical foundation for multi-agent reinforcement learning.

Littman (Littman, 1994), explores the use of stochastic games as formal
framework for reasoning about multi-agent systems. In particular, using zero-sum
stochastic games, Litmann was able to show the selection of an optimal policy using a
Q-learning like algorithm. This work was extended by Hu and Wellman (Hu and
Wellman, 1998), where a broader framework of general-sum stochastic games was used

as an underlying framework. In such games we must drop the concept of 'optimality' for

48

Chapter 2 - Introduction

that of 'best response'. In a modified Q-learning algorithm, Hu and Wellman managed to

show convergence under certain conditions, however, only with infinite trials.

Other researchers have also explored the use of stochastic games as a formal
framework for multi-agent reinforcement learning (Bowling and Veloso, 2000,
Chalkiadakis, 2003, Hansen et al., 2004, Khoussainov, 2004). However, interestingly,
Bowling and Veloso address the convergence problem for multi-agent reinforcement
learning with a variable learning rate (Bowling and Veloso, 2002). Using the WOLF
(Win or Learn Fast) principle, the learning rate is increased when the agents are
performing poorly and slowed when they are performing well. By varying the learning

during play, convergence can be achieved, but again under certain conditions.

Despite the problems of the applicability of a formal framework to multi-agent
reinforcement learning, there have been many reported successes in utilizing this
technique. One of the earlier reported successes was Tan (Tan, 1993). Tan investigated
a limited hunter-prey problem with 2 hunters controlled by a Q-learning algorithm.
Specifically, Tan experimented by allowing the hunters to communicate sensations,
policies and episodes. In these trials, the hunters learned a form of cooperative behavior,
and did better in each case than the independent reinforcement learners. Although these
experiments were limited in the number of agents utilizes, two hunters at most, similar
promising results have been obtained by other researchers utilizing many more learning

agents.

Nunes and Oliveira (Nunes and Oliveira, 2003), utilizes a traffic control
simulation with 5 learning agents, where the agents learn to control traffic flow through
intersections. The agents learn from each other by exchanging advice, which is a
selective episodic exchange. Although the learning agents utilized different learning
algorithms, including Q-learning, all did better than their independent learning
counterparts when cooperating with the other learning agents. Mataric (Mataric, 1998)
also describes an experiment where four Q-learning agents share sensory and
reinforcement information to learn social rules. These agents all have the same
objective, to collect pucks in a limited state space, but the effect of the communication

is to increase the scope of impact of individual agents, thus improving their

49

Chapter 2 - Introduction

performance.

Versino and Gambardella (Versino and Gambardella, 1997), discuss experiments
with teams of up to 14 Ibots (Integrating Robots). These Ibots are governed by a
reinforcement learning algorithm, and work together to discover a team solution to
artificial tasks created to study the degree of integration possible. The success of the
Ibots in learning team solutions is a little different to previous research in that no
communication exists between the Ibots. However, the lack of communication is really
a lack of explicit communication, as the learning of the Ibots is governed by a
reinforcement signal that evaluates team performance, not individual performance. Thus
the Ibots tend to lose individuality and behave as sub-parts of a whole. Other forms of
implicit communication between agents can be discovered in further research, for
example (Price and Boutilier, 1999, Sen et al., 1994). Price and Boutilier (Price and
Boutilier, 1999) utilize implicit communication in reinforcement learning agents by
having agents observe the actions of more experienced mentor agents. The effect here is
that the observer agents converge, or 'learn' more quickly than control agents utilizing

their own individual strategies.

The success of the agents in the previous applications of reinforcement learning to
multi-agent systems lies in the communication between the agents. This communication
can be either explicit or implicit, but the effect is to accelerate the learning rate of the
agents involved. In reinforcement learning, this would also lead to a variable learning
rate depending on the learning events taking place at any particular time throughout a
simulation. The variable rate was utilized in (Bowling and Veloso, 2002) above to
address convergence. Given the apparent success of reinforcement learning in many
multi-agent simulations, one question worth considering is whether optimal

convergence should always be sought at all costs (Chalkiadakis, 2003).

50

Chapter 2 - Introduction

2.7 Cooperative Learning in Multi-agent Systems

In a multi-agent system utilizing Q-Learning, each of the agents are individual
learners, and each learns from interaction with the environment, and other agents. They
may be part of a group whose learning is directed by the same reward function, but each
agent will learn independently from the others. If we have a group of such agents, they
have an implicit goal in common by virtue of the reward function. Norman (Doran et
al., 1997) argues that sharing the same implicit (or explicit) goal is not enough for
cooperation to exist, and that there must be intent to cooperate. However, in contrast,
Doran and Franklin (Doran et al., 1997) do not require intention to cooperate but state
that cooperation exists when the action of the agents satisfy both or either of the
following: the agents have a common goal and their actions tend to achieve that goal,
the agents perform actions to achieve goals and also the goals of other agents. In such a

situation, the cooperation is an emergent behavior

In an environment which is hostile, such emergent cooperation alone may not be
sufficient for the group of agents to achieve their common goal. An agent, being an
individual learner, simply may not learn fast enough to function correctly within its
environment before it is eliminated by either the environment, or other agents. In order
to combat this, we can implement a more explicit form of cooperation between the
agents in achieving their goal, or we could allow the agents to cooperate in the learning
process. As evident in the literature, there are a number of ways to achieve cooperation,
but if the agents cooperate in the learning process, the cooperation on achieving the
implicit common goal will still be an emergent behavior. Nonetheless, accelerated

learning can improve the task performance of the individuals.

There are a number of reasons why we might want our agents to cooperate with
each other during the learning process, and these include scalability, speed fault
tolerance and encapsulation (Sian, 1991). One of the criticisms of incorporating
intelligent agents into military simulations by (Petty, 2001), was that often the systems
were not scalable. Using a multi-agent system where the intelligent agents cooperate in
learning could reduce these concerns. In a multi-agent system where the environment is

hostile to the agents, the speed of the learning process becomes particularly interesting..

51

Chapter 2 - Introduction

A group of individual Q-Learning agents placed in a combat scenario against a better
trained team of non-learning agents, utilizing a human control strategy, cannot learn fast
enough to survive. If the agents in a multi-agent system can cooperate in the learning
process, we can effectively parallelize the learning and achieve an increase in the speed
of learning (Darbyshire and Wang, 2003).

Dayan and Hinton discuss speeding up the reinforcement learning process using a
multiple resolution approach (Dayan and Hinton, 1993). In this approach, a managerial
hierarchy is set up using reinforcement learning where high-level agent managers learn
how to sub-delegate tasks to others. However, in this research, we don’t want to
specifically set up such a hierarchy. This is a type of emergent behavior we would
ideally like to see emerge as a natural consequence of the simulation. Wolpert and
Tumer discuss the emergence of Collective Intelligence multi-agent systems (COINS)
(Wolpert and Tumer, 2000). In these multi-agent systems, every agent runs its own
reinforcement-learning algorithm, and the questions revolve around the reward function
best suited to achieve high reward gains. While these are closely related to the approach
in this paper, COINS are typically viewed as a control problem for real world

distributed applications.

Very closely related work to this research is presented in Tan (Tan, 1993),
however there are some significant differences. Tan considered the limited hunter/prey
problem in a small 10 x 10 grid world with a maximum of two hunters and two prey.
This research utilizes a distillation with a 500 x 500 world with two teams of 15 agents.
Tan also considered the learning problem as an episodic learning problem, and at the
end of each episode, an agent communicated its entire episode-sequence to the other
agent. This research considers the learning task as non-episodic, and communications
occur at each time step throughout the simulation. The agents within this research are
also placed within a hostile environment where they can be killed if the learning rate is

insufficient.
Although the literature demonstrates that agents which communicate generally

fare better than those that don’t, what is generally missing is an analysis of the

observable effects of the communication on simulation metrics. A computational

52

Chapter 2 - Introduction

system, such as a multi-agent simulation, are traditionally evaluated based on the final
results (Bryson et al., 2001). Thus, in multi-agent systems where communication is
utilized to increase performance, we can measure the observable difference in the
success or otherwise of a group of agents using communication to enhance learning.
However, while the communication may lead to positive final outcomes, there must be
some measurable elements of the simulation that are affected by the communication
which then influence the final outcome. It is useful to identify these in order to further

evaluate the results of the communication in the simulation environment.

We know from the literature that allowing agents in a multi-agent system to
communicate during the learning process will increase the task performance of the
group as a whole. Additionally we know from many of the research papers that
communication in a multi-agent systems helps accelerate the learning process, for
example (Darbyshire and Wang, 2003, Kelly and Keating, 1998). Thus we know the
cause-effect relationship, but what still seems unsatisfactorily documented in the
literature is a pinpointing of where the changes due to communication specifically effect
either the agents or the agent system as a whole. Does the communication affect metrics
of the agent system which accounts for the increased performance, or does this actually
have an effect on the agents themselves, or both? The exact mechanics of the
communication effects need some investigation. A detailed knowledge of these effects
on the agents themselves in such an environment might help to provide avenues for
further exploration of utilizing communication for group learning. It should be noted
that a large body of literature exists for the research area of Competitive Agent.
However, the focus of this research is solely on communication between cooperative

agents, hence we have not included competitive agent literature in this thesis.

2.8 Neural Networks

Although this research was not directly concerned initially with Artificial Neural
Networks, discussions with a previous research supervisor' led to a secondary interest in
artificial neural networks as a model for the communication between agents in a

complex adaptive system. Thus, this section provides a brief background to the study of

1 Associate Professor Dianhui Wang, La Trobe University, Melbourne, Victoria, Australia

53

Chapter 2 - Introduction

artificial neural networks which are then used in Chapter 6, to show how the
communication discussed in Chapter 5 can be modeled. While this does not represent
the focus of this research, artificial neural networks do provide us with a method to
conveniently and succinctly represent the communication between a group of agents in

an adaptive system.

Neural Networks were inspired by the study of the human brain and its complex
structure. The human brain has long been looked at as having many of the desirable
computational characteristics not currently present in modern computers (Jain et al.,
1996). These include massive parallelism, an ability to learn, being adaptable, the
ability to generalize, and more (Cheung and Cannons, 2002). Artificial Neural
Networks are named after their biological counterparts and try to model the information
processing capability of the human brain. A biological neural network consists of a
massively parallel system of connected Neurons, and understanding the structure of the

neuron gives us the ability to model its essential properties.

Axpn
o Cell body r

Nucleus

Figure 2.13: Biological neuron (Jain et al., 1996)

Figure 2.13 shows an abstract sketch of a biological neuron. The neuron consists
of a central cell component, dendrites which are connected to other neurons via small
gateway type constructs called synapses, and a longer axon which eventually branches

into a number of outlying tree-like branches that then connect, via synapses, to the

54

Chapter 2 - Introduction

dendrites of other neurons. In biological neurons, there is a flow of information through
the synapses to the neurons dendrites to the cell body (soma), and then a signal is sent
from the cell body along the axon to other neurons. Each of these neurons is connected
in this way to between 10° to 10* other neurons. This general abstract structure of the
brain provides us with a biological paradigm we can model in order to mimic some of

the capabilities of brain itself (Rojas, 1996).

In artificial neural networks we model the biological neuron with an abstract
artificial neuron, see Figure 2.14. There are many depictions of abstract neurons, but the
one shown in Figure 2.14 encompasses the features of most (Rojas, 1996, Fyfe, 1996).
The neuron depicted, consists of a central neuron body, a number of inputs with

associated weights, and a single output.

X1
X, W
W2
X3 W3
T s | f output
X W/' J

bias

Figure 2.14: General form of an abstract artificial neuron
(Rojas, 1996)

The inputs, X;, X,, X3, ..., X, are the input signals to the neuron and there is an

55

Chapter 2 - Introduction

associated set of weights w;, w,, ws, ..., w, . Additionally, a bias signal is also often
included as input to the neuron. The body of the neuron typically computes a weighted
sum of the input signals and applies a function f, to produce an output y. This is shown

in Equation 2.2

y=f(z x,w, + bias

i=l..n

(2.2)

The function f'() is called the activation function and different models of artificial
neurons differ mainly in the form of the activation function (Rojas, 1996) and the
interconnection of the artificial neurons. While the activation functions are generally not
restricted, often the form of the activation function utilized is a nondecreasing function
in the form of either a threshold (sgn) function, a semi-linear function or a sigmoid
function (Krose and van der Smagt, 1996). These functions a depicted in Figure 2.15.
The majority of neural network applications use sigmoid activation functions (Cheung
and Cannons, 2002), which have a bounded range, but never quite reach the maximum

or minimum (typically 1 and -1)

IR E SIS

threshold (sgn) semi-linear sigmoid Gaussian

Figure 2.15: Form of different activation functions (Jain et al., 1996)

A threshold or sgn activation function is one of the simplest types of activation
functions and either returns a zero (0) or a positive number, typically one (1) as the
output. This effectively either turns the output of the neuron on or off depending on the
weighted sum of the inputs. Such an activation function was used in one of the earliest
attempts at building a learning based system based on simple structured neurons and
was motivated by the early work of McCulloch and Pitts (McCulloch and Pitts, 1943).
The simple neuron proposed by McCulloch and Pitts was termed a perceptron and is

shown Figure 2.16.

56

Chapter 2 - Introduction

The weights attached to the input signals are the most important element in the
neural network when determining its overall behavior (Cheung and Cannons, 2002).
The ability of a neural network to learn is achieved by the network iteratively updating
the value of the weights on the input signal over time (Jain et al., 1996). By modifying
the weights over time the network adapts, and slowly begins to better approximate the
required function. When a neural network is first set up, the input signal weights can be
initialized based ona priori knowledge, or the network can be trained. Training
involves supplying the network with example inputs, and in Supervised training, also
supply the outputs. In either case, the network adjusts the weights over time to achieve

better results.

>

Figure 2.16: McCulloch-Pitts early model of a neuron
(Jain et al., 1996)

While neural networks are excellent for solving particular types of problems, such
as pattern recognition, feature extraction, noise reduction and prediction. Using a
combination of Neural Networks and Reinforcement Learning we can explore larger-

scale problems with a complexity seen more in real-world systems.

2.8.1 Neural Networks and Reinforcement Learning

Initial problems for reinforcement learning lay in what was termed the temporal
credit assignment problem which was difficult to handle. This limited the application of
reinforcement learning to smaller problems. However with the development of the class
of methods called Temporal Difference learning methods (Sutton and Barto 1998) (see

Section 2.6.2 QLearning) which allowed an agent to learn successful actions based on

57

Chapter 2 - Introduction

the difference between temporally successive predictions (Tesauro 1995). One of the
temporal difference was TD(lambda) was also proposed for training a multilayer neural
network (Sutton 1988). Tesauro (1988) designed TD-Gammon, a system designed to
learn to play backgammon as a way of exploring the capability of a multilayer neural
network trained by the temporal difference method TD(Lambda). What was surprising
in the results was the amount of learning that took place given no initial training. By
combining the two approaches the results surpasses the alternative approach of a
supervised neural network approach. A further variation of the Tesauro work was
undertaken by Papahristou and Refanidis (Papahristou & Refanidis 2011) who also
used a neural network trained by the TD(Lambda) temporal difference method to learn
variations of the backgammon rules. This work showed that neural networks combined
with reinforcement learning are capable of producing high performance learning

algorithms for game playing.

In reinforcement learning, the reinforcement function and the states depend on the
previous states and reinforcement history. When combined with a recurrent neural
network, the outputs will depend on the past states and a current state internal to the
system (which depends on the historical record) (Jang et.al 1997). This type of neural
network might be able to learn appropriate actions by including a specific amount of
past history. Additionally, reinforcement learning which involves updating a table
containing values for state-action pairs and fFor large scale problems with very large
state spaces this becomes impractical. We ned to use generalization techniques to deal
with the large number of states. Feedforward neural networks combined with
reinforcement learning are a way of dealing with the large state spaces as the function

approximators in neural networks gives us this generalization capability (Coulom 2002).

There is a large body of evolving work in using neural networks and
reinforcement learning in the field of robotics, particularly for visual control (Milijkovic
et.al 2013) (Huang et.al 2005) as examples. Visual control of a robot requires an
extremely large state space in order to provide the agent with the information it needs to
learn to navigate and avoid obstacles over time (Huang et.al 2005). Traditional
reinforcement learning techniques could not scale-up to make this a practical solution

without generalization techniques.

58

Chapter 2 - Introduction

The research presented in this thesis is concerned with learning by reinforcement.
In particular, this research studies the effects of communication on the learning when
teams of agents are working together to solve a problem. However, the treatment of
neural networks in this section is provided solely as background to Chapter 6 which
looks briefly at trying to model the communication between a group of agents in a
complex adaptive system. The model of the neuron in Figure 2.14 and the Equation
presented in Equation 2.2 provides an excellent basis for a succinct model of such
communication. This will be discussed more fully in Chapter 6 Modeling

Communication.

59

Chapter 3 - Methodology

3

METHODOLOGY

The method of science is tried and true. It is not perfect, it's just the best we have.

And to abandon it, with it's skeptical protocols, is the pathway to a dark age.

— Carl Sagan

When any research is undertaken, it is important to conduct the research in a
manner that is consistent and sound with the type of problem being investigated, and is
reproducible so that verification can take place. Thus the methodology used to conduct
the research is a vital part of the research process, and needs to be documented in detail
to the satisfaction of not only the researcher, but also to those reviewing the research.
The purpose of this chapter is to discuss and document in detail the the conceptual
framework and research methodology used to gather the data used in investigating the
research problem. In this chapter we look at the research methodology used at the broad
level, and in the following chapter, Chapter 4 Simulation Tool Design, we further
discuss in detail the implementation and design of the software tool used in the

methodology.

3.1 Research Question Revisited

In Chapter 1 Introduction, we discussed central research question which arose
from a gap identified in the literature concerning communication agents and their

performance. Agents that work together do better in terms of their performance in

60

Chapter 3 - Methodology

attaining group goals when they communicate. However, there is a lack of detailed
analysis in the literature on the cause-effect relationship between communication and
performance. The central question in this research is then, exactly where and how the

resultant effect is realized within the simulation of the agents themselves.
In Chapter 1 Introduction, we more formally framed the central question as:

If we denote the set of agents in a Multi-Agent System (MAS) by X, then a MAS

with n agents is given by
X={x,,x,,..x,]

Assuming communication is a function of discrete time, we denote a message

between two agents x; and x; at time ¢ as

Mj(t):{m' '(t)]izl...n,#j EM(t)

i,]

Now we know from previous research that allowing agents to communicate

generally increases the groups chances of success, thus the communication M(?) at time
¢t must have a discernible effect on the group at time #+1/, say A, X . As the simulation

progresses in time, we can denote the change in the group from time ¢ to time #+/ as

61

Chapter 3 - Methodology

To analyze of the effects of agent communication as time progresses, in particular,
the effects on the group X, we consider the progression of changes {A, X |,_, ; where
the end of the simulation time is denoted by 7. These changes will be realized in the
individual agents, thus Vx,€X, A,,, X=[8,,x;] where 8,,,x, are the resultant
changes in X, at time #+/ caused by M (¢). Thus the central research question then

becomes a complete description (or analysis) of

(AXo r

3.2 The Research Process

There are many incorrect usages of the term 'research', and there are many things
that research is not, as the term is often abused through lack of understanding. We can
regard formal research as process we undertake to systematically resolve answers to
questions or problems, with the support of data we collect through this process (Leedy,

1997). Leedy (Leedy, 1997), outlines eight distinct characteristics of formal research:

1. Research originates with a question or problem
Research requires a clear articulation of a goal

Research follows follows a specific plan or procedure

Sl

Research usually divides the principal problem into more manageable sub-
problems

9]

Research is guided by the specific problem
Research accepts certain critical assumptions

Research requires the collection and interpretation of data

® =S

Research by its nature is cyclical (or more precisely helical)

Research originates with a question or problem: The world is fill of questions,
and any formal research begins with a question that developed from something

unexplained, perhaps from unexplained phenomenon, or observation of some process,

62

Chapter 3 - Methodology

or perhaps follow-on questions from past research. By posing such questions we set
goals, and thus set in motion the impetus for research to take place. It serves as the

catalyst for the research process.

Research requires a clear articulation of a goal: In order to proceed in the
research process, we must be able to articulate the question in a formal way. This is a
crucial step, since only by an unambiguous statement of the question can we proceed
forward in a formal structured manner. If the question remains ambiguous, then we
cannot be sure we are approaching our problem from the correct perspective.
Additionally, even if we do continue and arrive at conclusions or answers, we cannot be

certain that these will unambiguous in themselves.

Research follows follows a specific plan or procedure: like many other
endeavors, research is an activity that must be planned. Proceeding with the research
process without a defined and carefully chosen plan could lead to fruitless efforts, or
worse, results that are incorrect or ambiguous. By planning the research we can

carefully control the parameters of the research that will lead to the generation of data.

Research usually divided the principal problem into more manageable sub-
problems: with most research problems, it will be difficult at best for the researcher to
deal with the core research question as a whole. Most research questions are tackled
piecemeal, as are many problems in all areas of human endeavor. The principal behind
this approach is that the whole is composed of the sum of the parts. The research
question itself should suggest an approach to dividing the research into appropriate sub-

problems as it is being articulated.

Research is guided by the specific problem: once the research question is
decomposed into a number of sub-problems, and each of these in turn is articulated, we
can then make a reasonable hypothesis about the outcome, or relationships of the
outcome to the data. When we view the components through the hypothesis, it may
guide the enquiry to possible sources of data that can aid in resolving these sub-
questions, and hence the original research question. Additionally, the nature of the

question will guide the approach or methodology (discussed in the next section) which

63

Chapter 3 - Methodology

becomes the framework under which the research is conducted.

Research accepts certain critical assumptions: in many cases it is valid to make
certain assumptions within a research project. Assumptions are conditions within the
research that we take for granted, or perhaps there are too many variables within the
research so we fix some of them based on sound reasoning. However, we must be
careful in any assumptions made, since if the assumptions are not valid then the
research should not proceed. We cannot simply state the assumptions we make in
research, they must be justified (Simon, 2011). Carver, Van Voorhis and Basaili (Carver

et al., 2004) additionally discuss the impact of assumptions on experimental validity.

Theory What we think
Cause _ Effect
Construct - Construct
Program I » Observations
What we test
Observation

Figure 3.1: Theoretical constructs used in research (adapted from
(Carver et al., 2004))

Figure 3.1 which is adapted from (Carver et al., 2004) shows the theoretical
constructs used in research. Invalid assumptions can cause potential problems between
the Cause construct (from a cause-effect relationship) and the Program construct (the
tool that represents the realization of the cause construct). Furthermore, invalid
assumptions can also effect observations realized from the application of the program or

tool. These can become a source of internal validity problems for the research.

64

Chapter 3 - Methodology

Research requires the collection and interpretation of data: in any research
project we collect data which will then be interpreted, to either support or refute any
hypothesis made. This will ultimately be used in answering the original research
question. In fact, according to Leedy and Ormrod (Leedy and Ormrod, 2001), we can
only undertake research as an approach to answering a problem when there is data to

support it (Hardy, 2005).

Research by its nature is cyclical: the answers to research questions can be very
elusive, and even when it seem they are not, they can more often than not be
inconclusive. Thus the research process often given rise to more questions which need

to be answered thus creating a cyclic process, as shown in FFigure 3.2.

P ® / g

Research interprets the meaning ,z"
of the data, which leadstoa

) resolution of the problem, thus /
suppaorting or not supporting the /
3=a Illl o
"~.\ hypotheses andior providing | (1)
\ an anawer 1o thé quastion | Research begins with a problem: \

\ fhet bagantheTeaserch’ | an unanswered question in the \

cycle. At this point, one | mind of the researcher, \

/ or more new problems | \
lp" may emerga | e — _\;

(—5:' / ',I
| = e i
|| Research locks for data // |
directed by the hypotheses [;' { Researchis \, '. @ |

| and guided by the problem. | | a cyciical I i

The data are collected . process. __,- | Research defines the goal

| and organized. AN in terms of a clear

f
\ \i\\ // statement of the .'I
\ ,."' problem. !

[4 | |
\ Research posits tentative .'I (3)
solutions ta the problem(s)
‘\\ through reasonable hypotheses.
These hypotheses direct the
researcher to appropriate data. |
f

Research subdivides the
problem into appropriate
subproblems.

/
.-'

/ J -’/"
\,_\ _ e

Figure 3.2: The research cycle (Leedy, 1997)

The two-dimensional circular representation of the research process from Leedy

(Leedy, 1997), shown in FFigure 3.2 can be improved upon to highlight the continuing

65

Chapter 3 - Methodology

nature and accumulation of knowledge through the research process. Walliman
(Walliman, 2005) developed a spiral diagram of the research process based on Leedy's
circular diagram shown in FFigure 3.3. This diagram still strongly illustrates the
cyclical nature of the research process, but more importantly also emphasizes the
accumulation of knowledge through this process. As we turn through each twist in the
spiral, the knowledge we accumulate is raised, and this in turn inspires further research

questions and lines of enquiry (Walliman, 2005).

Analysis of data,
conclusions

Division into
sub-problems

|dentification of

Statement
| further problems

of problem

Formulation
of hypotheses
or guestions

f
Division into |

f
sub-problems I of problem
f

\ Identification
Statement of problem

Figure 3.3: Spiram diagram of the research process (Walliman, 2005)

Walliman additionally provides a diagram showing the simple relationships
between the five main elements of the research process. These are the Situation, the
Research Topic, the Research Methods, the Data and the Conclusions. The Situation
represents the state or the relative space in which the researcher is observing or studying
a particular phenomenon.The Research Topic is of course the general area under which
the research questions are framed. The Research Methods represent the general
approach taken in the research process, and these are discussed in detail in the following
section. The Data is what we collect while investigating the research problem, and the
Conclusions are the generalizations and results of analysis and interpretation of the

Data, This general relationship is shown in Figure 3.4.

66

Chapter 3 - Methodology

SITUATION

RESEARCH
CONCLUSIONSHH o TOPIC
‘\, T~ RESEARCH — /
\ = THEORY gf':
\ \ S
% / \ g/
¥ \ ¥

. \
\'x,. / / \x _('/ l

collection RESEARCH
METHODS

Figure 3.4: Relationship between elements of the research process
(Walliman, 2005)

In essence, all formal research is modeled on the Scientific Method (Leedy, 1997,
Shavelson and Towne, 2002). The beginnings of scientific research can be found in
early recorded works from ancient Greece, Persian, Indian, Chinese and European
cultures (Carpi and Egger, 2008). However, the basis of what we term the Scientific
Method came from the scientific revolution in the renaissance period during the 16™ -
17™ centuries. The beginning of the scientific revolution is often cited as having begun
with the publication of 'De Revolutionibus Orbium Coelestium (On the Revolutions of
the Heavenly Spheres)', by Nicolaus Copernicus (Carpi and Egger, 2008). This method
was based on the rigorous collection of data from observed phenomenon along with a

way of thinking known as inductive reasoning.

Although formal research may be based broadly on the scientific method, the

classic view of the scientific method as :

Observation — Question — Hypothesis — Experiment — Conclusion

67

Chapter 3 - Methodology

is a little misleading. The experiment component in the classic view of scientific method
is not always applicable, and this is where research projects will differ, in the

methodology, data collection and analysis

3.3 Research Methodology

The Research Methodology is the general framework which guides us in
systematically solving the research problem (Kothari, 2004). Every research project is
based on such a conceptual framework (Walliman, 2005, Bickman and Rog, 2008), and
the methodology provides the general approach we take to the collection and analysis of
the data. According to Leedy, (Leedy, 1997), the scientific method to solving research
problems is only viable when there is data available to support it. The data and the
methodology are then tightly bound together in an interdependent relationship, thus the
research methodology we adopt will depend on the nature of the data we will collect

during the research process.

3.31 Qualitative vs Quantitative

It has been said that there are almost as many research methodologies as there are
research projects, as each is different in nature and may require different data collection
methods as well as different analysis techniques, but we can generally classify most
research methodologies into two broad categories, Qualitative and Quantitative
approaches (Dawson, 2005, Leedy, 1997, Carpi and Egger, 2008, Kothari, 2004).
Quantitative research methods are primarily concerned with the collection of numeric
type data and the analysis of such data so things can be measured numerically.
Quantitative methods had their roots in the natural sciences where scientists are
concerned with how something is constructed or works. Qualitative methods methods
had their origins in the social sciences where scientists are concerned more with the
increase of our understanding in these areas and not with explanations (Berndtsson et
al., 2002). The types of data collect in qualitative research projects is not as quantifiable
as that in quantitative research and can be in the form of images or textual pieces such

as interviews and case studies.

68

Chapter 3 - Methodology

Quantitative methods are more often found in the physical sciences, while

qualitative methods are more often found in research projects associated with the social

sciences, though this division is not fixed. Table 3.1 Presents the major distinguishing

features between quantitative and qualitative research methods.

Table 3.1: Distinguishing Characteristics of Quantitative and Qualitative
methodologies (Leedy and Ormrod, 2001)

Question

Quantitative

Qualitative

What is the purpose
of the research

What is the nature of
the research

What are the data like
and how are they
collected

How are the data
analyzed to determine
their meaning

How are the findings
communicated

* To explain and predict
* To confirm an validate
* To test theory

* Focused

* Known variables

* Established guidelines

* Pre-determined methods
* Somewhat context-free
* Detached view

* Numeric data
* Representative large sample
« Standardized instruments

» Statistical analysis
* Stress on objectivity
* Deductive reasoning

* Numbers
* Statistics, aggregated data
* Formal voice, scientific style

* To describe an explain
* To explore and interpret
* To build theory

* Holistic

* Unknown variables
* Flexible guidelines
* Emergent methods
* Context-bound

* Personal View

* Textual and/ or image based data
* Informative small sample

* Loosely structured or non-
standard observations and
interviews

* Search for Themes and categories
* Acknowledgment that analysis is
subjective and potentially biased

* Inductive reasoning

* Words
* Narratives, individual quotes
* Personal Voice, literary style

Four of the most common research methods utilized are that of action research,

experimental research, case study and survey methods (Dawson, 2005), though Leedy

(Leedy, 1997) provides a more exhaustive list. It is beyond this chapter to provide an

exhaustive list of research methodologies however the four common methodologies will

be briefly discussed.

69

Chapter 3 - Methodology

3.3.1.1 Action Research

Action research involves the carefully documented and monitored attempt by the
researcher to solve a local problem. This is a form of applied research where the
researchers actions are meant to change a local situation in order to gain a better
understanding of practice and methods for improvement (Dawson, 2005, Leedy, 1997).
There is a danger that the researcher may become too close to the problem and become
too consumed with achieving the results and disregard the essential impetus of the

research project.

Action research is a participatory research method where the researcher is not
merely an observer, but an active participant. Figure 3.5 Shows the cyclic nature of

action research.

Research themes /

/ interests / questions

Reconnaissance / fact-finding
in relevant literature

Amend plan & design Exit, if questions

Planning & designing if further explanation are satisfactorily
research project to & research are require:\ resolved

answer research questions,

hypotheses, etc. Evaluate effect of
intervention in terms
of research questions, etc.
Action steps
1,2, 3.

Monitor in terms of
research interests

Implement_/

Figure 3.5: Cyclic nature of action research (McKay and
Marshall, 2001)

3.3.1.2 Experimental Research

Experimental research is normally undertaken in artificial environments or

laboratories where the researcher investigates cause-effect relationships with the

70

Chapter 3 - Methodology

ultimate aim of being able to predict phenomenon given the values of certain state
variables investigated during the research. One of the distinguishing features of
experimental research is the researcher does not simply observe and record the
variables, but manipulates them in a systematic way to observe the effects (Luzzi,

2005b). This aids in the understanding of the cause-effect relationship.

This methodology normally requires a control group against which the
performance of a test group is measured. In the test group, one or more independent
variables are manipulated and the effects on the test group are then observed and
measured against the control group, subject to the same external conditions. The effect
of manipulating the independent variables can then be quantized and later used for

prediction.

A second distinguishing feature of experimental research is the control of
extraneous variables. The extraneous variables in a specific experimental research
project are all those that are deemed to not be of interest to the researcher. These are
usually many in number and they can be managed by either trying to keep them
constant between the control and test groups, or even by randomizing them as much as
possible. Experimental research methods tend to be higher in internal validity (Luzzi,

2005b), but are subject to a number of limitations.

Sometimes 1t is difficult to undertake experimental research because the
manipulation of the independent variables cannot be performed in live situations for
practical reasons (as in this research, manipulating communication of teams during a
combat scenario). Additionally, in trying to control the extraneous variables the
researcher is sometimes forced to contrive artificial scenarios which may limit the

applicability of any determined results.

3.3.1.3 Case Study Methods

The case study is one of the oldest research methods and data is gathered through
an in-depth investigation into a particular person, a group of people or an organization.

It captures the complexity of a single case (Johansson, 2003). The case study is a

71

Chapter 3 - Methodology

flexible research method and is usually conducted in order to try and reveal “Universal

Truths” by studying a particular scenario in-depth (Luzzi, 2005a).

The
emiprical
Man .
. y Correlational REDUCTIVE world in full
units of .
. research complex“v
analysis or
cases W
=
|_
-
o
-
o
>
w
One or a few
units of
analysis or .
Experiment c tud
cases Quasi-experiment H?:fm‘:u Y
A few Many
variables variables /
qualities

Figure 3.6: Figure showing the case study in a framework
methods used to reduce data complexity (Johansson, 2003)

Figure 3.6 shows the case study method in a framework of methodologies which
focus on different strategies to reduce data complexity when undertaking an empirical
investigation (Johansson, 2003). The case study is an explicative, or interpretive
methodology which seeks to reduce complexity by focusing on one case but envelopes
many variables to account for the context. The case study methodology developed from
the social sciences, but has become a methodology utilized in many disciplines and
applied to many types of research problems. The purpose of the case study to explain
the 'why' (Luzzi, 2005a).

The case study study method has some problems which may limit its usefulness in
specific situations. There is always the danger of observer bias, where the researcher
background and beliefs lead them to misinterpret their observations and report
incorrectly. The researchers should be trained to be objective observers. Additionally,

the case study represents a very narrow focus on an individual, group or specific

72

Chapter 3 - Methodology

organization. While this may be necessary to reduce complexity, in may instances,
enough data will not have been collected in order to generalize findings to a wider

population.

3.3.1.4 Survey Methods

Survey methods have been utilized since the 19" century, and are used in the
research process within many disciplines to gather data by asking questions. A survey is
'A systematic method for gathering information from (a sample of) individuals for the
purposes of describing the attributes of the larger population of which the individuals
are members' (Enanoria, 2013). Information is gathered by presenting individuals with a
structured set of questions, or closely related, by having an interviewer as a series of

questions and recording the answers.

Define research objectives

Choose mode ;
of collection Choose sampling frame

' '

Construct and pretest
questionnaire

Design and select sample

Recruit and
> measure sample -

v

Code and edit data

Y

Make postsurvey adjustments

v

\ Perform analysis |

Figure 3.7: The survey process (Groves et al., 2004)

Once the data is collected it can be analyzed using statistical techniques to

describe various characteristics of the sample such as frequency, distribution and

73

Chapter 3 - Methodology

averages (Leedy, 1997). By extrapolation, the researcher can then infer similar
characteristics of the larger population. Figure 3.7 presents a diagram showing the
overall survey process. As with other methodologies, there are a number of advantages
and disadvantages offered by the use of survey methodologies, as well as challenges in

constructing the survey instrument.

In comparison to other methods, data is usually reliable and variability can be
reduced by the number of surveys conducted. Additionally, surveys can yield a broader
range of data to be analyzed. However, there are also a number of limitations including
effects introduced by the response order, bias built into questionnaires, human bias in
answering questionnaires, unwillingness to provide answers, and inability to provide
answers including any semantic difficulties with the survey questions. The construction

of the survey questions are of critical importance and should be considered carefully.

3.3.2 Simulation as a research Tool

As discussed in Chapter 1 Introduction, this research is concerned with studying
the effects of communication on a group of agents in a battlefield scenario. The central
research question has been restated in 3./ Research Question Revisited, and is a

complete description of :

{AIX}t=1...T

which is the change in the group of agents X as time progresses from¢ = /... T'in a
battlefield environment due to the effects of M (¢),_, ; which is the total

communication within the group X at time ¢.

From our brief discussions on research methodologies in the previous sections, a
quantitative research methodology would be best suited for this problem. In particular,
an experimental approach where we can have a control group using no communication,
and a test group which uses communication would be desirable as we could measure the
discernible difference between the outcomes of control group and the test group.

However, there are specific types of problems where it is not possible to use the more

74

Chapter 3 - Methodology

traditional research methodologies, either due to practical reasons or even ethical
considerations. In the research problem outlined here, it is not practical to utilize such

techniques in a combat scenario.

Agent-based modeling is a relatively new analytical method for modeling in the
social sciences (Gilbert, 2007). While building a model and testing it is not a new
concept, agent based modeling allows us to build models which enable individuals to be
directly represented as well as the interaction between them. This is a considerable
improvement over equation based modeling and we can now model complex adaptive
systems using such simulations and search for emergent behavior. However it has been
suggested by some researchers that simulations offer little in the way of theory
development and are just models of real systems that just replicate observed
phenomenon and are so abstract that they can give limited insights at best (Davis et al.,
2007, Chattoe, 1998, Fine and Elsbach, 2000).

In contrast, simulation as a methodological approach has been referred to a 'third
way of doing science' (Axelrod, 2003, Gilbert, 1996, Ramanath and Gilbert, 2003).
Simulation can be contrasted with two standard methods of reasoning: induction, the
search or patterns in empirical data; and deduction, which involves specifying a set of
assumptions and then deriving consequences from the assumptions. However,
simulation begins with a set of assumptions (coded into the simulation model) but does
not derive or prove anything, rather the model generates large amounts of data that can
then be analyzed inductively (Axelrod, 2003). Another difference is that with induction,
data is normally gathered from surveys, interviews and case studies, but the data
generated by a simulation is derived from a set of clearly defined rules built into the

simulation.

Axelrod (Axelrod, 2003), discusses the value of simulation according to the

purposes to which it may be put:

* Prediction — simulation can utilize complex inputs, execute the simulation based

on programmed rules and generate the outputs as predictions

75

Chapter 3 - Methodology

Performance — simulations can be used to perform and study many different
types of scenarios such as medical diagnosis, speech recognition, optimization
of traffic flow and the inclusion of artificial intelligence techniques will help the

simulation mimic to some extent the way humans deal with these tasks.

Training — some of the first uses of simulation were in training, and modern
simulation techniques extend this to more sophisticated training techniques to
include flight simulators, military combat missions, stock trading, and many

others.

Entertainment — as an extension of training modern computer games are a source

of entertainment and in some cases, based on actual training simulations.

Education — many training simulations can also be used in education, such as
stock market trading, SimCity (which teaches younger students about
development and planning), clinical simulations for medical students, and social

simulations to teach about human phenomenon and reactions.

Proof — in some cases simulations aid in providing an existence of a proof, or of
a proof of concept. Conway's game of life was used to prove that complex
behavior could be demonstrated by the application within a simulation of a very
small set of of simple rules. Boids (Reynolds, 1987), was used to prove that
complex flocking behavior in birds could again be demonstrated by a small set

of simple rules.

Discovery — discovery, prediction and proof are the key elements when talking
about the value of simulation as a scientific methodology. Prediction can help
validate and improve a model, but discovery has been the cornerstone of the use
of simulations in social sciences for some time. Simulations in such areas can

help discover new relationships from very simple models and rules.

(Axelrod, 2003)

76

Chapter 3 - Methodology

Gilbert and Troitzsch (Gilbert and Troitzsch, 2005) proposed a simple
architectural framework for the simulation methodology, shown in Figure 3.8, to
explain the logic of the methodology. In Figure 3.8, beginning with the Target,
representing the real world system, the researcher abstracts the characteristics of the real
world system they wish to study and uses these to build the model. Simulation runs of
the model then produce the simulated data which can then be compared and correlated

against data collected from observing the real-world system.

Simulation
Model Simulated data
& Y
Abstraction Similarity
Target - - Collected data
Data gathering

Figure 3.8: Framework for simulation methodology (Gilbert and
Troitzsch, 2005)

Gilbert and Troitzsch (Gilbert and Troitzsch, 2005) point out that the logic
underlying the use of simulation models in their framework in Figure 3.8 is much the
same as the logic underlying statistical modeling as a research method. In statistical
modeling, a model is constructed as an abstraction from a social process, parameter
estimation is used to derive predicted data which in turn is compared for similarity to
collected data from the original social processes. Both statistical models and simulation

models can be used for prediction and illustration (Gilbert and Troitzsch, 2005).

Thrig (Ihrig, 2012) argues that the framework presented by Gilbert and Troitzsch
in Figure 3.8 illustrates succinctly the logic behind simulation as a research method, but

it doesn't capture completely the simulation research process experienced by

77

Chapter 3 - Methodology

researchers. Thrig derived an expanded architectural framework for simulation
methodology and this is shown in Figure 3.9. This expanded framework extends the
work of Gilbert and Troitzsch (Gilbert and Troitzsch, 2005) to provide a more complex
process model that describes the relationships between all the building blocks of models

which are often used to simulate complex systems (Thrig, 2012).

" Similarity i Similarity i
Propositions <—— Simulated Data <——— Empirical Data
+» h »
: Systematic
Theorizing Vlrtuall Data
Experiments Gathering

i Operationalization
Existing Theory ——— Model «———— Real World Issue
A Abstraction

Design Pa ramefter Casual .
Setting Observation
; Simulation i
Specifications Insights

_ —
Implementation Environment Calibration
Figure 3.9: Expanded framework for simulation methodology (Ihrig, 2012)

In the expanded framework in Figure 3.9, the process of building the model
begins with an existing theory of the real-world system and the simulation environment
is built from specifications derived from the theory and calibrated by insights gained
from observations of the real-world system. This depicts the real-world grounding of the
model. The model is derived from the simulation environment via determining the
parameter settings. The simulated data collected from the simulation of the model can
then be contrasted to empirical data collected from the real-world system and against
propositions derived from the underlying theory. When calibrated, the simulation can

then be used for confirmation of theory and for prediction.

What distinguishes this expanded framework is that it provides a stronger
theoretical foundation for the simulation research when models are based on an existing
theory and calibrated using insights. Of course, if an existing theory is lacking, it is
possible that the simulation can be used to help develop theory, but this is generally not

the case.

78

Chapter 3 - Methodology

Ramanath and Gilbert (Ramanath and Gilbert, 2003), have developed a generic
model to highlight stages undertaken in a simulation based research projects. These are
generic in the sense that other researchers have identified similar steps. One of the
perceived weaknesses of the simulation method is often the poor statement of the initial
model foundations and conceptualization. However if we undertake the steps of model
conceptualization and design within the framework provided in Figure 3.9 we can

reduce or eliminate criticism in this area.

Research (uestion
{5}/ Problems;

Literanire Reviews
Chservations L

Model Conceptualisation

v

Muodel Design

v

Build / Implementation

v

Verification

L]

Validation/Analvsis

Publication of Hesults —‘

Mimularion Results

I
I
I
v

e T et e

F 3

Replication

Figure 3.10: Generic stages in the simulation research process
(Ramanath and Gilbert, 2003)

Verification and validation are also important steps. Given that simulation models
are abstractions for the real-world, they often have poor external validity. By utilizing
the expanded framework in Figure 3.9 when developing the model we can create strong
internal validity, and this in turn addresses a common weakness in empirical research of

poor theoretical basis (Davis et al., 2007).

79

Chapter 3 - Methodology

Simulation is a form of computational modeling (Gilbert, 2007), which highlights
one of the greatest strengths of simulation as a research tool, that of experimentation.
Researchers can systematically experiment in a controlled environment (Davis et al.,
2007), and move the simulation forward or backward in time. This is particularly useful
when seeking to study longitudinal phenomena. Additionally, simulation allows us to
isolate the human system and any ethical problems of experimentation (Gilbert, 2007).
The experiments can be established and repeated as many times as desired without the

ethical considerations associated with the underlying real-world system.

3.4 Research Design

The goal of this thesis is to develop and test a model for cooperative agent
communication utilizing a reinforcement learning algorithm in a multi-agent
environment . This then will provide us with the means to examine in detail the cause
effect relationship between agent communication and group outcomes, filling a gap in
the literature. In this section we provide details of the research design and the

methodology chosen as the approach used to collect the data required for analysis.

The methodology used to undertake this research is that of simulation. As
discussed in the previous section, this research is undertaken to study the effects of
communication on the success rate of a group of agents undertaking a task situated in a
hostile environment. This research began at the Australian Defence Force Academy
located in the A.C.T. (Australian Capital Territory). The environment is that of a
battlefield where two groups of opposing agents try to eliminate each other. In this
scenario an experimental approach would suit the problem to be undertaken. However it
is impractical to approach the problem by devising experiments directly on the
underlying domain. By utilizing a simulation methodology we can abstract out the
important features of the target domain to construct a model where these important
features and be modeled and experimented with so data can be collected and analyzed.
The remainder of this section will discuss the design aspects of the research

experiments.

80

Chapter 3 - Methodology

An experimental approach was undertaken within the simulation model. In order
to study the effects of communication of a group of agents X, two groups of agents were
constructed, a control group and a test group (X). The control group represented a
group of agents that were pre-programmed with specific behavior (or goals) and was the
equivalent of a highly trained group of combatants. The test group were not trained but
had access to a set of possible actions and were governed in their behavior by an
artificial intelligence learning algorithm called reinforcement learning. Utilizing this
algorithm the test group would experiment with actions and receive positive or negative
rewards from the simulation depending on whether the actions would lead to a success

or otherwise. The major elements of the simulation are shown in Figure 3.11.

e
/ Simulated world %

|' é ntrol interaction II

KGroup Group \
| |
1 i
\

F— /

&P

Simulation

Figure 3.11: Major elements of the simulation

Each group of agents had their own goals and would interact with each other
through the predefined actions of the simulation. The goal of each group was to

eliminate the other group in a fight for survival. The control group did not communicate

81

Chapter 3 - Methodology

with each other, but each agent in the control group was governed by the same
behavior, thus there was a form of implicit cooperation within the group In the test
group, the communication was treated as the independent variable and experiments
were devised to vary the communication so its effects on the success of the group could
be measured. The goals of the test group were not built into the agents as in the control
group, but were governed by the reward function in the simulation which rewarded the
agent positively if they caused damage to an agent from the control group, or negatively

if their action led to damage being inflicted on them from an agent in the control group.

Four basic experiments were devised and data was collected on each experiment
via simulation runs. A simulation run was the execution of the simulation model for a
specific period of time using the parameters of the specific experiment. The four

experiments devised were labeled as

* Benchmark Trial — in this experimental trial the test group were not allowed to
communicate. Rather, each agent acted independently governed by the
reinforcement learning algorithm, receiving positive or negative rewards from
the simulation depending on the results of their actions. The purpose of this
experiment was to benchmark the level of success of the test group without

communication against the control group.

* Comms 1 — in this experiment, the test group were allowed to communicate with
each member of the same group by sharing their knowledge of the actions they
performed and the rewards they received from the simulation for those actions.
However, in this trial the test group agents could only communicate the positive

rewards and the actions taken to get a positive reward.

e Comms 2 - in this experiment, the test group were allowed to communicate with
each member of the same group by sharing their knowledge of the actions they
performed and the rewards they received from the simulation for those actions.
In this trial the test group agents could only communicate the negative rewards

and the actions taken to get a negative reward.

82

Chapter 3 - Methodology

* Comms 3 - in this experiment, the test group were allowed to communicate with
each member of the same group by sharing all the rewards they received from
the simulation and the actions that they undertook in order to receive the reward.
The commsl and comms2 experiments were designed to see if positive or

negative rewards only were sufficient to be successful against the control group.

For each experimental run, the simulation recorded each movement, action and
reward that each agent undertook in each time step. The simulation was designed as a
discrete time simulation, and at each time-step each agent was allowed to observe the
world and decide on a course of action. The actions were then applied randomly and

then each agent received their reward or otherwise depending on the result of the action.

There was a question of how many simulation runs was needed for each of the
trials, and the number will be dictated in large by the nature of the simulation. The
question of whether 100, 1000 or 10000 runs be sufficient to gather enough data for
each run in order to analyze the results with confidence depends on the nature of the
simulation. This simulation was somewhat different as reinforcement learning was
utilized in a multi-agent system. Reinforcement learning was developed initially as an
artificial intelligence technique to be utilized for a lone agent to act in an environment
and receive rewards from the environment. By utilizing reinforcement learning in a
multi-agent system the actions of the different agents would influence the state of the
other agents thus creating a non-markov process. While this is a valid technique for
multi-agent systems, it meant that the simulation runs would not converge, and thus for

each agent optimizing their reward became a moving target.

It was determined to utilize experimental tests of 2000 runs per experiment. Thus
for each of the four experiments above, benchmark, commsl, comms2, and comms3
2000 simulation runs were conducted and the results stored for later analysis. As the
simulations did not converge, there was not much to be gained from utilizing more that
2000 runs as the data generated was extremely large and each run varied from each
other run without convergence. Two thousand runs was enough to analyze and in some

cases average results so a clear picture of the simulation trends emerged.

83

Chapter 3 - Methodology

Each of the experimental trials was then analyzed and comparisons were made.
These were then used to develop Knowledge Landscape diagrams so a three
dimensional image of the learned behavior of agents in the experimental trials could be

viewed in order to reason about the success of the communication within the test group.

The implementation details of the simulation tool constructed are provided in
Chapter 4 Simulation Tool Design. The initial simulation utilized a simulation tool
called Crocodile developed at the Australian Defence Force Academy (Barlow and
Easton, 2002), however the tool was redesigned and re-written for this research to allow
for the incorporation of agents utilizing Artificial Intelligence techniques and to allow

for the inter-group communication between agents.

84

Chapter 4 - Simulation Tool Design

4

SIMULATION TOOL DESIGN

A theory is something nobody believes, except the person who made it. An

experiment is something everybody believes, except the person who made it

— Albert Einstein

Agent-based modeling and simulation while relatively new, has become a popular
simulation tool used for the analysis and simulation of systems from many diverse
problem areas. As discussed in previous chapters, agent-based simulations are replacing
many forms of equation-based modeling, as these types of simulations cannot take into
account the adaptability of the elements in the model. Additionally, using these types of
simulations we can now model complex systems by implementing directly the elements
of the model as agents and defining the interactions between them. It is the non-linear
interactions between the elements of a system that essentially makes it complex, making
it difficult to model these systems using the traditional equation-based modeling

techniques.

In this Chapter we detail the design and construction of the simulation tool which
is used in this research. The simulation tool is designed to study the effects of
communication on a group of agents in a complex system who are trying to achieve a
common goal. This research began at the Australian Defence Force Academy (ADFA)
and thus was grounded with a military theme. The agent-based system in question
represents an abstract land combat scenario involving two opposing forces who battle to

eliminate each other. One of the opposing forces allows the members to communicate

85

Chapter 4 - Simulation Tool Design

their successes or otherwise to each other and it is the effects of this communication on
the success of the group that forms the focus of this research. While the underlying
domain of the simulation is a military based problem, the application and the simulation

itself are general in nature and can be applied to a multitude of multi-agent scenarios.

4.1 Language and Versioning Details

The multi-agent simulation software was built using the Java' programming
language, Java SE 6. However most of the code is also compatible with Java SE 7,
except for some of the GUI Swing based components and some elements of the Java
Reflection API which have been deprecated in Java SE 7. The Integrated Development
Environment utilized when programming, was NetBeans®. NetBeans was developed as
an Open Source tool by Sun Systems and later acquired by Oracle. NetBeans is offered
under the GNU General Public License (GPL) v2. NetBeans Version 6.9.1 is the
version currently utilized in this software tool, though the simulation system will
execute on earlier versions and additionally version 7.0.x. The simulation will not at this
stage compile without errors when using NetBeans 7.1 or later due to the removal of

support for the Swing Application Framework (JSR 296) in version 7.1

NetBeans was chosen as an IDE as it was initially developed as an IDE primarily
for the Java language, though it also supports other languages. The NetBeans IDE is
additionally written in Java and thus offers the portability of the Java language. This
will allow any follow-on research and simulation projects arising as a result of the

development of this tool to be available on as many platforms as possible.

The Java language was chosen for a number of reasons, but first and foremost
because it is an Object Oriented language designed to run on the Java Virtual Machine
(JVM). The Java Virtual Machine has been ported to all major platforms, thus making
Java code 'write once, run anywhere'. It is always important to eliminate any portability
issues from research projects, allowing the researchers to concentrate on the
fundamental issues of developing the tool rather than become focused on mechanics on

implementation. The nature of the underlying problem also indicated that an Object

1 Javais a trademark and product of the Oracle Corporation

2 NetBeans is a product of the Oracle Corporation

86

Chapter 4 - Simulation Tool Design

Oriented Programming language would be better suited to implement the solution.

The underlying domain of the problem under consideration is a land combat
scenario. Land combat exhibits all the elements of a complex system in so much as it
consists of many components that interact in a non-linear fashion. Sun Tzu (SunTzu,
2005), an ancient Chinese military strategist recognized this as far back as
approximately (722 — 481 BC). Thus equation-based modeling is largely ineffective at
predicting the outcome when modeling complex systems due to this non-linear
interaction. Small variations in initial conditions can lead to wide variations in the
outcome, often termed the 'Butterfly Effect'. Additionally, when we introduce
intelligence into the agents through AI techniques, which more closely models
components in the underlying domain, we then introduce the possibility of elements of

the system being able to adapt to conditions as the system progresses through time.

Distillations, which represent a class of military simulations that model these
types of complex systems use agent-based modeling where the elements of the
simulation can be directly represented as agents in the simulation. We can then model
the complexity by defining the rules that govern how the agents interact within the
simulation. By using an Object Oriented Programming language such as Java, we can
easily implement the agents in the simulation as objects, and define the interaction
between the agents through message passing between the objects. While we could
construct the simulation with a more traditional procedural language, in this case, an

Object Oriented language such as Java is more suitable to the problem at hand.

The simulation tool was given the name Ares, named after the the Greek god of
war. A description of the simulation tool, it's architecture, the implementation details
and functioning is given in the following sections. Sections of the actual source code of
the simulation tool will be referenced throughout the remainder of this chapter, and the
source listings will be provided in Appendix 1. However, the complete source code has

not been provided for brevity.

87

Chapter 4 - Simulation Tool Design

4.2 Architecture of the Simulation

The overall architecture of the simulation was designed following a simple design
principle of separating the components of the simulation tool into four broad groupings

depending on their role within the simulation. This is depicted in Figure 4.1.

Ares Application

GUI Based
Main Menu class Parameter input
classes

Simulation Engine

«“-—
classes

Parameter File

Agent based
classes

Figure 4.1: Overall architecture of the Simulation

The simulation is initiated by the main Ares application class called AresApp.java, see
Appendix A.l. This is basically a Java loader class, whose sole function is to create an
instance of the Ares main menu class and transfer control of the simulation to this class,
see AresView.java, Appendix A.2. The main menu class uses the Java Swing
components to present an event driven Graphical User Interface (GUI) main menu. This
is depicted in Figure 4.2. This GUI based main menu then gives access to all elements

of the simulation via the use of drop-down menus.

88

Chapter 4 - Simulation Tool Design

File Pararmeters Simulation

Figure 4.2: Ares GUI based main menu

421 Simulation Parameter Control

The simulation is parameter-driven, in so much as the user can specify all the
required input parameters to the simulation, save these in a parameter file, and then run
the simulation based on the saved parameters. This is indicated in Figure 4.1 as the
parameter file plays an important role in feeding into the Simulation Engine component
all the necessary data required for a 'simulation run'. We define a simulation run as the
execution of the simulation for a defined number of time-steps. We will discuss the
meaning of a time-step in the simulation in a later section, but it is an abstract notion of
time where agents can perform actions. By being able to save the simulation runs in a
permanent file, various parameter files can be saved and utilized later if experimental

trials need to be repeated.

89

Chapter 4 - Simulation Tool Design

The main purpose of the GUI-based main menu is to allow a user to create a
parameter file, set the parameters using other GUI-based forms, and then to initiate the
simulation engine. The 'File' menu item in the main menu form in Figure 4.2 allows the
user to either create a new parameter file, load an existing parameter file, or to exit the
simulation. Thus multiple parameter files can be stored and archived for comparative
analysis of the results and later utilization. The Parameters menu item located on the
main menu form allows the user to either set the parameter values of a new parameter
file, or to modify the parameter values of an existing parameter file. At the time of this
writing, the parameters were divided into three (3) parameter groups which are

accessible from the Parameters menu. These are:

* World Parameters, values on aspects of the world the agents inhabit and operate

in throughout the simulation

* Simulation Parameters, information on the simulation itself such as time-steps
per simulation, number of runs per trial and number of agents per team. The

values in this parameter group essentially drive the simulation engine.

* Agent parameters, information on the agents themselves, such as their initial
location within the simulation. This parameter group also relies on elements of

the Simulation Parameter group.

The drop-down menu for the Parameter menu item on the main menu can be seen
in Figure 4.3. Additionally, from this menu is the option 'Check Parameter Groups'.
This option must be selected before the 'Simulation' menu item can be selected. The
purpose of this option is to do a final check for the presence of all parameter groups and
validate parameter values before the simulation begins. This is a final check against
running the simulation with invalid values which could result in erroneous results

arising from the simulation. See Appendix A.3 for the checkPGUI.java code.

90

Chapter 4 - Simulation Tool Design

RES tion Use
File Simulation Help
Simulation

World

Agents

Figure 4.3: Parameter groups accessible from the parameter menu item

The structure of the parameter file was encoded to allow for future expansion and
the addition of further parameter groups in later research, however as discussed,
currently only three parameter groups are encoded. There are many values encoded
throughout the simulation for expediency but these can be moved into existing or new
parameter groups within the parameter file with relative ease. The structure of the

parameter file is detailed in Figure 4.4

4.2.2 Parameter Groups

The current data stored for each of the parameter groups is described as follows:

4.2.2.1 World Parameter Group

The values kept for the World Parameter Group minimal and currently are just
the size of the world. The world in the simulation is represented by a space with a
width and height. Being a distillation, this simulation is an abstract representation of a
combat scenario, and no other terrain information is required. This allows us to study
the cognitive effects of communication on the agents in isolation to external influences.
It is envisaged that in further research, terrain data can be stored for the world, along

with other world objects representing obstacles, or cover for the agents.

91

Chapter 4 - Simulation Tool Design

byte 0
Version (4 bytes — float)
4 Unused — 96 bytes

100 No. of Parameter Groups (4 bytes — int)
104 Unused — 96 bytes

200 Group name (40 bytes total — UTF encoded string)

This entry repeated for each

240 Group checked flag (1 byte - boolean) parameter group — 50 bytes

241 Group Location (4 bytes — int ... a pointer to g
parameter group in this file per entry
245 Unused — 5 bytes
250 Group name (40 bytes ...
2000 Parameter Group 1 Data Space ‘ Entries for the specific parameter

. groups begin here. Each group
‘ gets 2000 bytes of data space

4000 Parameter Group 2 Data Space

n x 2000 Parameter Group n Data Space

Figure 4.4: Structure of the simulation parameter file

4.2.2.2 Simulation Parameter Group

There are currently six (6) simulation parameters that are stored in the parameter
file. The number of agents in the Red Team, number of agents in the Blue Team, the
number of simulation runs to be iterated when the simulation engine is invoked, and the
number of time-steps per simulation run. There are additionally two check-boxes and
these are used to indicate whether the simulation engine will display a GUI-based
representation of the world while the simulation is progressing, and are log-files to be

kept.

If the GUI Display check-box is selected, then the simulation engine displays a

window showing the agents and their location within the simulated world as the

92

Chapter 4 - Simulation Tool Design

simulation unfolds. This is a useful option when developing a scenario and viewing a
single simulation run, but when a trial of 2000 simulation runs is being conducted it can
be disabled by unchecking this parameter as it will slow down the simulation.
Additionally, when the Generate Log Files option is checked the simulation engine will
record extensive information from the the simulation so the different simulation runs
can be analyzed at a later stage. The number of time-steps in the simulation and the
number of simulation runs are used to drive the simulation engine which will be
discussed in a later section. The Simulation Parameter input form can be seen in Figure
4.5.

-
| £ Simulation Parameters \ J

Simulation Parameters

Number of Red team agents 15 GUI Display
Number of Blue team agents 15 Generate Log Files
Number of Simulation runs 1000
Time-steps per run 1000
OK Cancel

Figure 4.5: Simulation parameter input form

4.2.2.3 Agent Parameter Group

The Agent parameter group is used to store the initial location of all the agents in
the simulation. Unlike either of the other two parameter groups, this parameter group
relies in values set within both the World Parameter group and the Simulation
Parameter group. The Agent Parameter input form is shown in Figure 4.6. When this
form is initially loaded, the World parameters are located and the size of the simulated
world is then used in creating an input form that matches the world size, see Figure 4.6.

By using an input form which matches the simulated world in size, we can then use the

93

Chapter 4 - Simulation Tool Design

mouse pointer to click into the world and locate all the agents in the simulation into
initial positions. These agent locations can then be saved and used when the simulation

engine begins execution.

-

Agent Location Set-up

add Red add Blue
dllocated 15/15 allocated 15/15

Figure 4.6: Agent parameter group input form

As the agents are being located, the Agent Parameter input procedure uses the
values for the number of Red and Blue agents initially set in the Simulation Parameter
input to keep track of how many agents have been located. You cannot allocate more
Red agents or Blue agents than were specified in the Simulation Parameter Group. This
helps to maintain the integrity of the parameter groups, and the simulation engine can
then rely on the error-checking of the parameter entry code. The Java code for the Agent

Parameter entry can be seen in Appendix A.4.

94

Chapter 4 - Simulation Tool Design

4.3 The Simulation Engine

The Simulation Engine Java class is at the heart of the simulation tool used in this
research. All other options on the Main Menu GUI of the simulation are to support the
parameter group entry. When the Simulation option on the main menu is selected, the
simulation tool creates an instance of the simulation engine and invokes it. The overall
architecture of the simulation engine is shown in Figure 4.7, the code of the simulation

engine class is listed in Appendix A.5.

Parameter File

Simulation Engine

/\

Action Manager Sim Manager

N

agents[]

actions[]

e Sim
Action =~ \

Figure 4.7: Architecture of the simulation engine and components

Sim Mind

The simulation engine at its heart consists of an iterative loop which is governed
by the Number of Simulation Runs and the Time Steps per Run parameters entered as
part of the Simulation Parameter Group. This allows for a Simulation trial to be
conducted where the Number of Simulation Runs parameter governs how many
simulations will be conducted as part of the trial. Each simulation will be allowed to

progress through the number of time steps indicated by the Time Steps per Run

95

Chapter 4 - Simulation Tool Design

parameter. This allows the researcher to set up trials with thousands of simulations, each
running for hundreds of time steps which can be run without supervision. This can be a
lengthy process and take a number of hours to complete. Figure 4.8 Shows a screen

capture of such a trial in progress.

Simulation run : 145

Figure 4.8: Screen capture of a simulation trial in progress

The simulation creates a status bar which is updated at each time step showing the
current simulation run along with the current time within the simulation, see Figure 4.8.
If the GUI Display check-box is selected in the Simulation Parameter Group, a visual
display of the simulated world is displayed showing the location of each of the agents
within the world. Each agent is shown as colored dot in the world, and the color of the

agent indicates the team to which it belongs.

96

Chapter 4 - Simulation Tool Design

As indicated in Figure 4.7, the simulation engine additionally creates two other
Java objects, the Sim Manager and the Action Manager objects. The purpose of the Sim
Manager is to control and manage all the Sims throughout the simulation. The term Sim
is used to refer to the agents of the simulation. This is a term borrowed from the suite of
electronics games called Sim City’, where Sims represented simulated entities within
the game. The use of the sim manager alleviates the sim engine from having to deal
with the micro-management of the sims throughout the simulation. The sim manager
provides for controlling the thinking pattern during the simulation as well as handling

sim deaths.

The purpose of the Action Manager is to control and manage all the actions
created by the sims during their 'thinking' phase at each time-step. The processing of the
actions is initiated by the sim engine by calling the action managers processActions()

method, see Appendix A.5. This in turn calls each of the actions process() method.

4.3.1 Sim Manager Architecture

An overview of the architecture of the Sim Manager is shown in Figure 4.7, and
the code listing for this class can be viewed in Appendix A.6. When the sim manager
object is first created, it uses the parameters in the Simulation Parameter Group as well
as the parameters in the Agent Parameter Group to initially create an array called
agents[], large enough to hold an entry for each agent in the simulation. For each agent
in the simulation, the sim manager then creates a sim object. A Sim represents the
physical aspects of a simulated agent. This object contains elements which record all
information necessary on the physical representation of the agent in the world, such as
size, location, health, vision range, direction and others. The code for this class is

provided in Appendix A.7.

The Sim object in turn creates two other object, a Senses object and a SimMind
object. The Senses object represents the senses that the physical Sim has available to it,
currently only vision is implemented and the Sim can use this to 'look’ at the world and
perceive other Sims in proximity to itself. The SimMind object is an abstract Java class

that represents the cognitive aspect of the sim, or the sims mind. The code for the Java

3 Sim City is a product of Maxis, a subsidiary of Electronic Arts corporation.

97

Chapter 4 - Simulation Tool Design

SimMind object can be seen in Appendix A.8. This class is called when it is the
corresponding sims turn to 'think' and decide on a course of action. A representation of

these classes and their association to each other is shown in Figure 4.9.

-

Sim Senses

Sim Mind

Figure 4.9: Representation of the Sim classes which model an
agent in the simulation

A sim object is created for every agent that will be represented in the simulation.
The sim manager then stores each of these sim objects in the agents/] array as indicated
in Figure 4.7. This array is then used within the processing loop of the sim engine when
each sim is given a turn to 'think', and additionally the array is used when updating the

results of the sims actions.

4.3.2 Action Manager Architecture

Similar to the Sim Manager, an overview of the architecture of the Action
Manager can be seen in Figure 4.7. When the Action Manager object is first created it
creates an ArrayList called actions[], which is an extensible Java array capable of
holding action objects. The Java code for this object can be seen in Appendix A.9. This
array is not initially populated, instead the actions are created by the sim objects during
their thinking cycle when they decide on a course of action. The sim objects then store
these action objects in this extensible array for later processing. The code for the Java
action object can be seen in Appendix A.10. The action object is an abstract class, of
which there are a number of implementations, one for each possible action that an agent
can perform. The range of possible actions an agent can perform are discussed in detail
in the next Chapter, Chapter 5 Simulation Results. Each action is related to a sim (as the
originator of the action), and this is indicated by the dotted line between Action and Sim

in Figure 4.7.

98

Chapter 4 - Simulation Tool Design

The Action Manager object has one method called ProcessActions(). This is
called by the simulation engine after every agent has had a chance to think and decide
on an action to perform. When the ProcessActions() method is called, before application
of the actions in the actions/[] array is undertaken, it is first randomized.. This is an
important step often neglected, as it helps remove any bias towards specific agents in
the simulation due to their positioning in the agents/] array. When all actions have been
processed, the actions/] array is cleared in preparation for the next time-step iteration in

the simulation.

4.4 Representation of Time

In distillations such as the one that this research describes, it is possible to model
the agents operating in real-time. By using Object Oriented techniques coupled with
multi-threaded programming such as that available in Java, each agent can be given its

own independent execution path.

Implementing each agent as a separate object and instantiating them as a separate
thread allows us to model real continuous time within the simulation by having the
agents operate under their own control in their own time. However there are practical
limitations to this which must be considered, not the least being the uncertain nature of
the Java Virtual Machine (JVM) in the processing of multi-threaded applications. The
nature of the multi-threading in the Java Virtual Machine has been documented in many
articles, eg. (Lee, 2006) (Darbyshire, 1998) and a problem exists for implementing
agents using a multi-threaded paradigm. A simulation should be constructed to give
stable results despite the implementation of threads, but the Java Virtual Machine
delegates the scheduling of threads to the underlying operating system. Thus a
simulation running on different operating systems may report different results due to a
difference in scheduling algorithms. Additionally, there is no guarantee of the order that
the threads will executed, or even if over long simulation run that there would be a fair
distribution of computer time allocated evenly among the threads. This has the

possibility of skewing the results by an agent performing poorly in such a simulation

99

Chapter 4 - Simulation Tool Design

solely because the underlying thread scheduling did not allocate a fair amount of
Central Processing Unit (CPU) time. Additionally, the complexity of the code and the
uncertainty of scaling such an implementation to large numbers of agents can make this

an uncertain implementation.

Instead, by utilizing a discrete time-step simulation, we can achieve good results
without the uncertainty associated with the JVM's multi-thread processing. With a
discrete-time simulation, time moves forward in the simulation in evenly spaced steps,
with certain defined operations occurring between each step. Such an implementation
has far greater control over the allocation of time and other resources within the
simulation and can assure a fair distribution of time allocated to each agent participating
in the simulation. Within the simulation being constructed for this research, time is an
abstract quantity which is represented by the passage of iteration cycles in the

simulation engine (refer to Figure 4.7).

void runSimulation() {
int currRun, time;
boolean finishedRun;

for (currRun = 1; currRun <= simRuns; currRun++) { // iterate through all the sim runs
// need to reset the simulation each time it re-starts ???
time =1,
finishedRun = false;
bar.setRun(currRun);

while (!finishedRun) { // now perform the current simulation run
bar.setTime(time);
simMan.cognition(); // all agents do their thinking and assemble their actions
actMan.processActions(); // now process all the sims actions
time++;
finishedRun = isFinished(time);

}

Listing 4.1: Simulation engine main loop

Listing 4.1 shows the code for the main iteration loop of the simulation engine.

The complete code for this Java class can be seen in Appendix A.5. As can be seen in

100

Chapter 4 - Simulation Tool Design

Listing 4.1, time is incremented once for each iteration of the main loop. Thus time is an
abstract quantity that does not directly relate to real time, but is used as a measure of
progress through the simulation. However, by progressing through the simulation in this

manner we can better control what each agent can do within these virtual clock ticks.

Each iteration of the simulation engines main loop then represents one time cycle,
or one clock tick. Within this period of abstract time, two object methods are called,
simMan.cognition() and actMan.processActions(). The simMan.cognition() method is
invoked as part of the Sim Manager class, see Appendx A.6. This method is shown in
Listing 4.2, and its function is to scan through the array of agents taking part in the

simulation and call the think() method of the mind object associated with each agent.

void cognition() {
inti;
for (i = 0; i < agents.length; i++) {
agents[i].mind.think();
¥
b

Listing 4.2: Sim Manager cognition loop

The mind object of each agent is an implementation of the Sim Mind abstract
class shown in Figure 4.9 and represents the cognitive aspect of the agent. Each
implementation of Sim Mind has a think() method which is called by the Sim Manager
in Listing 4.2 and this represents the thinking process (or thinking cycle) that each agent
goes through each time cycle. The thinking cycle will be discussed in more detail in the
next section, but during this cycle, each agent senses the world and determines what
action it will undertake. The appropriate action is created as a separate object and stored
in the action[] array. When all agents have determined their action, the simulation
engine then calls the processActions() method of the action manager object (ActMan).
This method processes all the actions created by all the agents by scanning through the
actions[] array and applying all the actions. However the actions/] array is first

randomized to ensure fairness in the simulation.

101

Chapter 4 - Simulation Tool Design

Once the simulation engine performs these two tasks, time is incremented and the
process is repeated until either a specific number of time cycles have passed or all the
agents on one team have been eliminated. If an agent dies as a result of the application
of an action then it is removed from the agents/] array and takes no further part in the

simulation.

4.5 The Thinking Cycle

As indicated in the previous section, the thinking cycle for each agent is initiated
by the simulation engine once for each time cycle. During this loop, each agent has the
think() method of their implementation of the Sim Mind object invoked. This allows the
agent thinking time, in which it perceives the world, determines its state and then
chooses an action to perform. The actions for each agent are stored for later processing
in the simulations actions[] array. In this manner, each agent is then allowed to
complete its thinking cycle before any of the actions are processed, thus not allowing
actions determined by other agents to interfere with the agents thought processes during
this time cycle. Essentially, all agents are able to make their determinations based on the
same world state. All actions are processed after all agents have had their think()

method invoked. This is depicted in Figure 4.10.

| : actions[]
Agent iteration loop ‘ ‘ ‘ ‘ ‘ ‘ ‘

e

Process Actions

,,,,,,,,,,,,,,,,,,,,,,,

Figure 4.10: Agent iteration loop

As previously indicated, the actions[] array is randomized before actions are

applied, performing this task eliminates any inherent unfairness caused by the order of

102

Chapter 4 - Simulation Tool Design

the actions, which in turn is determined by the order that the agents think() method is
invoked. As the actions are processed after all the agents have gone through their
thinking cycle, and the actions are randomized, we can let the simulation invoke all the

agents think() methods in a static order without biasing the simulation.

The agents are divided into two teams, red team and blue team. These are
discussed in length in Chapter 5 Simulation Results. The agents on the blue team
represent the focus of this research and they have been constructed using a
Reinforcement Learning algorithm which governs their actions. In the simulation, these
agents utilize the BlueMind Java class to implement a concrete version of the SimMind
abstract class. The code for the BlueMind Java class is listed in Appendix A.11. The
think() method for the BlueMind class which is invoked by the simulation engine during

each time cycle iteration is shown in Listing 4.3.

public void think() {

scan();
oldState = newState;
oldAction = newAction;
newState = getCurrentState();
reward = stsMon.getReward();
if (reward !'= 0) {
if (reward > 0) sendComms(oldState, oldAction, reward);
b

if (oldState != -1) { // not first time around
g[oldState].values[oldAction] = g[oldState].values[oldAction] +
stepSize * (reward + discountRate*maxActions(q[newState]) -
g[oldState].values[oldAction]);
b

// check comms for team members experience before choosing an action
receiveComms();

newAction = chooseNewAction(newState);
takeAction(newState, newAction);

Listing 4.3: Reinforcement Learning agent think() method

It can be seen that the think() method shown in Listing 4.3 implements the Q-
learning update function from Sutton and Barto (Sutton and Barto, 1998). The update

103

Chapter 4 - Simulation Tool Design

function is discussed in detail in Chapter 2 Literature Review, and shown in Equation

2.1. It is additionally reproduced again below in Equation (4.1):

Q(St, at) — Q(St’ az)+a rt+1+ymaxQ(St+1,a)—Q(S,, az) 4.1)

The Q-learning update function is at the heart of the Q-learning algorithm used by
agents implementing the BuleMind Java class, and its functioning is explained in detail
in Chapter 2 Literature Review and in further detail in Chapter 5 Simulation Results.

The statement from Listing 4.3 implementing the update function is

gfoldState].values[oldAction] =
gfloldState].values[oldAction] + stepSize * (reward + discountRate*maxActions(qg[newState])

In order to implement the Q-Learning update function for a particular agent, the
simulation must be able to determine, the current state the agent is in, as well as the
action the agent has just taken, along with the previous state and actions. This is

accomplished with the variables:

int oldState = -1, newState = -1; // to keep track of the old and new states
int oldAction, newAction; // keeps track of the old and new actions

which can be see in Appendix A.11. The entire algorithm is driven by the data stored in
each agents state-action matrix, represented by O, in the Sutton & Barto Q-Learning
update function (Sutton and Barto, 1998), shown in Equation (4.1) above. The state-
action matrix allows the algorithm to store individual double-precision floating point
numbers for each possible action that can be performed in each of the States that and
agent can find themselves. Thus, O, the state-action matrix, is a representation of the
state-space of the environment for the reinforcement learning algorithms. The state-
space for the research problem is discussed in detail in Chapter 5 Simulation Results.
However, due to the nature of the state-space, not all actions are possible in all states,
thus is is difficult to implement Q and a standard matrix for the purposes of

computation.

104

Chapter 4 - Simulation Tool Design

Q[]
‘ State
/w' besactions: [[[T[[[]]
RLStateAction T vy
object Values: LT

Figure 4.11: Implementation of Q, state-action matrix

Q is implemented as an Array of RLStateAction objects, and each of these objects
in turn uses an actions[] array and a values[] array. The actions[] (not to be confused
with the actions to be performed array represented in Figure 4.10) is an array of strings
to hold the names of the possible actions of the current state. The values[] array holds
the corresponding calculated values of the update function for the individual actions.
This is depicted in Figure 4.11. The code for the RLStateAction object can be seen in
Appendix A.12, along with the corresponding implementation of the attributes as shown
in Figure 4.11. Essentially, the learning of the agent is the accumulation of double
precision floating point values in the values[] array, where each value[i] corresponds to
a specific action action[i] of the current state. The number in value[i] is accumulated
based on the reward received and application of the update function in Equation 1. Thus
the higher the value stored in value[i] the more likely that in a particular state, the

corresponding action action[i] will result in a positive reward.

After the Q-Learning update function has been performed based on the reward
received from the environment, the agent chooses a new action to take through the
method call to chooseNewAction(newState), based on the current state. This will
normally be chosen by selecting the array element from values[] with the highest
recorded value, then taking the corresponding action from the actions[] array. This
action is then recorded by the call to takeAction(newState, newAction). As previously
discussed, the action is not executed immediately but stored in an array for processing

once all agents actions have been determined as shown in Figure 4.10. The thinking

105

Chapter 4 - Simulation Tool Design

cycle for the current agent in this time period then ends and the thinking cycle for the
next agent in the list is invoked. After all agents have completed the thinking cycle, the

accumulated actions are processed and the thinking cycles invoked again.

Within the think() method, communications are are processed, but these will be

discussed in a later section.

4.6 Representation of State

In the previous section, the RLStateAction object identifies itself by implementing
the RLState object as an attribute. See the following line from the RLStateAction object
code from Appendix A.12.

public RLState state; // represents a 'State' an agent can be in

The code for the RLState object can be seen in Appendix A.13. This object
defines seven (7) variables used to partition the State Space for the environment, based
on the agents own health and the types and numbers of other agents in sensory range.
The partitioning of the state space is discussed in detail in Chapter 5 Simulation Results,
and is briefly presented here for completeness. Apart from the health attribute, the other
attributes partitioning the state space are concerned with the agents sensory capability
and the number and ratios of enemy agents to friendly agents within sensory
boundaries. Each agent has a visual sense which enables it to locate all other agents
within a circular area, with itself as the center and the length of the visual range as the

radius.

106

Chapter 4 - Simulation Tool Design

Limit of agents visual sensory range
Friendly agent

Enemy agent ——— > ®

Wounded enemy agent

Figure 4.12: Depiction of agents sensory ranges

The range of an agents visual sense is set as a parameter to the simulation and is
set as a distance which is relatively small compared to the distance from one end of the
agents world to another. This ensures that agents only have a partial view of the world,
which is more realistic for the underlying domain than giving agents a complete view of
the simulated world. Each agent carries a weapon capable of firing one round per
simulated time unit, and the range of this weapon is set to be a quantity less than the
visual range of the agents. Thus the firing range of the agents weapon and the visual
range of an agent are used as radii of two concentric circles for each agent. This is
depicted in Figure 4.12. By using the two sensory ranges, visual range and firing range,

we can utilize some simple metrics to help form the state-space for the agents.
The seven state-space metrics used are:

EiVR Enemy in Visual Range two states 0-No 1-Yes
WiVR Wounded in Visual Range two states 0-No 1 - Yes
EiFR Enemy in Firing Range two states 0-No 1-Yes
WiFR Wounded in Firing Range two states 0-No 1-Yes
health this is the quantized health state... currently has two states
0 (bad - percentage health <50%)
1 (good - percentage health >= 50%)

107

Chapter 4 - Simulation Tool Design

visualEFRatio quantized value for quantity enemy/friendly in visual range
0 - more friendlies
1 - equal amounts
2 - more enemy

firingEFRatio quantized value for quantity enemy/friendly in visual range
0 - more friendlies
1 - equal amounts

2 - more enemy

All of the above state-space metrics except the agents health are based on the
visual and firing ranges. The nature of the simulation is such that these metrics represent
a division of the state-space based on what is important to the agent in order for it to be
able to achieve its goals. Of the seven metrics, two have three possible values, and five
have two possible values, thus allowing for a state-space 288 possible states. However,
we can reduce the state-space size by eliminating inconsistencies between values in the
different state variables. The number of possible state spaces then reduces to 68, thus
the size of the Q array in Figure 4.11 is 68. To aid in the initial set-up of the simulation
each time it is opened, a text file called StateActionMap is maintained that records all
possible states and all possible actions allowed in each state. This text file can be seen in
Appendix B.1. Appendix A.14 shows the RLUil simulation code that is executed each
time the simulation is opened. This code reads and interprets the StateActionMap text
file containing the 68 coded states along with allowable actions for each state and builds
the initial O[] array from scratch for each agent. This code is called from the BlueMind
code listed in Appendix A.11. Figure 4.13 depicts building an agents state-action
matrix, O[], from the StateActionMap.

108

Chapter 4 - Simulation Tool Design

Q[] agenti
‘ State
| s Actions: [LITTTTITS
RLULi B\ ‘ vaues: [[TTTT1])
StateActionMap -
RLStateAction
object

Figure 4.13: Building the agents Q[] array from the StateActionMap

Within each RLStateAction object in Q[] from Figure 4.13, the state is represented
as a collection of the state variables, see RLState Object code listing in Appendix A.13,
or as a 7-tuple in the StateActionMap in Appendix B.1. For instance, the 7-tuple (1110
1 2 0) in the StateActionMap represents a state where the agent has enemy agents in
visual range; has wounded enemy in visual range; has enemy agents in firing range; no
wounded enemy in firing range; has good health; has more enemy agents than friendly

agents in visual range; and has more friendly agents than enemy agents in firing range.

During the thinking cycle, each agent determines its current state by using its
sensory capabilities and calling the scan() method, then calling the getCurrentState()
method. This uses the data from scanning the environment, builds an RLState object and
then compares it to the corresponding states in the O[] array until it finds a match. Once
a match is found, we then have access to the list of possible actions and their
corresponding values for that state. The Q-learning algorithm shown in Equation (4.1)

can then be applied.

4.7 Communication

In the previous sections we discussed the Q-Learning update function executed by
each agent during their thinking cycle. The Q-Learning update function shown in
Equation (4.1) from (Sutton and Barto, 1998), while utilized during the thinking cycle,

is not the only reinforcement learning update being performed by each agent. The aim

109

Chapter 4 - Simulation Tool Design

of this research is to study the effects of communication in a multi-agent simulation
which utilized reinforcement learning. The agents communicate their experiences with
their team members during the simulation and pass on their own learning experiences.
This is discussed in detail in Chapter 5 Simulation Results, and in fact forms the focus
of the research conducted in this thesis. In order for agents to be able to share their
learning experiences and indeed, learn more from the other agents sharing, the agents
need to be able to communicate. Additionally, the Q-Learning update function needs to
be modified in order to not only process an agents rewards, but also take into account
the learning experiences from other agents, to enhance its own learning from these

experiences.

The BlueMind Java object whose code is listed in Appendix A.l1, in reality,
implements an enhanced version of the Q-Learning update function from Equation
(4.1). The BlueMind code implements the multi-agent Q-Learning update function
developed for this research and shown in Equation 5.2. This enhanced update function
is the subject of study in Chapter 5 Simulation Results, and will not be detailed here.
However the BlueMind think() method utilizes communication in order to send and

receive learning events from one agent to another in the same team.

The Q-Learning update function has been moved into a separate method called
ProcessReward() as shown in Listing 4.4. By parameterizing the updating function it
can be called more than once quite easily which is what is required for the enhanced

multi-agent Q-Learning update function.

110

Chapter 4 - Simulation Tool Design

/* This method processes the reward received from the system. Currently
uses equation 6.6 from Sutton & Barto for Q-Learning

required parameters

state - state of system when action was chosen

action - action chosen that leads to this reward

r - the reward gained from State- Action pair

nstate - the new state resulting from the application of the action
*/
private void processReward(int state, int action, double r, int nstate) {

// update the action-value matrix
g[state].values[action] = g[state].values[action] +
stepSize * (r + discountRate*maxActions(q[nstate])
- g[state].values[action]);

Listing 4.4: ProcessReward() method listing

As can be seen in the BlueMind code listing in Appendix A.11, the think() method
attempts to retrieve a reward the agent might have received from the previous time step
based on the action they performed. Then if there was a reward, it performs the

following overall steps:

* send communication of reward to all team members
* process the reward (perform update function)

* check for incoming communication from other agents
* choose a new action to perform

e take that action

The sending and receiving of communication is actually implemented in the
enhanced Q-Learning update function from Equation 5.2. The sendComms() method
builds a tokenized string consisting of the state the agent was in and the action that was
taken to generate the reward, the reward, the new state that resulted from the action and
the identity of the agent that is sending the message. For example, such a message string

generated from a particular simulation run is shown in the line below:

111

Chapter 4 - Simulation Tool Design

State 5 Action 1 Reward -0.5 newState 11 from 24

This message indicates that a reward of (-0.5) was received from agent 24 when
agent 24 performed action / while in state 5. This resulted in agent 24's new state being
11. In this message, the agent number is an index into the simulations agent|] array,
which contains one entry for every agent in the simulation. Having this index gives the
simulation access to the agent object. The state references, // and 5, refer to an index
into an agents Q[] array as shown in Figure 4.13, giving us access to the RLStateAction
object representing that particular state. The action number then, is an index into the
actions| | array of the RLStateAction object in Figure 4.13, which represents the action
taken, giving us in turn, access to the corresponding values[| entry for that state, for
that agent. One of these message strings is sent to every agent in the same team as the

agent that received the reward.

After the think() method processes the reward the agent received from its previous
state-action combination, it then checks for any received communications. Any
communications received will be of the same tokenized string message shown above,
and are processed through the receiveComms() method. Each agent could potentially
have received n-1 messages where n represents the number of agents on the same team.
Each of these messages in turn is deconstructed, and each message contains enough
information to again perform the Q-Learning update function in Listing 4.4 as if the
information was generated by the agent itself. All the messages are processed in this
manner, thus adding the learning experiences of the other agents to the current agents

state-action matrix.

A communication is sent from one agent to another as an action. We have
previously discussed actions and stated that during each iteration of the simulation loop,
representing one simulation time period, an agent can only perform one action.
Although a communication is treated as an action for the purposes of the simulation
coding, it is not regarded as an action as far as the simulation operation is concerned.
This is consistent with the underlying domain as an agent may be performing an action
and possibly communicating at the same time. When an agent constructs a tokenized
message as the one shown above, it is sent to every member of the agents team, and thus

generates n-/ communication actions,where n is the number of agents on the team.

112

Chapter 4 - Simulation Tool Design

These communication actions are stored in the actions[] array to be processed at the
end of the simulation loop after all agents have completed their thinking cycles. This is

depicted in Figure 4.14

actions array

Dmog

agent j

m

agenti message

Elelel
|

ageht m

3
]

i

oo
l

agent n

1 simulation time period delay

Figure 4.14: Communications sent as actions in the simulation

At the end of the simulation loop for the current time period, the actions|] array is
randomized and all actions are processed. As a communication action is found it is
stored in a messages| | array for the agent to which it has been addressed. As many
agents may have had learning experiences and sent tokenized messages, each agent may
have accumulated many messages during the processing of the communication actions.
Although the actions|] array is randomized, the order of the tokenized messages for a
particular agent is irrelevant as they are used to update the agents state-action matrix. In
the next iteration of the simulation loop during its thinking cycle, an agent will then
retrieve each of the messages through the receiveComms() method. After performing the
Q-Learning update function from its own reward, each of the messages will be further

used to update the agents state-action matrix. See Figure 4.14 for a depiction of this.

113

Chapter 4 - Simulation Tool Design

4.8 Implementation of an Agents Weapon

As a final note in discussing the simulation tool it is worthwhile discussing the
nature of the weapon used within the simulation. The purpose of the simulation is to
enable study of a complex adaptive multi-agent system, representing a hostile
environment. It provides for a representation of an underlying domain of a battlefield.
Thus each agent is provided a weapon which is used in the implementation of some of
the actions an agent can perform. The weapon is an abstract weapon which enables an

agent to fire a single shot/ projectile at another agent.

The weapon is simply implemented as a limited range weapon where the firing
range is set at a distance less than the visual range of the agent. This is depicted in
Figure 4.12, and assumes a 360 degree possible limited range. This is consistent with an
agent being able to turn in any direction and fire. If used, the agent can fire a single shot
within each of the actions that involve using the weapon. The projectile assumes a line-
of-sight requirement. That is, an enemy agent can only be targeted if there is a line-of-
sight from the agent performing the action to the agent being targeted. Additionally, the
agent being targeted must be within firing range. During the action selection process,
each agent has access to the distance from itself to all other agents within visual range.
While this information is not directly representative of information available to agents
in the underlying domain, it is not inconsistent as natural perception and training would

give agents an approximate notion of distance.

The targeting of an enemy agent does not guarantee a hit, but a probability
measure is used to determine if a hit is registered. This is based on distance to the
targeted agent and a small random bias, consistent with the underlying domain. During
the processing of the actions at the end of the simulation loop, if a hit is registered
against an agent, its health points are decremented. Each agent begins with 100 health
points and this is decremented by 15 each time a hit is registered against the agent.
When the health gets decremented to a figure below 0, the agent is flagged as dead and
takes no further part in the simulation. No allowance is made for a limitation on the
number of rounds or projectiles that can be fired, so in effect the agent is deemed to

have unlimited ammunition.

114

Chapter 4 - Simulation Tool Design

The weapon can be considered as an abstract implementation of a limited range

rifle.

4.9 Control Group Description

In this section we give a detailed description of the control group of agents,
referred to as the Red Team. The color designation is given on the basis that the color
Red is used to indicate the agents of the control group on the output display, while the
color Blue is used to represent the group of agents governed by the modified

reinforcement learning algorithm which forms the basis of this research.

The agents in the control group represent a highly trained team and the behavior
of this team is governed by a rigid control paradigm consisting of a series of weighted
values for various behavioral aspects. Each agent will have a number of behavior
variables that determine how it will react in any given situation. For example,
willingness to engage; willingness to explore; tendency to obey orders etc. Each of
these behavioral quantities is pre-assigned a weighted value before the simulation
begins, which can be stored and retrieved for further simulation trials. The input screen
for the weighted values affecting the control group behavior is shown in Figure 4.15. As
can be seen in Figure 4.15, most of the weighted values are assigned as numbers
between zero and one, though some values are assigned between negative one and
positive one. These weights are used by the governing algorithm to determine each
agent's behavior at each simulation time step and represent a probability which
determines the agents action in a given situation. This is a typical agent control
paradigm prevalent in such distillations, where the weights can be modified to study the

outcomes, given different types of expected behavior in the agents.

115

Chapter 4 - Simulation Tool Design

[Fadd this Behaviour to Library]

[Load a behaviour from the librany]

Trigger factors:
Time hit behaviour lasts : 1 5.0 Commander factors :
S = Keep Commanderin zenzors 0.0
Fadius of Area of Interest: 0.0 =
- Keep Commander in comms r@Ange : oo
. hiission factors :
[Enzmmiy (g o 10 v Tendancy to obey orders : 1 0.0
. -
IR s — Bo s Tendancy to follow formation : 1 0.0
Friendly fgents: 1 00 |00%
- Temain factors :
o M | Bo s Diezire to maintain current height : 1 0.5
Ve M | o W Degire to reach given height : 1 0.5
. -
Features: oo 0.0% Height to achieve: 0.0
heszages: i oo 0.0% PRI (s ©
tissions: | oo 0.0% Desire to avoid wegetation: 1 0.0
Exploration: | oo 0.0% Desire to avoid water: 1 0.0
o -
Desire to avoid passable obstacles: 0.0
Ayent Definitions: -
Wiounded Threshold 1 0.5 Dezire to avoid impazsabe obstacles: 0.0
ol -
Enemy factors : Explaration considerations @
Close with the enermy: 1 0.0 filingnes s to explore: 0.5
o =
Enemy in weapon range: 1 0.0 Direction to explone: oo
- -
Enemiy in scanner range:] 0.0 Firing considerations :
Close with wounded enermy: 1 0.0 Adtinity to target objectives: 0.5
M -
Wounded enemy in weapon @nge: 1 0.0 Desired range to targat:] 0.5
Wiaunded enemy in scanner range 1 0.0 “ariation in targeting range: 0.5
M -
Meutral factors Command considerations :
Close with neutrals: | [
958 WD nedirEs - D Order subordinates into formation
Meutral in weapon range 0.0 Formation type: Wedge Evs
-
Neutral in scanner range: 1 0.0 $pacing between agents: oo
Close with wounded neutrals: 1 0.0 Importance of formation: oo
| -
Wifounded neutral in weapon @nge: 1 0.0 |
- D Order subordinates to attack my targst
‘Mounded neutral in scanner Ange : i 0.0 Impartance of attack erders: q oo
-
Frigndly factors : Propartion of agents to attack: 1 oo
D Only consider spacing with members of this group -
hinimum friendly spacing: 15.0 D Pass orders given to me on to subordinates
hiaximum friendly spacing: 200.0 Importance of passed order: 1 oo
hnimum woundad fiendly spacing: | 10.0 =
P rti f rts gi rder: oo
maximum wounded friendly spacing: 150.0 PEEILE (CIF EJELE EPHEN Gt -
Dezire to mairtain spacing : 1 oo
-

Figure 4.15: Control Group weighted behavioral input screen

As a further example, a small section of the control group weighted input screen
from Figure 4.15 is shown in Figure 4.16. This section of the input screen shows values
in the range of zero to one that are used to determine the behavior of an agent from the
control group in relation to a number of variables including: proximity of the enemy and

other neutral agents; enemy agents in sensor range; enemy agents in weapons range;

116

Chapter 4 - Simulation Tool Design

proximity of wounded enemy agents; proximity of neutral wounded in weapons and

SEeNSOr range.

Enemy factors :

Cloge with the enemy: J 0.0
Bnemny in weapon Ange: J 0.o
Enemy in scanner Ange: J 0.0
Clase with wounded enemy: J 0.o
Miounded enemy in weapon rAnge: J 0.0
Wiounded enemy in scanner @Ange : J 0.o
Meutral factors :

Cloze with neutrals: J 0.0
Meutral in weapon Ange J 0.0
Meutral in s=canner @Ange: J 0.0
Cloze with wounded neutrals: J 0.0
Wounded neutral in weapon ARgeE: J 0.0
Misunded newtral in scanner rAnge : J 0.0

Figure 4.16.: Control group weighted input screen section

At each time-step in the simulation, agents of the control group determine their
actions based on probabilities determined from the weighted values associated with
behavioral traits from the group (as shown in Figure 4.15). This behavioral
determination is often referred to as instinctual behavior. This is because, unlike the
group of agents controlled by the reinforcement learning algorithm discussed in
previous sections, the control group behavior is pre-determined based on the weighted
values. There is no variation from this behavior as the simulation unfolds and the
control group can be thought of as a highly trained group acting on instinct gained

through training.

The control group agents are not the focus of this research and are thus considered

part of the environment from the perspective of the reinforcement learning agents.

117

Chapter 4 - Simulation Tool Design

410 Simulation Output

In order to study the effects of the agent communication on the outcomes of the
simulation, and indeed to explore the operation of the simulation in detail we need a
mechanism to view the effects of the agents actions on other agents as the simulation
unfolds. The simulation has been constructed so that it has the ability to generate log
files capturing specific data as the simulation progresses. Most of the data is captured
by saving data at the end of each iteration of the simulation loop. The simulation
produces four different output files to enabled a detailed study of the effects of

communication and of the actions of each agent. These are

e crt files: records the state of each team at the end of each iteration of the main
simulation loop

» cre files: this file captures relevant information about a 'Hit', damage inflicted to
another agent as a result of an agent action, gathered during the processing of the
actions| | array after all the agents have completed their thinking cycles

» actval files: records the state of each agents Q[] array at the end of an entire
simulation run

* screen files: shows information displayed to the screen such as rewards found
and messages sent to other agents during the simulation run

The information in these file enables the detailed analysis of the simulation runs

that is provided in Chapter 5 Simulation Results.

A simulation trial will consist of a number simulation runs, and the above four

files are produced automatically for each run. The files are named:

* Xxxxcrt.csv
* XXXCre.csv
* xxxactval.txt
* Xxxscreen.txt

where xxx represents the number of the simulation run within the simulation trial. The

format of the crt file can be seen in the sample below in Listing 4.5. An extract of the

118

Chapter 4 - Simulation Tool Design

file is provided in Appendix B.2. The first column represents the simulation time, the
following columns represent, the team identification number, the total remaining health
points of the team, the remaining number of agents in the team, the opponent team
identification, the remaining health points of the opponent team and the number of

agents left alive in the opponent team.

93 0 1500 15 1 1500 15
94 0 1500 15 1 1500 15
95 0 1500 15 1 1500 15
9% 0 1500 15 1 1500 15
97 0 1500 15 1 1500 15
98 0 1485 15 1 1485 15
99 0 1485 15 1 1485 15
1000 1485 15 1 1485 15
1010 1485 15 1 1485 15
1020 1470 15 1 1485 15
1030 1455 15 1 1440 15
104 0 1440 15 1 1440 15

Listing 4.5: Format of the crt file

The crt file is a good way of tracking the overall performance of a particular team
over the simulation, and this is explored in detail in Chapter 5 Simulation Results. The
format of the cre file can be seen in the sample below in Listing 4.6, and an extract of

the file for a particular simulation run can be seen in Appendix B.3.

The cre file captures information about agent 'Hit' events, when an agent causes

damage to another agent. The structure if the cre file is as follows:

The first column shown is the agent identification of the agent being 'Hit',
followed by its agent team identification, the identification of the attacking agent
(needed to allocate rewards), the attackers team identification, the cause of the damage
(currently only 1 is valid), the amount of damage in health points (usually 15), the
simulation time, followed by the (x,z,y) coordinates of the agent being 'Hit'. The (x,z,))

coordinates are the coordinates of the agent in the simulated world, with the z

119

Chapter 4 - Simulation Tool Design

coordinate always 2.5 in the current simulation.

4 0 11 0 1 15 97 257.8122977 2.5 232.0120181
27 1 4 0 1 15 97 336.7020277 2.5 333.1477133
4 0 28 1 1 15 101 267.2886271 2.5 244.9038441
4 0 27 1 1 15 102 269.6569372 2.5 248.1273682
27 1 15 1 1 15 102 334.5380405 2.5 329.7386828
22 1 4 0 1 15 102 330.3138412 2.5 361.5746663
26 1 29 1 1 15 102 323.7876139 2.5 342.4282157
4 0 26 1 1 15 103 272.0249382 2.5 251.3511192
4 0 27 1 1 15 106 279.1381997 2.5 261.0155633
21 1 19 1 1 15 106 352.3609714 2.5 334.0668851
4 0 28 1 1 15 107 281.5116504 2.5 264.2353042
27 1 15 1 1 15 107 332.3147524 2.5 326.3763337
18 1 4 0 1 15 107 349.0797507 2.5 359.7840282
4 0 29 1 -1 15 110 288.6389437 2.5 273.8894065
4 0 29 1 1 15 110 288.6389437 2.5 273.8894065
4 0 28 1 1 15 111 288.6389437 2.5 273.8894065
4 0 27 1 1 15 111 288.6389437 2.5 273.8894065
8 0 7 0 1 15 111 250.0914752 2.5 264.4895332
11 0 6 0 1 15 111 282.1760662 2.5 258.3343467

Listing 4.6: Format of the cre files

The information in this file is invaluable in allowing a detailed analysis of the

agents actions as the simulation unfolds.

The format of the actval file is shown in Listing 4.7, and an extract of the file for a

particular simulation run is shown in Appendix B.4.

The actval text file is a textual dump of each agent's Q[] array (see Figure 4.13) at
the end of the simulation run. The first line contains the identification number of the
agent, every subsequent line contains the text 'state’, followed by the state number (valid
values are 0 -67)allowing for 68 states. The remaining columns are a dump of the
values|] array for that agent (see Figure 4.13) where each value corresponds to allowed
action for that state. Each state can have a different number of allowed actions so the
remaining column numbers are not consistent. This file should be read in conjunction

with the StateActionMap in Appendix B.1.

120

Chapter 4 - Simulation Tool Design

6

state 0 0.0 0.0

state 1 0.0 0.0

state 2 0.0 0.0 0.0 0.0

state 30.0 0.0 0.0 0.0

state 4 0.0 0.0 0.0 0.0

state 50.0 0.0 0.0 0.0

state 6 0.0 0.0 0.0 0.0

state 70.0 0.0 0.0 0.0

state 8 0.0 0.0 -0.049495000000000004 0.0 0.0 0.0 0.0
state 90.0 0.0 0.0 0.0 0.0 0.0 0.0
state 10 0.0 0.0 0.0 0.0 0.0 0.0 0.0
state 11 0.0 0.0 0.0 0.0 0.0 0.0 0.0
state 120.0 0.0 0.0 0.0 0.0 0.0 0.0
state 13 0.0 0.0 0.0 0.0 0.0 0.0 0.0
state 14 0.0 0.0 0.0 0.0 0.0 0.0 0.0
state 150.0 0.0 0.0 0.0 0.0 0.0 0.0
state 16 0.0 0.0 0.0 0.0 0.0 0.0 0.0
state 17 0.0 -0.095 0.0 0.0 0.0 0.096552154554 0.0
state 18 0.0 0.0 0.0 0.0 0.0 0.0 0.0
state 19 0.0 0.0 0.0 0.0 0.0 0.0 0.0
state 20 0.0 0.0 0.0 0.0 0.0 0.0 0.0
state 21 0.0 0.0 0.0 0.0 0.0 0.0 0.0
state 22 0.0 0.0 0.0 0.0 0.0 0.0 0.0
state 23 0.0 0.0 0.0 0.0 0.0 0.0 0.0
state 24 0.0 0.0 0.0 0.0 0.0 0.0 0.0
state 25 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Listing 4.7: Format of the actval file

The information in this file helps in an analysis of what the agents learned within
each simulation run, and can be used to compare successful agents with non-successful
agents. Finally, the structure of the screen file can be seen in Listing 4.8, and an extract

of the file from a specific simulation run can be viewed in Appendix B.5.

This file is just the screen dump of messages sent to the screen during the
simulation. This is used mainly as a counter check to ensure the simulation is running
correctly and can be compared to the cre and crt files to ensure specific events coincide
at the correct simulation times. An entry is sent to the screen every time an agent
receives a reward, containing the simulation time it received the reward, the agent
identification number, the amount of the reward and the simulation time the reward was

actually generated.

Additionally, every time an agent sends a message to another agent, a slightly

indented screen message is generated consisting of the simulation time, the agent

121

Chapter 4 - Simulation Tool Design

identification of the agent to whom the message is being sent, and the other parameters

which enable the receiving agent to update its state-action matrix, such as the state and

action identifications, the reward, the new state identification and the agent that sent the

message.

102: 28: found reward = 0.5 from time 97.0
103: 15: found reward = 0.5 from time 100.0

103:
103:
103:
103:
103:
103:
103:

15 - State 17
16 - State 17
17 - State 17
18 - State 17
19 - State 17
20 - State 17
21 - State 17

Action 5
Action 5
Action 5
Action 5
Action 5
Action 5
Action 5

Reward 0.5
Reward 0.5
Reward 0.5
Reward 0.5
Reward 0.5
Reward 0.5
Reward 0.5

newState 59
newState 59
newState 59
newState 59
newState 59
newState 59
newState 59

103: 22: found reward = -0.5 from time 97.0
103: 22 - State 17 Action 5 Reward 0.5 newState 59

from 28
from 28
from 28
from 28
from 28
from 28
from 28

from 28

1750.559 28
17 50.5 59 28
17 50.5 59 28
17 50.559 28
17 50.559 28
17 50.5 59 28
17 50.5 59 28

17 50.559 28

Listing 4.8: Format of the screen text file

122

Chapter 5 - Simulation Results

5

SIMULATION RESULTS

There is nothing like looking, if you want to find something. You certainly usually

find something, if you look, but it is not always quite the something you were after.

— J.R.R. Tolkien (The Hobbit)

In the previous chapters we have presented relevant literature and related work as
well as discussed in detail the design and structure of the simulation environment that
was used to generate the results. The experiments were conducted with the original
hypothesis in mind, that is, that allowing agents to communicate in a group situation
where the group shares a common goal will improve the success chances of the group.
While the existing literature well supports this hypothesis, the experiments were
designed to further explore the deeper question of the exact nature of the improvements.
A detailed analysis of the nature of the improvement in group success rates when
communication takes place has not been adequately explored in the literature. The
results presented here allow us to explore the fundamental relationship between agent

communication and their success as a group.

In order to explore this question, a set of experiments were designed around a
military style distillation which represents a battlefield simulation with two opposing
forces. The opposing forces are represented by two groups of agents. In the control
group each of the agents actions are controlled by a standard instinctual agent control
paradigm, typical in such simulations. For each of these agents, the actions at each

simulation step are determined by a set of weights associated with a number of

123

Chapter 5 - Simulation Results

predetermined behaviors. Thus the agents whose actions are based on this control
paradigm would be indicative of a group of highly instinctual entities acting on instinct
rather than cognitive ability. The second group of agents is not controlled by a rigid
control paradigm but rather by a reinforcement learning algorithm whose reward
function is designed to achieve the desired end. This group of agents has no
predetermined actions, and are initially untrained. The successful actions are learned by
the agents using a combination of exploration and e-greedy policies as the simulation
progresses. Initial experiments compare the performance of the control group against
the group whose actions are controlled by the reinforcement learning algorithm (tagged

as the Blue Team). The control group is tagged as the Red Team.

In later experiments, the Blue Team members then communicate with each other
as the simulation progresses and the results are then used to compare the performance of
the Blue Team both with and without communication. Thus we can then observe the
effects of the communication within the Blue Team and analyze the performance during
the simulation and the surviving agents to provide a detailed picture of the deeper
effects of the communication. In the following section we discuss learning events within
the simulation and the nature of the communication that can take place between the

agents.

5.1 Messaging and Learning Events

In order to study the effects of communication we need to consider carefully the
basic nature of the communication that will take place in the system currently under
study. The system which is at the center of this research is basically a military
distillation which is used to study land combat a a conceptual level only. Hence it is a
conceptual level battlefield simulation. As discussed in the previous chapter, Chapter 4,
and in the introduction above, a Blue Team consisting of a group of agents controlled
by a reinforcement learning algorithm is set against a control group in order to study
the effects of the communication. Thus, the nature of the algorithm governing the Blue
Team will determine the nature of the communication and additionally how and when

the communication will take place within the simulation.

124

Chapter 5 - Simulation Results

The type of Reinforcement Learning algorithm chosen to control the Blue Team
agents is a Temporal Difference learning algorithm, specifically, Q-Learning. A
Temporal Difference algorithm was chosen as this class of algorithm is the best
representative of the way a team of actual agents would learn in the underlying domain
which the simulation represents. In this domain, an actual group of combatants cannot
run through a battle then restart thus learning from the experience. They must learn
from experience as the simulation progresses, and either survive or die based on their
performance. Hence the learning is crucial to their survival. The Temporal Difference
algorithms allow an agent to learn from experience as the simulation unfolds. The Q-
Learning algorithm was chosen as it is widely accepted and used in the literature, is
relatively easy to implement and the agent does not need a model of the environment to

begin.

The Q-Learning algorithm implemented is the one detailed in Sutton and Barto (Sutton

and Barto, 1998) with the update function represented by Equation (5.1).

O(s..a,) = Qls,,a)+a

rt+1+ymaxQ(St+1’a)_Q(St’at)] (5.1)

a

The components of the above equation are given in the following explanation. The Q-
Learning update function works by maintaining a 2-dimensional array Q whose size
0(S,A) is determined by S, a set of possible states that an agent can be in, and A, a set
of possible actions an agent can choose from. Thus, O(s,.a,), s,€S and a,€4
represents the state-action value pairs in Q and are decimal numbers used to help
determine the optional action to take when in a particular state. A row in Q represents

all possible action values for a particular state (indicated by the row number). So

maxQ (s, a)

a

represents the maximum state-action value for state §;, which is the

estimate of the best action to take in state §;. Thus in the update equation, Equation

(5.1) above, at time ¢, an agent in state s,€S chooses action ¢,€4 and a reward

125

Chapter 5 - Simulation Results

r,, 1s received from the environment at time 7+/. The update function then updates

the state-action value pair Ols,,a,) according to Equation (5.1). The values o and y

represents the values of the step-size, and discount factors respectively.

The step-size is a small fraction that influences the rate of learning, and if
constant, allows us to effectively track the optimal state-action function Q* as a non-
stationary problem. The discount factor determines the present value of future rewards
and lies in the range 0<y <1 . If y is set at zero (0), then the agent is only concerned
with maximizing the immediate reward, and as it approaches one (1), the agent becomes
more prudent and takes into account future rewards. The algorithm implementing the

update function in Equation (5.1) is shown in Chapter 2 Literature Review.

el |Tee1

Environment ™

Figure 5.1: Traditional reinforcement learning update
cycle (Sutton and Barto, 1998)

Coupled with the Q-Learning update function in Equation (5.1) is the representation of
the reinforcement learning update cycle shown in Figure 5.1. In Figure 5.1 the agent
receives two signals from the environment, the current state of the environment from
the agents perspective (agents state), s,, and the current reward (if any), 7, received from
the environment for the previous action. These signals are received at time # and then
first utilized by the agent using Equation (5.1) to update its state-action matrix Q[],
based on the reward received. The agent then determines an action, a,, to be taken at
time ¢ based on the current state, which will affect the environment, possibly changing
the agents state. In the text time step, the new state and resultant reward for performing
the action in the previous time step are passed to the agent for the next iteration of the

update cycle. This cycles at each time step while the simulation continues.

126

Chapter 5 - Simulation Results

It should be noted that in Figure 5.1, the state and reward signals are shown as
originating from the environment. In reinforcement learning these signals are
considered external from the agent for convenience of explanation. However, in reality,
simulation systems are often constructed with the signals generated by some 'sensing'
component within the agent itself. This is not inconsistent with the theory as the agents
sensing component will perceive the state of the agent and its reward by observing the
effects on the environment of the agent's actions. This can be considered external to that
component of the agent which utilizes the reinforcement learning functions to update

the state-action matrix and to choose an optimal action.

The above discussion describes the operation of a single reinforcement-learning
agent learning from interaction with the environment. This research is concerned with a
team of such agents that will communicate their successes and failures to each other to
possibly enhance the learning and thus success of the group as a whole. Thus a
fundamental question at this point becomes, 'How will these agents communicate such
knowledge to their team members?'. Once we determine how the agents will
communicate, then we can then develop a formalism as a prelude to devising a
modification for Equation (5.1) to take into account multiple updates to the state-action

matrix.

In a discrete-time simulation using the traditional model of reinforcement learning
and a single agent, the update cycle shown in Figure 5.1 is executed once at each
simulated time step. We define a learning event as a single update to an agent's action
value matrix. Thus in the traditional update cycle the agent will experience at most one
learning event per time unit. Given the relatively simple nature of the learning that takes
place with the Q-learning update function in Equation (5.1), to achieve cooperation in
the learning process we can allow the agents to explicitly share their learning
experiences (or learning events). A learning event is communicated in a message from
one agent to another in the simulation. In order for an agent to process the learning
event contained in a message, it needs to know not only the reward that was received by
the other agent from the simulation, but this reward must be placed in context by the
corresponding state-action pair that generated it, along with the resultant state. Thus, the

structure of the messages required to allow a group of agents to share learning

127

Chapter 5 - Simulation Results

experiences is a 4-tuple of the form (s,a,r,s'). Where s€S (set of states), a€A,

(set of actions for state S), 7 is the reward received and s'€S is the resulting state.

These messages carry enough information about learning events from other group
members for the agent to be able to update its own state-action matrix accordingly, via
the extra learning events experienced by the other agents. These secondary learning
events will be slightly older than an agent’s own, but will be only one time step behind.
Thus, the age of the extra input signal should not be a significant concern. More
formally, we can denote the set of agents in a multi-agent system by X, then a multi-

agent system with » agents is given by
X=[x,,%,5,..%,]

Now, if we assume that communication in the simulation is a function of discrete

time, we can denote a message between two agents x; and x; attime ¢ as

mi,_,(t):x,.—> X;

(where each m,,_,(t) is of the form (s,a,r,s’) as described above). The total

communication for X at time ¢ is then given by

M(t):{mi,j(t)}

and the messages received by agent x; at time ¢ is denoted by

128

Chapter 5 - Simulation Results

5.2 Model for Co-operative Learning

There are a number of ways for agents to cooperate in trying to achieve a common
goal, and one of these is a form of explicit cooperation, where the agents share their
learning events with each other. In the previous section we described the elements (or
form) of a message which can be used to share a learning event. We can now
consolidate this information to develop a new form of Equation (5.1) to be used in a
multi-agent discrete-time simulation utilizing Q-Learning as the agents' underlying
learning algorithm. In this type of modified simulation, each agent x, € X has at
most one learning event per discrete time step. Thus at time z, each x; € X will
receive its reward 7, for the action @, ; that it performed at time #-/, resulting in the

new state s, at time ¢. Each of the x; € X will then send this learning event in a

message of the form (s,_1,a,_,,r,,s',) at time ¢ to all other agents, that is, a set of

messages {mi,j<t)}j:1..4n,i¢j'

At time t+/, agent x; will update its state-action matrix in the Q-learning
algorithm based on the reward received from the environment at time 7+/. Additionally
agent x; will utilize the messages Mj(l)={m,-,j(1)},-:1_"",#]- S M (t) sent by the other
n-1 agents to further incorporate these external learning events into its own state-action
matrix. In this way, each x; € X will share its fellow agents' learning experiences.
The input signal to the agent depicted in Figure 5.1, now becomes more complex, and

can be depicted in Figure 5.2

M, (t+1) >
Stes f Xj
rm o
By q
E'It+1 Fevq
Environment *

Figure 5.2: Updated reinforcement learning input signal

129

Chapter 5 - Simulation Results

This input signal in the revised reinforcement learning update cycle is now complicated
by Mj(t-i-l) . Each of the messages in Mj(t+1) are of the form (s,_,,a,_,,r,,s',)
since the message was sent at time ¢, generated from actions taken in time 7~/ and
received at times+7. Since the agents X ={x,,X,,...x,] are homogeneous, the
message does not contain the sending agent. This information may be useful to record

if trust issues become important and would be a relatively simple matter to update the
message to a form (x;,8,_,a,,,r,s'). For simplicity purposes, the sending agent

is not utilized and transmitted in this research.

To accommodate the modified input signal shown in Figure 5.2, we need to
modify the standard Q-learning update function presented in Equation (5.1). The new

model for cooperative learning developed for this research is given in Equation (5.2).
This new update function additionally processes all the (s, ,.a, ,,7,_,8',_})
messages generated for each m,»,‘,(t JeM _,(t) representing all learning events taking

place for x; attime #-/.

Q(St’at) — Q(St’at>+a

r,+1+ymaxQ(st+1 ’ at+1>_Q(StJ at)]

Vom, (t—1)eM (1) (5.2)
Q(Sz—z’az—z) - Q(Sz—z’az—z)"'
a rt_l—I—ymaxQ(s ,t—l’at—l)_Q(St—2’at—2)]

a

Equation (5.2) processes the agent's own reward received at time ¢ for the action it

chose to perform at time ¢-/, as well as essentially applying Equation (5.1) for each

(S-2.@,5,7,_1,8",_) messagein M (t).

There are a couple of points to note about Equation (5.2). First, It can be noted

from the messages in M j(t) , that the actions that generated the rewards occurred two

130

Chapter 5 - Simulation Results

discrete time steps prior to the time step in which the corresponding learning event is
being used to update the agents state-action matrix. Thus the learning events shared by
the team of agents are older learning events, but only by two discrete time steps. It is not
anticipated that the age of the learning events (given that it is only two time-steps
behind) would be any significant problem. An older action may have resulted in a new
state that is no longer relevant in the current time step, nonetheless, the action was valid
and generated a reward that the agent can still assimilate into its state-action matrix.
Second, as the actions by all the agents are randomized before being applied, (see
Previous Chapter), it is impossible to receive the messages from all other agents in the
order that the actions were applied and hence result in the rewards that were given. Thus
it is unknown whether processing the learning events in the actual order they occurred
would make any difference. However, it should be noted that if we considered a real
scenario in the underlying domain involving human agents, it would also be highly
unlikely that incoming messages would be received in the exact order that the learning
events took place. Thus the simulation utilizing Equation (5.2) is in all likelihood closer

to reality.

By applying each of the learning events contained in M _,(t) to its own state-
action matrix through the update function in Equation (5.2), each x; is incorporating

the learning events of its team members. Thus at each time-step, an agent can

potentially increase its learning rate based on the team learning.

The learning rate / (x j) of an agent X; can be determined by the number of
learning events e, that agent x; experiences per discrete time unit 7. The learning rate

for agent x; is then given by the function
e
) =7

For the group of agents X =(x,,x,,...x,] described above, the learning rate then

becomes:

131

Chapter 5 - Simulation Results

In the Q-learning algorithm described in Equation (5.1), each agent receives a
single reward from the environment at time #+/ after all actions have been processed at

time 7. This reduces the learning rate per agent to a maximum of one learning event per

time unit. So the learning rate for an agent x; is then bounded by the simple function
[(xj) =1

Thus, for the group of Q-learning agents X in the simulation, the learning rate of

the group is bounded by the linear function:

The modified Q-learning algorithm described in Equation (5.2) lets the individual
agents share their learning experiences with the rest of the group, hence increasing the
learning rate. If each of the n agents experiences a single learning event at time ¢ (the
maximum), this can be passed on to each of the other n-/ agents in the group at time
t+1. The maximum learning rate for the group at time #+/ would then occur when each

of x, agent's experiences another learning event, as well as receiving and processing

information from the other n-/ agents contained in M _j(t +1). In such a case, the

group learning rate is bounded by the function:
I(X)=n+n(n-1)=n
This maximum learning rate assumes that the communication of the Q-learning
agents is global and not restricted by range. If range restrictions apply, then the above

maximum rate is conditional upon the proximity of agents to each other during the

simulation, and would be reduced accordingly.

132

Chapter 5 - Simulation Results

5.2.1 Task Performance Gains

We know from the literature that allowing agents in a multi-agent system to
communicate during the learning process will increase the task performance of the
group as a whole. Additionally we know from many of the research papers that
communication in a multi-agent systems helps accelerate the learning process, for
example (Darbyshire and Wang, 2003, Kelly and Keating, 1998). Thus we know the
cause-effect relationship, but what still seems unsatisfactorily documented in the
literature is a definitive answer of where the changes due to communication specifically
effect either the agents or the agent system as a whole. Does the communication affect
the metrics of the agent system which accounts for the increased performance, or does
this actually have an effect on the agents themselves, or both? The exact mechanics of
the communication effects requires investigation. A detailed knowledge of these effects
on the agents themselves in such an environment, might help to provide avenues for
further exploration of utilizing communication for group learning. These are some of

the questions we investigate in the following section.

5.3 Simulation Description

The architecture of the simulation is basically a non-supervised multi-agent
system representing a military distillation with two opposing teams who combat for
survival. This simulation is designed to study combat at the conceptual level. The
simulation world is represented by W, a continuous world where agent movement is
determined by a vector consisting of angle and distance (based on a speed variable). The
simulation is modeling a specific problem and utilizes a finite state and action space.
Time is discrete, and for each time step r € IN, each agent observes the world,
determines its current state, and chooses an appropriate action to perform. All actions
are performed at the end of each time step, with the sequenced randomized before

execution to prevent bias.

There are two groups of agents operating within W. Y and X.
Y = {y,,, ...y, represents the control group (Red Team), with the behavior of

each ¥, € Y governed by a rigid control paradigm consisting of a series of weighted

133

Chapter 5 - Simulation Results

values for various behavioral aspects. That is, each of the y; will have defined a
number of behavior variables that determine how it will react in any given situation:
willingness to engage; willingness to explore; tendency to obey orders etc. Each of
these behavior variables is pre-assigned a weighted value, usually between zero and
one. These weights are used by the governing algorithm to determine each agent's
behavior at each simulation time step. This is a typical agent control paradigm prevalent
in such distillations, where the weights can be modified to study the outcomes given
different types of expected behavior in the agents. Agents within this group represent a
highly trained team, but are not the focus of this research and are thus considered part of

the environment for the remaining agents.

The group of agents X ={x,,X,,...x,| is the focus of this research (Blue Team),

and each x;, € X is controlled by the modified reinforcement learning algorithm

given in Equation (5.2).

5.3.1 Initial State Space

The choice of state space to facilitate the reinforcement learning is always
difficult, and the states and actions will vary greatly from application to application. The
construction of an adequate state space for a particular reinforcement-learning problem
is not adequately dealt with in the literature. Indeed, it has been mentioned that
construction of a good state space is more art than science (Sutton and Barto, 1998).
However, the states are the basis of making choices for which actions to choose and
how the state-space is partitioned can greatly affect the performance. The states should
be chosen to give the agent enough information from the environment to make
reasonable choices in order to maximize the reward. Thus, the choice of states should
reflect what is of ‘interest’ to the agent for pursuing the maximization of the reward

function.

The agent environment detailed previously is continuous and doesn’t rely on a
grid representation for the world, but rather a coordinate system with vectors for
representing direction and speed. Thus, the initial state space for the Q-learning agents

constructed quantizes and abstracts the points of interest for these agents, and is

134

Chapter 5 - Simulation Results

represented by four integer variables used to determine the possible state of each agent.
These variables and their possible values are shown in Table 5.1. The finite state space
S is determined by a number of discrete variables and their possible range of values.
Each of the variables targets an attribute that will be of interest to the agent as it pursues
its goal. Each agent can be in one of 36 possible states based on the possible

permutations of the state space variables given the values shown in Table 5.1.

Table 5.1: Initial state space variables

attribute description possible values
agents health 0—bad 1 - good
Average distance to enemy 0 —near, 1 - far

ratio of enemy to friendly in visual range 0 — more friendly

ratio of enemy to friendly in firing range | — equal

2 — more enemy

The justification for the initial state space lies in the fact that the state space must
allow the agents to discern what may be interesting to them as they pursue their reward.
The reward function (discussed in Section 5.3.2 Reward Function) provides stimulus
for the agents behavior as they receive rewards through their actions, but the state space
provides them with information that helps them to choose actions to maximize the
reward. Since the reward function for these agents is based simply on positive rewards
for reducing the health of enemy agents, and negative rewards for having their own
health points reduced, the state space must be geared to helping agents discern what
might be interesting in achieving positive rewards. An important piece of information to
an agent is their own health state. If it is high, more risky actions may achieve higher
positive rewards, yet if it is low, more prudent actions might yield better results in the

long run. The distance to the enemy would be of interest to an agent, as the agent can

135

Chapter 5 - Simulation Results

then elect to move closer to possibly pursue a positive reward in future, or increase this
distance if the agents' health is poor. Additionally the ratio of enemy agents to friendly
agents in the agents' immediate area could be useful in leading to positive rewards. If
the value 1s 0, then an agent can move closer to the enemy with a greater chance of
remaining alive while possibly gaining a positive reward. If the value is 2, then there is

more likelihood of negative rewards if moving closer.

Each of the agents in both teams X and Y, were initialized with 100 health points,
and health points were deducted for a perceived wounding, or set to zero for a kill. The
agents health state space variable was partitioned into two intervals and allocated the

following values:

0 health < 50

agents health=
1 health = 50

The average distance of the agent to all visible enemy agents is calculated and

partitioned into two intervals and allocated the following values:

0 avgdist < firing range distance

enemy average distance = : i :
1 avgdist > firing range distance

The next two state space variables are based on ratios between the perceived
enemy agents and the perceived team members within certain ranges and each can have

three possible values. These are set as follows:

more team members
equal amounts
more enemies

visual range ratio=

o — O

more team members
equal amounts
more enemies

firing range ratio=

N — O

136

Chapter 5 - Simulation Results

Thus each state is represented by a 4-tuple of the form

< agentHealth, avgEnemyDist, visualRangeRatio, firingRangeRatio>

There is one assumption with the state space variables, and this is that the firing
range is less than the visual range. However this does not preclude the existence of any
possible permutations of the state space variables. It is possible for an agent to be in any

one of the 36 possible states.

5.3.2 Reward Function

The reward function develops the agent behavior, but is dependent on the state
space and available actions. The state space must allow the agent to discern or partition
itself into states that are interesting in the pursuit of its reward. The available actions
must allow the agent the possibility of attaining its reward. Given the combative nature
of the simulation, the objective of each team is to engage in combat with the opposing
team until one team is eliminated. The reward function for the Q-learning team must be
designed to elicit this behavior. The simple reward structure used in this simulation to

develop this behavior is illustrated in Table 5.2.

Table 5.2: Reward function for the simulation

reward value action
0.5 damage to enemy
r (sua) = -0.5 receives damage
1.0 kills enemy
0 otherwise

While the reward does ultimately influence what we want the agents to learn,
making it too complex could elicit behavior in the agents that otherwise might not arise
as an emergent property of the simulation. Thus the structure of the reward function was

kept at an extremely simple level.

137

Chapter 5 - Simulation Results

5.3.3 Initial Action List

The actions represent the available choices which can be made by the agent at
each time-step, and should enable the agent to perform some task based around
receiving some reward from the reward function discussed in the previous section.. For
each state, an agent has a choice of six possible actions. A initial set of actions that

were made available to the Q-learning agents is shown in

Table 5.3: Initial set of possible actions

Possible Actions

Do nothing

Move away from enemy locus

Move to closest enemy agent

Fire at the closest enemy agent

Move to and fire at closest enemy agent

explore

Not all actions are relevant for all states. Even though the choice of initial states
discussed above uses ratios of enemy to friendly agents and not specific numbers, there
will be times when there are no enemy agents in visual range. Thus the actions
involving moving to or from the enemy and firing at the enemy would not be applicable
in these circumstances. This does in itself suggest that a refinement of the actions may

be needed, however some initial trials were undertaken with these actions.

At each time step, the Q-learning algorithm will choose an action to perform from
the list of possible actions for its current state. The action is chosen using a simple ¢-
greedy action selection. That is, the action will be chosen to maximize the expected
reward, but will randomly choose an action based on a probability factor of €. Thus, we
can try to balance reward maximization with exploration by choosing other actions.

This factor was set to 0.1 for the initial trials.

138

Chapter 5 - Simulation Results

5.4 Experimental Design

While the scope of this research is to study the effects of communication on
learning rates, this section describes the framework of the experiments conducted, and
the design of the Q-learning agents without communication abilities. Before a study
can be conducted on the effects of communication between Q-learning agents, a
benchmark needs to be established with non-communicating Q-learning agents, against
which we can then measure the effects of communication. Following the initial
benchmark trial, further simulation 'runs' were conducted, each designed to test either
full communication of all learning events, or partial communication of different types of
learning events.. Each of the simulation trials consists of 2000 simulation runs of the
distillation simulation software described in the previous chapter. Two thousand (2000)
simulation runs was deemed enough in which to discern dominant trends for each of the

trials conducted.

Each simulation run consisted of two mutually hostile teams of agents, ‘Red’ and
‘Blue’ teams respectively, and each team contains 15 agents. Red team agents are
controlled by the standard instinctual agent control paradigm as previously discussed,
and the Blue team agents implement the Q-Learning algorithm from Equation (5.1) as
described in previous sections. Both teams were given the same parameters: 100 health
points per agent (1500 per team); visual capabilities; movement capabilities; and
weapon capabilities. Each agent carries the equivalent of a single projectile weapon
capable of firing one directed rounded per simulated time unit. Each of the teams are
initialized at opposite diagonal corners of a 500 x 500 2-dimensional world, with the Q-
learning agents in the lower right corner and initially set in the direction as shown in
Figure 5.3. The world is not represented as a discrete grid but is represented as a

continuous 2-D space.

139

Chapter 5 - Simulation Results

Figure 5.3: Agent team initialization

Both of the agent teams were initially set in the directions as shown in Figure 5.3.
This does not bias the simulation at all due to the structure of the reward function. For
the Q-learning team (b/ue team), no learning events are generated until the agents come
into visual range of each other. Once this occurs, the reinforcement learning algorithm
then takes over and the Q-learning team begins to learn as learning events are generated.
The Instinctual team (red team) agents will then begin to be governed by their built-in
behavior patterns. The agents have limited vision and can only observe a portion of the
world at any one time, thus we have the equivalent of a Partially Observable Markov

Decision Process.

The simulation itself uses a discrete time-step algorithm, and at each time step,
each agent, regardless of the team, enters a ‘thinking cycle’, where it perceives the
world and decides on a course of action. Once the action is decided, the agent stores its
proposed action in a system queue. In this way, each of the agents can decide their

course of action based on the current ‘snapshot’ of the world at the current time-step.

140

Chapter 5 - Simulation Results

Once all the actions have been recorded, the simulation processes them, before starting
over again with a new ‘thinking-cycle’ at the next time-step. Each of the 2000 runs in
an experimental trial executes for at most 1000 time-steps. This is long enough for the
final outcome of the simulation run to be decided. Each of the 2000 runs was then

averaged to produce the averages for the specified trial.

The two constants o and y in both Equation (5.1) and Equation (5.2) above
represent the step-size and the discount factor respectively. The step-size is a small
fraction that influences the rate of learning, and if constant, allows us to effectively
track the optimal state-action function Q* as a non-stationary problem. The discount
factor determines the present value of future rewards and lies in the range 0 <y <1. Ify
is set at 0, then the agent is only concerned with maximizing the immediate reward, and
as it approaches 1, the agent becomes more prudent and takes into account future
rewards. For all trials utilizing both Equation (5.1) and Equation (5.2), the values of the
constants used in the simulations are shown in Table 5.4. Minor variations to these

values made no significant difference to the outcomes of the trials.

Table 5.4 List of parameters and their values for Simulation trials

parameter description value
a Step-size 0.1
Y Discount factor 0.1
€ E-greedy randomness probability 0.08

The constant € shown in Table 5.4 is use in an € -greedy policy and represents
the probability that a random action will be chosen instead of one that maximizes the
value of the reward. In this case the value of € is set at 0.8. It has to be large enough
to be useful in allowing untried actions a chance at being tried, yet in the limited time-

steps the simulation has to maximize the reward it cannot be too large.

141

Chapter 5 - Simulation Results

5.5 Initial Benchmark Results

The initial simulation trial was used to establish a benchmark for the latter trials.
The purpose of the benchmark trial was to utilize the original Q-learning function
shown in Equation (5.1) and thus establish the benchmark for the Q-learning team. This
provides a measure for which all trials utilizing communication, and thus the modified
Q-learning function in Equation (5.2) can then be compared. The initial question was
now, 'how well would the Q-Learning agents do in the simulated combat' against a

similar team of instinctual agents, representing a highly trained team.

The simple goal of the exercise was to set the two teams against each other to
gauge the success of the reinforcement learning in this scenario. This will serve two
purposes, to give an idea of the possible success of the Q-Learning team, and to provide
a benchmark. One way to measure the success or effectiveness of the Q-learning
algorithm in this environment is to compare the relative damage caused by each team
against the other over time. Figure 5.4 shows a plot of the damage caused over time by
each of the two teams. This plot represents the average taken over all runs in the trial,
as previously indicated. The damage (vertical axis), is represented by the reducing
health of the two teams over time as the combat progresses. Each team member begins
with 100 health points, or a total of 1500 per team. The lower, blue plot represents the
Q-Learning agent team (blue team), while the red (upper) plot represents the instinctual
agents team (red team). The standard deviation value O for the average blue plot line

in Figure 5.4 is 11.02.

142

Chapter 5 - Simulation Results

1400
G
r 1200
0
u 1000
P
800 +-
H
e §00 -
a Red Team
I 400
; Blue Team —
200
o= . _
u T T T T T T T T T
0 100 200 300 400 500 600 700 800 900 1000
Time

Figure 5.4: Plot of damage over time for initial benchmark trial

As can be seen from Figure 5.4, the Q-learning agent team does significantly
worse, than the Instinctual agents, winning a decisive victory in only 3.2% of
encounters (runs for the trial). A decisive victory is classed as an encounter when all
members of one team are killed. While this result was expected, a more detailed
analysis can provide some insights to help in addressing possible areas of enhancement
to the algorithm. Also, learning did not really improve much beyond the 400 simulated

time step mark. These results tend to back up similar findings in (Gugel et al., 2001).

As the benchmark trial consisted of 1000 simulated time-steps in duration, each of
the Q-Learning agents has a potential to perform 1000 iterations of the learning cycle
shown in Figure 5.1. However, as shown in Figure 5.4, on average, the initial contact
between the two groups (in terms of first damage inflicted) takes place at approx time-
step 130, and lasts for approximately another 300 time-steps. As the reward structure
only allocates rewards based on damage inflicted or received, no learning takes place
when the two groups are not in conflict. So while the trials were 1000 time-steps in
duration, effectively all the learning by the agents must take place during a short burst
of activity. A more holistic understanding can be gained by a detailed analysis of some

of the individual trials.

143

Chapter 5 - Simulation Results

1555 -

1505 e = —
G - - . i s Red Team
r 1455 888 R =
0 ‘._‘ ot - —

m— .
y 1905 o -
TR i
p 1355 i
{my
y 1305 =
Blue Team |

e 1255 . _
a P
| 1205 BE:’
U 1155 e
h)

1105 -

1055 (g

215 220 225 230 235 Time 240 245 250 255

Figure 5.5: Initial benchmark trial individual simulation run analysis

A plot of the activity in a typical simulation run for the first 35 simulation time-
steps after initial contact is shown in Figure 5.5. Again, the horizontal axis represents
the simulation time, while the vertical axis represents decreasing team health. The
lower blue plot-line represents the Q-learning team, and the upper red plot-line
represents the red team. This chart only displays a portion of the trials activity for
brevity. As indicated, after first contact at time 217, the first successful action of a Q-
Learning agent doesn’t occur till time 228, indicated by the circled plot in Figure 5.5 at
this time. This would represent a positive outcome for the agent involved, and reinforce
the appropriate action-state pair. The circled points on the Q-Learning agent graph
represent points in time that different agents receive a positive reinforcement from the

simulation.

The directed arrows on both plot-lines in Figure 5.5 represent points in time when
the opposing team has killed an agent on the team indicated. Thus, in Figure 5.5, at
time 250, three blue agents have been killed to one red agent. As the time progresses,
more Q-Learning agents receive positive rewards, with 6 different agents learning
successful action-state pairs between times 244 and 250. But as the simulation trial

progresses, the learning agents are continually taking damage as they progress through

144

Chapter 5 - Simulation Results

the learning iterations, which would tend to negatively re-enforce some of the actions
they have just come to learn. So while the agents are learning, the rate of learning is not
fast enough to compensate for the negative reinforcement, thus the outcome indicated in

Figure 5.4.

Inspection of the state-action matrices for the Q-Learning agents killed early
confirms this. The state-action matrix for all 3 learning agents killed in Figure 5.5 show
all values (except one) either zero or negative. Typically for all agents killed, the state-
action matrices only show activity in very few of the 36 possible states over all the
simulation runs. This indicates that perhaps the state space variables used to determine
possible states needed refinement (or expansion). Before testing the communication to
increase learning rates, a refinement of the state space variables and possible actions

were undertaken..

5.6 State Space Variables and Actions Refinement

The original state space variables and possible agent actions were revisited with a
view to further partitioning the state space into a more refined group of states. Along
with an expanded set of actions, this could po