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Abstract 
 

The goal of wetland assessment is to identify and quantify the condition of wetlands, 

taking into account the presences of threats likely to impact the services and functions 

the wetlands provide.  There are a wide variety of methods available for undertaking 

wetland assessment; most rely on data collection across a broad range of attributes at 

wetland sites to gauge wetland condition. This thesis examines the practice of wetland 

assessment in West Gippsland, south-eastern Australia and it investigates the 

contribution, and potencies, of component biological, chemical, hydrological and 

physical data inputs, individually and collectively, to the identification of high social, 

economic and environmental value wetlands in the region. A systematic analysis 

using statistics and data-mining techniques was undertaken of the inventory data for 

163 representative wetlands to discover pertinent relationships between the values of 

different site characteristics and the classification of high-value wetlands.  Binary 

logistic regression and neural networks were used to build models mimicking the 

wetland assessment process, and an assessment of their abilities to do so was 

conducted.  The influences of two wetland classification schemes: Corrick and 

Norman (1980) scheme, and Ecological Vegetation Classes (EVCs), on the naming of 

high-value wetlands were also investigated. 

 

Results showed that binary logistic regression models and neural networks were 

capable of correctly classifying over 90% high-value wetland assessments using 

absence/presence data for a minimal set of inputs.  The major contributions of this 

research are the identification of the most suitable inputs for assessments of wetland 

economic, social and environmental values in West Gippsland and support for the use 

of neural networks to predict wetland assessments.  Additionally, this research found 

little evidence that either classification scheme impacted significantly the case study 

assessments. The research has demonstrated possible reductions in effort and 

expenditure in undertaking wetland assessments through the identification of salient 

input features with high predictive potency.  Cognisant of these benefits, management 

can streamline future inventory collections and better target assessment and 

monitoring efforts.    

ii 
 



Student Declaration 
 

I, Anne Therese Venables, declare that the PhD thesis entitled Ecological and 

biological modeling for natural resource management: Applications to wetland 

classification and evaluation is no more than 100,000 words in length including 

quotes and exclusive of tables, figures, appendices, bibliography, references and 

footnotes.  This thesis contains no material that has been submitted previously, in 

whole or in part, for the award of any other academic degree or diploma.  Except 

where otherwise indicated, this thesis is my own work. 

 

 

 

Anne Therese Venables 

7 July 2014 

  

iii 
 



Acknowledgements 
 

First, and foremost, my heartfelt thanks go to my supervisor, Professor Paul Boon for 

his continual encouragement and eternal patience.  Throughout my research, his 

friendly guidance and thought-provoking suggestions have always been delivered 

enthusiastically and in good humour. 

 

My thanks go to Michelle Dickson of the West Gippsland Catchment Management 

Authority for her friendly and professional assistance with descriptions of wetlands 

assessment and in providing access to the dataset upon this research is based.  

 

Additionally, I wish to thank my friends Grace Tan and Iwona Miliszewska for their 

encouragement in my research efforts. 

 

Finally, the backing of my family has been paramount in my seeing this thesis 

through to completion.  Thank you to Gary, my husband of thirty-nine years, for his 

unerring support of all my academic pursuits during our time together.  

 

 

Anne 
 
  

iv 
 



Table of Contents 
 
Student Declaration iii 

Acknowledgements iv 

Table of Contents v 

List of Figures x 

List of Tables xii 

 

 

Chapter 1  

Objectives and scope 2 

1.1 Outline of thesis 3 

1.2 Overview of thesis 6 

 

 

Chapter 2  

Literature review and background information 8 

2.1 An introduction to wetlands and their place in human society 9 

2.2 Wetland definitions and their application to the Australian situation 12 

2.2.1 International definitions 12 

2.2.2 An Australian perspective on wetlands 15 

2.2.3 Victorian wetlands and their classification 17 

2.3 Scale of wetland loss in south-eastern Australia 21 

2.4 Wetland value assessments and ranking approaches 23 

2.4.1 Inventory 24 

2.4.2 Assessment 26 

2.4.3 Ranking procedures and decision support tools 29 

2.5 Aims of this project 32 

  

v 
 



Chapter 3  

Background to the WGCMA case study 37 

3.1 West Gippsland and its wetlands 38 

3.1.1 The WGCMA Wetlands Plan 41 

3.2 The WGCMA 2006 wetland assessment 42 

3.3 WGCMA wetland assessment process 45 

3.3.1 Assets-based management approach for wetland evaluation 45 

3.3.2 WGCMA process for evaluating wetlands 47 

3.3.3 Data collection protocols 52 

3.4 Findings of the WGCMA wetland assessment 58 

3.5 Critique of the WGCMA assessment process 67 

 

 

Chapter 4  

Univariate statistical analyses 73 

4.1 Introduction 74 

4.2 Economic value of wetlands 76 

4.2.1 Economic value − frequency statistics and analyses 77 

4.2.2 Economic value − cross-tabulation analyses and contingency 
tables 79 

4.3 Social value of wetlands 85 

4.3.1 Social value − frequency statistics and analyses 86 

4.3.2 Social value − cross-tabulation analyses and contingency tables 89 

4.4 Environmental value of wetlands 96 

4.4.1 Environmental value − frequency statistics and analyses 96 

4.4.2 Environmental value − cross-tabulation analyses and contingency 
tables 106 

4.5 Threat results analyses 123 

4.5.1 Threats − frequency statistics and analyses 125 

4.6 Synthesis and discussion 131 

  

vi 
 



Chapter 5  

Multivariate statistical analyses 136 

5.1 Introduction 137 

5.1.1 Logistic regression analysis 140 

5.1.2 Considerations in applying logistic regression to WGCMA 
Wetlands Inventory Database 142 

5.2 Economic value of wetlands 145 

5.2.1 Economic value − correlations 145 

5.2.2 Economic value − logistic regression models 147 

5.2.3 Economic value − model evaluation 150 

5.2.4 Economic value − logistic regression model using threats 153 

5.3 Social value of wetlands 156 

5.3.1 Social value − correlations 156 

5.3.2 Social value − logistic regression models 158 

5.3.3 Social value − model evaluation 160 

5.3.4 Social value − logistic regression model using threats 162 

5.4 Environmental value of wetlands 164 

5.4.1 Environmental value − correlations 164 

5.4.2 Environmental value − logistic regression models 169 

5.4.3 Environmental value − models evaluations 172 

5.4.4 Environmental value − logistic regression model using threats 175 

5.5 Synthesis and discussion 177 

  

vii 
 



Chapter 6  

Artificial neural networks analyses 189 

6.1 Introduction 190 

6.1.1 Artificial neural networks 191 

6.1.2 Considerations in applying neural networks to the study 196 

6.2 Economic value of wetlands 200 

6.2.1 Economic value − ANN  constructions 200 

6.2.2 Economic value − ANN evaluations 203 

6.2.3 Economic value − Threat ANNs 204 

6.2.4 Economic value − Predicting wetlands assessments 208 

6.3 Social value of wetlands 211 

6.3.1 Social value − ANN constructions 211 

6.3.2 Social value − ANN evaluations 214 

6.3.3 Social value – Threat ANNs 215 

6.3.4 Social value − Predicting wetlands assessments 218 

6.4 Environmental value of wetlands 221 

6.4.1 Environmental value – ANN constructions 221 

6.4.2 Environmental value – ANN evaluations 225 

6.4.3 Environmental value – Threat ANNs 226 

6.4.4 Environmental value − Predicting wetlands assessments 230 

6.5 Synthesis and discussion 235 

  

viii 
 



Chapter 7  

General discussion and conclusions 254 

7.1 Overview of WGCMA approach and their findings 255 

7.2 Variables needed to assess wetlands 257 

7.2.1 Specific application to West Gippsland wetlands 257 

7.2.2 Broader application to wetlands assessment 262 

7.3 Wetland classification schemes 267 

7.3.1 Specific application to West Gippsland wetlands 267 

7.3.2 Broader application to wetlands classification 268 

7.4 The use of neural networks and a comparison of traditional analytical 
techniques 269 

7.5 Overall findings and their implications 271 

7.6 Implications and recommendations for wetland assessments 275 

 
 
 
References                                                                                                               278         
 
 
 
Appendices 
 

A A-1 

B B-7 

C C-11 

D D-12 

E E-18 

F F-30 

G G-41 

H H-47 

I I-50 

J J-65 

 
  

ix 
 



List of Figures 
Figure 1.1 Major component processes and their interactions for 

protecting and managing wetlands 
3 

Figure 1.2 Breakdown of the major component processes and their 
interactions for protecting and managing wetlands.   

4 

Figure 3.1 Map of Australia and map of Victoria showing the 
jurisdiction of each of Victoria’s Catchment 
Management Authorities. 

38 

Figure 3.2   Map of West Gippsland, Victoria showing the catchment 
region overseen by West Gippsland Catchment 
Management Authority and the boundaries of its seven 
major catchments.  

39 

Figure 3.3 Map of wetlands greater than 1 ha in the West Gippsland 
Catchment Management Authority region.   

41 

Figure 3.4   The main legislation and policy relationships for the 
management of wetlands under the West Gippsland 
Catchment Management Authority jurisdiction.    

45 

Figure 3.5 The steps taken to compute a rapid assessment of each 
inventoried wetland of the West Gippsland region. 

48 

Figure 3.6 The Likelihood, Consequence and Risk level matrices 
used in the rapid assessment of individual wetlands of 
the West Gippsland region.   

52 

Figure 3.7 Overall Economic values assessed for identified 
significant wetlands and the subcatchments of the West 
Gippsland Catchment Management Authority region.   

63 

Figure 3.8 Overall Social values assessed for identified significant 
wetlands and the subcatchments of the West Gippsland 
Catchment Management Authority region.   

64 

Figure 3.9 Overall Environmental values assessed for identified 
significant wetlands and the subcatchments of the West 
Gippsland Catchment Management Authority region.   

65 

 
  

x 
 



Figure 3.10 The number of ‘very high’ risk scores assessed for 
identified significant wetlands of the West Gippsland 
Catchment Management Authority region.   

66 

Figure 3.11 The number of ‘very high’ risk scores assessed for 
subcatchment wetlands of the West Gippsland 
Catchment Management Authority region 

66 

Figure 5.1 Flowchart for deciding appropriate multivariate data-
analysis technique as given in Multivariate Data 
Analysis text by Hair et al. (2006) as Figure 1-2, pages 
14 and 15. 

139 

Figure 5.2 The logistic relationship between dependent and 
independent variables.   

141 

Figure 6.1 Diagram of a biological neuron and a model of a 
computing neuron, together with a listing of analogous 
components.   

192 

Figure 6.2 Architecture of a typical artificial neural network where 
the network consists of an input layer of neurons which 
receive data, at least one hidden middle layer of 
computational neurons and an output layer of 
computational neurons.   

192 

Figure 6.3 A simple two input neuron, with inputs x1 and x2 and 
weights w1 and w2 

193 

Figure 6.4 Mathematical step function, where an input of less than 0 
results in output of 0, and an input greater than or equal 
to 0 is assigned as 1. 

194 

 

  

xi 
 



List of Tables 
Table 2.1 The Corrick and Norman (1980) wetland classification 

scheme for the south-east region Australia. 
19 

Table 2.2 The number of hectares of wetland types using Corrick 
and Norman (1980) classification scheme on public and 
private landholdings. 

20 

Table 3.1 Significant wetland values and threat categories used in 
the West Gippsland Catchment Management Authority 
wetland assessment process. 

47 

Table 3.2 Wetlands in the West Gippsland region and the number 
of wetlands of each type included in the inventory 
exercise.   

54 

Table 4.1 Component attributes of each Economic value assessed 
to decide the final Economic value of each inventoried 
wetland. 

77 

Table 4.2a Summary of frequency statistics for Economic value 
input attributes of conservation forestry, other land use 
and diverted or farm runoff in the WGCMA Wetland 
Inventory Database. 

78 

Table 4.2b Summary of frequency statistics for Economic value 
input attributes tourism, food production, stock water 
supply and commercial fishing in the WGCMA Wetland 
Inventory Database. 

78 

Table 4.2c Summary of frequency statistics for Economic value 
input attributes drainage, disposal of water, water 
storage, obstruction, redirection in the WGCMA Wetland 
Inventory Database. 

78 

Table 4.3a Contingency table for the Economic value input 
attributes of conservation forestry, other land use and 
diverted or farm runoff.  

82 

Table 4.3b Contingency table for the Economic value input attribute 
diverted farm runoff with very low and low assessment 
counts added and moderate and high counts summed. 

83 

  

xii 
 



Table 4.4a Contingency table for the Economic value input 
attributes of tourism and stock water supply.   

83 

Table 4.4b Contingency table for the Economic value input attribute 
stock water supply with very low and low assessment 
counts added and moderate and high counts summed.   

84 

Table 4.5a  Contingency table for the Economic value input attribute 
of drainage.   

84 

Table 4.5b Contingency table for the Economic value input attribute 
of drainage with very low and low assessment counts 
added and moderate and high counts summed. 

85 

Table 4.6 Component attributes of each Social value assessed to 
decide the final Social value of each inventoried wetland.   

86 

Table 4.7a   Summary of frequency statistics for all Social value input 
variables, except park value, in the WGCMA Wetland 
Inventory Database. 

88 

Table 4.7b Frequency statistics for Social value input variable Park 
value as supplied from GIS crown land tenure layer in 
the Social input data file. 

89 

Table 4.8a Contingency table for the Social value input attribute of 
hunting.   

92 

Table 4.8b Contingency table for the Social value input attribute 
hunting with very low and low assessment counts added 
and moderate and high counts summed.   

93 

Table 4.9 Contingency table for the Social value input attribute of 
bird watching.   

93 

Table 4.10 Contingency table for the Social value input attribute of 
water skiing.   

94 

Table 4.11a Contingency table for the Social value input attribute of 
park value. 

95 

Table 4.11b Contingency table for the Social value input attribute 
park value with very low and low assessment counts 
added and moderate and high counts summed.   

95 

  

xiii 
 



Table 4.12 Component attributes of each Environmental value 
assessed to decide the final Environmental value of each 
inventoried wetland 

97 

Table 4.13  Frequency table of wetland type classified according to 
the Corrick and Norman (1980) scheme and used to 
assess the Environmental value wetland rarity. 

101 

Table 4.14  Frequency and percentage distributions of total scorings 
of Victorian Rare or Threatened (VROT) species under 
the FFG Act used to evaluate significant flora 
Environmental value. 

102 

Table 4.15 Frequency and percentage distributions of the two site 
attributes, Fauna Victorian Rare or Threatened (VROTs) 
sum and fauna protected under the Flora and Fauna 
Guarantee (FFG) Act used to evaluate significant fauna 
Environmental value. 

102 

Table 4.16a Frequency values for the site features used to assess 
terrestrial zone habitat type, one of the subattributes of 
the Environmental value of habitat value. 

103 

Table 4.16b Frequency values for shoreline vegetation types used to 
assess shoreline profile, one of the subattributes of the 
Environmental value habitat value. 

103 

Table 4.16c Frequency values for shoreline description used to assess 
shoreline profile, a subattribute of the Environmental 
value of habitat value.  

104 

Table 4.17a Frequency values for Floral types of dominant wetland 
EVC using the sum of % cover for each type of 
vegetation to assess the Environmental values of 
vegetation intactness– critical lifeforms. 

104 

Table 4.17b Frequency values for the number of wetlands sites which 
had varying counts of floral species recorded used to 
assess the Environmental value of vegetation intactness– 
critical lifeforms. 

104 

Table 4.18 Frequency statistics for wetlands with, and without 
substantial modifications, a subattribute of the 
Environmental value of vegetation intactness– critical 
lifeforms. 

105 

xiv 
 



Table 4.19   Frequency statistics for the width of vegetation fringe at 
each site used in part to decide the Environmental value 
assessment of vegetation intactness recognizing critical 
lifeform groups. 

105 

Table 4.20a   Contingency table wetland rarity against overall 
WGCMA Environmental value assessment.   

113 

Table 4.20b Contingency table for the attribute wetland rarity 
freshwater meadows for low and not low Environmental 
value counts.   

114 

Table 4.21a Contingency table for the percentage total herbs coverage 
at a site against overall WGCMA Environmental value 
assessment.   

115 

Table 4.21b Contingency table for the attribute herbs in dominant 
EVC with very low and low Environmental value counts 
added and moderate, high and very high counts summed.   

116 

Table 4.22 Contingency table for the Environmental value 
significant flora which is indicated by sum at each site of 
all floral Victorian Rare or Threatened (VROTs) species 
values.   

117 

Table 4.23a Contingency table for the shoreline vegetation 
subattribute of shrubs against overall Environmental 
value assessment.   

118 

Table 4.23b Contingency table for the attribute shoreline vegetation 
shrubs with very low and low Environmental value 
counts added and moderate, high and very high counts 
summed.   

119 

Table 4.24a Contingency table for the attribute drainage against 
overall Environmental value assessment.   

120 

Table 4.24b Contingency table for the attribute drainage with very 
low and low Environmental value counts added and 
moderate, high and very high counts summed.   

121 

Table 4.24c Contingency table for the attribute drainage with very 
low, low and moderate Environmental value counts 
added and high and very high counts summed.   

121 

  

xv 
 



Table 4.25a Contingency table for the Environmental vegetation 
intactness– width of vegetation fringe against overall 
Environmental value assessment.   

122 

Table 4.25b Contingency table for the attribute vegetation intactness– 
width of vegetation fringe at a site with very low and low 
Environmental value counts added and moderate, high 
and very high counts summed.    

123 

Table 4.26a Threat category definitions for threats used in risk 
assessments of subcatchment wetlands as supplied by the 
WGCMA (2006a, 2006b & 2006c). 

128 

Table 4.26b Additional threat category definitions for threats used in 
risk assessments of subcatchment wetlands as supplied 
by the WGCMA (2006a, 2006b & 2006c). 

129 

Table 4.27a Frequency statistics for 14 threat category data used for 
risk assessments of inventoried subcatchment wetlands. 

130 

Table 4.27b Frequency statistics for threat category water source. 130 

Table 4.28  Frequency statistics for additional threat category data in 
the WGCMA Wetland Inventory Database that were not 
directly used for risk assessments. 

131 

Table 5.1a Classification table for Economic value shows the 
proportion of cases correctly classified prior to binary 
logistic regression model building for 161 wetland 
records. 

153 

Table 5.1b Classification table for Economic value shows the 
proportion of cases correctly classified after the binary 
logistic regression model, Equation 5.2, has been built. 

153 

Table 5.2 Classification table for Economic value and threat input 
values showing the proportion of cases correctly 
classified after the binary logistic regression model, 
Equation 5.5, has been built for 151 wetlands.   

156 

Table 5.3a Classification table for Social value shows the proportion 
of cases correctly classified prior to binary logistic 
regression model building. 

162 

 
  

xvi 
 



Table 5.3b Classification table for Social value shows the proportion 
of cases correctly classified after the binary logistic 
regression models, Equation 5.8 and Equation 5.9, have 
been built. 

162 

Table 5.4 Classification table for Social value and threat input 
values showing the proportion of cases correctly 
classified after the binary logistic regression model, 
Equation 5.10, has been built for 144 wetlands using 
binary logistic regression.   

164 

Table 5.5a Classification table for Environmental value shows the 
proportion of cases correctly classified prior to binary 
logistic regression model building. 

174 

Table 5.5b Classification table for Environmental value shows the 
proportion of cases correctly classified after the binary 
logistic regression model A, Equation 5.11, has been 
built. 

174 

Table 5.5c Classification table for Environmental value shows the 
proportion of cases correctly classified after the binary 
logistic regression model B, Equation 5.13, has been 
built. 

174 

Table 5.6 Classification table for Environmental value and threat 
input values showing the proportion of cases correctly 
classified after the binary logistic regression model, 
Equation 5.16, has been built for 156 wetlands.   

176 

Table 5.7 A summary of all binary logistic regression models 
showing the number of input variables used, the initial % 
correct classifications and final % correct classifications  
made by each model.   

187 

Table 6.1 An outcome table for the binary logical AND operation 
of inputs x1 and x2.   

193 

Table 6.2a Classification table for the ceiling Economic value ANN 
inputs using all 11 input attributes.   

203 

Table 6.2b Classification table for baseline Economic value ANN 
using conservation forestry as the only input.   

203 

  

xvii 
 



Table 6.2c Classification table for the Economic value ANN built 
using five inputs.   

203 

Table 6.3a Classification table for ceiling ANN built using all 
Economic value attributes and threats as inputs.   

207 

Table 6.3b Classification table for baseline Economic value and 
threats ANN using diverted runoff as the only input.   

208 

Table 6.3c Classification table for the Economic value with-threats 
ANN built using six inputs.   

208 

Table 6.4a Classification table for Economic value ANN built 
without threat data using five Economic value attributes 
as inputs, and trained using 105 wetland records and 
tested using data for 56 wetlands.   

210 

Table 6.4b Classification table for Economic value ANN built with 
threat data using six inputs, and trained using 111 
wetland records and tested using data for 44 wetlands.   

211 

Table 6.5a Classification table for ceiling ANN built using 10 Social 
value attributes as inputs.   

213 

Table 6.5b Classification table for baseline Social value ANN using 
park value as the only input.   

213 

Table 6.5c Classification table for the six-inputs Social value ANN 
built.   

214 

Table 6.6a Classification table for ceiling ANN built using 10 Social 
value attributes and 26 threat values as inputs.   

218 

Table 6.6b Classification table for baseline Social value ANN using 
the threat pest animals as the only input.   

218 

Table 6.6c Classification table for the eight-inputs Social value 
with-threats ANN built.   

218 

Table 6.7a Classification table for Social value ANN built without 
threat data using six Social value attributes as inputs, and 
trained using 101wetland records and tested using data 
for 48 wetlands.   

220 

  

xviii 
 



Table 6.7b Classification table for Social value ANN built with 
threat data using eight inputs, and trained using 116 
wetland records and tested using data for 34 wetlands.   

221 

Table 6.8a Classification table for ceiling ANN built using 35 
Environmental value attributes as inputs.   

224 

Table 6.8b Classification table for baseline Environmental value 
ANN using sedges as the only input.   

224 

Table 6.8c Classification table for the eight-inputs Environmental 
value ANNs.   

225 

Table 6.8d Classification table for the 12-inputs Environmental 
value ANNs.   

225 

Table 6.9a Classification table for ceiling ANN built using 35 
Environmental value attributes and 26 threats as inputs.   

229 

Table 6.9b Classification table for nine-inputs Environmental value 
with-threats ANN.   

230 

Table 6.10a Classification table for eight-inputs Environmental value 
ANN built without threat data and trained using 104 
wetland records and tested using data for 58 wetlands.   

233 

Table 6.10b Classification table for 12-inputs Environmental value 
ANN built without threat data and trained using 107 
wetland records and tested using data for 51 wetlands.   

233 

Table 6.10c Classification table for Environmental value ANN built 
with threat data using nine inputs, and trained using 107 
wetland records and tested using data for 39 wetlands.   

234 

Table 6.11  A summary of all artificial neural networks and binary 
logistic regression approaches showing the number of 
records, the number of input variables, and the % overall 
correct classifications.   

248 

Table 6.12a A summary of Economic value inputs for all artificial 
neural networks and binary logistic regression 
approaches showing the number of inputs in common 
within, and between approaches.   

249 

 
  

xix 
 



Table 6.12b A summary of Social value inputs for all artificial neural 
networks and binary logistic regression approaches 
showing the number of inputs in common within, and 
between approaches.   

250 

Table 6.12c A summary of Environmental value inputs for all 
artificial neural networks and binary logistic regression 
approaches showing the number of inputs in common 
within, and between approaches. 

251 
& 

252 

Table 7.1 Minimal data inputs needed to correctly identify at least 
90% of high-value wetlands for each wetland value in the 
West Gippsland region of south-east Australia.    

265 

Table 7.2 Significant wetland values identified by collation of 
highest performing models from Table 5.11 with inputs 
from Tables 6.12a, 6.12b and 6.12c.   

266 

Table 7.3 Significant threat categories identified for use in future 
WGCMA wetland assessments.   

266 

Table A.1 Wetland products as described by Dugan (1990) and 
others. 

A-1 

Table A.2 Wetland functions as described by Dugan (1990) and 
others. 

A-2 

Table A.3 Wetland attributes as described by Dugan (1990) and 
others. 

A-3 

Table D.1 Economic value ranking scale used in WGCMA wetland 
assessment process.   

D-12 

Table D.2 Social value ranking scale used in WGCMA wetland 
assessment process.   

D-13 

Table D.3 Environmental value ranking scale used in WGCMA 
wetland assessment process.   

D-14 
 

Table D.4 Threat category ranking scale used in WGCMA wetland 
assessment process.   

D-16 

Table G.1 Details the WGCMA Wetland Database tables and 
attributes used in the 2006 WGCMA wetland evaluations 
for finding wetlands of high economic value. 

G-41 

xx 
 



Table G.2 Details the WGCMA Wetland Database tables and 
attributes used in the 2006 WGCMA wetland evaluations 
for finding wetlands of high social value. 

G-42 

Table G.3 Details the WGCMA Wetland Database tables and 
attributes used in the 2006 WGCMA wetland evaluations 
for finding wetlands of high environmental value. 

G-43 

Table G.4 Details the WGCMA Wetland Database tables and 
attributes used in the 2006 WGCMA wetland evaluations 
for finding wetlands of high environmental value. 

G-44 

Table G.5 Details the WGCMA Wetland Database tables and 
attributes used in the 2006 WGCMA wetland evaluations 
for finding wetlands of threat categories values. 

G-45 

Table G.6 Details the WGCMA Wetland Database tables and 
attributes used in the 2006 WGCMA wetland evaluations 
for finding wetlands of threat categories values that were 
used only in significant wetland assessments. 

G-46 

Table H.1 Contingency table for the Economic value input 
attributes of food production and commercial fishing. 

H-47 

Table H.2 Contingency table for the Economic value input 
attributes of disposal of water and obstruction. 

H-48 

Table H.3 Contingency table for the Economic value input 
attributes of redirection and water storage. 

H-49 

Table I.1a Contingency table for the Social value input attribute of 
boating.   

I-50 

Table I.1b Contingency table for the Social value input attribute 
boating with very low and low assessment counts added 
and moderate and high counts summed.   

I-51 

Table I.2a Contingency table for the Social value input attribute of 
camping.   

I-52 

Table I.2b Contingency table for the Social value input attribute 
camping with very low and low assessment counts added 
and moderate and high counts summed.   

I-53 

 
  

xxi 
 



Table I.3a Contingency table for the Social value input attribute of 
education.   

I-54 

Table I.3b Contingency table for the Social value input attribute 
education with very low and low assessment counts 
added and moderate and high counts summed.   

I-55 

Table I.4a Contingency table for the Social value input attribute of 
motorized four-wheel drive.   

I-56 

Table I.4b Contingency table for the Social value input attribute 
motorized four-wheel drive with very low and low 
assessment counts added and moderate and high counts 
summed.   

I-57 

Table I.5a Contingency table for the Social value input attribute of 
passive recreation.   

I-58 

Table I.5b Contingency table for the Social value input attribute 
passive recreation with very low and low assessment 
counts added and moderate and high counts summed.   

I-59 

Table I.6a Contingency table for the Social value input attribute of 
recreational fishing. 

I-60 

Table I.6b Contingency table for the Social value input attribute 
recreational fishing with very low and low assessment 
counts added and moderate and high counts summed.   

I-61 

Table I.7 Contingency table for the Social value input attribute of 
research.   

I-62 

Table I.8a Contingency table for the Social value input attribute of 
swimming.   

I-63 

Table I.8b Contingency table for the Social value input attribute 
swimming with very low and low assessment counts 
added and moderate and high counts summed.   

I-64 

Table J.1 Contingency table for the Environmental value 
significant flora which is indicated by sum at each site of 
all faunal Victorian Rare or Threatened (VROTs) species 
values.   

J-65 

 
 

xxii 
 



Table J.2 Contingency table for the Environmental value 
significant fauna which is indicated by sum at each site 
of all faunal species listed in the Flora and Fauna 
Guarantee (FFG) Act.   

J-66 

Table J.3a Contingency table for the terrestrial zone habitat type 
subattribute of emergent vegetation against overall 
Environmental value assessment.    

J-67 

Table J.3b Contingency table for the attribute emergent vegetation 
with very low and low Environmental value counts 
added and moderate, high and very high counts summed.   

J-68 

Table J.4a Contingency table for the terrestrial zone habitat type 
subattribute of exposed substrate against overall 
Environmental value assessment.    

J-69 

Table J.4b Contingency table for the attribute exposed substrate 
with very low, low and moderate Environmental value 
counts added and high and very high counts summed.   

J-70 

Table J.5a Contingency table for the terrestrial zone habitat type 
subattribute of logs against overall Environmental value 
assessment.   

J-71 
 

Table J.5b Contingency table for the attribute logs with very low 
and low Environmental value counts added and 
moderate, high and very high counts summed.   

J-72 

Table J.6 Contingency table for the terrestrial zone habitat type 
subattribute of other against overall Environmental value 

assessment.   

J-73 

Table J.7a Contingency table for the terrestrial zone habitat type 
subattribute of permanent deep pools against overall 
Environmental value assessment.   

J-74 

Table J.7b Contingency table for the subattribute permanent deep 
pools at a site with very low and low Environmental 
value counts added and moderate, high and very high 
counts summed.   

J-75 

  

xxiii 
 



Table J.7c Contingency table for the attribute permanent deep pools 
at a site with very low, low and moderate Environmental 
value counts added and high and very high counts 
summed.   

J-75 

Table J.8 Contingency table for the terrestrial zone habitat type 
subattribute of rocks against overall Environmental value 
assessment.   

J-76 

Table J.9a Contingency table for the terrestrial zone habitat type 
subattribute of shallow to medium depth water against 
overall Environmental value assessment.   

J-77 

Table J.9b Contingency table for the attribute shallow to medium 
depth water at a site with very low and low 
Environmental value counts added and moderate, high 
and very high counts summed.   

J-78 

Table J.9c Contingency table for the attribute shallow to medium 
depth water at a site with very low, low and moderate 
Environmental value counts added and high and very 
high counts summed.   

J-78 

Table J.10a Contingency table for the terrestrial zone habitat type 
subattribute of submerged or free-floating vegetation 
against overall Environmental value assessment.    

J-79 

Table J.10b Contingency table for the attribute submerged or free-
floating vegetation with very low and low Environmental 
value counts added and moderate, high and very high 
counts summed.   

J-80 

Table J.10c Contingency table for the attribute submerged or free-
floating vegetation at a site with very low, low and 
moderate Environmental value counts added and high 
and very high counts summed.   

J-80 

Table J.11a Contingency table for the terrestrial zone habitat type 
subattribute of water edge against overall Environmental 
value assessment.   

J-81 

Table J.11b Contingency table for the attribute water edge with very 
low and low Environmental value counts added and 
moderate, high and very high counts summed.   

J-82 

  

xxiv 
 



Table J.12a Contingency table for the shoreline vegetation 
subattribute of alive trees against overall Environmental 
value assessment.    

J-83 

Table J.12b Contingency table for the attribute shoreline vegetation 
alive trees with very low and low Environmental value 
counts added and moderate, high and very high counts 
summed.   

J-84 

Table J.13a Contingency table for the shoreline vegetation 
subattribute of dead trees against overall Environmental 
value assessment.    

J-85 

Table J.13b Contingency table for the attribute shoreline vegetation 
dead trees with very low and low Environmental value 
counts added and moderate, high and very high counts 
summed.   

J-86 

Table J.13c Contingency table for the attribute shoreline vegetation 
dead trees with very low, low and moderate 
Environmental value counts added and high and very 
high counts summed.   

J-86 

Table J.14a  Contingency table for the shoreline profile, shoreline 
description of a site against overall WGCMA 
Environmental value assessment.    

J-87 

Table J.14b Contingency table for the attribute shoreline profile, 
shoreline description with very low and low 
Environmental value counts added and moderate, high 
and very high counts summed.   

J-88 

Table J.14c Contingency table for the attribute shoreline profile, 
shoreline description with very low, low and moderate 
Environmental value counts added and high and very 
high counts summed.   

J-88 

Table J.15a Contingency table for the attribute disposal of water 
against overall Environmental value assessment 

J-89 

Table J.15b Contingency table for the attribute disposal of water with 
very low and low Environmental value counts added and 
moderate, high and very high counts summed.   

J-90 

 
  

xxv 
 



Table J.16a Contingency table for the attribute obstruction against 
overall Environmental value assessment.   

J-91 

Table J.16b Contingency table for the attribute obstruction with very 
low and low Environmental value counts added and 
moderate, high and very high counts summed.   

J-92 

Table J.16c Contingency table for the attribute obstruction with very 
low, low and moderate Environmental value counts 
added and high and very high counts summed.   

J-92 

Table J.17a Contingency table for the attribute redirection against 
overall Environmental value assessment.   

J-93 

Table J.17b Contingency table for the attribute redirection with very 
low and low Environmental value counts added and 
moderate, high and very high counts summed.   

J-94 

Table J.17c Contingency table for the attribute redirection with very 
low, low and moderate Environmental value counts 
added and high and very high counts summed.   

J-94 

Table J.18a Contingency table for the attribute water storage against 
overall Environmental value assessment.   

J-95 

Table J.18b Contingency table for the attribute water storage with 
very low and low Environmental value counts added and 
moderate, high and very high counts summed.   

J-96 

Table J.19a Contingency table for the percentage total ferns coverage 
at a site against overall WGCMA Environmental value 
assessment.    

J-97 

Table J.19b Contingency table for the attribute ferns in dominant 
EVC with very low, low and moderate Environmental 
value counts added and high and very high counts 
summed.   

J-98 

Table J.20a Contingency table for the percentage total graminoids 
coverage at a site against overall WGCMA 
Environmental value assessment.   

J-99 

 
 
  

xxvi 
 



Table J.20b Contingency table for the attribute graminoids in the 
dominant EVC with very low and low Environmental 
value counts added and moderate, high and very high 
counts summed.   

J-100 

Table J.20c Contingency table for the attribute graminoids in the 
dominant EVC with very low, low and moderate 
Environmental value counts added and high and very 
high counts summed.   

J-100 

Table J.21a Contingency table for the percentage total grasses 
coverage at a site against overall WGCMA 
Environmental value assessment. 

J-101 

Table J.21b Contingency table for the attribute grasses in dominant 
EVC with very low, low and moderate Environmental 
value counts added and high and very high counts 
summed.   

J-102 

Table J.22a Contingency table for the percentage total sedges 
coverage at a site against overall WGCMA 
Environmental value assessment.    

J-103 

Table J.22b Contingency table for the attribute sedges in dominant 
EVC with very low, low and moderate Environmental 
value counts added and high and very high counts 
summed.   

J-104 

Table J.23a Contingency table for the percentage total shrubs 
coverage at a site against overall WGCMA 
Environmental value assessment.   

J-105 

Table J.23b Contingency table for the attribute shrubs in dominant 
EVC with very low, low and moderate Environmental 
value counts added and high and very high counts 
summed.   

J-106 

Table J.24a Contingency table for the number of floral species 
present at a site against overall WGCMA Environmental 
value assessment. 

J-107 

Table J.24b Contingency table for the attribute number of floral 
species present with very low and low Environmental 
value counts added and moderate, high and very high 
counts summed.   

J-108 

xxvii 
 



Table J.25a Contingency table for substantial modifications at a site 
against overall Environmental value assessment.   

J-109 

Table J.25b Contingency table for the attribute substantial 
modifications at a site with very low and low 
Environmental value counts added and moderate, high 
and very high counts summed.    

J-110 

Table J.25c Contingency table for the attribute substantial 
modifications at a site with very low, low and moderate 
Environmental value counts added and high and very 
high counts summed.   

J-110 

 

 

  

xxviii 
 



 
Dowd Morass, Victoria, July 2010.   

Image courtesy of Paul Boon 

1 
 



Chapter 1  

Objectives and scope 

This research is concerned with the identification of high-value wetlands, and how 

they are classified and evaluated, through the process of wetlands assessment.  The 

task of wetland assessment is to make a measure of wetland condition and take 

account of threats likely to negatively affect the services and functions that a wetland 

provides. Wetlands assessment is one of three important steps designated by 

Contracting Parties to the Ramsar Convention in their advice on how to protect and 

manage wetlands (Ramsar, 2005). As illustrated in Figure 1.1, the wetlands 

assessment task is preceded, and informed by, the collection of a wetlands inventory, 

which involves the collection of data to be collated and synthesized during the 

assessment process. The outcome of assessment process is the identification of 

wetlands to be considered higher in value. These high-value wetlands are further 

monitored so that they can be adaptively managed into the future for “sustainable 

development” and “wise use’ as described by the Ramsar Convention (2005).  Each of 

the processes of Figure 1.1 is defined and explained further in the next chapter of this 

thesis.  

 

The objective of the research outlined in this thesis is to increase the understanding of 

the process of wetland assessments by examining its practice in Gippsland, south-

eastern Australia through: 

• A statistical exploration of the relationships between the values of different 

input factors and the classification of high-value wetlands; 

• An investigation of the impact of two wetland classification schemes in 

evaluating and ranking of wetland sites; and, 

• The application of data-mining techniques designed to mimic the wetland 

assessment process. 
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Figure 1.1: Major component processes and their interactions for protecting and 
managing wetlands.  The processes were specified by the 2005 Conference of Contracting 
Parties to the Ramsar Convention on Wetlands in advice on how to protect and manage 
wetlands, particularly those of high-value (Ramsar, 2005).  

 

 

1.1 Outline of thesis 

Wetlands assessments need to account for all of the interacting biological, 

hydrological and physical components that are used in determining wetland condition 

and threat influence. Thus, most wetland assessments rely on inventory data 

collection across a broad range of attributes at wetland sites, where data values of the 

attributes are indicators used to gauge and classify wetland condition and threat status, 

as shown in Figure 1.2.  Typically, the assessment process decides that wetlands are 

high in value for their economic or social or environmental worth.  Details on how 

wetland assessment is undertaken are given in Chapter 2, where, background 

information on the Australian and Victorian contexts of wetland assessments is 

described. The chapter concludes with the aims of the research.   
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Figure 1.2: Breakdown of the major component processes and their interactions for 
protecting and managing wetlands.  Shown are the stages of inventory and assessment 
used to identify high economic, social and environmental value wetlands.  

 

 

A case study description of wetland inventory and assessment carried out during 2006 

in south-eastern Australia by the West Gippsland Catchment Management Authority 

(WGCMA) to classify and evaluate high-value wetlands within their region follows in 

Chapter 3.  The wetland assessment was a major part of an overarching regional 

Wetlands Plan needed to “help ensure that future investment in significant wetlands is 

targeted towards the highest priority activities and wetland assets over the next five 

years” (West Gippsland Catchment Management Authority [WGCMA], 2006b, p.6). 

The inventory stage of the WGCMA Wetlands Plan amassed a large collection of 

data, which was stored in the WGCMA Wetland Inventory Database (7.61 

Megabytes).  Throughout the assessment process, the Database was accessed for input 

values on a wetland by wetland basis. As an instance of best practice, the WGCMA 

case study illustrates the complexity of the wetland assessment task and the amount of 

effort required to undertake it.  As noted in Chapter 3, the only reported analyses 

undertaken on the Database were frequency statistics for different wetland types and 

the prevalence of various inputs recorded during inventory per catchment and across 
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the region (Greening Australia, 2006).  The wealth of data stored in the Database was 

largely untapped and ripe for more thorough analyses.  Such analyses would shed 

light on the contribution, and potencies, of component biological, chemical, 

hydrological and physical data inputs, individually and collectively, to the 

identification of high social, economic and environmental value wetlands in the 

region.  As a first step, the inventory dataset collected for the WGCMA case study is 

explored using traditional univariate statistics in a preliminary search for relationships 

between inputs and high-value wetland assessments.  The results of the investigation 

are reported in Chapter 4 and compared to wetland assessments observed during the 

original WGCMA assessment.   

 

There has been a steady rise in the number of powerful statistical techniques, novel 

computer algorithms and search methods being applied in ecology over the past 

decade (Fernandes et al., 2006; Guisan & Thuiller; 2005; Guisan & Zimmermann 

2000; Kelly, Guo et al., 2007; Khanna, 2007; Ticehurst et al., 2007).  Such methods 

hold particular promise in being able to extract useful information from large datasets 

in order to find novel and useful patterns that otherwise would remain undiscovered, 

and although computationally expensive, data-mining techniques have progressively 

become cheaper and more readily accessible (Chen, Jakeman et al., 2008; 

Negnevitsky, 2011; Tan et al., 2006).  In Chapter 5, the application of multivariate 

statistical techniques to wetland assessments is explored where models are 

constructed and examined for their abilities in identifying the most suitable inputs 

associated with high-value wetlands, and for their overall predictive powers in making 

wetland assessments. Further in Chapter 6, a novel approach using neural networks is 

undertaken.  Neural networks provide a non-linear mechanism to data mine inventory 

data and recognize factors which predict high-value wetlands assessments.   

 

Previously, others have noted that various classification schemes together with 

condition and threat assessment protocols influence the assessment process and these, 

along with their underlying assumptions, sway the naming of high-value wetlands 

(e.g. Frankiewicz & Wainwright, 2009; Ling & Jacobs, 2003; Stevens, 2009).  The 

analyses of Chapter 5, and later in Chapter 6, include an examination of the influence 

of these schemes in identifying high economic, social and environment value 

wetlands in the West Gippsland region.  

5 
 



Neural networks are increasing being applied to environmental assessment and 

management problems, including water-resource problems (Maier &Dandy, 2000b; 

Maier et al., 2010).   Their popularity is in part due to their ability to cope well with 

non-traditional datasets, where other approaches may fail, and in part due to their 

ability to be trained to learn patterns within datasets and to recognize these patterns in 

unseen data (Brosse et al., 2001; Findlay & Zheng, 1999; Lek & Guegan, 1999; Olden 

et al., 2006; Zhang, 2000).  This research evaluates the predictive abilities and reports 

on the suitability of neural networks in mimicking wetland assessments decision 

making on unseen data in Chapter 6.  Finally, Chapter 7 summarizes the results of 

research and it discusses the findings of the investigation and the implications for 

future wetland assessments in West Gippsland.  

 

 

1.2 Overview of thesis 

The application of multivariate statistics and neural networks on the WGCMA dataset 

provides two major opportunities.  First for each technique, it is possible to examine 

the relationship between data values collected during inventory for their individual, 

and collective, strengths in classifying high-value wetlands.  In turn, this examination 

leads to the identification of a minimal set of biological, hydrological and physical 

indicators for inventory collection and an understanding of these strengths and 

relationships can be used to better comprehend the complexity of wetland systems and 

inform future inventory and monitoring efforts.  Second, the two techniques can be 

compared and evaluated for their efficacy in tackling wetland assessments.  The 

strengths and weaknesses of each approach are also discussed in Chapters 5, 6 and 7.  

 

It has been well argued that Australian wetlands are more typical of the rest of the 

world’s wetlands than those of Western Europe and North America found 

documented in the literature (Boulton & Brock, 1999; Williams, 1988).  Therefore the 

significance of this research goes beyond the context of the WGCMA case study. 

Chapter 7 discusses the findings of this research and recommends how lessons learnt 

in the case study can be applied elsewhere in Australia, and indeed, further afield.
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Latrobe River estuary, Victoria, December 2010.   

Image courtesy of Paul Boon 
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Chapter 2  

Literature review and background information 

Until the last quarter of the 20th century, there was little recognition of the substantial 

worldwide loss of wetlands due to human activity.  In 1971 the Convention on Wetlands of 

International Importance at Ramsar highlighted the need for all nations to manage and 

conserve wetlands through “sustainable development” and “wise use”.  The Convention put 

in place Articles to define wetlands and it outlined the first necessary steps towards wetland 

conservation as being inventory, assessment and monitoring of existing wetlands. 

 

Australia, an early signatory to the Convention, has seen large-scale losses of wetland habitat 

since European occupation.  In complying with its Ramsar obligations, representative data 

have been collected to identify, and ultimately, assess and rank wetlands according to their 

economic, social and environmental values.  The wetland assessment process results in large 

data collections and it consumes many hours through consultation with experts, database 

interrogation, literature reviews and workshop discussions.  

 

This chapter details the importance of wetlands and the impact of the Ramsar Convention 

towards their protection.  It introduces the Australian and Victorian context of wetland 

valuations and it describes the complex task of wetland assessment.  With the aim of finding 

efficiencies to streamline wetland assessments, the chapter outlines the application of 

statistical and data-mining approaches to the process so that the most important input 

variables, and the salient relationships amongst them, can be identified within the inventory 

data.  Finally, the aims of this research are detailed and conclude the chapter. 
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2.1 An introduction to wetlands and their place in human 
society 

Wetlands are, and always have been, of importance to humankind.  Early civilizations 

recognized wetlands for their natural abundance and productivity.   Archaeological 

evidence in New Guinea indicates that the peoples of Kuk swamp undertook several 

episodes of wetland agriculture from 9,000 through to 2500 b.p.  At roughly the same 

time, the earliest farmers in ancient Greece established civilizations using the natural 

irrigation of river and lake floodplains of Thessaly plain (Bayliss-Smith, 1996; van 

Andel & Runnels, 1995).  In medieval England, agriculture relied upon the flooding 

of low-lying meadows to improve the early spring growth of grass, thereby increasing 

overall annual stock rates (Cook et al., 2003).  Similarly other peoples, like the 

“marsh” Arabs of the Tigris-Euphrates wetlands, the west Africans of the Niger 

Valley and the inhabitants of the Mekong delta, have for centuries continued to reap 

and modify their wetland areas (Madaley, 2002; Williams, 1994).  A detailed 

description of the biological, hydrological, social and economic services which 

wetlands provide is found in Appendix A. 

 

Historically, wetlands have been often viewed as a resource for the taking and to be 

modified for human needs.  The increased mechanization of the industrial revolution 

provided the means whereby wetlands could be drained, dyked and built upon 

(Williams, 1994).  In the Middle Ages, people in the Netherlands systematically 

drained wetlands for agriculture and built the Rotterdam port on reclaimed land to 

become one of the major agricultural exporters in Europe (Dugan, 1990; Gedan et al., 

2009; Knottnerus, 2005).  Wetland reclamation was encouraged by early medical 

theories which associated diseases, such as cholera and the Black Death, with 

miasmata or the “bad air” of mires, marshes and bogs (Gardiner, 1994) further 

contributing to losses of wetland habitat, particularly in Europe.  There over time, it 

has been estimated that 40% of Brittany’s coastal wetlands have vanished, 60% of the 

United Kingdom’s wetlands have been destroyed and 70% of Portugal’s Algarve 

region has been drained (Williams, 1994).  In Australia, European settlement has 

gravitated to coastal regions, which has impacted significantly coastal marshes and 

mangroves, particularly in Queensland and New South Wales where losses since the 
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World War 2 have been reported as up to 70% (Harty & Cheng, 2003; Saintilan & 

Williams, 2000; Sinclair & Boon, 2012). 

 

Finlayson and Spiers (1999) spotlight agriculture as the principal cause of global 

wetlands loss.  They estimate that in Europe and North America 56-65% of available 

wetlands had been drained by 1985, along with 27% losses of wetlands in Asia, 6% in 

South America and 2% in Africa.  However, as Finlayson and Spiers (1999) point out, 

global losses are difficult to quantify due to differences in comparing timeframes and 

scales of analyses, the various techniques used to collect and interpret basic data, and 

what is considered to be a wetland.  For instance, many wetland types such as salt 

marshes, coastal flats, seagrass meadows, karsts and vaces, reservoirs and artificial 

wetlands, such as rice paddies in Asia, may not be included in the inventories under 

comparison.  Finlayson and Spiers (1999, p.8) concluded that “The loss of wetlands 

worldwide has been estimated at 50% of those that existed in 1900 – a figure that 

includes inland wetlands and possibly mangroves, but not large estuaries and marine 

wetlands such as reefs and seagrasses”.  In the earlier part of the 20th century 

significant wetland losses occurred in the northern temperate zones due to land-claim 

for agriculture.  Later in the 20th century, losses of tropical and subtropical wetlands, 

particularly swamp forests and mangroves, were due mainly to aquaculture and 

coastal developments (Boon et al., 2011; Gedan et al., 2009).  Given that originally 

wetlands represented only 6% of the earth’s surface, the disappearance of over half 

that means “wetlands are probably even more endangered than tropical forests” 

(Meadows et al., 1992, p.64). 

 

With the awakening of the environmental movement in the late 1960s, the shrinking 

of the world’s wetlands and the losses of other natural habitats did not go unnoticed.  

In 1972 the United Nations’ Stockholm conference penned the Declaration on the 

Human Environment.  The Declaration spelt out the right of each state to exploit their 

own resources for economic and social development together with a state’s associated 

responsibilities to make resources available for the preservation and improvement of 

the environment so that it may be protected for future generations (Aplin, 2002).  As a 

result of this conference, the United Nations Environment Programme (UNEP) 

became established in 1974 to “provide leadership and encourage partnership in 

caring for the environment by inspiring, informing and enabling nations and peoples 
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to improve their quality of life without compromising that of future generations” 

(UNEP, 2013).   By 1980, a World Conservation Strategy (WCS) was formulated by 

the International Union for the Conservation of Nature and Natural Resources 

(IUCN)1, in conjunction with the World Wildlife Fund, other experts from around the 

world, government bodies and non-government bodies (NGOs).  The Strategy’s 

emphasis was on strengthening of national capacity to undertake conservation 

activities in a cross-sectoral and interdisciplinary manner, with a focus on the 

underlying causes, as well as the symptoms of the problems (Aplin, 2002).  

 

In 1983, the United Nations established the independent World Commission on the 

Environment and Development (WCED) to deal with environmental concerns at the 

international level and to formulate long-term strategies for sustainable development 

(United Nations, 1983).  Subsequently, the 1992 United Nations’ Conference on the 

Environment and Development (UNCED) in Rio de Janeiro produced two significant 

documents: the Rio Declaration; and Agenda 21.  The Rio Declaration set out “27 

principles to govern economic and environmental behaviour of both nations and 

individuals” and the Agenda 21 listed the most important environmental principles 

and concerns that were agreed to by 178 world governments (Aplin, 2002; United 

Nations, 2009).  These commitments were reviewed in 1997 and subsequently 

reaffirmed at the World Summit on Sustainable Development in 2002. 

 

Against this backdrop of growing global environmental commitment, the first and 

most significant step in halting worldwide wetland losses came during 1971 in the 

small Iranian town of Ramsar, where The Convention on Wetlands of International 

Importance was signed (Dugan, 1990).  The Ramsar Convention, as it is now 

commonly known, was the first modern inter-governmental treaty between states 

aimed at conserving natural resources through wise use and management (Department 

of Sustainability, Environment, Water, Population and Communities [DSEWPC], 

2013b; MacDonald, 1997).  Its major objectives are the prevention of wetland losses 

and conservation of existing wetlands (Kruchek, 2003).  As the first signatory in 

1 Founded in 1948, the IUCN is a global conservation network of over 1,000 member 
organizations, inclusive of government and non-governmental organizations (NGOs), 
research institutions, and conservation agencies with representation in over 160 countries 
(IUCN, 2009). 
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1974, Australia took on a key role in identifying Ramsar sites and listed the first in 

1974 with Cobourg Peninsula, Northern Territory (DSEWPC, 2013a; Yeend, 2004).  

Today Australia has 64 Ramsar sites covering 8.1 million hectares, of which 14 are 

located in Victoria.  Worldwide there are 159 Contracting Parties to the Convention 

committed to the protection of 2,098 separately listed Wetlands of International 

Importance which cover collectively 205 million hectares (Ramsar, 2013).  

 

Signatories to the Ramsar Convention take seriously their obligations under the treaty 

(Verschuuren, 2008; Vriesinga, 2008).  The current Mission Statement of the Ramsar 

Convention Parties states unambiguously “The Convention’s mission is the 

conservation and wise use of all wetlands through local and national actions and 

international cooperation, as a contribution towards achieving sustainable 

development throughout the world” (Ramsar, 2013).  The focus of the Mission 

Statement is twofold; the conservation and “wise use” of all wetlands under the 

Convention on the one hand, and, the striving for continued development on the other.  

The juxtaposition of these two aims points to possible contrasting positions that 

signatories make take in meeting their obligations under the Convention.  As noted by 

Adam (1997), a signatory has considerable latitude in the interpretation of the 

“sustainable development” and “wise use” terms. This has broader implications for 

wetland managers attempting to resolve any inherent contradictions or tensions in 

meeting the two aims at a local level (Kruchek, 2003; Vriesinga, 2008). 

 

 

2.2 Wetland definitions and their application to the 
Australian situation 

2.2.1 International definitions 

Before any wetland can be conserved or its “wise use” implemented, a crucial 

decision as to what specifically constitutes a wetland needs to be made.  This is not a 

simple task as there are several wetland definitions in active use and they vary 

considerably in breadth, context, and application (Phinn et al., 1999; Whitten & 

Bennet, 2005).  For some authors, wetlands are simply “inland, standing (lentic), 

shallow bodies of water” (Williams, 1997, p.10) or “Areas of seasonally, 

intermittently, or permanently waterlogged soils, of inundated land, whether natural 
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or otherwise, fresh or saline, e.g. waterlogged soils, ponds, billabongs, lakes, swamps, 

tidal flats, estuaries, rivers and their tributaries” (National Parks Association of New 

South Wales, 1988, p.1).  Others describe wetlands as “Land permanently or 

temporarily under water or waterlogged.  Temporary wetlands must have surface 

water or waterlogging of sufficient frequency and/or duration to affect the biota.  

Thus, the occurrences, at least sometimes, of hydrophytic vegetation or use by 

waterbirds are necessary attributes” (Paijmans et al., 1985 as used by Finlayson, 

1999b, p.119).  The often referenced U.S. Fish and Wildlife Service definition states 

that wetlands are “lands transitional between terrestrial and aquatic systems where the 

water table is usually at or near the surface or the land is covered by shallow water” 

(Cowardin et al., 1979). By excluding temporary waters and salt lakes, the application 

of Cowardin’s definition to Australian wetlands is particularly problematic since it 

ignores the most abundant types (Boulton & Brock, 1999; Pressey & Adam, 1995). 

  

As seen above, wetland definitions vary in their descriptions to include, to some 

degree or not, the permanence of water, the presence of specific biota, and reference 

to certain chemical processes.  Broadly speaking, Whitten and Bennet (2005) note that 

wetlands can be described in four different ways: by using their biophysical 

characteristics; by the combination of resources employed; by the processes the 

wetlands perform; and by the outputs (benefits and harms) the wetlands produce.  In 

their survey of currently used wetland definitions by government and non-government 

organizations in Australia and the United States, Whitten and Bennett (2005) found a 

variety of definitions including those of: Ramsar (2012); Commonwealth Wetlands 

Policy, Australia (Environment Australia, 1997); United States Environmental 

Protection Agency (2012); Ducks Unlimited (2001); and the Sierra Club (2001).  

Whilst Phinn et al. (1999) additionally document the U.S. Fish and Wildlife Service 

(Cowardin et al., 1979) and Paijmans et al. (1985) definitions they advocate, as do 

many others, the use of the Ramsar Convention definition as the most suitable for 

making global comparisons of international inventories (Finlayson & Spiers, 1999; 

Pressey & Adam, 1995). 
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The Ramsar Convention uses two Articles to define wetlands.  Article 1.1 specifies 

that  

“For the purpose of this Convention wetlands are areas of marsh, fen, 

peatland or water, whether natural or artificial, permanent or temporary, with 

water that is static or flowing, fresh, brackish or salt, including areas of 

marine water the depth of which at low tide does not exceed six metres”. 

 

Article 2.1 which allows that wetlands  

“may incorporate riparian and coastal zones adjacent to the wetlands, and 

islands or bodies of marine water deeper than six metres at low tide lying 

within the wetlands”.                    (Ramsar, 2012). 

 

Associated with these articles are groupings of defined wetland types that are broadly 

divided into natural or human-made sets.  Natural wetlands encompass both 

Marine/Coastal Wetlands, consisting of 12 subtypes, and Inland Wetlands, including 

20 subtypes.  Additionally, there are 10 Human-made subtypes listed (Ramsar, 2012).  

Classification of types is predominantly based on geomorphic types and water 

regimes (Robertson & Fitzsimons, 2004).  See Appendix B for a more complete 

listing of wetland subtypes.  

 

The Ramsar Convention’s definitions of wetlands and subtypes are necessarily broad 

so that they can encompass the wide spectrum of wetland types found throughout the 

world.  This latitude allows for a situation where “countries have discretion in what 

they declare a wetland and (in) subsequent land use decisions” (Vriesinga, 2008, 

p.180).  It is often necessary for an adaptation of the Ramsar wetland definition to be 

made to account for local circumstances (for an example, see Department of 

Environment and Resource Management, 2011).  For practical purposes, Dugan 

(1990) suggests that a reduction of the Ramsar subtype groupings should be made to 

give seven landscape units: estuaries; open coasts; floodplains; freshwater marshes; 

lakes; peatlands; and, swamp forests, which are indeed wetlands or locations where 

wetlands form an important component.  Williams (1997) argues that the Ramsar 

definition covering all inland wetlands, lentic and lotic, as well as shallow coastal 

waters is too broad.  Based on a definition given by Bunn, Boon, Brock and Schofield 

(1997), Williams suggests that a restricted version of the Ramsar definition, including 
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both permanent and temporary bodies of standing water, is more relevant to the 

Australian context particularly when taking an ecological view that accounts both the 

wet and dry phases of these ecosystems.  

 

In his review of classification schemes, Williams (1997) categorized all wetlands, 

including Australian, into a number of groups including: permanent fresh waters; 

permanent saline waters; temporary freshwaters; and, temporary saline waters.  

Importantly, the majority of what is known about wetlands, their ecology and their 

management comes from studies of the well-watered regions of eastern North 

America and western Europe, where inland wetlands are typically of the permanent 

freshwater type.  In a seminal opinion paper, Williams (1988) lamented the historical 

accident that saw much limnological research undertaken on permanent freshwater 

wetlands as it skewed wetland perspectives and decision-making worldwide and it 

lead to the neglect of saline and ephemeral systems.  Assumptions made of wetland 

ecological processes and energy flows are particularly problematic when such 

knowledge is used to inform Australian wetlands management (Boulton & Brock, 

1999).  As an illustration, many accepted energy-flow models reference the 

importance of shredders (small chewing invertebrates) in providing nutrients and 

energy flows for further downstream.  These models are applicable for wetlands in 

Northern Hemisphere deciduous forests but do not easily transpose to Australian 

streams with highly variable hydrology, notably less predictable leaf-fall, and far 

fewer shredders.  Likewise, thermally dimictic lakes are rare in Australia, yet many 

accepted concepts concerning sediment chemistry, nutrients and hydro-dynamics are 

based on dimictic thermal models derived from the northern hemisphere (Boulton & 

Brock, 1999; Williams, 1988).  Faunal distinctiveness aside, the reality is Australian 

wetlands are far more representative of the majority of the rest of the world’s 

wetlands than are the permanent freshwater wetlands of western Europe and Williams 

(1988, p.410) notes that “The River Murray is more like the Nile than the Thames is!” 

 

2.2.2 An Australian perspective on wetlands 

Australia has a rich endowment of wetlands, despite being often described as the 

“driest inhabited continent” (Boulton & Brock, 1999, p.18).  The variety and 

uniqueness of the Australian wetland types is due to the vastness, flat topography and 
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dryness of most of the continent (McComb & Lake, 1990).  Low average rainfall, of 

less than 500 millimetres rain annually for two-thirds of the continent, coupled with 

high evaporation rates ensures that temporary wetlands are the norm.  Although 

montane wetlands and permanent lakes exist in Australia, it is far more common to 

find rivers and streams flowing inland and draining into salt lakes.  Usually, flows are 

intermittent and waterways fill and flow only seasonally, or in other cases after rare 

rainfall events (Australian Society for Limnology, 2004; Boulton & Brock, 1999).  

 

Human inhabitation on the Australian continent has existed for at least 40,000 years.  

Aborigines seasonally harvested wetlands for fish, eel, birds and their eggs, turtle, 

snake, goanna, crab, worms, freshwater mussels, clams, oysters, seeds, and the 

rhizomes of various plants (Kingsford, 1997; McComb & Lake, 1990).  Some 220 

years ago Europeans colonized Australia, arriving with a set of agricultural and land-

management traditions better suited to their wetter homelands.  Over time, poor land-

management and water-management practices have resulted in about 50% of wetlands 

Australia-wide having undergone major modifications (Natural Heritage Trust, 2002) 

with losses in Victoria for the years between 1830 and 1990 at 33% (Buisson & 

Bradley, 1994, p.38 quoting data from Dugan, 1993).  The effects have been 

particularly noticeable in the Murray-Darling river basin where altered flow regimes 

have resulted in 90% loss of floodplain wetlands, further evidenced by dramatic 

declines in waterbird numbers (Beeton et. al., 2006; Kingsford & Norman, 2002; 

Schrobback et al., 2011; Spencer et al., 1998).  

 

In the least-settled areas and in more remote regions, particularly in the monsoonal 

north of Australia, many wetlands remain relatively unaltered and in near-pristine 

condition.  These wetlands are of international significance.  Recognizing this, and the 

importance of protecting and managing all its wetland resources, Australia was the 

first country to join the Ramsar Convention, by signing in 1971 (Environment 

Australia, 1997; MacDonald, 1997).  Likewise, Australia was an early signatory to the 

WCS adopting a National Conservation Strategy in 1984, which gave widespread 

political and public exposure to the concept of sustainable development (Alpin, 2002). 

 

The Ramsar Convention provides a suitable framework for the national protection of 

wetland resources.  As mentioned earlier, Ramsar wetland definitions are broad, 
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allowing for local interpretation and adaptation (Bowman, 2002).  In Australia, a 

revision of the Ramsar Convention classification scheme has been made to account 

for water regimes, salinity and vegetation.  The Australian Directory of Important 

Wetlands (Environment Australia, 2001, Appendix 1) identifies 40 different wetland 

types within three categories: marine and coastal zone wetlands; inland wetlands; and, 

human-made wetlands (Department of Sustainability and Environment [DSE], 2012).  

Notable additions to the Ramsar scheme include non-tidal freshwater forested 

wetlands and freshwater springs, oases and rock pools (Australian Society for 

Limnology, 2004).   Each state and territory uses the Directory and its classification 

scheme as the commencing framework for their own wetland classification schemes.  

A review of the different State-wide approaches is detailed in Pressey and Adam 

(1995).   

 

2.2.3 Victorian wetlands and their classification 

Located in the south-east of the continent with a temperate, winter-rainfall climate, 

Victoria is the smallest (227,600 km2) and most densely populated mainland State of 

Australia with approximately 5.6 million people (Australian Bureau of Statistics, 

2012).  Relative to the rest of the mainland, Victoria is comparatively well-watered 

(Traill & Porter, 2001) and the State holds 159 wetlands recognized as being of 

national importance (Environment Australia, 2001).  Of these wetlands, 11 wetland 

systems are listed as Ramsar sites of international importance.  Recent surveys show 

that 57 of the 159 nationally important wetlands have threatened water regimes and 

the remainder are under threat of continual degradation due to salinity, drainage 

problems and agricultural practices (Beeton et al., 2006; Environment Australia, 

2001).  

 

In meeting the Commonwealth’s Ramsar obligations, funding over recent years has 

gone to the setting up of a State-wide wetland inventories (pre-European estimate and 

current) and to the establishment of specific aquatic protected areas.  Amongst the 

States, Victoria is the recognized leader in developing wetlands conservation policy 

and its commitments include the State Conservation Strategy, 1987; Biodiversity 

Strategy, 1997; and, the Healthy Rivers Strategy, 2002-3.  Failings in the 

implementation of these listed Strategies have occurred as pointed out by the 
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Australian Society for Limnology (2004, p.86 for detail) and an Auditor-General’s 

Report on Environmental Flows during Water Shortages (Victorian Auditor-General, 

2010), so much work remains to be done. 

 

In 1992 as part of a process to develop a State-wide inventory, all wetlands larger than 

1 ha were mapped and classified by the Department of Conservation and Environment 

[DCE] (1992b).  By 1995, more than 16,000 naturally occurring wetlands (>1 ha) 

were recorded (DSE, 2013b).  During this process, two classification schemes were 

used to categorize wetlands types: Ecological Vegetation Classes (EVCs) and the 

Corrick and Norman (1980) scheme.  The first scheme classifies on plant assemblages 

and the later relies primarily on hydrologic characteristics in distinguishing different 

categories of wetland, then secondly on floristics to discern subcategories. 

 

The EVC scheme categorizes all native vegetation types in Victoria, including 

wetland types, according to the type(s) of EVC present; it represents distinct and 

identifiable collections of native floristic communities, which commonly cohabit and 

interact together with their environment.  Thus, an EVC description includes a 

floristic description with its associated altitude, topography, geology and soils (DSE, 

2013a).  In an effort to provide a meaningful native vegetation classification system 

across Victoria, EVCs have been classified into 20 broad groupings and 34 sub-

groupings in which relate to a range of attributes including climate, soils, and 

vegetation (DSE, 2013b; King et al., 2001).  Until recently, wetlands were poorly 

represented within the EVC groupings as conventional floristic analyses, reliant upon 

species diversity, was used discern separate wetland plant communities (Davies et al., 

2002).  A revision of this “species-richness” approach to a method that uses individual 

species’ tolerance to inundation within a floristic community has resulted in the 

identification of 127 wetland EVCs (DSE, 2013a).  

 

In the Corrick and Norman scheme, there are seven categories of naturally occurring 

wetlands; they have been indexed with numbers from 1 to 7, as shown in Table 2.1 

(Corrick & Norman, 1980; Corrick, 1981).  Based essentially on hydrologic features, 

the primary categories are separated by differing characteristics of salinity, depth and 

period of inundation.  Vegetation types form subcategories (DSE, 2012).  The number 

of hectares of each wetland type in Victoria on public and private lands is given in 
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Table 2.2.  In reading Table 2.1 and Table 2.2, it is important to note marine beaches, 

bed and banks of a stream, creek or river, reservoirs, farm dams, or other dams for the 

supply of water, land that is periodically irrigated for agriculture, artificial water 

supply and drainage channels are not considered under this classification scheme.  

 

Table 2.1: The Corrick and Norman (1980) wetland classification scheme for the 
south-east region Australia. The table has been adapted from Corrick and Norman (1980) 
and Corrick (1981) as presented by Heron (1989, p.5, Table 2) and Centre for 
Environmental Management (2005, p.9, Table 2.3). 

Category Depth Period of 
Inundation 

Subcategory 

1. Flooded River Flats < 2 m   

2. Freshwater 
Meadows 

0.3 m  < 14 days 2.1 Herb-dominated 
2.2 Sedge-dominated 
2.3 Red gum-dominated 
2.4 Lignum-dominated 

3. Shallow Freshwater 
Marshes 

0.5 m 6-8 months 3.1 Herb-dominated 
3.2 Sedge-dominated 
3.3 Cane grass-dominated 
3.4 Lignum-dominated 
3.5 Red gum-dominated 

. Deep Freshwater 
Marshes 

< 2 m Remain 
inundated 
during years of 
average or 
above average 
rainfall 

4.1 Shrub-dominated 
4.2 Reed-dominated 
4.3 Sedge-dominated 
4.4 Rush-dominated 
4.5 Open water 
4.6 Cane grass-dominated 
4.7 Lignum-dominated 
4.8 Red gum-dominated 

5. Permanent Open 
Freshwater 

> 1 m  Permanent 5.1 Shallow (<2m) 
5.2 Deep (>2m) 
5.3 Impoundments 

6. Semipermanent 
Saline Wetlands 

0.5m 
varies 
 

Varies 3-5 
months only 
during winter  
 

6.1 Salt pan 
6.2 Salt meadow 
6.3 Salt flats 
6.4 Sea rush-dominant 

7. Permanent Saline 
Wetlands 

Varies Varies 7.1 Shallow (<2m) 
7.2 Deep (>2m) 
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Table 2.2: The number of hectares of wetland types using Corrick and Norman 
(1980) classification scheme on public and private landholdings.  Source: Traill and 
Porter (2001). 

 Victorian Wetlands 
Extent   

 

 Wetland category Public 
wetlands (ha) 

Private 
wetlands (ha) 

 

 Freshwater meadow 36.465 78,636  

 Shallow freshwater marsh 20,869 33,523  

 Deep freshwater marsh 34,164 19,617  

 Permanent open freshwater 173,689 16,520  

 Semipermanent saline 49,510 18,366  

 Permanent saline 145,069 2,938  

 
 
The use of both classification schemes in Victoria has been considered progressive in 

other jurisdictions, but neither scheme is without its failings (Davies et al., 2002; 

Fitzsimmons & Robertson, 2005; Robertson & Fitzsimmons, 2004; Sainty & Jacobs, 

2003).  As mentioned above, in practice EVC mappings do not represent wetlands 

well (Traill & Porter, 2001) and, in fact, broad-scale vegetation analyses generally fail 

to describe freshwater ecosystems (Australian Society for Limnology, 2004), and 

misrepresentations can occur (Robertson & Fitzsimmons, 2004).  In a comparative 

study undertaken where both EVC mappings and Corrick and Norman classification 

scheme were used in the Wimmera bioregion, very different conclusions were reached 

(Fitzsimmons & Robertson, 2003).  All wetland types were identified as significantly 

depleted with less than 20% remaining when the EVC classification was used, 

whereas the Corrick and Norman classification scheme showed no wetland type as 

depleted by more than 50% (Robertson & Fitzsimons, 2004, Figure 1).  Since the two 

schemes grade and classify using differing qualities, being floristics versus hydrology, 

it should not surprise that results differ so widely.  It is essential for wetland 

management to be cognizant of strengths and weaknesses of any classification system 

being used for decision-making.  
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2.3 Scale of wetland loss in south-eastern Australia 

Although Australia was an early signatory to the Ramsar Convention and the World 

Conservation Strategy (WCS), historically Australian governments have favoured 

rural and urban developmental uses of wetlands over those of conservation and 

environmental stewardship (Alpin, 2002; Kingsford, 2000 & 2003).  The 200 years of 

European-style settlement in Australia has seen wetlands routinely drained and filled 

for conversion to more intensive agricultural land (Traill & Porter, 2001).  In 1990, 

60% of Australia’s land surface was being used for grazing domestic livestock with 

livestock managers viewing wetlands simply as available watering points (Wilson, 

1990).  Consequently, poor grazing practices are one of the major causes of long-term 

modification of Australian wetlands (Robertson, 1997) and Yencken and Wilkinson 

(2001, p.360) note that “Some of our most pressing problems are the loss of 

biodiversity, land degradation and disturbances to inland water regimes”. 

 

Aside from agricultural development, wetlands have been drained in Australia for 

urban growth and industrial expansion, land-claim, recreational development, river 

regulation for irrigation, and hydroelectricity (Boon et al., 2011; Buisson & Bradley, 

1994; Gedan et al., 2009; Saintilan & Williams, 2000; Sinclair & Boon, 2012).  The 

full value and ecological importance of wetlands has been largely ignored; they have 

been seen as waste areas harbouring mosquito infestations, algal blooms, 

environmental weeds, introduced fish (notably carp), and feral animals (such as pigs, 

buffalo and wild horses).  Where wetlands have been seen as areas ripe for 

development, Adam (1985, p.5) notes “the popularity of the coast for recreation and 

retirement makes it inevitable that proposals for canal estates, marinas and holiday 

resorts continue to appear” and that these developments have impacted upon local 

biodiversity and cause disruption of ecological pathways (Ticehurst et al., 2007).  

There is increasing political debate about the continued investment that will become 

necessary to protect coastal infrastructure and reclaimed agricultural land from rising 

sea levels (Dugan, 1990).  Canal estates built around marinas can have problems with 

water circulation and the flushing of canals whilst dredging removes reed beds and 

other habitats.  Through the loss of buffer zone functions, hydrological works to 

prevent flooding come necessary, which in turn often result in accelerated 

sedimentation accompanied by invasive weed species (Gardiner, 1994).  
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In Victoria, good arable land rapidly attracted European settlement, which has 

resulted in the widespread alteration, degradation and fragmentation of land, water, 

and biodiversity resources (Lindenmayer, 2007; Traill & Porter, 2001).  Estimates 

suggest that since 1860, when land selection began, almost 4,000 natural wetlands, 

approximately one-third of wetland area (191,000 hectares) have been lost, attributed 

primarily to drainage for agricultural purposes (DCE 1992a, 1992b; Finlayson, 2000).  

Victoria’s wetlands have shrunk from 725,600 to 531,200 hectares with over 90% loss 

of wetlands being on private land (Beeton et al., 2006; DCE, 1992a; Spiers & 

Finlayson, 1999).  Remaining are approximately 16,700 non-flowing wetlands, of 

which 12,800 (covering 432,800 hectares) are natural.  These represent a wide 

diversity of type including: alpine bogs; floodplain billabongs; red river gum forests; 

coastal tea tree swamps; large open lakes; estuaries; intertidal mudflats; and, inland 

salt lakes (Department of Natural Resources and Environment [DNRE], 1997; DSE, 

2012; Victorian Catchment Management Council, 2007).  By number, 79% of 

wetlands in Victoria are privately owned, and 50 % of Victoria’s threatened 

vegetation types are found almost entirely on private land (Beeton et al., 2006 quoting 

Davis et al., 2001) as evidenced in Table 2.2 with greater areas of freshwater 

meadows and shallow freshwater meadows located on private properties (Traill & 

Porter, 2001). 

 

Against this backdrop, the first steps to arrest continued wetland losses came between 

1988 and 1992 with the Victorian government’s Wetlands Conservation Program.  

Building upon earlier surveys, the Program undertook a State-wide wetland inventory 

and classification with the aim of identifying high-value wetlands and providing 

wetland management guidelines (DCE, 1992a; Jensen, 1997).  At the time, draining of 

wetlands was identified as the biggest threat and the Program required that wetlands, 

whether publicly or privately owned, be managed to provide conservation, social and 

economic values to the Victorian community (Government of Victoria, 1988).  The 

Program raised public awareness of wetland values and issues, but today after several 

changes in government later, wetland policy is guided essentially by the requirements 

of international conventions, national strategies and partnerships and State legislations 

including:  

• The Ramsar Convention; 
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• Japanese Australia Migratory Bird Agreement (JAMBA); 

• Chinese Australia Migratory Bird Agreement (CAMBA);  

• Republic of Korea on the Protection of Migratory Birds Agreement 

ROKAMBA 2007; 

• National Strategy for the Conservation for the Conservation of Australia’s 

Biodiversity; 

• Flora and Fauna Guarantee Act 1988; 

• The Catchment and Land Protection Act 1994; 

• Coastal Management Act 1995; and, 

• Victorian Water Act 1989.  

 

There are a number of programs in Victoria for protection of wetlands through 

reservation, and rehabilitation activities together with public education and awareness 

schemes (Natural Heritage Trust, 2002; DSE, 2013b).  Underpinning all these 

activities is the need for reliable data upon which to make scientifically grounded 

management decisions to achieve “sustainable development” and “wise use” and of 

all Victorian wetlands.  

 

 

2.4 Wetland value assessments and ranking approaches 

According to the 2005 Conference of Contracting Parties to the Convention on 

Wetlands, the first necessary steps in the protection of wetlands to be undertaken are 

inventory, assessment and monitoring.  Specifically, the Ramsar Convention (Ramsar, 

2005, point 17) defines each as: 

  

Wetland inventory: The collection and/or collation of core information for wetland 

management, including the provision of an information base for 

specific assessment and monitoring activities. 
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Wetland assessment: The identification of the status of, and threats to, wetlands as a 

basis for the collection of more specific information through 

monitory activities. 

 

Wetland monitoring: The collection of specific information for management purposes 

in response to hypotheses derived from assessment activities, and 

the use of these monitoring results for implementing 

management.  

 

The primary focus of my research is centred on wetland assessment, which is detailed 

in a following subsection.  Inventory, as the necessary precursor for assessment, is 

described in the next subsection.  Although an important process, monitoring is not 

detailed further in this chapter since its goal is to inform and guide wetland 

management after assessment has been conducted.  However, the research outcomes 

will have implications for monitoring programs, and these will be discussed in 

Chapter 7. 

 

2.4.1 Inventory 

Making an inventory of wetlands is the necessary first step upon which to base 

managerial decisions.  Inventory work is needed to identify the number, types and 

condition of wetlands and to evaluate any threatening processes and management 

opportunities in protecting them (Claus et al., 2011a; Davidson & Finlayson, 2007; 

Frankiewicz & Wainwright, 2009; Natural Heritage Trust, 2002; Rebolo et al., 2009; 

Stevens, 2009).  Although it is widely acknowledged that a good inventory is a 

necessary antecedent to assess wetland resources, historically only parts of North 

America and Western Europe have adequate past and current inventories upon which 

decisions are based.  In their survey of existing wetland inventories, Finlayson and 

Spiers (1999, p.6) lamented “of 206 countries or territories for which the state of 

inventory was assessed, only 7% have adequate or good national inventory coverage.  

Of the remainder, 69% have only partial coverage, and 24% have little or no national 

wetland inventory….  Thus we do not yet know globally what wetlands we have and 

how important they are, even as they are being degraded and lost”.  Therefore, as 

recognized by Resolution VII.20 at the 1999 Conference of Ramsar Contracting 
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Parties, there remains an urgent need for wetland inventories and studies of wetland 

loss and degradation around much of the world (Ramsar, 1999b; Rebolo et al., 2009).  

 

In Australia, there is a national need for a comprehensive, consistent and up-to-date 

information base upon which to base planning decisions (Davidson & Finlayson, 

2007; Finlayson et al., 2005; Lowry & Finlayson, 2004; Spiers & Finlayson, 1999; 

Williams, 1997).  There two issues associated with the classification and mapping of 

wetlands that make the task of wetland inventory difficult.  Firstly, there is much 

dispute about what constitutes a wetland, where its boundaries are, and what 

processes need to be observed.  This issue has been discussed earlier in this chapter.  

Secondly, the choice of classification system used to describe specific wetlands types 

has a profound impact on the identification and mapping of wetland assets, and thus 

subsequent conservation decisions based on those identifications (Ling & Jacobs, 

2003).  

 

Robertson and Fitzsimons (2004) addressed this second matter by investigating the 

impact of using the two different Victorian wetland classification systems in deciding 

conservation status of various Victorian wetlands in geospatial datasets maintained by 

the Victorian Department of Sustainability and Environment.  Their work and 

analyses highlight the differences of the two schemes in identifying wetlands, their 

types, extent and overall conditions, as well as recording the general inefficiency of 

EVCs in delineating wetlands recognized using the Corrick and Norman scheme 

(1980).  Another important issue to consider when undertaking wetland inventory is 

the often transient nature of wetlands that comes into play when factors, like the 

amount of inundation, have strikingly varying influences at different times.  For 

instance, the wetlands in the salt lake regions of central Australia only fill episodically 

and are dry for much of their existence.  Additionally, once the nature and size of a 

wetland is determined, there can be a great deal of uncertainty in trying to quantify its 

ecological condition and the effects of possible threats may have upon a given 

wetland, making ecological assessments even more difficult (Pollino et al., 2006; 

Stevens, 2009). 
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2.4.2 Assessment 

Condition, or more specifically, ecological condition is used to indicate the “state” of 

a wetland; it encompasses all of the “biological, physical, and chemical components 

of the wetland ecosystem, and their interactions, which maintain the wetland and its 

products, functions, and attributes” (Ramsar, 1999a).  This definition implies, 

inadvertently or otherwise, the real-world existence of an ideal benchmark or 

reference wetland site that can be measured, described and referenced against for 

wetlands of inferior through to superior conditions (Department of Environment and 

Conservation [DEC], 2008; Spencer et al., 1998).  Not surprisingly, there is little 

consensus on what constitutes a good reference site; experts cannot agree on the 

desirable wetland condition qualities, and nor can they agree on how they can be 

adequately measured (Boon et al., 2011; DSE, 2007 & 2012; Fairweather, 1999; 

Stoddard et al., 2006).  Assessments usually involve a scoring or weighting system of 

different indicators or variables present during the snapshot of a single site visit 

(Claus et al., 2011b; Daniel, 2009; DEC, 2008; Spencer et al., 1998).  Given the 

transient nature of most Australian wetlands, it is often difficult to assess alteration of 

condition as being within normal temporal variation, or otherwise (Boon et al., 2011). 

 

Traditional assessments using indicators 
Traditional condition assessments are based upon a set of indicators that can be 

applied broadly across differing wetland types.  The identification of a suitable suite 

of useful indicators over differing geographic regions has occupied much of the 

literature (Cowardin & Golet, 1995; Fennessy et al., 2004; Finlayson et al., 2005; 

Hruby, 1999 & 2001; Ling & Jacobs, 2003; Lu, 1995; Pressey & Adam, 1995; 

Spencer et al., 1998; Stander & Ehrenfel, 2009; Thiesing, 2001).  For instance, 

Finlayson et al., (2005, Table 2) lists minimum data fields for biophysical and 

management features of wetlands in northern Australia that use, singularly or in 

various combinations, hydrology, vegetation structure and floristic components, 

physical and geomorphic characteristics, and land usages in their wetland 

assessments.  Boon, Raulings, Morris, Roache and Bailey (2005) note for 

groundwater-dependent ecosystems in Australia, that a national review strongly 

recommended groundwater hydrology becomes a standard part of wetland 

assessments and that the threats of salinity, acid sulphate soils, turbidity, and nutrient 
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enrichment should be included.  More recently, there has been an effort to measure 

the performance of protection programs for inland rivers and wetland made under the 

National Action Plan and the Natural Heritage Trust.  Wetlands indicators under 

discussion include the extent of inundation; dissolved oxygen and temperature; 

transparency and colour; nutrients (phosphorus and nitrogen); vegetation; 

phytoplankton; marcoinvertebrate index; macroinvertebrate indicator species; and, 

macroinvertebrate diversity and community composition (DSE, 2012). 

 

Currently, best practice assessments of ecological condition usually include some 

analysis of wetland structure including plant (phyla, genus or species) dominance, a 

measure of ecological function through the measurement of key biological, 

hydrological and chemical processes, and an incorporation of value humans place 

upon the wetland (Boon et al., 2011; DEC, 2008; Stevens, 2009).  The scale of the 

assessment prescribes the approach and tools used to conduct the assessment 

(Finlayson et al., 2005, Figure 2).  For instance, landscape level assessment dictates 

the use Graphical Information Systems (GIS) for collection and processing data 

(Rebelo et al., 2009), whereas intensive site assessment focuses on the details of an 

individual site (DEC, 2008).  For assessment of conditions at numerous wetland sites, 

typically across a stream catchment, the use of relatively simple observations and 

records to assess ecological condition is called rapid assessment (Daniel, 2009; Lui, 

Frazier et al., 2006).  This thesis is primarily concerned with wetland classification 

and evaluations based on data collected through the process of the rapid assessment 

over a geographically defined stream catchment area. 

 

Rapid assessments 
The Ramsar view is that rapid assessment involves “methods that have been adapted 

to permit the adequate collection, analysis and presentation of the assessment 

information when this information is urgently needed.  It may also involve the rapid 

collection of “baseline” wetland inventory information” (Ramsar, 2005, paragraph 

52).  In describing rapid assessment, the adjective “rapid” is used to indicate the use 

of techniques that speed the assessment of individual wetlands within a larger group, 

and some sense of urgency for the outcomes.  It does not imply that the process is 

simplistic or done with unnecessary haste, although in practice it may be constrained 

27 
 



within a specific timeframe (DCE, 2008).  Rapid assessment is a non-trivial, 

standardized, repeatable and cost-effective monitoring of ecological conditions of 

sites over large areas (Finlayson, 2003).  Its intent “is to evaluate the complex 

ecologic condition of a natural ecosystem using a finite set of observable field 

indicators and to express the relative condition of a particular site in a manner that 

informs ecosystem management” (Sutula et al., 2006, p.158).  

 

In describing some of the tasks within rapid assessments, paragraph 54 of Resolution 

IX.1 Annex E lists that “rapid assessment of wetlands include(s): 

a. Collecting general biodiversity data in order to inventory and prioritize 

wetland species, communities and ecosystems, obtaining baseline biodiversity 

information for a given area; 

b. Gathering information on the status of a focus or target species (such as 

threatened species); collecting data pertaining to the conservation of specific 

species; 

c. Gaining information on the effects of human or natural disturbance (changes) 

on a given species; 

d. Gathering information that is indicative of the general ecosystem health or 

condition of a specific wetland ecosystem; and, 

e. Determining the potential for sustainable use of a biological resources in a 

particular wetland ecosystem”. (Ramsar, 2005). 

A necessary precursor to undertake these steps is the identification of the parameters 

and indicators that will be used to assess the ecological condition of wetlands under 

study (Claus et al., 2011b; Spencer et al., 1998; Stevens, 2009).  Typically, these 

indicators are incorporated within a scoring system for use in making site 

comparisons and rankings.  Ideally, the scoring system should, in some way, account 

for the wetland structure, its ecological function, condition and services it supplies; it 

may include risk assessments of biophysical pressures likely to impact upon 

ecological function (Daniel, 2009; Finlayson et al., 2005; Gitay et al., 2011; Lynch, 

2011).  As well, it is important to incorporate some measure of human perceptions of 

a wetland’s value including the social, economic and environmental services afforded 

by the wetland (Alpin, 2002; Beeton et al., 2006; Finlayson & Weinstein, 2008). 
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2.4.3 Ranking procedures and decision support tools 

For any wetland conservation or management effort, it is important to know the 

extent, condition and value of the resource as the basis from which to guide 

protection, investment decisions and monitoring efforts (Claus et al., 2011b; DSE, 

2007; Finlayson et al., 2005; Ramsar, 2005).  Regardless of whether traditional or 

rapid assessments are used to quantify these values, inventory data needs to be 

collected on the range of physical, chemical, hydrological and biological processes 

during wetland site visits.  Once site data has been collated and validated, it is used to 

supply values for the various components of the scoring system being used to rank the 

ecological condition of the wetland sites so that individual high-value sites can be 

identified for conservation investment.  

 

Current approaches 
The most common current method of ranking wetlands is the triple-bottom-line 

approach, and instances of its application abound in the natural resource management 

literature (Argent, 2004; Christen et al., 2011; Claus et al., 2011b; Goonetilleke & 

Yigitcanlar, 2010; Harris, 2002; Schrobback et al., 2011).  Originating over 15 years 

ago in organizational business language as “people, planet, profit”, this approach 

attempts to quantify measures of social, environmental, and economic values for a 

wetland site.  Assessments of these three values are underpinned by, and are directly 

influenced by the biological community, its processes and health under investigation 

(Schrobback et al., 2011) and many scoring schemes use inventoried data to estimate 

the risks and different levels of threat to these values for wetlands under assessment 

(Claus et al., 2011b; Finlayson et al., 2005; Frankiewicz & Wainwright, 2009).  

 

Decisions made using the triple-bottom-line approach invariably involve managers 

making value judgements and guesstimates as to the true ecological condition of the 

wetlands under study, the inherent risks or potential environmental effects of probable 

threats upon them, and the vulnerability of a system to withstand change (Dale et al., 

2010; French & Geldermann, 2005; Gitay et al., 2011; Schrobback et al., 2011).  

There is a great assortment in the complexity of methods used in wetland assessments 

along with trade-offs made in gauging differing ecological, social and economic 

demands, threats and vulnerabilities (Claus et al., 2011a; DEC, 2008; DSE, 2005b; 
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Gitay et al., 2011; Jensen, 1997; Schrobback et al., 2011; Springate-Baginski, et al., 

2009; Stevens, 2009).  For instance, the hydrogeomorphic (HGM) wetland 

classification system uses hydrology and geomorphic features to define and describe 

wetland characteristics and condition (Brinson, 1993). Founded on observed 

relationships between hydrogeomorphic processes and floodplain functions in the 

well-watered regions of Northern America, HGM classifies wetlands according to 

their location, source of water and hydrodynamics (Franklin et al., 2009). HGM has 

been broadly adopted and applied but over time it has been adapted and shaped to 

account for effects of vegetation, soil pH and texture and how these impact wetland 

function (Cole, 2006; United States Department of Agriculture [U.S.D.A], 2008).  

Elsewhere, human activity and interactions with wetlands have been the focus of 

assessment efforts.  In particular, the Millennium Ecosystem Assessment undertook a 

four-year international investigation in an attempt to quantify the world’s wetlands 

and water assets and record changes in their condition.  The assessment covered all 

types of wetlands described by the Ramsar Convention, and it considered multiple 

scales on which human influence on the chemical, biological and physical attributes 

of wetlands (values) and the functions and products that wetlands provide were 

measured. The assessment put forward a set of possible scenarios or futures for 

wetland ecosystems under different world orders (globalized or regional) using 

approaches to either reactive or proactive management  practice as a framework in 

which to make forecasts of the effects of human decision making on future wetland 

services (Millennium Ecosystem Assessment, 2005). 

 

These examples demonstrate that undertaking assessments and rankings to decide 

high-value wetlands is not for the faint hearted. It is an involved and complex process 

that should be fit for purpose.  Often the process consumes a great deal of time and 

generates much controversy (Finlayson, 1999a; Finlayson & van der Valk 1995; 

Goosen et al., 2007).  In fact, the degree of difficulty in making wetland assessments 

was explored in a workshop where three synthesized wetland cases were used as a 

framework for experts to discuss priorities and rules used in decision-making 

(Finlayson et al., 2004).  In this case, as in others, it was found that the experts’ 

wetland assessments comprised two components: evaluation and risk assessment.  In 

the evaluation process, biophysical, socio-economic, institutional and governance 
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criteria were used to prioritise wetlands, and that a main issue for participants was the 

need to create a hierarchy within these criteria to arrive at a final ranking.    

 

Novel emerging approaches 
The assessment and ranking of wetland sites across a catchment area necessarily 

involves the collection of large amounts of data on a variety of biological, 

hydrological, chemical and geological indicators from which wetland value can be 

ascertained.  To support this process, a computer database is almost always used for 

data storage and ease of retrieval and querying.  The computer has the potential to be 

used for so much more.  Twenty-five years ago, Noble discussed the likely positive 

impacts upon vegetation science and ecology through the application of mathematical, 

statistical and computing algorithms (Noble, 1987).  When databases are coupled with 

other modelling software to rank various alternate scenarios, such systems are known 

as “decision support systems” (Environmental Modelling and Software, 2007; Goosen 

et al., 2007; McIntosh et al., 2007; Mowrer, 2000).  A well-known, Australian 

example for use in planning reserve systems is Marxan (formally known as Spexan), 

which was developed by Ball and Possingham (Marxan, 2005) and uses simulated 

annealing (Kirkpatrick et al., 1983) for its search strategy.  Marxan suggests multiple 

alternate reserve design solutions which meet user-defined biodiversity targets at a 

minimum cost.  In its setup stage, the software relies, amongst other things, upon 

appropriate planning units being chosen, reserve costs and boundary arrangements 

being specified and conservation targets being detailed.  Marxan has been used by the 

Great Barrier Reef Marine Planning to assist in determining rezoning plans (Ball et 

al., 2009) and by others (Klien et al., 2009) to develop an Australia-wide conservation 

prioritization at subcatchment level that cost effectively meets specific wilderness 

quality and biodiversity representation targets.  

 

Before using any decision support system, it is necessary to understand and account 

for the real-world system being modelled (Environmental Modelling and Software, 

2007; Goosen et al., 2007).  However wetland assessment, like many real-world 

problems, is described as a “data is rich and knowledge is poor” situation (Last & 

Kandel, 1999; Pedrycz, 1998) the difficulty is the identification of suitable input 

variables and an understanding of their interactions under various conditions (Goosen 
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et al., 2007; Spencer et al., 1998).  In such circumstances, the use of data-mining 

techniques holds promise, particularly where access to raw inventory data can be 

gained and the outcome of wetland assessments is already known, as in the WGCMA 

case study.  

 

 

2.5 Aims of this project 

Priorities for protection and restoration of wetlands should be based upon the 

assessment of those wetlands deemed to have the highest value and/or be in the best 

condition with respect to ecological, economic and social values (DSE, 2012; West 

Gippsland Catchment Management Authority [WGCMA], 2007).  Wetland 

management decisions need to consider a broad range of factors in assessing the 

character of a wetland and its value, along with the risks/threats likely to impact upon 

the services that the wetland provides (Breckenridge et al., 1995; Lui et al., 2006; 

Ticehurst et al., 2007).  As elucidated earlier, undertaking wetland assessment is a 

complex and difficult procedure; it is expensive, labour intensive and time consuming 

and it needs to be tailored to its local context.  Wetland assessment is frustrated by the 

concerns of various wetland definitions (Section 2.2.1 and Section 2.2.2), the use of 

differing classification schemes involved (Section 2.2.3), the transient nature of 

wetlands (Section 2.4), and difficulties in deciding condition of wetlands under 

investigation (Section 2.3 and Section 2.4). 

 

There are two major issues identified in the literature concerning Australian wetland 

assessments to identify high-value wetlands.  First, there is a dearth of reliable 

information on the status and condition of much of Australia’s wetlands despite large 

investments in State data collections (Australia-wide report: Finlayson, 2000; New 

South Wales: Claus et al., 2011a & 2011b; Northern Territory: Duguid et al., 2005; 

South Australia: Stevens, 2009; Victoria: Victorian Catchment Management Council, 

2007; and, Western Australia: DEC, 2008) and second, historical wetland assessments 

had been determined not objectively, but rather through reference to anecdotal 

knowledge of local conditions (Centre for Environmental Management, 2005).  

Recently, a group of prominent environmentalists (Morton et al., 2009) has identified 

one of the important “big ecological questions inhibiting effective environmental 
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management in Australia” as “How can datasets be rigorously gathered, analysed and 

reported to establish environmental trend, critical thresholds, and feedbacks to 

management?”  This thesis examines the practice of wetland assessment and 

investigates the contribution, and potencies, of component biological, chemical, 

hydrological and physical data inputs, individually and collectively, to the 

identification of high social, economic and environmental value wetlands as an 

important feedback mechanism to management in undertaking wetland assessments.  

The identification of minimal set of useful indicators, whose values are meaningful 

for the evaluation process and are easily assessed in the field, together with the 

quantification of any relationships amongst them, will be useful for monitoring 

activities and future inventory and wetland assessment cycles.  

 

As pointed out earlier, there is a great assortment in the complexity of methods used 

to evaluate, score and rank wetlands, and that the classification schema also impacts 

high-value rankings (Fitzsimons & Robertson, 2003; Robertson & Fitzsimons, 2004).  

This thesis then investigates how the two wetland classification schemes used in 

Victoria, EVCs and the Corrick and Norman scheme, influence high-value outcomes.  

To do this, it was necessary to find a Victorian case study of wetland fulfilling several 

requirements.  Firstly, the assessment process needs to have used both schemes; 

secondly, access to all inventoried data needs to be gained; and thirdly, final site 

assessment values need to be known.   

 

An investigation of a best practice case study undertaken in Victoria’s West 

Gippsland region during 2006 met these requirements handsomely as: a large dataset 

was collected that encompasses several biological, hydrological, chemical and 

physical site features; the details of the assessment process have been well 

documented, and the assessment attempts to measure site condition and take account 

of threats to condition; both classification schemes were used to describe individual 

wetland sites, and the dataset holds several instances of each wetland type; and, 

individual site assessments have been established for over 160 wetlands of over 1 

hectare size, and there are separate economic, social and environmental values 

recorded for each site.   
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This thesis applies predictive data-mining techniques to the West Gippsland case 

study data.  Predictive data-mining techniques marry specific input factors, and their 

data values, to different wetland assessment values, thereby illuminating the 

relationship between collected raw data values and their degree of influence on high-

value wetland assessments.  However as Guisan and Thuiller (2005) point out, it is the 

choice of the “right” data-mining technique for a given context that is of most 

importance.  In wetland evaluation, where a mixture of quantitative and qualitative 

data is used, the usual statistical approaches based on analyses of variance and 

normally distributed data are not considered appropriate (Hruby, 1999).  In this 

research, traditional univariate statistics are used to describe the data, and a more 

advanced, data-mining approach using multivariate analyses is used to find patterns 

(correlations, trends and clusters) within the data that highlight relationships between 

input variables and, in particular, help identify those relationships predicating high-

value wetlands.  These results indicate a minimal set of predictors from the input data 

for collection in the field.    

 

In addition, this thesis investigates and identifies opportunities where efficiencies can 

be made in wetland classification and evaluations.  The use of artificial neural 

networks (ANNs) is investigated as a promising data-mining strategy since they can 

be trained to mimic human decision-making processes and, as a black-box tool, they 

rely only on input and output data and not on being told of the connecting processes.  

ANNs are often chosen as “the weapon of choice” for handling complex ecological 

and biological data problems (Brosse et al., 2001; Noble & Tribou, 2007; Recknagel 

et al., 2006; Shanmuganathan et al., 2006; Whigham et al., 2006).  They are known to 

cope well where other statistical approaches, such as multiple regression, fail due to 

non-linear relationships between variables, the presence of unusual but ecologically 

relevant outliers, and other problems with handling uncertainty (Brosse et al., 2001; 

Findlay & Zheng, 1999; Olden et al., 2006).  

 
The steps in this investigation were to: 

a. Undertake a detailed examination of a case study of a best-practice wetland 

assessment to document the mechanisms of data collection and the decision-

making processes involved; 
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b. Analyse the case study’s input dataset using univariate and multivariate 

statistical analyses to identify the most important input variables that predicate 

high-value wetland assessments; 

c. Compare outcomes of the statistical analyses with those noted during the 

original case study and report any disparities; 

d. Examine the effects of the two wetland classification schemes, EVCs and 

Corrick and Norman, in predicting high-value assessments; 

e. Use a neural network approach to “data mine” biological, hydrological and 

physical features in the case study inventory that infer high-value assessments; 

f. Assess the abilities of neural networks to automate the processing of input data 

and predict wetland assessments; 

g. Through the statistical and neural networks analyses, pinpoint the most 

important factors, or collections of factors, that can be used as a minimal set 

for inventory collection and for monitoring purposes;  

h. Evaluate the effectiveness of statistical analyses and the neural network 

approaches for use in wetland assessments;  

i. Describe the lessons learnt from these analyses that can be applied to  wetland 

assessments;  

j. Formulate recommendations for future West Gippsland wetland assessments 

and monitoring efforts; and, 

k. Explore the applicability of the novel approaches, multivariate statistical 

analyses and neural networks, to wetland assessments elsewhere. 

 

The next chapter details the 2006 wetlands assessment undertaken by the West 

Gippsland Catchment Management Authority (WGCMA) in Victoria.  The large 

inventory data collection used in the WGCMA wetlands assessment process forms the 

basis of this research, with analyses being done on contributing values of various 

hydrologic, biological, chemical and physical factors found in the dataset, and for 

comparisons to be made to the economic, social, and environmental value assessment 

outcomes for the 163 sites surveyed.   
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Corner Inlet, Victoria.   

Image courtesy of Michelle Dickson, WGCMA 
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Chapter 3  

Background to the WGCMA case study 

 

To better understand how assessments of wetland value are made, it is necessary to 

explore the case study used in this research by surveying its input data collection, 

unravelling its evaluation process and noting its outcomes.  The case study is based 

on the wetlands assessments undertaken by the West Gippsland Catchment 

Management Authority (WGCMA) in 2006 where the outcomes were evaluations and 

rankings of wetland sites for economic, social and environmental values. 

 

This chapter locates the wetland evaluation exercise within its geographical and 

political contexts.  It enumerates the features of the WGCMA wetland evaluation 

exercise that make it suitable for study before describing the steps taken  to identify 

high social, economic and environmental value wetlands.   A  summary of the 

wetlands assessment outcomes is given, for they will used in comparison against the 

results of statistical and data-mining approaches of subsequent chapters.   Finally, 

the case study evaluation is reviewed to identify the benefits and problems of 

traditional wetland assessments, which have lead to this research. 
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3.1 West Gippsland and its wetlands 

The West Gippsland Catchment Management Authority (WGCMA) is one of 10 

Catchment Management Authorities (CMAs) established by the Victorian government 

in 1994 to oversee the sustainable development of the State’s water catchments.  The 

geographic areas managed by the various CMAs are shown in Figure 3.1.  The West 

Gippsland CMA, shaded yellow on the Victorian map in Figure 3.1, manages the 

Thomson, Latrobe and South Gippsland river basins, which comprise seven major 

catchments and 34 subcatchments, totalling 17,685 km2 in area (Figure 3.2). 

 

 
Figure 3.1:  Map of Australia and map of Victoria showing the jurisdiction of each of 
Victoria’s Catchment Management Authorities. Original maps sourced from 
http://wwp.greenwichmeantime.com/ website and the Victorian Department of 
Sustainability and Environment website http://www.dse.vic.gov.au/land-
management/catchments/catchment-management-authorities 
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Figure 3.2:  Map of West Gippsland, Victoria showing the catchment region overseen 
by West Gippsland Catchment Management Authority and the boundaries of its seven 
major catchments.  Original map from  http://www.wgcma.vic.gov.au. 
 

Six of Victoria’s 22 terrestrial bioregions are found within the West Gippsland region: 

the Alps bioregion; Highlands Southern Fall bioregion; Strzelecki Ranges bioregion; 

Wilsons Promontory bioregion; East Gippsland Lowland bioregion; and, Gippsland 

Plains bioregion.  Each bioregion is characterized by a set of climate and soils 

characteristics which are responsible for shaping the associated collection of native 

floristic communities and representative ecosystems.  
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Historically much of the West Gippsland region has been heavily modified by 

agriculture, industry and urban settlement.  The region provides much of the State’s 

electricity from brown coal-fired power stations and considerable water storage 

capacity for the State capital of Melbourne (Fisher, 2006).  The area contains several 

regional centres, substantial farming tracts and large protected areas, such as National 

Parks.  Land use is strongly influenced by tenure, private or public, with the two main 

commercial activities of the region being grazing (for beef and dairy) and 

conservation (WGCMA, 2006b).   

 

Within its catchment, the Authority is responsible for a suite of over 1500 wetland 

sites (greater than 1 ha in size), including several wetlands of international and 

national importance, which are listed on the Ramsar Convention and identified in the 

Directory of Important Wetlands Australia, respectively.  Note a listing of these 

significant wetlands has been given in Appendix C.  Collectively, the region’s 

wetlands represent a rich diversity of types, from alpine bogs, floodplain billabongs 

and morasses, to coastal lagoons and estuaries.  Wetlands occur on both public (e.g. 

Crown land) and private lands (e.g. on private owned farms) (WGCMA, 2006b & 

2006c).  The distribution of wetlands greater than 1 ha in the WGCMA is shown in 

Figure 3.3. 

 

As outlined in the previous chapter, there is a need to establish reliable information on 

the status and condition of much of Victoria’s wetlands (Centre for Environmental 

Management, 2005; Victorian Catchment Management Council, 2007).  To redress 

this situation, several Catchment Management Authorities including the Corangamite 

and West Gippsland, commenced systematic stocktaking of their wetland resources in 

the mid 2000s (Centre for Environmental Management, 2005; WGCMA, 2007).  In 

2005, the WGCMA embarked upon the preparation of a comprehensive and 

overarching regional Wetlands Plan “to help ensure that future investment in 

significant wetlands is targeted towards the highest priority activities and wetland 

assets over the next five years” (WGCMA, 2006c, p.6).  
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3.1.1 The WGCMA Wetlands Plan 

Early in the development of the Wetlands Plan, the need to fill gaps in knowledge of 

the region’s wetlands extent and condition was identified (WGCMA, 2007).  As part 

of Stage 1 of the Plan, wetland mapping and wetland inventory projects were 

organised to help establish the baseline condition of individual significant and non-

significant wetlands.  An assets-based assessment approach was devised to quantify 

the wetland services or functions at each site; the approach was applied to evaluate 

and classify non-significant wetlands during Stage 2 of the Plan.   

 

The WGCMA wetland inventory was undertaken by collecting baseline data for a 

representative sample of 163 wetlands, 7% of the 1,500 (>1 ha) naturally occurring 

wetlands in its region.  The sampling regime was devised by Greening Australia 

Victoria to ensure that the proportions and distributions of the major types of wetlands 

 
Figure 3.3: Map of wetlands greater than 1 ha in the West Gippsland Catchment 
Management Authority region.  The original image is found as Figure 4 on pg 19 
WGCMA Wetlands Plan Part A-Background and Method (2007).  The copyright belongs to 
the WGCMA. 
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present in the study region were mirrored in the sample set, both at catchment and at 

sub-catchment levels, and across private (56%) and public land tenures (46%).  

Within a given sub-catchment, individual wetlands were then randomly selected from 

a candidate pool using an arithmetic sequence applied to an assigned, yet arbitrary, 

wetland number to ensure representative sampling of different wetland types 

(Greening Australia, 2006).  Constructed wetlands, such as dams and impoundments, 

were not included.  Existing wetland records were validated and supplemented by 

onsite visits by a small team of trained assessors from Greening Australia, Victoria 

Incorporated, during May 2006 (WGCMA, 2006c).  All data were collated and desk-

checked before being used in the assessment process to identify wetlands of high 

environmental, social or economic value within the sample.  In the process, the data 

was used in the estimation of the type, and magnitude, of likely threats to each 

sampled site and a risk assessment was made as to the likelihood and consequence of 

potential threats on each of the values being estimated (WGCMA, 2005). 

 

The remainder of this chapter describes various aspects of the WGCMA wetlands 

assessment process.  First, important features of 2006 wetlands assessment, which 

make it suitable for examination in this thesis, are explained.  Following is a detailed 

description of wetland evaluation processes including its inventory collection, data 

collation and outcomes.  Finally, a discussion of the benefits and difficulties of 

traditional wetland assessments is undertaken, which points to the research method 

taken.  

 

 

3.2 The WGCMA 2006 wetland assessment 

There are several features of the wetland assessment exercise undertaken by the 

WGCMA in 2006 that make it well suited for use as the case study for this thesis.   

These features of the assessment relate to: 

• Ramsar Convention guidelines: The wetlands assessment undertaken by 

Greening Australia for the WGCMA incorporated each of the five tasks of 

rapid assessment listed in Resolution IX.1 Annex E (Ramsar, 2005) and 

mentioned in Section 2.4.2.  As well, the best-practice framework for wetland 
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assessments described in the Annex was followed in the approach used by the 

WGCMA to conduct their assessments (WGCMA, 2006b & 2006c); 

• Physical scope: The assessment covered the subcatchments of the Lower 

Macalister, Lower Thomson, Lower Avon and Lower Latrobe rivers.  The size 

of the incorporated region (over 17,000 km2) ensured that contrasting wetland 

types across private and public land tenures were represented within the 

analysis;   

• Diversity of wetland types: Using the descriptions of the Corrick and 

Norman scheme (1980), the assessment covered six of the seven wetland types 

recognized in the State of Victoria (Greening Australia, 2006).  All six types 

have suffered significant losses due to European settlement, most significant 

being 77% loss of Freshwater Meadows and 39% of Deep Freshwater Marshes 

having been recorded (WGCMA, 2007).  To capture this diversity, the 

inventory exercise collected much information across a variety of indicators to 

assess economic, social and environmental values of wetlands and to quantify 

threat impacts for wetlands; 

• Type of assessment: The assessment process was involved, and it required 

considerable time, resources and effort to implement.  Commencing with the 

decision to take an assets-based approach recognizing the importance of 

economic, social and environmental values of each wetland, it attempted to 

quantify each value through a measure of their component factors.  This step 

included wetland classification using the EVCs and Corrick and Norman 

(1980) schemes, as well as the application of known heuristics, consensus 

amongst wetland experts, and verification with historical records.  Next in 

consultation with stakeholders, a scoring system was devised for each wetland 

value, economic, social and environmental, and applied to the inventory data.   

This was followed by desk checking and proofing through site checks and 

interviews with land managers of the sampled wetlands.  Finally, using the 

computed value scores, the wetland sites were ranked so that high and very 

high economic, social and environmental value sites were identified and 

analyzed at a subcatchment scale to assist in the determination of future 

conservation investments (Greening Australia, 2006; WGCMA, 2006b); 

43 
 



• Timing: The rapid assessment occurred at a time when much international 

discussion of the practice was being made.  The Ramsar Convention, for 

example, was publishing its Resolution IX.1 Annex E (Ramsar, 2005) 

detailing the process.  Additionally, there were several differing approaches 

regarding choice of indicators for assessment reported in the literature, 

principally being the Hydrogeomorphic (HGM) and Index of Biological 

Integrity (IBI) methods (Brinson, 1993; United States Environment Protection 

Agency [U.S. EPA], 2003); 

• Currency: The base-line inventory, upon which the wetland assessment 

evaluation rests, is one of the most recent collections of wetland site data 

available for study.  It is also one of the largest and comprehensive datasets of 

its kind, occupying 7.61 Megabytes and comprising over 42 major tables and 

37 minor lookup tables, for which there are over 200 standard queries saved.   

Throughout this thesis, the dataset will be known as the West Gippsland 

Catchment Management Authority (WGCMA) Wetland Inventory Database; 

• Political and local contexts: The wetland evaluation has become the 

cornerstone upon which the WGCMA Wetlands Plan has been built 

(WGCMA, 2007).  The Plan is a major contribution to a comprehensive 

regional plan and it continues to guide management activities and investments 

for wetlands in the region during the following five years after its release.  As 

illustrated in Figure 3.4, the Plan is one component of a larger legislative and 

policy framework and it was influenced by the need to comply with 

international agreements, such as the Ramsar Convention, JAMBA and 

CAMBA, various National and State policy and Acts, along with other 

regional management plans (WGCMA, 2007); and, 

• Collaborative links and generosity of spirit: The author wishes to 

acknowledge the willingness with which staff of the Authority, principally Ms.  

Michelle Dickson, who provided access to the inventory data files and for her 

time taken over several occasions in detailed explanation of how the 

assessment and evaluation process was undertaken.  
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3.3 WGCMA wetland assessment process 

3.3.1 Assets-based management approach for wetland 
evaluation 

Prior to 2004, the West Gippsland Catchment Management held several workshops 

amongst stakeholders and technical experts to gain a consensus view on the most 

important assets in the region.  Amongst nine major assets identified, four biophysical 

assets were recognizable, Land, Water, Biodiversity, and Atmosphere and Climate.  

Wetlands were seen to be an important component of the Water asset class. 

 

 
Figure 3.4: The main legislation and policy relationships for the management of wetlands 
under the West Gippsland Catchment Management Authority jurisdiction.   The original 
version of this figure can be found as Figure 2 in the West Gippsland Catchment Management 
Authority Wetlands Plan: Part A-Background and Method (2007). 
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To identify and prioritize wetlands within the catchment according to the value of the 

wetland’s services it provides, a Wetlands Plan Steering Committee was set up.  Their 

work helped decide the significant wetland values to be measured and used in the 

WCGMA wetland assessment process (WGCMA, 2006b).  The lists of economic, 

social and environmental values categories decided upon are given in Table 3.1 with 

the five economic values: commercial fishing; tourism; production value; drainage 

disposal; and water supply.  The Table includes nine social values: recreational 

fishing; swimming; camping; hunting; boating; passive recreation; bird watching; 

education; and park value; and seven environmental values given as: wetland rarity; 

significant flora; significant fauna; habitat value; hydrology; vegetation intactness–

critical lifeforms; and vegetation intactness–width of vegetation fringe.  More 

information regarding these values, including their descriptions and how they were 

assessed is given in the upcoming Section 3.3.3: Data collection protocols.   

 
Further the Committee identified a set of threats, shown given in Table 3.1.  Threats 

were defined as actions or processes that could have negative consequences for 

wetland assets within the catchment, and they are seen to come from many quarters.  

Specifically, threats may derive from a range of uses of an asset, from within or 

outside of the region, and may occur in the present, past or future.  It was noted that 

the use of an asset for one purpose might, in itself, be a threat to the value of an asset.  

For example, a wetland drained and used in industrial development may have an 

increased economic value, which in turn would lower its environmental value.  The 

fourteen identified threats for the 2006 assessment were loss of wetland connectivity; 

stock access; pest plants; pest animals; urban development; native vegetation decline; 

land use; physical alteration; erosion; fire regime; recreation; water source; and, 

salinity.  Thus, the identification of specific economic, social and environmental 

values and possible threats categories augured the most appropriate indicators to be 

collected during the field inventory. 
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Table 3.1: Significant wetland values and threat categories used in the West Gippsland 
Catchment Management Authority wetland assessment process (WGCMA, 2006b). 

Economic 
values 

Social  
values 

Environmental 
values 

Threats 

Commercial  
fishing 

Recreational fishing Wetland rarity 
Loss of wetland 
connectivity 

Tourism Swimming Significant flora Stock access 

Production value Camping Significant fauna Pest plants 

Drainage disposal Hunting Habitat value Pest animals 

Water supply Boating Hydrology Urban development 

 

Passive recreation 
Vegetation intactness– 
critical lifeforms 

Altered hydrology 

Bird watching  
Vegetation intactness– 
width of vegetation 
fringe 

Native vegetation 
decline 

Education 

 

Land use 

Park value Physical alteration 

 

Erosion 

Fire regime 

Recreation 

Water source 

Salinity 

 

3.3.2 WGCMA process for evaluating wetlands  

The WGCMA wetland evaluation process was conducted on a per site basis for 163 

wetlands surveyed during the inventory exercise.  The process involved four major 

steps which are shown in Figure 3.5 and described following. 

1. Data collection and validation 

2. Score calculations 

3. Risk assessments 

4. Wetlands rankings and identifications 
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Figure 3.5: The steps taken to compute a rapid assessment of each inventoried wetland 
of the West Gippsland region.  The figure is a collation and summary of information 
supplied by WGCMA Wetlands Officer, Ms. Michelle Dickson (personal communications) 
and various documents (WGCMA 2006b, 2006c & 2007). 
 

1. Data collection and validation:  The economic, social and environmental values 

and threat categories listed in Table 3.1 were used by the Steering Committee to 

formulate a set of wetland attributes, for which data could be collected during the 

site visits, and then used in assessment of these values.  Their decisions regarding 

the appropriateness of one attribute over another were influenced by consideration 

of data availability, consistency with the Draft Policy Framework for Wetlands in 

Victoria (DSE, 2003) and the Index of Wetland Condition  specification (DSE, 

2005b), and relevance to the region (WGCMA, 2006b).  Details of the data 

collection protocols for these attributes are given in the next subsection.  
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Site visits were undertaken by Greening Australia staff in May 2006, who 

completed extensive field surveys and, where possible, undertook interviews with 

the respective land managers.  This work was followed up by data entry and desk 

checking for data validity of field-collected attribute measurements against other 

data sources including: Ramsar information sheets; the Directory of Important 

Wetlands, Australia; Parks Victoria management plans; Department of 

Sustainability and Environment spatial datasets; Victorian Heritage Register; and, 

Department of Sustainability and Environment Gippsland Lakes Index of Wetland 

Condition data (WGCMA, 2006b).   

 

Upon completion of the field surveys, the WGCMA entered data into Microsoft 

Access 2000® format database known as the “Wetland Inventory Database.”  The 

recorded measurements comprising 7.61 megabytes of data served as the primary 

repository for information required during the wetland assessment process.  

Additional existing information was found through literature review and desk 

checking and expert and local knowledge was gained through workshops and 

interviews.  As in other similar collaborative exercises (Costa, Farinha, Hecker & 

Vives, 1996), these meetings helped promote networking opportunities amongst 

staff and contacts as well as highlight regional wetland conservation issues.  

 

For all statistical and data-mining analyses of this research, I directly accessed the 

WGCMA Wetland Inventory Database for individual wetland’s records of the 

biological, chemical, hydrological and physical attributes in order to find the most 

important attributes and features of wetlands that predict high economic, social 

and environmental values, without needing to repeat steps 2, 3 and 4 outlined 

next.  Additionally, I examined the Database records to see the effect of wetland 

classification schemes on wetland assessments.   

 

2. Score calculations: After data collection, validation and storage, the next step 

undertaken by the WGCMA was the assessment of condition and threats for each 

sampled wetland site.  Condition assessment involved deciding a score for each of 

the Table 3.1 listed economic, social and environmental values, which resulted in 

21 separate scores, each rated on a scale of 0 to 5.  As well, threat assessment for 

each of the 14 threat categories used a scoring system on a 0 to 5 scale.  Full detail 

49 
 



of the scoring system is given in Appendix D.  As an illustration, for the 

environmental value of Significant flora, the scoring was 0 if no data was 

available, 1 if no threatened species were listed, 2 for a Victorian conservation 

status value listed as ‘poorly known’, 3 for a Victorian conservation status value 

listed as ‘rare’, 4 for a Victorian conservation status value listed as ‘vulnerable’, 

and 5 for any category listing under the national Environmental Protection and 

Biodiversity Conservation Act, or a Victorian conservation status value listed as 

‘presumed extinct, or endangered’, or listed as ‘threatened in Vic’ Flora and Fauna 

Guarantee Act.  To help decide these scores, data was queried from the West 

Gippsland Catchment Management Authority Wetland Inventory Database.  The 

resultant scores were checked with relevant experts and land managers, before 

their use in the risk assessment computation as detailed following (WGCMA, 

2006c). 

 

3. Risk assessments: After the collection of each of the 21 values (5 economic + 9 

social + 7 environmental) and 14 threat scores for each wetland in the survey, 

WGCMA staff calculated 294 (21*14) individual risk assessments representing all 

interactions between the possible threats present and the wetland’s economic, 

social and environmental values.  It is the overall magnitude of these 294 

assessments that decided the ranking of individual wetlands under assessment 

within the catchment.   

 
The process of calculating a risk assessment for a particular wetland value/threat 

pairing was determined by the WGCMA as the likelihoods that a threat may 

impact on a particular economic, social or environmental value, and if the threat 

occurred, the consequence of that impact on the value.  This was done through the 

use of three scoring matrices, whose design was informed by local knowledge, 

review of wetland management literature, the professional judgement of WGCMA 

officers and in consultation with scientists and land managers (WGCMA, 2006b).  

The scoring matrices were the likelihood matrix, the consequence matrix and the 

risk level matrix, as shown in Figure 3.6.  The likelihood matrix was used first to 

tie varying threat levels to their associated impact levels on any wetland value, 

through a graded scoring system.  The level of association was based on 

professional judgement and the literature searches before validation through 
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consultation.  The level of association was used to compute the likelihood (the 

relationship of the level of association to varying threat levels) as seen in the 

values of the likelihood matrix.  Next, the consequence matrix was used to 

measure the impact of a particular threat upon an asset’s value rankings.  Note that 

the higher the wetland value, the higher the consequence, since it is a one-to-one 

scoring relationship.  Finally, when the results of the lookups from the likelihood 

and the consequence matrices had been done to ascertain their respective values, 

the risk level matrix was used to calculate whether the combined effects of 

likelihood and consequence were very high, high, moderate or low risk values.   

These different value levels were associated a number, derived from the sum of 

consequence and likelihood values resulting in a grading from 2 to 10 in the 

matrix, as shown in Figure 3.6.  

 

4. Wetlands rankings and identifications: All risk values were totalled for each 

wetland.  The sums were used to rank wetlands and decide which sites were of 

very high and high economic, social and environmental values within the 

catchment.  These rankings were then used to initiate management discussions and 

planning for prioritizing and targeting wetland investment in the West Gippsland 

region (WGCMA, 2006c).  

 

Throughout the remainder of this thesis, I will use capital letters to distinguish the 

outcomes of the WGCMA wetland assessment rankings for economic value as 

Economic value.  On the occasions where I use lowercase for economic value, I am 

referring to the broader meaning of this term and not its specific WGCMA assessment 

ranking.  Likewise when specifically referring to the WGCMA assessments of social 

value and environmental value, I use the capitalized Social value and Environmental 

value respectively.  
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Figure 3.6: The Likelihood, Consequence and Risk level matrices used in the rapid 
assessment of individual wetlands of the West Gippsland region.  Original sources of the 
matrices are Tables 11, 12 and 13 of the West Gippsland Catchment Management Authority 
(2006c). 

 

3.3.3 Data collection protocols  

At each site visit, Greening Australia assessors completed extensive field surveys and, 

where possible, undertook interviews with the respective land managers.  Some of the 

information recorded included:  

• Identification details of the wetland, size, geographic location, photographic 

record, date of assessment, name of assessor; 

• Land tenure details, including current land and wetland usage, owners’ plans 

for the wetland; 

• Physical features of the wetland, incorporating wetland category type, 

substrate, inundation status; 
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• Vegetation status, including types of vegetation present, EVC classification, 

width of vegetation fringe, presence and types of weeds; 

• Fauna diversity and types; 

• Habitat types and their nature; 

• Water quality, including pH and turbidity; 

• Hydrology, including recording of modification activities; 

• Recreational activities and commercial uses of the wetland site; 

• Evidence for threats, including exotic flora and introduced fauna, loss of 

native vegetation, eutrophication, erosion, drainage activities and physical 

alterations; and, 

• Survey of land managers’ views on wetlands, their management practices and 

their understanding of the functions of wetlands and services they provide.  A 

copy of the infield survey, notes for completion of the survey and interview 

form for recording results are supplied in Appendices E and F.   

 
The analyses undertaken in my research rely on the field-collected attribute values 

used to measure each of the wetland values and threat categories.  Therefore more 

information of each of the major categories in the inventory collection, and salient 

details follow.  A more detailed and thorough description of the wetland inventory 

process, its limitations and difficulties in data assemblage is given in the West 

Gippsland Wetland Inventory Report, July 2006 by Greening Australia Victoria Inc. 

(Greening Australia, 2006).   

 

Wetland type 
As mentioned in Chapter 2, Section 2.2.3, the most widespread wetland classification 

scheme in use in Victoria at a regional scale is that of Corrick and Norman (1980) and 

Corrick (1981).  Based on discrete characteristics of depth, period of inundation and 

vegetation subcategories, this scheme was used in deciding the sampling regime to 

ensure that there would be adequate representation of each wetland type.  Table 3.2 

lists the number of wetlands of each wetland category in the West Gippsland region as 

identified in State-wide mapping, together with the numbers of wetlands surveyed in 
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the inventory sample.  A check of the representations of each wetland category is 

somewhat skewed since over 40% of wetlands needed reclassification after infield 

assessments.  This high proportion of wetland reclassification accounts for the two 

wetlands, one listed as unclassified and the other as flooded river flat, that do not have 

a record within the region listing but were included in the inventory based upon their 

infield identifications (Greening Australia, 2006).  

 

Table 3.2: Wetlands in the West Gippsland region and the number of wetlands of each 
type included in the inventory exercise.  Original table source is Greening Australia 
(2006, Table 4.1, p.27).  Note the * denotes exclusion of Ramsar listed wetlands, as by 
definition these wetlands are already identified as being of high value and thus, they do not 
need inclusion in the inventory and rapid assessment exercise. 

Wetland Category No. of 
wetlands 

in 
region* 

Area of 
wetlands in 
region* (ha) 

Number in 
wetland 

inventory 
sample 

Area of 
wetlands in 
sample (ha) 

Unclassified wetland 0 – 1 0.9 

Flooded river flat 0 – 1 1.7 

Freshwater meadow 219 1171.1 31 168.8 

Shallow freshwater marsh 579 5172.5 71 687.1 

Deep freshwater marsh 444 3473.1 27 196.0 

Permanent open freshwater 
wetlands 

304 981.7 15 28.0 

Semipermanent saline wetlands 88 2316.5 16 688.1 

Permanent saline wetlands 10 559.6 3 22.9 

Totals 1,644 13,675 164 1,793 

 

Flora, fauna and habitat of wetlands 
In Victoria, there are 20 broad groupings and 34 sub-grouping of Ecological 

Vegetation Class (EVC) used to classify native vegetation, including wetland 

vegetation (DSE, 2013a).  Background details of the scheme are found in Chapter 2, 

Section 2.2.3.   For the WGCMA inventory, a check was made to identify the 

existence of one or more wetland and terrestrial EVCs present at each location.   

Benchmark comparisons were made against EVC descriptions, which list minimum 
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species diversity needed for a specific EVC qualification.  Additionally, for the 

dominant EVC present, further infield assessments were made regarding the quality or 

condition of the main EVC entailing an estimate of the predominant species, or group 

of species, and their health.  Within each EVC for a particular location, the failure to 

meet the relevant benchmark of minimum species diversity and cover levels for each 

lifeform provided evidence of wetland modification.  In particular, the presence of 

potentially invasive indigenous species, such as River Red Gum, Tangled Lignum 

etc., indicated that the wetland site had undergone hydrological or hydrogeological 

changes.  A further indication of threat or site disturbance was made by the 

identification of the extent of invasion by introduced plant species, i.e. weeds.  For 

more details, the site inventory instrument is found in Appendix E. 

 

Habitat value was assessed by noting the presence, or absence, of permanent deep 

water pools, shallow to medium water levels, exposed substrate, submerged or free-

floating vegetation, emergent vegetation, logs and rocks, tree and shrub coverage, 

islands, and shoreline profiles.  Further indicators recorded at each site were the 

measure of width of vegetation fringe or wetland buffer present and the recording of 

faunal evidence (burrows, tracks, bird or frog calls) of natives and invasive species at 

the site.   

 

Wetland hydrology 
Two steps were undertaken by the WGCMA to capture hydrological data.  The first 

involved an onsite assessment of evidence for the presence and impact of any 

hydrologic modifications that appeared to be different from natural water flows.  The 

presence of water storages and water extraction, or changes to the inflow or outflows 

including blockages, were looked for and recorded by Greening Australia staff.  If 

these activities were seen, then each modification was individually assessed as to its 

impact on the wetland under study.  The second step was formal discussion with, and 

the survey responses, of the current land manager.  Often during interview, managers 

would be able to relate several historical changes or events that had impacted upon 

their sites, thereby substantiating the field observations.   

 

55 
 



Importantly, if discerned at a site, the extent and impact of hydrological change could 

be used as an indication of wetland services under threat, particularly as more than 

half of the wetlands surveyed had a redirection of the natural flow (Greening 

Australia, 2006, p.29).  The type of modification and the degree of threat varied 

across the assessments and wetland classification types, with freshwater meadows 

being most severely affected.  For a detailed analysis per wetland type, see the West 

Gippsland Wetland Inventory July 2006 report (Greening Australia, 2006, p.30-32).  

 

Water quality 
Water quality was indicated by onsite measurements of three values: pH, electrical 

conductivity and turbidity.  Attempts were made to record these variables for the 

source water (runoff, groundwater, flooding) of a particular wetland.  However, the 

efforts were in part frustrated by the autumnal timing of the assessment, which was 

undertaken after a number of consecutive dry seasons.  Note that nitrogen and 

phosphorus levels were not measured. 

 

Heritage values 
An initial assessment of the heritage value was done during the site appraisal of each 

wetland, looking for cultural evidence of indigenous and/or post-European settlement 

occupation.  Subsequently, the infield assessments were followed up through 

consultations with indigenous cultural heritage officers and local history experts. 

 

Threats assessment 
Evidence for the existence of, and extent of threats that affect wetland services is 

often seen during assessment of the hydrology or the vegetation, fauna and habitat at a 

location.  Some of the considerations the inventory exercise checked to find evidence 

for were loss of wetland connectivity; inappropriate grazing practices; lack of 

reservation; exotic flora; introduced fauna; decline in condition of native riparian 

vegetation; loss of area since European settlement and physical alteration; 

surrounding land-use practices; inappropriate recreation activities urban development; 

altered hydrology and drainage into wetland; other than natural fire regime; salinity; 

and, erosion (Appendix D).  
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Land manager interviews 
For each site visit undertaken during the inventory phase, a commitment was made to 

conduct an approximate 30 minute interview with the incumbent land manager.   

Sometimes realizing this commitment was impossible; it was difficult to identify who 

held exact tenure or some land managers were unwilling or unable to supply the 

quantitative data being requested (Greening Australia, 2006, p.23).  Interviews with 

land managers were used to collect raw data on various social and economic attributes 

of their wetland, which was later validated through workshops and consultations with 

community stakeholders.  A copy of the interview questions is given in Appendix F. 

 

There were a number of wetlands zoned within a heavily modified and intensively 

farmed area, known as the Macalister Irrigation District (MID) and shaded brown in 

Figure 3.2.  Land managers in this district were asked to complete the original 

questionnaire and an additional 21 questions relating to their management practices.  

Of interest, were their stocking practices and reasons for these, their control or 

otherwise of native and introduced vegetation, weeds and feral animals, and their fire 

prevention efforts.  Additionally, these land managers were more intensively surveyed 

as to their beliefs about, and feelings toward the wetland services that their wetland 

provided using a series of statements, which were scored using a Likert-type scale.  

Details of this additional survey are found in Appendix F. 

 

Collectively the returns from the land managers provided a wealth of information for 

the WGCMA, least of which was an understanding of how each land manager’s 

attitude towards their wetland and the services they provided.  For instance, when 

nominating the one feature that the land manager liked most about their respective 

wetland, some private land managers, although not the majority, nominated 

production based values over conservation based values; this was not the case for 

public land managers.  Through analysis of these responses, it seems that there “is a 

significant group of private land holders who would be open to practical solutions to 

their production based issues that will also deliver a positive contribution to wetland 

preservation and protection” (Greening Australia, 2006, p.41).  The WGCMA hopes 

to more accurately target its marketing approaches, which espouse the virtues of 

wetland conservation values to this group of private land managers.   Recent efforts 
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have been made to identify more specifically the views held by this group (Wise, 

2010). 

 

 

3.4 Findings of the WGCMA wetland assessment  

The WCGMA wetland evaluation and ranking process resulted in the identification of 

high scoring wetlands for economic, social and environmental values, as well as the 

identification of wetlands most at risk of degradation (Greening Australia, 2006; 

WGCMA, 2007).  As a consequence of these identifications, the WGCMA set about 

establishing and costing a Strategic Management Action Plan, which incorporated a 

set of Individual Wetland Management Action Plans for the identified high scoring 

sites (WGCMA, 2006b).  The collective goals of these Plans were the protection and 

enhancement of the ecological character of high-value wetlands; the maintenance and 

improvements to wetland condition; the maintenance of social and economic values 

of wetlands; and, the promotion of community involvement in wetland management 

(WGCMA, 2007).  The details of the resulting Plans are not the concern of this thesis.  

Of primary interest and importance for this research are the patterns observed by the 

WGCMA amongst the input data, and where noted and reported, the contributing 

attributes that were aligned to high and low value assessments in 2006.  These 

attributes are listed so that they can be used as baselines for the comparisons made in 

the following chapters.  

 

The inventory data was interrogated by Greening Australia (2006) as part of their 

inventory work.  The data was examined at a regional, subcatchment and individual 

wetland scales, and mostly for indicators of economic and social values.  Although 

very detailed, the analysis reported only the frequency of attributes collected in the 

field; it was not the remit of Greening Australia to undertake the scoring and 

evaluation of wetland sites, nor to sample wetlands of international or national 

significance.  As described in Section 3.3.2: WGCMA process for evaluating 

wetlands, the WGCMA collated and validated inventory data, undertook score 

calculations and risk assessments to rank the inventoried subcatchment wetlands.   
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The character and values of all wetlands, including significant and subcatchments 

wetlands, is described in the WGCMA report for the Wetlands Plan (WGCMA 2007), 

which repeats the inventory frequencies supplied by Greening Australia and it adds 

descriptions of economic, social and environmental values of the identified significant 

wetlands.  The WGCMA report suggests, although details are not specifically given, 

that the scoring system was also applied to significant wetlands since rankings results 

appear for these wetlands in each of the wetland values and in counts of high risks.  A 

broad-brush description of economic, social and environmental attribute frequencies 

and the most important threats across all wetlands in the region follows.  Included are 

any reported associations between input data and high values noticed.   

 

Economic value 
Inventoried subcatchment wetlands: It was reported that 70% of these wetlands had 

some commercial value, with almost half supporting grazing by beef cattle.  Tourism 

was recorded at 29% of sites, mostly publicly owned, and dairying and forestry 

accounted for the remainder of recorded economic values.  

Nationally and internationally significant wetlands: Tourism was the most significant 

economic attribute recorded at seven wetland sites.  Three sites had commercial 

fishing operations, including one of the seven sites displaying tourism.  There was 

some production values for the adjoining lands to significant wetlands, and a small 

number of wetlands were used for water disposal drainage and for water supply.  

High scoring wetlands: High scores for commercial fishing, production and tourism 

decided the highest economic value wetland sites, and low value sites scored poorly 

on all of these aspects.  The wetlands of highest economic value in order were Corner 

Inlet, Anderson Inlet and Lake Wellington, all of which are wetland sites of 

international and/or national significance (Appendix C).  For comparison, the highest 

scores for other than significant wetlands were found in № 18 Lower Tarra, №.4 

Lower Macalister, № 7 Lower Avon and № 9 Lower Thomson subcatchments, where 

the highest summative scores indicated wetlands of moderate economic value.   

Scores for significant wetlands and catchment wetlands are displayed together in 

Figure 3.7, where the vertical axis shows the range of scores from low (5) to very high 

(18) (WGCMA, 2007).  Examination of this Figure shows that collectively significant 

wetlands tend to have higher economic values than wetlands within subcatchments, 
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and evidenced by most of their mapped rankings being found to the left of the centre 

in the graph. 

 

Social value 
Inventoried subcatchment wetlands: The majority of wetlands, 78%, showed some 

recreational value, with the most reported activity being bird watching at 65% of sites.   

Passive recreation was recorded for 50% of sites, followed closely by hunting at 47%.   

Educational activities were recorded for 38% sites and motorbikes and four-wheel 

drive activity at 21%.  

Nationally and internationally significant wetlands: Perhaps surprisingly, hunting was 

reported in nine significant wetlands, more so than bird watching in at least seven 

sites, and fishing, boating and swimming at four significant wetlands.  Importantly, 

over half of the wetlands have sites registered for indigenous cultural significance and 

40% of all sites were valued for their visual amenity. 

High scoring wetlands: For social value, the highest value sites were those exhibiting 

indigenous and European cultural values together with high visual amenity.  The 

wetlands deemed lower in social value did exhibit some of these features, but not in 

combination.  As seen in Figure 3.8, wetlands of international or/and national 

significance have very high social value scores of above 40.  The highest scoring sites 

were Shallow Inlet, Corner Inlet, Dowd Morass and Lake Tarli Karng, whereas the 

highest subcatchment social value score was 36 for № 28. Waratah Bay.  The pattern 

observed in Figure 3.7, where most significant and important wetlands are found to 

the left of centre due to their higher scores, is repeated for Figure 3.8.  Note the 

scoring systems for economic, social and environmental wetland values were different 

due to the number of contributing attributes used in the assessment; therefore the 

vertical axes of Figures 3.7, 3.8 and 3.9 are of different ranges, but it is the ranking 

between sites that is of importance, so each vertical axis has been scaled into very 

low, low, moderate, high and very high graduations where appropriate.   

 

Environmental value 
Inventoried subcatchment wetlands: Details of separate environmental value 

frequencies were not specifically given in either report.  Rather, the number of 

threatened and endangered species across the study area was given together with a 
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description of the threats present at various sites.   For fauna, 84 species were listed as 

threatened and five species as endangered under the Environment Protection and 

Biodiversity Conservation Act [EPBC] (EPBC Act, 1999): Baw Baw Frog; Southern 

Brown Bandicoot; Orange-bellied Parrot; Swift Parrot; and, the State’s faunal emblem 

Leadbeaters Possum.  For flora, 131 species were threatened and five endangered 

under the EPBC Act, and four species were listed under the Flora and Fauna 

Guarantee [FFG] Act 1988, Victoria (FFG Act,1988).  A detailed description of the 

impact of hydrological change was given for each Corrick and Norman (1980) 

wetland type and it was noted that Permanent Open Freshwater is the most at risk due 

to a range of threats, but details were not given. 

Nationally and internationally significant wetlands: As expected, these sites provided 

habitat for threatened flora and fauna, and in particular water birds and migratory 

waders.  Half of these wetlands had at least one threatened flora species and 86% had 

at least one threatened fauna species, and only three wetlands had none.  Further, 23% 

of wetlands were identified as a vulnerable type in Victoria, including amongst many 

others, Bald Hills Wetlands, Caledonia Fen, Sale Common, and Dowd Morass. 

High scoring wetlands: Wetlands ranked as the highest in environmental value scored 

well for vegetation intactness, habitat value and wetland significance whilst wetlands 

assessed as low in value scored poorly for significant flora, habitat value and wetland 

rarity and in some cases hydrology (WGCMA, 2007).  The vertical axis of Figure 3.9 

shows the range of scores assigned to each category of environmental value, that is, 

highest value wetlands scored between 21 and 28 in the evaluation process.  These 

included those of national and/or international significance, being Victoria Lagoon, 

Dowd Morass and Sale Common and those in subcatchments № 22. Nine Mile Creek, 

№ 1. Upper Macalister, № 26. Wilsons Promontory and № 28. Waratah Bay.  

Examination of Figure 3.9 shows that wetlands already identified as significant tend 

to be amongst the majority of higher value wetlands, although the pattern is not as 

strong as in Figures 3.7 and 3.8. 

 

Threats 
The assets-based management approach was concerned with threat identification and 

the likelihood of threat impact on a wetland.  Counts were made of the total number 

of very high and high risks for each individual significant and subcatchment wetlands 
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to inform prioritisation efforts for the Catchment Authority and planning for the 

Management Action Plans.  It is important to note that the risk assessment 

calculations for significant wetlands (Ramsar and Directory of Important Wetlands 

listed) were conducted on a different set of risk categories to those listed in Table 3.1; 

urban development was not used, but assessments of additional risks of 

eutrophication, resource utilization, sedimentation, change in size and lack of 

reservation were included in summing the totals of high and very high risks for these 

sites.  This change in the details of the risk assessments for significant wetlands are 

found buried in Appendix 4 of the West Gippsland Wetlands Plan: Part A Report 

(2007) and are not mentioned in its main text.  The different assessment regimes mean 

that comparisons of risks should be made only within wetlands of significance group 

and within subcatchment wetlands group, and not between. 

Inventoried subcatchment wetlands: The Permanent Open Freshwater wetlands 

recorded the greatest number of threats (Greening Australia, 2006), however, it was 

noted that regardless of a wetlands type, the two major threats were changes to 

hydrology seen in 74% of the sample, where there were changes to inflow (44%) or 

changes to the timing of the inflow (30%); and, grazing (40%) which was linked with 

declines in native vegetation, loss of reservation and associated with an influx of 

exotic flora.  Additionally, the loss of wetland connectivity was observed at 32% of 

surveyed sites.  Importantly, 46% of wetlands are held publicly, and it was seen 

collectively that wetlands under public management were in generally much better 

condition than those privately owned; 80% of Victoria’s wetlands are in private hands 

(Greening Australia, 2006). 

Nationally and internationally significant wetlands: The WGCMA report (WGCMA, 

2007) does not specifically list the threats to these wetlands, although as mentioned 

above, an assessment of threats was undertaken. 

High scoring wetlands: Wetlands of significance showing the greatest ‘very high’ risk 

scores are Corner Inlet and Dowd Morass, as shown in Figure 3.10.  The largest ‘very 

high’ risk scores are for subcatchments № 18. Lower Tarra, № 12. Moe River and № 

35. Upper Powlett as seen in Figure 3.11.  
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Figure 3.7: Overall Economic values assessed for identified significant wetlands and the subcatchments of the West Gippsland Catchment 
Management Authority region.  Significant wetlands are shaded blue and subcatchments are shaded green and numbered.  Data for this figure has 
been derived from Figures 9 and 12 of the WGCMA: Wetlands Plan Part A- Background and Method, 2007 on pages 26 and 28.  
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Figure 3.8: Overall Social values assessed for identified significant wetlands and the subcatchments of the West Gippsland Catchment 
Management Authority region.  Significant wetlands are shaded blue and subcatchments are shaded green and numbered.  Data for this figure has 
been derived from Figures 8 and 11 of the WGCMA: Wetlands Plan Part A- Background and Method, 2007on pages 26 and 28.  
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Figure 3.9: Overall Environmental values assessed for identified significant wetlands and the subcatchments of the West Gippsland 
Catchment Management Authority region.  Significant wetlands are shaded blue and subcatchments are shaded green and numbered.  Data for this 
figure has been derived from Figures 7 and 10 of the WGCMA: Wetlands Plan Part A- Background and Method, 2007 on pages 25 and 27. 
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Figure 3.10: The number of ‘very high’ risk scores assessed for identified significant 
wetlands of the West Gippsland Catchment Management Authority region.  Data for 
this figure has been derived from Figure 15 of the WGCMA: Wetlands Plan Part A- 
Background and Method, 2007 on page 31. 

 

 

Figure 3.11: The number of ‘very high’ risk scores assessed for subcatchment 
wetlands of the West Gippsland Catchment Management Authority region.  Data for 
this figure has been derived from Figure 13 of the WGCMA: Wetlands Plan Part A- 
Background and Method, 2007 on page 30. 
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3.5 Critique of the WGCMA assessment process 

Primarily, the goal of the WGCMA assessment process was the identification of the 

most valuable wetlands in the region, so that strategic site-specific Individual Wetland 

Management Action Plans could be formulated to target future effort towards the 

protection and preservation of higher valued wetlands and enhancements of their 

condition (WGCMA, 2006b).  More broadly, the assessment is an example of multi-

criteria decision analysis (MCDA).  MCDA has been used extensively in natural 

resource management decision-making worldwide (Bryan et al., 2010; Diaz-Balterio 

& Romero, 2008; Regan et al., 2007; Steele et al., 2009).  In their review of MCDA 

methods, Mendoza and Martins (2006, p.1) cite the work of Belton and Stewart 

(2002) in listing the important properties of the MCDA approach that are useful for 

natural resource management as:  “(1) it seeks to take explicit account of multiple, 

conflicting criteria, (2) it helps to structure the management problem, (3) it provides a 

model that can serve as a focus for discussion, and (4) it offers a process that leads to 

rational, justifiable, and explainable decisions.”  These features of the MCDA help 

resource managers to keep the process transparent, open to scrutiny and accountable 

to stakeholders and interested parties (Brouwer et al., 2003).  By adopting MCDA for 

wetland assessment, the WGCMA was able to: focus the efforts of community 

stakeholders and technical experts; formulate a scoring methodology to assess 

wetlands that incorporated 21 economic, social and environmental values (measured 

using different scales) and 14 threat categories (listed in Table 3.1); rank a 

representative 163 wetland sites in the West Gippsland region; and, progressively 

report upon the process (WGCMA, 2006b, 2006c and 2007).  

 

Specifically, the WGCMA wetland value assessments can be classified as an instance 

of value-measurement model (Belton & Stewart, 2002) since individual wetland 

assessments were made through a numerical scoring system.  As previously detailed 

in Section 3.3.2, every economic, social and environmental value was scored using 

inventory data and predetermined scales, and followed by risk assessment 

calculations, using likelihood, consequence and risk level matrices.  Totals of risk 

relationships were made to compute economic, social and environmental values for 

every wetland site surveyed (WGCMA, 2006b).  Final identification of wetlands with 

high or very high evaluations for social or economic or environmental values involved 
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synthesis of the risk analysis with local knowledge, database interrogation, literature 

reviews and workshop discussions.  

 

One advantage of using a value-measurement model is that it allows comparative 

measures of wetland services and their degrees of risk to be measured across a broad 

diversity of wetland types under various condition states.  However, as evidenced by 

the different ranges of scales in Figure 3.7, Figure 3.9 and Figure 3.10, the use of 

scoring systems results in an assessment that is somewhat arbitrary; the scales 

themselves have no direct meaning, and comparisons of wetlands can only be made 

within Figures, that is, only where the same assessment metric has been used.  Steele 

et al. (2007) comment on the problem of scaling when using MCDA for 

environmental decision-making.  They illustrated that it is possible to change final 

rankings of options by recalibrating scoring scales and weights of computation 

matrices.  Steele et al. (2007) stress that practitioners need to be aware of this 

difficulty and to avoid calibration-generated problems by ensuring that the scaling 

within computation matrices are graded to reflect, as near as practicable, the relative 

importance of the criteria being calibrated.  The difficulty of the WGCMA wetland 

assessment is that the process was based on the scoring of categories (Appendix D) 

and in this semi-quantitative method, the scoring of separate categories did not 

indicate any sense of magnitude, but it imply ordering.  For example, for the 

environmental value of Significant flora the scoring system, a 4 assigned for any 

Victorian conservation status value as ‘vulnerable’ is not twice as good as a grading 

of 2 where a Victorian conservation status value has been assigned as ‘poorly known’.    

 

The value-measurement model and the scoring mechanism used by the WGCMA, is 

in of itself, an arbitrary mechanism.  In reality, its incorporation of various economic, 

social and environmental values and threat categories (listed in Table 3.1) was an 

attempt to describe and quantify the complexity of wetland function and condition.  In 

deciding the value-measurement model, the Wetlands Plan Steering Committee was 

cognizant of local contexts and conditions, Victorian government policy on wetlands 

and components the Index of Wetland Condition.  Pragmatic decisions were made as 

what would be the best attributes to collect data on, the autumnal timing of the onsite 

assessments, and the spatial scales used for measurement.  Both qualitative 

descriptors and quantitative values in calculating ecosystem/wetland values were used 
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as a mechanism to help cover the level of uncertainty in understanding of how these 

complex systems are structured (Christensen et al., 1996; Turner et al., 2003). The use 

of categorical data to describe wetlands has important implications for the statistical 

analyses undertaken in this research.  Employing categories for many wetland 

attribute values restricts the number of suitable approaches that can be applied to the 

dataset, and the inferences that can be made thereafter.  This impact and the resulting 

available options are detailed in Chapter 5. 

 

Another aspect of the value assessment undertaken by the WGCMA is its use of a risk 

assessment matrix to help map probabilities or likelihoods of threats against their 

possible impacts or consequences.  The practice of using a risk matrix to help 

prioritize and inform management decisions is extremely widespread, and it is not 

confined to natural resource management decisions (Regan et al., 2007; Steele et al., 

2007).  Risk matrices are often recommended in national and international standards 

for guiding management decisions and resource allocations and their use can be found 

in applications as diverse as terrorism risk analysis, highway construction projects and 

climate change risk assessments (Cox, 2008).  

 

Finally, it is important to note that the benefits and transparency of WGCMA wetland 

value assessment came at considerable cost; it was time consuming, labour intensive 

and expensive.  To help ensure consistency of the infield data collection, visits were 

conducted by as few as three Greening Australia staff, and it is assumed that any 

inter-user variability was noted and accounted for during the extensive desk-checking 

exercises by WGCMA staff. Overall, the assessment involved establishing 

stakeholder workshops, engaging community viewpoints, garnering of technical 

expert advice, deciding scoring and ranking schemes, commissioning and paying for 

site visits, collecting and entering of field and historic data, validating and desk 

checking of data entries, calculating hundreds of risk assessments per wetland site, 

collation of every sites’ risk assessments,  ranking of all sites for economic, social and 

environmental values, and further desk checking and validation of values and 

rankings through stakeholder consultation. A limitation of the reports on the 

assessment outcomes is an absence of the conceptual models underpinning the task 

and a deeper discussion of how the complexity and interconnectedness of West 
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Gippsland wetlands was accounted for (Greening Australia, 2006; WGCMA, 2006b 

and 2006c). 

 

In this case study, it can be seen that  individual wetland evaluations are the result of a 

synthesis of a broad range of indicators, including chemical, hydrological and 

biological factors and the wealth of social information from landholders collected 

during the inventory exercise and stored in the WGCMA Wetland Inventory 

Database.  This thesis hypothesizes that, through interrogation of the Database using 

statistical and data-mining methods, it is possible to ascertain the overall social, 

economic and environmental value assessment for each wetland site using far fewer 

inputs.  Building upon the frequency statistics and the associations between various 

site characteristics and high-value assessments noted by Greening Australia (2006), in 

this research, I will first apply cross-tabulation analysis and Pearson’s rho correlation, 

to better pinpoint input features with strong links to high-value assessments.  Then, 

using more extensive and sophisticated techniques, multivariate statistical analyses 

and neural networks, my research will data mine the Database depository searching 

for input features with high predictive potency for classifying high-value wetlands.  

Further, these data-mining methods will provide a set of methods and models that will 

perform wetland assessments using these salient inputs.  

 

The discovery of these input features and their pertinent associations would describe a 

minimal dataset of variables for ascertaining wetland assessments and rankings in 

West Gippsland, and thereby reducing overall time and labour costs in data collection 

and assessment processing.  Particularly, reductions in effort and expenditure would 

come about as it will no longer be necessary to perform three of the four steps 

described in Section 3.3.2: WGCMA process for evaluating wetlands, being step 2. 

score calculations, step 3. risk assessments, and, step 4. wetland rankings, to perform 

wetland assessments.  The identification of a minimal dataset of input variables 

necessary for wetland assessments will have ramifications for future inventory 

collections, wetland assessments and monitoring efforts in the region. 

 

In the next chapter, I report upon my interrogation of the Wetland Inventory Database 

using univariate statistical techniques for each input value and threat category listed in 

Table 3.1.  Frequency tables will be extracted from the Database and they compared 
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to those reported by Greening Australia (2006).  Further, cross-tabulation analyses of 

all attributes will be generated and searched for associations to economic, social and 

environmental evaluations.  Multivariate statistical analyses will follow in Chapter 5 

and the application of neural networks to wetland assessments will be presented in 

Chapter 6. 
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Tarra River, Victoria.   

Image courtesy of Paul Boon 
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Chapter 4  

Univariate statistical analyses 

Chapter 3 described the 2006 WGCMA wetlands assessment, its input data collection 

and evaluation process to rank wetland sites for economic, social and environmental 

values.  The assessment process incorporated data values for 163 inventoried 

wetlands which were stored in the large dataset of the Wetlands Inventory Database.  

The Database contained data for the many attributes used to indicate the presence 

and condition of various economic, environmental and social values and threat 

categories at each inventoried site. In my research, the Database records are 

analysed and searched for associations between input attributes and the 

classifications of high economic, social and environmental value wetlands.  

 

This chapter details the interrogation of the Wetlands Inventory Database using 

univariate statistics.  First, frequency statistics are generated for all attributes used in 

the wetland assessments to determine what information can be extracted in addition 

to that reported by the WGCMA and described in Chapter 3.  Second, cross-

tabulation analyses of input attributes are carried out to create contingency tables, 

which are searched for attributes that predict, to some degree, high-value wetlands.  

These results will be compared to observations made by the WGCMA in their report.  

 

The univariate statistical analyses presented in this chapter provide a baseline for 

more complex analyses described in Chapters 5 and 6. 
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4.1 Introduction 

Statistics are employed to describe, clarify and present data, derive information and to 

investigate associations amongst data that helps users make sense of the real world 

(Australian Bureau of Statistics, 2010).  As part of their Inventory Report for the West 

Gippsland CMA, Greening Australia used simple descriptive methods, including 

frequency statistics to describe the data (Greening Australia, 2006).  Attribute 

frequencies were collated by Greening Australia at regional, subcatchment and 

individual wetland levels, and these were repeated in the WGCMA Wetlands Plan 

document (WGCMA, 2007), together with frequencies for significant wetlands 

(Ramsar and Directory of Important Wetlands listed).  As described in Section 3.4: 

Findings of the WGCMA wetland assessment, some associations between attributes 

and high-value wetlands were detected and these were reported in the WGCMA’s 

Wetlands Plan document.  This activity appears to have been done in passing and with 

little emphasis; it was not reported systematically.  This is not surprising as the goal of 

the Wetlands Plan document was to recount the Wetlands Plan development, its 

background, methods of the wetland inventory and assessments, and a description of 

its outcomes, rather than undertake a thorough inspection of the Wetlands Inventory 

Database data collection for attribute values that correlate with high-value wetland 

assessments.  

 

In this chapter, I commence a more detailed interrogation of the Wetlands Inventory 

Database records to determine whether more valuable information can be extracted 

than was reported by the WGCMA, and was described in Chapter 3.  This chapter 

forms a baseline for comparison with the outcomes of the more sophisticated analyses 

presented in the next two chapters.  There, multivariate statistical methods and neural 

networks are used to find patterns (correlations, trends and clusters) within the data to 

highlight relationships between input variables and, in particular, help identify 

relationships predicating high-value wetlands.  

 

Before embarking on any statistical analysis, a crucial first step is data inspection.  It 

is important to have a good understanding of the nature of the data and its components 

in order to locate problems such as inaccuracies, missing data anomalies, outliers, 

data constraints and scale disparities that may influence deductions made from the 
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records (Hair et al., 2006; Tabachnick & Fidell, 2007; Tan et al., 2006).  It is usual to 

examine the descriptive statistics of all variables as their types decide the 

appropriateness of any statistical analysis to be done.  For the WGCMA Wetland 

Inventory Database analysis, it was necessary to first extract the raw data upon which 

wetland assessments had been made.   Appendix G gives a listing of the Database 

records accessed with explanations on how it was done. 

 

Considering the categorical nature of majority of the data, the most suitable univariate 

approaches are frequency statistics and cross-tabulation analysis.  In this chapter, I 

collate the frequency distributions and data descriptions for the component attributes 

of the 21 variables (5 economic + 9 social + 7 environmental) and 14 threat variables 

stored in the Database (variables listed in Table 3.1).  

 

Frequency statistics are useful as a summary stocktake of the inventoried wetlands; 

this is seen by their inclusion in the reports of Greening Australia (2006) and the 

WGCMA (2007) of the 2006 wetland assessment.  Here as a checking mechanism, I 

recalculated the frequency statistics through sourcing the WGCMA Inventory 

Database for the relevant records.  In accessing the Database, I noted that complete 

records did not exist for all 163 wetlands inventoried.  Regarding Economic values, 

161 wetlands had complete records for measured attributes, 160 wetlands were 

discovered for Social values indicators, and 163 records were entire for the suite 

measuring Environmental values.  For threat assessments, 157 wetlands had complete 

threat listings.  

 

Although frequency statistics describe the amount and values of recorded variables, 

they are limited by their narrow univariate focus; they fail to inform in that they do 

not give any insight into the predictive strength of an independent attributes in 

deciding high-value Economic, Social or Environmental wetland assessments.  To 

overcome this difficulty, I undertook cross-tabulation analyses to create contingency 

tables for each attribute against different wetland evaluations.  These tables provide 

some insight as to the degree that raw data predicts, or not, different wetland 

assessments.  For each contingency table, I applied the chi-squared (χ2) test for row 

and column independence to indicate the statistical significance of patterns seen 

within tables.  
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A summary of frequency statistics and contingency tables for Economic, Social and 

Environmental values are given in each of the next subsections.  Following, threat 

statistics are examined in the same manner.  Where relevant, the results of the 

univariate analysis are compared with the frequency values found by Greening 

Australia (2006), and patterns discovered through cross-tabulation analysis are 

compared to the few associations observed and mentioned in the WGCMA Wetlands 

Plan report. A discussion of this work ends this chapter.   

 

 

4.2 Economic value of wetlands 

Each inventoried wetland was assessed by the WGCMA for its Economic value.  The 

five components used in this assessment (see Table 3.1) were:  

• Commercial fishing;  

• Tourism; 

• Production value; 

• Drainage disposal; and,  

• Water supply. 

In turn, these components were assessed through the collection of 12 separate 

attributes as summarized in Table 4.1.  A more comprehensive version of this table 

detailing the database tables and contributing columns searched in the WGCMA 

Wetland Inventory Database with the assigned range of values can be found in 

Appendix G. 
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Table 4.1: Component attributes of each Economic value assessed to decide the final 
Economic value of each inventoried wetland.  See also Table 3.1. 

 Economic value Attributes   

 Commercial fishing Commercial fishing  

 Tourism Tourism  

 Production value Food production 
Conservation forestry 
Other land usage 

 

 Drainage disposal Drainage 
Disposal of water 
Water storage 
Obstruction 
Redirection 
Diverted or farm runoff 

 

 Water supply Stock water supply  

 

4.2.1 Economic value − frequency statistics and analyses 

The WGCMA Wetland Inventory Database has complete records for 161 of the 

surveyed wetlands across all the attributes listed in Table 4.1.  The WGCMA scoring 

of these attributes was done across different scales: presence or absence values were 

recorded in the inventory for the attributes of conservation forestry, other land usage, 

and diverted or farm runoff.  Using the Wetlands Inventory Database records, I have 

calculated their frequency statistics, which are given in Table 4.2a.  Tourism, food 

production, stock water supply and commercial fishing were recorded by the 

WGCMA as being absent or present, and presence was further classified as in 

seasonal use or as unrestricted usage; their frequency statistics are given in Table 

4.2b.  As seen in Table 4.1, drainage, disposal of water, water storage, obstruction, 

redirection attributes, and diverted or farm runoff were all used in the assessment of 

drainage disposal.  Each of these components was recorded by WGCMA as being 

absent or present.  Present values were further graded to be of either no impact, or 

moderate to low impact, or severe impact.  The frequency of the number of wetlands 

exhibiting these impacts, or not, is given in Table 4.2c.  
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Table 4.2a: Summary of frequency statistics for Economic value input attributes of 
conservation forestry, other land usage and diverted or farm runoff in the WGCMA 
Wetland Inventory Database. 

Economic value Absent Present Total   

Conservation forestry 86 75 161 
  

Other land usage 151 10 161 
  

Diverted or farm 
runoff 146 15 161 

  

Table 4.2b: Summary of frequency statistics for Economic value input attributes 
tourism, food production, stock water supply and commercial fishing in the WGCMA 
Wetland Inventory Database. 

Economic value Absent 
Present 

Total 

 

Seasonal 
use 

Unrestricted 
use 

 

Tourism 118 23 20 161 
 

Food production 72 15 74 161 
 

Stock water supply 132 14 15 161 
 

Commercial fishing 159 2 0 161 
 

Table 4.2c: Summary of frequency statistics for Economic value input attributes 
drainage, disposal of water, water storage, obstruction, redirection in the WGCMA 
Wetland Inventory Database. 

Economic value Absent 
Present 

Total 
No impact Moderate to 

low impact 
Severe 
impact 

Drainage 110 15 24 12 161 

Disposal of water 135 2 15 9 161 

Water storage 146 2 8 5 161 

Obstruction 104 2 36 19 161 

Redirection 80 0 57 24 161 
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My frequency statistics for contributing attributes confirm those of Greening Australia 

and the West Gippsland CMA reports for inventoried subcatchment wetlands.  The 

confirmed statistics are indicated by a tick (), and they are: 

 Tourism was evidenced at just over a quarter (27 %) of the sites (report value 

given as 29%); and, 

 The majority of wetlands showed some production value with over half (56%) 

used for food production, nearly half (47%) for conservation forestry or other 

land usages (6%). 

 

Additionally, I note the following were not specifically mentioned in either report:  

• With the exception of redirection where half of the wetlands showed evidence, 

other forms of drainage disposal were not being used at the majority of  

wetlands;  

• Few sites (18%) were being used for supplying water for stock; and, 

• Only two sites showed any form of commercial fishing. 

 

4.2.2 Economic value − cross-tabulation analyses and 

contingency tables 

Cross-tabulation analysis was undertaken to produce contingency tables for all 

attributes used in the WGCMA assessment of economic value.  In the interests of 

brevity, only a representative set of contingency tables (Tables 4.3a and 4.3b; Tables 

4.4a and 4.4b; and, Tables 4.5a and 4.5 b) are displayed at the end of this section.  To 

assist the reader, I will display tables at the end of each section in this chapter and in 

the next two chapters.  The full set of contingency tables of remaining attributes used 

in Economic value assessments is provided in Appendix H.   

 

Table 4.3a shows each of the present/absent assessed attributes of Table 4.2a: 

conservation forestry; other land use; and, diverted or farm runoff tabulated against 

their final Economic value assessments; each attribute’s absence or presence statistics 

are displayed as columns against rows for their WGCMA assessed Economic value.  
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A check shows that only one wetland record (wetland № 877461) was evaluated as 

high for Economic value in the WGCMA Wetland Inventory Database, and Table 

4.3a shows its recorded attributes as an absence of conservation forestry and other 

land uses, and with the presence of diverted or farm runoff.  

 

A major difficulty in the interpretation of this contingency table (Table 4.3a), and 

some others that follow, is the low number of records of some cells.  With only one 

high Economic value assessed across the subcatchments, it is not possible to observe 

patterns between individual attributes and high-value assessments, nor is it wise to 

make any generalizations on the strength of one case.  In an effort to resolve this 

difficulty for Economic values, sums of high value and moderate value wetland 

counts were done, and sums of very low and low value wetlands counts were made 

for the attributes of Table 4.3a.  This was done on the assumption that predictors for 

very low value and low values would be most similar and likewise, attributes that 

indicate high value will also be predictors for moderate (nearest to high) values.   

Table 4.3b shows these calculations for the diverted or farm runoff attribute.   

 

Very low and low value wetlands tend to have an absence of diverted or farm runoff, 

while moderate and high-value wetlands have more diverted or farm runoff presences. 

To check the statistical significance of this using the chi-squared (χ2) test for row and 

column independence, there is a precondition that each cell used in the calculation 

must have a count of at least five.  In Table 4.3b, the present record of very low and 

low Economic values combined is less than five, and the precondition is not met.  

Checking the other attributes, that is conservation forestry and other land use, the 

precondition was not met again, so that further statistical analysis cannot be done. 

 

Contingency tables for tourism and stock water supply, two of the four attributes 

whose frequency statistics are shown in Table 4.2b, are given in Table 4.4a. 

Relationships between attributes are hard to discern in this table, so very low counts 

were summed with low counts and moderate counts with high counts, as seen in Table 

4.4b for the attribute of stock water supply.  In this Table, all cells have a minimum 

count of five so the chi-squared (χ2) test was done.  The test calculates the expected 

frequencies for each cell if there is no relationship between that particular cell’s 

column and row.  Then, the test then checks the magnitude of sum of the squared 
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differences against what is likely to occur given chance alone, usually at a 95% 

confidence interval.  In the case of stock water supply, the χ 2 result is 26.5, which 

exceeds the critical value of 5.99.  Thus the result is found to be significant at 0.05 

(95% confidence) at two degrees of freedom, meaning the distribution shown in Table 

4.4b is very unlikely to have come about due to chance at a 0.05 significance level.  

 

Table 4.5a shows the cross-tabulation analysis of drainage,  one of the four attributes 

whose frequency statistics are shown in Table 4.2c, and were measured as either 

absent, or present with no impact or present with moderate to low impact or present 

with severe in impact.  A preliminary look at Table 4.5a shows likely associations 

between the absence of drainage and very low and low Economic values, and 

presence with moderate and high-value sites.  To explore this further, the χ2 value was 

calculated after very low and low rows were added, and moderate and high value 

rows summed.  For drainage, the precondition for χ2 test was met, and its value was 

calculated as 31.4 for 3 degrees of freedom, which exceeds the critical value is 7.815 

at p = 0.05.  Thus, the values shown in Table 4.5b are unlikely to have come about 

due to chance, and it is more likely that there is an association between column and 

row values, meaning that sites with presence records for drainage at a site are more 

likely to have moderate and high Economic value assessments. 

 

By calculating all cross-tabulation statistics for all Economic value attributes and 

summing across rows, I found that it was only possible to compute the χ2 statistic for 

the attributes stock water supply and drainage, as shown in Tables 4.4b and 4.5b.  

Therefore, the following correlations with wetland classifications can be made: 

• Higher than expected usage of a wetland for stock water supply is associated 

with moderate and high Economic value wetlands; and 

• Higher than expected impacts due to drainage are associated with higher 

Economic valued wetlands. 

Neither of these attributes and their associations were reported by the WGCMA, and 

this result indicates that quite important associations can be extracted from their 

Wetlands Inventory Database by the application of quite simple (i.e. univariate) 

statistical procedures.   
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More importantly, no statistically significant associations were found for the attributes 

of commercial fishing, conservation forestry, disposal of water, diverted or farm 

runoff, food production, obstruction, other land usages, redirection, tourism, and 

water storage.  This brings into question the WGCMA (2007) conclusion that high 

scores for commercial fishing, tourism and, to a lesser degree, the production value of 

land surrounding wetlands had an impact in deciding Economic value.  Using the data 

recorded in the Wetlands Inventory Database, there is no evidence in the frequency 

and cross-tabulation analyses of these attributes of any such associations for 

inventoried subcatchment wetlands.  It can only be assumed that this pattern was 

observed at the wetland sites of international and/or national significance, like Corner 

Inlet, Anderson Inlet and Lake Wellington, as it is not evidenced for subcatchment 

wetlands whose records were stored in the Inventory Database.  

 

Table 4.3a: Contingency table for the Economic value input attributes of conservation 
forestry, other land use and diverted or farm runoff.  The values show the number and 
percentage of wetlands in the Database categorized as very low, low, moderate and high 
Economic values.  Non-empty cells have been shaded. 

 
Economic 
value 

Conservation 
forestry 

Other land  
usage 

Diverted or farm 
runoff Total 

Absent Present Absent Present Absent Present 

Very low 
Count 2 22 23 1 24 0 

24 
% 8% 92% 96% 4% 100% 0% 

Low 
Count 57 52 101 8 105 4 

109 
% 52% 48% 93% 7% 96% 4% 

Moderate 
Count 26 1 26 1 17 10 

27 
% 96% 4% 96% 4% 63% 37% 

High 
Count 1 0 1 0 0 1 

1 
% 100% 0% 100% 0% 0% 100% 

Total 86 75 151 10 146 15 

161 % within  
Economic value 

53% 47% 94% 6% 91% 9% 
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Table 4.3b: Contingency table for the Economic value input attribute diverted farm 
runoff with very low and low assessment counts added and moderate and high counts 
summed.  The value in brackets is the computed expected frequencies for the cell if there is 
no association between diverted or farm runoff and the WGCMA assessment value. 

  
Economic 
value 
 

Diverted  or farm runoff 
Total 

 

 
Absent Present 

 

 Very low & 
 low 

129 
              (121) 

4 
                (12) 

133 
 

 Moderate & 
high 

17 
            (25) 

11 
              (3) 

28 
 

 
Total 146 15 161  

 

Table 4.4a: Contingency table for the Economic value input attributes of tourism and 
stock water supply.  The values show the number and percentage of wetlands in the 
Database categorized as very low, low, moderate and high Economic values.  The 
abbreviation Season is used for Seasonal, and Unres’d is used for unrestricted.  Non-empty 
cells have been shaded. 

 
Economic 
value 
 

Tourism Stock water supply 

Total 
Absent 

Present 
Absent 

Present 

Season Unres’d Season Unres’d 

Very low 
Count 20 3 1 24 0 0 

24 
% 83% 13% 4% 100% 0% 0% 

Low 
Count 71 20 18 94 9 6 

109 
% 65% 18% 17% 86% 8% 6% 

Moderate 
Count 26 0 1 14 5 8 

27 
% 96% 0% 17% 30% 0% 70% 

High 
Count 1 0 0 0 0 1 

1 
% 100% 0% 0% 0% 0% 100% 

Total 118 23 20 132 14 15 
161 % within  

Economic value 
73% 14% 13% 82% 9% 9% 

  

 83 



Table 4.4b: Contingency table for the Economic value input attribute stock water 
supply with very low and low assessment counts added and moderate and high counts 
summed.   The abbreviation Season is used for Seasonal, and Unres’d is used for 
unrestricted. The value in brackets is the computed expected frequencies for the cell if there 
is no association between stock water supply and the WGCMA assessment value.  χ2

(df=2) 
value = 26.5 and  one-tailed p-value < 0.0001 is extremely statistically significant. 

  
Economic 
value 
 

Stock water supply 

Total 

 

 
Absent 

Present  

Season Unres’d 

 Very low & 
 low 

118 
          (109) 

9 
           (12) 

6 
        (12) 

133 
 

 Moderate & 
high 

14 
         (23) 

5 
            (2) 

9 
         (3) 

28 
 

 
Total 132 14 15 161  

 

Table 4.5a: Contingency table for the Economic value input attribute of drainage.  The 
values show the number and percentage of wetlands in the Database categorized as very 
low, low, moderate and high Economic values.  Non-empty cells have been shaded. 
 

 
Economic 
value 
 

Drainage 

Total 

 

 

Absent 

Present  

 
No impact 

Moderate 
to low 
impact 

Severe 
impact 

 

 
Very low 

Count 21 1 1 1 
24 

 

 % 88% 4% 4% 4%  

 
Low 

Count 82 7 15 5 
109 

 

 % 75% 6% 14% 5%  

 
Moderate 

Count 7 7 7 6 
27 

 

 % 26% 26% 26% 22%  

 
High 

Count 0 0 1 0 
1 

 

 % 0% 0% 100% 0%  

 Total 110 15 24 12 
161 

 

 % within 
Economic value 

68% 9% 15% 8%  
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Table 4.5b: Contingency table for the Economic value input attribute of drainage with 
very low and low assessment counts added and moderate and high counts summed.  
The value in brackets is the computed expected frequencies for the cell if there is no 
association between drainage and the WGCMA value. χ2

(df=3) value = 31.4 and one-tailed  
p-value < 0.0001,  which is extremely statistically significant. 

 

Economic 
value 

Drainage 

Total 

 

 
Absent 

Present  

 No        
impact 

Moderate to 
low impact 

Severe 
impact 

 

 Very low &  
low 

103 
         (91) 

8 
            (12) 

16 
           (20) 

6 
           (10) 

133 
 

 Moderate & 
high 

7 
        (19) 

7 
        (3) 

8 
             (4) 

6 
             (2) 

28 
 

 Total 110 15 24 12 161  

 

 

 

4.3 Social value of wetlands 

Final Social values for wetlands were computed using nine component Social values:  

• Recreational fishing;  

• Swimming;  

• Camping;  

• Hunting;  

• Boating;  

• Passive recreation;  

• Bird watching;  

• Education; and,  

• Park value.   

These were quantified using 12 attributes as summarized in Table 4.6.  Appendix G 

includes a more detailed version of this information with the ranges for values and a 

listing of database tables and attributes used by the WGCMA.  
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Table 4.6: Component attributes of each Social value assessed to decide the final Social 
value of each inventoried wetland.  See also Table 3.1. 

 Social value Attributes  

 Recreational fishing Recreational fishing  

 Swimming Swimming  

 Camping Camping  

 Hunting Hunting  

 Boating Boating 
Water skiing 

 

 Passive recreation Passive recreation 
Motorized four-wheel drive 
vehicles 

 

 Bird watching Bird watching  

 Education Education 
Research 

 

 Park value Park value  

 
 
4.3.1 Social value − frequency statistics and analyses 

The WGCMA Wetland Inventory Database holds 160 complete records for the 12 

attributes needed to assess Social values for inventoried sites.  The scorings for all 

values, except park value, were scaled as no use, occasional use, seasonal use, and 

frequent use.  The frequency statistics of these are given in Table 4.7a.  Park value 

was quantified using the GIS crown land tenure layer and then assigned a value of 0 

to 5 accordingly using:  

• 0 represented no data available;  

• 1 represented wetlands not located in a park or reserved crown land; 

• 2 represented wetlands located in a State forest or other reserved crown land;  

• 3 was used for wetlands located in nature conservation reserves or which had 

historic and cultural features documented;  

• 4 represented wetlands located in Regional or State Parks, Coastal or a Marine 

and Coastal Park; and,  
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• 5 represented wetlands located in National Parks, Reference area or 

Wilderness area, Marine National Park or Marine Sanctuary or Marine Park.  

The frequency statistics for park value using this scale are given in Table 4.7b.      

 

Making some allowances for small differences, my frequency statistics for Social 

value contributing attributes (Tables 4.7a and 4.7b) confirm those previously reported 

by Greening Australia (2006) and the WGCMA (2007) for inventoried subcatchment 

wetlands.  The confirmed statistics are indicated by a tick (), and they are: 

 The majority of sites showed some recreational value; 

 Bird watching was the most recorded social activity seen at nearly 60% of 

sites (WGCMA reported 65% of sites); 

 Passive recreation was recorded at nearly 45% of all sites, and 42% of those 

sites were used on a frequent basis (WGCMA reported at least 50% of sites); 

 Some form of hunting occurred at over 54% of sites (WCGMA value was 

47%); 

 Education occurred at nearly 35% of sites, with half the sites recording 

occasional use (WGCMA report gave 38%); and, 

 Motor bikes and four-wheel drive activities occurred at 20% of inventoried 

sites. 

 

Further summarising the frequency statistics displayed in Table 4.7a and Table 4.7b, I 

note in addition to what was reported by Greening Australia and the WGCMA, that: 

• Recreational fishing occurred at only 30% of inventoried sites, and it was 

mostly occasional in nature;  

• Swimming was recorded at fewer than 10% of all surveyed sites, and most 

usage was occasional or seasonal; 

• Camping occurred at just over 15% of sites, where it was only occasional or 

seasonal in nature; 

• Boating was recorded at over 22% of sites; 
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• Only two (1.2%) sites were used for water skiing, one occasionally and one 

frequently;  

• Likewise, research was recorded at only two sites of 160, but not regularly; 

and 

• Nearly 60% of wetlands in the inventory were not located in a protected area 

or on any reserved crown land, thereby they were most likely to be privately 

owned.   

 

Table 4.7a:  Summary of frequency statistics for all Social value input variables, except 
park value, in the WGCMA Wetland Inventory Database.  

Social  
value Attribute 

Usage  
Total 

 
None Occasional Season Frequent 

Recreational 
fishing 

Recreational 
fishing 

112 35 2 11 160 

Swimming Swimming 145 7 7 1 160 

Camping Camping 134 19 7 0 160 

Hunting Hunting 73 44 41 2 160 

Boating 
Boating 124 15 18 3 160 

Water skiing 158 1 0 1 160 

Passive 
recreation 

Passive 
recreation 

89 24 17 30 160 

Motorized 
four-wheel 

 

128 21 4 7 160 

Bird watching Bird watching 65 53 16 26 160 

Education 
Education 105 28 16 11 160 

Research 158 0 0 2 160 
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Table 4.7b: Frequency statistics for Social value input variable Park value as supplied 
from GIS crown land tenure layer in the Social input data file. 

Social  
value 0 1 2 3 4 5 Total 

Park value 10 95 17 9 12 17 160 

     

4.3.2 Social value − cross-tabulation analyses and contingency 

tables  

As was done for Economic value in the previous section, cross-tabulation analyses 

were done for all attributes used in Social value assessments.  A representative set of 

the contingency tables are given here and the full set are provided in Appendix I.  

Within the dataset, there were four wetlands whose final Social value was not 

assigned within the Inventory Database, even though all attributes had been recorded 

for them; the contingency tables display the assessments for these wetlands in a row 

labelled unknown.  

 

Broadly speaking, the contingency tables of the attributes share common patterns in 

regard to where high-value wetlands are found.  In the cases of boating, camping, 

education, hunting, recreational fishing, research, and swimming, wetlands assessed 

as high Social value are equally spread across columns of no value, occasional use, 

seasonal use and frequent use.  The hunting attribute illustrates this with its 

contingency table shown as Table 4.8a.  The attributes of bird watching and passive 

recreation have all high-value wetlands associated with frequent use; it is important to 

note in both cases, there are also wetlands of moderate or low value which had 

frequent use as well.  In illustration, Table 4.9 shows the contingency table for bird 

watching.  For the Social values of motorized four-wheel drive use and water skiing 

(shown in Table 4.10), the observed pattern is high-value wetlands did not record a 

value for either of these activities. 

 

The low number of high Social value wetlands, five out of 160, frustrated the use of 

the chi-squared (χ2) test for row and column independence from being conducted for 

most attributes.  To assist in meeting the necessary precondition for the test (at least a 

count of five in each table cell), I grouped very low and low values together, and I 
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added moderate and high values, as I had done previously for Economic values.  It 

was also necessary to combine data across columns; occasional, seasonal and frequent 

use into one category titled present, for use with absent counts in calculation of the χ2 

test. The resulting amalgamation for hunting is shown in Table 4.8b with the expected 

frequencies for each cell shown in brackets if there were no relationship between that 

particular cell’s column and row.  In this instance, the χ2 was calculated as 2.1 with 1 

degree of freedom.  This returned a result that was not significant at 0.05.  In other 

words, the actual distribution of values seen for hunting is not significantly different 

to that may be found due to chance.  

 

Likewise the rows and columns of each contingency table for all remaining attributes 

listed in Table 4.7a were done.  For water skiing, shown as Table 4.10, and bird 

watching and research attributes, the precondition for the χ2 test was not met.  For 

hunting, the observed values recorded were not significantly different to those that 

may occur due to chance.  However, the χ2 test values of all remaining attributes 

(recreation fishing, swimming, camping, boating, passive recreation, motorized four-

wheel drive, and education) were different to those expected due to chance at a 95% 

confidence interval.  The following results are given in order of strength of the 

association as indicated by the χ2 value shown in brackets, are:  

• Sites used for passive recreation were strongly associated with moderate and 

high Social values assessments, in that, twice as many sites were recorded for 

than would be expected due to chance (χ2 = 50.86); 

• Double the expected proportion of sites with moderate and high Social values 

assessments showed usage of recreational fishing, and low and very low sites 

characteristically did not have fishing (χ2 = 45.12); 

• A third of sites were used for education, and amongst these twice the expected 

proportion were moderate and high Social value assessed wetlands                 

(χ2 = 34.31); 

• Although only 17% of sites were used for camping, proportionally double the 

expected number of moderate and high-value sites had camping use                

(χ2 = 12.65); 
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• Swimming was only seen at 10% sites, but there were double the expected 

number of moderate and high-value sites were used for swimming                  

(χ2 = 11.71); 

• Higher than expected proportion  of wetlands were associated  with boating   

(χ2 = 11.71); and, 

• Motorized four-wheel drive use is slightly higher than expected for moderate 

and high wetlands (χ2 = 4.41). 

 

Finally the cross-tabulation statistics were done for park value and these are displayed 

in Table 4.11a.  Note that there were 10 wetlands recorded where no data was 

available for its park value (column 0) and there were 95 wetlands in non-protected 

locations (column 1).   Table 4.11b shows the addition of rows for very low and low 

Social value wetlands and the summing of moderate and high Social value wetlands 

against their park value.  The figures in brackets give the expected value if there is 

row and column independence and the χ2 calculation is 68.1 for 1 degree of freedom.  

This exceeds the critical lookup value of 3.84 for a value of p-<-0.05 indicating there 

is likely a strong relationship between park value and a wetland’s Social 

classification.  It seems that moderate and high Social value wetlands are more likely 

to be protected, and proportionally very low and low value wetlands are more likely 

to be unprotected sites. 

 

None of the above associations were reported by the WGCMA (2007); they made no 

mention of the strong associations of high-value wetlands with park value, passive 

recreation, recreational fishing, education, camping, swimming, boating or motorized 

four-wheel drive usage.  Rather, the WGCMA reported that the high-value sites were 

those exhibiting indigenous and European cultural values together with high visual 

amenity.  Visual amenity was used as one attribute to assess significant wetlands 

(WGCMA, 2006b), but for subcatchment wetlands it seems that visual amenity or 

beauty is in the eye of the beholder since there are no records, tables or attributes for 

visual amenity, or similar, in the Wetlands Inventory Database.  My electronic search 

of all tables in the Database for words (or their parts) indigenous and European failed 

to find a mention, not even in any of the recorded comments within the tables.  The 
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WGCMA report states that only 5.6% of the sample was known to have documented 

historical or cultural features, presumably the indigenous and European cultural 

values mentioned.  Searching for these amongst the 12 attributes used to calculate 

Social value (Table 4.6), there is no attribute that assesses these cultural values unless 

they were assessed under the passive recreation attribute.   

 

Table 4.8a: Contingency table for the Social value input attribute of hunting.  The 
values show the number and percentage of wetlands in the Database categorized as very 
low, low, moderate and high Social values.  Non-empty cells, other than for unknown, have 
been shaded. 

 
 
Social 
value 
 

Hunting 

Total 

 

 
Absent 

Present  

 Occasional Seasonal  Frequent  

 
Unknown 

Count 0 1 3 0 
4 

 

 % 0% 25% 75% 0%  

 
Very low 

Count 36 1 0 0 
37 

 

 % 97% 3% 0% 0%  

 
Low 

Count 20 33 20 1 
74 

 

 % 27% 45% 27% 1%  

 
Moderate 

Count 15 8 16 1 
40 

 

 % 38% 20% 40% 2%  

 
High 

Count 2 1 2 0 
5 

 

 % 40% 20% 40% 0%  

 Total 73 44 41 2 
160 

 

 % within 
Social value 

46% 27% 26% 1%  
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Table 4.8b: Contingency table for the Social value input attribute hunting with very 
low and low assessment counts added and moderate and high counts summed.  All 
columns denoting any hunting activity have been summed. Values in brackets are the 
expected frequencies for each cell if there is no association between hunting and the 
WGCMA Social value assessment.  χ2

(df=1) value = 2.065 and  one-tailed p-value  = 0.0753,  
which is not statistically significant. 

  
Social 
value 
 

Hunting 

Total 

 

 
Absent Present 

 

 Very low & 
low 

56 
            (52) 

55 
          (155) 

111 
 

 Moderate & 
high 

17 
          (21) 

28 
           (24) 

45 
 

 
Total 73 83 156  

 

Table 4.9: Contingency table for the Social value input attribute of bird watching.  The 
values show the number and percentage of wetlands in the Database categorized as very 
low, low, moderate and high Social values.  Non-empty cells, other than for unknown, have 
been shaded. 

 
 
Social 
value 
 

Bird watching 

Total 

 

 
Absent 

Present  

 Occasional Seasonal  Frequent  

 
Unknown 

Count 2 0 0 2 
4 

 

 % 50% 0% 0% 50%  

 
Very low 

Count 34 2 0 1 
37 

 

 % 92% 5% 0% 3%  

 
Low 

Count 28 38 5 3 
74 

 

 % 38% 51% 7% 4%  

 
Moderate 

Count 1 13 11 15 
40 

 

 % 2% 33% 27% 38%  

 
High 

Count 0 0 0 5 
5 

 

 % 0% 0% 0% 100%  

 Total 65 53 16 26 
160 

 

 % within 
Social value 

41% 33% 10% 16%  
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Table 4.10: Contingency table for the Social value input attribute of water skiing.  The 
values show the number and percentage of wetlands in the Database categorized as very 
low, low, moderate and high Social values.  Non-empty cells, other than for unknown, have 
been shaded. 

 
 
Social 
value 
 

Water skiing 

Total 

 

 
Absent 

Present  

 Occasional Seasonal  Frequent  

 
Unknown 

Count 4 0 0 0 
4 

 

 % 100% 0% 0% 0%  

 
Very low 

Count 35 1 0 1 
37 

 

 % 92% 4% 0% 4%  

 
Low 

Count 74 0 0 0 
74 

 

 % 100% 0% 0% 0%  

 
Moderate 

Count 40 0 0 0 
40 

 

 % 100% 0% 0% 0%  

 
High 

Count 5 0 0 0 
5 

 

 % 100% 0% 0% 0%  

 Total 158 1 0 1 
160 

 

 % within 
Social value 

99% 0.5% 0% 0.5%  
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Table 4.11a:   Contingency table for the Social value input attribute of park value.  The 
values show the number and percentage of wetlands in the Database categorized as very 
low, low, moderate and high Social values.  Non-empty cells, other than for unknown, and 
column 0 (no data available for park value) have been shaded. 

 
Social  
value 
 

Park value 
Total 

0 1 2 3 4 5 

Unknown 
Count 3 0 1 0 0 0 

4 
% 75% 0% 25% 0% 0% 0% 

Very low 
Count 1 33 3 0 0 0 

37 
% 3% 89% 8% 0% 0% 0% 

Low 
Count 3 57 8 2 1 3 

74 
% 4% 77% 11% 3% 1% 4% 

Moderate 
Count 3 5 5 7 8 12 

40 
% 8% 13% 13% 17% 19% 30% 

High 
Count 0 0 0 0 3 2 

5 
% 0% 0% 0% 0% 60% 40% 

Total 10 95 17 9 12 17 
160 % within  

Social value 
6% 60% 10% 6% 8% 10% 

 

Table 4.11b: Contingency table for the Social value input attribute park value with 
very low and low assessment counts added and moderate and high counts summed.  
All columns denoting any protected area have been summed. Values in brackets are the 
expected frequencies for each cell if there is no association between protected areas and the 
WGCMA Social value assessment.  χ2

(df=1) value = 68.056 and  one-tailed p-value < 0.0001,  
which is extremely statistically significant. 

  
Social 
value 
 

Park value 

Total 

 

 Not            
protected Protected 

 

 Very low & 
 low 

90 
           (68) 

17 
          (39) 

107 
 

 Moderate & 
high 

5 

            (27) 

37 

          (15) 
45 

 

 
Total 95 54 149  
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4.4 Environmental value of wetlands 

Environmental wetland values were computed using seven component Environmental 

values:  

• Wetland rarity;  

• Significant flora;  

• Significant fauna;  

• Habitat value;  

• Hydrology;  

• Vegetation intactness– critical lifeforms; and,  

• Vegetation intactness– width of the vegetation fringe.  

Assessment of these values was done through the collection of 16 separate attributes, 

as summarized in Table 4.12.  Appendix G includes a more comprehensive version of 

this table detailing the 16 attributes, and their subattributes, with a listing of the 

database tables and contributing columns which were searched to find values for 

individual wetlands in the WGCMA Wetland Inventory Database. 

 

4.4.1 Environmental value − frequency statistics and analyses 

The WGCMA Wetland Inventory Database holds complete records for 163 

inventoried sites where all seven Environmental values were assessed.  Greening 

Australia (2006) reported frequency statistics on at a catchment level, however the 

WGCMA (2007) did not report frequency statistics for any Environmental value 

attributes.  Therefore, I have computed frequency tables for wetlands across the 

region by sourcing the WGCMA Wetlands Inventory Database.  Since these statistics 

are not obtainable elsewhere, I provide frequency tables for each of the seven 

Environmental values at the end of this subsection.  
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Table 4.12: Component attributes of each Environmental value assessed to decide the 
final Environmental value of each inventoried wetland.  See also Table 3.1. 

 Environmental value Attributes  

 Wetland rarity Wetland rarity  

 Significant flora Significant flora  

 

Significant fauna 

Significant fauna listed in Victorian Rare or 
Threatened Species (VROT) register 

Significant fauna listed in Flora and Fauna 
Guarantee (FFG) Act 

 

 
Habitat value 

Wetland rarity 
Terrestrial zone habitat type 
Shoreline profile 

 

 

Hydrology 

Drainage 
Disposal of water 
Water storage 
Obstruction 
Redirection 

 

 
Vegetation intactness– critical 
lifeforms 

Floral types of the most dominant wetland EVC 
Number of floral species present 
Substantial modifications 

 

 Vegetation intactness– width of 
vegetation fringe 

Width of vegetation fringe 

 

 

 

Wetland rarity was indicated in the Database by each site’s wetland classification 

under the Corrick and Norman (1980) scheme.  The frequency statistics for wetland 

types in the region and within the inventory sample are given in Table 3.2.  As a result 

of infield assessments 40% of wetlands were reclassified accounting for the two 

unexpected records in the database: one unclassified; and, one flooded river flat, 

where previously it was thought none existed (Greening Australia, 2006).  Inventory 

Database recorded frequencies are shown in Table 4.13, and figures in brackets show 

pre-inventory counts of Table 3.2.  Shallow freshwater marshes are the most 

represented in the West Gippsland region and flooded river flats and permanent saline 

wetlands are the least common.   
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The WGCMA ascertained the value of significant flora through species listings for 

rare, vulnerable or endangered in the Flora Information System (1994).  The overall 

site value was obtained by summing the individual recorded species values for 

Victorian Rare or Threatened (VROT) (DSE, 2005a) species using a scale of: 

• 1 for poorly known; 

• 2 for rare species; 

• 3 for vulnerable species; and, 

• 4 for endangered species.  

Table 4.14 shows that the majority of sites did not record any VROT species.  For 

significant flora, the WGCMA originally planned to include a measure based on 

additional species appearing as listed in either the Flora and Fauna Guarantee (FFG) 

Act 1988 or under the Australian government Environment Protection and 

Biodiversity Conservation (EPBC) Act 1999.  As no site in the inventory database had 

recorded species under either Acts, it was not necessary to include it in the 

assessment. 

 

The WGCMA used two attribute values in the WGCMA wetland inventory database 

to assess significant fauna.  Like significant flora and using the same scale, the 

presence of VROT species values was checked at each site.  The second attribute 

checked for those species not listed in the VROT list but protected under the Flora 

and Fauna Guarantee Act (FFG Act, 1988).  A value of 1 was given to each of these 

species and a total calculated per site.  Like significant flora, there were no additional 

species or ecological communities listed under the Environment Protection and 

Biodiversity Conservation Act (EPBC Act, 1999).  Table 4.15 shows the frequency 

distributions of the number of VROT and FFG records where the majority of sites did 

not have fauna in either lists. 

 

Habitat value was assessed by the WGCMA using wetland rarity, terrestrial zone 

habitat type and the shoreline profile.  Wetland rarity has already been mentioned 

above and frequency statistics are given in Table 3.2 and Table 4.13.  Terrestrial zone 

habitat type was described noting the abundance, or otherwise, of nine different site 

features: rocks; logs; emergent vegetation; exposed substrate; submerged or free-
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floating vegetation; shallow to medium depth water;  permanent deep pools; water 

edge; and, a category labelled other.  The frequency statistics for terrestrial zone 

habitat are seen in Table 4.16a, where the frequency of each site feature is given.  

Shoreline profile, an attribute of habitat value, was described by two subattributes: the 

type of large vegetation present: shrubs; alive and dead trees; and, a description of the 

shoreline profile.  The frequencies of vegetation types are given in Table 4.16b whilst 

the frequency table for differing shoreline descriptions, described as regular or 

irregular with islands present or not, is given in Table 4.16c. 

 
 

The hydrology attribute was assessed using drainage, disposal of water, water storage, 

obstruction, redirection as inputs.  These inputs have already been described and used 

in the assessment of Economic value, and their frequency statistics are found in Table 

4.2c. 

 

Three attributes were used by the WGCMA in the assessment of vegetation 

intactness– critical lifeforms: the floral types of the most dominant wetland EVC 

present; the number of floral species present; and whether or not substantial 

modifications had been made at the site.  At each site, the EVC present with the 

greatest percentage cover was designated the dominant EVC and then the percentage 

sum of coverage of various floral types present: graminiods; shrubs; herbs; sedges 

(including rushes and reeds); ferns (including bryophytes); and, grasses was assessed 

at the site.  Table 4.17a shows the frequency statistics for the number of wetlands with 

differing percentage covers of each floral type.  Table 4.17b shows the frequency 

statistics of the number of floral species present, the second subattribute of vegetation 

intactness– critical lifeforms.  

 

When checking how many wetlands had been substantially modified, it can be seen in 

Table 4.18 that 101 sites (62%) had native flora substantially modified.  Finally, 

frequency statistics for the Environmental value vegetation intactness– width of 

vegetation fringe statistics are shown in Table 4.19. 
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As mentioned earlier, frequency statistics were not reported for Environmental values 

over the region by WGCMA or Greening Australia, however their reports mention the 

following two points, which my frequency statistics are able to confirm:  

 The rarest wetland types in the region are flooded river flats and permanent 

saline wetlands.  In fact, the inventory exercise found one flooded river flat, 

where previously it was not thought to exist; and,  

 Freshwater marshes are the most common wetland type observed in the 

region. 

 

Further examination of my frequency tables shows that: 

• Most sites (88%) did not record any VROT species when assessed for 

significant flora and only 2% sites showed very high VROT species scores for 

flora; 

• Most sites were devoid of significant fauna; only 14% had any registered 

fauna in VROT species listing and the majority of these sites had three or 

fewer species.  In addition, only 10% of sites had fauna protected under the 

Flora and Fauna Guarantee (FFG) Act and the majority of these had only one 

listed species present; 

• Site features were used in part to assess habitat value and the most common 

site features seen were emergent vegetation and water’s edge, followed by 

exposed substrate and logs.  Shoreline vegetation was also used for habitat 

value assessment and shrubs and alive trees were most often seen at sites, and 

at a twice the frequency of observed dead trees.  Finally for habitat value 

assessment, the most common shoreline profile seen was an irregular profile; 

shorelines with islands were only seen in 10 of the 163 sample; 

• As previously stated in Section 4.2.1 Economic value for hydrology, most 

wetlands were not being used for other forms of drainage disposal with the 

exception of water redirection; 

• In the assessment of vegetation intactness– critical lifeforms, the most 

common floral type by percentage coverage observed in the dominant wetland 

EVC present at each site, was herbs and the least abundant were ferns.  The 
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majority of sites were seen to have between six to 10 different floral species 

present,  however almost two-thirds of sites had their native flora substantially 

modified; and, 

• The width of vegetation fringe varied significantly across sites, between 

values of 0 to over 1000 metres recorded at two sites.  The width was used to 

assess vegetation intactness– width of vegetation fringe and a quarter of the 

sites (27%) showed no fringe vegetation width.   

 
Table 4.13: Frequency table of wetland type classified according to the Corrick and 
Norman (1980) scheme and used to assess the Environmental value wetland rarity.  
Figures in brackets show pre-inventory counts of Table 3.2. 

 Environmental  

value 

Wetland rarity  

Frequency Percentage 

 Unclassified 1 < 1  

 Permanent saline wetland 3 2  

 Semipermanent wetland 16 10  

 Shallow freshwater marsh 70 (71) 43  

 Freshwater meadow 31 19  

 Deep freshwater marsh 25 (27) 15  

 Permanent open water 16 (15) 10  

 Flooded river flat 1 < 1  

 Total 163 100  
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Table 4.14: Frequency and percentage distributions of total scorings of Victorian Rare 
or Threatened (VROT) species under the FFG Act used to evaluate significant flora 
Environmental value. 

 Environmental  

value 

Significant flora  

Sum of VROT species scores 

 Frequency Percentage  

 0  143 88  

 2 to 6 12 7  

 10 to 16 5 3  

 5 1 

2 

 

 53 1  

 63 1  

 Total 163 100  

 
 
Table 4.15: Frequency and percentage distributions of the two site attributes, Fauna 
Victorian Rare or Threatened (VROTs) sum and fauna protected under the Flora and 
Fauna Guarantee (FFG) Act used to evaluate significant fauna Environmental value. 
 

 
Environmental 

value 
 

Significant fauna  

 Sum of fauna VROT 
scores 

Sum of fauna FFG 
scores 

 

 Frequency Percentage Frequency Percentage  

 0 140 86 146 90  

 1 3 2 13 8  

 2 4 3 2 1  

 3 8 5 1 
1 

 

 4 2 1 1  

 6 2 1 

 

  

 7 2 1  

 8 1 
1 

 

 12 1  

 Total 163 100 163 100  
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Table 4.16a: Frequency values for the site features used to assess terrestrial zone 
habitat type, one of the subattributes of the Environmental value of habitat value. 
 

 
Environmental 

value 
 

Habitat value  

 Terrestrial zone habitat type  

 Site features  

 
Absent 

Present 

Total 

 

 Usually Abundant  

 Frequency Frequency Frequency  

 Rocks 144 18 1 163  

 Logs 62 80 21 163  

 Emergent vegetation 12 58 93 163  

 Exposed substrate 49 80 34 163  

 Submerged or free-
floating vegetation 

83 37 43 163  

 Shallow to medium depth 
water 

87 63 13 163  

 Permanent deep pools 126 12 25 163  

 Water edge 20 60 83 163  

 Other 154 4 5 163  

 

Table 4.16b: Frequency values for shoreline vegetation types used to assess shoreline 
profile, one of the subattributes of the Environmental value habitat value. 
 

 
Environmental 

value 
 

Habitat value  

 Shoreline profile  

 Shoreline vegetation  

 
Absent 

Present 

Total 

 

 Usually Abundant  

 Frequency Frequency Frequency  

 Shoreline shrubs 33 38 92 163  

 Alive trees 33 56 74 163  

 Dead trees 65 84 14 163  
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Table 4.16c: Frequency values for shoreline description used to assess shoreline 
profile, a subattribute of the Environmental value of habitat value. 
 

 
Environmental 

value 
 

Habitat value  

 Shoreline profile  

 Shoreline description  

 
Unknown 

Regular Irregular 
Total 

 

 No 
island 

With 
island 

No 
island 

With 
island 

 

 6 56 1 91 9 163  

 

Table 4.17a: Frequency values for Floral types of dominant wetland EVC using the sum 
of % cover for each type of vegetation to assess the Environmental values of vegetation 
intactness– critical lifeforms.  The abbreviation gram’ds is used for graminoids. 

Environmental 
value 

Vegetation intactness– critical lifeforms 

Floral types of dominant wetland EVC:  sum of % cover 

gram’ds shrubs herbs sedges ferns grasses 

0 100 110 31 103 143 121 

1 to 19%  43 23 98 35 15 32 

20 to 39% 10 17 20 13 4 6 

40 to 59% 5 8 7 8 1 4 

60 to 79% 4 4 4 4 0 0 

≥80% 1 1 3 0 0 0 

Total 163 163 163 163 163 163 

 

Table 4.17b: Frequency values for the number of wetlands sites which had varying 
counts of floral species recorded used to assess the Environmental value of vegetation 
intactness– critical lifeforms. 

Environmental 
value 

Vegetation intactness– critical lifeforms 

Total Number of floral species at each site 

0 1 to 5 6 to 10 11 to 15 16 to 20 > 20 

20 31 75 25 10 2 163 
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Table 4.18: Frequency statistics for wetlands with, and without substantial 
modifications, a subattribute of the Environmental value of vegetation intactness– 
critical lifeforms. 

  
Environmental 
value  
 

Substantial modifications  

 
Frequency Percent 

 

 
No modification 101 62 

 

 
With modification 62 38 

 

 
Total 163 100  

 

Table 4.19:  Frequency statistics for the width of vegetation fringe at each site used in 
part to decide the Environmental value assessment of vegetation intactness 
recognizing critical lifeform groups. 

 

 
Environmental 

value  

 

Vegetation intactness– width of 
vegetation fringe 

 

 Width  of vegetation fringe  

 
Width Frequency  

 0 44  

 1 6  

 2 14  

 3 to 5 10  

 6 to 10 15  

 11 to 20 18  

 21 to 30 2  

 31 to 40 3  

 41 to 59 33  

 >  60 18  

 Total 163  
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4.4.2 Environmental value − cross-tabulation analyses and 

contingency tables 

The WGCMA (2007) concluded that high-value wetlands, including those designated 

significant wetlands, scored well for vegetation intactness, habitat value and wetland 

significance.  This conclusion can be checked by conducting cross-tabulation analyses 

and searching the resulting contingency tables for associations between contributing 

attributes and Environmental values.  An illustrative sample of contingency tables is 

given at the end of this section; the remainder are found in Appendix J.  

 

As with my prior reassessments of data used to rank Economic and Social values, 

Environmental value assessments include grades of very low, low value, moderate 

value and high value.  However unlike Economic and Social value assessments, some 

wetlands were designated as very high Environmental value.  Of the 163 wetlands 

eight were assessed as very high, 49 were high, 77 were moderate, 27 were low and 

one was classified as very low in Environmental value while one wetland’s 

assessment was scored as unknown.   

 

A first step in investigating the impact of the two wetland classification schemes: 

Corrick and Norman (1980) and  EVCs on the evaluation and ranking of wetland sites 

was made by looking at Environmental values of Table 3.1 and Table 4.12 to see 

where the two schemes were used to assess Environmental value of wetlands.  

Wetland rarity classifies and ranks wetlands based on the Corrick and Norman 

scheme, and vegetation intactness– critical lifeforms uses the percentage coverage of 

the most common floral type of the dominant EVC at a site.  In addition, wetland 

rarity was used as an input to the Environmental value habitat value.  

 

The cross-tabulation statistics for wetland rarity are shown in the contingency table, 

Table 4.20a.  Ignoring the three permanent saline wetlands, the one flooded river flat 

and the one shallow water marsh assessed as very low Environment value (small 

sample size), a number of associations can be made by comparing the percentages of 

wetland types surveyed and their corresponding percentage representation in various 

Environmental value assessments.  For instance, it appears that freshwater meadows 

are more represented in lower-valued assessments than suggested by their proportion 

 106 



in the inventoried pool of wetlands. To see if this association was statistically 

significant, I sectioned the data so that a chi-squared (χ2) test for independence, or 

otherwise, between the variables could be undertaken.  In this instance, I reorganized 

the data of Table 4.20a into a 2 * 2 grid displaying counts of the number of wetlands 

that were one of (1) freshwater meadows with low value assessments; (2) freshwater 

meadows with other than low value assessments; (3) not freshwater meadow wetlands 

with low value assessments; and (4) not freshwater meadow wetlands with other than 

low assessments, and then did a χ 2 test.  Repeating this process for all wetland types 

versus different value assessments, my χ2 analyses showed that: 

• There are statistically significant more than expected numbers of permanent 

open water wetlands assessments found to be moderate than what would be 

expected due to chance; and, 

• There are statistically significant more than expected numbers of freshwater 

meadows were assessed as low Environmental value than would otherwise be 

expected. 

 

The frequency values of the floral types of the dominant wetland EVC were given in 

Table 4.17a, with the sum of the percentage cover at a site of graminiods, shrubs, 

herbs, sedges, ferns and grasses.  Herbs were the most often recorded vegetation site 

and the contingency table of cross-tabulation statistics for the sum of percentage herb 

coverage at sites is Table 4.21a.  

 

Cross-tabulation analyses suggest a number of associations between various 

Environmental value assessments and the numbers of sites with different sums of 

percentages for herb coverage of the dominant wetland EVC.   Ignoring unknown 

records and the very low Environment value (small sample size), I again partitioned 

the data into a 2 * 2 grids of counts of the number of wetlands with and without the 

characteristics being tested for independence, as was previously done for wetland 

rarity.  In this instance, the percentage presence of herbs, or not, was compared to 

their numbers in very low and low wetland assessments against moderate, high and 

very high Environmental value assessments (Table 4.21b). The only statistically 
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significant association found for herb coverage was between very low and low 

Environmental assessments and zero percentage total herb coverage. 

 

The contingency table of the numbers of significant flora at wetland sites and their 

Environmental value assessment is Table 4.22.  Low cell counts preclude the use of 

the χ 2 test.  A visual inspection of the Table’s shading shows a trend between higher 

numbers of floral VROT species numbers at a site and a shift towards high and very 

high-value assessments, although there are two sites of very high Environmental value 

where no significant flora were recorded.  Likewise for the attributes used in assessing 

significant fauna, the contingency tables of the sum of fauna VROT species and sum 

of fauna FFG values against Environmental value assessments have small cell counts 

in most cells and similar shading patterns to those shown in Table 4.22 for significant 

flora.  Both contingency tables can be found in Appendix J. 

 

As stated earlier, habitat value was assessed using wetland rarity, terrestrial zone 

habitat type and shoreline profile, and shoreline profile was assessed using the type of 

large vegetation present: shrubs; alive and dead trees; and, a description of the 

shoreline profile.  As an instance of a contingency table for habitat value, Table 4.23a 

shows the absence or presence of shrubs against Environmental value assessments.  

Higher counts for abundant shrubs are seen in high and very high-valued sites, and 

this was found to be statistically significant when tested (Table 4.23b).   

 

Hydrology frequency tables were not repeated for Environmental value as they were 

given for Economic value (Table 4.2c).  However their attributes of drainage, disposal 

of water, water storage, obstruction and redirection were checked against their 

Environmental value assessments for possible associations.  The contingency table for 

drainage, absent or present at a site, is shown here for illustration as Table 4.24a. 

Shading for the table suggests, and the χ2 test results show a significant association of 

very high and high Environmental value assessments with drainage being absent at a 

site (Table 4.24b and Table 4.24c). 
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Cross tabulation statistics for the vegetation intactness– width of vegetation fringe are 

shown in the contingency table, Table 4.25a.  The shading indicates a trend to 

moderate, high and very high Environmental values for site with wider vegetation 

fringes, which when tested is highly statistically significant (Table 4.25b). 

 

For the seven Environmental values of Table 4.12, 16 attributes were measured in 

their assessments.  Several of the sixteen attributes were measured using subattributes, 

like terrestrial zone habitat type noted the presence or absence of nine different site 

features.  For clarity and to assist the reader, only a representative set of 

Environmental value contingency tables have been given in this chapter with the 

remainder to be found in Appendix J.   

 

A summary of all statistically significant associations between all Environmental 

values and their attributes detected in my analyses follows: 

Wetland rarity 

• Permanent open water assessments are proportionally more likely to be found 

amongst the moderate value wetlands; and, 

• Proportionally more freshwater meadows were assessed as low Environmental 

value. 

 

Significant flora 

• Low individual cell counts precluded the use of the χ2 test, so statistically 

significant associations cannot be made between Environmental value and 

significant flora using VROT species counts. 

 

Significant fauna 

• Statistically significant associations between Environmental value and 

significant fauna using VROT species count cannot be made due to low cell 

counts precluding  the use of the χ2 test; and, 
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• Likewise for the sum of fauna FFG, low cell counts prevented the use of the χ2 

test. 

 

Habitat value 

• The first attribute, wetland rarity, is described above; 

• Terrestrial zone habitat type was assessed using presence or absence of: rocks; 

logs; emergent vegetation; exposed substrate; submerged of free-floating 

vegetation; shallow to medium depth water; permanent deep pools; water 

edge; and, other.  The statistically significant associations of these were: 

o Proportionally as a group, low and very low Environmental value sites 

generally have a higher than expected number of sites where there is an 

absence of logs; 

o An absence of emergent vegetation is associated more often with low 

and very low Environmental value sites; and 

o Low and very low Environmental value sites as a group have an 

absence of water edge. 

• Shoreline profile was assessed using the type of large vegetation present and a 

description of the shoreline profile.  The statistically significant associations 

amongst these and their subattributes are: 

o An absence of shrubs is associated more often with low and very low 

Environmental value sites; 

o Low and very low Environmental value sites are more likely to have an 

absence of alive trees in the wetlands; 

o Proportionally as a group, low and very low Environmental value sites 

tended not to have dead trees present; whereas, 

o High and very high Environmental value sites had generally greater 

numbers of dead trees present. 
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Hydrology 
Hydrology was assessed using the attributes of drainage, disposal of water, water 

storage, obstruction and redirection.  All attributes were tested for associations with 

their Environmental value assessments, and the statistically significant ones were: 

• Larger than expected numbers of high and very high Environmental value 

wetlands do not have drainage at their sites; 

• Low and very low Environmental value sites are more often used for water 

storage than other sites; 

• Obstruction has an impact in more low and very low Environmental value 

sites than would be expected due to chance;  

• More high and very high Environmental value sites have a significantly 

greater absence of obstruction than other sites; and, 

• An absence of redirection is seen at a proportionally greater number of high 

value and very high Environmental value sites than would be expected. 

 

Vegetation intactness − critical lifeforms 

As previously mentioned, vegetation intactness– critical lifeforms was assessed using 

three attributes: the floral types of the most dominant wetland EVC present by 

checking the percentage sum of the dominant EVC at each site; the number of floral 

species present; and, whether a site had been substantially modified or not.  The 

statistically significant associations found in the cross-tabulation analyses for these 

attributes and their component subattributes are: 

• Proportionally more high and very high-value wetlands have shrubs; 

• More often than other sites, low and very low Environmental value sites do 

not have herbs present; 

• More high and very high Environmental value sites have a significantly 

greater presence of sedges, including rushes and reeds; 

• Ferns and bryophytes are more likely to be seen at sites of high and very high 

Environmental value sites; 

• Low and very low Environmental value sites have very low species totals; 
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• Very high and high Environmental value sites are usually unmodified; and, 

• There is a strong association between site modifications and very low and low 

assessed sites. 

 

Vegetation intactness − width of vegetation fringe 

• Low and very low Environmental value sites have very small vegetation 

widths onsite. 

It is possible to confirm the WGCMA (2007) assertions that high Economic value 

wetlands score well for vegetation intactness, habitat value and wetland significance 

through the collation of the statistically significant patterns above.  This analysis 

showed that higher-valued sites typically will not be a freshwater meadow (wetland 

type) and the wetland will have presence values vegetation intactness attributes: 

shrubs; sedges; ferns; and, bryophytes and dead trees (a measure of habitat value) will 

be present.  It can be added that higher-value sites are usually unmodified and they 

have an absence of drainage, redirection and obstruction (hydrology attributes) in the 

wetland.  Whilst, lower-valued sites are more strongly associated with absences of: 

logs; emergent vegetation; water’s edge; shrubs; herbs; alive trees; and, dead trees 

(habitat value attributes). These sites typically have low species totals, small 

vegetation widths and site modifications (vegetation intactness measures) and often 

they are used for water storages and will have obstructions.  
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Table 4.20a: Contingency table for wetland rarity against overall WGCMA Environmental value assessment.  Excluding cells for unknown 
Environmental value and unknown Norman and Corrick classification, non-empty cells are shaded. 

 
Environmental 
value 
 

Wetland rarity 

Total 
Unknown 

Permanent 
saline 

wetland 

Semi-
permanent 

saline 

Shallow 
freshwater 

marsh 

Freshwater 
meadow 

Deep 
freshwater 

marsh 

Permanent 
open water  
wetlands 

Flooded 
river flat 

Unknown 
Count 1 0 0 0 0 0 0 1 

1 
% 0% 0% 0% 0% 0% 0% 0% 100% 

Very low 
Count 0 0 0 1 0 0 0 0 

1 
% 0% 0% 0% 100% 0% 0% 0% 0% 

Low 
Count 1 0 2 11 9 1 3 0 

27 
% 4% 0% 7% 41% 33% 4% 11% 0% 

Moderate 
Count 0 2 8 28 16 11 12 0 

77 
% 0% 3 % 10% 36% 21% 14% 16% 0% 

High 
Count 0 1 5 24 6 12 1 0 

49 
% 0% 2% 10% 49% 12% 25% 2% 0% 

Very high 
Count 0 0 1 6 0 1 0 0 

8 
% 0% 0% 13% 74% 0% 13% 0% 0% 

Total 1 3 16 70 31 25 16 1 
163 

% within Environmental value < 1% 2% 10% 43% 19% 15% 10% < 1% 
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Table 4.20b: Contingency table for the attribute wetland rarity freshwater meadows 
for low and not low Environmental value counts.  Values in brackets are the expected 
frequencies for each cell if there is no association between freshwater meadows and the 
WGCMA Environmental value assessment.  χ 2 (df=1) value = 4.221 and one-tailed p-value = 
0.02, which is statistically significant. 

  
Environmental 
value 
 

Wetland rarity 

Total 

 

 
Freshwater 
meadows 

Not 
freshwater 
meadows 

 

 
Low 

9 
          (5) 

18 
              (22) 

27 
 

 
Not low 

22 
         (26) 

113 
           (109) 

135 
 

 
Total 31 131 162  
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Table 4.21a: Contingency table for the percentage total herbs coverage at a site 
against overall WGCMA Environmental value assessment.   The values show the 
number and percentage of wetlands in the Database categorized as very low, low, moderate, 
high and very high Environmental values.  Non-empty cells other than for unknown have 
been shaded. 

 
Environmental 
value 
 

Vegetation intactness– critical lifeforms 

Total 
Floral types of most dominant wetland EVC 

Sum of % herbs coverage per site 

0% 
1 to 
19% 

20 to 
39% 

40 to 
59% 

60 to 
79% ≥80% 

Unknown 
Count 0 1 0 0 0 0 

1 
% 0% 100% 0% 0% 0% 0% 

Very low 
Count 0 0 1 0 0 0 

1 
% 0% 0% 100% 0% 0% 0% 

Low 
Count 16 9 1 1 0 0 

27 
% 59% 33% 4% 4% 0% 0% 

Moderate 
Count 11 48 9 4 3 2 

77 
% 14% 62% 12% 5% 4% 3% 

High 
Count 1 37 8 1 1 1 

49 
% 2% 76% 16% 2% 2% 2% 

Very high 
Count 3 3 1 1 0 0 

8 
% 38% 38% 13% 13% 0% 0% 

Total 31 98 20 7 4 3 

163 % within  
Environmental value 

19% 60% 12% 4% 3% 2% 
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Table 4.21b: Contingency table for the attribute herbs in dominant EVC with very 
low and low Environmental value counts added and moderate, high and very high 
counts summed.  All columns denoting any herb presence in dominant EVC have been 
summed. Values in brackets are the expected frequencies for each cell if there is no 
association between herbs in the dominant EVC and the WGCMA Environmental value 
assessment.  χ2

(df=1) value = 31.6 and  one-tailed p-value < 0.0001,  which is extremely 
statistically significant. 

  
Environmental 
value 
 

Herbs 

Total 

 

 
0 > 0 

 

 Very low & 
low  

16 
               (5) 

12 
               (23) 

28 
 

 Moderate, high & 
very high 

15 
              (26) 

119 
               (108) 

134 
 

 
Total 31 131 162  
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Table 4.22: Contingency table for the Environmental value significant flora which is 
indicated by sum at each site of all floral Victorian Rare or Threatened (VROTs) 
species values. The values show the number and percentage of wetlands in the Database 
categorized as very low, low, moderate, high and very high Environmental values.  Non-
empty cells other than for unknown have been shaded. 

Environmental 
value 
 

Significant flora 

Total Sum of VROT species scores 

0 
2 to  

6 
10 to 

16 
25 53 63 

Unknown 
Count 1 0 0 0 0 0 

1 
% 100% 0% 0% 0% 0% 0% 

Very low 
Count 1 0 0 0 0 0 

1 
% 100% 0% 0% 0% 0% 0% 

Low 
Count 27 0 0 0 0 0 

27 
% 100% 0% 0% 0% 0% 0% 

Moderate 
Count 74 3 0 0 0 0 

77 
% 96% 4% 0% 0% 0% 0% 

High 
Count 38 8 2 1 0 0 

49 
% 78% 16% 4% 2% 0% 0% 

Very high 
Count 2 1 3 0 1 1 

8 
% 25% 13% 37% 0% 13% 13% 

Total 143 12 5 1 1 1 

163 % within  
Environmental value 

88% 7% 3% 2% 
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Table 4.23a: Contingency table for the shoreline vegetation subattribute of shrubs 
against overall Environmental value assessment.   The values show the number and 
percentage of wetlands in the Database categorized as very low, low, moderate, high and 
very high Environmental values.  Non-empty cells other than for unknown have been 
shaded. 

 

 
Environmental 
value 
 

Habitat value  

 Shoreline profile  

 Shoreline vegetation  

 Shrubs  

 
Absent 

Present 
Total 

 

 Usually Abundant  

 
Unknown 

Count 1 0 0 
1 

 

 % 100% 0% 0%  

 
Very low 

Count 0 0 1 
1 

 

 % 0% 0% 100%  

 
Low 

Count 18 3 6 
27 

 

 % 67% 11% 22%  

 
Moderate 

Count 12 27 38 
77 

 

 % 16% 35% 49%  

 
High 

Count 2 8 39 
49 

 

 % 4% 16% 80%  

 
Very high 

Count 0 0 8 
8 

 

 % 0% 0% 100%  

 Total 33 38 92 

163 

 

 % within 
Environmental value 

20% 23% 57% 
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Table 4.23b: Contingency table for the attribute shoreline vegetation shrubs with very 
low and low Environmental value counts added and moderate, high and very high 
counts summed.  All columns denoting any shoreline vegetation shrubs have been 
summed.  Values in brackets are the expected frequencies for each cell if there is no 
association between shoreline vegetation shrubs and the WGCMA Environmental value 
assessment.  χ2

(df=1) value = 42.351 and  one-tailed p-value < 0.0001,  which is extremely 
statistically significant. 

  
Environmental 
value 
 

Shrubs 

Total 

 

 
Absent Present 

 

 Very low & 
low  

18 
               (6) 

10 
                (22) 

28 
 

 Moderate, high & 
very high 

14 
              (26) 

120 
              (108) 

134 
 

 
Total 32 130 162  
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Table 4.24a: Contingency table for the attribute drainage against overall 
Environmental value assessment.   The values show the number and percentage of 
wetlands in the Database categorized as very low, low, moderate, high and very high 
Environmental values.  Non-empty cells other than for unknown have been shaded. 

 

 
Environmental 
value 
 

Hydrology  

 Drainage  

 

Absent 

Present 

Total 

 

 No   
impact 

Low to 
moderate 
impact  

Severe 
impact 

 

 
Unknown 

Count 0 1 0 0 
1 

 

 % 0% 100% 0% 0%  

 
Very low 

Count 1 0 0 0 
1 

 

 % 100% 0% 0% 0%  

 
Low 

Count 17 0 5 5 
27 

 

 % 62% 0% 19% 19%  

 
Moderate 

Count 42 9 17 9 
77 

 

 % 54% 12% 22% 12%  

 
High 

Count 42 4 3 0 
49 

 

 % 86% 8% 6% 0%  

 
Very high 

Count 8 0 0 0 
8 

 

 % 100% 0% 0% 0%  

 Total 110 14 25 14 
163 

 

 % within 
Environmental value 68% 9% 15% 9% 
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Table 4.24b: Contingency table for the attribute drainage with very low and low 
Environmental value counts added and moderate, high and very high counts summed.  
All columns denoting any drainage activity have been summed. Values in brackets are the 
expected frequencies for each cell if there is no association between drainage and the 
WGCMA Environmental value assessment.  χ2

(df=1) value = 0.203 and  one-tailed p-value = 
0.3261,  which is not statistically significant. 

  
Environmental 
value 
 

Drainage 

Total 

 

 
Absent Present 

 

 Very low & 
low  

18 
             (19) 

10 
                (9) 

28 
 

 Moderate, high & 
very high 

92 
            (91) 

42 
             (43) 

134 
 

 
Total 110 52 162  

 

Table 4.24c: Contingency table for the attribute drainage with very low, low and 
moderate Environmental value counts added and high and very high counts summed.  
All columns denoting any drainage activity have been summed. Values in brackets are the 
expected frequencies for each cell if there is no association between drainage and the 
WGCMA Environmental value assessment.  χ2

(df=1) value = 15.847 and  one-tailed p-value 
< 0.0001,  which is extremely statistically significant. 

  
Environmental 
value 
 

Drainage 

Total 

 

 
Absent Present 

 

 Very low, low & 
moderate 

60 
                (71) 

45 
              (34) 

105 
 

 
High & very high 

50 
             (39) 

7 
              (18) 

57 
 

 
Total 110 52 162  
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Table 4.25a: Contingency table for the Environmental vegetation intactness– width of 
vegetation fringe against overall Environmental value assessment.   The values show the 
number and percentage of wetlands in the Database categorized as very low, low, moderate, 
high and very high Environmental values.  Non-empty cells other than for unknown have 
been shaded. 

 
Environmental 
value 
 

Vegetation intactness– width of vegetation fringe 
Total 

0 1 to 5 6 to 10 
11 to 

15 
16 to 20 >20 

Unknown 
Count 1 0 0 0 0 0 

1 
% 100% 0% 0% 0% 0% 0% 

Very low 
Count 0 0 0 0 0 1 

1 
% 0% 0% 0% 0% 0% 100% 

Low 
Count 22 3 1 1 0 0 

27 
% 81% 11% 4% 4% 0% 0% 

Moderate 
Count 19 24 12 3 8 11 

77 
% 25% 31% 16% 4% 10% 14% 

High 
Count 1 3 2 0 5 38 

49 
% 2% 6% 4% 0% 10% 77% 

Very high 
Count 1 0 0 0 1 6 

8 
% 13% 0% 0% 0% 13% 74% 

Total 44 30 15 4 14 56 

163 % within  
Environmental value 

27% 18% 10% 2% 9% 34% 
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Table 4.25b: Contingency table for the attribute vegetation intactness– width of 
vegetation fringe at a site with very low and low Environmental value counts added 
and moderate, high and very high counts summed.   All columns denoting any 
vegetation widths have been summed.  Values in brackets are the expected frequencies for 
each cell if there is no association between width of vegetation fringe and the WGCMA 
Environmental value assessment.  χ2

(df=1) value = 46.996 and one-tailed p-value < 0.0001,  
which is extremely statistically significant. 

  
Environmental 
value 
 

Width of vegetation fringe 

Total 

 

 
0 > 0 

 

 Very low & 
low  

22 
              (7) 

6 
                (21) 

28 
 

 Moderate, high & 
very high 

21 
            (36) 

113 
              (98) 

134 
 

 
Total 43 119 162  

 

 

 

4.5 Threat results analyses 

The WGCMA’s assets-based management approach also involved an assessment of 

the threats likely to downgrade high economic, social and environmental wetland 

values.  Threat values were used to compute risk assessments through the use of 

Likelihood, Consequence and Risk level matrices, as described in Section 3.3.2 

WGCMA process for evaluating wetlands.   

 

Table 3.1 lists 14 threat categories used in risk assessments for inventoried wetlands 

as: loss of wetland connectivity; stock access; pest plants; pest animals; urban 

development; altered hydrology; native vegetation decline; land use; physical 

alteration; erosion; fire regime; recreation; water source; and, salinity.  Brief 

definitions of these threat categories are given in Table 4.26a.  Various documents 

(WGCMA, 2006a, 2006b & 2006c) provide evidence that up to seven extra threat 

categories were originally planned for use in risk assessments.  Additional categories 

were: lack of reservation; sedimentation; change in size since European settlement; 

eutrophication, drainage; resource utilisation, other than grazing; and, other.  Reported 

in the next two chapters, my investigations revealed that several of these additional 
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threat categories were closely associated to high-value wetland assessments, more so 

than some of the 14 threat categories used in the WGCMA assessments. For this 

reason, I provide definitions, where known, in Table 4.26b for these additional threat 

categories. 

 

An inspection of the WGCMA Wetland Inventory Database reveals that field data 

was collected by Greening Australia for all threat categories (14 listed in Table 3.1 

and defined in Table 4.26a, plus the additional seven defined in Table 4.26b).  Prior to 

assessments, the WGCMA discussed the validity and usefulness of all threat 

categories through workshops and interviews with technical experts and stakeholders 

(WGCMA, 2006b) and they decided to use the 14 threats listed in Table 3.1 and Table 

4.26a in their risk assessments for the inventoried subcatchment wetlands.  As 

previously noted in Chapter 2, a different set of threats were used in the risk 

assessment calculations for significant wetlands (Ramsar and Directory of Important 

Wetlands listed).  There, urban development was not included, rather changes in size 

since European settlement, eutrophication, lack of reservation, resource utilization, 

and sedimentation were used.   

 

According to all WGCMA documentation (2006a, 2006b & 2006c) all risk 

assessments used threat categories scored as: 

• 0 for no data available; 

• 1 where no threat exists; 

• 2 for low threat presence; 

• 4 for medium threat presence; and,  

• 5 for high threat presence. 

However the actual threat values for each wetland site in the Database were recorded 

as either absent or present, and where present as either as a minor or a key threat.  The 

frequency distributions of the values of threat categories stored in the Database are 

discussed in the next section for their relevance to subcatchment and significant 

wetlands. 
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4.5.1 Threats − frequency statistics and analyses 

For the inventoried sites, the WGCMA Wetland Inventory Database holds 157 

complete records for all threat categories.  The frequency statistics for the 14 threat 

types, except water source, are given in Table 4.27a.  As mentioned above and 

irrespective of the scoring scheme published by the WGCMA, threats were recorded 

as absent/present at each inventoried site, and present threats are further classified as 

minor or key threats.   

 

The threat category water source, values were assigned a scale of 1 to 7:  

• 1 represents wetlands filled primarily by rainfall;  

• 2 represents wetlands whose major water source was groundwater;  

• 3 is used for wetlands associated with natural flooding;  

• 4 for wetlands filled primarily by diverted farm drainage;  

• 5 represents wetlands filled primarily by irrigation runoff or urban stormwater;  

• 6 is used where the water source is unknown; and,  

• 7 for the value other water sources not already included.   

The frequency statistics for threat category water source using this scale are given in 

Table 4.27b.   

 

Greening Australia (2006) reported the major threats for inventoried wetlands in the 

region as changes to hydrology and grazing, which is linked to declines in native 

vegetation, loss of reservation and an influx of exotic flora.  Their observations relate 

to only seven of the 14 threat categories, and they are verified through examination of 

Tables 4.27a and 4.27b, being: 

 Loss of wetland connectivity occurs at 60% of inventoried sites, where it is a 

key concern at more than half of these;  

 Over half of the wetlands are subject to stock access, where inappropriate 

grazing is most often recorded as a major threat; 
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 Pest plants were seen at nearly three quarters of all sites (73%), and at half of 

these it is recorded as a major threat; 

 Likewise, pest animals are prolific, being found at two thirds of sites (67%); 

 Urban development is a minor threat affecting only 21 sites;  

 Altered hydrology, seen in 74% of the sample, is one of the most significant 

threats; and, 

 Two thirds of wetlands evidence noticeable native vegetation decline;  

 

Not reported was the significant impact at the majority of sites of incompatible 

surrounding land use.  Additionally, my analyses of the threat categories frequency 

statistics show that: 

• Surrounding land use impacts almost 70% of inventoried sites, where it is 

recorded as a significant threat;  

• Half of the inventoried sites show physical alterations; 

• Erosion occurs at just over 30% of sites, and it is key threat at 10% of all 

wetlands; 

• An inappropriate fire regime was recorded at just over a quarter of sites, where 

it is usually a minor threat; 

• Evidence of inappropriate recreation activities was seen at 21 sites;  

• 80% of sites are not threatened by salinity, but at nine sites where it is 

recorded it is of great concern; and, 

• Nearly 60% of wetlands have rainfall as their water source and manmade 

sources of diverted farm drainage and irrigation runoff affect only seven of the 

160 sites. 

Because of their prevalence amongst sampled wetlands, incompatible surrounding 

land use should be targeted in management plans together with the threats noted by 

Greening Australia (2006) as the loss of wetland connectivity, the amount of stock 

access and altered hydrology. 
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For completeness, Table 4.28 provides the frequency statistics for the additional seven 

threat categories not used in the final risk assessments for subcatchment wetlands. 

These statistics indicate that a lack of reservation is a significant threat affecting 

almost half of all surveyed sites.  Sedimentation and resource utilization impact 

relatively few sites, analyses later in this research reveal these threats and a lack of 

reservation to be influential predictors for assessments for Environmental value; all 

should definitely be targeted in management plans.  

 

Threat assessment was undertaken as an input for risk assessment calculations. 

However, final risk assessments data on a per-site basis have not been supplied by the 

WGCMA to this study and given that risk assessments were not known, it was not 

possible to undertake cross-tabulations analyses for threat categories.  

 

  

 127 



Table 4.26a: Threat category definitions for threats used in risk assessments of 
subcatchment wetlands as supplied by the WGCMA (2006a, 2006b & 2006c). 

Threat category WGCMA definition 
Loss of wetland 
connectivity 

The loss of connection between wetlands and between wetland and 
waterway so that it is no longer connected under any flow conditions 
or degradation of native flora connecting two wetlands. 

Stock access Stock access and/or grazing practices that causes damage to a 
wetland. 

Pest  plants Flora that is not native to the area that has potential to become 
invasive and displace endemic flora.  May result from planting of 
inappropriate species, introduction of diseases, spread of invasive 
species, translocation of live aquatic organisms. 

Pest animals Fauna not native to the area that has potential to become invasive or 
displace endemic fauna. 

Urban development Definition not supplied in WGCMA documents. 

Altered hydrology Alteration of a wetlands’ water regime such that it receives less or 
more water and/or water at different times to its undisturbed 
condition (including impacts of irrigation). 

Native vegetation decline Degradation of aquatic and terrestrial indigenous wetland vegetation. 

Land use Impacts associated with incompatible surrounding land use and/or 
poor land-use practices in area surrounding wetland. 

Physical alteration Large scale movement of soil (excavation or infilling or land-
forming) within a wetland that changes its shape and possibly the 
flow of water. 

Erosion The dislodgement of soil particles, their removal and eventual 
deposition away from the original position. 

Fire regime A fire regime that differs from the undisturbed condition. 

Recreation Impacts associated with inappropriate recreational use of a wetland, 
i.e. trampling, soil compaction, litter. 

Water source Definition not supplied in WGCMA documents. 

Salinity The concentration of salt in the soil and/or water. Disposal of 
irrigation tailwater, rise of groundwater OR a change in the salt 
content of a wetland from the natural or desired state. 
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Table 4.26b: Additional threat category definitions for threats used in risk assessments 
of subcatchment wetlands as supplied by the WGCMA (2006a, 2006b & 2006c).  Field-
recorded values for each of these categories can be found in the WGCMA Wetland 
Inventory Database. 

Threat category WGCMA definition 

Lack of reservation Lack of formal protection for wetland as can be achieved through a 
reserve and/or covenant. 

Sedimentation The deposit of soil particles 

Change in size since 
European settlement 

Loss of wetland area since European settlement. 

Eutrophication The nutrient enrichment of a water body, usually leading to growth 
and proliferation of large masses of plant material (phytoplankton, 
macrophytes or both). 

Drainage into wetland Disposal of irrigation drainage, groundwater disposal or forms of 
agricultural, industrial or urban runoff. 

Resource utilisation, other 
than grazing 

Unsustainable resource utilisation other than grazing. 

Other Definition not supplied in WGCMA document.  Comments recorded 
with this data included the presence of wind farms in the wetland 
vicinity. 
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Table 4.27a: Frequency statistics for 14 threat category data used for risk assessments 
of inventoried subcatchment wetlands. 

Threat Absent 
Present 

Total 
Minor Key 

Loss of wetland 
connectivity 

63 42 55 160 

Stock access 77 19 64 160 

Pest plant 43 51 66 160 

Pest animal 53 71 36 160 

Urban development 136 12 9 157 

Altered hydrology 58 51 51 160 

Native vegetation 
decline 

56 42 62 160 

Land use 50 39 71 160 

Physical alteration 82 43 35 160 

Erosion 116 27 17 160 

Fire regime 117 38 5 160 

Recreation 139 18 3 160 

Salinity 128 22 9 159 

 
 
Table 4.27b: Frequency statistics for threat category water source. 

Threat 1 2 3 4 5 6 7 Total 

Water source 
 value 94 9 34 3 4 12 4 160 

 
 
 
 
 
 
 
 
 
 
 
 

 130 



Table 4.28: Frequency statistics for additional threat category data in the WGCMA 
Wetland Inventory Database that were not directly used for risk assessments. 

Threat Absent 
Present 

Total 
Minor Key 

Lack of reservation 56 29 74 159 

Sedimentation 104 46 10 160 

Change in size since 
European settlement 

88 34 38 160 

Eutrophication 116 33 11 160 

Drainage 124 28 8 160 

Resource utilisation,  
other than grazing 

150 8 2 160 

Other 159 1 0 160 

 

 

 

4.6 Synthesis and discussion 

The WGCMA wetland assessment relied on the data collected by Greening Australia 

and stored in the Wetlands Inventory Database.  As mentioned earlier, neither the 

WGCMA nor Greening Australia undertook a systematic analysis of the amassed data 

collection stored in the Database.  In their reports of the 2006 wetlands assessment 

(Greening Australia, 2006; WGCMA, 2007), very few associations between input 

values of attributes with high-value assessments were noticed by either organisation. 

The reporting of any observed associations was, at best, piecemeal, and, at worst, not 

supported by the data.  

 

For Economic value assessments, the WGCMA (2007) reported that commercial 

fishing, tourism and, to a lesser extent, the production of the surrounding land were 

important attributes for deciding value.  My frequency and cross-tabulation analyses 

found no statistically significant associations for any of these attributes with moderate 

and high-value assessments.  However, there were two statistically significant 

relationships not mentioned by WGCMA (2007) and Greening Australia (2006), 

being the association of stock water supply with moderate and high Economic value 

wetlands, and the presence of drainage at sites with higher valued wetlands. 
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For Social value assessments, my analyses showed that park value, passive recreation, 

recreational fishing, education, camping, swimming, boating or motorized four-wheel 

drive usage were strongly associated with higher-valued wetland sites and with each 

other, as seen in the correlation statistics reported in the next chapter.  None of these 

statistically significant associations were reported by the WGCMA. Instead they 

stated that indigenous and European cultural values together with high visual amenity 

were most important in deciding Social value (WGCMA, 2007).  There are no records 

of any data relating to visual amenity stored in the Wetlands Inventory Database.  

 

For Environmental value assessments, the only published statistics were frequency 

statistics done at catchment and subcatchment levels (Greening Australia, 2006); there 

were no reports of collated statistics for the West Gippsland region.  In this chapter, I 

have provided the frequency statistics for the seven major environmental values used 

in the assessment process. For these values and their component attributes and 

subattributes, my cross-tabulation analyses discovered over twenty statistically 

significant associations with high-value and very high-value wetland assessments, 

none of which were reported by Greening Australia or the WGCMA.  Several of these 

associations related to wetland type, an input to wetland rarity and habitat value used 

in the scoring of Environmental value.  The efficacy of including wetland type in 

Environmental value assessment is doubtful since field visits revealed that 40% of 

inventoried wetlands were found to be misclassified for type under the Corrick and 

Norman (1980) scheme, which is based on characteristics of depth, period of 

inundation and vegetation types. Rather, as supported by the statistically significant 

associations within the data, it is better to score each site for the presences of 

vegetation types, such as sedges, ferns and bryophytes, shrubs, and dead trees, which 

are linked to higher Environmental value scores, and the absences of logs, emergent 

vegetation, shrubs, herbs, dead and alive trees, that are more strongly correlated with 

lower Environmental scores. This is argued particularly in the case of freshwater 

meadows type, where proportionally more than expected inventoried wetlands were 

assessed as low Environmental value.  This wetland type has vegetation sub-

categories including herb-dominated and sedge-dominated classes, and when there are 

absences of these vegetation types, it is likely that the classification of freshwater 

meadows wetland is acting in surrogacy.  On these grounds it is better to measure the 
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vegetation absence/presence values more directly and avoid problems when wetlands 

need to be reclassified under the Corrick and Norman (1980) scheme.  

 

Threat categories were used by the WGCMA to undertake risk assessments; data was 

collected for a broad range of threat categories.  There were several problems in the 

application of threat category data during the assessment.  First, different wetland 

types used different threat categories in their risk assessment evaluations; those for 

inventoried wetlands were different to significant wetlands.  Second, the 

documentation (WGCMA, 2006a, 2006b & 2006c) does not provide definitions for all 

threat categories, so it is difficult to know the nature of various threats (urban 

development, water source and other).  Thirdly, there is a disparity in the scales used 

to categorize all threat categories. Published scales had a range from zero to five 

while the data values stored in the Database were either absent, present as a minor 

threat or present as a key threat.  It is not obvious how the two threat scales related to 

one another. Fourthly, individual wetland risk assessments are not known and 

therefore cannot be tied directly to each wetland’s assessments for Economic, Social 

or Environmental value.  This has meant that cross-tabulation analyses could not be 

done for any of the threat categories; and if analyses could be done, the results would 

provide a baseline for discussion of the findings reported in upcoming chapters, where 

multivariate statistical analyses and neural networks indicate strongly that some threat 

values, more than others, are associated with each assessment value. For Economic 

value, the linked threats are erosion and resource utilization, and for Social value, it is 

salinity. For Environmental value, it is more complicated as significant threats include 

those used in the WGCMA risk assessments: pest plants; altered hydrology; erosion; 

salinity; and, water source type, and threats not used by the WGCMA, but for which 

data was collected: drainage into wetland; lack of reservation; resource utilization; 

and, sedimentation. 

 

The above disparities between what was reported and the actual data values stored in 

the Database are concerning.  My analyses using frequency statistics were identical, 

or nearly so, to those reported by Greening Australia (2006) confirming that the 

dataset analysed by themselves and the WGCMA is in fact the same dataset that I 

have studied. There were many patterns observed within the frequency statistics that 

described wetlands within the region, and these were not reported by either 
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organisation (listed in the dot-point bulleted lists in previous sections of this chapter; 

tick-point bulleted lists are WGCMA statistics that were confirmed).  My cross-

tabulation analyses suggest that the relatively few associations between various 

attributes and high-value wetlands reported by the WGCMA and Greening Australia 

were not based in fact or were the result of any statistical analysis.  Much more could 

have been learnt about wetlands in West Gippsland region through a more thorough 

analysis of frequency distributions and cross-tabulation statistics, and the failure of 

Greening Australia and the WGCMA to do so, is truly an opportunity lost. For 

management, the missed association between the presences of stock water supply and 

drainage to higher Economic value assessments is of particular interest; it a marked 

contradiction to the relationship observed for higher Environmental value assessments 

with the absences of drainage, obstruction and redirection. The contradiction raises 

resource management issues.  Should management plans prioritize for economic value 

or for environmental value? More broadly, for wetlands in the region: Are the 

desirable features of economic values and environmental values at odds with each 

other? The simple statistical analysis here suggests so.  

 

By their univariate nature, frequency and cross-tabulation table analyses presented in 

this chapter are unsophisticated; they can only examine one variable at a time and 

they cannot point to multi-faceted relationships between variables, which are likely to 

be of more interest and use.  In the next chapter, multivariate statistics are used to 

discover combinations of variables that best predict high-value wetland assessments, 

and the predictive power of these will be used for comparison to test the efficacy of 

neural networks in making wetland assessments in Chapter 6.  
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Corner Inlet, Victoria.   

Image courtesy of Michelle Dickson, WGCMA 
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Chapter 5  

Multivariate statistical analyses 

The univariate analyses outlined in Chapter 4 revealed that a number of WGCMA 

conclusions about associations between particular attributes and high wetland values 

could not be supported from the data.  The analysis also showed that a number of 

other important conclusions regarding data values of input variables and the 

assessments of high, and sometimes low, Economic, Social and Environmental values 

could be extracted from the Database via simple statistical methods.  

 

This chapter explores the cumulative effects of input variables in deciding wetland 

assessments through the use of multivariate analyses.  Statistical models are 

constructed and examined for their ability to describe the collective contribution of 

input variables to wetland assessments.  The predictive powers of these models are 

quantified and their usefulness is discussed; the outcomes provide a comparative 

baseline for neural networks assessments made in Chapter 6.  

 

 

 136 



5.1 Introduction 

Multivariate statistics offers a set of methods designed to detect relationships between 

multiple variables that are correlated with one another to varying degrees (Spicer, 

2005; Tabachnick & Fidell 2007).  Historically, some multivariate techniques are 

extensions of simpler univariate statistical analyses, such as single-variable 

distributions and bivariate analysis, like cross-tabulation, correlation, analysis of 

variance, and simple regression used to analyse two variables.  Other multivariate 

data-analysis techniques, including multiple discriminant, principal components and 

logistic regression analyses, have been uniquely designed to cope with multivariate 

issues not encountered in traditional statistical applications or to handle the different 

effects of variables which cannot be separated meaningfully by other, univariate, 

means (Hair et al., 2006; Spicer, 2005).   

 

All multivariate statistics can be described using a single relationship for a variate 

value, as shown here as Formula 5.1 and supplied by Hair et al. (2006, page 5).   

variate value = w1 X1 + w2 X2 +  w3 X3 +    ………… + wn Xn                              

 [Formula 5.1] 

The variate is described as a linear combination of n variables specified for each 

application, with each variable being multiplied by an empirically computed weight 

determined by the chosen multivariate technique.  

 

The problem to be surmounted in the first instance is the selection of the most 

appropriate multivariate technique from the wide range that is currently available.  

Many multivariate techniques are based on mathematical assumptions that place strict 

requirements upon the type of data that can be used.  The choice of method needs to 

be mindful of these.  Excellent help in deciding the correct multivariate technique is 

given in the Hair et al. (2006, Figure 1-2, pages 14 and 15) textbook by means of a 

flowchart reproduced here as Figure 5.1.  The flowchart has been designed around the 

possible answers to the following three questions:   

1. Can the variables be divided into independent and dependent classification 

based on some theory? 

2. If yes, how many variables are treated as dependent in a single analysis? 
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3. How are the variables, both dependent and independent, measured? Are they 

metric, non-metric or a combination? 

 

The nature of the variables stored in the WGCMA Inventory Database greatly 

constrains the navigation through the Hair et al. (2006) flowchart.  Prediction is 

sought for one data variate which can take one of five wetland values (very high, 

high, moderate, low and very low).  This single variate is non-metric (categorical) 

data, thereby limiting an appropriate choice to either multiple discriminant analysis or 

logistic regression analysis, and the relevant path through the flowchart (Figure 5.1) 

has been indicated by a dotted line (Antonogeorgos et al., 2009; Fernandes et al., 

2006; Hair et al., 2006).  Note: other methods, such as, non-metric multidimensional 

scaling (NMDS) and redundancy analysis (RDA) are not suitable to this application 

due to their data requirements (Kenkel et al., 2002; Palmer, 2006). 

 

Multiple discriminant analysis offers a description of how the various wetland value 

groups differ in relation to selected site characteristics by forming the variate that 

creates scores for each observation that maximally differentiates between groups.  The 

precondition for multiple discriminant analysis is that all the independent variables 

must be normally distributed, quantitative (or metric, numeric) data.  This is not the 

case with most of the values recorded in the WGCMA database, since they often 

relate to either presence or absence.  Logistic regression, multinomial and ordinal, is 

more flexible than multiple discriminant analysis in that it allows the explanatory, 

independent variables to be of any type, qualitative or quantitative (Sage Publishing, 

2012).  They predict values for binary, multinomal or ordinal dependent variables, 

such as wetland values through the use of probabilities and odds of belonging to very 

high, high, moderate, low or very low wetland value groups.  Therefore, logistic 

regression is the most appropriate multivariate statistical technique to use in the 

analysis of data stored in the WGCMA Wetlands Inventory Database as it can deal 

with a great variety of dependent variable types to predict the variate, which is the 

probability of a high-value wetland assessment. The next subsection describes logistic 

regression analysis in more detail, and it is followed by a discussion of the 

considerations to be made when applying the multivariate technique to the Database. 
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Figure 5.1: Flowchart for deciding appropriate multivariate data-analysis technique as given in Multivariate Data Analysis text by Hair et al. 
(2006) as Figure 1-2, pages 14 and 15.  The selection of the most appropriate multivariate technique for use in analysing the WGCMA Wetlands 
Inventory Database is shown as a dotted line.  
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5.1.1 Logistic regression analysis 

Logistic regression is concerned with the prediction of group membership for binary 

dependent variables.  Multinomial and ordinal logistic regressions are extensions of 

this base case.  As shown in Formula 5.2, logistic regression can be equated to a 

modified version of Formula 5.1, where natural logarithms (ln) have been taken of 

various terms.  Note the natural logarithm of any number is the power to which e 

(approximately 2.718) must be raised to produce that number (Spicer, 2005). 

ln (odds of (variate value) ) = ln (w1)X1 +  ln (w2) X2 +   … ln (wn) Xn     + constant 

[Formula 5.2] 

 

For mathematical conciseness in the calculations of logistic regression, the odds of the 

variate value are used to represent the likelihood of membership in the dependent 

variable, rather than raw probability values.  Odds express the ratio of two 

probabilities, success versus failure as shown in Formula 5.3 where s is the probability 

of success. 

odds of success = 
𝑠

1−𝑠
 

[Formula 5.3] 

If the probability of success is 0.8, then the probability of failure is 1– 0.8 = 0.2 and 

the odds of success to failure would be 0.8/0.2.  This ratio can be expressed as being 

4/1 or odds of 4 to 1 in favour of success.   It is equally legitimate to be interested in 

the odds of failure compared to success, being 0.2/0.8 or ¼.  Here, the odds are 

expressed as failure occurs at one-fourth of the rate of success (Hair et al., 2006). 

 

Important to the logistic regression technique is the reality that binary dependent 

variables can only have values of 0 or 1, and that any predicted probabilities of group 

membership must fall within the range of 0 to 1.  To accommodate this, a logistic 

curve, as shown in Figure 5.2, is used to describe the relationship between an 

independent variable and the probability of event/group membership of a dependent 

variable.  Although the process is entirely different to that used in multiple regression, 

the parallel is that the curve of predicted values is modified to fit actual input data 

(Hair et al., 2006).  Figure 5.2 shows that a probability of 0.5 represents the critical 
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value for membership; a score above 0.5 means inclusion, otherwise not.  A 

probability of 0.5 equates to odds of 1.0, that is, the outcome is equally is as likely as 

not.  The natural logarithm of the odds value is called the logit value and in this case 

ln (1) = 0.   Thus in Formula 5.2 any calculation resulting in a value less than 0, 

means the odds are less than 1; likewise, any calculation resulting in a value greater 

than 0, means the odds are greater than 1 (Hair et al., 2006; Spicer, 2005). 

 

 

Figure 5.2: The logistic relationship between dependent and independent variables.  
This figure has been adapted from Figure 5-11 of Hair et al. (2006, page 356.) 

  

In attempting to fit the empirical data of differing input values by computing the 

various coefficients of wn in Formula 5.2, a suitable measure of fit is needed.  The 

non-linear nature of logistic relationship in Figure 5.2 requires that an appropriate 

likelihood value be calculated.  Perfect-fit models would have a likelihood of 1.   

However for mathematical convenience, it usual to compute the value as –2 * log 

(likelihood).  The –2 manipulation helps turn the calculation into a very useful, 

distribution-free log likelihood chi-squared (χ 2) statistic with 1 degree of freedom.  So 

in a perfect-fit model, the –2 * log (likelihood) will have a value of 0 and poorly 

fitting models can have values up to positive infinity.  Therefore, the Wald χ2 statistic 

is used to measure and decide the statistical significance of individual estimated 

coefficients in Formula 5.2 (Spicer, 2005).  The Wald statistic, known as Z2, is 

calculated using Formula 5.4, where wn is the estimated coefficient of a variable in 

Formula 5.2. 
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Z2 = ( 𝑤𝑛
𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝐸𝑟𝑟𝑜𝑟( 𝑤𝑛)

)2 

[Formula 5.4] 

 

Reduced hardware costs and recent advances in computing power have allowed the 

development and proliferation of sophisticated ‘point-and-click’ statistical packages.   

The availability of these, with their computing intensive algorithms, has empowered 

users and organisations with more advanced multivariate data-analysis methods, with 

which to derive knowledge from datasets and inform their decision making processes 

(Hair et al., 2006; Spicer, 2005; Tabachnick & Fidell 2007).  The analysis undertaken 

in this chapter has been done using the IBM® SPSS® 20 Statistics package 

(http://www.spss.com/).  

 

5.1.2 Considerations in applying logistic regression to WGCMA 
Wetlands Inventory Database 

Most statistical software packages, including SPSS, offer the convenience of selecting 

between binary, multinominal and ordinal forms of logistic regression.  Binary 

logistic regression, the simplest form, has been described above, whereas multinomial 

and ordinal logistic regression forms are better when the outcome/dependent variable 

can have three or more possible types.  Ordinal analysis is used for outcomes that 

have inherent ordering or grading, like very low, low, moderate, high and very high 

wetland assessments; multinomial analysis handles cases where there is no ordering.  

Both multinomial and ordinal logistic regressions divide the data into smaller pools, 

each representing an outcome type before performing a set of pair-wise binary logistic 

regressions for memberships in, and out of each pool.  For interrogation of the 

WGCMA Wetlands Inventory Database, it seems that ordinal logistic regression is the 

best fit selection for examination of the case study data.  However, the small numbers 

of high-value and very high-value assessments compared to other categories renders 

the use of ordinal logistic regression, and multinomial logistic regression 

impracticable.  This is the same problem encountered and tackled whilst undertaking 

cross-tabulation analyses in Chapter 4.  For the same reasons, it is practical to use 

binary logistic regression to decide the likelihood of membership in one group over an 

alternative group for: 
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• Economic value: Combine the records of moderate and high Economic2 

values and compare them to the records of very low and low value 

assessments together; 

• Social value: Use the records of moderate and high Social value assessments 

and contrast them to the very low and low value records; and,  

• Environmental value: Combine the records of high and very high 

Environmental value assessments and compare them against very low, low 

and moderate value assessments. 

 

There is the need to understand the underlying assumptions of the binary logistic 

regression method, and to check for compliance with them (Sage, 2012).  All 

assumptions are complied with, and they are: 

• The dependent variable is dichotomous, that is inclusion, or exclusion, in 

moderate and high assessments for Economic and Social values, and inclusion 

or exclusion in very high and high assessments for Environment value; 

• No linear relationship is assumed between independent input variables and the 

dependent variables; 

• No assumptions need to be made about input independent variables; they do 

not need to be normally distributed, nor linearly related, nor of equal variance 

within each group; 

• All categories or groupings must be mutually exclusive and exhaustive, that is  

for each case there can one group membership, and every case must be a 

member of a group; and, 

• Wherever possible, a minimum of 50 cases per predictor is recommended; it 

will be identified whenever this is not the case.  

For many of the categorical input variables, compliance with the last criterion is 

improved by employing the strategy used for some cross-tabulation analyses in 

2 The practice in this Chapter, and others, is to denote WGCMA wetland assessments for economic, 
social and environmental values with capital letters, that is, Economic, Social and Environmental.  
Where lowercase versions have been used, it has been done to indicate the broader meanings of these 
terms. 
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Chapter 4, the addition of columns of values for varying types of ‘present’ data.  In 

each case, collating data into one of two types, the absence or presence of an attribute, 

resulted in an additional significant improvement to the binary logistic regression 

modelling, through the elimination of the need for dummy input variables to run the 

algorithm.   

 

To illustrate this improvement, drainage, an attribute used to assess Economic value is 

used as an example.  Drainage was described in the field and in the Inventory 

Database through four different categories: (1) absent; (2) present with no impact; (3) 

present with low to moderate impact; or, (4) present with severe impact for each site.  

A variable with n categories is handled by the software through the creation of n–1 

dichotomous variables using a process known as dummy coding.  Subsequently, each 

dummy variable needs to be computed into any binary logistic regression model 

generated, along with its own separate, and not necessarily meaningful, coefficients.  

The result is a more complicated version of Formula 5.2, which needs to be 

deciphered for its meaning.  For simplicity and the ability to make comparisons to 

cross-tabulation analyses and contingency tables of Chapter 4, many attributes were 

incorporated into the modelling with dichotomous values, as either absent or present.  

This coding has another benefit; it allows comparisons to be made of the magnitudes 

of the coefficients for each independent variable where absent/present coding has 

been used.  Normally, care needs to be exercised as the coefficients are not 

standardised and they are impacted when different scales are used for various input 

variables.  For the cases of attributes values designated either absent or present, the 

coefficients can be directly compared for they are an indication of the relationships 

and strengths between contributing variables to the outcome wetland assessment. 

 

In setting up the SPSS software to undertake binary logistic regression, it is necessary 

to specify which group is the baseline group against which comparisons are made.  It 

is assumed that the derived binary logistic regression models give the probability of 

success over failure of predicting moderate and high values for Economic and Social 

values, and high and very high Environmental values.  In each case, comparison will 

be made to a baseline scenario where all input variables have coefficients of 0 in 

Formula 5.2, resulting in the calculation of the constant value.  As seen in the 
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following sections, this step and resulting classification tables are useful in evaluating 

the predictive abilities of the binary logistic regression models generated.  

 

The next three sections describe binary logistic regression analyses for Economic, 

Social and Environmental value, respectively. For each value, correlation statistics are 

presented and logistic regression models are built, followed by model evaluations.  

Each section concludes with an investigation of the effect of including threat 

categories in binary regression models for its particular value. The final section of this 

chapter discusses the performance of binary logistic regression models in predicting 

high-value wetland assessments, and the implications of these analyses. 

 

 

5.2 Economic value of wetlands  

5.2.1 Economic value − correlations 

In Chapter 4, cross-tabulation analyses were used to search for associations between 

the 12 input attributes used in Economic value assessments, which were listed in 

Table 4.1.  Spearman’s rank correlation coefficient (rho ρ) was computed for all input 

attributes and their association with a moderate or high assessment as a first step in 

setting up and examining statistical models to explain moderate and high Economic 

value assessments.  Spearman’s rho is a non-parametric measure of how two variables 

relate to one another.  It is used for ranked or ordinal data and, like Pearson’s 

correlation coefficient employed for continuous variables, takes values between +1, 

for direct one-to-one correspondences, through to –1, for presence of a perfectly 

negative correlation where one variable increases and the other variable decreases by 

the same proportion.  Importantly, Spearman’s ρ is unaffected by log transformations, 

which makes it an appropriate measure of association for use in conjunction with 

logistic regression models (Trochim, 2006).  It is important to remember that 

statistical correlation does not equate to causation, that is, an association between 

variables X and Y, does not mean X causes Y, or vice versa.  Correlation is simply an 

indication of association by describing the behaviour of variables in comparison to 

one another. 
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Spearman’s rho was calculated for all Economic value attributes, absent/present 

statistics against presence or absence in high or moderate Economic value 

assessments.  In the interests of highlighting the most significant correlations, only 

those associations with a value greater than or equal to + 0.400 or less than or equal to 

–0.400 are mentioned here.  In order of strength, they are: 

• The presence of diverted or farm runoff is moderately correlated to a moderate 

or high Economic value assessment (ρ = 0.473); 

• The presence of drainage at a site is moderately correlated to a moderate or 

high Economic value assessment (ρ = 0.427); and, 

• The presence of water storage at a site is moderately correlated to a moderate 

or high Economic value assessment (ρ = 0.417). 

The second and third dot correlations above agree with the associations found through 

the χ2 tests in Section 4.2.2: Economic value – cross-tabulation analyses and 

contingency tables.  The first correlation was not discovered through χ2 testing in the 

previous chapter, however its presence here can, in part, be explained by correlations 

between diverted or farm runoff to other input attributes, discussed next.  

 

It is possible to quantify the degree to which all input attributes are correlated to each 

other through the use of Spearman’s ρ.  The positive associations with values greater 

than or equal to 0.400 in order of strength are: 

• The presence of water redirection and is correlated strongly to the presence of 

obstruction (ρ = 0.606), which also means that the absence of redirection is 

associated with an absence of obstruction; 

• The presence of water storage at a site is moderately correlated to disposal of 

water (ρ = 0.498); 

• The presences, along with absences, of tourism and conservation forestry are 

moderately correlated to each other (ρ = 0.478); 

• The presence of diverted or farm runoff is moderately correlated to the 

presence of  drainage (ρ = 0.471), as are their respective absences; 
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• The presence of drainage at a site is also moderately correlated to the presence 

of disposal of water (ρ = 0.427), water storage presence ((ρ = 0.425),  and 

presence of obstructions (ρ = 0.417); and,  

• The presence of obstruction is also positively correlated to the disposal of 

water at a site (ρ = 0.416). 

The positive correlation of diverted or farm runoff with moderate and high Economic 

value assessments, can be accounted for by this attribute’s correlation with drainage, 

whose cross-tabulation analysis and χ2 test showed a higher than expected association 

with moderate and high Economic values (see Chapter 4).  The above correlations 

show interconnected relationships between attributes used to assess the Economic 

value of drainage disposal and supports their inclusion in the assessment of this value.  

 

The negative correlations between attributes with values less than or equal to –0.400 

are: 

• The presence of conservation forestry has a strong negative correlation to 

food production which means that the presence of  conservation forestry is 

most often associated with an absence of food production, and the absence of  

conservation forestry at a site is most often associated with a presence of food 

production (ρ = –0.587); and, 

• There is a moderate negative correlation between conservation forestry and 

stock water supply (ρ = –0.438). 

These correlations suggest associations which are plausible relationships between 

attributes likely to be seen in the field.  

 

5.2.2 Economic value − logistic regression models 

Excluding the attribute commercial fishing (with only two records), data preparation 

for model building was done by partitioning the values of each input attribute into 

absence and presence groups.  As well, wetland Economic value assessment records 

were partitioned into one of two groups: moderate and high-value cases or very low 

and low assessments.  Note there are only 28 moderate and high-value records, which 

is less than the optimal 50 cases recommended for logistic regression which may 
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impact the adequacy of the fitted model as evaluated by its goodness-of-fit (Sage, 

2012).    

 

SPSS software makes two steps in binary linear regression model building.  The first 

step is the construction of the baseline model, labelled Block 0: Beginning Block.  In 

this step, an equation based on Formula 5.2 is calculated, where the values of X, 

through to Xn  are assigned 0 as shown in Formula 5.5.  As each Xi value equates to 

either an absence or presence category of an attribute, this is the equivalent of not 

adding any of the input attributes to model, resulting in the quantification of the 

constant value.  Note that although the constant value is the Y-intercept for the model 

created in the next step, there is no other simple practical interpretation of its 

meaning.  

ln (odds of (variate value) ) = ln (w1)*0 +  ln (w2)*0 +   … ln (wn)*0     + constant 

or 

ln (odds of (variate value) ) =  constant 

 [Formula 5.5] 

 

The second step is construction of the binary logistic regression model through the 

inclusion of all attributes’ absence and presence classes into Formula 5.2 and using 

the maximum likelihood function to calculate the coefficients, wi through to wn for all 

input attributes.  

 

The binomial logistic regression model with the highest predictive power for 

Economic value assessments is given in Equation 5.1. 

ln (odds of a moderate or high Economic value assessment) = 

ln (39.418)*diverted or farm runoff + ln (19.075)*stock water supply +   

ln (11.386)* water storage + ln ( 1.440)* tourism +  

ln (1.301)* disposal of water +  ln (1.221)* drainage +  

ln (1.018)* redirection + ln (0.651 * obstruction +  

 ln (0.152)* other land usage +  ln (0.075)* food production +   

 ln (0.015)* conservation forestry  + ln (0.426) 

[Equation 5.1]  
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Equation 5.2 results when all natural logarithms are computed in the Equation 5.1. 

ln (odds of a moderate or high Economic value assessment) = 

3.674*diverted or farm runoff + 2.948*stock water supply +   

2.432*water storage + 0.364*tourism +  

0.263*disposal of water + 0.199*drainage +  

0.018 redirection + –0.430*obstruction +  

–1.886*other land usage + –2.590*food production +   

– 4.205* conservation forestry +  –0.854 

[Equation 5.2] 

 

To illustrate how Equation 5.2 can be used in Economic value assessments, two 

records have been taken from the WGCMA Wetland Inventory Database and analysed 

separately.  Wetland № 877461 had presence values for food production, commercial 

fishing, stock water supply, drainage, disposal of water, water storage, obstruction, 

redirection and diverted or farm runoff.  Substituting for these presence values in 

Equation 5.2 gives the following.  

ln (odds of a moderate or high Economic value assessment) = 

3.674 * 1 + 2.948 * 1 + 2.432 * 1 + 0.263 * 1 +   0.199* 1 +  

0.018 * 1 + –0.430 * 1 +  –2.590 * 1 + –0.854 

= 5.66    

To better understand this result, the exponential of both sides of the equation is taken. 

odds of a moderate or high Economic value assessment = e5.66 

odds of a moderate or high Economic value assessment = 287.15 

Odds are the ratio of success compared to failure calculated using Formula 5.3 where 

success is a high or moderate Economic value assessment.  

odds of a moderate or high Economic value assessment = 287.15 =  
𝑠

1−𝑠
 

Transposing this equation, results in a probability value for s being found.  

s = 0.997 

It is not surprising that this high probability of this wetland being a moderate or high 

Economic value is associated with the Inventory records for the only wetland to be 

assessed as high Economic value.  
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The second record chosen to test Equation 5.2 for its suitability as a model for 

predicting moderate and high Economic value assessments is of a wetland that only 

had presence values for tourism and conservation forestry.  This wetland was assessed 

as very low Economic value.  

ln (odds of a moderate or high Economic value assessment)  

=  + 0.364 * 1 + –4.205 * 1 + –0.854 

= –4.695     

Again, the exponential of both sides of the equation is taken and substituted into 

Formula 5.3 to result in an extremely low probability value, s = 0.0095, which is 

interpreted as it is extremely unlikely that this wetland would be assessed as a high or 

moderate Economic value.    

 

5.2.3 Economic value − model evaluation 

Testing the model, Equation 5.2, for its effectiveness in making Economic value 

assessments on a case by case basis is tedious and unnecessary.  A measure of model 

effectiveness in classifying wetland data as belonging to moderate and high Economic 

values can be made by comparing two classification tables produced by the SPSS 

software.  The first classification table, shown as Table 5.1a, was generated during the 

initial Block 0 calculation, and the second classification table, shown as Table 5.1b, 

was computed after the model was decided.  Each classification table shows the 

proportion of cases correctly classified.   

 

For the Block 0 calculation seen in Table 5.1a, the software goes with the highest 

proportion in the data and classifies all cases as very low or low assessment.  This 

results in the correct classification of all low and very low assessments and the 

misclassification of the 28 wetlands of interest to this study.  Table 5.1a shows it is 

possible to correctly guess 83% of Economic values due to the high proportion of low 

and very low assessments made, 133 of the total 161.  After the binary logistic 

regression model is computed for Equation 5.2, the classification Table 5.1b shows 

that 91% of sites are correctly classified.  Further it shows that two very low or low-

value wetlands were decided to be moderate or high classifications and 12 moderate 

and high-value wetlands were classified as being low or very low.  
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Binary logistic regression models can be used to succinctly describe the impact of all 

contributing variables Xi (X1 to Xn in Formula 5.2) through examination of the 

magnitude and signs of their corresponding wi coefficients.   

ln (odds of (variate value) ) = ln (w1)X1 +  ln (w2) X2 +   … ln (wn) Xn     + constant 

[Formula 5.2] 

For instance in Equation 5.1, stock water supply is multiplied by ln(19.075), which 

means its wi is 19.075.  On the assumption that all other attributes are held constant 

and not varied in the model, this coefficient is interpreted as one unit increment in the 

measurement of stock water supply will have a corresponding 19.075-fold impact on 

the odds of predicting a moderate or high Economic value assessment.  Revisiting 

Equation 5.1, it is possible to see the relative effects of each attribute in computing the 

logarithm of the odds of moderate or high Economic values by comparing the 

magnitudes of each attributes wi value.  For drainage, the wi value is 1.22; this is near 

to odds of 1, so the outcome is nearly equally likely as it is not, indicating that 

drainage has little to no impact on the odds of predicting high or moderate Economic 

value assessments. 

 

Another approach to checking the validity of the model and its appropriateness is 

made by looking at statistical tests of the significance of the coefficients in the model 

(Bewick et al., 2005).  First, the overall model χ2 statistic is 80.613 with 11 degrees of 

freedom, which has a significance of p < 1.123 * 10–12; this is rounded to three 

decimal places and reported by the software as p < 0.000.  This statistic is used to 

compare the constant-only model of Block 0 and the computed model described as 

Equation 5.2.  It indicates that the Equation 5.2 model is significantly different from 

Block 0 version, in that, it contains some predictors that have a statistically significant 

effect on the outcome.  This is supported by the –2LL value given as 68.163 

computed after 8 iterations.  Of more significance is the value of pseudo R2 statistic, 

Nagelkerke’s R2 which can take on values between 0 and close to 13.  The 

Nagelkerke’s R2 statistic was computed as 0.653 and it is interpreted as meaning that 

there is a moderately strong relationship of 65% between predictors and the prediction 

in the model. 

3 As all observations are absence (0) or presence (1) records, the typical R2 statistic is of no use in 
describing how well the new model fits the data. 
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To help decide if all attributes are contributing to the effect, the significance 

associated with the Wald statistic for each variable is examined; a significance value 

of p < 0.05 indicates that the variable may be making a significant contribution to the 

prediction.  The variables identified in this manner were diverted runoff (p < 0.002),   

stock water supply (p < 0.003), water storage (p < 0.027), food production (p < 0.008) 

and conservation forestry (p < 0.023).  Note the corresponding wi values for these are 

39.418, 19.075, 11.386, 0.075 and 0.01.  A classification table of a model built with 

only these predictors is identical to the one shown in Table 5.1b and this equal 

performance model of fewer variables is expressed as Equation 5.3. 

ln (odds of a moderate or high Economic value assessment) = 

ln (39.100)*diverted or farm runoff +   ln (18.552)*stock water supply +   

ln (12.565)*water storage + ln (0.094)*food production +   

 ln (0.026)*conservation forestry  + ln (0.306) 

[Equation 5.3] 

More interesting are the wi values for the attributes missing in Equation 5.3, being 

1.440 for tourism, 1.301 for disposal of water, 1.221 for drainage, 1.018 for 

redirection, 0.651 for obstruction, and 0.152 for other land usage. These values 

indicate odds either side of 1, meaning they do not positively or negatively impact 

model performance. Equation 5.4 results when all natural logarithms are computed in 

the Equation 5.3. 

ln (odds of a moderate or high Economic value assessment) = 

3.666*diverted or farm runoff +   2.921*stock water supply +   

2.531*water storage + –2.37*food production +   

–3.646*conservation forestry + –1.183 

 [Equation 5.4] 

 

The conclusion to be drawn from these detailed analyses is that simpler models 

[Equation 5.4] using absence/presence records for only five attributes (diverted or 

farm runoff, stock water supply, water storage, food production and conservation 

forestry) are equally adequate to more complex models [Equation 5.2] using the 12 

attributes in predicting 91% of all Economic value assessments.  The significance of 
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this matter is discussed in the final section of this chapter in some detail where  the 

relevance of this conclusion to WGCMA assessments is explored and the questions: 

How many variables are enough? and What do the model input variables tell us about 

wetland evaluations? are answered. 

 

Table 5.1a: Classification table for Economic value shows the proportion of cases 
correctly classified prior to binary logistic regression model building for 161 wetland 
records.  

Economic   
value 

Predicted value 

Very low + 
 low 

Moderate +  
high 

Percentage 
correct 

Observed 
value 

Very low + low 133 0 100 

Moderate + high 28 0 0 

Overall percentage correctly classified 83 

 
 
Table 5.1b: Classification table for Economic value shows the proportion of cases 
correctly classified after the binary logistic regression model, Equation 5.2, has been 
built. 

Economic  
value 

Predicted value 

Very low + 
 low 

Moderate +  
high 

Percentage 
correct 

Observed 
value 

Very low + low 131 2 99 

Moderate + high 12 16 57 

Overall percentage correctly classified 91 

 

5.2.4 Economic value − logistic regression model using threats 

The WGCMA assessment process, as described in Section 3.3.2, scored economic 

values and threats separately before combining them in the calculation of risk 

assessments of each contributing attribute for Economic value.  To understand the 

contribution of threat assessments in deciding moderate and high Economic value 

assessments, a set of new logistic regression models were built using wetland data for 

all Economic value inputs combined with threat values for the 151 wetlands, where 

 153 



there were entire records.  Trials with withholding and adding different Economic 

value and threat inputs, and examination of their respective Wald statistics resulted in 

the model presented here as Equation 5.5.  The model has an improved prediction rate 

of 97% over the previous Economic value model described as Equation 5.4 (with 91% 

prediction efficacy).  The classification table for this with-threatsmodel using threats 

and Economic value attributes is shown as Table 5.2.  

ln (odds of a moderate or high Economic value assessment) = 

7.939*diverted or farm runoff +   6.874 *stock water supply +   

5.868*resource utilization + 2.615*erosion +  
2.572*sedimentation + 1.667*water source– rainfall +   

–3.498*lack of reservation + –19.888*water source– groundwater + 

–22.684*urban development + –6.906 

 [Equation 5.5] 

Equation 5.5 indicates that absence or presence values are needed for nine inputs 

representing eight different attributes; the absence or presence values for two different 

values of the water source attribute are needed.  Of the eight variables, only the first 

two are for Economic value attributes: diverted or farm runoff and stock water supply; 

both are also found in the Equation 5.4 model.  Of the remaining six threat attributes 

only three can be found listed in Table 3.1: erosion, water source, and urban 

development, suggesting that the remaining three threats: resource utilization, 

sedimentation and lack of reservation should have been used in risk assessment 

calculations done by the WGCMA to assess subcatchment wetlands.  As mentioned in 

Chapter 3, risk assessment calculations for significant wetlands (Ramsar and 

Directory of Important Wetlands listed) included resource utilization, sedimentation, 

and lack of reservation.  To compare the influence of input variables in Equation 5.5, 

it is necessary to express the coefficients in their logarithmic form as presented in 

Equation 5.6.   
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ln (odds of a moderate or high Economic value assessment) = 

ln (2805.387)*diverted or farm runoff +  

 ln (966.808)*stock water supply +   

ln (353.406)*resource utilization +  ln (13.667)*erosion+ 

ln (13.093)*sedimentation + ln (5.296)*water source– rainfall +   

ln (0.030)*lack of reservation +  

ln (2.306 * 10 –9)*water source– groundwater  +  

ln (1.407 * 10 -10)*urban development + ln (0.001) 

 [Equation 5.6] 

Equation 5.6 shows that the presence of diverted or farm runoff impacts most 

significantly the odds of wetland being classified as moderate or high Economic 

value, since when all other values are held constant in the Equation, a one unit 

increase from absence to presence increases the odds likelihood by a magnitude of 

2804.555.  The magnitude of the coefficients, wi in ln(wi) for resource utilization and 

sedimentation suggests that these are suitable input variables for use in assessing 

subcatchment wetlands as well those of significance and national importance.  The 

very small coefficients for water source– groundwater and urban development means 

that the presence of these attributes strongly reduces the odds of a wetland being 

classified as moderate or high Economic value, that is, the presence of either attribute 

for a wetland site increases the probability that the wetland will be assessed as very 

low or low Economic value.   

 

Discussion of all Economic value models, with and without threat input, is presented 

in the concluding section of this chapter. 
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Table 5.2: Classification table for Economic value and threat input values showing the 
proportion of cases correctly classified after the binary logistic regression model, 
Equation 5.5, has been built for 151 wetlands.  Table 5.1a shows the classification table 
prior to model building 

Economic  
 value 

Predicted value 

Very low + 
 low 

Moderate +  
high 

Percentage 
correct 

Observed 
value 

Very low + low 127 2 99 

Moderate + high 3 19 86 

Overall percentage correctly classified 97 

 

 

 

5.3 Social value of wetlands 

5.3.1 Social value − correlations 

Correlations were made of the 12 attributes used in the WGCMA evaluation of Social 

values, which were listed in Table 4.6. As with the Economic value analyses just 

described, correlations were made between the absence or presence of these attributes 

and the absence or presence in high or moderate Social value assessments using 

Spearman’s rank correlation coefficient (ρ).  Associations with a value greater than or 

equal to +0.400 or less than or equal to –0.400 are mentioned here.  In order of 

strength, they are: 

• The wetlands protected in some sort of reserve system as seen by their park 

values exhibit a strong association with moderate or high Social value 

assessments (ρ = 0.676); 

• The presence of passive recreation at a site is strongly correlated to a moderate 

or high Social value assessments (ρ = 0.573);  

• Moderate and high Social value assessments are strongly correlated with the 

presence of recreational fishing at a site (ρ = 0.538);  

• The presence of bird watching at a site is moderately correlated to a moderate 

or high Social value assessments (ρ = 0.495); 
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• Sites used for education are moderately correlated with moderate or high 

Social values (ρ = 0.469); and, 

• The presence of boating is moderately associated with moderate or high Social 

values (ρ = 0.424). 

All of the above correlations were found to be significant using χ2 tests reported in 

Section 4.3.2: Social value – cross-tabulation analyses and contingency tables.  As 

mentioned there, none of these relationships were reported by the WGCMA; rather 

their associations for high-value sites were to relate with the characteristics of high 

visual amenity and indigenous and European cultural values, neither of which was 

found stored in the Inventory Database.   Interestingly, the χ2 tests of the previous 

chapter also found significant relationships with the presence of camping, swimming 

and motorized 4WD attributes at sites and moderate or high-value assessments, which 

have relatively low ρ values being 0.285, 0.272 and 0.167 respectively. 

 

Testing for correlations between attributes using Spearman’s ρ showed positive 

associations with values greater than or equal to 0.400 in order of strength as: 

• The presence of recreational fishing is correlated strongly with the presence of  

boating at wetlands (ρ = 0.692), which also means that the absence of  

recreational fishing is associated with an absence of boating; 

• The presence of education is correlated strongly to protected wetlands park 

value (ρ = 0.651); 

• With the same ρ value (0.651), the presence of education is correlated strongly 

to the passive recreation and the same association exists between the absence 

of each attribute; 

• Passive recreation at a site is strongly correlated with protected park values   

(ρ = 0.624) and it also associated with recreational fishing (ρ = 0.568) and 

more moderately associated with boating (ρ = 0.453); 

• The presences, along with absences of swimming and boating are moderately 

correlated to each other (ρ = 0.597); 
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• The presence of swimming is also moderately correlated to the presence of  

recreational fishing (ρ = 0.491), as are their respective absences; 

• The presence of bird watching at a site is strongly correlated with passive 

recreation (ρ = 0.662),  and also moderately correlated to the presence of 

education (ρ = 0.518), recreational fishing (ρ = 0.486), boating (ρ = 0.415) and 

a protected park value (ρ = 0.480);  

• The presence of camping is also positively correlated to motorized 4WD  at a 

site (ρ = 0.415); and, 

• Recreational fishing is moderately associated with the presence of protected 

park values (ρ = 0.438) and education (ρ = 0.416). 

The above positive correlations, and the obvious interconnectedness among different 

attributes, support their use as a set of measures attempting to assess interrelated 

aspects of a wetland’s overall Social value.  There were no negative correlations 

between attributes with values less than or equal to –0.400, indicating that there are no 

instances where presence of attribute is strongly associated with the absence of 

another.  

 

5.3.2 Social value − logistic regression models 

In the Inventory Database there are only two records for water skiing and research 

attributes used in Social value assessments.  Accordingly, the presence or absences of 

these attributes were excluded from the building of the Social value logistic regression 

models.  For frequency and cross-tabulation analyses of Chapter 4, there were 160 

records of Social value assessments including one record labelled as unknown.  In 

preparation for logistic regression modelling, it was necessary to partition all 

attributes into two groups: records of wetlands where the attribute was absent and 

records where the attribute was present.  A difficulty occurs with the attribute park 

value, in that there were 10 records assigned a park value of 0, equating to an 

unknown status for park value; for these, it is not possible to say whether the record 

should be included or excluded when partitioning the park value attribute into absent 

or present groups.  Removing these records and the unknown Social value record, 

there were 149 Social value assessments where the absent and present values for all 

attributes are known.  Of these, a total of 42 wetlands were assessed as moderate or 
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high Social value wetlands, which is slightly less than the 50 cases desired for logistic 

regression model building.   

 

As with Economic value logistic regression model building reported in Section 5.2.2, 

Block 0 is the baseline model constructed by the SPSS software which quantifies the 

constant value, as previously illustrated in Formula 5.5.  Likewise, the second step of 

model building is the inclusion of all contributing attributes’ absence and presence 

values into Formula 5.2 and the use of the maximum likelihood function in the 

calculation of all coefficients, wi through to wn for every input attribute.  For Social 

value assessments, the binomial logistic regression model with the highest predictive 

power of 93% is given as Equation 5.7. 

ln (odds of a moderate or high Social value assessment) = 

ln (2947292806)*bird watching  + ln (584.956)*park value +   

ln (6.190)*camping + ln ( 2.283)*hunting +  

ln (1.979)*recreational fishing  + ln (1.820)*boating +      

ln (1.458)*passive recreation +  ln (0.219)*motorized 4WD +    

ln (0.178)*swimming +  ln (0.022)*education    + ln (0.000000000018)    

                                                          [Equation 5.7] 

 

Equation 5.8 results when all natural logarithms are computed in the Equation 5.7. 

ln (odds of a moderate or high Social value assessment) = 

21.804*bird watching + 6.372*park value +   

1.823*camping + 0.825*hunting +  

0.683*recreational fishing + 0.599*boating +      

0.377*passive recreation + –1.518*motorized 4WD +    

–1.725*swimming + –3.839*education   + –24.721 

[Equation 5.8] 

 

To check the validity of Equation 5.8 in using input attributes to decide the probability 

of membership in moderate and high Social value assessments, records were taken 

from the WGCMA Wetland Inventory Database and analysed separately.  In 

illustration, wetland № 38589090 was assessed as a high Social value with presence 

values for bird watching, protected park value, camping, recreational fishing, passive 
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recreation, and education.  Substituting for these presence values in Equation 5.8 

gives ln (odds of a moderate or high Social value assessment) = 2.499 and s = 0.924.  

There is a 92% chance that wetland № 3858909 would be classified as a moderate or 

high Social value wetland on the basis of its stored inventory record.  This, and other 

testing, showed that the model could be reasonably be expected to correctly classify 

wetlands on the basis of their stored inventory data. 

 

5.3.3 Social value − model evaluation 

A measure of how well the model (Equation 5.8) classifies wetland data as belonging 

to moderate and high Social values was made by comparing two classification tables 

produced by the SPSS software.  First, the Block 0 classification table is given in 

Table 5.3a.  In this instance, the software presumes on the balance of probabilities that 

in 72% of cases a randomly selected wetland record would be classified as very low 

or low Social value.  The resultant classification table for Equation 5.8 is shown as 

Table 5.3b where 93% of the wetlands are correctly classified.  The classifications 

incorrectly assigned by Equation 5.8 were five very low and low-value wetlands 

designated by the model as high or moderate, and five moderate and high-value 

wetlands assigned as very low and low by the model. 

  

Checking the validity of the model and its appropriateness through analysis of 

statistical tests of the significance of the coefficients, the overall χ2 statistics for the 

model is 107.935 with 10 degrees of freedom with a significance of p < 0.000 

calculated by the software which indicates that the model contains some useful and 

significant predictors amongst the included attributes.  The –2LL value is computed to 

be 69.292 but this calculation stops after 20 iterations as a final solution was not 

found.  However, the Nagelkerke’s statistic shows that 74% agreement between the 

predictors in the model and the prediction of Social value assessment.   

 
Examination of the wi values of Equation 5.7, shows that bird watching and park value 

have very high positive values, meaning that when all other attributes are held steady 

small increments in either result in large changes in the odds of moderate and high 

Social value assessments.  The attributes of passive recreation and motorized 4WD 

have coefficients, 1.458 and 0.219 indicating that their impact may be minimal.   

 160 



When the significance associated with the Wald statistic for each attribute is 

examined; a significance value p < 0.05 indicates that the attribute does contribute 

significantly to the prediction.  For Social value assessment, the attributes identified in 

this manner were education (p < 0.04) and park value (p < 0.003) and their 

significance is confirmed when the removal of either attribute from the model 

calculation reduces the overall prediction rate.  

 

Trial and error model building and testing showed that passive recreation is the only 

attribute that may be removed without negatively influencing the predictive power of 

Equation 5.8. For instance, removing the attribute of motorized 4WD results in three 

extra misclassifications and a lower model overall reliability of 92%.  The modified 

version of Equation 5.8 without input of passive recreation is given as Equation 5.9.  

ln (odds of a moderate or high Social value assessment) = 

22.26*bird watching + 6.691*park value +   

1.854*camping + 0.826*hunting +  

0.714*recreational fishing + 0.576*boating +      

 –1.681*motorized 4WD +   –1.681*swimming + 

 –3.945*education   + –25.022                  

   [Equation 5.9] 

As mentioned in Chapter 4, the WGCMA reports concluded that only indigenous and 

European cultural values were of importance in predicting high Social value; no direct 

associations relating to any of the attributes collected for the Social value data were 

mentioned in their reports. By way of contrast, the multivariate analyses undertaken in 

this chapter shows that the presence of bird watching and park value are strong 

predictors for moderate and high Social value assessments, and the attributes of 

boating, camping, education, hunting, motorized 4WD, recreational fishing and 

swimming less so.  The significance of the different inputs of this model, Equation 

5.9, and others, and what can be learned from them are further discussed at the end of 

this chapter in Section 5.5: Synthesis and discussion.  
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Table 5.3a: Classification table for Social value shows the proportion of cases correctly 
classified prior to binary logistic regression model building.  

Social 
value 

Predicted value 

Very low + 
 low 

Moderate +  
high 

Percentage 
correct 

Observed 
value 

Very low + low 107 0 100 

Moderate + high 42 0 0 

Overall percentage correctly classified 72 

 

Table 5.3b: Classification table for Social value shows the proportion of cases correctly 
classified after the binary logistic regression model, Equation 5.8 and Equation 5.9, 
have been built. Note: for Equation 5.9, the percentage correct is 92. 

Social  
value 

Predicted value 

Very low + 
 low 

Moderate + 
 high 

Percentage 
correct 

Observed 
value 

Very low + low 102 5 95 

Moderate + high 5 37 88 

Overall percentage correctly classified 93 

 

5.3.4 Social value − logistic regression model using threats 

To understand the contribution of threat assessments in deciding moderate and high 

Social value assessments, additional logistic regression models were built using 

wetland data for all Social value inputs combined with threat values for the 144 

wetlands, where entire records existed.  The highest performing model with a 

prediction rate of 95% is presented here as Equation 5.10.  Of the 10 inputs to 

Equation 5.10, five are Social value attributes: bird watching; park value; camping; 

education; and, motorized 4WD.  The remaining inputs are for threat values, of which 

four are listed in Table 3.1: water source; salinity; erosion; and, (inappropriate) 

recreation.  Like the threat and Economic value logistic regression model, resource 

utilization appears, yet this attribute was not used by the WGCMA for subcatchment 

wetlands assessments.   
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ln (odds of a moderate or high Social value assessment) = 

25.562*bird watching + 10.474*park value +   

10.381*water source– other + 5.08*camping + 

4.914*resource utilization + 2.166*salinity + 

–2.163*erosion +   –5.170*education +   

–5.041*motorized 4WD +   –5.906*recreation   +  

–28.396                                                                                         

[Equation 5.10] 

 

To better understand the influence of resource utilization in predicting Social value, it 

is necessary to look at the logarithmic version of its coefficient, as given in Equation 

5.11. Its coefficient indicates that a change from absence (0) to presence (1) for 

resource utilization has 136-fold impact on the odds of predicting a moderate or high 

Social value when all other inputs are held constant.  Resource utilization is a 

relatively strong predictor for moderate and high Social value. 

ln (odds of a moderate or high Social value assessment) = 

ln (1.263 * 1011)*bird watching + ln (35372.614)*park value  +   

ln (32234.615)*water source– other  + ln (161.336)*camping + 

ln (136.157)*resource utilization  + ln (8.719 )*salinity + 

ln (0.115)*erosion +   ln (0.006)*education +   

ln (0.006)*motorized 4WD +   ln (0.003)*recreation   +  

ln (4.652 * 10 –13)                                                             

[Equation 5.11] 

The appearance of bird watching and park value in this model reinforce their 

importance in deciding Social value assessments, with or without threat values.  

Section 5.5 discusses this model in comparison to others.  
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Table 5.4: Classification table for Social value and threat input values showing the 
proportion of cases correctly classified after the binary logistic regression model, 
Equation 5.10, has been built for 144 wetlands using binary logistic regression.  Table 
5.3a shows the classification table prior to model building. 

Social 
value 

Predicted value 

Very low + 
 low 

Moderate + 
high 

Percentage 
correct 

Observed 
value 

Very low + low 100 3 97 

Moderate + high 4 37 91 

Overall percentage correctly classified 95 

 

 

 

5.4 Environmental value of wetlands 

Undertaking frequency and cross-tabulation statistics for Environmental values in the 

previous chapter was complicated by the need to assess 16 contributing attributes, and 

several subattributes of seven individual Environmental values under consideration 

(see Table 4.12).  Added to this, there was a variety of scales and ranges used across 

the assessment of attributes and subattributes, and few attributes could be easily 

assigned absence or presence status.  To cope with this complexity, the approach 

taken here is to look initially at each Environmental value and its components and 

their association with overall Environmental value assessment, prior to looking at 

correlations between attribute values.   

 

5.4.1 Environmental value − correlations 

The Environmental value of wetland rarity is of particular interest.  It is important to 

quantify the degree to which the classification scheme used to decide wetland rarity 

affects the identification of high and very high Environmental value wetlands 

(Frankiewicz & Wainwright, 2009; Ling & Jacobs, 2003; Stevens, 2009).  Table 4.13 

lists the pre-inventory and post-inventory frequencies of wetlands using the Corrick 

and Norman (1980) classification scheme.  Correlations were made between the 

absence or presence of wetland types with the absence or presence in high and very 

high-value assessments using Spearman’s rank correlation coefficient (ρ).  Permanent 
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saline wetlands, flooded river flats and unclassified categories are not included in the 

analysis due to their small frequencies, being 3, 1 and 1 wetlands respectively.  For 

the remainder wetland types, there are no correlations of any magnitude.  None of the 

positive correlations were statistically significant, being for semipermanent wetlands 

(ρ = 0.014), shallow freshwater marshes (ρ = 0.138) and deep freshwater marshes (ρ = 

0.150).   The two negative correlations for permanent open water (ρ = –0.205) and 

freshwater meadows (ρ = –0.166) are statistically significant at p < 0.05; these 

associations were also discovered in the cross-tabulation analyses and they mean that 

the presences of these wetland types are associated with Environmental assessments 

that are not high or very high value.   

 

For significant flora, the majority of sites (88%) did not have registered Victorian rare 

or threatened (VROT) flora.  There is a statistically significant (p < 0.001) correlation, 

with ρ value of 0.391 between the presence of VROT floral species and high and very 

high Environmental value assessments.   

 

For significant fauna, the majority of sites did not have counts of VROT registered 

species, nor counts of species listed under the Flora and Fauna Guarantee (FFG) Act.  

Statistically significant positive correlations (p < 0.01) were found for faunal VROT 

species (ρ = 0.33) and faunal FFG species (ρ = 0.338) with high and very high-value 

assessments.  Additionally, there is a very, very strong correlation (ρ = 0.842) 

between the presence of VROT faunal species and FFG registered species that is 

statistically significant (p < 0.01). 

 

The Environmental value habitat value was assessed using wetland rarity, terrestrial 

zone habitat type and shoreline profile,  As already mentioned wetland rarity was 

categorized using the Corrick & Norman (1980) scheme; most of the features used to 

assess the remaining two attributes were scored as either absent, usually present, or 

with abundant presence.  For correlation analysis, all sites reporting any presence 

value, that is, usually present and with abundant presence, were grouped into a 

presence category.  In the case of terrestrial zone habitat type the absence or presence 

of rocks, logs, emergent vegetation, exposed substrate, submerged or free-floating 

vegetation, shallow to medium depth water, permanent deep pools, water edge and 

other features were noted in the field.  Correlations of these with high and very high 
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Environmental values for the most part are insignificant with the exception that the 

presence of rocks, which has a Spearman’s rho value of 0.374 and is statistically 

significant at p < 0.01.  It is interesting that many of the statistically significant 

relationships seen using cross-tabulations analyses were not noticed in the correlation 

analysis.  Checking correlations between the various subattributes used in assessing 

terrestrial zone habitat type found only two positive associations where Spearman’s ρ 

values were greater than or equal to 0.400, and these were: 

• The presence of deep pools is moderately correlated with the presence of  

shallow to medium water depth (ρ = 0.493); and, 

• The presence of deep pools is also correlated moderately with the presence of 

submerged or free-floating vegetation (ρ = 0.404). 

Shoreline profile was assessed using the shoreline vegetation profile and shoreline 

description.  For shoreline vegetation profile, the presence of shrubs was positively 

correlated with high and very high Environmental value (ρ = 0.395), the presence of 

alive trees (ρ = 0.236) and the presence of dead trees (ρ = 0.331); all of these 

associations were statistically significant at p < 0.01.  For shoreline description, six 

records had unknown values and the attribute was assessed by looking at the shoreline 

shape as regular or irregular together with the presence, or otherwise, of an island.  

There is no correlation between the presence of islands and high or very high 

Environmental values, nor was there any correlation with the shoreline being regular 

or irregular. 

 

Hydrology correlations were made using the wetland site absence/presence data for 

drainage, disposal of water, water storage, obstruction and water redirection.  Except 

for water storage, all correlations of these subattributes with high and very high 

Environmental values were statistically significant at p < 0.01.  This is in agreement 

with the cross-tabulation analyses in Chapter 4.  The redirection attribute had a value 

of moderate significant correlation, albeit a negative one, with a Spearman’s rho value 

of –0.445, that is, the absence of water redirection at a site is moderately associated 

with high and very high Environmental value assessments.  The ρ values of 

correlations between hydrology subattributes show the interconnectedness of these 

subattributes.  
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The statistically significant correlations greater than or equal to 0.400 were: 

• A strong correlation exists between obstruction at a site and redirection          

(ρ = 0.582); 

• The presence of water storage is correlated moderately with the presence of  

water disposal at wetlands (ρ = 0.441); 

• Obstruction is moderately correlated with disposal of water (ρ = 0.418); 

• The presence of water disposal is also correlated with drainage (ρ = 0.413); 

• Similarly and with the same ρ value (0.413), the presence of drainage 

correlates with water storage; and, 

• Redirection and drainage have a correlation of 0.411. 

 

The floral type by percentage of total cover of the dominant wetland EVC type was 

one of three subattributes used to assess vegetation intactness– critical lifeforms; the 

other two subattributes measured were the number of floral species present and 

whether or not substantial modifications had taken place at a site.  The percentage 

sum of coverage of various floral types present for the dominant EVC of a site was 

measured and tabulated in various grades, as seen in Table 4.17a.  For correlation 

statistics of the absence or presence of each type: graminoids; shrubs; herbs; sedges; 

ferns; and grasses were compared to absence or presence with high and very high-

value assessments.  The correlations for shrubs, herbs, ferns and sedges are 

statistically significant with p < 0.01, and each of these, and other relationships, were 

picked up by the cross-tabulation analyses in the previous chapter.   However, only 

sedges had a correlation value of any strength (ρ = 0.399).  Between vegetation types, 

there is only one correlation greater than or equal to 0.400 (ρ = 0.444) describes the 

relationship between the absence/presence of shrubs with absence/presence of 

graminoids for individual sites. 

 

For the number of floral species at a site used in assessing vegetation intactness– 

critical lifeforms, site records vary from 0 (20 sites) up to more than 20 species (2 

sites).  Cross-tabulation analyses noted that low species counts tended to have very 

low or low assessments.  The correlations between number of floral species at a site to 
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high or very high-value assessments were reported as statistically significant with p < 

0.01, but not with ρ greater than 0.400.  There is also a statistically significant 

negative correlation (ρ = –0.447) between site modification and high and very high 

Environmental values, that is, sites where there are no modifications tend to be high 

or very high-value wetlands, and this association was also seen in the cross-tabulation 

analyses. 

 

Finally, values recorded for vegetation intactness– width of vegetation fringe at sites 

varied from 0 to over 1000 metres.  There is a statistically significant moderate 

correlation (ρ = 0.384) between vegetation absence/presence value with high and very 

high-value assessment, which was observed in the cross-tabulation analyses.   

 

There are a plethora of possible correlations that could be computed for combinations 

between 16 attributes and their subattributes of the seven Environmental values 

described above (Table 4.12).  All possible combinations of pairings were checked for 

correlations, and a positive correlation indicates an association where the presence of 

one attribute in the pair is a good indicator for the presence of the other.  A negative 

correlation indicates a pairing of attributes where the presence for one attribute is 

often associated with the absence of its pair. The positive correlations greater than or 

equal to 0.400 are: 

• A strong correlation with a ρ value of 0.772 exists between the vegetation 

intactness– critical lifeforms herbs absence or presence and vegetation 

intactness– critical lifeforms number of species present;  

• There is a moderately strong correlation (ρ = 0.568) between wetland type 

permanent open water and the habitat value of permanent deep pools at a site; 

• A moderately strong correlation was found between the vegetation intactness– 

critical lifeforms number of species present and the habitat value shoreline 

vegetation subattribute of shrubs with a ρ value of 0.510; 

• Also a moderate correlation (ρ = 0.489) exists for  vegetation intactness– 

critical lifeforms number of species present and vegetation intactness– 

vegetation width being present; 
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• there is an moderate association (ρ = 0.417) between the habitat value of the 

presence of permanent deep pools and hydrology attribute disposal of water;  

• Coincidently with the same rho value (ρ = 0.417), there is a moderate 

association between habitat value shoreline profile subattribute of shrubs 

presence and vegetation intactness– critical lifeforms herbs; and, 

• An association exists between habitat value shoreline profile subattribute of 

herbs presence and vegetation intactness– width of vegetation fringe presence 

of vegetation (ρ = 0.480). 

 

In order of strength, negative correlations between attributes less than or equal to       

–0.400 are: 

• A habitat value, shoreline profile subattribute of shrubs presence and 

vegetation intactness– width of vegetation fringe presence of vegetation          

(ρ = –0.588); 

• A moderately negative correlation exists between vegetation intactness– width 

of vegetation fringe and vegetation intactness– critical lifeforms substantially 

modified (ρ = –0.435); 

• The habitat value, shoreline profile subattribute of shrubs presence is  

negatively correlated with vegetation intactness– critical lifeforms’ 

substantially modified (ρ = –0.423); and, 

• Vegetation intactness– critical lifeforms’ number of species present is 

negatively correlated to vegetation intactness– critical lifeforms’ attribute of 

substantial modification (ρ = –0.400). 

 

5.4.2 Environmental value − logistic regression models 

For Environmental values listed in Table 4.12, there are 16 attributes and many 

additional subattributes.  When designing binary logistic regression models, 

consideration needs to be given to the appropriate number of input variables to avoid 

over-fitting of data.  Accepted statistical practice is to apply the rule of thumb method 

of ensuring that the number of input variables is no more than the number of data 
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cases divided by 10.  With approximately 160 inventoried wetlands for Environmental 

value, there should be no more than 16 input variables to any model.  The appropriate 

choice of input variables is best guided by practicality and some measure of a 

meaningful relationship of input variables to output variable in the real world.  

Therefore the cross-tabulation analyses of Chapter 4 and the correlation analyses 

between, and across Environmental values reported above inform selection here.  

Binary linear regression models were built using the attributes and subattributes that 

showed correlations to high and very high-value and those attributes correlations to 

other attributes.  The performances of these models were compared to the baseline 

case of Block 0, shown as Table 5.5a, where no input variables were used.  The 

interpretation of each of the different models’ Wald and Nagelkerke’s R2 statistics, led 

to the selection of two models for Environmental value: Model A uses seven input 

variables with 86% prediction rate; and, Model B with 15 input variables has a 91% 

prediction accuracy.  Classification tables for Model A and Model B are given in 

Tables 5.5b and 5.5c respectfully.  

 
Model A  
The binomial logistic regression model with seven input variables is given in 

Equation 5.12.  This model has good predictive power of 86% and a Nagelkerke’s R2 

value of 0.641.  To help navigate the variety of Environmental values, attributes and 

subattributes for the reader, the Environmental value for each attribute or subattribute 

is shown in brackets in Equation 5.12, and the equations following.   

ln (odds of a high or very high Environmental value assessment) = 

ln (16.056)*flora VROT (significant flora) + 

ln (10.627)*sedges (vegetation intactness– critical lifeforms)  +      

ln (8.567)*rocks (habitat value, terrestrial zone habitat) +   

ln (5.523)*shrubs (vegetation intactness– critical lifeforms) + 

ln (4.558)*shoreline shrubs (habitat value, shoreline vegetation) +  

ln (2.741)*vegetation intactness– width of vegetation fringe  + 

ln (0.128)*redirection (hydrology) +  ln (0.017)                                                    

 [Equation 5.12] 
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Equation 5.13 results when all natural logarithms are computed in the Equation 5.12. 

ln (odds of a high or very high Environmental value assessment) = 

2.776*flora VROT (significant flora) + 

2.363*sedges (vegetation intactness– critical lifeforms) +      

2.148*rocks (habitat value, terrestrial zone habitat) +   

1.709*shrubs (vegetation intactness– critical lifeforms) + 

1.517*shoreline shrubs (habitat value, shoreline vegetation) +  

            1.008*vegetation intactness– width of vegetation fringe + 

–2.054*redirection (hydrology) +  –4.084                              

 [Equation 5.13] 

Model B  
The binomial logistic regression model with 15 input variables is given in Equation 

5.14.  The model has 91% prediction accuracy and a Nagelkerke’s R2 value of 0.738.  

With the exception of the hydrology attribute of redirection, this model shares each of 

the inputs of Model A  

ln (odds of a high or very high Environmental value assessment) = 

ln (42.256)*fauna VROT (significant fauna) +  

 ln (18.734)*flora VROT (significant flora)  + 

ln (16.111)*sedges (vegetation intactness– critical lifeforms)  +      

ln (13.160)*rocks (habitat value, terrestrial zone habitat) +   

ln (9.499)*vegetation intactness– width of vegetation fringe  + 

ln (7.802)*herbs (vegetation intactness– critical lifeforms)  +      

ln (7.596)*shoreline shrubs (habitat value, shoreline vegetation) +  

ln (3.305)*shoreline dead trees (habitat value, shoreline vegetation) +  

ln (2.810)*shrubs (vegetation intactness– critical lifeforms) + 

 ln (2.715)*permanent deep pools (habitat value, terrestrial zone habitat) +   

ln (0.519)*submerged or  

                  free-floating vegetation (habitat value, terrestrial zone habitat) +   

ln (0.311)*obstruction (hydrology) +  

ln (0.196)*ferns (vegetation intactness– critical lifeforms)  +      

ln (0.122)*drainage (hydrology) +  

ln (0.025)*permanent open water (wetland type) + ln (2.384 * 10 –4)       

                                                          [Equation 5.14] 
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Equation 5.15 results when all natural logarithms are computed in the Equation 5.14. 

ln (odds of a high or very high Environmental value assessment) = 

3.744*fauna VROT (significant fauna) +  

2.930*flora VROT (significant flora) + 

2.779*sedges (vegetation intactness– critical lifeforms) +      

2.577*rocks (habitat value, terrestrial zone habitat) +   

2.251*vegetation intactness– width of vegetation fringe + 

2.054*herbs (vegetation intactness– critical lifeforms) +      

2.028*shoreline shrubs (habitat value, shoreline vegetation) +  

1.195*shoreline dead trees (habitat value, shoreline vegetation) +  

1.033*shrubs (vegetation intactness– critical lifeforms) + 

0.999*permanent deep pools (habitat value, terrestrial zone habitat) +   

–0.655*submerged or  

                 free-floating vegetation (habitat value, terrestrial zone habitat) +   

–1.169*obstruction (hydrology) +  

–1.628*ferns (vegetation intactness– critical lifeforms) +      

–2.102*drainage (hydrology) +  

–3.702*permanent open water (wetland type) + –8.341           

                                                                            [Equation 5.15] 

 

The appearance of significant flora and types of vegetation (particularly sedges) 

amongst the attributes that most strongly influence high and very high-value 

assessments in Model A and Model B is noted here.  In the next subsection, the inputs 

and performances of both Models are compared to each other and checked against the 

inputs reported by the WGCMA as being significant in predicting high-value 

wetlands.  A comparison of all Environmental value models, including those with 

threat input, is made in Section 5.5, where the relevance of inputs predicting high-

value assessments is discussed. 

                                            

5.4.3 Environmental value − models evaluations 

The validity and efficacy of Model A and Model B in deciding Environmental value 

assessments was manually checked by randomly sampling the Inventory Database for 

wetland records of very low, low, moderate, high and very high assessments and 
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substituting absence or presence of input variables into Equation 5.13 and Equation 

5.15.  For the checked wetlands known to have high or very high assessments, the 

Models gave high probability values, and as would be expected, they gave very low 

probabilities for wetlands known to be very low, low or moderate assessments.  

 

As with Economic and Social value models, the sign and magnitude of the wi 

coefficients expressed in ln(wi) form equations can be used to gauge the significance 

and relative impact on a model’s predictive ability.  It is important to realize 

comparisons of the magnitudes of coefficients can be made within a model, but there 

is no meaning in making direct comparisons of coefficient size across models.   Model 

A’s Equation 5.12 shows that significant flora presence has a proportionally higher 

influence than other variables in deciding whether a wetland is of very high or high 

value.  In Model B’s Equation 5.14, the presence of significant fauna has an even 

greater (within the model) coefficient in than significant flora, which has the second 

largest impact.   

 

The presence of sedges, shrubs and ferns appear as significant inputs in the Models 

and these were used as measures of vegetation intactness and habitat value.  A 

comparison of input variables in Model A and Model B to those reported by the 

WGCMA (2007) shows considerable agreement.  The WGCMA noted the highest 

value wetlands scored well for vegetation intactness, habitat value and wetland 

significance whilst wetlands assessed as low in value scored poorly for significant 

flora, habitat value and wetland rarity, and in some cases hydrology.  In Model A, 

there are five input variables relating to either attributes of vegetation intactness or 

habitat value; the highest coefficient in the Model is for significant flora and the 

remaining variable is an attribute of hydrology with a strong negative coefficient.  For 

Model B, five of the fourteen input variables relate to attributes of vegetation 

intactness and five inputs are for various habitat value attributes; there is a strong 

positive coefficient for significant flora and two negative coefficients for hydrology 

attributes.  Model B also incorporates presence or absence input for significant fauna 

and whether or not a wetland is classified as permanent open water Corrick and 

Norman (1980) type. 
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Table 5.5a: Classification table for Environmental value shows the proportion of cases 
correctly classified prior to binary logistic regression model building.  

Environmental 
value 
baseline 

Predicted value 

Very low + 
 low 

Moderate + 
high 

Percentage 
correct 

Observed 
value 

Very low + low + 
moderate 

102 0 100 

High + very high 56 0 0 

Overall percentage correctly classified 65 

 
 
Table 5.5b: Classification table for Environmental value shows the proportion of cases 
correctly classified after the binary logistic regression model A, Equation 5.11, has been 
built. 

Environmental 
value 
Model A 

Predicted value 

Very low + 
 low + moderate 

High +  
very high 

Percentage 
correct 

Observed 
value 

Very low + low + 
moderate 

91 14 87 

High + very high 8 49 86 

Overall percentage correctly classified 86 

 
 
Table 5.5c: Classification table for Environmental value shows the proportion of cases 
correctly classified after the binary logistic regression model B, Equation 5.13, has been 
built. 

Environmental 
value 
Model B 

Predicted value 

Very low + 
 low + moderate 

High +  
very high 

Percentage 
correct 

Observed 
value 

Very low + low + 
moderate 

93 9 91 

High + very high 6 50 89 

Overall percentage correctly classified 91 
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5.4.4 Environmental value − logistic regression model using 

threats 

To understand the contribution of threat assessments in deciding high and very high 

Environmental value assessments, experimentation using 156 wetland records found 

the highest performing model with 91% prediction accuracy and a Nagelkerke’s R2 

value of 0.857.  The classification table for this model is given as Table 5.6.  This 

model is shown as Equation 5.16, where there are 10 inputs: three for Environmental 

value attributes: fauna VROT, width of vegetation fringe and sedges; four inputs are 

for three threat attributes listed in Table 3.1: water source, pest plants and altered 

hydrology; and, the remaining threats of resource utilization, lack of reservation and 

drainage into the wetland.  The three Environmental value attributes of Equation 5.16 

are found in Environmental value’s Model B with large positive coefficients 

underlining their influence in calculating the odds of high or very high Environmental 

value. 

ln (odds of a high or very high Environmental value assessment) = 

36.849*fauna VROT (significant fauna) + 

35.671*vegetation intactness– width of vegetation fringe +  

31.710*resource utilization + 17.240*water source– other + 

3.18*sedges (vegetation intactness– critical lifeforms) +   

–1.039*pest plants + –2.274*water source– rainfall +    

 –3.013*altered hydrology + –3.410*lack of reservation + 

–31.487*drainage into wetland + –28.396          

                                              [Equation 5.16] 

 

Equation 5.17 shows the computed natural logarithms of Equation 5.16, and 

examination of its coefficients reveals that presence of fauna VROT value and the 

presence of width of vegetation fringe strongly influence high and very high 

Environmental value outcomes, and that the presence of drainage into a wetland 

strongly reduces the odds of the wetland being classified as high or very high 

Environmental value.  The presence of sedges, as an indication of vegetation 

intactness at a site, is also a good predictor of high-value assessments.  Like the threat 

models for Economic and Social values, resource utilization appears as a strongly 
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influencing threat value although in practice it was not used for subcatchment 

wetlands assessments.  

ln (odds of a high or very high Environmental value assessment) = 

ln (1.007 * 1016)*fauna VROT (significant fauna) + 

ln (3.102 *1015)*vegetation intactness– width of vegetation fringe +  

ln (5.911 1013)*resource utilization  +  

ln (30692541.86)*water source– other + 

ln (24.188)*sedges (vegetation intactness– critical lifeforms) +   

ln (0.354)*pest plants + ln (0.103)*water source– rainfall +    

ln (0.049)*altered hydrology + ln (0.033)*lack of reservation + 

ln (2.116 * 10–14)*drainage into wetland +5.209 * 10–15                                                             

[Equation 5.17] 

The coefficients of the terms in Equation 5.17 reveal the relative strengths of inputs in 

deciding the odds of high and very high-value assessments.  The presences of 

significant fauna, width of vegetation fringe, resource utilization, water source and 

sedges have a strong positive effect on the prediction for high-value, whereas the 

threat of drainage into a wetland has a strongest negative influence. 

 

Table 5.6: Classification table for Environmental value and threat input values 
showing the proportion of cases correctly classified after the binary logistic regression 
model, Equation 5.16, has been built for 156 wetlands.  Table 5.5a shows the 
classification table prior to model building. 

Environmental 
value 

Predicted value 

Very low + 
 low 

Moderate +  
high 

Percentage 
correct 

Observed 
value 

Very low + low 92 8 92 

Moderate + high 6 50 89 

Overall percentage correctly classified 91 
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5.5 Synthesis and discussion 

Each model presented in this chapter was built using binary logistic regression, a 

multivariate statistical technique, in order to predict Economic or Social or 

Environmental wetland values, with and without threat values.  The predictive 

effectiveness of the models can be measured by comparing their % correct number of 

classifications with no input variables (Block 0 output in SPSS software) to their % 

correct number of classifications after model building, as presented in Table 5.7.  

Models had greater than 90% predictive ability for all wetland values, whether threat 

values have been incorporated or not.  Such high prediction rates come at the cost of 

increasing the number of input variables, as a comparison of Model A and Model B of 

Environmental value shows.  Given the predictive abilities of all models, the 

important questions are:  

• How many variables are enough?  

• What do the model input variables tell us about wetland evaluations? 

These two questions are discussed next with reference to the three sets of analyses 

presented in Section 5.2, Section 5.3 and Section 5.4. 

 

Economic value 
Analyses in this chapter (Section 5.2.3) revealed that it is possible to correctly predict 

over 90% of Economic value assessments using absence/presence data for five 

variables: conservation forestry; diverted or farm runoff; food production; stock water 

supply; and, water storage, without the need to incorporate threat data (Table 5.1b and 

Table 5.7). The coefficient values of these variables in the model (Equation 5.4) 

indicate that presences of diverted or farm runoff, stock water supply and water 

storage at site increase the likelihood that a wetland will be classified as having a 

higher Economic value and presences of food production and conservation forestry 

reduce the odds. The inclusion of stock water supply in the model is supported by the 

univariate analyses reported in the previous chapter (Section 4.2.2).  And, although 

there are no statistically significant associations for the remaining four variables, 

evidences of their influences can be found in the contingency table for conservation 

forestry, other land usage and diverted or farm runoff (Table 4.3a) where a large 

majority of higher-valued wetlands (Moderate and High assessments) have an absence 
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value for conservation forestry and other land uses, while the single wetland record 

(wetland № 877461) evaluated as being high in Economic value has in addition a 

presence of diverted or farm runoff (Table 4.3a).  Furthermore correlations using 

Spearman’s rank coefficient, ρ, showed that diverted or farm runoff and water storage 

were moderately associated with higher-valued assessments, and there were strong 

negative correlations between food production and conservation forestry (ρ = –0.587), 

and between conservation forestry and stock water supply (ρ = –0.438).  Collectively, 

these associations confirm that diverted or farm runoff, stock water supply, water 

storage, food production and conservation forestry are important attributes to decide 

Economic value assessments and these five input variables are quite sufficient and 

efficient in predicting the Economic value assessment for a surveyed site without the 

need to incorporate threat category data at over 90% accuracy.  

 

The last sentence bears more reflection.  Consider the baseline Block 0 statistic of 

83% prediction rate, when no input variables are used (Table 5.1a). This percentage 

comes about as 133 of the 161 records were for low and very low assessments, and so 

classifying all inventoried wetlands as not high or moderate in value results in a high 

prediction rate.  As only one wetland of 161 assessed was scored to be of high 

Economic value, and relatively few (only 27) were of moderate value, this is an 

argument for not undertaking Economic value assessments in the West Gippsland 

region.  The exercise of collecting 12 input attributes for Economic value and 14 

threat components to compute hundreds of risk assessments per wetland site required 

considerable expenditure in effort, time and money.  The reality is that the effort to 

identify the single high Economic value wetland is likely to have been unnecessary. 

On the presumption that the high Economic value wetland is of sufficient monetary 

worth, then it is likely that the community will attempt preserve its status quo without 

the need for the WGCMA to identify it.  If Economic assessments are to be 

undertaken, then onsite sampling can be reduced to five attributes: diverted or farm 

runoff; stock water supply; water storage; food production; and, conservation forestry, 

knowing that these are sufficient to achieve 91% prediction rate for moderate or high-

value assessments.  Again, it is not necessary to undertake the costly data collection 

for threat values, or the complicated risk assessment computation and collation 

exercise as described in Chapter 3 to assess Economic value.   
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For completeness in this investigation, a model using both Economic value attributes 

and threat value inputs showed that nine inputs (eight different variables) can achieve 

97% prediction rate. It is important to question the improved prediction rate of the 

with-threats model when compared to the no threats model.  Is it a function of the 

number of inputs used? Is the improved accuracy due to the inclusion of threat 

categories?  Checking each model’s entry in Table 5.7 under the column labelled 

‘average % increase in correct classifications per input’, it is seen that both models 

have the same value, meaning the accuracy of prediction is simply a function of the 

number of inputs used, whether they are economic value attributes or threat 

categories.  Again, this is further argument for not undertaking collection of threat 

categories data and for not completing the complicated risk assessments to evaluate 

Economic value. 

 

Nevertheless, the Economic value with-threats model is of interest for its selection of 

predictive variables, which are two Economic value attributes: diverted or farm runoff 

and stock water supply, and six threat attributes: erosion; water source; urban 

development; resource utilization; sedimentation; and, lack of reservation were 

incorporated. The reappearance of diverted or farm runoff and stock water supply 

within this model further underlines the strong predictive influence of these two 

attributes to Economic value assessments, which is also evidenced in their large 

coefficients in the logarithmic version of model (Equation 5.6).  For threats 

categories, urban development and water source- groundwater are strongly influential.  

The inclusions of resource utilization, sedimentation and a lack of reservation are 

interesting since these threat variables were not used by the WGCMA to assess 

subcatchment wetlands.  Given the strong predictive power of these three attributes 

coupled with their usage in threats assessments at significant and nationally important 

wetlands in the region, consideration should be given to their incorporation in any 

future Economic value assessments. 

 

Social value 
For the Economic value assessment model, knowing how many variables are enough 

is more difficult to decide. As reported in Section 5.3.3, absence/presence data for 

nine Social value inputs are needed to correctly predict 92% site assessments when 
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threat category data are not included (Table 5.3b and Table 5.7).  The contributing 

attributes are: bird watching; park value; camping; hunting; recreational fishing; 

boating; motorized 4WD; swimming; and, education.  Presence values for bird 

watching and park value strongly increase the odds of prediction of a higher Social 

value, as do the presences of camping, hunting, recreational fishing and boating to a 

lesser degree, while presence values for education, motorized 4WD and education 

reduce the odds of prediction (Equation 5.9).  Several findings of the cross-tabulation 

analyses of the previous chapter (Section 4.3.2) and correlation investigations 

reported in this chapter (Section 5.3.1) provide strong supporting evidence for the 

inclusion of most attributes found in this model.  In summary, statistically significant 

associations to higher-valued assessments could be found for (in order of strength): 

park value; recreational fishing; education; camping; swimming; boating; and 

motorized 4WD; there are correlations (ρ > 0.4) for: park value; recreational fishing; 

bird watching; education; and, boating with higher-valued assessments. As described 

in Section 5.3.3, passive recreation is removed from the model as it has little impact 

on overall predictive ability, despite passive recreation being the attribute having the 

highest χ 2 value of all Social value inputs for its association with higher-valued 

wetlands.  In fact, passive recreation has twice as many recorded presences at sites 

than would be expected due to chance, and this strong association is also indicated by 

the correlation statistics for passive recreation to higher Social value assessments (ρ = 

0.573).  Correlation statistics between input variables explain why it was possible to 

cull passive recreation from the Social value binary logistic regression model; passive 

recreation is strongly correlated to park value, bird watching and education and the 

inclusion of these in the model captures the essence of the contribution made by 

passive recreation to decide Social value. 

 

When models including threat inputs are created to predict Social value assessments, 

data are needed for absence/presence values of five Social value attributes: bird 

watching; park value; camping; education; and, motorized 4WD and five threat 

categories: water source; salinity; erosion; (inappropriate) recreation; and, resource 

utilization  (Equation 5.10) to achieve the model prediction rate of 95%.  A 

comparison of models with and without threat values helps answer the question about 

what does the models’ input variables tell us about Social value wetland evaluations,  

For the no threats model, the input variables and their coefficients (the wi value in     
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ln (wi)) show the two most significant variables influencing correct prediction rates 

are bird watching, where presence greatly increases the odds ratio of prediction by 

108, and park value, where a value indicating that the site is protected gives a nearly 

600-fold odds ratio increase.  Equally, when threat values are included in model 

building, bird watching and park value have extraordinarily high values confirming 

their strong influence on Social value classifications.  Likewise camping, education 

and motorized 4WD are found in models whether or not threats are included.  

Regarding the threat categories, the inputs that most strongly influence the odds of 

prediction are data values for water source, (inappropriate) recreation and resource 

utilization.  Similar to the Economic value with-threats model, resource utilization 

appears, yet this attribute was not used by the WGCMA for subcatchment wetlands 

assessments; and thus, it should be considered for future Social value assessments.   

 

Comparing the performance of Social value models with and without threat input can 

also be done through examination of Table 5.7.  The average % increase in correct 

classifications per variable for each model remains the same, and it is the addition of 

another variable that effects the improved accuracy of with the threats model over the 

no threats version.  This raises the question: Is necessary to collect threat values in the 

field and undertake the complicated process of risk assessments for Social value 

classifications? For Social value, considerable savings could be made by ignoring 

threat values entirely and concentrating efforts on evaluating the absence or presence 

of bird watching; park value; camping; hunting; recreational fishing; boating; 

motorized 4WD; swimming; and, education. Practitioners wishing to reduce the 

number of attributes for which data must be collected infield can be guided by 

Equation 5.9 that indicates if any input attributes should be removed on a cost-benefit 

analysis of their collection, they should be targeted in the following order: motorized 

4WD; swimming; boating; recreational fishing; and, hunting. 

 

Environmental value 
By far and away, the most complicated, time consuming and expensive assessment 

undertaken by the WGCMA was for Environmental value.  This has been reflected in 

the complexity of the individual values, attributes and subattributes used in the 

assessment and the considerable space taken in this thesis to describe them and 
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discuss their interactions.  Answering the question for Environmental value of ‘how 

many variables are enough?’ is difficult and the answer is covered in caveats.  Before 

answering, it is best to first note that some input variables were not included in any 

model, and these absences point to a list of several attributes and subattributes that 

need not be collected in the field.  These include Environmental value attributes of: 

• Wetland rarity: All Corrick and Norman (1980) classified wetlands classes do 

not impact assessment predictability, with the exception of knowing if a 

wetland is classified as permanent open water, or not, for the Model B version.   

However if threat values are used, there is no need to assess this attribute; 

• Significant flora: It is not necessary to check if a flora VROT if threat input 

data is used in the model; 

• Significant fauna: It is not necessary to check if a faunal species is FFG 

registered species, as this attribute is highly correlated to faunal species VROT 

attribute, which appears in Model B and threat input model.  If Model A is 

used, there is no need to collect data on either contributing attribute to 

significant fauna; 

• Habitat value: Sedges is the only attribute of habitat value needed in the threat 

input Environmental value model.  However, many subattributes of attribute 

terrestrial zone habitat type used to assess habitat value are found in both 

Models A and B but the following may not be collected as they do not appear 

in either calculation: logs; emergent vegetation; exposed substrate; shallow to 

medium depth water; water edge; and, other attribute.  The two subattributes 

of permanent deep pools and submerged or free-floating vegetation appear 

only in Model B.  Similarly with shoreline vegetation profile used to assess the 

shoreline profile subattribute of habitat value, alive trees were not found in 

either Model, while the absence or presence of dead trees was only used in 

Model B.  All subattributes of shoreline shape used for shoreline profile 

assessment did not impact assessments, so it is not necessary to collect data on 

irregular or regular shaped shoreline shapes, nor on the absence or presence of 

islands; 

• Hydrology: As cross-tabulation analyses and Spearman’s rho correlation 

statistics showed very strong associations between all hydrology attributes 
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(Section 5.2.1), it is not necessary to collect all of the subattributes of 

hydrology.  There is some variation between Model A and B in the hydrology 

attributes used; Model A uses redirection only and Model B uses obstruction 

and drainage in its computation.  On both counts, there is no need to collect 

data for water storage and water disposal.  No hydrology attributes assessed as 

Environmental attribute values contribute to the threat input model, although 

two threat values: altered hydrology (found in Table 3.1) and drainage into 

wetland are used; and,    

• Vegetation intactness– critical lifeforms: Using the floral types of the 

dominant EVC at a site, it is not necessary to check for graminiods or grasses 

and a check for herbs and ferns need only be done if Model B is being used.  

Sedges appear in all Environmental value models with and without threats.  

Nor is it necessary to do a count of floral species at each site, as this 

subattribute does not feature in the calculations for any model, despite there 

were strong correlations and cross-tabulations of species numbers to high and 

very high-value assessments. 

 

Threat attributes not used in any model which do not need to be collected include: 

• Loss of wetland connectivity; 

• Stock access; 

• Pest animals; 

• Urban development; 

• Native vegetation decline; 

• Land use; 

• Physical alteration; 

• Erosion; 

• Fire regime; 

• Recreation; and, 

• Salinity. 
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As mentioned earlier, there is good agreement between patterns of attributes for high 

and very high-value wetlands noticed by the WGCMA and the cross-tabulation 

analysis, correlation statistics and inputs identified for the building of all 

Environmental value models.  The WGCMA (2007) reported that high and very high 

Environmental value sites scored well for vegetation intactness, habitat value and 

wetland significance, while poorer Environmental value sites were characterized by 

low scores for significant flora, habitat value and wetland rarity. The inputs to the 

binary logistic regression models, with and without threat categories, reflect these 

broad patterns, and more specifically, underline the importance in deciding 

Environmental values assessments of the data values (absence/presence) of: flora 

VROT (significant flora); fauna VROT (significant fauna); sedges, ferns and herbs 

(vegetation intactness-critical lifeforms); shoreline shrubs, shoreline dead trees, rocks, 

permanent deep pools, permanent open water, submerged or free-floating vegetation 

(habitat value); shrubs (vegetation intactness-critical lifeforms); drainage and 

redirection (hydrology) and width of vegetation fringe (vegetation intactness-width of 

vegetation fringe).   

 

Much previous research has indicated that classification schemes have a far greater 

impact upon wetland assessments than is indicated here, e.g. Fitzsimons and 

Robertson, 2005, and Robertson and Fitzsimons, 2004. For Corrick and Norman 

classified wetlands, only two statistically significant associations were found in the 

cross-tabulation analyses (Section 4.4.2): proportionally more permanent open water 

wetlands were assessed as moderate value; and, more freshwater meadows were 

assessed as low value, than would be expected due to chance.  Supporting analyses 

were found using Spearman’s rank correlation coefficient (Section 5.4.1), in that, 

there  are negative associations of permanent open water wetlands (ρ = –0.205) and 

freshwater meadows (ρ = –0.166) to high-value assessments, and although the 

magnitude of the correlations was quite low, the value means both wetland types were 

more likely to have very low, low or moderate assessments.   

 

So for Environmental value, what do the model input variables tell us about wetland 

evaluations and the impact of the Corrick and Norman wetland classification scheme? 

For binary logistic regression models without threat data, only Model B incorporated 

a wetland type, permanent open water (Section 5.4.2).  The coefficient of this variable 
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in Model B is ln (0.025) indicating a 40 to 1 odds impact on the calculation of not 

indicating a high or very high-value wetland, when a wetland is a permanent open 

water type.  Therefore in the case study, this is the only evidence that any particular 

Corrick and Norman (1980) wetland type is more, or less, likely to be evaluated as 

high or very high in value.  But it is more complicated than that!  Examination of 

Table 2.1, which details the Corrick and Norman scheme, shows that wetland type is 

decided upon indicators of water depth for each of the seven types, and with 

subcategories of dominant vegetation types for deep freshwater marshes, shallow 

freshwater marshes and freshwater meadows.  The vegetation types include shrubs, 

herbs and sedges, and as an examination of the input variables of Models A and B 

shows, high and very high evaluations are more strongly correlated to these vegetation 

types, indicating it is their physical presence, rather than their use in wetland 

classification, that precipitates high and very high Environmental value assessments.   

 

The other wetland classification scheme used in Victoria is on the basis of EVCs, 

which were used in the case study as one of the attributes needed to assess the 

Environmental value of vegetation intactness.  For each site, the dominant EVC was 

recorded and a measure of percentage of floral types present for that EVC was 

estimated.  Cross-tabulation analyses found statistically significant associations 

between the absence of herbs and low value assessments, and the presence of shrubs, 

sedges and ferns with high and very high-value assessments (Section 4.4.2).  These 

associations were confirmed by correlation analyses, which indicated that the 

strongest relationship was between the presence of shrubs and high and very high 

Environmental values (Section 5.4.1).  The only EVC component needed to evaluate 

the threat input model is the absence or presence of sedges.  However for Models A 

and B where no threat values were assessed, shrubs, sedges and the presence of 

shoreline shrubs are inputs to both models and their respective coefficients indicate 

that they impact significantly on the odds of predicting high and very high 

Environmental value assessments.  For Model B, herbs and ferns are additional inputs, 

with coefficients for herbs increasing the odds likelihood and for ferns decreasing it.  

Given that it is possible to build Models of strong prediction rates of over 90% (86% 

for Model A) without considering threat input, it poses the question: Is it necessary to 

collect threat data and undertake the arduous risk assessment to identify high and very 

high Environmental value wetlands? Again, Table 5.7 holds the answer by comparing 
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the values for each Model under the ‘average % increase in correct classifications per 

input’ column.  For no threat Models, the improved prediction values for Model B 

over Model A is simply a function of eight additional inputs into the calculation, 

although there is a drop in efficiency per input. Thus, the choice between using seven 

or 15 inputs is to be decided by an analysis of the cost of collection for each input 

attribute versus its contribution to the assessment. Where threat categories are 

incorporated into the model, the ‘average % increase in correct classifications per 

input’ value is similar to the seven input version (Model A).  This supports the need to 

incorporate threat data input into deciding Environmental value.  Lynch (2011) relates 

the historical use of threat categories in various frameworks to assess wetlands, 

including the Millennium Ecosystem Assessment Framework and Ramsar Convention 

guidelines, and she argues the need to incorporate threat categories in wetland 

assessments and management.  The evidence presented here suggests doing so only 

for Environmental value, and not for Economic and Social value assessments in West 

Gippsland.   

 

This question is discussed further in Chapter 6 after the novel application of neural 

networks to wetland assessment described in the next chapter.  Neural networks, a 

data-mining technique, are used to identify factors predicting high-value wetlands and 

to mimic the human-decision making processes of wetland assessments, and their 

efficacy in both regards is also discussed in Chapter 6. 
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Table 5.7: A summary of all binary logistic regression models showing the number of 
input variables used, the initial % correct classifications and final % correct 
classifications  made by each model.  The calculation of average % increase in correct 
classifications per input was made by taking the difference between initial % value and final 
value of the model, divided by the number of input variables. 

Model Number of 
inputs 

% Correct classifications Average % 
increase in 

correct 
classifications 

per input 
Block 0 

 

Final 

 

Economic  
value 

No threat 
input 

(n = 161) 
5 

83 

91 1.6 

With threat 
input 

(n = 151) 
9 97 1.6 

Social   
value 

No threat 
input 

(n = 149) 
9 

72 

92 2.3 

With threat 
input 

(n = 144) 
10 95 2.3 

Environmental 
value– 
Model A 

No threat 
input 

(n = 163) 
7 

65 

86 3 

Environmental 
value– 
Model B 

No threat 
input 

(n = 158) 
15 91 1.7 

Environmental 
value 
 

With threat 
input 

(n = 156) 
10 64 91 2.7 
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 Lakes Entrance. Victoria, September 2010.   

Image courtesy of Paul Boon 
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Chapter 6  

Artificial neural networks analyses 

In Chapter 5, the multivariate statistical method of binary logistic regression was 

used to construct models of wetland assessments.  These models, some incorporating 

threat data and others not, were able to correctly predict over 90% wetland 

classifications.  Analyses of model inputs and model performances indicated that data 

for many attributes were not required, and more importantly, the effort to assess 

threat values and undertake risk assessments was not always necessary in order to 

decide wetland values.  It was argued in the discussion of the previous chapter that 

for Economic value, assessments not be undertaken at all for any wetlands; for Social 

value, threat data should not be collected and risk assessments should not be done; 

and, for  Environmental value, it may not be necessary to collect threat data and do 

risk assessments.  

 

To shed further light on these preliminary conclusions and on the identity of the most 

appropriate attributes needed for wetland assessments, this chapter explores the 

application of artificial neural networks (ANNs) to the problem.  As data-driven and 

self-adaptive tools, ANNs have been increasingly applied to complex classification 

problems in a wide variety of disciplines.   First, the computing mechanisms of ANNs 

are explained and important design considerations are discussed.  ANNs for 

Economic, Social and Environmental values are then built, trained and tested using 

WGCMA inventory data.  The performances of these ANNs in conducting wetland 

evaluations are assessed for accuracy and efficiency in comparison with the 

traditional process and the multivariate statistical models presented in Chapters 5.  

The major contributing inputs in deciding each ANN’s ‘decisions’ are identified 

through sensitivity analyses and these are contrasted to those found via the univariate 

and multivariate statistical approaches described in Chapters 4 and 5.  A discussion 

of the usefulness of ANNs in undertaking wetland assessments concludes the chapter.  
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6.1 Introduction 

An artificial neural network (ANN) is a computing strategy most often used to find 

solutions for complex real-world problems, where the relationship between data types 

is not obvious, or explicit (Zhang, 2000).  Modelled on the way the human brain is 

connected, ANNs are able to infer function from observation. Thus, they excel in 

pattern recognition and classification problems, and they can be trained to learn 

desirable patterns found within one dataset and classify unseen data according to what 

has been learnt previously (Negnevitsky, 2011).  As a non-linear data-mining 

technique, they are investigated here on two accounts: first to further explore salient 

data inputs into wetland assessments, and contrast the artificial neural network 

outcomes with the univariate and multivariate statistical analyses of the previous two 

chapters; and second, to examine their suitability as a mechanism to mimic and 

automate wetland assessments.   

 

Artificial neural networks are often chosen for handling complex ecological and 

biological data problems (Brosse, et al., 2001; Lek & Guegan, 1999; Noble & Tribou, 

2007; Recknagel et al., 2006; Shanmuganathan et al., 2006; Whigham et al., 2006).  

Amongst other applications, they have been used to predict the presence of algal 

blooms (Khanna et al., 2005; Muttil & Chau, 2007), lake water temperatures (Liu & 

Chen, 2012), river levels (Leahy et al., 2008), and long term drought forecasts (Barros 

& Bowden, 2008).  As an indication of their widespread application to environmental 

assessment and management, Maier and Dandy (2000b) identified 43 papers 

published up to 1998 where ANNs were used to predict water-resource variables.  In a 

later review across the same research domain, Maier et al. (2010) found the number 

had increased after 1998 to 210 academic papers across 18 international journals.  

These papers reported the application of neural networks to forecasting water quantity 

and quality variables of rivers. 

 

The widespread popularity of ANNs is due in part to their ability to cope well where 

other statistical approaches, such as multiple regressions, may fail due to non-linear 

relationships between variables, the presence of unusual but ecologically relevant 

outliers, and other problems with handling uncertainty (Brosse et al., 2001; Findlay & 

Zheng, 1999; Lek & Guegan, 1999; Olden et al., 2006; Zhang, 2000).  Most 
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importantly, ANNs make no assumptions regarding the statistical distribution of input 

data and are able to handle multiple disparate variables; moreover, they cope with 

noisy data and uncertainty to find complex relationships amongst the inputs, and 

moreover once correctly set up and trained, an ANN can be relied upon to make 

predictions similar to those upon which it has been trained with good predictive 

ability (Negnevitsky, 2011). 

 

6.1.1 Artificial neural networks  

Artificial neural networks consist of computing neurons, which are modelled on the 

biological neuron; a comparison of both is made in Figure 6.1.  The components of a 

computing neuron are strongly analogous to biological neurons, since stimuli or 

inputs enter the neuron to be collectively evaluated in deciding whether output will be 

sent onto the next neuron.  The seminal work describing computing neurons was done 

by McCulloch and Pitts (1943), who explained that a single neuron collects each of its 

inputs (xi) and individually multiplies these by a corresponding weight (wi).  The 

neuron sums all xi * wi calculations and compares the result to a threshold amount or 

hard limiter decided by an activation function, be it a step, sign, sigmoid or linear 

function.  The result of this calculation determines the output signal of the neuron.  

Using this strategy, the computing neuron illustrated in Figure 6.1 is capable of 

solving simple problems that are linearly separable functions, such as logical AND 

and logical OR calculations.  How this is done is described in the worked example 

following4.   

 

More generally, neurons are gathered in groups to build layered neural networks, as 

shown in Figure 6.2.  Here the neural network consists of three layers: an input layer, 

a hidden middle layer and an output layer.  Each neuron in the input layer receives its 

input signals from the outside world and transmits it as output to neurons in the 

middle layer.  The neurons of the middle layer collect inputs, process weights, 

calculate sums and make comparisons to activation functions to decide the output they 

will pass onto the next layer.  The neurons of the output layer repeat the process 

described for middle layer neurons to decide their output signals to be passed out of 

4 Note from this point on, computing neurons will be referred to as neurons and artificial neural 
networks will be referred to as neural networks, as is the practice in the computing literature. 
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the ANN.  The neural network architecture of Figure 6.2 shows one middle layer, 

although there may be several middle or internal layers in a design.  Middle layers are 

labelled as “hidden”, as they are not readily observable nor directly accessible; they 

have indirect contact with the outside world.    

 

 

Figure 6.1: Diagram of a biological neuron and a model of a computing neuron, 
together with a listing of analogous components.  Source: Negnevitsky (2011).  

 

Figure 6.2: Architecture of a typical artificial neural network where the network 
consists of an input layer of neurons which receive data, at least one hidden middle 
layer of computational neurons and an output layer of computational neurons.  
Source: Negnevitsky (2011).   
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Whether it be the single neuron of Figure 6.1 or a multilayer ANN shown in Figure 

6.2, the ability of any ANN to learn and solve problems is done through an adjustment 

of input weights in a process called training.  For every directional arrow between 

neurons in Figure 6.2, there is an adjustable weight which is modified during the 

training process, as first introduced by Rosenblatt (1958).  To illustrate how this is 

achieved, a simple neuron with two inputs, x1 and x2, and one output, Y, will be taught 

the logical AND operation.  The neuron structure is shown in Figure 6.3.  The logical 

AND operation is a binary operation with inputs, x1 and x2, each may take the value of 

either 0 (false) or 1 (true).  The logical AND operation examines the values of both 

inputs and returns 1 (true) only when both x1 and x2 have a value of 1 (true), otherwise 

the result should be 0 (false), as shown in Table 6.1. 

 

 

Figure 6.3: A simple two input neuron, with inputs x1 and x2 and weights w1 and w2.  

Diagram modified from Negnevitsky (2011).   

 

Table 6.1: An outcome table for the binary logical AND operation of inputs x1 and x2.   

Input 
 x1 

Input 
 x2 

Desired 
outcome  

Y 
0 0 0 
0 1 0 
1 0 0 
1 1 1 

 

 

When a computing neuron is set up, values for weights, hard limiter function, 

threshold value and learning rate are all assigned.  For the neuron in Figure 6.3, the 

weights w1 and w2 are randomly set as 0.2 and 0.1 respectively, along with a learning 

rate α of 0.1.  The hard limiter is the step function shown in Figure 6.4 with a 

threshold θ of 0.2.   This example has been taken from the text by Negnevitsky (2011).   
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Figure 6.4: Mathematical step function, where an input of less than 0 results in output 
of 0, and an input greater than or equal to 0 is assigned as 1.  

 

Training is done in epochs, where the neuron is presented with one batch of training 

data; in this instance it is the set of all possible inputs for x1 and x2.  For the first set of 

inputs in row 1 of Table 6.1, the neuron computes  

x1 * w1 +  x2* w2  =   0 * 0.2  + 0 * 0.1  = 0.   

The neuron then subtracts the threshold value, θ = 0.2, from the result and applies the 

step function of Figure 6.4 where an input of –0.2 results in an output value of Y 

equals 0.  Checking the desired outcome for the given inputs of x1 and x2 in Table 4.1 

also gives 0, meaning that the computing neuron is giving the desired solution and it 

does not need to be corrected for this set of input.   

 

Proceeding with the second data input of the training set, where x1 = 0 and x2 = 1, the 

neuron computes  

x1 * w1 +  x2* w2  =   0 * 0.2  + 1 * 0.1  = 0.1.   

After subtracting θ and applying the step function, the output value of Y is computed 

as 0.  This is also the desired outcome for the given inputs, so the next training data of 

where x1 = 1 and x2 = 0 is presented to the neuron.  The first step in the calculation is 

x1 * w1 +  x2* w2  =   1 * 0.2  + 0 * 0.1  = 0.2. 

Next the subtraction of θ from 0.2 results in a value of 0 to be used as input to the step 

function.  This results in a Y value of 1, which is not the desired outcome for this data 
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input.  0 is required.  So the computing neuron has made an error of –1 in its 

calculation.  Error is calculated using Formula 6.1.  

error = desired outcome – actual outcome  

[Formula 6.1] 

When a neuron computes an outcome other than desired, it needs to undertake 

learning through an adjustment of its weights.  The formula given for the adjustment 

is presented as Formula 6.2, where the change in weight ∆.wi is the learning rate α 

multiplied by the error and the value of xi. 

∆wi   = α *  error *  xi  

[Formula 6.2] 

In this case, the adjustment needed for w1 is calculated as 

∆w1 = 0.1 * –1 * 1 = –0.1 

The value of ∆w1 is added to w1 to produce the new weight of w1 for use in subsequent 

training.  In this case, w1 becomes 0.1 as a result of 0.2 + –0.1.  Likewise, ∆w2 is 

computed using Formula 6.2, which results in ∆.w2 equalling 0 and no change is made 

in w2.   Finally, the fourth training data in the epoch is presented to the neuron which 

uses the newly computed weights of w1 and w2.  The calculation becomes 

x1 * w1 +  x2* w2  =   1 * 0.1  + 1 * 0.1  = 0.2. 

After subtraction of the threshold and application of the step function, the result is the 

desired Y value of 1.  No additional adjustment to weights needs to be made for this 

pair of x1   and x2 values.  Training commences again with the first dataset of x1 = 0 

and x2 = 0 and it continues until the desired outcome Y is calculated correctly for the 

entire dataset or epoch without the need for learning.  On the second pass, the neuron 

performs correctly for all sets of input, so training stops.  The neuron with weights    

w1 = 0.1 and w1 = 0.2, a threshold value θ of 0.2 and a learning rate α of 0.1 is now 

capable of reliably computing the logic AND operation into the future.  

 

From this example, it is evident that the ability of the neuron to be trained, and the 

speed at which it is done is affected by the randomly generated initial weights, the 

threshold value selected, and the learning rate.  The learning rate regulates the size of 
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the steps taken by the neuron to approach its solution; too small a size means more 

epochs of training data are presented to the neuron to reach its optimal weights, and 

too large a size may mean that the neuron calculations seesaw either side of the best 

weights as they are unable to zero-in due to their stride size.  Additionally, there are 

several possible combinations of different values of w1, w2, θ and α  for the neuron to 

solve the logic AND problem, and different runs using a neuron or neural network to 

solve a problem will result in various versions for the task at hand.   

 

The practical implications of randomly chosen components of a network are twofold: 

every time a network is generated, the performance statistics will be similar, but rarely 

identical, necessitating multiple runs over which to find general predictive abilities; 

and, the once a suitably performing ANN is found, its final weights must be saved to a 

file and the activation functions known for constructing the same network in the 

future.   

 

6.1.2 Considerations in applying neural networks to the study 

In all ANNs, neurons are assigned randomly generated weights, which are altered 

during the training process to learn solutions to a specific problem.  These weight 

values have no intrinsic meaning, but collectively they are used to compute 

appropriate output, and for this reason, neural networks are considered black-boxes 

(Olden & Jackson, 2002).  As seen in the worked example, simple computing neurons 

are capable of solving linearly separable functions, like logic AND and logic OR, 

whereas anything more complicated needs a set of neurons, like the layered artificial 

neural network shown in Figure 6.2.  

 

The ANN design of Figure 6.2 is known as a feed-forward neural network (FFNN) 

with one hidden layer, and they have been shown mathematically capable of 

representing any continuous function to any degree of accuracy given suitable 

numbers of hidden neurons (Cybenko, 1989; Hornik et al., 1990).  As pointed out by 

Maier and Dandy (2000b), the use of more than one hidden layer adds greater 

flexibility and often makes computationally more efficient solutions for many 

situations, and deciding the most  appropriate design of an ANN is as much art as it is 

science (Negnevitsky, 2011).   
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Often FFNNs are referred to as feed-forward back propagation networks, in reference 

to their training approach.  In training, FFNNs need to back-propagate errors from the 

output layer back through to its internal hidden layers (Rumelhart et al., 1986).  To 

mathematically accommodate back propagation, a sigmoidal function, rather than step 

function, is most often used.  Sigmoidal functions, such as the hyperbolic or logistic 

functions, are easily differentiated to derive the rate of error used to calculate ∆w1 and 

modify the weights of hidden layer neurons during the learning process (Negnevitsky, 

2011).  For neural networks using categorical data, the softmax function is best 

applied as it gives the logit probabilities for each output category (IBM Corporation, 

2011; Zeng, 1996).  

 

Other important design issues relate to data requirements.  Unlike the logic AND 

example, where the entire dataset was presented to the computing neuron, for real-life 

situations it is accepted practice for the data pool to be partitioned into three sets: a 

training set for training the neural network; an unseen testing set to check on errors 

during training and avoid over-fitting; and, a holdout sample to assess the resulting 

trained network for performance (IBM Corporation, 2011; Negnevitsky, 2011).  Each 

of the sets should be representative of the patterns present in the data and have the 

same statistical properties (Maier & Dandy, 2000b).  

 

It is known that ANN prediction accuracy improves with growing data numbers and it 

is desirable to have 200 cases as a minimal dataset size (Detienne et al., 2003; Sug, 

2010).  For the WGCMA dataset, the number of wetlands inventoried was controlled 

by the need to gain statistical representation of all wetland types within the West 

Gippsland catchment region; it is limited to, at best, 163 records.  As it was not 

practical to undertake additional surveys to generate more training data, two 

approaches have been taken to resolve the problem.  The first approach was training 

networks with the entire dataset to enable direct comparisons of these ANNs with 

Chapter 5 analyses.  Maier & Dandy (2000b) noted that ANN models can be 

computationally equivalent to some statistical approaches and ANNs trained using the 

softmax activation function can compared with binary logistic regression models, 

assuming the same dataset has been used (Sarle, 1994).  The second approach was 

taken when assessing an ANN’s predictive abilities; the dataset was divided into 
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training and testing sets, forgoing the luxury of a holdout sample dataset.  This was 

the strategy taken by Milne (1995) when faced with a similar situation during a study 

of the NSW Nullica State Forest.  

 

Other data concerns relate to sensitivity of neural networks to the magnitudes and 

ranges of scaled variables.  To improve network performance, it is important to 

rescale these variables to small, predictable ranges (IBM Corporation, 2011; Noble & 

Tribou, 2007).  This transformation will be largely unnecessary in this investigation as 

most of the data were categorical.  Categorical data, however, present their own 

issues; they necessitate the use of dummy variables to represent each possible 

category as was discussed in considerations for the logistic regression analysis in 

Chapter 5.  To avoid the need for dummy coding, I handled this problem in the same 

manner with the use of dichotomous variables of absence and presence categories 

only.  

 

Finding the nature and appropriate number of input variables for constructing neural 

networks is a topic of much academic interest (Bowden et al., 2005; Maier & Dandy, 

2000a & 2000b; Maier et al., 2010; Muttil & Chau, 2007; Piramuthu, 2004; Zhang, 

2000).  Neural networks are lauded by many practitioners as the best strategy to use 

when the appropriate number of inputs is unknown and inherent relationships between 

input data and output are not easily described (Detienne et al., 2003; Zhang, 2000).  

As non-linear, adaptive and data-driven tools, ANNs cope with noisy data, outliers 

and irrelevant data within input; however unnecessary input variables add 

computational complexity, they increase the need for more training data, and they 

make interpretations more difficult (Bowden et al., 2005).  Superior and simpler 

models are generated when irrelevant input data are identified and removed (Muttil & 

Chau, 2007).   

 

The benefit and the disadvantage of using an ANN is that it is a black-box approach.   

It is only possible to observe the inputs fed into a network and see the outcomes they 

produce.  The weights of each interneuron connection can be read, but they are a 

computational slight-of-hand with no real-world meaning.  Each ANN construction 

commences with a set of randomly chosen weights for its interneuron connections, 

and it is usual for different runs, using the same neural network architecture and input 
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data, to not result in the same exact output.  For each ANN construction described in 

the following sections, a minimum of 20 runs were completed to gauge ANN 

performance.  Also, the use of multiple runs helped overcome the known difficulty of 

ANNs of sometimes converging on local, rather than global, minima due to their 

descent search strategy (Stager & Agarwal, 1997).  

 

Much has been written on guiding appropriate ANN design and a plethora of advice 

has been given.  Maier and Dandy (2000a & 2000b) and Maier et al. (2010) make 

valuable comments on ANN design for water-resource problems, which I have heeded 

in this investigation.  In particular, they discuss the importance of performance criteria 

for evaluating models, the appropriate division of datasets, the need for data pre-

processing steps, the determination of suitable inputs, decisions relating to appropriate 

ANN architecture, training algorithms, and validation.   

 

Until recently, to create an ANN required either programming ability or detailed 

knowledge on how to customize specialist software.  As the application of neural 

networks has become more of a mainstream practice, the statistical SPSS software 

offers a customizable point-and-click interface for ANN generation.  As in Chapter 4 

and 5 analyses, the IBM® SPSS® 20 Statistics package (http://www.spss.com/) has 

been used.  The advantages of this software are its provision of algorithms to optimize 

and automatically decide the most appropriate neural network architecture and design, 

including the number of hidden layers, the number of neurons in each layer, and the 

relevant activation functions between layers.  The automation of these functions 

relieves the user of design decisions, where poor choices may adversely influence 

ANN function.  As well, SPSS has a sensitivity analysis tool to identify the most 

significant inputs during an ANN run.  This tool was used extensively to identify 

significant inputs of the ANNs described in the following sections.   
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6.2 Economic value of wetlands 

6.2.1 Economic value − ANN  constructions 

Data were prepared for ANN building as for binary logistic regression models 

reported previously.  All attributes of Table 3.1, other than commercial fishing (with 

only two records), were partitioned into absence and presence groups.  The output 

variable, Economic value assessment, was separated into two groups: moderate and 

high-value cases together, of which 27 were moderate assessments and one high 

assessment; and, low and very low assessments, with 109 low value and 24 very low 

value wetlands.  To enable comparisons with the performances of binary logistic 

models to be made, the dataset was not partitioned into training, testing and holdout 

sets, and 161 wetlands records of Economic value attributes were used to build the 

ANNs.   

 

The first step in finding the most suitable set of inputs was the construction of an 

ANN using all 11 input attributes of the WGCMA Economic value assessments:  

conservation forestry; drainage; disposal of water; diverted or farm runoff; food 

production; obstruction; other land usage; redirection; stock water supply; tourism; 

and, water storage.  The ANNs architecture was 22-5-2, meaning there were 22 input 

neurons (an absence neuron plus a presence neuron for each input attribute), five 

neurons in the hidden layer (automatically calculated by the software as optimal), and 

twos neurons in the output layer (the first neuron for very low and low assessments 

calculations, and the second neuron for moderate and high assessments).  All ANNs 

described in this chapter were built using the hyperbolic tangent as the activation 

function for the hidden layer and softmax as the activation function of the output 

layer.  

 

The next step was to repeatedly run the software so that 20 ANNs with 11 inputs were 

built.  As different initial weights were randomly chosen for interneuron connections, 

the prediction performances of the 20 ANNs varied with the number of hidden 

neurons calculated as optimal.  The classification tables for the ANNs were examined 

and the classification table that occurred most often is shown as Table 6.2a.  This 

classification table is referred to, from here forward, as the ceiling ANN for Economic 

value with 11 inputs.  For the ceiling ANN, the overall percentage correct 
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classification rate was 96%, correct classifications for very low and low assessments 

were at 98% and for moderate and high assessments at 79%.  However, given the 

number of input variables and the very high prediction rates (Zhang, 2000), it is likely 

to be over-fitting the dataset, particularly for very low and low Economic value 

assessments.  

 

Next, checks were made of the outputs of sensitivity analysis for each of the 20 

ANNs.  The inbuilt SPSS sensitivity analysis tool computes a normalized importance 

for each predictor; this indicates how much each ANN model changes with different 

values of each input variable, and it ranks the inputs in order of magnitude from most 

significant to the least.  For each ANN construction, the sensitivity analyses were 

marginally different, and the rankings of inputs are strongly influenced by the learning 

performance of the set of randomly chosen initial weights.  To determine the most 

influential inputs across the 20 runs, I assigned a rank number to each input for every 

sensitivity analysis.  For instance in the first run, conservation forestry was found to 

be the most significant input, so it was assigned 1; the second most important input 

was redirection, and it was set as 2; and continuing in this manner until the least 

significant input tourism, which was designated as 11.  Next, each input’s rankings 

were summed across the 20 sensitivity analyses; those with the lowest scores were 

consistently assessed by the sensitivity analyses as influential, and those with the 

highest scores usually were ranked as least significant.   

 

The sensitivity analyses found that conservation forestry, with a score of 29 out of a 

possible 220, was the most significant input variable for Economic value assessment.  

The listing of inputs in order of most influential to least across the 20 runs are, with 

the input’s score in brackets, conservation forestry (29); diverted or farm runoff (67); 

stock water supply (72); redirection (99); water storage (106); food production (146); 

obstruction (147); other land usage (152); drainage (154); disposal of water (171); 

and, tourism (177).  Note the scores give an indication of the magnitude of input 

variable effect only; the sensitivity analyses do not indicate whether the impact is 

positive or negative effect. 

 

Commencing with the most influential input identified in the sensitivity analysis, an 

ANN was then built using conservation forestry as its only input.  Again, 20 runs were 
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done and the resultant ANNs were examined for their abilities to identify both output 

groups and contrasted to the ceiling ANN.  The classification table for these ANNs is 

given as Table 6.2b, and it is referred to as the baseline ANN for Economic value.  All 

conservation forestry only ANNs were able to correctly identify very low and low 

Economic value assessments, but were unable to discern any moderate and high 

wetland assessments.  Next, 20 ANNs were constructed using conservation forestry 

and the next highest magnitude input, diverted or farm runoff, and these were able to 

correctly classify very low and low assessments and identify 39% of moderate and 

high-value assessments, with an overall correct prediction rate across both groups of 

89%.  Continuing in this manner, ANNs were progressively built by adding inputs 

one at a time and in order of their influence, and a check was made of improvements 

to overall prediction rates and the number of correct classifications of moderate and 

high-value assessments. When using this one-at-a-time approach to build ANNs,  

incremental improvements in the classification of moderate and high assessments 

came at the expense of losing some prediction accuracy of very low and low 

assessments, resulting in the same overall performance rate across groups.   

 

Experiments suggest that the five-inputs ANN, using conservation forestry; diverted 

or farm runoff; redirection; stock water supply; and, water storage, are the most 

suitable for generalizing Economic value assessments without over-fitting the data.  

The classification table for this five-inputs ANN is shown as Table 6.2c. Further 

experimentation building ANNs using various permutations of subsets of these five 

inputs found that the best classification performance occurred when they were all 

present.  Further, taking a subtraction-from-the-total strategy, that is commencing 

with the ceiling 22-5-2 ANN and progressively removing the least significant input 

variables also arrived at the five-inputs ANN, with architecture of 10-6-2, as the most 

appropriate for predicting Economic value assessments.   
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Table 6.2a: Classification table for the ceiling Economic value ANN inputs using all 11 
input attributes.  The table shows the proportion of cases correctly classified for 161 
wetland records. 

Economic 
value 

Predicted value 

Very low + 
 low 

Moderate +  
high 

Percentage 
correct 

Observed 
value 

Very low + low 132 1 99 

Moderate + high 6 22 79 

Overall percentage correctly classified 96 

 
 
Table 6.2b: Classification table for baseline Economic value ANN using conservation 
forestry as the only input.  The proportion of cases correctly classified for 161 wetland 
records is shown. 

Economic 
value 

Predicted value 

Very low + 
 low 

Moderate +  
high 

Percentage 
correct 

Observed 
value 

Very low + low 133 0 100 

Moderate + high 28 0 0 

Overall percentage correctly classified 85 

 

Table 6.2c: Classification table for the Economic value ANN built using five inputs.  
The proportion of cases correctly classified for 161 wetland records is shown. 

Economic  
value 

Predicted value 

Very low + 
 low 

Moderate +  
high 

Percentage 
correct 

Observed 
value 

Very low + low 127 6 96 

Moderate + high 9 19 68 

Overall percentage correctly classified 91 

 

6.2.2 Economic value − ANN evaluations  

In their advice for creating neural networks to solve water resource problems, Maier 

and Dandy (2000a) and Maier et al. (2010) pointed out that it is important to decide a 
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priori suitable performance criteria by which to evaluate ANNs.  In this instance, the 

ability of the five-inputs ANN was compared to performance of the five-inputs 

Economic value binary logistic regression (BLR) model (Table 5.1b); it is possible to 

compare both as they were built using the same dataset.  The overall ability to 

correctly predict Economic value was compared and the ability to discern moderate 

and high-value assessments were contrasted.  

 

Comparing Table 5.1b, the classification table of the five-inputs BLR model with 

Table 6.2c of the five-inputs ANN, it is noticed that the overall percentage correctly 

classified is the same for BLR model and the ANN as 91%.  It is more productive to 

compare the ability of each approach to separate each outcome group, and in 

particular, to correctly classify moderate and high-value assessments and in this 

regard, the BLR model and the ANN differ.  Table 5.1b shows that the five-inputs 

BLR model is able to predict 99 % of very low and low Economic value assessments, 

but the model finds difficulty in discerning moderate and high-value assessments with 

only 57% correct.  The five-inputs ANN outperforms the BLR model in correctly 

classify 68% moderate and high assessments, and very low and low assessments at 

96%.  On this inspection, the ANN appears to be the better choice of approach for 

deciding Economic value assessments. 

 

Comparing the inputs of the five-inputs BLR model with five-inputs ANN, there are 

four inputs in common: conservation forestry; stock water supply; water storage; and, 

diverted or farm runoff.  This commonality is further evidence of the efficiency of 

these inputs to describe Economic value assessments, and this point will be discussed 

further in the concluding section of this chapter.  The additional input in BLR model 

was food production, an attribute of the Economic value production, and the extra 

input for the ANN was redirection, a subattribute of the drainage disposal Economic 

value.  

 

6.2.3 Economic value − Threat ANNs  

As the WGCMA assessment process incorporated risk assessments of how threats 

impacted on Economic values at all sites, ANNs were built and tested that 

incorporated threats as inputs.  The dataset contained 151 wetlands where there were 
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entire records for every Economic value attribute and threat factors.  To create 20 

ceiling ANNs, all 11 inputs for Economic value plus 26 threat inputs were used, 

resulting in a 74-2-2 architecture.  The threat inputs were those used to assess 14 

threat attributes listed in Tables 4.27a and 4.27b.  With such a high neuron count in 

the input layer, all 20 ANNs created were expected to dramatically over-fit the 

dataset, and it is no surprise that the majority correctly classified 100% of all 

Economic values and 100% of the moderate and high assessments.  Table 6.3a shows 

the most commonly occurring classification table. 

 

The sensitivity analyses of the ceiling ANNs were examined and each analysis listed 

the 19 most influential inputs.  Within each analysis, the reported 19 inputs were 

assigned numbers according to their rankings; the most important input in a run was 

given 1 as its score, and the least significant was assigned 19; and, any inputs not 

mentioned were assigned a score of 20.  Next, every input’s rankings scores were 

summed across the 20 sensitivity analyses; those with the lowest scores, such as 

diverted farm runoff with a total of 86 out of a possible 400, were consistently 

assessed by the sensitivity analyses as being most influential.  The 10 most often 

significant inputs across the sensitivity analyses, with each input’s score in brackets, 

are diverted or farm runoff (86); stock water supply (197); salinity (224); erosion 

(235); resource utilization (242); loss of connectivity (246); conservation forestry 

(267); eutrophication (154); urban development (276); and, water storage (286).  The 

input of least significance was “change since European settlement” (385).  Again the 

scores give an indication of the magnitude of input variable effect only, and no 

indication of positive or negative aspect of using the input.  Of the 10 most significant 

inputs, four are Economic values: diverted runoff; stock water supply; conservation 

forestry; and, threats; and, six are threat values: salinity; erosion; resource utilization; 

loss of connectivity; eutrophication; and, urban development.  

 

Using the one-at-a-time method to build ANNs and commencing with diverted or 

farm runoff as the first input, 20 ANNs were constructed and checked for prediction 

abilities.  These baseline neural networks had an overall correct prediction rate across 

both groups of 87%, as seen in Table 6.3b.  These ANNs were able to correctly 

classify very low and low assessments at 97% correct predictions rate and identify 

39% of moderate and high-value assessments.  By adding inputs in the order indicated 
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by sensitivity analysis, progressively ANNs were built and their predictive abilities 

checked.  For Economic value and threat inputs ANNs, the six-inputs ANN, as seen in 

Table 6.3c, has an acceptable overall classification rate of 94%, 96% recognition of 

very low and low assessments and 78% correct classifications for moderate and high-

value wetlands.  The architecture of the ANN was 12-6-2 and the inputs used to build 

this ANN were diverted or farm runoff; stock water supply; salinity; erosion; resource 

utilization; and, loss of wetland connectivity. 

 

Two attributes of the six-inputs for the Economic value with-threats ANNs, diverted 

or farm runoff and stock water supply, were also significant inputs of the five-inputs 

Economic value ANNs.  The remaining inputs are threat values; two are listed in 

Table 3.1 (salinity and erosion) as being used by the WGCMA to assess subcatchment 

wetlands, and two (resource utilization and loss of wetland connectivity) are threat 

values used by the WGCMA for significant wetlands and not for subcatchment 

wetlands assessments.  This matter is discussed further in the final section of this 

chapter. 

 

It is useful to see common inputs between the nine inputs (of eight different variables) 

BLR model, of Equation 5.5, and six-inputs ANN.  Common to both are two 

Economic values (diverted or farm runoff and stock water supply) and two threat 

values (erosion and resource utilization).  The appearance of these four inputs across 

solutions for binary logistic regression models and ANNs is testament to their 

potencies in predicting wetland assessments.  The significance of this is also discussed 

in the concluding section of this chapter. 

 

To assess the performance of the six-inputs Economic values with-threats ANN, its 

classification table, shown as Table 6.3c, can be compared with the classification table 

of the nine-inputs BLR model, given in Table 5.2.  The overall percentage correctly 

classified is higher for the BLR model, being 97% compared with 94% correct, and it 

is assumed that the improved performance is due to the inclusion of three extra inputs 

in the multivariate model over the neural network.  This assumption is supported by 

two pieces of evidence.  First, Table 5.7 shows there is an average 1.6 increment per 

input variable in correct classifications for the BLR model.  The additional three 

variables of the BLR model would account for the improved accuracy performance 
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when compared to the ANN.  Second, the experiments building eight-inputs ANNs 

resulted in the same overall prediction rate as the nine-inputs BLR, 97%, and the nine-

inputs ANNs consistently gave 99% overall accuracies. 

 

As in the previous section, it is more productive to compare the abilities of the nine-

inputs BLR models and the six-inputs ANN in separating each classification group.  

The BLR model (Table 5.2) outperforms the six-inputs ANN (Table 6.3c) in 

discerning both groups: it correctly classifies 99% of very low and low assessments, 

compared to the ANN at 96%; and, 86% of moderate and high-value assessments 

against 78% for the ANN.  Again the better performance of the BLR model is likely a 

function of its extra inputs over the six inputs of the ANN.  Improvements were seen 

in the recognition of moderate and high-value wetlands during ANN building by 

increasing the number of inputs to seven, eight, and nine inputs.  The additional inputs 

correctly classified percentages for moderate and high-value assessments at around 

80%, 90% and 96%.  In fact, from this experimentation, it is possible to conclude that 

for the same number, and types of inputs, the ANNs are better than binary logistic 

regression models at identifying Economic value wetlands overall and better at 

discerning moderate and high-value assessments.  

 

  
Table 6.3a: Classification table for ceiling ANN built using all Economic value 
attributes and threats as inputs.  The table shows the proportion of cases correctly 
classified for 151 wetland records. 

Economic  
value 

Predicted value 

Very low + 
 low 

Moderate +  
high 

Percentage 
correct 

Observed 
value 

Very low + low 129 0 100 

Moderate + high 0 22 100 

Overall percentage correctly classified 100 
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Table 6.3b: Classification table for baseline Economic value and threats ANN using 
diverted runoff as the only input.  The proportion of cases correctly classified for 161 
wetland records is shown. 

Economic 
value 

Predicted value 

Very low + 
 low 

Moderate +  
high 

Percentage 
correct 

Observed 
value 

Very low + low 129 4 97 

Moderate + high 17 11 39 

Overall percentage correctly classified 87 

 

Table 6.3c: Classification table for the Economic value with-threats ANN built using 
six inputs.  The proportion of cases correctly classified for 155 wetland records is shown. 

Economic 
value 

Predicted value 

Very low + 
 low 

Moderate +  
high 

Percentage 
correct 

Observed 
value 

Very low + low 127 5 96 

Moderate + high 5 18 78 

Overall percentage correctly classified 94 

 
 
6.2.4 Economic value − Predicting wetlands assessments 

The widespread popularity of the application of neural networks to classification 

problems is in part due to their ability to be trained to learn patterns within datasets 

and to recognize these patterns in unseen data.  This ability is only useful if the ANN 

can generalize broader data relationships and does not over-fit the dataset (Detienne et 

al., 2003; Negnevitsky, 2011; Zhang, 2000).   

 

To evaluate the predictive abilities and suitability of Economic value ANNs in 

mimicking wetland assessments decision making, the dataset was separated into 

training and testing sets; 70% of data was used for training and 30% for testing.  The 

difficulty in dividing the data is that there are fewer than 120 cases of wetlands for 

training data, barely half what is recommended as desirable  (Detienne et al., 2003; 

Sug, 2010).  As a result of the fewer training examples coupled with the random 

selection of data into either pool, there is much greater variation in performance 
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statistics over the 20 ANNs built without threat data and the 20 ANNs using threat 

data.  

 

Without threat inputs 
A typical classification table for Economic value ANNs with no threat inputs is seen 

in Table 6.4a, where five inputs (conservation forestry; diverted or farm runoff; food 

production; stock water supply; and, water storage) were used.  In this case, the 

architecture was 10-8-2.  The trained network is able to classify unseen data with the 

same overall correct statistics.  As well, the trained ANN has statistics comparable to 

the Economic value ANN network trained on the full dataset (Table 6.2c).   

 

The point of difference between the network trained on 105 wetlands compared to the 

network trained on the entire dataset is their abilities to discern moderate and high-

value assessments; the network trained on the entire dataset is able to better 

distinguish moderate and high classifications at 68% compared to 56% for the training 

sets.  Both networks have similar figures 98% and 96% for very low and low value 

wetlands.   The conclusion I draw is that it is possible to train a network using 

Economic value alone to correctly classify 91% wetlands when presented with unseen 

data, but the greater the number of wetlands in the training data, the better the 

discernment of moderate and high Economic value wetlands.   

 

With threat inputs 
Table 6.4b gives a typical classification table for an ANN built using Economic 

attributes and threat data; the six inputs used were diverted or farm runoff; erosion; 

loss of connectivity; resource utilization; salinity; and, stock water supply.  The 

ANN’s architecture was 12-6-2 and the overall prediction rate during training and the 

predictions in testing are very similar, although these performances are strongly 

influenced by the small amount of data and the randomness of selection of which 

wetlands are assigned to training data or test data.   

 

Table 6.3c shows the classification table of the comparable network to Table 6.4b; 

both networks trained using threat input have quite similar overall correct 

classification rates, 94% and 93% respectively.  As with no threat Economic value 
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networks, there are marked differences in each network’s ability to recognize 

moderate and high Economic value assessments; those trained on 155 wetlands were 

far better at 78% (Table 6.3c) compared to the ANN trained on 111 wetlands with 

50% (Table 6.4b). 

 

These experiments show that ANNs built with less than optimal training data can still 

reliably classify Economic value wetland assessments and be used to classify unseen 

data, and in particular, the more data available for training, the better the identification 

rates for moderate and high-value assessments.  

 

Table 6.4a: Classification table for Economic value ANN built without threat data 
using five Economic value attributes as inputs, and trained using 105 wetland records 
and tested using data for 56 wetlands.  The table shows the proportion of cases correctly 
classified for training and testing.  

Economic 
value 

Predicted value 

Very low + 
low 

Moderate +  
high 

Percentage 
correct 

Training  

(n= 105) 

Very low + low 87 2 98 

Moderate + high 7 9 56 

Overall percentage correctly classified 91 

Economic 
value 

Predicted value 

Very low + 
low 

Moderate +  
high 

Percentage 
correct 

Testing 

(n= 56) 

Very low + low 44 0 100 

Moderate + high 5 7 58 

Overall percentage correctly classified 91 
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Table 6.4b: Classification table for Economic value ANN built with threat data using 
six inputs, and trained using 111 wetland records and tested using data for 44 
wetlands.  The table shows the proportion of cases correctly classified for training and 
testing.  

Economic 
value 

Predicted value 

Very low + 
 low 

Moderate + 
high 

Percentage 
correct 

Training  
(n= 111) 

Very low + low 95 0 100 

Moderate + high 8 8 50 

Overall percentage correctly classified 93 

Economic 
value 

Predicted value 

Very low + 
 low 

Moderate +  
high 

Percentage 
correct 

Testing 
(n= 44) 

Very low + low 36 1 97 

Moderate + high 3 4 57 

Overall percentage correctly classified 91 

 

 

 

6.3 Social value of wetlands 

6.3.1 Social value − ANN constructions 

For building Social value ANNs, all input variable records were partitioned into 

absence and presence values.  The attributes listed in Table 4.6 were used for inputs 

with the exceptions of water skiing and research, as they each had two records in the 

WGCMA database.  There were 10 unknown records for the attribute park value in 

the database that could not be assigned as absence or presence within a reserve or 

protected area; this has reduced the number of available records for use in training 

ANNs.  The output variable, Social value assessments, was separated into two groups, 

moderate and high-value cases together, of which 37 were moderate assessments and 

five high assessments; and, low and very low assessments, with 71 low value and 36 

very low value wetlands.  There was one unknown Social value record resulting in 

149 records from which Social value ANNs could be built.   
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As the starting point, the 10 input attributes of Table 4.6 (recreational fishing; 

swimming; camping; hunting; boating; passive recreation; motorized 4WD; bird 

watching; education; and, park value) were used to build 20 ANNs.  For the 20 ANNs 

built, the most often occurring classification table is shown as Table 6.5a, and it will 

be referred to as the ceiling ANN for Social value attributes.  This classification table 

shows as an overall percentage correct classification rate of 95%, with very low and 

low assessments prediction rate of 96%, and moderate and high Social value 

assessments predictions at 93%. 

 

Sensitivity analyses for 20 ceiling ANNs were collected and the inputs in each 

analysis were ranked according to their impact strengths.  For each run, the identified 

inputs were scored as 1 for the strongest input, 2 was given for the next in strength, 

until the least significant input identified was assigned 10.  Next, each input’s 

rankings were summed across all analyses.  Out of possible total score of 200, the 

listing of inputs from most influential to least (input’s score in brackets) was found to 

be: park value (31); bird watching (51); camping (86); passive recreation (108); 

boating (114); motorized 4WD (132); recreational fishing (133); education (143); 

swimming (151); and, hunting (152).  As with all sensitivity analyses, the scores give 

an indication of the magnitude of input variable effect only, not positive or negative 

influence. 

 

Park value was the most influential attribute for predicting Social value assessments 

using the sensitivity analyses’ rankings.  Using park value as the only input, 20 ANNs 

were built, and their classification table is shown as Table 6.5b.  It is referred to as the 

baseline case.   With no other inputs, park value could correctly classify 84% of very 

low and low assessments and 88% of moderate and high Social value assessments, 

with an overall correct prediction rate of 85%. These statistics bear witness to the high 

correlation statistic between park value and Social value assessments (ρ = 0.676) 

previously identified in Section 5.3.1.    

 

Using the one-at-a-time method, 20 ANNs were built by progressively adding inputs 

in the order identified by sensitivity analyses.  The behaviours of the various inputs 

ANNs were rechecked using the subtraction-from-the-total method.  From all 

 212 



experiments, I selected the six-inputs neural network as the most suitable to generalize 

Social value classifications; it has an overall correct prediction rate of 92%, as seen in 

Table 6.5c, and it was able to discern moderate and high-value assessments at 93% 

and classify very low and low value assessments at 92%, using a 12-7-2 architecture.  

The six inputs, in order of influence, were park value; bird watching; camping; 

passive recreation; boating; and, motorized 4WD. 

 

Table 6.5a: Classification table for ceiling ANN built using 10 Social value attributes 
as inputs.  The table shows the proportion of cases correctly classified for 149 wetland 
records.  

Social   
value 

Predicted value 

Very low + 
 low 

Moderate +  
high 

Percentage 
correct 

Observed 
value 

Very low + low 103 4 96 

Moderate + high 3 39 93 

Overall percentage correctly classified 95 

 
 
Table 6.5b: Classification table for baseline Social value ANN using park value as the 
only input.  The proportion of cases correctly classified for 149 wetland records is shown. 

Social 
value 

Predicted value 

Very low + 
 low 

Moderate +  
high 

Percentage 
correct 

Observed 
value 

Very low + low 90 17 84 

Moderate + high 5 37 88 

Overall percentage correctly classified 85 
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Table 6.5c: Classification table for the six-inputs Social value ANN built.  The 
proportion of cases correctly classified for 149 wetland records is shown. 

Social 
value 

Predicted value 

Very low + 
 low 

Moderate + 
high 

Percentage 
correct 

Observed 
value 

Very low + low 98 8 92 

Moderate + high 3 39 93 

Overall percentage correctly classified 92 

 

6.3.2 Social value − ANN evaluations  

The ability of the six-inputs Social value ANN is compared with performance of the 

nine-inputs Social value BLR model, whose classification table is given in Table 5.3b.  

The BLR model correctly classified 93% across both categories of assessments, which 

is marginally higher than the ANN, at 92% correct.  This negligible difference in 

overall performance is easily accounted for by considering two things.  First, each 

approach is different in what it attempts to optimise; the binary logistic regression 

strategy elects the model with the highest overall predictive power, whereas in 

building neural networks, the overall prediction rate was weighed as equally 

important as correct classifications of moderate and high-value assessments.  Second, 

the numbers of inputs are quite different; the BLR model incorporates three more 

inputs than the mere six needed for the ANN.  In considering the impact of the 

number of additional variables for the BLR model, Table 5.7 shows there is 

approximately a 2% increase with the addition of each input variable, easily 

accounting for differences in overall performance between approaches.  It was noted 

that nine-inputs ANNs built using the one-at-a-time and subtraction-from-the-total 

methods gave an overall correct classification value of 93%, supporting the notion 

that more inputs are expected to improve overall performance in both binary logistic 

regression models and neural networks.  

 

As was done for Economic value, it is better to compare the BLR model and the ANN 

on their abilities to separate each outcome group of Social value assessments.  The 

BLR model is superior in identifying very low and low assessments at 95% compared 
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to 92%, and the ANN is better at classifying moderate and high-value assessments, 

93% compared to 88%.  

 

For building Social value binary logistic regression models and Social value neural 

networks, there was a pool of 10 possible inputs.  So, it not surprising that all six 

inputs of the ANN are found in the nine-inputs BLR model.  It is the inclusion of 

passive recreation as the fourth most significant input for ANN building that is noted 

as it is the one attribute not included in the BLR model.  The inclusion in the ANN is 

supported by the statistically strong association of passive recreation with higher 

Social value assessments (Section 4.3.2) and the strong correlation statistic of passive 

recreation’s relationship to higher-valued assessments  (Section 5.3.1), and its absence 

from the BLR model is explained by the strong correlations between passive 

recreation to park value, bird watching and education, as discussed in Section 5.5   

 

6.3.3 Social value – Threat ANNs 

There were 144 cases within the dataset containing entire records for all inputs: 10 

Social value attributes and 26 threat inputs, covering the threat attributes listed in 

Tables 4.27a and 4.27b.  Twenty ANNs were built using all inputs and the most 

commonly occurring architecture seen was 72-2-2, resulting in extremely high 

prediction performances for Social value assessments, as seen in Table 6.6a. As 

before, the classification table is referred to as the ceiling ANN.  The accuracy of the 

ceiling ANN was expected due to the high number of neurons in the input layer, 

resulting in over-fitting of the data as the neural networks learnt almost every item in 

the dataset. 

 

For given set of inputs and architecture, the various ANNs produced slightly different 

results due to the randomly generated initial weights for interneuron connections.  To 

try and judge overall patterns of influence, the sensitivity analyses of the 20 ceiling 

ANNs were examined and scored.  For each run, the software ranked the 18 most 

influential inputs for Social value using threats assessments.  Inputs were scored 

according to their rankings; the input identified as the strongest was given a score of 

1, the next most important was assigned a score of 2, until the last identified input was 

allocated 18.  Inputs not identified by the sensitivity analysis for a particular run were 
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given the score of 20.  The most influential input was pest animals, scoring the lowest 

at 198 out of a possible score of 400.  In order of influence, strongest first, the 10 most 

significant inputs for deciding Social value assessments (input’s score in brackets) 

were pest animals (198); camping (200); salinity (227); bird watching (230); lack of 

reservation (251); boating (262); swimming (264); passive recreation (265); 

motorized 4WD (271); and, stock access (276).  The sensitivity analyses do not 

indicate whether the impact is positive or negative on the assessments. 

 

Social values account for six of the 10 most significant inputs: bird watching; boating; 

camping; motorized 4WD; passive recreation; and, swimming.  The remaining threat 

values are lack of reservation; pest animals; stock access; and, salinity.  Of the threat 

values pest animals, stock access and salinity can be found in Table 3.1, and these 

were used in assessments for subcatchment wetlands by the WGCMA, whereas lack 

of reservation was not used.  The significance of this is discussed in the last section of 

this chapter. 

 

Taking the 10 most significant inputs, ANNs were built using the one-at-a-time 

method.  As before, baseline ANNs were built using the most significant input 

identified in the sensitivity analyses, pest animals in this instance, and the resulting 

classification table is given as Table 6.6b.  The table shows that the presence or 

absence of pest animals at a site can decide 80% of very low and low Social value 

classifications, 66% of moderate and high-value assessments, averaging to 76% 

accuracy overall.  ANNs were built by incrementally adding input variables in the 

order indicated by the sensitivity analyses, and the eight-inputs ANN was selected as 

the most suitable for generalizing Social values assessments using threat data, as seen 

in Table 6.6c.  This ANN has a 95% overall prediction rate, with 96% recognition 

very low and low assessments and 91% for moderate and high-value wetlands.  The 

eight-inputs ANN was selected as the most suitable for two reasons.  The first reason 

is convenience of comparisons: it has the same overall prediction ability as the Social 

value with threat inputs BLR model described in Table 5.4.  The second, and more 

genuine reason, is that the eight-inputs ANNs showed marked improvements in being 

able to classify moderate and high-value assessments when compared to lower 

number of inputs models.  A counterargument against the selection of the eight-inputs 

ANN for generalizing Social value assessments is the high prediction rates seen 
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across all rows in Table 6.6c.  These are likely evidence of the ANNs over-fitting the 

data, rather than generalizing it.  On these grounds, there is equally good support for 

selecting the six-inputs version with an overall rate of 91%.  This matter will be 

discussed further in the next section, where neural networks were used as predictors 

of Social value assessments.   

 

The most common architecture for the 20 eight-inputs ANNs generated was 16-6-2, 

and amongst the eight inputs were only three which were threat values: pest animals; 

salinity; and, lack of reservation.  Unlike pest animals and salinity, lack of reservation, 

is not listed in Table 3.1 as one of the threat values used by the WGCMA to assess 

subcatchment wetlands.  The remaining five inputs are Social attributes: camping; 

bird watching; boating; passive recreation; and, swimming.  Of these, the first four 

were also found in the Social attributes without threats ANNs.  A noticeable absence 

from these Social values is the attribute park value, which alone had 85% overall 

correct prediction rate as the baseline Social attributes ANN.  As well, park value was 

one of the most significant inputs to the 10-inputs BLR Social value plus threats 

model, described as Equation 5.11.  

 

There are three inputs in common between the eight-inputs Social value with-threats 

ANN and the 10-inputs BLR threat model.  The presence of bird watching, camping, 

and salinity in the results of both methods, is an indication of their strength in 

predicting Social value wetland assessments.  The strength of camping and bird 

watching as important inputs is further indicated by their appearances in all BLR and 

ANN solutions, whether threats are included or not.  

 

To assess the performance of the eight-inputs Social value with-threats ANN, its 

classification table, shown as Table 6.6c, needs to be compared with the classification 

table of the 10-inputs BLR model, given in Table 5.4.  The overall percentage 

correctly of both models is the same at 95%, and they perform nearly identically in 

discernment of both groups of assessments, very low and low values, and moderate 

and high values.  The major difference between the binary logistic regression and 

neural networks approach is in the number of inputs needed to achieve these results, 

with the neural network appearing the more efficient. 
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Table 6.6a: Classification table for ceiling ANN built using 10 Social value attributes 
and 26 threat values as inputs.  The table shows the proportion of cases correctly 
classified for 144 wetland records.  

Social   
value 

Predicted value 

Very low + 
 low 

Moderate +  
high 

Percentage 
correct 

Observed 
value 

Very low + low 100 3 97 

Moderate + high 0 41 100 

Overall percentage correctly classified 98 

 

Table 6.6b: Classification table for baseline Social value ANN using the threat pest 
animals as the only input.  The proportion of cases correctly classified for 152 wetland 
records is shown. 

Social 
value 

Predicted value 

Very low + 
 low 

Moderate +  
high 

Percentage 
correct 

Observed 
value 

Very low + low 86 22 80 

Moderate + high 15 29 66 

Overall percentage correctly classified 76 

 
 
Table 6.6c: Classification table for the eight-inputs Social value with-threats ANN 
built.  The proportion of cases correctly classified for 150 wetland records is shown. 

Social 
value 

Predicted value 

Very low + 
 low 

Moderate +  
high 

Percentage 
correct 

Observed 
value 

Very low + low 102 4 96 

Moderate + high 4 40 91 

Overall percentage correctly classified 95 

 

6.3.4 Social value − Predicting wetlands assessments 

To evaluate the predictive abilities and suitability of Social value ANNs in mimicking 

wetland assessments decision making, the dataset was separated into training and 

testing sets; 70% of data was used for training and 30% for testing.  Twenty Social 

value ANNs were built without threat data and 20 ANNs using threat data. 
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Without threat inputs 
The inputs used for the 20 Social value ANNs with no threat input were: bird 

watching; boating; camping; motorized 4WD; park value; and, passive recreation.  A 

typical classification table for one of these ANNs is given as Table 6.7a, and the 

trained network architecture was 12-7-2.  It is interesting to note that the trained 

network performs similarly on test data in overall correct classifications and in 

separating moderate and high Social value wetlands from very low and low value 

assessed wetlands.  This suggests that the dataset is relatively consistent in respect to 

data patterns that predict Social values.  This premise is borne out when a comparison 

is made of the ANN statistics of Table 6.7a with the comparable network trained on 

the full dataset of 149 wetlands (Table 6.5c).  The percentage correct statistics of both 

networks are identical, supporting further the notion of consistency within the dataset. 

This consistency definitely supports the hypothesis that ANNs without using threat 

data as input can be trained and then used to consistently classify wetlands at quite 

high correct classification rates where the data is unseen. 

 

With threat inputs 
Table 6.7b gives a typical classification table for an ANN built using Economic 

attributes and threat data with eight inputs: bird watching; boating; camping; lack of 

reservation; passive recreation; pest animals; salinity; and swimming.  The ANN’s 

architecture was 16-4-2 and the overall prediction rates during training and testing are 

very similar however there is variation between training and testing for the types of 

wetland assessments.  The neural network is able to more accurately predict moderate 

and high values for the unseen data than it did during training. Of course, to achieve 

the same overall correct prediction rate during testing and training, there is a lower 

percentage correct for very low and low values for the unseen data testing.  This 

better-than-expected performance on unseen data for moderate and high values, and 

poorer results for very low and low values, illustrates two points.  First, neural 

networks are able to learn and generalize data patterns during the training phase, and 

use these patterns to classify unseen data to near equal ability.  Second, the 

fluctuations in ANN performances between training and testing can in large part be 

attributed to the limited number of wetlands for which data was available; it is well 

short of the 200 minimum desired for consistency (Detienne et al., 2003; Sug, 2010). 

 219 



Evaluating the performance of the eight-input ANN trained on 116 wetlands (Table 

6.7b) with its comparable network trained using the full dataset (Table 6.6c), there is 

quite a considerable drop in overall prediction rates for the network trained on 116 

records, due mostly to poorer discernment of moderate and high Social value 

wetlands, 91% compared with 77%. This is the same pattern observed as for 

Economic value, in that, the more training data available, the better the identification 

rates for moderate and high-value assessments, and this pattern also underlines the 

need to use as much training data as possible for good classification rates. 

 

More remarkable is the better performance statistics in every category of the six-

inputs ANN without threats (Table 6.7a) compared to the eight-inputs ANN that used 

threat inputs (Table 6.7b).  These results support the argument made in the previous 

chapter that it is not necessary to incorporate threat input to achieve high predictions 

for Social value assessments. In either case, ANNs can be relied upon to classify 

Social value wetland assessments even when there is a scarcity of training data. 

Table 6.7a: Classification table for Social value ANN built without threat data using 
six Social value attributes as inputs, and trained using 101wetland records and tested 
using data for 48 wetlands.  The table shows the proportion of cases correctly classified 
for training and testing.  

Social 
value 

Predicted value 

Very low + 
 low 

Moderate +  
high 

Percentage 
correct 

Training  
(n= 101) 

Very low + low 67 6 92 

Moderate + high 2 26 93 

Overall percentage correctly classified 92 

Social 
value 

Predicted value 

Very low + 
 low 

Moderate +  
high 

Percentage 
correct 

Testing 
(n= 48) 

Very low + low 31 3 91 

Moderate + high 1 13 93 

Overall percentage correctly classified 92 

 

 
  

 220 



Table 6.7b: Classification table for Social value ANN built with threat data using eight 
inputs, and trained using 116 wetland records and tested using data for 34 wetlands.  
The table shows the proportion of cases correctly classified for training and testing.  

Social 
value 

Predicted value 

Very low + 
 low 

Moderate + 
 high 

Percentage 
correct 

Training  
(n= 116) 

Very low + low 79 2 98 

Moderate + high 8 27 77 

Overall percentage correctly classified 91 

Social 
value 

Predicted value 

Very low + 
 low 

Moderate +  
high 

Percentage 
correct 

Testing 
(n= 34) 

Very low + low 23 2 92 

Moderate + high 1 8 89 

Overall percentage correctly classified 91 

 

 

 

6.4 Environmental value of wetlands 

6.4.1 Environmental value – ANN constructions 

The building of ANNs for Environmental value assessments is complicated by the 

large number of input variables involved, 16 contributing attributes, and several 

subattributes, of seven individual Environmental values (see Table 4.12).  There are a 

variety of scales and ranges used across the assessment of attributes and subattributes, 

so data preparations involved partitioning all 35 input variables’ records into absence 

and presence values.  The output variable, Environmental value assessments, was 

separated into two groups: very high and high-value assessments, of which eight were 

high assessments and 47 very high assessments; and, moderate, low and very low 

assessments, with 72 moderate value, 24 low and one very low value wetlands.  There 

were 152 entire records in the database used to build ANNs.  In order for comparisons 

to be made with binary logistic models, the dataset was not partitioned into training, 

testing and holdout sets, which allowed the neural networks to be trained on as much 

data as was available.  
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As before, ceiling Environmental values ANNs were created using all input variables.  

The most commonly occurring architecture seen amongst the resulting 20 ANNs was 

70-2-2, with the classification table shown as Table 6.8a.  With so many input 

neurons, the ceiling ANNs are seen to over-fit the data with overall correct 

Environmental value classifications of 99%, very low, low and moderate values 

predicted at 99%, and high and very high Environmental value assessments 

predictions at 98% for the ceiling ANNs.  

 

Sensitivity analyses were undertaken for these ANNs to identify the 18 most 

significant inputs influencing Environmental classifications.  For individual analyses, 

each input was scored; 1 was assigned to the strongest input, 2 was given for the next 

most influential, until 18 was assigned to the least significant input.  Inputs not listed 

in an analysis were assigned 20 as their rank.  The rankings of each input were 

summed across the sensitivity analyses, with 400 being the maximum possible value, 

and the inputs were ranked from most influential to least.  The fifteen most significant 

inputs are listed below, where for each input, the Environmental value attribute and 

subattribute are listed in the first bracket and the summed rankings score are given in 

the second bracket.  As with all sensitivity analyses, the scores give an indication of 

the magnitude of input variable effect only; the positive or negative influence is not 

known.  The inputs were:  

• sedges (vegetation intactness– critical lifeforms) (20); 

• vegetation width (vegetation intactness– width of vegetation fringe) (198); 

• fauna FFG (significant fauna) (223); 

• flora VROT (significant flora) (226); 

• disposal of water (hydrology) (232); 

• shoreline shrubs (habitat value– shoreline vegetation) (245); 

• rocks (habitat value– terrestrial zone habitat) (250); 

• drainage (hydrology) (254); 

• emergent vegetation (habitat value– terrestrial zone) (264);  

• obstruction (hydrology) (265); 

• deep freshwater marsh (wetland rarity) (272); 

• redirection (hydrology) (282); 

• semipermanent saline wetlands (wetland rarity) (288); 

 222 



• permanent open water wetlands (wetland rarity) (291) ; and, 

• fauna VROT (significant flora) (293). 

 

In all 20 sensitivity analyses, the input variable sedges was selected as the most 

significant input, accounting for its very low summed score.  Using the one-at-a-time 

method, a set of 20 baseline ANNs were built using sedges as the single input.  The 

most common classification table for these ANNs is displayed as Table 6.8b, where it 

is seen that absence or presence of sedges correctly classifies 77% of very low, low 

and moderate Environmental value assessments, 63% of high and very high 

assessments, averaging to 73% overall correct classifications.  Further ANN building 

incorporating input variables in the order listed above identifies the eight-inputs 

ANNs, with an architecture of 16-6-2, as a suitable candidate for identifying higher 

Environmental value wetlands. Table 6.8c shows the most common classification 

table for the eight-inputs ANNs, where very low, low and moderate assessments have 

a correct classification rate of 90%, and 83% of the high and very high Environmental 

value assessments are correct identified.   

 

Further experimentation creating various inputs shows that 12-inputs ANNs have a 

91% overall correct classification rate.  The classification table for 12-inputs ANNs is 

given in Table 6.8d, where very low, low and moderate assessments are correctly 

identified 94% of the time, and high and very high assessments have 82% correct 

predictions.  The 12-inputs ANN is presented here for comparisons to the BLR Model 

B, and its most commonly observed architecture was 24-4-2.  Subsequently, the 

subtraction-from-the-total method was used to recheck the selection of the eight-

inputs and 12-inputs ANNs as having the most suitable predictive behaviours.  

 

Comparing the performance of the eight-inputs ANNs (Table 6.8c) with the 12-inputs 

versions (Table 6.8d), the improvement in overall classification performance from 

87% to 91% is solely the result of improved identifications of very low, low and 

moderate wetlands assessment.  The addition of absence/presence data for the 

additional four inputs (deep freshwater marshes; emergent vegetation; obstruction; 

and, redirection), did not improve recognition of high and very high wetlands.  On 

these grounds, the eight-inputs ANN is adequate for generalizing Environmental value 
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assessments. The WGCMA noted that high-value wetlands scored well for vegetation 

intactness and habitat value.  The four of eight inputs selected by the ANNs tie 

directly with these attributes; sedges and vegetation width were used as measures of 

vegetation intactness, and shoreline shrubs and rocks were subattributes of habitat 

value.  

 

Table 6.8a: Classification table for ceiling ANN built using 35 Environmental value 
attributes as inputs.  The table shows the proportion of cases correctly classified for 152 
wetland records. 

Environmental 
value 

Predicted value 

Very low + 
 low + moderate 

High +  
very high 

Percentage 
correct 

Observed 
value 

Very low + low + 
moderate 

96 1 99 

High + very high 1 54 98 

Overall percentage correctly classified 99 

     
 
Table 6.8b: Classification table for baseline Environmental value ANN using sedges as 
the only input.  The proportion of cases correctly classified for 162 wetland records is 
shown. 

Environmental 
value 

Predicted value 

Very low + 
 low + moderate 

High +  
very high 

Percentage 
correct 

Observed 
value 

Very low + low + 
moderate 

81 24 77 

High + very high 21 36 63 

Overall percentage correctly classified 73 
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Table 6.8c: Classification table for the eight-inputs Environmental value ANNs.  The 
proportion of cases correctly classified for 162 wetland records is shown. 

Environmental 
value 

Predicted value 

Very low + 
 low + moderate 

High +  
very high 

Percentage 
correct 

Observed 
value 

Very low + low + 
moderate 

94 11 90 

High + very high 10 47 83 

Overall percentage correctly classified 87 

 

 
Table 6.8d: Classification table for the 12-inputs Environmental value ANNs.  The 
proportion of cases correctly classified for 158 wetland records is shown. 

Environmental 
value 

Predicted value 

Very low + 
 low + moderate 

High +  
very high 

Percentage 
correct 

Observed 
value 

Very low + low + 
moderate 

96 6 94 

High + very high 10 46 82 

Overall percentage correctly classified 91 

 
 

6.4.2 Environmental value – ANN evaluations 

To evaluate the performance of Environmental value ANNs against the models 

generated using logistic regression (BLR) models, the classification behaviours of 

eight-inputs ANN are compared those of Environmental value BLR Model A and the 

12-inputs ANN behaviours are compared those of BLR Model B from Chapter 5.  

 

The eight-inputs ANNs’ overall correct classification of 87% (Table 6.8c) is similar 

the classification made by the seven input BLR Model A, with 86% (Table 5.5b).  

They differ in their abilities to discern each outcome group of Environmental value 

assessments.  For very low, low and moderate values, the ANN is superior at 90% 

compared to 87% of the BLR Model A, but Model A is better at identifying high and 

very high assessments, 86% compared to 83%.  
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The 12-inputs ANNs have an overall classification rate of 91% correct (Table 6.8d), 

which is the same as achieved by the 15-inputs BLR Model B (Table 5.5c).  There are 

differences in classifications for very low, low and moderate assessments with the 

ANN correctly identifying 94% compared to Model B with 91%, however Model B is 

better at deciding high and very high assessments, 89% compared to 82% for the 

ANN. 

 

There are five inputs in common between the seven-inputs BLR model and eight-

inputs ANN; they are flora VROT (significant flora); rocks (habitat value–  terrestrial 

zone habitat); sedges (vegetation intactness– critical lifeforms); shoreline shrubs 

(habitat value– shoreline vegetation); and, width of vegetation fringe (vegetation 

intactness– width of vegetation fringe).  Both analytic approaches incorporated 

hydrology attributes, however they are not did not incorporate the same subattributes. 

The ANN selected drainage and disposal of water as inputs and the Model A used 

redirection. Earlier correlation analyses of Chapter 5 indicated strong associations 

between hydrology subattributes, therefore the differences between the selections 

made by each technique to incorporate a measure for hydrology are not thought to be 

significant.  

 

Checking the inputs of the 12-inputs ANNs and the 15-inputs BLR Model B, eight of 

the inputs were found to be in common.  They include the five inputs listed in the 

previous paragraph plus drainage (hydrology); fauna VROT (significant flora); and, 

permanent open water wetlands (wetland rarity).  The commonalities of inputs found 

between ANNs and BLR Models A and B indicate the importance of these inputs to 

describe Environmental value assessments, and this point will be discussed later in 

this chapter. 

 

6.4.3 Environmental value – Threat ANNs 

The addition of 26 threat inputs to the 35 inputs needed to cover attributes and 

subattributes of Environmental value, resulted in the creation of ANNs requiring 122 

input neurons, 61 for the absence of each value and 61 for the presence of each.  

Given that there were 144 cases within the dataset with entire records for all inputs, 

the exceptionally high number of input neurons guaranteed that the data was over-
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fitted since there is almost one computing element per record.  Nevertheless, 20 

ANNs were created using all inputs and the most common architecture decided by the 

software was 122-2-2.  The classification table for these ceiling ANNs is given in 

Table 6.9a, where, not unsurprisingly, all groups have been correctly classified. 

 

The sensitivity analyses for each of the 20 ANNs returned the 19 most significant 

inputs of each run.  For each sensitivity analysis, the identified inputs were scored 

using the method described previously and inputs not listed scored as 20.  The ranking 

scores of every input were totalled, to a maximum possible value of 400.  The lower 

the value, the stronger the input impacts the number of correct Environmental value 

wetlands classifications, although the impact cannot be judged as either positive or 

negative.  The fifteen most significant inputs are listed below.  For each input, the 

Environmental value attribute and subattribute are listed in the first bracket and the 

summed input’s score is given in the second bracket.  The inputs were:  

• sedges (vegetation intactness– critical lifeforms) (78); 

• sedimentation (227);  

• rocks (habitat value– terrestrial zone habitat) (263); 

• lack of reservation (268);   

• fauna VROT (significant flora) (277). 

• water source– groundwater fill  (280); 

• semipermanent saline wetlands (wetland rarity) (286); 

• shoreline islands (habitat value– terrestrial zone habitat) (291); 

• vegetation width (vegetation intactness– width of vegetation fringe) (299); 

• freshwater meadows (wetland rarity) (304); 

• altered hydrology (305); 

• permanent open water wetlands (wetland rarity) (306); 

• resource utilization (309);  

• water source– other (315);  and, 

• urban development (318). 

 

Of the fifteen most significant inputs, eight are threat values: altered hydrology; lack 

of reservation; resource utilization; sedimentation; water source (groundwater fill and 

other); and, urban development.  Importantly, three of these eight inputs (lack of 
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reservation; sedimentation; and, resource utilization) were not used by the WGCMA 

in their assessments of subcatchment wetlands.  The importance of this omission is 

discussed in the final section of this chapter. 

 
Using the one-at-a-time method and the above listing to build ANNs, 20 baseline 

ANNs were built using sedges as the single input; their classification table is the same 

as given in Table 6.8b, where the overall correct classifications was 72%.  

Incrementally, 20 ANNs were created by adding inputs in the order given above, up to 

15 inputs.  The results were checked using subtraction-from-the-total method 

commencing with ANNs built starting with 15 inputs.  The nine-inputs ANN was the 

most suitable for generalizing Environmental values assessments using threat data.  

With architecture of 18-6-2, the nine-inputs ANNs are able to correctly identify 95% 

of very low, low and moderate assessments, 90% of high and very high-value 

wetlands, resulting in an overall correct classification rate of 93% as seen in Table 

6.9b.  The nine-inputs were six Environmental values: fauna VROT (significant 

flora); rocks (habitat value–terrestrial zone habitat); sedges (vegetation intactness– 

critical lifeforms); semipermanent saline wetlands (wetland rarity); shoreline islands 

(habitat value–terrestrial zone habitat); and, vegetation width (vegetation intactness– 

width of vegetation fringe).  Of these Environmental values, rocks; sedges; and, width 

of vegetation fringe were common to the eight- and 12-inputs Environmental value 

ANNs, indicating the importance of these attributes to the assessment of 

Environmental value.  Water source– groundwater fill is the only threat incorporated 

in risk assessments for subcatchment wetlands, whereas the threats of sedimentation 

and lack of reservation were not used in WGCMA assessments. The significance of 

sedimentation and lack of reservation to wetland assessments, and their omission from 

the WGCMA process, is discussed in the final section of this chapter. 

 

The performance of the nine-inputs Environmental value with-threats ANNs (Table 

6.9b) is compared against the 10-inputs BLR model (Table 5.6).  Overall percentage 

wetlands correctly assessed is 93% for the nine-inputs ANNs and 91% for the 10-

inputs BLR model.  For each group of assessments, the nine-inputs ANNs are better at 

classification than the 10-inputs BLR model.  The ANNs correctly predict 95% of 

very low, low and moderate assessments and the BLR model is able to identify 92%; 

the ANNs predict 90% of high and very high assessments and the BLR model 
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correctly classifies 89%.  The neural network appears more efficient as it requires one 

less input than the BLR to achieve improved results.  

 
It is noted that there are three common inputs between the 10 inputs (of nine different 

variables) BLR model, of Equation 4.16, and all Environmental value ANNs (eight-

inputs Environmental value ANNs; twelve inputs Environmental value ANNs and 

nine-inputs Environmental value and threats ANNs).  The common inputs are: fauna 

VROT (significant flora); sedges (vegetation intactness– critical lifeforms); and, 

vegetation width (vegetation intactness– width of vegetation fringe) and their 

appearances across all solutions is testament to their potencies in predicting wetland 

assessments.   

 

Lack of reservation was the only threat value found in the 10-inputs BLR model and 

the nine-inputs Environmental value and threats ANNs; this threat was not used by the 

WGCMA for subcatchment wetlands assessment but its appearance in both model as 

a strong predictor suggests that it should have been used.   

 

Table 6.9a: Classification table for ceiling ANN built using 35 Environmental value 
attributes and 26 threats as inputs.  The table shows the proportion of cases correctly 
classified for 144 wetland records. 

Environmental 
value 

Predicted value 

Very low + 
 low + moderate 

High +  
very high 

Percentage 
correct 

Observed 
value 

Very low + low + 
moderate 

90 0 100 

High + very high 0 54 100 

Overall percentage correctly classified 100 
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Table 6.9b: Classification table for nine-inputs Environmental value with-threats 
ANN.  The proportion of cases correctly classified for 146 wetland records is shown. 

Environmental 
value 

Predicted value 

Very low + 
 low + moderate 

High +  
very high 

Percentage 
correct 

Observed 
value 

Very low + low + 
moderate 

87 5 95 

High + very high 5 49 90 

Overall percentage correctly classified 93 

 

6.4.4 Environmental value − Predicting wetlands assessments 

The dataset was separated into training and testing sets; 70% of data was used for 

training and 30% for testing to evaluate the predictive abilities and suitability of 

Environmental value ANNs in mimicking wetland assessments decision making.  40 

Social value ANNs were built without threat data, being 20 ANNs with 8 inputs and 

20 ANNs with 12 inputs.  An additional 20 ANNs were created using threat data. 

 

Without threat inputs: eight inputs 
A typical classification for an eight-inputs Environmental value ANN without threats 

is given as Table 6.10a for a 16-2-2 architecture, and the eight inputs incorporated are: 

drainage; fauna FFG; flora VROT; disposal of water; rocks; sedges; shoreline shrubs; 

and, width of vegetation fringe.  The overall correct classification performance of the 

trained network in testing phase is marginally lower at 85% compared with 87% due 

to a reduced ability to discern very low, low and moderate wetlands; the trained 

network performs equally well on high and very high-value assessments.   

 

A comparison of the trained network with the comparable network trained on the full 

dataset of 149 wetlands for the same eight inputs (Table 6.8c) shows quite similar 

overall classification rates and discernment of very low, low and moderate wetlands.   

However the network trained on 104 wetlands does not quite perform to the same 

ability on distinguishing high and very high assessments, at 81%, as the network 

trained using the full dataset of 162 records with 83%. 
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Without threat inputs: 12 inputs 
The 12 inputs used for the 20 Environmental value ANNs with no threat input were 

the same as the eight-inputs ANN plus deep freshwater marsh; emergent vegetation; 

obstruction; and, redirection.  Table 6.10b shows a typical classification for one of the 

12-inputs Environmental ANNs without threat inputs for a network with 12-1-2 

architecture.  The trained network has an overall correct classifications rate of 90% 

during training, however its percentage correct classifications drops to 80% due to a 

10% reduction in the discernment of high and very high wetlands on the unseen data.  

 

The comparable network to the one shown in Table 6.10b is the 12-inputs 

Environmental value ANN without threats with a classification table given in Table 

6.8d.  A check of both tables shows similar overall statistics, 90% (Table 6.10b 

trained on 107 wetlands) and 91% (Table 6.8d trained on 158 wetlands), with  93% 

and  94% for very low, low and moderate identifications respectively, a 2% difference 

in the networks’ classifications for high and very high wetlands, 82% and 84% in the 

same order.  It appears here, as in all Economic value ANNs and Social ANNs with 

threats, that the more training data available, the better the identification rates for 

moderate and high-value assessments. 

 

The effect of the increasing the number of inputs from eight to 12 can be seen by 

comparing the overall percentage correctly classified statistics of Table 6.10a and 

Table 6.10b, respectively, where during training 12-inputs ANN is able to correctly 

classify 90% of assessments compared to 87% correctly classified for the eight-inputs 

ANN. Interestingly, the performance of the 12-inputs network on unseen data is 

actually poorer than the eight-inputs ANN on its testing data! This is evidence that the 

12-inputs ANN has been over-fitting the training data; it has been learning specific 

data details and not generalizing and recognizing general data patterns.    

 

With threat inputs 
A typical classification table for a nine-inputs ANN built using Economic attributes 

with threat data is given in Table 6.10c; the nine inputs were: fauna VROT; lack of 

reservation; rocks; sedges; sedimentation; semipermanent saline wetlands; shoreline 

islands; water source- groundwater fill; and, width of vegetation fringe.  The ANN’s 
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architecture was 18-2-2.  The overall prediction rates during training and testing are 

very similar, but performances on the different groups of wetland assessments differ 

by quite an amount; during training the network identified very low, low and 

moderate assessments at 99% but on unseen data at 92%.  The opposite behaviours 

occurred for high and very high wetlands with classifications during training of 82% 

and 94% for the unseen data.  These results indicate that the neural network learnt the 

generalities of high and very high assessment data during training and it was not over-

fitting the training data.  

 

For the nine-inputs Environmental value ANN with threats, a comparable 

Environmental value network with threat inputs is found in Table 6.9b.  Both 

networks have the same overall correct classification rate of 93% of wetlands, 

however the effect of the number of wetlands used in training is seen in the abilities of 

the networks to discern high and very high-value wetlands.  The network trained on 

107 records is only able to detect 82% of high and very high-value wetlands during 

training, whereas the network trained on 146 wetlands can detect 90%. 

 

The performance results of all Environmental ANNs add support to the argument that 

threat data need to be incorporated to be able to more accurately classify high and 

very high-value wetlands.   

 

The next section discusses the results of this chapter in more detail. The discussion is 

concerned with the nature, and importance, of input variables that predicting high-

value wetland assessments as discovered by neural networks analyses. A comparison 

of these inputs is made with those uncovered by the multivariate statistical analyses of 

Chapter 5, and to those mentioned by the WGCMA as significant in their reports.   
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Table 6.10a: Classification table for eight-inputs Environmental value ANN built 
without threat data and trained using 104 wetland records and tested using data for 58 
wetlands.  The table shows the proportion of cases correctly classified for training and 
testing.  

Environmental 
value 

Predicted value 

Very low + 
 low + moderate 

High + 
very high 

Percentage 
correct 

Training  
(n= 104) 

Very low + low + 
moderate 

61 7 90 

High + very high 7 29 81 

Overall percentage correctly classified 87 

Environmental 
value 

Predicted value 

Very low + 
 low + moderate 

High + 
very high 

Percentage 
correct 

Testing 
(n= 58) 

Very low + low + 
moderate 

32 5 87 

High + very high 4 17 81 

Overall percentage correctly classified 85 
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Table 6.10b: Classification table for 12-inputs Environmental value ANN built without 
threat data and trained using 107 wetland records and tested using data for 51 
wetlands.  The table shows the proportion of cases correctly classified for training and 
testing. 

Environmental 
value 

Predicted value 

Very low + 
 low + moderate 

High +  
very high 

Percentage 
correct 

Training  
(n= 107) 

Very low + low + 
moderate 

65 5 93 

High + very high 6 31 84 

Overall percentage correctly classified 90 

Environmental 
value 

Predicted value 

Very low + 
 low + moderate 

High + 
very high 

Percentage 
correct 

Testing 
(n= 51) 

Very low + low + 
moderate 

27 5 92 

High + very high 5 14 74 

Overall percentage correctly classified 80 
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Table 6.10c: Classification table for Environmental value ANN built with threat data 
using nine inputs, and trained using 107 wetland records and tested using data for 39 
wetlands.  The table shows the proportion of cases correctly classified for training and 
testing. 

Environmental 
value 

Predicted value 

Very low + 
 low + moderate 

High + 
very high 

Percentage 
correct 

Training  
(n= 107) 

Very low + low + 
moderate 

67 1 99 

High + very high 7 32 82 

Overall percentage correctly classified 93 

Environmental 
value 

Predicted value 

Very low + 
 low + moderate 

High + 
very high 

Percentage 
correct 

Testing 
(n= 39) 

Very low + low + 
moderate 

22 2 92 

High + very high 1 14 93 

Overall percentage correctly classified 92 

 

 

 

6.5 Synthesis and discussion 

Artificial neural networks were created in order to predict either Economic or Social 

or Environmental wetland values, with and without threat values.  The predictive 

effectiveness of the networks was gauged by their overall percentage correct 

classifications, by their ability to discern moderate and high Economic and Social 

values assessments, and by their ability to correctly identify very high and high 

Environmental values assessments for wetlands.  Table 6.11 presents a summary of 

the ANNs devised in this chapter, the number of inputs used and the percentage 

overall correct number of classifications.  For comparison, Table 6.11 also includes a 

summary of BLR models presented in the previous chapter. For ANNs and BLRs, the 

percentage of correctly identified moderate and high wetlands are given in brackets 

for Economic and Social value, and for Environmental value the number in brackets is 

the percentage correctly identified high and very high-value wetlands assessments.  
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Table 6.11 shows that ANNs and BLR models had greater than 90% predictive ability 

for all wetland values, regardless of threats being included or not.  It is possible to 

create networks with near 100% correct classification rates by using the maximum 

number of inputs, as in all the ceiling ANNs (e.g. see Table 6.2a, Table 6.3a, Table 

6.5a, Table 6.6a, Table 6.8a and Table 6.9a), where the large number of input neurons 

learnt the entire dataset.  The ‘art’ in ANN building is in finding the number of inputs 

and their identities that allow good generalization capabilities without over-fitting the 

data (Detienne et al., 2003; Maier & Dandy, 2000; Zhang, 2000).  Sensitivity analyses 

over 20 runs indicated the pool of most significant inputs for subsequent 

consideration, while the appropriate number of inputs was decided in deference to 

overall classification performance and the ability of networks to discern moderate and 

high Economic and Social value assessments or high and very high Environmental 

value wetlands.  

 

Having built ANNs capable of equal, and in some cases better, performances than 

their more traditional multivariate equivalents, the important questions for wetland 

assessments remain as: 

• How many variables are enough? 

• What do neural networks’ input variables tell us about wetland evaluations? 

• Can neural networks be used to predict wetland assessments? 

The first two questions are discussed next with reference to the three sets of analyses, 

and the third question is explored afterwards.  

 

Economic value 
An inspection of the summary statistics of all ANNs and BLRs models (Table 6.11) 

reveals that it is possible to correctly predict over 90% of Economic value 

assessments using absence/presence values for a subset of the inputs used in the 

WGCMA assessment process. As identified and discussed earlier (Section 5.5), the 

most efficient Economic value BLR models were those built with no threat category 

data and absence/presence data for five input variables of Economic value.  There is 

also an equivalent five-inputs ANN that is quite efficient and sufficient at predicting 

overall Economic value assessments without the need to incorporate threat data (Table 
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6.11).  A listing of inputs for all ANNs and BLR Economic value models is given in 

Table 6.12a, for versions with and without threat data. For the no threat ANN and 

BLR model, there are four input variables in common being: diverted or farm runoff; 

conservation forestry; stock water supply; and, water storage.  As mentioned 

previously (Section 5.5), there is strong statistical association between stock water 

supply with moderate and high Economic value assessments, as evidenced with chi-

squared (χ2) testing and correlation (ρ) statistics. There is also support for the 

inclusion of diverted or farm runoff; conservation forestry; and, water supply to be 

found in contingency table (Table 4.3a) and correlation statistics relating each 

variable to Economic assessments, and correlations between input variables (Section 

5.2.1). As stated in Section 6.2.2, the five-inputs no threats ANN is better able to 

discern higher-value assessments than its BLR counterpart, and as four inputs are 

shared by the two approaches, the addition of redirection in the ANN gives better 

recognition of moderate and high Economic values, than does the fifth input, food 

production, used in the BLR model.  On these grounds the ANN is the recommended 

approach for when no threat data is used.   

 

When threat category data is included, the summary presented in Table 6.11 shows 

higher performances for the BLR model with nine inputs over the ANN with six 

inputs. The summary statistics for Economic value BLR models (Table 5.7) show for 

each input in the model, there is an increase in correct classifications of 1.6.  As is 

argued earlier (Section 5.5 and Section 6.2.3), a quick calculation (1.6 * additional 

inputs) easily accounts for improvements in BLR model performance when compared 

to the network’s abilities.  For this reason, the ANN is recommended over the BLR 

model, in that, the network achieves very high overall classification rates and 

identifications of moderate and high wetlands on far fewer inputs.  

 

An inspection of lists of inputs to BLR and ANN Economic value models with threats 

(Table 6.12a) reveal four common inputs across approaches, being two Economic 

value attributes: diverted or farm runoff and stock water supply, and two threat 

categories: erosion and resource utilization.  In fact, testament to the predictive 

strength of stock water supply and diverted or farm runoff, is the appearance of these 

two attributes in every Economic value approach in Table 6.12a, and in all reported 

previous analyses, univariate and multivariate (Section 4.4.2, Section 5.2.1, Section 
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5.2.3, Section 5.2.4, Section 6.2.2 and Section 6.2.4).   Diverted or farm runoff and 

stock water supply are important inputs for deciding Economic value and they should 

always be included in a minimal set as their presences increase the likelihood that a 

site will be assessed as moderate or high Economic value. Likewise, the predictive 

power of the two common threats, erosion and resource utilization, found in threat 

ANNs and the corresponding threat BLR models, underlines the need for these threat 

attributes to be collected whenever risk assessments are undertaken, even though 

resource utilization was not used by the WGCMA for subcatchment wetlands 

assessments.    

 

Earlier in Section 5.5, an argument was presented for not undertaking Economic value 

assessments in the West Gippsland region on the grounds that only one wetland 

identified was high Economic value.  Given the likelihood of this wetland receiving 

protection within the local community in order to maintain its monetary worth, the 

effort in identifying it and the relatively few (27) moderate Economic value seems 

incommensurate with the result. The collection of 12 input attributes and 14 threat 

components to compute and synthesize 168 risk assessments per 161 wetland sites is 

surely a waste of resources.  Political considerations may dictate that future 

assessments of the Economic value of West Gippsland’s wetlands need to be done. In 

this event, the high prediction rates the Economic value BLR without threats models 

and ANNs without threats (Table 6.11) challenge the need to incorporate threat data 

in Economic value assessments, as a collection of absence/presence data for five 

inputs is adequate to describe the majority of higher Economic value sites.   

 

Social value 
All approaches used to evaluate Social value (Table 6.11) show greater than 90% 

prediction rates, whether threat category data was included or not.  From these 

statistics, it is evident that the performances of ANNs are generally superior to that of 

their equivalent BLRs.  In illustration, where no threat values are included, the six-

inputs ANN is recommended over the BLR model as it better classifies moderate and 

high-value wetlands (93% versus 88%) and it has equivalent overall correct 

classification statistics without the need of an additional three inputs.  The six inputs 

for this ANN are listed in Table 6.12b, are: park value; bird watching; boating; 
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camping; motorized 4WD; and, passive recreation.  With the exception of passive 

recreation, these inputs are also found in the corresponding Economic value BLR 

model of nine inputs, and as discussed earlier (Section 5.5), there is strong statistical 

support for the inclusion of each of these inputs, including passive recreation (cross-

tabulation analyses of Section 4.3.2 and correlation investigations in Section 5.3.1).  

As mentioned in Section 5.5, it was not possible to reduce the number of inputs 

needed by Social value BLR models without threat data to fewer than nine, without 

detrimentally impacting overall model performance.  The sensitivity analyses of 

ceiling ANNs helped to overcome this obstacle, in that, the most significant inputs 

were identified in order of importance, and subsequently it was shown that six inputs 

were sufficient in building an ANN with the same overall correct classifications as the 

nine-inputs BLR model.   

 

The inputs of all Social value approaches are listed in Table 6.12b.  Four of the most 

significant inputs for ANNs without threats were shared by the ANN where threat 

category data is included, being: bird watching; boating; camping; and, passive 

recreation.  These inputs should be included in a minimal set to evaluate Social value 

as they appear consistently throughout the statistical analyses undertaken in this 

research (Section 4.3.2, Section 5.3.1, Section 5.3.3 and Section 5.3.4), and their 

presences improve the odds of a moderate or high Social value  assessment (Section 

5.5).  Of note, is the omission of park value from the inputs of ANNs with threat 

values, despite park value being the most significant input to ANNs without threats.  

The inclusion of park value in the minimal set is supported by the coefficients of both 

BLR models, with and without threat input, which additionally indicated that bird 

watching and park value were strongly contributing inputs.   

 

In the previous chapter when threat data was included in Social value BLR modelling, 

the improvement in the prediction rate was simply a function of additional inputs, 

rather than some intrinsic information stored in threat category as compared to a 

Social value input (Table 5.7 and Table 6.11).  At this point, it was argued that there 

was no merit in collecting threat data and undertaking risk assessments to decide 

Social value assessments (Section 5.5).  Additional evidence for this viewpoint is seen 

in the interesting anomaly presented when the ANN with no threats is contrasted to 

the ANN where threat categories were incorporated. Both ANNs have remarkably 
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similar predictive performances, but only six Social value inputs are needed for the 

without threats version, whereas eight inputs are needed when threats were included. 

This is supporting evidence indicating that Social value attributes are better predictors 

of wetland condition, and thus assessment, than are threat categories.  It also bolsters 

the argument for not collecting threat data and for not undertaking risk assessments to 

decide Social value assessments in the West Gippsland region.  Again, the 

WGCMA’s effort in collecting 11 input attributes and 14 threat components to 

calculate 154 risk assessments per wetland sites is pragmatically unnecessary when 

over 90% of 37 moderate and five high Social value wetlands can be identified using 

only absence/presence data for six Social value attributes.  If however, it is necessary 

to incorporate threat values in the assessment, Table 6.12b shows that the only 

common threat value found in threat ANNs and the corresponding threat BLR models 

was salinity, and given its strong predictive abilities, salinity always be included when 

threat values are collected and risk assessments done.  

 

Environmental value 
The results of ANN building experiments and their BLR model equivalents are 

summarized in Table 6.11. Of the BLR models, Model A and Model B were created 

using only Environmental value attributes and without threat input. As pointed out 

earlier (Section 5.5), the improved prediction values of Model B compared to Model 

A are a function of eight additional inputs, whilst the best BLR model to correctly 

predict the Environmental value is the version that uses threat inputs.  Similarly, the 

summary statistics for ANNs given in Table 6.11 reveal that the with-threats ANN 

outperforms in every regard the two no-threats ANNs (eight and 12 inputs).  More 

importantly, the threats-included ANN has slightly better prediction statistics than 

does the with-threats Environmental value BLR model built using one more input and, 

comparing across approaches, ANNs are consistently better at deciding 

Environmental value assessments for fewer inputs than their analogous BLR model.  

 

The inputs of all Environmental value ANNs and BLR models are given in Table 

6.12c.  Before examining these more thoroughly, it is important to note that there are 

several input variables not included in any approach, which leads to the 

recommendation that these need not be collected in the field.  Taking the inputs of 
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Environmental ANNs and BLRs together, unnecessary Environmental value attributes 

are: 

• Significant flora: For BLR models and ANNs where there is threat input, it is 

not necessary to check if a flora VROT; 

• Significant fauna: For ANNs built with threat data it is not necessary to check 

if a faunal species is FFG registered species, as this attribute is highly 

correlated to faunal species VROT attribute.  The strong correlation of these 

two attributes accounts for the appearance of Fauna FFG as input, rather than 

Fauna VROT for ANNs without threats;  

• Habitat value:  Habitat value was assessed by the WGCMA using attributes of: 

terrestrial zone habitat type; shoreline profile; and, wetland rarity (Table 4.12), 

and their component subattributes (Section 4.4).  Many subattributes of 

attribute terrestrial zone habitat type are not used as inputs for any BLR 

Models or ANNs, and the following may not be collected: exposed substrate; 

logs; other attribute; shallow to medium depth water; and, water edge.  The 

two subattributes of permanent deep pools and submerged or free-floating 

vegetation appear only in Model B BLR.  Similarly for shoreline vegetation, 

alive trees were not used in any BLR model or ANNs, and the absence or 

presence of dead trees was only used in Model B BLR.  All subattributes of 

shoreline shape used for shoreline profile assessment did not affect 

assessments, so it is not necessary to collect data on irregular or regular shaped 

shoreline shapes, however the absence or presence of islands is needed for the 

nine-inputs ANN with threats; 

• Hydrology: Hydrology attributes appear only in Environmental value BLR 

models and ANNs, where threat values are not used.  I suggest that drainage, 

disposal of water, water storage, obstruction and redirection capture data 

features similar to those captured by the threat values: altered hydrology and 

water source.  In fact, the hydrology attributes seem to act as surrogates for 

these threat data; and, 

• Vegetation intactness– critical lifeforms: Using the floral types of the 

dominant EVC at a site, it is only necessary to check for sedges as they appear 

in all Environmental value approaches, with and without threats.  It is not 
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necessary to check for graminoids, grasses, herbs and ferns for any ANNs, and 

a check for herbs and ferns need only be done if Model B BLR is being used.  

Nor is it necessary to do a count of floral species at each site, as this 

subattribute does not feature in the calculations for any approach.   

 

There is good agreement between patterns of attributes for high and very high-value 

wetlands noticed by the WGCMA and inputs identified by the sensitivity analyses of 

Environmental value ANNs and the inputs selected in BLR modelling (Table 6.12c).  

Of particular interest are the inputs of the with-threats BLR model and the with-

threats ANN, where it is noted three Environmental values selected in BLR 

modelling: fauna VROT (significant flora); sedges (vegetation intactness-critical 

lifeforms); and, width of vegetation fringe (vegetation intactness-width of vegetation 

fringe), are also found in the ANN together with: rocks (habitat value-terrestrial zone 

habitat); semipermanent saline wetlands (wetland rarity); and, shoreline islands 

(habitat value-terrestrial zone habitat).  This overlap is support for WGCMA reports 

(2007) that mentioned high and very high Environmental value sites scored well for 

vegetation intactness, habitat value and wetland significance/rarity.  In regard to threat 

categories for the with-threats ANN and with-threats BLR listed in Table 6.12c, the 

one threat category shared by both is lack of reservation, despite this category not 

being used in the WGCMA assessments for subcatchment wetlands.  Further, shared 

inputs within approaches also point to the importance of habitat values in deciding 

Environmental value; rocks, sedges, shoreline shrubs and width of vegetation fringe 

appear in all ANNs versions as significant inputs.  The importance of sedges cannot 

be overemphasized as it is the only Environmental value attribute needed by all BLR 

models and ANNs.  This is a testament to its importance in predicting wetland 

assessments.  In conclusion, the absence/presence of sedges and lack of reservation 

should always be included in Environmental value assessments because of their strong 

abilities to predict high and very high assessments.   

 

Threat categories 
For the WGCMA, the selection of the most appropriate threat values for use in risk 

assessment was problematic.  In preparation for inventory and assessment, the 

WGCMA sought expert opinion and consulted with stakeholders in deciding a listing 
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of suitable threat categories (Table 3.1).  Initial lists of threats were progressively 

altered, and this is evidenced by changes to threat listings in different documentations 

of the assessment process (WGCMA 2006b, 2007).  Further, the difficulty of the 

decision is borne out in the usage of two different sets of threat categories in the 

assessments, one for significant wetlands (Table 4.26a) and another for subcatchment 

wetlands (Table 4.26b).  

 

This research offers some guidance as to the threat categories that may be abandoned 

in future assessments based on their absences from all BLR models and ANNs; the 

need to collect data for the following needs to be revisited: 

• Loss of wetland connectivity; 

• Stock access; 

• Urban development; 

• Native vegetation decline; 

• Land use; 

• Physical alteration; 

• Fire regime; and, 

• Recreation (inappropriate use for). 

Given the amount of conversation devoted to the selection of suitable threat categories 

for use in risk assessments, it is indeed surprising that above eight attributes were not 

helpful in predicting high-value assessments. Moreover, there are reporting 

obligations at state, national and international levels that require wetland monitoring 

as to condition, and the threats present likely to impact condition.  Lynch (2011) 

points out there is a need for more succinct reporting of threats and disturbances, and 

using the Queensland Wetlands Program as a case study, she argues for the 

development of a threat topology to record information on processes and disturbances, 

and resulting environmental impacts. More dialogue on this matter is needed for 

future assessments in West Gippsland, particularly in light of the findings of this 

research. 
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The influence of classification schemes 
Earlier research of Fitzsimons and Robertson (2005) and Robertson and Fitzsimons 

(2004) on Victorian wetlands indicated that classification schemes significantly 

impact wetland assessments.  The analysis of binary logistic regression models 

showed little evidence of this, with the exception of Model B that used 

absence/presence data for permanent open water wetlands.  As pointed out in the 

discussion of Section 5.5, shrubs, herbs and sedges are used in the Corrick and 

Norman (1980) wetlands classification scheme to decide the subcategories for deep 

freshwater marshes, shallow freshwater marshes and freshwater meadows (Table 2.1); 

it is their physical presence at a site, rather than their use in wetland classification, that 

precipitates high and very high Environmental value assessments.  This is evidenced 

by the appearance of vegetation types as the inputs for all binary logistic regression 

models.   

 

In respect of wetland types, ANNs without threat inputs showed similar behaviours to 

their BLR model counterparts; there are no wetland types in the inputs for the eight-

inputs ANNs, while the 12-inputs ANNs used absence/presence data for deep 

freshwater marshes.   Again the lists of inputs for these ANNs, seen in Table 6.12c, 

support the premise that it is the appearance of vegetation types at a site that are more 

likely to be associated with higher value assessments.   

 

For ANNs where threat values were used as inputs, there is some difficulty in 

dismissing the effect of the classification scheme on Environmental value assessments 

as the sensitivity analyses for ceiling ANNs identified semipermanent saline wetlands 

as the seventh most significant input.  The Corrick and Norman (1980) subcategories 

for semipermanent saline wetlands are listed in Table 1.1 as 6.1 Salt pan; 6.2 Salt 

meadow; 6.3 Salt flats; and, 6.4 Sea rush-dominant.  These subcategories cannot be 

separated on the appearance of vegetation characteristics listed amongst the 

significant inputs, and the appearance of semipermanent saline wetlands cannot be 

explained away in this manner as done previously for deep freshwater marshes, 

shallow freshwater marshes and freshwater meadows.    
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Is the absence or presence value for semipermanent saline wetlands a strong predictor 

of high or very high Environmental value? I suggest not, as there is no supporting 

evidence amongst all the analyses of Chapters 4, 5 and 6.  As discussed in Section 5.5, 

correlations showed statistically significant negative associations of permanent open 

water wetlands (ρ = –0.205) and freshwater meadows (ρ = –0.166) and high-value 

assessments, meaning both wetland types were marginally more likely to have very 

low, low or moderate assessments.  How can the appearance of semipermanent saline 

wetlands in significant inputs for ANNs with threats be reconciled? 

 

Semipermanent saline wetlands make up 10% of wetland types found in public and 

private landholdings in Victoria (Traill & Porter, 2001).  In mirroring these 

percentages, 16 semipermanent saline wetlands were inventoried and assessed by the 

WGCMA, and the assessments they generated were two low, eight moderate, five 

high and one very high Environmental value wetlands (Table 4.20a).  A check of the 

component attributes of each Environmental value assessed (Table 4.12) shows that 

many inputs are more descriptive of freshwater, rather than, saline wetlands, such as, 

all of the hydrology attributes.  Given there were six high or very high Environmental 

value wetlands of saline type, I suggest that the SPSS software had no other choice 

than to select the absence/presence of semipermanent saline wetlands as an attribute 

that could capture the ‘saline’ characteristics of these wetlands when building ANNs 

with threats.  Note permanent saline wetlands were not part of the analyses due to 

their low count in the inventory. 

 

The other wetland classification scheme used in Victoria is EVCs and for each site, 

the dominant EVC was recorded and a measure of percentage of floral types present 

for that EVC was estimated.  The single EVC component needed to evaluate the threat 

input model is the absence or presence of sedges, and in fact, sedges are a prominent 

input for all Environmental BLR models and ANNs.  The only other components used 

were herbs and ferns, but they are only found as input to the 15-inputs BLR model 

without threats. As mentioned above, the absence/presence value for sedges is 

strongly correlated to high and very high Environmental value assessments and it 

should also be included in any wetland assessment in West Gippsland.  
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For Environmental value, is it necessary to collect threat data and undertake the 

arduous risk assessment to identify high-value wetlands? At the end of the previous 

chapter, I noted that binary logistic regression models were somewhat ambivalent in 

their support for collecting threat data and undertaking risk assessments for 

Environmental value.  It was possible to achieve comparable classification 

performances to the 10 BLR with-threat model by adding up to 15 inputs of 

Environmental attributes for the Model B version.  In consideration of the neural 

networks analyses, it is necessary to incorporate threat data for Environmental value 

assessments; the use of Environmental value attributes alone is insufficient to describe 

the data and capture all of its nuances.  This was seen in the poorer performances of 

the eight-inputs ANN without threat data (Table 6.8c) and 12-inputs ANNs without 

threat data (Table 6.8d).  It is further supported by the experiments in building 

Environmental value ANNs without threat data that used up to the 15 of the 

significant inputs identified by the sensitivity analyses of ceiling ANNs.  The 15-

inputs ANNs showed no difference to classification performances over the 12-inputs 

versions. The inclusion of extra inputs for attributes describing Environmental value 

did not improve prediction rates; improvements were only seen when threat input was 

used, indicating that threats attributes, in of themselves, better describe wetland 

condition than other inputs.  Threat category data needs to be incorporated to assess 

Environmental value of a wetland.   

 

Using neural networks to predict wetland assessments 
Historically, there has been widespread application of artificial neural networks to 

environmental assessment and management problems, as evidenced in their 

application to water resource variables (Maier & Dandy, 2000a & 2000b; Maier et al., 

2010).  Their broad appeal is on two counts.  Firstly, ANNs make no assumptions of 

statistical distributions and are able to cope well with non-traditional data sets.  

Secondly, ANNs are able to reliably predict outcomes when given unseen data, 

provided they have been trained on similar dataset (Brosse et al., 2001; Findlay & 

Zheng, 1999; Lek & Guegan, 1999; Olden et al., 2006; Zhang, 2000).  In this study, 

ANNs were constructed and sensitivity analyses were conducted to identify important 

contributing inputs to wetland assessments.  Additionally, ANNs were investigated as 

to their suitability for predicting wetland assessments on unseen data that had been 
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collected by Greening Australia staff for the same purpose. Optimally, there should be 

at least 200 cases in the training datasets (Detienne et al., 2003; Sug, 2010).  Despite 

lower than optimal numbers of wetlands used in training datasets, the experiments, 

where 30% of the available data was set aside for testing, show that for all wetland 

values, neural networks can be trained on one set of wetland records and perform very 

well on unseen data.    

 

For all Economic values ANNs, the effect of a smaller training set size was to reduce 

the ability of networks to recognize moderate and high Economic value wetlands.  For 

Social values ANNs, there is little performance difference noticed for the ANN 

trained using 70% of available data.  For all Environmental value ANNs, more 

training data results in better recognitions of high and very high Environmental value 

wetlands.  Comparisons of the classification performances of Environmental ANNs 

with and without threat data support the need for threat inputs to be incorporated to be 

able to more accurately classify wetlands overall, and in particular, high and very 

high-value wetlands.    

 

In conclusion, the application of neural networks to wetland assessment has in many 

ways supported the conclusions of Chapter 6; for Economic value, no assessments 

need be done; threat data is not needed and risk assessments should not be done for 

Social value assessments.  Neural networks have clarified the need for threat data to 

be included in Environmental value assessments.  In this chapter, I have shown the 

potential for neural networks trained using one set of wetland records to perform 

consistently well in making wetland assessments on unseen wetland data.  In the next 

chapter, the major findings of this research are presented and I discuss the 

implications for wetland assessments in West Gippsland, and more broadly in 

Australia. 
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Table 6.11: A summary of all artificial neural networks and binary logistic regression 
approaches showing the number of records, the number of input variables, and the % 
overall correct classifications.  For Economic and Social values, the % correct moderate 
and high-value classifications is given in brackets and for Environmental value, the number 
of high and very high-value correct classifications is given in brackets.    

Approach 

ANNs BLR models 

Number of 
inputs 

% 
Correct 

classifications 

Number of 
inputs 

% 
Correct 

classifications 

Economic  
value 

No threat 
input 
(n = 161) 

5 
 

91 
(68) 

5 
 

91 
(57) 

With threat 
input 
 

6 
(n = 155) 

94 
(78) 

9 
(n = 151) 

97 
(86) 

Social   
value 

No threat 
input 
(n = 149) 

6 
 

92 
(93) 

9 
 

92 
(88) 

With threat 
input 
 

8 
(n = 150) 

91 
(93) 

10 
(n = 144) 

95 
(91) 

Environmental   
value 

No threat 
input 
 

8 
(n = 162) 

87 
(83) 

Model A 

7 
(n = 163) 

86 
(86) 

No threat 
input 
(n = 158) 

12 
 

91 
(82) 

Model B  

15 
 

91 
(89) 

With threat 
input 
 

9 
(n = 146) 

93 
(90) 

10 
(n = 156) 

91 
(89) 
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Table 6.12a: A summary of Economic value inputs for all artificial neural networks and binary logistic regression approaches showing the number 
of inputs in common within, and between approaches.  Threats with * were not used in the WGCMA assessments for subcatchment wetlands. 

Economic  
value 

Approach 
Number 
of inputs 

Input Common inputs 

Economic value attributes Threat Within approach In ALL approaches 

BLR  
5 

No threats 

Conservation forestry   
Diverted or farm runoff  
Food production  
Stock water supply  
Water storage 

 Not applicable 

Diverted or farm runoff  
Stock water supply  

 
Economic value 
attributes 
Diverted or farm runoff  
Stock water supply 
 
Threats 
Erosion  
Resource utilization*  

 

9 

With 
threats 

Diverted or farm runoff  
Stock water supply  
  

Erosion  
Lack of reservation*  
Resource utilization*   
Sedimentation* 
Urban development 
Water source–  groundwater fill    
Water source–  rainfall    

ANN 

 
5 

No threats 

Conservation forestry  
Diverted or farm runoff  
Redirection  
Stock water supply 
Water storage 

Not applicable 

Diverted or farm runoff  

Stock water supply 

 6 

With 
threats 

Diverted or farm runoff  
Stock water supply 

Erosion  
Loss of connectivity 
Resource utilization*   
Salinity 
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Table 6.12b: A summary of Social value inputs for all artificial neural networks and binary logistic regression approaches showing the number of 
inputs in common within, and between approaches.  Threats with * were not used in the WGCMA assessments for subcatchment wetlands. 

Social  
value 

Approach Number 
of inputs 

Inputs Common inputs 

Social value attributes  Threat   Within approach In ALL approaches 

BLR  

9 
No threats 

Bird watching  
Boating 
Camping  
Education 
Hunting  
Motorized 4WD  
Park value  
Recreational fishing 
Swimming          

Not applicable Bird watching  
Camping  
Education 
Motorized 4WD  
Park value  
 

Social value attributes 
Bird watching  
Camping  
 
 
Threats 
Salinity 

10 
 

With 
threats 

Bird watching  
Camping  
Education 
Motorized 4WD  
Park value  

Erosion  
Recreation  
Resource utilization*  
Salinity  
Water source–  other    

ANN 

 6 

No threats 

Bird watching  
Boating  
Camping  
Motorized 4WD  
Park value  
Passive recreation  

Not applicable 
Bird watching  
Boating  
Camping  
Passive recreation 
 8 

With 
threats 

Bird watching 
Boating 
Camping 
Passive recreation 
Swimming 

Pest animals 
Salinity 
Lack of reservation* 
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Table 6.12c: A summary of Environmental value inputs for all artificial neural networks and binary logistic regression approaches showing the 
number of inputs in common within, and between approaches.  Threats with * were not used in the WGCMA assessments for subcatchment wetlands. 

Environmental 
value 

Approach 
Number 
of inputs 

Inputs Common inputs 

Environmental value 
attributes  

Threat   Within approach In ALL approaches 

BLR  

7 
Model A: 
No threats 

Flora VROT 
Rocks 
Redirection 
Sedges 
Shrubs 
Shoreline shrubs 
Width of vegetation fringe          

Not applicable 

Sedges 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Environmental value 
attributes 

Sedges 

 

 

15 
 

Model B: 
No threats 

Drainage 
Fauna VROT 
Ferns 
Flora VROT 
Herbs 
Obstruction 
Permanent deep pools 
Permanent open water 
wetland 
Rocks 
Sedges 
Shoreline shrubs 
Shoreline dead trees 
Shrubs 
Submerged or free-floating 
vegetation 

Not applicable 
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Environmental 

value 

BLR 

10 
With 

threats 

Fauna VROT  
Width of vegetation fringe   
Sedges  
 

Altered hydrology 
Drainage into wetland* 
Lack of reservation* 
Pest plants  
Resource utilization*  
Water source– other   
Water source– rainfall 

  

ANN 

 
8 

No threats 

Drainage  
Fauna FFG  
Flora VROT  
Disposal of water  
Rocks  
Sedges  
Shoreline shrubs  
Width of vegetation 

Not applicable 

Rocks  
Sedges  
Shoreline shrubs  
Width of vegetation 
 
 

Threats 
Lack of reservation* 

 
12 

No threats 

As 8 inputs ANN + 
Emergent vegetation  
Deep freshwater marsh  
Obstruction 
Redirection 

Not applicable 

9 
With 

threats 

Fauna VROT 
Rocks  
Sedges  
Semipermanent saline 
wetlands  
Shoreline islands  
Width of vegetation fringe 

Lack of reservation* 
Sedimentation* 
Water source–  groundwater fill    

 252 



 
 

 
Powlett River, Victoria, July 2008.   

Image courtesy of Paul Boon 
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Chapter 7  

General discussion and conclusions 

The overarching objective of the research outlined in this thesis was to increase 

understanding of the process of wetlands assessment by examining its practice in 

Gippsland, south-eastern Australia through the application of three complementary 

approaches: 

• a statistical exploration of the relationships between the values of different 

input factors and the classification of high-value wetlands using univariate 

and multivariate statistics, described in Chapters 4 and 5, respectively; 

• an investigation of the impact of two wetland classification schemes in 

evaluating and ranking of wetland sites, addressed in Chapters 4, 5 and 6; 

and, 

• the application of neural networks, a data-mining technique, to mimic the 

wetland assessment process, detailed in Chapter 6. 

This chapter summarizes the results of the research and discusses the findings in 

relation to the research’s objective above.  In the first section of this concluding 

chapter, an overview of the WGCMA approach to wetland assessment is given, the 

findings of the 2006 assessment are summarized, and the lessons learnt from this 

detailed examination of the case study are discussed.  This is followed by a discussion 

which relates to the objective’s individual approaches.  Next, there is a summation of 

significant findings of the research and their implications for the study, assessment 

and wise management of wetlands.  Recommendations for future wetland assessments 

are given in the concluding section of this thesis.  
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7.1 Overview of WGCMA approach and their findings 

A group of prominent Australian environmentalists (Morton et al., 2009) identified 

one of the important “big ecological questions inhibiting effective environmental 

management in Australia” as “How can datasets be rigorously gathered, analysed and 

reported to establish environmental trend, critical thresholds, and feedbacks to 

management?” In this thesis, I have analysed the WGCMA Wetlands Inventory 

Database using three approaches: univariate statistics, multivariate statistics and 

neural networks to discover and report upon pertinent relationships between the 

values of different site characteristics and the classification of high-value wetlands.  

The Database (7.61 Megabytes) was the depository of biological, chemical, 

hydrological and physical data for 163 wetlands, which was collected specifically for 

the rapid assessment undertaken by the WGCMA in autumn 2006.  The impetus for 

the assessment was the need to identify and prioritize wetlands within the catchment 

according to the value of services each wetland provides (Section 3.1, Section 3.3 and 

Appendix A).   

 

Various public documents of the WGCMA assessment detail the context, guiding 

principles, priorities, scope of the process and the development of Wetlands Plan 

(WGCMA, 2006a, 2006b, 2006c & 2007).  The WGCMA assessment commenced 

with the establishment of a Wetlands Plan Steering Committee, who garnered 

technical expert advice, established stakeholder workshops and consulted with the 

community. The Committee’s first task was to decide the set of economic, social and 

environmental values and threat categories (Table 3.1) to be used to assess wetland 

value and condition. The conceptual models used by the Committee to decide the set 

of appropriate indicators to assess these values and categories have not been publicly 

detailed, however the Greening Australia report (2006) mentions that 

contemporaneous work being done across Victoria to establish an Index of Wetland 

Condition (DSEE, 2005b) guided indicator selection, and this is evidenced 

particularly in attributes selected to assess environmental value.  A very broad range 

of indicators were decided to assess 21 wetland values (five economic + nine social + 

seven environmental) and 14 threat categories (Table 3.1, Table 4.1, Table 4.6 and 

Table 4.12) for which large quantities of data were collected during inventory, before 

collation and storage in the Database (Section 3.3.3).  For transparency, the WGCMA 
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used a set of scoring matrices to calculate hundreds of risk assessments per wetland 

site (Section 3.3.2).  Each site’s risk assessments were the basis of the rankings of all 

sites within the West Gippsland region for their Economic, Social and Environmental 

values (Section 3.4).  The outcome was the Wetlands Plan for the West Gippsland 

region that reported the assessment, and for individual wetlands it documented a 

description of important values and a listing of risks present, together with an outline 

of a management proposal designed to maintain values and reduce risk for each 

wetland (WGCMA, 2006a & 2006b).   

 

For the WGCMA, the assessment task was onerous; it was time consuming, labour 

intensive, and expensive (Section 3.5).  Limited effort and attention was given to a 

systematic appraisal of the data amassed during the 2006 wetlands assessment.  This 

was an opportunity lost by the organisation to better understand the nature and 

composition of wetlands in the region, particularly in regard to identifying the 

characteristics of high-value wetlands.  Such understanding could have been easily 

gained through the application of readily available computing tools to data already 

amassed for the assessment.  Rather, the WGCMA (WGCMA, 2007) broadly noted 

that some data inputs were associated with high Economic, Social and Environmental 

value assessments (Section 2.4).  My univariate statistical analyses checked these 

reported associations, of which only a few were confirmed (Section 4.2, Section 4.3 

and Section 4.4), and any management decisions made on the basis of these 

associations would have been flawed.  In particular, the data analysis undertaken by 

Greening Australia (2006) for the WGCMA was inadequate in identifying the 

characteristics of wetlands that predicted moderate and high Economic and Social 

values (Section 4.6, Section 5.5 and Section 6.5).  

 

This research has shown that simple univariate statistics (Chapter 4) can reveal 

associations between input data values and high-value assessments, while multivariate 

statistics (Chapter 5) and neural networks (Chapter 6) can succinctly describe 

relationships between input attributes and assessment outcomes.  The relevance and 

possible applications of this research are discussed in upcoming sections.  Firstly, a 

review is undertaken of the most important factors identified as significant in 

assessing wetland values in West Gippsland, and the broader implications of these 

findings are discussed.  Secondly, the impact of wetland classification schemes in the 
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WGCMA assessment is considered and implications for other jurisdictions are 

indicated. Thirdly, the effectiveness of statistical analyses and the neural network 

approaches for use in wetland assessments, locally and more generally, is explored.  

Fourthly, a set of recommendations for future West Gippsland wetland assessments 

and monitoring efforts is made.  Finally, concluding remarks relate the applicability of 

the novel approaches, multivariate statistical analyses and neural networks, to wetland 

assessments more widely. 

 

 

7.2 Variables needed to assess wetlands 

There are a variety of wetland assessment methods that are used to identify high value 

wetlands and give some measure of the economic, social and ecological services that  

wetlands supply (DEC, 2008; DSE, 2005b).  In practice, wetland assessments rely on 

a suitable set of inputs that collectively describe the gamut of wetland types and 

possible conditions in a region, and for which data can be reliably and consistently 

collected infield. Examples, such as the hydrogeomorphic (HGM) wetland 

classification system adopted in the United States, illustrate the requirement for 

assessment methods to be broadly applicable, whilst being customizable to local 

conditions (Cole, 2006; U.S.D.A., 2008).   As mentioned in the previous section, the 

selection of indicator variables for the WGCMA assessment came about after much 

expert and community consultation to arrive at the five economic + nine social + 

seven environmental attributes and their many sub-attributes together with 14 threat 

categories (Table 3.1, Table 4.1, Table 4.6 and Table 4.12) for which inventory data 

was collected.  In effect, the WGCMA used a scattergun approach to assess wetland 

values.  By examining the data values for input attributes and sub-attributes and 

relating them to assessment outcomes, my research has distilled the most significant 

factors that strongly predict high-value, or not, wetlands in the West Gippsland 

region.  The identification of these significant factors will allow future inventory, 

assessment and monitoring efforts in the region to be better targeted. 

 

7.2.1 Specific application to West Gippsland wetlands 

The analyses reported in this research indicate the most appropriate and useful inputs 

of a minimal set for the assessment of economic, social and environmental wetland 
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values in West Gippsland.  In deciding inputs, there are two important data issues 

which need consideration.  As mentioned above, the WGCMA orchestrated a large 

data collection across a great variety of attribute types attempting to assess 

hydrological, chemical, biological and physical characteristics of over 160 wetlands.  

The broad nature of their attempt has afforded my research a large set of possible 

inputs from which to select significant factors. Secondly in Chapters 4, 5 and 6 

analyses, data were aggregated into absence or presence groups for statistical 

convenience, where previously there had been various grades of presence values.  For 

instance, all Social value attributes, except park value, were assessed in the field as 

either none, occasional, seasonal or frequent (Table 4.7a) and in conducting cross-

tabulation analyses (Section 4.3.2), logistic regression modelling (Section 5.3.2) and 

neural network construction (Section 6.3.1), occasional, seasonal and frequent data 

were combined as the presence value of the Social value attribute under study.  By 

binning presence data in this manner, it is possible that any finer grained relationships 

between shades of presences for inputs and assessment outcomes would be smoothed 

and more subtle relationships masked. This possibility could be statistically 

investigated only if there were more inventoried wetlands and data to meet the pre-

conditions for such analyses.  In this research, absence/presence values alone were 

used for input variables and it is a testament to the strengths of the relationships 

between these variables and high-value assessments that over 90% correct 

classifications could be made.  This, in, itself, is an argument for not recording finer 

quantitative grades of presence values, which in turn, would save considerable 

collection time in the field and effort at the desk in data checking, validations and in 

calculating assessments.   

 

Economic value 
The strategy taken to decide a minimal set of significant inputs for Economic value 

was to look at the inputs for the best performing approach and compare and contrast 

these against a listing of inputs of all of the approaches to predict Economic value 

assessments. As previously discussed (Section 6.5), the neural network without 

threats was chosen as highest performing approach for its ability to classify moderate 

and high Economic value wetlands for the least number of inputs.  Table 7.1 lists the 

attribute values of this neural network, and when these are inspected, they indicate to 
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Economic values of drainage disposal, production value and water supply, as seen in 

the summary table, Table 7.2.  To check attributes of all approaches, Table 6.12a 

gives a summary of Economic value inputs, and within approaches and across 

approaches comparisons. The range of attributes and values listed in Table 6.12a 

further support the use of drainage disposal, production value and water supply, as the 

most significant input for assessments for Economic value in West Gippsland.  

Importantly it is these three, rather than the five, Economic values listed by the 

WGCMA (Table 3.1) that decide overwhelming a wetland’s Economic value 

assessment.  No evidence was found in my analyses that the absence or presence 

values for the values of tourism (present at 25% of sites) or commercial fishing 

activities (2 sites only) were of any significance in determining Economic value. 

 

On the grounds that only one wetland was identified as having high Economic value, 

discussions in Section 5.5 and Section 6.5 argue that Economic assessments need not 

be conducted at all, thereby eliminating the need to collect data on any of the 

attributes used to measure Economic value or data on threat levels. It is acknowledged 

that political considerations may decide otherwise in the future.  In this event, there is 

strong evidence provided by the high prediction rates of the Economic value BLR 

without threats models and ANNs without threats (Table 6.11) assessments to dispute 

the need to incorporate threat data in Economic value assessments, and support for the 

use of inputs to quantify drainage disposal, production value and water supply. 

 

Social value 
Similarly, a minimal set of significant inputs for Social value can be decided by 

looking at the inputs for the best performing approach and considering each in light of 

those found within and across all of the approaches deciding Social value assessments 

(Table 6.12b).  Earlier in Section 6.5, it was noted that the performances of ANNs are 

generally superior to that of their equivalent BLRs, with the six-inputs neural network 

with no threats input is the best predictor of Social value assessments.  Therefore, the 

six attributes of this approach are listed in Table 7.1 with the five Social values, which 

the attributes were used to quantify, being: bird watching; boating; camping; passive 

recreation; and, park value.  As discussed in Section 6.5, there is strong statistical 

support for the inclusion of each of these inputs, including passive recreation and park 
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value, and in particular, for bird watching and camping, which appear in all Social 

value approaches (Table 6.12b). Table 7.2 lists these five, most significant Social 

values for use in predicting high value assessments.  

 

For Social value assessments, it is five, rather than the nine, values listed by the 

WGCMA (Table 3.1) that decide overwhelmingly a wetland’s Social value 

assessment as indicated particularly by the sensitivity analyses used in building Social 

value ANNs.  Education was a common attribute in both BLR models (present at 

nearly 35% of sites), but it is not included in the minimal set since it was absent from 

the higher performing ANNs. Nor is hunting (present at over 50% of sites), or 

recreational fishing (present at over 30% of sites), or swimming (present at less than 

10% of sites) included since there is no statistical support for the inclusion of these 

values.  Here, I repeat my earlier argument (Section 5.5 and Section 6.5) to not collect 

data for threat values or undertake risk analyses for Social value assessments since 

inputs for Social values achieved remarkably high classification rates without threat 

data.   

 

Environmental value 
Deciding a minimal set for Environmental value assessments, is less clear cut than for 

Economic and Social value assessments.  The first step is to note attributes not needed 

in assessments; this was done for attributes not used in BLR modelling (Section 5.5) 

and later updated in regard to ANN constructions (Section 6.5).  It is the complement 

of this list, those data types not mentioned, that is the starting point to describe a 

minimal set of inputs for Environmental value. 

 

The next step in defining a minimal set is to decide whether threat categories should 

be included or not in the assessment of Environmental value.  This matter was 

discussed at length earlier (Section 5.5 and Section 6.5) and the conclusion reached 

was that threats should be incorporated.  This recommendation is cognizant of the 

WGCMA difficulties surrounding the choice of threat categories often noted in this 

thesis.  A guide to which threat categories should be included is given in the next 

subsection.  
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The presence or absence of sedges, an attribute of vegetation intactness- critical 

lifeforms, should definitely be included in the minimal set, as this attribute is found in 

all Environmental value analyses undertaken in this research (Table 6.12c).  The best 

performing approach, the nine-inputs ANN with threat categories, includes six 

attributes for the five Environmental values used by the WGCMA, being: wetland 

rarity; significant fauna; habitat value; vegetation intactness- critical lifeforms and 

vegetation intactness- width of vegetation fringe. These values also encompassed all 

contributing inputs found across all approaches (Table 6.12c), with the exception of 

flora VROT that was used to measure significant flora.  Significant flora has not be 

included in the minimal set on two accounts; it does not appear in the BLR with 

threats model or in the ANN with threats, and floral aspects and types are 

encompassed by the attributes used to measure vegetation intactness- critical 

lifeforms.  Therefore, Table 7.2 lists the five values, rather than seven, needed to 

assess Environmental value in West Gippsland 

 

Threat categories 
There is a necessity to include threats as part of wetland assessments, particularly as 

the Ramsar definition for wetland assessment is “the identification of the status of, 

and threats to, wetlands as a basis for collection of more specific information through 

monitoring activities” (Ramsar, 2005, point 17).  As pointed out on several occasions 

(Section 3.4 and Section 4.5), the assessment of threat has been problematic for the 

WGCMA in that two different sets of threat categories were reported; one set for 

significant wetlands and another set for inventoried wetlands, whilst data on all threat 

categories was collected in the field and stored in the Database for all sites.   

 

On the basis of this investigation, I have argued (Section 5.5 and Section 6.5) that 

there is no need (statistically speaking) for threat category data to be used for the 

assessment of Economic or Social value and this data is only required to make 

Environmental value assessments in West Gippsland.  Should this approach be 

adopted, Table 7.3 provides the minimal set of threat categories needed to assess 

Environmental value only, being: water source; a lack of reservation; and, 

sedimentation. Note: the lack of reservation and sedimentation were categories not 

used by the WGCMA in the assessment of inventoried wetlands.   Table 7.3 also lists 
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a larger set of threat categories, incorporating erosion and resource utilization which 

are shared by Economic ‘with threats’ approaches (Table 6.12a), and salinity found to 

be in common in Social value ‘with threats’ analyses (Table 6.12b).  The remaining 

threat categories, altered hydrology, pest plants and altered hydrology are included for 

their appearances within various BLR and ANN analyses in this thesis.   

 

Examination of the larger listing in Table 7.3 shows that only five of the fourteen of 

threat categories published by the WGCMA (2006b) are of statistical influence and 

importance in their wetland assessments.  Rather, the additional threat categories of: 

drainage into wetland; lack of reservation; resource utilization; and, sedimentation are 

better classifiers of wetland condition, or not, and these should be used in future 

assessments for subcatchment wetlands as well of those of international and national 

importance and significance.  

 

7.2.2 Broader application to wetlands assessment  

The lessons learnt from this study of the 2006 WGCMA wetland assessment can be 

applied also to wetlands assessments more broadly. There is no doubt that priorities 

for protection and restoration of wetlands should target wetlands deemed to be highest 

in value, and that assessment needs to take into account a broad range of factors to 

assess the character and value of a wetland and to incorporate a risk assessment of the 

various threats likely to downgrade wetland values (Breckenridge et al., 1995; Lui et 

al., 2006; Ticehurst et al., 2007). There is much discussion and argument in the 

literature as to the best attributes to collect to assess the character and value of a 

wetland, and a recognition that attribute selection is likely to locale-specific 

(Cowardin & Golet, 1995; DEC, 2008; DSE, 2007; Fitzsimmons & Robertson, 2005, 

Gitay et al., 2011; Spencer et al., 1998).  By collecting attribute data across a very 

broad range of indicators in order to assess 21 wetland values and 14 threat 

categories, the WGCMA approach to assess wetland values could have been better 

targeted, despite considerable effort spent by the Wetlands Plan Steering Committee 

to decide the set of economic, social and environmental values and threat categories 

(Table 3.1).  This research questions the necessity to collect data across such a broad 

range of attributes in the field to undertake an assessment of wetland values as the 13 

values listed in Table 7.2 can collectively correctly predict at least 90% of 
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assessments for Economic, Social and Environmental values, where previously 21 

values were used by the WGCMA (Table 3.1). Equally, the listings of threats in Table 

7.3 point to a smaller set of threat categories that are statistically significant and 

illustrate the complexity of deciding which threat categories to use. 

 

My research has shown that data analyses can identify redundancies within data 

collected and used in the WGCMA 2006 assessment. Checking these redundancies, it 

is seen that the absence/presence values for tourism or commercial fishing activities 

were of no significance in determining overall Economic value, and there is no 

suspicion that their influence is captured elsewhere since neither of these attributes 

was highly correlated with any other Economic value attribute (Section 5.2.1).  

Similarly the absence/presence values for the attributes of recreational fishing, 

swimming, hunting and education were of little use in deciding Social value.  

However in this case, these attributes are correlated with those identified in the 

minimal set (Table 7.2), indicating the collection of minimal set data does in fact 

capture similar characteristics to these attributes in predicting Social values.  

 

Greening Australia (2006) noted that the autumnal timing of the data collection meant 

that access to wetlands was much easier due to minimal water flows, whilst noting 

that evidence of plant and animal species was more difficult to find.  The degree to 

which the timing of the rapid assessment affected representative data collection is 

difficult to gauge.  Data for several attributes used to assess hydrology is significant in 

deciding the Economic value of drainage disposal but the same attributes have limited 

influence on the assessment of Environmental value.  In fact, it is seen that data 

collected to quantify of hydrology and significant flora is unnecessary as some of the 

data characteristics are captured by the inclusion of attributes for habitat value and 

vegetation intactness- critical lifeforms for Environmental value assessment (Section 

6.5).   

 

At a local level, there is little need to collect any more data than is indicated in Table 

7.2 and Table 7.3.  This may not be the case for other assessment efforts further 

afield.  For the HGM method used in the U.S., where wetlands are classified primarily 

on their physical characteristics and hydrodynamics (Cole, 2006), it would expected 

and necessary to collect data on all attributes used to assess hydrology, even if these 
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attributes were highly correlated with one another, as is the case in West Gippsland. 

Other assessment methods, such as the Millennium Ecosystem Assessment (2005) 

focus more on the impact of humans on wetlands’ functions, and it would be unwise 

to summarily discount attributes such as tourism, recreational fishing, swimming, 

hunting and education in this type of assessment. Furthermore, as succinctly detailed 

by Lynch (2011), there is a rich history of wetland assessment methods which attempt 

to take account of “pressures” and “stressors” resultant from human activities and 

there is a need to better identify, describe and incorporate measures of their influence 

in assessment methods, particularly in Australia.  

 

This research has illustrated that a systematic and concerted effort in analysing data 

collected during the inventory stage of a wetland assessment is a worthwhile 

investment in identifying the salient predictors for the assessment at hand.  A practical 

and pragmatic approach would be to collect data across a broad range of factors for a 

smaller, representative sample of wetlands and then analyse the collected data of the 

sample to find the salient predictors of high-value wetlands using the methods 

outlined in this thesis.  Once these factors have been identified in the sample, a data 

collection using this reduced set of factors can be undertaken for many more wetland 

sites, than otherwise resources would have previously permitted.  A more thorough 

data analysis is the key to identifying the most factors that strongly predict high-value 

wetlands in a region, and identification of these factors in of themselves would be 

insightful in guiding monitoring efforts. 
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Table 7.1: Minimal data inputs needed to correctly identify at least 90% of high-value wetlands for each wetland value in the West Gippsland region 
of south-east Australia.   Data were chosen through matching the highest performing approaches with the least number of inputs for each value from Table 
6.11 and the list of inputs from Tables 6.12a, 6.12b and 6.12c.  

Wetland Value 
Value Inputs 

Threat Inputs Comments 
Attribute Value 

Economic 

Conservation forestry Production value 

None 
In WGCMA assessment only 
one high-value wetland was 

identified. 

Diverted or farm runoff Drainage disposal 

Redirection Drainage disposal 

Stock water supply Water supply 

Water storage Drainage disposal 

Social  

Bird watching 

None 

In WGCMA assessment, six 
inputs of Social values alone 

were sufficient to identify high-
value wetlands. 

Boating 

Camping 

Motorized 4WD Passive recreation 

Park value 

Passive recreation Passive recreation 

Environmental 

Fauna VROT Significant fauna Attribute Value  
Significant inputs were attributes 

or subattributes of 
Environmental values, each of 
which included several other 

attributes used in the measure. 
 

Two of the three threat inputs 
were not actually used by the 

WGCMA. 
 

Rocks 
 

Habitat value– terrestrial zone 
habitat type 

Lack of reservation 

 
None 

 
Sedges 

 

Vegetation intactness– critical 
lifeforms 

Sedimentation 

 
None 

 

Semipermanent saline wetlands Wetland rarity 
 

Water source–  
ground fill Water source 

Shoreline islands 
 

Habitat value– shoreline  
fil   

Width of vegetation fringe Width of vegetation fringe 
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Table 7.2: Significant wetland values identified by collation of highest performing 
models from Table 5.11 with inputs from Tables 6.12a, 6.12b and 6.12c.  This table is a 
modified version of Table 3.1 which listed values for the 2006 WGCMA assessment. 

Economic Values Social Values Environmental Values 

Drainage disposal Bird watching Wetland rarity 

Production value Boating Significant fauna 

Water supply Camping Habitat value 

 
Passive recreation Vegetation intactness–critical lifeforms 

Park value Vegetation intactness–width of vegetation fringe 

 
 
Table 7.3: Significant threat categories identified for use in future WGCMA wetland 
assessments.  This table is a modified version of Table 3.1 which listed threat categories for 
the 2006 WGCMA assessment.  Threat categories not used in WGCMA assessments are 
indicated by *. 

 Threats categories 
identified in best 
performing 
approach 
 

Threats categories 
identified across all 
approaches 

 

 Water source Water source  

 Lack of reservation* Lack of reservation*  

 Sedimentation* Sedimentation*  

 

 
Altered hydrology  

Drainage into wetland*  

 
Erosion  

Pest plants  

 
Resource utilization*  

Salinity  
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7.3 Wetland classification schemes 

7.3.1 Specific application to West Gippsland wetlands 

My research found that selection of either the two wetland classification schemes, the 

Corrick and Norman (1980) scheme and Ecological Vegetation Classes (EVCs), made 

minimal impacts on the evaluations and rankings of wetland sites in West Gippsland.  

In regard to the Corrick and Norman (1980) scheme, cross-tabulation tables (Section 

4.4.2) and correlations statistics (Section 5.4.1) indicated that permanent open water 

and freshwater meadows were marginally more likely to have very low, low or 

moderate assessments than would be expected due to their frequency in the inventory 

sample.  Evidence from constructions of BLR models suggested that high and very 

high wetland evaluations were strongly correlated to the presence of shrubs, sedges 

and herbs, and, as discussed in Section 5.5, it is likely the physical presence of these 

vegetation types that precipitates high and very high assessments.  This deduction was 

further supported by experimentation in building ANNs (Section 6.5).    

 

Semipermanent saline wetlands were a significant input for Environmental value 

ANNs if threat categories were used (Section 6.4.3).  As discussed in Section 6.5, the 

majority of attributes used to assess Environmental value seem skewed to measure 

freshwater wetland characteristics, and not those of saline types.  Given the lack of 

attributes that would be useful to characterize saline wetland types, the SPSS software 

selected the wetland type of semipermanent saline wetlands as the mechanism to 

correctly classify the 16 semipermanent saline wetlands inventoried. Further, the 

threat category of salinity appears in ANNs with threats for Economic and Social 

values (Table 6.12a and Table 6.12b), which is also likely to have come as the ANNs 

try to incorporate features of the 16 semipermanent saline wetlands.  For future 

wetland assessments, I suggest the possible inclusion of a salinity measure being 

incorporated into inventory sampling and the assessment process. 

  

The dominant EVC vegetation type and a measure of percentage of floral types 

present for the EVC was recorded for each site in the WGCMA dataset.  By far and 

away the most significant floral type influencing wetland classifications was the 

absence/presence value for sedges; sedges was a significant input for all BLR models 

and ANNs (Table 5.12c).  To a much lesser extent, herbs, ferns and shrubs made 
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smaller contributions; herbs and ferns were used in some of Environmental value 

BLR models, and shoreline shrubs was found in the no threat ANN versions.  As 

already stated in Section 5.5 and Section 6.5, it seems that the physical presence of 

vegetation types at a wetland site that is associated with high-value assessments, more 

so than the classification of wetland type under the Corrick and Norman (1980) 

scheme.   

 

7.3.2 Broader application to wetlands classification 

As described above, there was no marked association with high-value wetland 

assessments for the Corrick and Norman (1980) scheme or EVCs.  Fitzsimons and 

Robertson (2003 & 2005) have found to the contrary in their studies of the Wimmera 

bioregion in Victoria, where the use of EVCs for classification in reservation systems 

led to the conclusions that wetlands were more severely depleted than the amount of 

depletion indicated for the same wetlands than when the Corrick and Norman (1980) 

scheme was used.  It is possible that the differences between the findings of my 

research and the conclusions of Fitzsimons and Robertson are related to three 

dissimilarities of the studies.  First, Fitzsimons and Robertson (2005) were not 

concerned directly with the identification of high-value wetlands but rather with 

assessing wetland representation within reserve systems, where they found a bias, in 

that shallow freshwater marshes tended to be poorly represented in protected areas. 

Second, the Wimmera region is a markedly less-watered region of Victoria than is 

West Gippsland, and this may account in some part for poorer representations of 

shallow freshwater marshes in protected areas in the Wimmera.  Finally, the 

WGCMA assessment included vegetation types and other attributes that more 

succinctly predicted high-value wetlands than did the Corrick and Norman (1980) or 

EVC schemes, and it is not evident that factors other than the these two classification 

schemes were considered in the Fitzsimons and Robertson study (2005). In light of 

these conflicting findings, there is a need for further studies across different regions 

within the State of Victoria, where the Corrick and Norman (1980) scheme and EVCs 

are applied, to help truly gauge the degree of influence that a particular classification 

scheme makes in predicating high-value wetlands.  
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Given the wide-ranging group of attributes for which data was collected in this case 

study, there is no surprise that there is considerable data redundancy. Particularly for 

freshwater wetland types, there is almost a ‘doubling up’ of information provided by 

the measures of habitat value (vegetation types of sedges, herbs, etc) and the Corrick 

and Norman (1980) scheme which partially categorizes on vegetation type. Equally, 

as mentioned, there is a paucity of information for saline type wetlands. The decision 

to use a specific classification scheme in a wetland assessment needs to be mindful of 

the scheme’s particular bias (towards vegetation for the Corrick and Norman scheme 

or hydrology for the HGM method) so that shortfalls in data capture can be met and 

unhelpful redundancies in data collection avoided. 

 

 

7.4 The use of neural networks and a comparison of 
traditional analytical techniques 

The application of artificial neural networks to the task of wetland assessments is 

novel to this research.  In the first instance, ANNs were used as an alternative 

approach to binary logistic regression modelling, where the ANNs performed 

consistently better than traditional univariate and multivariate statistics at classifying 

high-value wetlands (Table 6.11).  In the second instance, an exploration of the ability 

of ANNs to mimic the wetland assessment process using unseen data was done by 

dividing the data into 70% training and 30% testing sets.  Despite the less than 

desirable number of training data available, the results were consistently encouraging 

and the networks were still able to identify high-value wetlands in the unseen data 

(e.g. see Section 6.2.4, Section 6.3.4 and Section 6.4.4).   

 

The performance of all the ANNs, which were trained on 70% and 100% of the data, 

shows that neural networks are indeed an effective tool for predicting high-value 

wetlands with this dataset.  Any trained ANN with good performance statistics can be 

saved and then be used reliably into the future given there are absence/presence values 

for its listed inputs collected using the same protocols and sampling regime.  

 

For the ANNs built in this research, multiple runs and sensitivity analyses were 

needed to decide the most significant inputs for Economic, Social and Environmental 
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values.  Therein, lies the difficulty of using ANNs, which has been aptly elucidated by 

Curry & Morgan (2006, p.569) as “Model selection issues are still crucial.  This is 

because of the rather neat irony that better approximation within the training naturally 

increases the risk of over-fitting.  The very strength of (A)NNs, their ability to 

approximate, is also their principal weakness.  Ultimately, it is the capacity of the 

network to generalize which is the most important.” 

 

The benefit of using a neural network approach over either traditional expert opinion 

or multivariate statistical approaches is that it is not necessary to understand input-to-

output relationships to build an ANN, or to get it to learn how to solve a problem.  

The disadvantage is not being unable to directly ‘look under the hood’ and unravel the 

computations, nor see the relationships between inputs and their positive and negative 

influences on prediction.  By comparison, BLR models are relatively transparent, in 

that, it is possible to identify the magnitudes of influence of each input, through 

examination of coefficients, wi in ln(wi) format, and see the relationship amongst 

inputs in the equations produced.  In either case, BLR models and ANNs can only 

reliably predict when supplied with similar input data to that used in their 

constructions.   

 

What is the better approach, statistics or neural networks, for use in wetland 

assessments?  Insights are offered in Karlaftis and Vlahogianni’s review of instances 

where ANNs and statistics have been applied to data analysis problems in the 

transportation literature (Karlaftis & Vlahogianni, 2011).  For classification problems, 

they found that feed-forward neural networks outperformed their statistical 

counterparts, being logit models, discriminant analysis, negative binomial regression 

and stepwise logistic regression in the majority of cases.  Karlaftis and Vlahogianni 

(2011) commented that neural networks are inherently more flexible and adaptive, 

however a statistical method should be selected in preference to an ANN for a given 

problem only when one of the following four conditions is met: 

• The statistical method solves the problem better than neural networks; 

• There is a priori information on the functional relationship between variables; 

• There is a need to verify the statistical properties of an underlying mechanism 

that produced the problem; or, 
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• Interpretation of results and their causalities is paramount. 

For wetland assessments, the first three conditions do not apply and only the fourth 

condition could come into play.  It is possible that the application of neural networks 

could be dismissed on the basis of their perceived novelty value in favour of statistical 

methods, which have broader acceptance and proven mathematical foundations.  This 

research dispels this misconception; neural networks can successfully identify high-

value wetlands and they can do so for unseen data despite being trained on a limited 

number of examples.  To find causalities, that is the most significant inputs linked to 

high-value outcomes, sensitivity analyses were examined and trends across multiple 

runs analysed.  Therefore, neural networks are a flexible and suitable tool for 

classifying high-value wetlands.   

 

The application of neural networks to predict water-resource variables and in 

particular forecast water quantity and quality variables of rivers has been gaining 

momentum over the last fifteen years (Maier & Dandy, 2000a & 2000b; Maier et al., 

2010).  The more recent incorporation of neural networks into widely used statistical 

packages, such as SPSS, helps provide easy and cheap access to those willing to 

experiment with this computing algorithm.  Govindaraju and Ramachandra (2000) 

argue that the earlier relatively slow adoption of neural networks, at least amongst 

hydrologists, can be accounted for by the limited record of earlier successful ANN 

applications, together with the predisposition of hydrologists to look for physics-

based approaches that helped explain the hydrologic cycle, which has meant that 

hydrologists have tended to shy away from the black-box nature of neural networks.  

The more recent introduction of sensitivity analyses, and other like tools, to neural 

networks can account for their increased uptake amongst hydrologists, and biologists 

alike.  

 

 

7.5 Overall findings and their implications 

Undertaking wetland assessment is extraordinarily difficult.  It is difficult to assess the 

character of a wetland and its value, and to take account of threats likely to negatively 

affect the services a wetland provides (Breckenridge et al., 1995; Lui et al., 2006; 
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Ticehurst et al., 2007).  The first step is to identify suitable input variables that capture 

wetland characteristics, which at the same time are useful in discriminating between 

high-value wetlands and those less so (Goosen et al., 2007; Spencer et al., 1998).  In 

my research, I examined wetland assessment practice in West Gippsland and 

investigated the contribution, and potencies, of component biological, chemical, 

hydrological and physical data inputs, individually and collectively, to the 

identification of high social, economic and environmental value wetlands, through 

analyses using univariate and multivariate statistics and neural networks. 

 

Specifically, my research has shown that: 

• Much can be learnt about the practice of assessment, and the nature of the 

wetlands being assessed, through the systematic application of statistical and 

computing techniques to inventory data collected during the assessment;    

• Inventory datasets contain a wealth of useful information for organisations that 

collect them. Datasets, like the WGCMA Wetlands Inventory Database, rarely 

have their full potential explored or undergo thorough interrogation.  This is an 

ongoing concern in Australia, where the public assumes that environmental 

data collection and monitoring activities provide effective feedback to natural 

resource managers, and the reality has been otherwise (Morton et al., 2009);  

• In practice, relatively few attributes are needed to discern the value of a 

wetland, particularly high-value wetlands.  For any wetland assessment, the 

identity of these critical attributes can be discovered by applying traditional 

univariate statistical approaches to inventory data.  In the case of the 

assessment undertaken by the WGCMA in 2006, the use of simple 

absence/presence data for relatively small number of inputs were successful in 

deciding wetland values.  The specific inputs of a minimal dataset to guide 

data collection, the attributes and their values, are given in Table 7.1 for 

Economic, Social and Environmental value assessments, and summarised in 

Table 7.2.  Table 7.3 summarizes threat category inputs; 

• More complex relationships between input data and the classification and 

value of a wetland can be uncovered using binary logistic regression, a 

traditional and often used multivariate statistics technique.  This approach is 
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able to handle the types of data inputs used in wetland assessments 

(categorical and non-categorical) and it returns the likelihood probability that a 

wetland is high-value, or not, expressed as a function/equation of the inputs.  

Within the equation, the coefficient of each input is a measure of the degree to 

which the input decides the likelihood of a high-value assessment; the analysis 

of the magnitudes and signs of the coefficients of all inputs is a good indicator 

of potency of attributes used in the assessment. For the WGCMA assessment, 

binary logistic regression models were able to determine which inputs 

predicted high-value assessments.  Overall it was seen that much of the infield 

data collected during inventory was superfluous to the core task of making the 

assessment of wetland value;   

• The use of threat categories in assessments is, however, problematic.  There 

are difficulties around deciding which particular threat categories are to be 

assessed in the field and how their measure is to be taken. As well, the 

decision to include a threat category has a multiplicative effect on the number 

of risk assessments that need to be calculated for each wetland assessment. 

This research has shown many threat categories used in assessment were not 

useful in recognizing high-value wetlands (Section 6.5 and Table 7.3) and in 

particular, it was unnecessary to collect threat data or undertake arduous risk 

assessments to ascertain Economic and Social values classifications, as argued 

in discussion (Section 5.5 and Section 6.5). Additionally, four threat 

categories, denoted with * in Table 7.3, were useful in recognizing high-value 

wetlands in this research but not used in the WGCMA assessments of 

subcatchment wetlands; these categories were used to assess wetlands already 

identified as significant.  In hindsight, it seems incongruous that two different 

sets of threat categories were used, one set for significant wetlands and another 

set for subcatchment wetlands.  This research supports the application of a 

common set of threat categories, based on the Table 7.3 listing, for use in 

future assessments of significant and subcatchment wetlands;   

• Using only absence/presence values for data inputs in the statistical and 

computing techniques used in this research, I was able to correctly predict at 

least 90% of assessments for Economic, Social and Environmental values.  

Therefore, considerable time in inventory collection and desk processing could 
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be saved by reducing the infield collection of attributes to absence/presence 

values rather than using various grades to indicate presence as was done by the 

WGCMA;  

• In retrospect, it seems futile to have conducted Economic value assessments in 

the West Gippsland region, given the outcome of the 2006 assessment was a 

solitary high-value wetland.  In the future, it is likely that political imperatives 

will dictate that Economic value assessments be undertaken as a component of 

the widely accepted triple-bottom-line method of ranking wetlands (Section 

2.4.3).   In this case, it is not necessary to undertake the costly data collection 

for threat values, rather onsite sampling should be restricted to the collection 

of three values listed in Table 7.3: drainage disposal; production value; and, 

water supply.  The absence/presence values for contributing attributes for 

these values can achieve an overall 91% prediction rate for Economic value 

assessments without the need to incorporate threat values or undertake risk 

assessment computations (Table 6.11); 

• The use of two contrasting wetland classification schemes, in of themselves, 

did not directly affect the West Gippsland wetland assessments.  Instead, the 

physical presence of individual attributes, like specific vegetation types used 

in Corrick and Norman (1980) scheme and EVCs, were indicators of high-

value assessments (Section 5.5 and Section 6.5).  This is particularly true for 

the presence of sedges, as evidenced by their inclusion in all BLR models and 

ANN constructions (Tables 6.12a, 6.12b and 6.12c); 

• The only exception to the previous conclusion is the special case for deciding 

high-value semipermanent saline wetlands and permanent saline wetlands.  

There is evidence that the current attributes used to evaluate Environmental 

value are biased towards freshwater types and they do not adequately capture 

the saline characteristics of these wetlands (Section 6.5 and Section 7.3);  

• Neural networks are an effective tool for classifying wetland types, 

particularly for their ability to recognize high-value wetlands (Table 6.11 and 

Section 7.2).  On equivalent data inputs, neural networks outperformed binary 

logistic regression models in most instances, with the main difficulty being 

selection of a network that did not over-fit the dataset (Section 6.5); 
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• If neural networks are to be used in the future, it is necessary to undertake 

multiple constructions and run sensitivity analyses for neural networks in 

order to establish the number and identity of the most suitable inputs for the 

wetland value being assessed (Section 6.1.2).  In contrast, binary logistic 

regression models offer the comfort of a single and repeatable solution which 

is given as a best fit equation that describes the multiplicative relationship of 

input variables to the odds ratio of a high-value assessment (Section 5.1); and, 

• The main benefit in using neural networks is their predictive ability; they can 

be trained on one dataset and perform to a similar ability on unseen data 

collected for the same purpose (Section 6.2.4, Section 6.3.4, Section 6.4.4 and 

Section 7.4).  This potential means that assessments can be reliably carried out 

for wetlands not part of the inventoried sample or into the future as part of 

monitoring efforts for West Gippsland’s wetlands. 

 

 

7.6 Implications and recommendations for wetland 
assessments 

Wetlands assessment is a complex procedure.  It can be expensive, labour intensive 

and time consuming, and the process often must be tailored to its local context.  

Whilst acknowledging the inherent difficulty of the task, my research has identified a 

number of salient features of high potency for predicting high-value wetlands in the 

West Gippsland region.  Other than for saline wetland types, I found little evidence 

that the Corrick and Norman (1980) wetland classification scheme or EVCs impacted 

the evaluation and ranking of wetlands during the WGCMA assessment.  My research 

has shown that it is possible to quite accurately describe wetland assessments using 

binary logistic regression (BLR) modelling.  Furthermore, as an alternative 

mechanism for classifying wetlands neural networks (ANNs) were better than BLR 

models in discerning high-value wetlands.  The worth of ANNs to make wetland 

assessments for unseen data was demonstrated.  
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Many of the conclusions reached in this research have implications for future wetland 

assessments and monitoring efforts in West Gippsland.  The recommendations are: 

• Restrict infield data collection to assessing the absence or presence of 

attributes at a site; 

• For Economic value assessment, forgo Economic value assessment if possible.  

If not, reduce data collection and assessment to production value, drainage 

disposal and water supply and their attributes listed in Table 7.1.  Do not 

collect threat data values or undertake risk assessment evaluations; 

• For Social value assessment, reduce data collection and assessment to bird 

watching, boating, camping, park value and passive recreation and their 

attributes listed in Table 7.1.  There is no need to collect threat data or do risk 

assessments to evaluate Social value;  

• For Environmental value, undertake risk assessment calculations and 

evaluations using absence/presence values for the following Environmental 

values of habitat value, significant fauna, vegetation intactness, wetland rarity, 

and width of vegetation fringe;  

• For Environmental value, consideration should be given to deciding a suitable 

attribute or set of attributes to better describe semipermanent saline wetlands 

and permanent saline wetlands for future wetland assessments; and,  

• For threat categories, collect absence/presence data for the following threat 

categories of: altered hydrology; drainage into wetland; erosion; lack of 

reservation; pest plants; resource utilization; sedimentation; salinity; and, 

water source.  These threat categories should be used only in risk assessments 

for Environmental value assessment alone. 

 

In conclusion, this research has shown that the use of sophisticated, yet cheap and 

easily accessible, statistical and computing approaches can offer valuable insights into 

the process of wetland assessments.  For other wetland assessments, the value in 

undertaking analyses using multivariate statistics and neural networks, separately or in 

unison, is that these methods can be used to identify the unique combination of 

attributes that describe high-value wetlands, without being constrained by categorical 
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data as inputs.  A wetland assessment should commence on a representative subset of 

the targeted wetlands.  Data should be collected for these sites across a broad range of 

attributes and the assessment carried out using traditional methods.  Next, a 

systematic analysis of the outcomes using multivariate statistics, or neural networks, 

or both, can be used to elucidate the most significant inputs that align to high-value 

assessments.  This strategic step will supply a minimal set for further data collection 

and assessments.  Refining the assessment practice in this manner will indicate 

possible efficiencies in the assessment effort that may be applied across the entire 

wetlands set.  Either the statistical models built or the resultant trained neural 

networks can be used to accurately decide wetland classifications for the remaining 

wetlands at reduced effort and cost. Additionally, the steps of this approach can also 

be incorporated as part of ongoing monitoring efforts.   

 

In the thesis, the techniques of binary regression modelling and neural networks were 

described in considerable detail in order that others could follow in their use. For any 

locale, the application of this approach on inventory data would be extremely useful 

to resource managers.  The mechanism would illuminate possible efficiencies to be 

made in undertaking wetland assessments and it would provide an important feedback 

on the contributions made by differing inputs to the wetlands assessments process. 
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Appendix A                                                    

                               Wetland values 
Wetlands are valuable for the variety of services they provide (Mitsch & Gosselink, 2000 & 

2007).  Amongst other things, wetlands protect water and food supplies, sustain indigenous 

groups and cultural values, provide flood and coastal protection, and harbour biodiversity 

(Finlayson & Weinstein, 2008; Williams, 1994).  The combined physical, biological and 

chemical components of different types of wetlands, combined as a group, generate a number 

of products and provide for several functions.  A description of some of the products that 

wetlands supply is given in Table A.1 and some of the functions supplied by wetlands are 

listed in Table A.2.  Table A.3 gives details of attributes of wetlands. All tables are a 

summary of material supplied by Dugan (1990, p.15) and other authors.   

 

Table A.1: Wetland products as described by Dugan (1990) and others. 

Wetland Values: Products Description 

Forest resources Includes fuel wood, timber, bark, resins and medicines. 

Wildlife resources Includes meat, honey, skins, eggs of birds and turtles, shelter for 
threatened and endangered species. 

Fisheries Two-thirds of the world’s fish depend upon wetlands for some part of 
their life-cycle. 

Forage resources Important grasslands and trees are grazed by livestock. 

Agricultural resources Intensive agriculture e.g. rice paddies. 

Water supply Used for human consumption, agriculture, watering livestock and 
industrial supply. 

Energy resource Peat-lands and other products are harvested to provide energy on a 
regular basis. 
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Table A.2: Wetland functions as described by Dugan (1990) and others. 

Wetland Values: Functions Description 

Groundwater recharge Wetlands feed down into underground aquifers and purify the water.   

Groundwater discharge Underground water moves upward into wetland and becomes surface 
water. 

Flood control By storing precipitation and releasing runoff more evenly, diminish the 
effect of destructive floods. 

Shoreline stabilisation and 
erosion control 

Stabilise shorelines by reducing the energy of waves, currents and other 
erosive forces and holds sediment in place with roots. 

Sediment and toxicant retention Sediment can settle in wetland basins helping maintain quality of 
ecosystems downstream and toxicants adhere to suspended sediment so 
protect downstream. Dugan (1990) hypothesized that wetlands reduce 
sediment in streams by as much as 90% lower in river basins, and by 
40%  in lakes compared to areas without wetland habitats. 

Nutrient retention Nitrogen and phosphorus accumulate in sub-soil and wetland 
vegetation. Wetlands act as sinks and sources and the cycle between 
each has important implications for algal growth, water quality, fish 
production, and recreation downstream, as it prevents eutrophication 
conditions. 

Biomass export  Biomass export through supporting dense populations of fish, forage 
resources for cattle or wildlife e.g. migratory waterfowl.  

Micro-climate stabilisation Particularly rainfall and temperatures on local climatic conditions. 

Storm protection and windbreaks Particularly mangroves and forested coastal wetlands help dissipate the 
force and lessen the damage of coastal storms. 

Water transport  Carrying goods and public transport for local communities. 

Recreation and tourism Includes sport hunting, fishing, bird-watching, nature photography, 
swimming, and sailing. 
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Table A.3: Wetland attributes as described by Dugan (1990) and others. 

Wetland Values: Attributes Description 

Biological diversity Genetic reservoir as many wetlands support significant diversity of 
animals, of which many are endemic or endangered. 

Uniqueness to culture and 
heritage 

Scenic and wildlife values or cultural association attract peoples to a 
wetland region. 

Historical records Wetland archaeology provides evidence from which the 
palaeoenvironmental history of a wetland can be gleaned. Cultural 
evidence of human activities through artefacts and actual bodies is often 
found. 

 

Further, it is possible to categorize the types of values of wetlands, as values which supply 

biological, hydrological, economic, and social services. 

 

Biological services 
Wetlands are credited as being amongst the “most biologically productive natural ecosystems 

in the world” (Vriesinga, 2008, p.174). Collectively, the set of natural habitats found in 

wetlands offer an immense variety of niches for both terrestrial and water-based wildlife, 

being molluscs, crustaceans, arthropods, reptiles, fish, frogs, birds and mammals, including 

dolphins and porpoises. In fact,  there are approximately 10,000 freshwater fish species 

inhabiting wetlands (Millennium Ecosystem Assessment, 2005).   

 

Wetlands have been likened to the world’s rainforests, in that, they harbour great 

biodiversity, estuarine wetlands protect endangered species and they are estimated to be four 

times as productive as temperate grasslands (National Parks Association of NSW, 1988). In 

Australia, nearly 20% (117 of 656) bird species depend on wetlands, with some species 

relying on different wetlands for breeding and feeding (Kingsford, 1997).  Australian 

wetlands form part of an international network of migratory bird habitat for millions of 

waterbirds and several waterbird species (mainly Charadriiformes, spoonbills and bitterns) 

migrate annually after breeding season from the Northern Hemisphere to Australia. 

 

At a smaller scale, phytoplankton, attached and microscopic algae and macrophytes are the 

sources of primary production in Australian wetlands (Boon & Bailey, 1997) with 

microinvertebrates including protozoans (ciliates, flagellates and amoebae) and zooplankton 
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(microcrustaceans and rotifers) occurring as well. Bacteria are an often not recognized 

important food source for other aquatic organisms, yetthey play a major role in metabolising 

dissolved organic carbon found in the detritus (Boulton & Brock, 1999).  Macroinvertebrates 

are represented by mostly insects of the order Odonata (dragonflies and damselflies), 

Ephemeroptera (mayflies), Hemiptera (true bugs), coleopteran (true beetles), Diptera (two-

winged flies) and Trichoptera (caddis flies) (Boulton & Jenkins, 1997; Boulton & Brock, 

1999).  The representations and proportions of types are dependent on whether the wetland 

under study is standing or running water, and more details are given in Boulton and Brock 

(1999).   

 

Hydrological services 
Powered by solar energy and gravity, water is continually cycled between the atmosphere, the 

oceans and land. Globally, an imbalance occurs where evaporation from oceans fuels greater 

precipitation rates on land, allowing the existence of rivers and ground runoffs. In Australia, 

evaporation rates are high; on average 11 % of precipitation makes river runoff and 1% (4mm 

average) becomes groundwater recharge (Boulton & Brock, 1999, p.14).  

 

The main freshwater supply for human use comes from inland wetlands and groundwater 

recharged from wetlands (Millennium Ecosystem Assessment, 2005).  Aquifers, which 

supply towns and farms, are recharged from water entering from wetlands at the heads of 

rivers and along the floodplains and swamps. Flood mitigation is provided by the storage of 

runoff and its subsequent slow release to ecosystems. Water clarity and purity are improved 

by the ‘filtering’ services provided by marshes and it known that coastal and estuarine plants 

slow water velocities and permit fallout of fine sediment (National Parks Association of 

NSW, 1988).  

 

  

Social services 
Aesthetically, humans are attracted to wetland areas for a variety of social and recreational 

activities. These include swimming, boating, canoeing, walking, picnicking, photographing, 

diving, fishing, hunting and bird-watching (Bennett, 1997).  For instance, waterfowl, ducks 

and geese have been hunted for recreation in several Australian states (Kingsford, 1997).  
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Many sites provide good educational opportunities for students to learn about terrestrial, 

freshwater and marine ecosystems and their associated biodiversity. 

 

Wetland archaeology shows that people have often resided near and in wetlands to tap easily 

obtainable food resources (Bayliss-Smith, 1996; Coles, 1994; van Andel & Runnels, 1995). 

For example, in the Northern Territory of Australia, aboriginal peoples have traditionally 

harvested magpie geese (Anseranas semipalmata) and their eggs, and, in Cambodia 60-80% 

of total protein consumed by humans comes from the fishery in Tonle Sap and its associated 

floodplains (Dexter & Bayliss, 1991; Millennium Ecosystem Assessment, 2005). As many 

populations rely on wildlife resources harvested from wetlands, it seems natural that over 

time, important sites can come to have social and ceremonial importance in local cultures.   

 

Economic services 
In their extensive analyses of 167 wetland studies worldwide, Ghermandi et al. (2008) listed 

the economic services of several wetland types to include commercial fishing and hunting, 

harvesting of natural materials, recreational values, biodiversity, and hydrological services.  

As Gedan et al. (2009) note, wetlands provide many economic services, including those that 

are marketable and others that are more difficult to quantify. Fishing is one example of a 

marketable service with two thirds of the fish eaten in the world being dependent upon 

wetlands for some stage in their life cycle (Dugan, 1990). Further, indirect food benefits can 

come about through the provision of regular water supplies or through wetland birds, such as 

ibis, controlling locusts and other agricultural pests (Cook, Stearne & Williamson, 2003; 

National Parks Association of NSW, 1988).   

 

Importantly, “many services delivered by wetlands are not marketed (such as flood 

mitigation, climate regulation, groundwater recharge, and prevention of erosion) and accrue 

to society at large at local and global scales” (Millennium Ecosystem Assessment, 2005, 

p.46).  As noted by Gardiner (1994), wetlands collectively make a significant contribution to 

global homeostasis.  Growing concern about rising sea levels worldwide, spotlights the roles 

of the Arctic tundra and floodplain forest of the Amazon, amongst others, as a carbon sinks to 

buffer against the effects of global warming (Gardiner, 1994; Williams, 1994). In 1989, 

Heron scoped the probable effect of greenhouse gases on sea levels and weather changes in 

the state of Victoria, in Australia.  There, she concluded, coastal wetlands would be impacted 
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due to altered water tables which would cause the creation of larger, more saline wetlands 

than currently existed at the time of her study (Heron, 1989). 

 

Much development and modification of wetlands occurs in the name of short-term economic 

gain.  Non-marketable wetland goods and services are so often taken for granted that “much 

wetland loss is the result of ignorance of the true value of the resources concerned, or of how 

certain actions lead directly or indirectly to wetland loss” (Dugan, 1990, p.6).  There are often 

conflicting interests between landowners and the general public and between developers and 

conservationists in deciding the ‘wise use’ and sustainable development of any wetland 

(Votteler & Muir, 2002). 
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Appendix B  
      Ramsar classification system for wetland types 

The material in this Appendix has been sourced directly from “The Ramsar Convention on 

Wetlands” website, and from the “Ramsar Classification system for Wetland Type” web 

page, found at http://www.ramsar.org/cda/en/ramsar-documents-info-information-sheet-

on/main/ramsar/1-31-59%5E21253_4000_0__#type. 

Here, it is reproduced verbatim. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Annex I 

Ramsar Classification System for Wetland Type 

The codes are based upon the Ramsar Classification System for Wetland Type as 
approved by Recommendation 4.7 and amended by Resolutions VI.5 and VII.11 of the 
Conference of the Contracting Parties. The categories listed herein are intended to provide 
only a very broad framework to aid rapid identification of the main wetland habitats 
represented at each site. 

To assist in identification of the correct Wetland Types to list in section 19 of the RIS, the 
Secretariat has provided below are tabulations for Marine/Coastal Wetlands and Inland 
Wetlands of some of the characteristics of each Wetland Type. 

Marine/Coastal Wetlands 

A-- Permanent shallow marine waters in most cases less than six metres deep at low 
tide; includes sea bays and straits. 
B -- Marine subtidal aquatic beds; includes kelp beds, sea-grass beds, tropical marine 
meadows. 
C -- Coral reefs. 
D -- Rocky marine shores; includes rocky offshore islands, sea cliffs. 
E-- Sand, shingle or pebble shores; includes sand bars, spits and sandy islets; includes 
dune systems and humid dune slacks. 
F -- Estuarine waters; permanent water of estuaries and estuarine systems of deltas. 
G -- Intertidal mud, sand or salt flats. 
H -- Intertidal marshes; includes salt marshes, salt meadows, saltings, raised salt 
marshes; includes tidal brackish and freshwater marshes. 
I -- Intertidal forested wetlands; includes mangrove swamps, nipah swamps and tidal 
freshwater swamp forests.  
J -- Coastal brackish/saline lagoons; brackish to saline lagoons with at least one 
relatively narrow connection to the sea. 
K -- Coastal freshwater lagoons; includes freshwater delta lagoons. 
Zk(a) - Karst and other subterranean hydrological systems, marine/coastal 
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Inland Wetlands 

L -- Permanent inland deltas. 
M-- Permanent rivers/streams/creeks; includes waterfalls. 
N -- Seasonal/intermittent/irregular rivers/streams/creeks. 
O -- Permanent freshwater lakes (over 8 ha); includes large oxbow lakes. 
P -- Seasonal/intermittent freshwater lakes (over 8 ha); includes floodplain lakes. 
Q -- Permanent saline/brackish/alkaline lakes. 
R -- Seasonal/intermittent saline/brackish/alkaline lakes and flats. 
Sp -- Permanent saline/brackish/alkaline marshes/pools. 
Ss -- Seasonal/intermittent saline/brackish/alkaline marshes/pools.  
Tp -- Permanent freshwater marshes/pools; ponds (below 8 ha), marshes and swamps 
on inorganic soils; with emergent vegetation water-logged for at least most of the growing 
season. 
Ts -- Seasonal/intermittent freshwater marshes/pools on inorganic soils; includes 
sloughs, potholes, seasonally flooded meadows, sedge marshes. 
U -- Non-forested peatlands; includes shrub or open bogs, swamps, fens. 
Va -- Alpine wetlands; includes alpine meadows, temporary waters from snowmelt. 
Vt -- Tundra wetlands; includes tundra pools, temporary waters from snowmelt. 
W -- Shrub-dominated wetlands; shrub swamps, shrub-dominated freshwater marshes, 
shrub carr, alder thicket on inorganic soils. 
Xf -- Freshwater, tree-dominated wetlands; includes freshwater swamp forests, 
seasonally flooded forests, wooded swamps on inorganic soils. 
Xp -- Forested peatlands; peatswamp forests. 
Y -- Freshwater springs; oases.  
Zg -- Geothermal wetlands 
Zk(b) - Karst and other subterranean hydrological systems, inland 

Note: "floodplain" is a broad term used to refer to one or more wetland types, which may 
include examples from the R, Ss, Ts, W, Xf, Xp, or other wetland types. Some examples 
of floodplain wetlands are seasonally inundated grassland (including natural wet 
meadows), shrublands, woodlands and forests. Floodplain wetlands are not listed as a 
specific wetland type herein. 
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Human-made wetlands 

1 -- Aquaculture (e.g., fish/shrimp) ponds 
2 -- Ponds; includes farm ponds, stock ponds, small tanks; (generally below 8 ha). 
3 -- Irrigated land; includes irrigation channels and rice fields. 
4 -- Seasonally flooded agricultural land (including intensively managed or grazed wet 
meadow or pasture). 
5 -- Salt exploitation sites; salt pans, salines, etc. 
6 -- Water storage areas; reservoirs/barrages/dams/impoundments (generally over 8 ha). 
7 -- Excavations; gravel/brick/clay pits; borrow pits, mining pools. 
8 -- Wastewater treatment areas; sewage farms, settling ponds, oxidation basins, etc. 
9 -- Canals and drainage channels, ditches. 
Zk(c) - Karst and other subterranean hydrological systems, human-made 

Tabulations of Wetland Type characteristics 
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Appendix C                                                            
Significant wetlands of West Gippsland 

This listing of significant wetlands has been sourced from the West Gippsland Catchment 
Management Authority: Wetlands Plan, Part A- Background and Method, 2007, Table 1, 
page 13.   
 
 

Wetland name Basin Wetland of National 
Importance (Directory of 
Important Wetlands 
Australia – DIWA) 

Wetland of 
International 
Importance 
(Ramsar) 

Caledonia Fen Thomson Caledonia Fen 

 

Lake Tarli Karng Thomson Lake Tarli Karng 
Billabong (Flora and 
Fauna Reserve) Thomson Billabong (Flora and Fauna 

Reserve) 
Snipe Wetland Latrobe Lake Victoria Wetlands 

Heart Morass Latrobe 

Lake Wellington Wetlands 

Lake Kakydra Thomson 

Dowd Morass Latrobe 

Gippsland Lakes 
Ramsar Site 

Sale Common Thomson 
Heart Morass (Wildlife 
Reserve) Latrobe 

Clydebank Morass Thomson 

Red Morass Latrobe 

Lake Victoria Latrobe 

Lake Betsy Latrobe 

Morley Swamp Latrobe 
Lake Coleman & Tucker 
Swamp Latrobe 

Lake Wellington Thomson 
Latrobe 

Lake Reeve Latrobe 
South Gippsland  

Jack Smith Lake South Gippsland Jack Smith Lake State Game 
Reserve  

Corner Inlet South Gippsland Corner Inlet Corner Inlet  
Ramsar Site 

Shallow Inlet South Gippsland Shallow Inlet Marine and 
Coastal Park 

 
Anderson Inlet South Gippsland Anderson Inlet 

Bald Hills Wetland South Gippsland Bald Hills State Wildlife 
Reserve 

Powlett River Mouth South Gippsland Powlett River Mouth 
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Appendix D                                                                                                                            
WGCMA Wetland value scoring system 

Original source of the following scales is found in Appendix 1 of the West Gippsland Wetlands Plan Part A- Background and Methods 
(WGCMA, 2007) reference. 

Economic value ranking scale 

Table D.1: Economic value ranking scale used in WGCMA wetland assessment process.   

Economic value 0 1 2 3 4 5 

Commercial fishing No data Not present  
Eel or Carp access 
license/permit operating 
in wetland 

 
Bay and Inlet Fisheries 
access licence operating 
in wetland 

Tourism No data Not thought to be used 
by tourists  

Informal use by 
tourists/seasonal 
activity 

Formal use by tourists Focus on tourism or 
event focused 

Production value No data Non-agricultural Lifestyle/hobby farming Dryland/mixed grazing 

Irrigation, high rainfall, 
broad acre cropping, 
mixed grazing or 
forestry 

High productivity area- 
intensive irrigation or 
high rainfall dairy or 
intensive agriculture or 
urban residential. 

Drainage disposal No data 
Does not receive 
drainage water from 
urban or agricultural 
sources 

 

Yes receives 
stormwater, irrigation 
drainage or other 
agricultural discharge as 
well as water from other 
sources 

 

Yes receives the 
majority of its water 
from stormwater, 
irrigation drainage or 
other agricultural 
discharge 

Water supply No data 
Not part of a stock and 
domestic water supply 
system 

 

Part of a stock and 
domestic water supply 
system OR not currently 
used for irrigation 
extraction (historic use) 

 Currently used to 
supply irrigation water 
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Social value ranking scale 
Table D.2: Social value ranking scale used in WGCMA wetland assessment process.   

Social value 0 1 2 3 4 5 
Recreational fishing No data No recreational fishing Occasional recreational 

fishing 
Seasonal recreational 
fishing  Frequent recreational 

fishing 

Swimming No data No swimming Occasional swimming Seasonal swimming 
location  Frequently used 

swimming location 

Camping No data No camping Occasional camping Seasonal use for 
camping  Frequently used 

camping site 

Hunting No data No hunting Occasional hunting 
activity 

Seasonal hunting 
activity  Frequently used for 

hunting  

Boating No data No boating Occasional boating 
activity 

Seasonal boating 
activity  Frequent boating 

activity 

Passive recreation No data No passive recreation Occasional use for 
passive recreation 

Seasonal use for passive 
recreation  Frequent use for 

passive recreation 

Bird watching No data No bird watching Occasional bird 
watching Seasonal bird watching  Frequent bird watching 

Education No data Not used for education 
purposes 

Occasional use for 
educational purposes 

Seasonal use for 
educational purposes  Frequent use for 

educational purposes 

Park value No data 
Wetland not located in 
a park or on reserved 
crown land 

Wetland located in a 
State forest or other 
reserved crown land 

Wetland located in a 
nature conservation 
reserve, natural features 
reserve or historic and 
cultural features reserve 
(including those 
gazetted as a State 
Game Reserve) 

Wetland located in a 
Regional or State Park, 
Coastal Park or a 
Marine and Coastal 
Park 

Wetland located in a 
National Park, 
Reference Area or 
Wilderness are, Marine 
National Park, Marine 
Sanctuary or Marine 
Park 
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Environmental value ranking scale 
Table D.3: Environmental value ranking scale used in WGCMA wetland assessment process.   

Environmental 
value 

0 1 2 3 4 5 

Wetland rarity No data 

* Permanent open 
freshwater, Semi-
permanent saline, 
Permanent saline 

 
** Freshwater meadow, 
Shallow freshwater 
meadow 

*** Deep freshwater 
marsh 

**** Endangered or 
presumed Extinct 
wetland type 

Significant flora No data No threatened species 
listed 

Victorian conservation 
status poorly known 

Victorian conservation 
status ‘rare’ 

Victorian conservation 
status ‘vulnerable’ 

Listed under EPBC Act 
or Victorian 
conservation status 
‘presumed extinct, 
critically endangered or 
endangered’ OR listed 
as threatened in 
Victoria (FFG listed)  

Significant fauna No data No threatened species 
listed  Victorian conservation 

status ‘near threatened’ 
Victorian conservation 
status ‘vulnerable’ As above 

Habitat value  
<50% applicable 
habitat components 
identified in wetland 

 
>50%-90% applicable 
habitat components 
identified in wetland 

>90% applicable 
habitat components 
identified as present in 
wetland 

>90% applicable 
habitat components 
identified in wetland. 
At least 50% of those 
identified as abundant 

Hydrology No data 

Significant shift in the 
seasonality of flooding. 
Change in flooding 
duration that leads to a 
change in permanency 
of the wetland 

 

A change in the time of 
flooding but within the 
same season. Change in 
flooding frequency 
and/or duration but not 
great enough to lead to 
a significant change in 
permanency of the 
wetland 

 

Little or no change in 
the wetland’s flooding 
frequency, duration and 
seasonality 
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Table D.3: Environmental value ranking scale used in WGCMA wetland assessment process.   

Vegetation 
intactness– 

No data All critical life-forms 
effectively absent (0) 

>0-<50% of critical 
life-form groupings 
present (5) or >50%-
90% critical life-form 
groupings present, of 
those present – at least 
50% substantially 
modified (10) 

>50%-90% critical life-
form groupings present, 
of those present –  less 
than 50% substantially 
modified (15) 

>90% of critical life-
form groupings present, 
of those present – at 
least 50% substantially 
modified  

>90% of critical life-
form groupings present, 
of those present – less 
than 50% substantially 
modified 

Critical life form 
groupings 

Width of vegetation 
fringe No data 0 m >0m – 5m >5m – 20m >20m – 50m >50m 

 
* Least concern wetland type with > 50% pre-European area remains in Victoria 
** Rare or depleted wetland type with 30-50% pre-European extent remains in Victoria or >50% pre-European extent remains in Victoria and moderately 

degraded 
*** Vulnerable wetland type with 10-30% pre-European extent remains in Victoria 
**** wetland type with <10% pre-European extent remains in Victoria or probably no longer present in Victoria 
 
  

 D-15 



Threat category ranking scale 
Table D.4: Threat category ranking scale used in WGCMA wetland assessment process.   

Environmental 
value 

0 1 2 3 4 5 

Loss of wetland 
connectivity No data Threat absent  Identified as minor 

threat  Identified as a key 
threat 

Stock access 
(grazing) No data Threat absent  Identified as minor 

threat  Identified as a key 
threat 

Pest plants No data 
Total cover of weeds 
<5% and nil or <50% 
weeds cover make up of 
high threat weeds 

Total cover of weeds 5-
25% and nil weeds 
cover made up of high 
threat weeds, OR total 
cover of weeds <5%-
25% and <50% or 
>50% weeds cover 
made up of high threat 
weeds 

Total cover of weeds 
25-50% and nil weeds 
or <50% of weed cover 
made up of high threat 
weeds, OR total cover 
of weeds <5%-25% and 
<50% or >50% weeds 
cover made up of high 
threat weeds 

Total cover of weeds 
>50% and nil or <50% 
of weed cover made up 
of high threat weeds 
OR total cover of weeds 
25-50% and >50% of 
weed cover made up of 
high threat weeds 

Total cover of weeds in 
EVC >50% and >50% 
of weed cover made up 
of high threat weeds  

Pest animals No data Threat absent  Identified as minor 
threat  Identified as a key 

threat 

Urban development No data Threat absent  Identified as minor 
threat  Identified as a key 

threat 

Altered hydrology No data 
Hydrologic 
modification activity 
absent 

Hydrologic 
modification activity 
present-  no impact 

Wetland area/shape; 
moderate-low impact 

Hydrological 
modification activity 
present-moderate 
impact 

Hydrological 
modification activity- 
severe impact 

Native vegetation 
decline No data Threat absent  Identified as minor 

threat  Identified as a key 
threat 

Land use No data Reserve, covenant Roadside, rail reserve Urban, industrial or 
mixed dryland grazing Plantations 

Cropping, irrigated 
pasture, centre pivot, 
laser levelling 
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Table D.4: Threat category ranking scale used in WGCMA wetland assessment process.   

Physical alteration No data Wetland area/shape activity 
absent 

Wetland area/shape 
activity present- no 
impact 

Wetland area/shape activity; 
moderate-low impact 

Wetland area/shape 
activity; moderate 
impact 

Activity leading to a 
change in wetland 
area and/or shape- 
severe impact 

Erosion No data Threat absent  Identified as minor threat  Identified as a key 
threat 

Fire regime No data Threat absent  Identified as minor threat  Identified as a key 
threat 

Recreation No data Threat absent  Identified as minor threat  Identified as a key 
threat 

Water source No data 
Wetland primarily filled by 
catchment 
runoff/groundwater/flooding 

 

Wetland filled by 
combination of 
rainfall/groundwater/flooding 
and 
agricultural/irrigation/runoff 
and/or stormwater 

Wetland filled 
primarily by diverted 
farm runoff (i.e. 
grazing) 

Wetland filled 
primarily by irrigation 
runoff/urban 
stormwater 

Salinity No data 
Depth to watertable >5m 
not identified as threat in 
Wetland Database 

Depth to watertable 
>5m and identified as 
minor or key threat in 
Wetland Database 

Depth to watertable 2-<5m 
and identified as minor or 
key threat in Wetland 
Database 

Depth to watertable 
2-<5m and identified 
as major threat in 
Wetland Database or 
depth to watertable 
<2m and/or identified 
as minor threat in 
wetland database 

Depth to watertable 
<2m and/or identified 
as key threat in 
Wetland Database 
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Appendix E                                                       
WGCMA Wetland Inventory Documents 

Original source of the following documents are Appendices 3 and 4 of Greening 
Australia (2006) and are given here with permission. 

Field survey data sheets  
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Field procedure notes   
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Appendix F                                               
Landholder Questionnaires                                                
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Appendix G                                                                                                                                                          
Details of WGCMA Database tables 

Table G.1: Details the WGCMA Wetland Database tables and attributes used in the 2006 WGCMA wetland evaluations for finding 
wetlands of high economic value. These Database tables and attributes with their range of values decided the number of columns (independent 
input variables) used to assemble the Economic data input file for this research.  Explanations and qualifications on the decisions made and 
values assigned are also included for all 12 independent variables were used to represent the economic value inputs under consideration. 

Economic 
value Wetland Database Table No. of 

Columns Range of values Explanation Qualification 

Tourism tblOCommercialUse 1 tourism 0 to 2 
Values assigned to all 
commercial uses: 0 absent, 1 
seasonal, 2 unrestricted 

 

Production 
value 

tblOCommercialUse  
 

3 

food production 0 to 2 
conservation forestry 0 or 
1 
other land use 0 or 1 

Values assigned for food 
production: 0 absent, 1 
seasonal, 2 unrestricted 
Values assigned to both 
conservation forestry & other 
land uses: 0 or 1 for absent or 
present. 

If food production was 
recorded in one of these tables 
and not the other , then a 
value of 2 was chosen as the 
default food production value. 

tblOLandUsePropertyEnterprises 

Drainage 
disposal 

tblBHydrologyModAct 5 

drainage 0 to 3 
disposal of water 0 to 3 
water storage 0 to 3 
obstruction  0 to 3 
redirection  0 to 3 

Values assigned to all 
hydrological uses: 0 absent, 1 
present no impact, 2 moderate 
to low impact, 3 severe impact 
 

Values assigned to each 
hydrology modified activity 
value: 0 absent, 1 no impact 
present, 2 moderate to low 
present, 3 severe. Some 
entries were found recorded in 
both tables so where 
conflicting values were given, 
a maximum of values 
recorded was taken. 

tblOHydrology 1 diverted or farm runoff 
0 to 1 

Values assigned to diverted or 
farm runoff: 0 absent, 1 present 
 

Water  
supply tblOCommercialUse 1 stock water supply 0 to 2 

Values assigned to all 
commercial uses: 0 absent, 1 
seasonal, 2 unrestricted 
 

 

Commercial 
fishing tblOCommercialUse 1 commercial fishing 0 to 2 

Values assigned to all 
commercial uses: 0 absent, 1 
seasonal, 2 unrestricted 
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Table G.2: Details the WGCMA Wetland Database tables and attributes used in the 2006 WGCMA wetland evaluations for finding 
wetlands of high social value. These Database tables and attributes with their range of values decided the number of columns (independent input 
variables) used to assemble the Social data input file for this research.  Explanations and qualifications on the decisions made and values assigned 
are also included for all 12 independent variables were used to represent the social value inputs under consideration. 

Social 
value Wetland Database Table No. of 

Columns Range of values Explanation Qualification 

Recreational 
fishing 

tblOSocialValue 

1 recreational fishing 0 to 3 

Values assigned to each social 
value: 0 no social value, 1 
occasional use, 2 seasonal use 
and 3 frequently used 

 

Swimming 1 swimming 0 to 3 

Camping 1 camping 0 to 3 

Hunting 1 hunting 0 to 3 

Boating 2 boating 0 to 3 
watershiing 0 to 3 

Passive 
recreation 2 passive  recreation 0 to 3 

motor 4WD 0 to 3 
Bird 
watching 1 Bird watching  0 to 3 

Education  2 education 0 to 3 
research 0 to 3 

Park value 

These values were supplied for 
each wetland by the WGCMA 
Wetlands Project Officer, 
Michelle Dickson in December 
2007.  

1 

Values assigned 0 to 5: represents no data available; 1 
represents wetlands not located in a park or reserved crown 
land; 2 represents wetlands located in a State forest or other 
reserved crown land; 3 is used for wetlands located in nature 
conservation reserves or which have historic and cultural 
features documented; 4 for wetlands located in Regional or 
State Parks, Coastal or a Marine and Coastal Park; and, 5 
represents wetlands located in National Parks, Reference 
area or Wilderness area, Marine National Park or Marine 
Sanctuary or Marine Park.   

These values were not stored 
in the database.  The source 
was from Geographic 
Information System available 
to WGCMA using data layer 
(crown land tenure). 
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Table G.3: Details the WGCMA Wetland Database tables and attributes used in the 2006 WGCMA wetland evaluations for finding 
wetlands of high environmental value. These Database tables and attributes with their range of values decided the number of columns 
(independent input variables) used to assemble the Social data input file for this research.  Explanations and qualifications on the decisions made 
and values assigned are also included for all 31 independent variables were used to represent the environmental value inputs under consideration. 

Environmental 
value Wetland Database Table No. of 

Columns Range of values Explanation Qualification 

Wetland rarity tblBPhysical Features 1 wetlands 1 to 7 

1 Permanent  saline wetland , 2 Semipermanent saline,  3 
Shallow freshwater marsh, 4 Freshwater meadow, 5 Deep 
freshwater marsh, 6 Permanent open water, 7 Flooded river 
flat. 

Significant flora tblYFlora 1 floraVROT 0 to 63 

Values assigned to each 
threatened flora value: 0 no 
value, 1 poorly known, 2 rare, 3 
vulnerable, 4 endangered then 
total is summed for each site. 

  

Significant fauna tblYFauna 2 

 
faunaVROT  0 to 12 
 
 
faunaFFG  0 to 4 

Each FaunaVROT value: 1 rare, 
2 vulnerable, 3 endangered and  
then summed for each site. 
Fauna FFG value: 0 or 1 for 
listed as threatened then 
summed for each site 

 

Habitat value 

tblBHabitatBalueWIthinWetland 0 Wetlands 1 to 7  Assumed already and 
included above. 

tblBHabitatValueTerrestrialZone 9 

rocks 0 to 1 
water edge 0 to 2 
logs 0 to 2 
emergent vegetation  0 
to 2 
shallow-medium water 
0 to 2 
exposed substrate 0 to 
2 submerged/free 
floating 0 to 2 
permanent deep water 
0 to 2  other 0 to 2 
 

Values assigned to each 
terrestrial habitat type: 0 absent, 
1 present, 2 abundant 
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Table G.3: continued 

Environmental 
value Wetland Database Table No. of 

Columns Range of values Explanation Qualification 

Habitat value tblBHabitatValueShorelineProfile 4 

Shoreline status 
variables 
 
shrubs 0 to 2 
alive trees 0 to 2 
dead trees 0 to 2 
shoreline description 1 
to 4 
 

Values assigned to each 
terrestrial type: 0 absent, 1 
present, 2 abundant 
 
Value assigned to each shoreline 
description type: 1 regular, 2 
regular with islands, 3 irregular, 
4 irregular with islands 

 

Wetland 
hydrology tblBHydrologyModAct 5 

drainage 0 to 3 
disposal of water 0 to 
3 
water store 0 to 3 
obstruct ion 0 to 3 
redirection  0 to 3 

Values assigned to each 
hydrology modified activity 
value: 0 absent, 1 no impact 
present, 2 moderate to low 
present, 3 severe 

 

Vegetation 
intactness– 
critical lifeforms  

 
TblBPhysicalFeaturesWetlandEVC 
TblBBFFFloraPercentofWetland 

0  

For the WGCMA evaluation, 
only the EVC with the greatest 
% cover was used for 
TblBBFFFloraPercentofWetland 
record. 

All percentages summed 
to 100% so could not 
create different values to 
represent EVC types. 

TblBFFFlora 8 

Values for FloraType 
were:  
graminoids  0 to 60 
shrubs  0 to 50 
herbs  0 to 85 
sedges 0 to 50 
ferns 0 to 30 
grasses 0 to 20 
noSpecies 0 to 79 
substantially modified 
0 or 1 

FloraTypes: trees, graminoids, 
shrubs, herbs, sedges (included 
rushes&reeds), ferns(included 
bryophytes), grasses.  For each 
type, summed the % value. 
 
NoOfSpecies is total count 
 
SubstantiallyModified  0 or 1 
for substantially modified. If 
missing default = 1. 
 

Trees  were  assigned a 
column originally but all 
had values of 0 in input 
data. 

Vegetation 
intactness– width 
of vegetation 
fringe 

tblBFFVegFringe 1 VegWid 0 to 1000 Width of vegetation fringe value 
supplied in table.  
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Table G.4: Details the WGCMA Wetland Database tables and attributes used in the 2006 WGCMA wetland evaluations for finding 
wetlands of threat categories values. 

Threats Wetland Database Table No. of 
Columns Range of values Explanation Qualification 

Loss of wetland 
connectivity 

tblBThreats 

1 

loss of wetland 
connectivity 0 to 2 
atock access 0 to 2 
pest plants 0 to 2 
pest animals 0 to 2 
urban development 0 
to 2 
altered hydrology0 to 
2 
native vegetation 
decline 0 to 2 
land use 0 to 2 
physical alteration 0 to 
2 
erosion 0 to 2 
fire regime 0 to 2 
recreation 0 to 2 
salinity 0 to 2 

Values assigned to each 
hydrology modified activity 
value: 0 absent, 1 minor threat 
present, 2 key threat present 

 

Stock access 1 

Pest plants 1 

Pest animals 1 

Urban 
development 1 

Altered 
hydrology 1 

Native vegetation 
decline 1 

Land use 1 

Physical 
alteration 1 

Erosion 1 

Fire regime 1 

Recreation 1 

Salinity 1 

Water source vtbklookupHydroSource 1 water source 0 to 7 
Values assigned: 1 rainfall, 2 groundwater, 3natural flooding, 
4 diverted farm drainage, 5 irrigation runoff, 6 unknown, 7 
other. 
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Table G.6: Details the WGCMA Wetland Database tables and attributes used in the 2006 WGCMA wetland evaluations for finding 
wetlands of threat categories values that were used only in significant wetland assessments. 

Threats Wetland Database Table No. of 
Columns Range of values Explanation Qualification 

Change in size 
since European 
settlement 

tblBThreats 

1 

change in size  0 to 2 
drainage into wetland 
0 to 2 
eutrophication 0 to 2 
inappropriate grazing 
practices 0 to 2 
lack of reservation 0 to 
2 
resource utilization 0 
to 2 
sedimentation 0 to 2 
 

WGCMA reports state that these additional threat categories 
were used only to access significant wetlands and not the 
catchment wetlands inventoried.  However the Wetlands 
Inventory Database contains records of catchment wetlands 
with values assessed for these threat s. 

Drainage into 
wetland 1 

Eutrophication 1 

Inappropriate 
grazing practices 1 

Lack of 
reservation 1 

Resource 
utilization other 
than grazing 

1 

Sedimentation 1 
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Appendix H                                                                                    
Contingency tables for Economic value attributes 

Table H.1: Contingency table for the Economic value input attributes of tourism and food 
production. The values show the number and percentage of wetlands in the Database 
categorized as very low, low, moderate and high Economic values. The abbreviation Season is 
used for Seasonal, and Unres’d is used for unrestricted. Non-empty cells have been shaded. 

 
Economic 
value 

Food production Commercial fishing 

Total 
Absent 

Present 
Absent 

Present 

Season Unres’d Season Unres’d 

Very low 
Count 21 1 2 24 0 0 

24 
% 88% 4% 8% 100% 0% 0% 

Low 
Count 43 14 52 108 1 0 

109 
% 39% 13% 48% 99% 1% 0% 

Moderate 
Count 8 0 19 27 0 0 

27 
% 30% 0% 70% 100% 0% 0% 

High 
Count 0 0 1 0 1 0 

1 
% 0% 0% 100% 0% 100% 0% 

Total 72 15 74 159 2 0 
161 % within  

Economic value 45% 9% 46% 99% 1% 0% 
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Table H.2: Contingency table for the Economic value input attributes of disposal of water and 
obstruction. The values show the number and percentage of wetlands in the Database categorized as 
very low, low, moderate and high Economic values. The abbreviation Mod has been used for moderate. 
Non-empty cells have been shaded. 

 
Economic 
value 

Disposal of water Obstruction 

Total 
Absent 

Present 
Absent 

Present 

No 
impact 

Mod  to 
low 

impact 

Severe 
impact 

No 
impact 

Mod  to 
low 

impact 

Severe 
impact 

Very low 
Count 22 0 1 1 20 0 2 2 

24 
% 92% 0% 4% 4% 84% 0% 8% 8% 

Low 
Count 96 2 8 3 72 2 22 13 

109 
% 88% 2% 7% 3% 66% 2% 20% 12% 

Moderate 
Count 17 0 5 5 12 0 11 4 

27 
% 63% 0% 19% 19% 64% 0% 18% 18% 

High 
Count 0 0 1 0 0 0 1 0 

1 
% 0% 0% 100% 0% 0% 0% 100% 0% 

Total 135 2 15 9 104 2 36 19 
161 % within  

Economic value 84% 1% 9% 6% 65% 1% 22% 12% 
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Table H.3: Contingency table for the Economic value input attributes of redirection and water 
storage. The values show the number and percentage of wetlands in the Database categorized as very 
low, low, moderate and high Economic values. The abbreviation Mod has been used for moderate. Non-
empty cells have been shaded. 

 
Economic 
value 

Redirection Water storage 

Total 
Absent 

Present 
Absent 

Present 

No 
impact 

Mod  to 
low 

impact 

Severe 
impact 

No 
impact 

Mod  to 
low 

impact 

Severe 
impact 

Very low 
Count 13 0 9 2 24 0 0 0 

24 
% 84% 0% 8% 8% 100% 0% 0% 0% 

Low 
Count 58 0 33 18 104 2 3 0 

109 
% 53% 0% 30% 17% 95% 2% 3% 0% 

Moderate 
Count 9 0 14 4 18 0 4 5 

27 
% 33% 0% 52% 15% 67% 0% 15% 18 

High 
Count 0 0 1 0 0 0 1 0 

1 
% 0% 0% 100% 0% 0% 0% 100% 0% 

Total 80 0 57 24 146 2 8 5 
161 % within  

Economic value 50% 0% 35% 15% 91% 1% 5% 3% 
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Appendix I                                                                                                  
Contingency tables for Social value attributes 

 

Table I.1a: Contingency table for the Social value input attribute of boating.  The 
values show the number and percentage of wetlands in the Database categorized as very 
low, low, moderate and high Social values. Non-empty cells other than for unknown have 
been shaded.   
 

 
Social 
value 
 

Boating 

Total 

 

 
Absent 

Present  

 Occasional Seasonal Frequent  

 
Unknown 

Count 4 0 0 0 
4 

 

 % 100% 0% 0% 0%  

 
Very low 

Count 37 0 0 0 
37 

 

 % 100% 0% 0% 0%  

 
Low 

Count 61 9 4 0 
74 

 

 % 82% 12% 6% 0%  

 
Moderate 

Count 21 6 13 0 
40 

 

 % 53% 15% 32% 0%  

 
High 

Count 1 0 1 3 
5 

 

 % 20% 0% 20% 60%  

 Total 124 15 18 3 
160 

 

 % within 
Social value 78% 9% 11% 2% 
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Table I.1b: Contingency table for the Social value input attribute boating with very 
low and low assessment counts added and moderate and high counts summed.  All 
columns denoting any boating activity have been summed. Values in brackets are the 
expected frequencies for each cell if there is no association between boating and the 
WGCMA Social value assessment. χ2

(df=1) value = 4.357 and one-tailed p-value = 0.0184,  
which is statistically significant. 

  
Social 
value 
 

Boating 
Total 

 

 
Absent Present 

 

 Very low & 
 low 

93 
             (85) 

18             
            (26) 111 

 

 Moderate & 
high 

31 

            (35) 

14 

            (10) 
45 

 

 
Total 124 32 156  
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Table I.2a: Contingency table for the Social value input attribute of camping.  The 
values show the number and percentage of wetlands in the Database categorized as very 
low, low, moderate and high Social values. Non-empty cells other than for unknown have 
been shaded.   
 

 
Social 
value 
 

Camping 

Total 

 

 
Absent 

Present  

 Occasional Seasonal Frequent  

 
Unknown 

Count 4 0 0 0 
4 

 

 % 100% 0% 0% 0%  

 
Very low 

Count 37 0 0 0 
37 

 

 % 100% 0% 0% 0%  

 
Low 

Count 63 10 1 0 
74 

 

 % 85% 14% 1% 0%  

 
Moderate 

Count 30 6 4 0 
40 

 

 % 75% 15% 10% 0%  

 
High 

Count 0 3 2 0 
5 

 

 % 0% 60% 40% 0%  

 Total 134 19 7 0 
160 

 

 % within 
Social value 84% 12% 4% 0% 
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Table I.2b: Contingency table for the Social value input attribute camping with very 
low and low assessment counts added and moderate and high counts summed.  All 
columns denoting any camping activity have been summed. Values in brackets are the 
expected frequencies for each cell if there is no association between camping and the 
WGCMA Social value assessment. χ2

(df=1) value = 12.649 and one-tailed p-value = 0.0002,  
which is extremely statistically significant. 

  
Social 
value 
 

Camping 

Total 

 

 
Absent Present 

 

 Very low & 
 low 

93 
             (85) 

18             
            (26) 111 

 

 Moderate & 
high 

31 

            (35) 

14 

            (10) 
45 

 

 
Total 124 32 156  
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Table I.3a: Contingency table for the Social value input attribute of education.  The 
values show the number and percentage of wetlands in the Database categorized as very 
low, low, moderate and high Social values. Non-empty cells other than for unknown have 
been shaded.    
 

 
Social 
value 
 

Education 

Total 

 

 
Absent 

Present  

 Occasional Seasonal Frequent  

 
Unknown 

Count 2 0 1 1 
4 

 

 % 50% 0% 25% 25%  

 
Very low 

Count 37 0 0 0 
37 

 

 % 100% 0% 0% 0%  

 
Low 

Count 52 14 6 2 
74 

 

 % 70% 19% 8% 3%  

 
Moderate 

Count 14 12 9 5 
40 

 

 % 35% 30% 22% 13%  

 
High 

Count 0 2 0 3 
5 

 

 % 0% 40% 0% 60%  

 Total 105 28 16 11 
160 

 

 % within 
Social value 66% 17% 10% 7% 
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Table I.3b: Contingency table for the Social value input attribute education with very 
low and low assessment counts added and moderate and high counts summed.  All 
columns denoting any educational activity have been summed. Values in brackets are the 
expected frequencies for each cell if there is no association between education and the 
WGCMA Social value assessment. χ2

(df=1) value = 34.369 and one-tailed p-value < 0.0001,  
which is extremely statistically significant. 

  
Social 
value 
 

Camping 

Total 

 

 
Absent Present 

 

 Very low & 
 low 

89 
           (73) 

22             
            (38) 111 

 

 Moderate & 
high 

14 
            (30) 

31 
            (15) 45 

 

 
Total 103 53 156  
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Table I.4a: Contingency table for the Social value input attribute of motorized four-
wheel drive.  The values show the number and percentage of wetlands in the Database 
categorized as very low, low, moderate and high Social values. Non-empty cells other than 
for unknown have been shaded.    
 

 
Social 
value 
 

Motorized four-wheel drive 

Total 

 

 
Absent 

Present  

 Occasional Seasonal Frequent  

 
Unknown 

Count 4 0 0 0 
4 

 

 % 100% 0% 0% 0%  

 
Very low 

Count 36 0 0 1 
37 

 

 % 97% 0% 0% 3%  

 
Low 

Count 57 15 2 0 
74 

 

 % 77% 20% 3% 0%  

 
Moderate 

Count 26 6 2 6 
40 

 

 % 65% 15% 5% 15%  

 
High 

Count 5 0 0 0 
5 

 

 % 100% 0% 0% 0%  

 Total 128 21 4 7 
160 

 

 % within 
Social value 80% 13% 3% 4% 
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Table I.4b: Contingency table for the Social value input attribute motorized four-
wheel drive with very low and low assessment counts added and moderate and high 
counts summed.  All columns denoting any motorized four-wheel drive activity have been 
summed.  Values in brackets are the expected frequencies for each cell if there is no 
association between motorized four-wheel drive and the WGCMA Social value assessment.  
χ2

(df=1) value = 4.357 and one-tailed p-value =0.0184,  which is statistically significant. 

  
Social 
value 
 

Motorized four-wheel drive 

Total 

 

 
Absent Present 

 

 Very low & 
 low 

93 
          (88) 

18            
            (23) 111 

 

 Moderate & 
high 

31 

            (36) 

14 

            (9) 
45 

 

 
Total 124 32 156  

 

  

I-57 
 



Table I.5a: Contingency table for the Social value input attribute of passive recreation.  
The values show the number and percentage of wetlands in the Database categorized as 
very low, low, moderate and high Social values. Non-empty cells other than for unknown 
have been shaded.    
 

 
Social 
value 
 

Passive recreation 

Total 

 

 
Absent 

Present  

 Occasional Seasonal Frequent  

 
Unknown 

Count 2 0 1 1 
4 

 

 % 50% 0% 25% 25%  

 
Very low 

Count 36 0 0 1 
37 

 

 % 97% 0% 0% 3%  

 
Low 

Count 46 17 3 8 
74 

 

 % 62% 23% 4% 11%  

 
Moderate 

Count 5 7 13 15 
40 

 

 % 12% 18% 33% 37%  

 
High 

Count 0 0 0 5 
5 

 

 % 0% 0% 0% 100%  

 Total 89 24 17 30 
160 

 

 % within 
Social value 56% 15% 10% 19% 
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Table I.5b: Contingency table for the Social value input attribute passive recreation 
with very low and low assessment counts added and moderate and high counts 
summed.  All columns denoting any passive recreation activity have been summed. Values 
in brackets are the expected frequencies for each cell if there is no association between 
passive recreation and the WGCMA Social value assessment.  χ2

(df=1) value = 51.132 and 
one-tailed p-value < 0.0001,  which is extremely statistically significant. 

  
Social 
value 
 

Passive recreation 

Total 

 

 
Absent Present 

 

 Very low & 
 low 

82 
          (62) 

29            
            (49) 111 

 

 Moderate & 
high 

5 

            (25) 

40 

            (20) 
45 

 

 
Total 87 69 156  
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Table I.6a: Contingency table for the Social value input attribute of recreational 
fishing.  The values show the number and percentage of wetlands in the Database 
categorized as very low, low, moderate and high Social values. Non-empty cells other than 
for unknown have been shaded.    
 

 
Social 
value 
 

Recreational fishing 

Total 

 

 
Absent 

Present  

 Occasional Seasonal Frequent  

 
Unknown 

Count 3 0 1 1 
4 

 

 % 75% 0% 25% 25%  

 
Very low 

Count 37 0 0 0 
37 

 

 % 100% 0% 0% 0%  

 
Low 

Count 58 15 1 0 
74 

 

 % 79% 20% 1% 0%  

 
Moderate 

Count 14 18 1 7 
40 

 

 % 35% 45% 2% 18%  

 
High 

Count 0 2 0 3 
5 

 

 % 0% 40% 0% 60%  

 Total 112 35 2 11 
160 

 

 % within 
Social value 70% 22% 1% 7% 
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Table I.6b: Contingency table for the Social value input attribute recreational fishing 
with very low and low assessment counts added and moderate and high counts 
summed.  All columns denoting any recreational fishing activity have been summed. 
Values in brackets are the expected frequencies for each cell if there is no association 
between recreational fishing and the WGCMA Social value assessment. χ2

(df=1) value = 
45.136 and one-tailed p-value < 0.0001,  which is extremely statistically significant. 

  
Social 
value 
 

Recreational fishing 

Total 

 

 
Absent Present 

 

 Very low & 
 low 

95 
           (77) 

16             
            (33) 111 

 

 Moderate & 
high 

14 

            (31) 

31 

            (14) 
45 

 

 
Total 109 47 156  
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Table I.7: Contingency table for the Social value input attribute of research.  The 
values show the number and percentage of wetlands in the Database categorized as very 
low, low, moderate and high Social values. Non-empty cells other than for unknown have 
been shaded.    
 

 
Social 
value 
 

Research 

Total 

 

 
Absent 

Present  

 Occasional Seasonal Frequent  

 
Unknown 

Count 4 0 0 0 
4 

 

 % 100% 0% 0% 0%  

 
Very low 

Count 37 0 0 0 
37 

 

 % 100% 0% 0% 0%  

 
Low 

Count 74 0 0 0 
74 

 

 % 100% 0% 0% 0%  

 
Moderate 

Count 40 0 0 0 
40 

 

 % 100% 0% 0% 0%  

 
High 

Count 3 0 0 2 
5 

 

 % 60% 0% 0% 40%  

 Total 158 0 0 2 
160 

 

 % within 
Social value 99% 0% 0% 1% 
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Table I.8a: Contingency table for the Social value input attribute of swimming.  The 
values show the number and percentage of wetlands in the Database categorized as very 
low, low, moderate and high Social values. Non-empty cells other than for unknown have 
been shaded.    
 

 
Social 
value 
 

Swimming 

Total 

 

 
Absent 

Present  

 Occasional Seasonal Frequent  

 
Unknown 

Count 4 0 0 0 
4 

 

 % 100% 0% 0% 0%  

 
Very low 

Count 37 0 0 0 
37 

 

 % 100% 0% 0% 0%  

 
Low 

Count 69 5 0 0 
74 

 

 % 93% 7% 0% 0%  

 
Moderate 

Count 33 0 7 0 
40 

 

 % 83% 0% 17% 0%  

 
High 

Count 2 2 0 1 
5 

 

 % 40% 40% 0% 20%  

 Total 145 7 7 1 
160 

 

 % within 
Social value 91% 4% 4% 1% 
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Table I.8b: Contingency table for the Social value input attribute swimming with very 
low and low assessment counts added and moderate and high counts summed.  All 
columns denoting any swimming activity have been summed. Values in brackets are the 
expected frequencies for each cell if there is no association between swimming and the 
WGCMA Social value assessment.  χ2

(df=1) value = 11.566 and one-tailed p-value = 0.0003,  
which is extremely statistically significant. 

  
Social 
value 
 

Swimming 

Total 

 

 
Absent Present 

 

 Very low & 
 low 

106 
          (100) 

5             
            (11) 111 

 

 Moderate & 
high 

35 

            (41) 

10 

            (4) 
45 

 

 
Total 141 15 156  
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Appendix J                                                                                             
Contingency tables for Environmental value attributes 

Table J.1: Contingency table for the Environmental value significant flora which is 
indicated by sum at each site of all faunal Victorian Rare or Threatened (VROTs) 
species values.   The values show the number and percentage of wetlands in the Database 
categorized as very low, low, moderate, high and very high Environmental values. Non-
empty cells other than for unknown have been shaded. 

Environmental 
value 
 

Significant fauna 

Total Sum of VROT species scores 

0 1 to 2 3 to 4 6 to 7 8 12 

Unknown 
Count 1 0 0 0 0 0 

1 
% 100% 0% 0% 0% 0% 0% 

Very low 
Count 1 0 0 0 0 0 

1 
% 100% 0% 0% 0% 0% 0% 

Low 
Count 27 0 0 0 0 0 

27 
% 100% 0% 0% 0% 0% 0% 

Moderate 
Count 71 3 2 1 0 0 

77 
% 92% 4% 3% 1% 0% 0% 

High 
Count 40 3 5 1 0 0 

49 
% 82% 6% 10% 2% 0% 0% 

Very high 
Count 0 1 3 2 1 1 

8 
% 0% 12% 38% 25% 25% 

Total 140 7 10 4 1 1 

163 % within 
Environmental value 

86% 4% 6% 2% 1% 1% 
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Table J.2:  Contingency table for the Environmental value significant fauna which is 
indicated by sum at each site of all faunal species listed in the Flora and Fauna 
Guarantee (FFG) Act.   The values show the number and percentage of wetlands in the 
Database categorized as very low, low, moderate, high and very high Environmental values. 
Non-empty cells, other than for unknown, have been shaded. 

Environmental 
value 
 

Significant fauna 
Total 

Sum of FFG species scores 

0 1  2 3 4  

Unknown 
Count 1 0 0 0 0 

1 
% 100% 0% 0% 0% 0% 

Very low 
Count 1 0 0 0 0 

1 
% 100% 0% 0% 0% 0% 

Low 
Count 27 0 0 0 0 

27 
% 100% 0% 0% 0% 0% 

Moderate 
Count 74 2 1 0 0 

77 
% 97% 3% 1% 0% 0% 

High 
Count 42 7 0 0 0 

49 
% 86% 14% 0% 0% 0% 

Very high 
Count 1 4 1 1 1 

8 
% 13% 50% 12% 25% 

Total 146 13 2 1 1 

163 % within 
Environmental value 

90% 8% 1% 1% 

 

  

J-66 
 



Table J.3a: Contingency table for the terrestrial zone habitat type subattribute of 
emergent vegetation against overall Environmental value assessment.   The values 
show the number and percentage of wetlands in the Database categorized as very low, low, 
moderate, high and very high Environmental values. Non-empty cells other than for 
unknown have been shaded. 

 

 
Environmental 
value 
 

Habitat value  

 Terrestrial zone habitat type  

 Emergent vegetation  

 
Absent 

Present 
Total 

 

 Usually Abundant  

 
Unknown 

Count 0 0 1 
1 

 

 % 0% 0% 100%  

 
Very low 

Count 0 0 1 
1 

 

 % 0% 0% 100%  

 
Low 

Count 6 18 3 
27 

 

 % 22% 67% 11%  

 
Moderate 

Count 3 33 41 
77 

 

 % 4% 43% 53%  

 
High 

Count 3 7 39 
49 

 

 % 6% 14% 80%  

 
Very high 

Count 0 0 8 
8 

 

 % 0% 0% 100%  

 Total 12 58 93 

163 

 

 % within 
Environmental value 7% 36% 57% 
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Table J.3b: Contingency table for the attribute emergent vegetation with very low and 
low Environmental value counts added and moderate, high and very high counts 
summed.  All columns denoting any emergent vegetation presence have been summed. 
Values in brackets are the expected frequencies for each cell if there is no association 
between emergent vegetation and the WGCMA Environmental value assessment. χ2

(df=1) 
value = 9.703 and one-tailed p-value = 0.0009,  which is extremely statistically significant. 

  
Environmental 
value 
 

Emergent vegetation 

Total 

 

 
Absent Present 

 

 Very low & 
low  

6 
          (2) 

22 
              (26) 

28 
 

 Moderate, high & 
very high 

6 
         (10) 

128 
           (124) 

134 
 

 
Total 12 150 162  
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Table J.4a: Contingency table for the terrestrial zone habitat type subattribute of 
exposed substrate against overall Environmental value assessment.   The values show 
the number and percentage of wetlands in the Database categorized as very low, low, 
moderate, high and very high Environmental values. Non-empty cells other than for 
unknown have been shaded. 

 

 
Environmental 
value 
 

Habitat value  

 Terrestrial zone habitat type  

 Exposed substrate  

 
Absent 

Present 
Total 

 

 Usually Abundant  

 
Unknown 

Count 1 0 0 
1 

 

 % 100% 0% 0%  

 
Very low 

Count 0 1 0 
1 

 

 % 0% 100% 0%  

 
Low 

Count 10 13 4 
27 

 

 % 37% 48% 15%  

 
Moderate 

Count 20 39 18 
77 

 

 % 26% 51% 23%  

 
High 

Count 14 24 11 
49 

 

 % 29% 49% 22%  

 
Very high 

Count 4 3 1 
8 

 

 % 50% 38% 12%  

 Total 49 80 34 

163 

 

 % within 
Environmental value 30% 49% 21% 
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Table J.4b: Contingency table for the attribute exposed substrate with very low, low 
and moderate Environmental value counts added and high and very high counts 
summed.  All columns denoting any exposed substrate presence have been summed. 
Values in brackets are the expected frequencies for each cell if there is no association 
between exposed substrate and the WGCMA Environmental value assessment.  χ2

(df=1) 
value = 0.160 and one-tailed p-value = 0.3445,  which is not statistically significant. 

  
Environmental 
value 
 

Exposed substrate 

Total 

 

 
Absent Present 

 

 Very low, low & 
moderate 

30 
                (31) 

75 
              (74) 

105 
 

 
High & very high 

18 
              (17) 

39 
           (40) 

57 
 

 
Total 48 114 162  
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Table J.5a: Contingency table for the terrestrial zone habitat type subattribute of logs 
against overall Environmental value assessment.  The values show the number and 
percentage of wetlands in the Database categorized as very low, low, moderate, high and 
very high Environmental values. Non-empty cells other than for unknown have been 
shaded. 

 

 
Environmental 
value 
 

Habitat value  

 Terrestrial zone habitat type  

 Logs  

 
Absent 

Present 
Total 

 

 Usually Abundant  

 
Unknown 

Count 1 0 0 
1 

 

 % 100% 0% 0%  

 
Very low 

Count 0 1 0 
1 

 

 % 0% 100% 0%  

 
Low 

Count 22 5 0 
27 

 

 % 82% 18% 0%  

 
Moderate 

Count 22 42 13 
77 

 

 % 29% 54% 17%  

 
High 

Count 14 28 7 
49 

 

 % 29% 57% 14%  

 
Very high 

Count 3 4 1 
8 

 

 % 37% 50% 13%  

 Total 62 80 21 

163 

 

 % within 
Environmental value 38% 49% 13% 
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Table J.5b: Contingency table for the attribute logs with very low and low 
Environmental value counts added and moderate, high and very high counts summed.  
All columns denoting any log presences have been summed. Values in brackets are the 
expected frequencies for each cell if there is no association between logs and the WGCMA 
Environmental value assessment.  χ2

(df=1) value = 24.141 and one-tailed p-value < 0.0001,  
which is extremely statistically significant. 

  
Environmental 
value 
 

Logs 

Total 

 

 
Absent Present 

 

 Very low & 
low  

22 
               (11) 

6 
              (17) 

28 
 

 Moderate, high & 
very high 

39 
               (50) 

95 
           (84) 

134 
 

 
Total 61 101 162  

  

J-72 
 



Table J.6: Contingency table for the terrestrial zone habitat type subattribute of other 
against overall Environmental value assessment.  The values show the number and 
percentage of wetlands in the Database categorized as very low, low, moderate, high and 
very high Environmental values. Non-empty cells other than for unknown have been 
shaded. 

 

 
Environmental 
value 
 

Habitat value  

 Terrestrial zone habitat type  

 Other  

 
Absent 

Present 
Total 

 

 Usually Abundant  

 
Unknown 

Count 1 0 0 
1 

 

 % 100% 0% 0%  

 
Very low 

Count 1 0 0 
1 

 

 % 100% 0% 0%  

 
Low 

Count 25 1 1 
27 

 

 % 92% 4% 4%  

 
Moderate 

Count 74 1 2 
77 

 

 % 96% 1% 3%  

 
High 

Count 47 1 1 
49 

 

 % 96% 2% 2%  

 
Very high 

Count 6 1 1 
8 

 

 % 75% 25%  

 Total 154 4 5 

163 

 

 % within 
Environmental value 95% 2% 3% 
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Table J.7a: Contingency table for the terrestrial zone habitat type subattribute of 
permanent deep pools against overall Environmental value assessment.  The values 
show the number and percentage of wetlands in the Database categorized as very low, low, 
moderate, high and very high Environmental values. Non-empty cells other than for 
unknown have been shaded. 

 

 
Environmental 
value 
 

Habitat value  

 Terrestrial zone habitat type  

 Permanent deep pools  

 
Absent 

Present 
Total 

 

 Usually Abundant  

 
Unknown 

Count 0 0 1 
1 

 

 % 0% 0% 100%  

 
Very low 

Count 1 0 0 
1 

 

 % 100% 0% 0%  

 
Low 

Count 22 1 4 
27 

 

 % 81% 4% 15%  

 
Moderate 

Count 56 7 14 
77 

 

 % 73% 9% 18%  

 
High 

Count 41 2 6 
49 

 

 % 84% 4% 12%  

 
Very high 

Count 6 2 0 
8 

 

 % 75% 25% 0%  

 Total 126 12 25 

163 

 

 % within 
Environmental value 77% 8% 15% 
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Table J.7b: Contingency table for the subattribute permanent deep pools at a site with 
very low and low Environmental value counts added and moderate, high and very 
high counts summed.  All columns denoting permanent deep pools presence have been 
summed. Values in brackets are the expected frequencies for each cell if there is no 
association between permanent deep pools and the WGCMA Environmental value 
assessment.  χ2

(df=1) value = 0.373 and one-tailed p-value = 0.2706,  which is not statistically 
significant. 

  
Environmental 
value 
 

Permanent deep pools 

Total 

 

 
Absent Present 

 

 Very low & 
low  

23 
               (22) 

5 
              (6) 

28 
 

 Moderate, high & 
very high 

103 
              (104) 

31 
             (30) 

134 
 

 
Total 126 36 162  

 

Table J.7c: Contingency table for the attribute permanent deep pools at a site with 
very low, low and moderate Environmental value counts added and high and very 
high counts summed.  All columns denoting any permanent deep pools presence have 
been summed. Values in brackets are the expected frequencies for each cell if there is no 
association between permanent deep pools and the WGCMA Environmental value 
assessment.  χ2

(df=1) value = 1.114 and one-tailed p-value = 0.1456,  which is not statistically 
significant. 

  
Environmental 
value 
 

Permanent deep pools 

Total 

 

 
Absent Present 

 

 Very low, low & 
moderate 

79 
            (82) 

26 
         (23) 

105 
 

 
High & very high 

47 
           (44) 

10 
         (13) 

57 
 

 
Total 126 36 162  
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Table J.8: Contingency table for the terrestrial zone habitat type subattribute of rocks 
against overall Environmental value assessment.  The values show the number and 
percentage of wetlands in the Database categorized as very low, low, moderate, high and 
very high Environmental values. Non-empty cells other than for unknown have been 
shaded. 

 

 
Environmental 
value 
 

Habitat value  

 Terrestrial zone habitat type  

 Rocks  

 
Absent 

Present 
Total 

 

 Usually Abundant  

 
Unknown 

Count 1 0 0 
1 

 

 % 100% 0% 0%  

 
Very low 

Count 1 0 0 
1 

 

 % 100% 0% 0%  

 
Low 

Count 26 1 0 
27 

 

 % 96% 4% 0%  

 
Moderate 

Count 75 2 0 
77 

 

 % 97% 3% 0%  

 
High 

Count 37 12 0 
49 

 

 % 76% 24% 0%  

 
Very high 

Count 4 3 1 
8 

 

 % 50% 37% 13%  

 Total 144 18 1 

163 

 

 % within 
Environmental value 88% 11% 1% 

 

  

J-76 
 



Table J.9a: Contingency table for the terrestrial zone habitat type subattribute of 
shallow to medium depth water against overall Environmental value assessment.  The 
values show the number and percentage of wetlands in the Database categorized as very 
low, low, moderate, high and very high Environmental values. Non-empty cells other than 
for unknown have been shaded. 

 

 
Environmental 
value 
 

Habitat value  

 Terrestrial zone habitat type  

 Shallow to medium depth water  

 
Absent 

Present 
Total 

 

 Usually Abundant  

 
Unknown 

Count 1 0 0 
1 

 

 % 100% 0% 0%  

 
Very low 

Count 0 1 0 
1 

 

 % 0% 100% 0%  

 
Low 

Count 18 6 3 
27 

 

 % 67% 22% 11%  

 
Moderate 

Count 34 21 22 
77 

 

 % 44% 27% 29%  

 
High 

Count 27 7 15 
49 

 

 % 55% 14% 31%  

 
Very high 

Count 3 2 3 
8 

 

 % 38% 24% 38%  

 Total 83 37 43 

163 

 

 % within 
Environmental value 51% 23% 26% 

 

  

J-77 
 



Table J.9b: Contingency table for the attribute shallow to medium depth water at a 
site with very low and low Environmental value counts added and moderate, high and 
very high counts summed.  All columns denoting any shallow to medium depth water 
presence have been summed. Values in brackets are the expected frequencies for each cell 
if there is no association between shallow to medium depth water and the WGCMA 
Environmental value assessment.  χ2

(df=1) value = 3.744 and one-tailed p-value =0.0265,  
which is statistically significant. 

  
Environmental 
value 
 

Shallow to medium depth 
water 

Total 

 

 
Absent Present 

 

 Very low & 
low  

19 
          (14) 

9 
              (14) 

28 
 

 Moderate, high & 
very high 

64 
         (69) 

70 
           (65) 

134 
 

 
Total 83 79 162  

 

Table J.9c: Contingency table for the attribute shallow to medium depth water at a 
site with very low, low and moderate Environmental value counts added and high and 
very high counts summed.  All columns denoting any shallow to medium depth water 
presence have been summed. Values in brackets are the expected frequencies for each cell 
if there is no association between shallow to medium depth water and the WGCMA 
Environmental value assessment.  χ2

(df=1) value = 0.069 and one-tailed p-value =0.3966,  
which is not statistically significant. 

  
Environmental 
value 
 

Shallow to medium depth 
water 

Total 

 

 
Absent Present 

 

 Very low, low & 
moderate 

        53 
            (54) 

52 
         (51) 

105 
 

 
High & very high 

30 
           (29) 

27 
         (28) 

57 
 

 
Total 83 79 162  

  

J-78 
 



Table J.10a: Contingency table for the terrestrial zone habitat type subattribute of 
submerged or free-floating vegetation against overall Environmental value assessment.   
The values show the number and percentage of wetlands in the Database categorized as 
very low, low, moderate, high and very high Environmental values. Non-empty cells other 
than for unknown have been shaded. 

 

 
Environmental 
value 
 

Habitat value  

 Terrestrial zone habitat type  

 Submerged or free-floating vegetation  

 
Absent 

Present 
Total 

 

 Usually Abundant  

 
Unknown 

Count 0 0 1 
1 

 

 % 0% 0% 100%  

 
Very low 

Count 0 0 1 
1 

 

 % 0% 0% 100%  

 
Low 

Count 21 6 0 
27 

 

 % 78% 22% 0%  

 
Moderate 

Count 35 34 8 
77 

 

 % 46% 44% 10%  

 
High 

Count 27 18 4 
49 

 

 % 55% 37% 8%  

 
Very high 

Count 4 4 0 
8 

 

 % 50% 50% 0%  

 Total 87 63 13 

163 

 

 % within 
Environmental value 53% 39% 8% 

 

 

 

  

J-79 
 



Table J.10b: Contingency table for the attribute submerged or free-floating vegetation 
with very low and low Environmental value counts added and moderate, high and 
very high counts summed.  All columns denoting any submerged or free-floating 
vegetation presences have been summed. Values in brackets are the expected frequencies 
for each cell if there is no association between submerged or free-floating vegetation and 
the WGCMA Environmental value assessment.  χ2

(df=1) value = 6.175 and one-tailed p-value 
= 0.0065,  which is statistically significant. 

  
Environmental 
value 
 

Submerged or free-floating 
vegetation 

Total 

 

 
Absent Present 

 

 Very low & 
low  

21 
          (15) 

7 
              (13) 

28 
 

 Moderate, high & 
very high 

66 
         (72) 

68 
           (62) 

134 
 

 
Total 87 75 162  

 

Table J.10c: Contingency table for the attribute submerged or free-floating vegetation 
at a site with very low, low and moderate Environmental value counts added and high 
and very high counts summed.  All columns denoting any submerged or free-floating 
vegetation presences have been summed. Values in brackets are the expected frequencies 
for each cell if there is no association between submerged or free-floating and the 
WGCMA Environmental value assessment.   χ2

(df=1) value = 0.016 and one-tailed p-value = 
0.4490,  which is not statistically significant. 

  
Environmental 
value 
 

Submerged or free-floating 
vegetation 

Total 

 

 
Absent Present 

 

 Very low, low & 
moderate 

        56 
            (56) 

49 

         (49) 

105  

 
High & very high 31 

           (31) 

26 

         (26) 

57   

 
Total 87 75 162  

  

J-80 
 



Table J.11a: Contingency table for the terrestrial zone habitat type subattribute of 
water edge against overall Environmental value assessment.  The values show the 
number and percentage of wetlands in the Database categorized as very low, low, moderate, 
high and very high Environmental values. Non-empty cells other than for unknown have 
been shaded. 

 

 
Environmental 
value 
 

Habitat value  

 Terrestrial zone habitat type  

 Water edge  

 
Absent 

Present 
Total 

 

 Usually Abundant  

 
Unknown 

Count 0 1 0 
1 

 

 % 0% 100% 0%  

 
Very low 

Count 0 1 0 
1 

 

 % 0% 100% 0%  

 
Low 

Count 13 8 6 
27 

 

 % 48% 30% 22%  

 
Moderate 

Count 4 39 34 
77 

 

 % 5% 51% 44%  

 
High 

Count 3 10 36 
49 

 

 % 6% 20% 74%  

 
Very high 

Count 0 1 7 
8 

 

 % 0% 12% 88%  

 Total 20 60 83 

163 

 

 % within 
Environmental value 12% 37% 51% 

 

 

 

  

J-81 
 



Table J.11b: Contingency table for the attribute water edge with very low and low 
Environmental value counts added and moderate, high and very high counts summed.  
All columns denoting water edge presences have been summed. Values in brackets are the 
expected frequencies for each cell if there is no association between water edge and the 
WGCMA Environmental value assessment.  χ2

(df=1) value = 36.337 and one-tailed p-value < 
0.0001,  which is extremely statistically significant. 

  
Environmental 
value 
 

Water edge 

Total 

 

 
Absent Present 

 

 Very low & 
low  

13 
          (3) 

15 
              (25) 

28 
 

 Moderate, high & 
very high 

7 
         (17) 

127 
           (117) 

134 
 

 
Total 20 142 162  

  

J-82 
 



Table J.12a: Contingency table for the shoreline vegetation subattribute of alive trees 
against overall Environmental value assessment.   The values show the number and 
percentage of wetlands in the Database categorized as very low, low, moderate, high and 
very high Environmental values. Non-empty cells other than for unknown have been 
shaded. 

 

 
Environmental 
value 
 

Habitat value  

 Shoreline profile  

 Shoreline vegetation  

Alive trees 

 
Absent 

Present 
Total 

 

 Usually Abundant  

 
Unknown 

Count 1 0 0 
1 

 

 % 100% 0% 0%  

 
Very low 

Count 0 0 1 
1 

 

 % 0% 0% 100%  

 
Low 

Count 17 7 3 
27 

 

 % 63% 26% 11%  

 
Moderate 

Count 11 39 27 
77 

 

 % 14% 51% 35%  

 
High 

Count 4 7 38 
49 

 

 % 8% 14% 78%  

 
Very high 

Count 0 3 8 
8 

 

 % 0% 37% 63%  

 Total 33 56 74 

163 

 

 % within 
Environmental value 20% 35% 45% 

 

  

J-83 
 



Table J.12b: Contingency table for the attribute shoreline vegetation alive trees with 
very low and low Environmental value counts added and moderate, high and very 
high counts summed.  All columns denoting shoreline vegetation alive trees presence have 
been summed. Values in brackets are the expected frequencies for each cell if there is no 
association between shoreline vegetation alive trees and the WGCMA Environmental value 
assessment.   χ2

(df=1) value = 35.830 and one-tailed p-value < 0.0001,  which is extremely 
statistically significant. 

  
Environmental 
value 
 

Alive trees 

Total 

 

 
Absent Present 

 

 Very low & 
low  

17 
               (6) 

11 
              (22) 

28 
 

 Moderate, high & 
very high 

15 
              (26) 

119 
           (108) 

134 
 

 
Total 32 130 162  

  

J-84 
 



Table J.13a: Contingency table for the shoreline vegetation subattribute of dead trees 
against overall Environmental value assessment.   The values show the number and 
percentage of wetlands in the Database categorized as very low, low, moderate, high and 
very high Environmental values. Non-empty cells other than for unknown have been 
shaded. 

 

 
Environmental 
value 
 

Habitat value  

 Shoreline profile  

 Shoreline vegetation  

Dead trees 

 
Absent 

Present 
Total 

 

 Usually Abundant  

 
Unknown 

Count 1 0 0 
1 

 

 % 100% 0% 0%  

 
Very low 

Count 0 1 0 
1 

 

 % 0% 100% 0%  

 
Low 

Count 21 6 0 
27 

 

 % 78% 22% 0%  

 
Moderate 

Count 33 37 7 
77 

 

 % 43% 48% 9%  

 
High 

Count 9 35 5 
49 

 

 % 18% 72% 10%  

 
Very high 

Count 1 5 2 
8 

 

 % 12% 63% 25%  

 Total 65 84 14 

163 

 

 % within 
Environmental value 40% 51% 9% 

 

  

J-85 
 



Table J.13b: Contingency table for the attribute shoreline vegetation dead trees with 
very low and low Environmental value counts added and moderate, high and very 
high counts summed.  All columns denoting shoreline vegetation dead trees presence have 
been summed. Values in brackets are the expected frequencies for each cell if there is no 
association between shoreline vegetation dead trees and the WGCMA Environmental value 
assessment.  χ2

(df=1) value = 17.844 and one-tailed p-value < 0.0001,  which is extremely 
statistically significant. 

  
Environmental 
value 
 

Dead trees 

Total 

 

 
Absent Present 

 

 Very low & 
low  

21 
          (11) 

7 
              (17) 

28 
 

 Moderate, high & 
very high 

43 
         (53) 

91 
           (81) 

134 
 

 
Total 64 98 162  

 

Table J.13c: Contingency table for the attribute shoreline vegetation dead trees with 
very low, low and moderate Environmental value counts added and high and very 
high counts summed.  All columns denoting any shoreline vegetation dead trees presence 
have been summed. Values in brackets are the expected frequencies for each cell if there is 
no association between shoreline vegetation dead trees and the WGCMA Environmental 
value assessment.  χ2

(df=1) value = 17.749 and one-tailed p-value < 0.0001,  which is 
extremely statistically significant. 

  
Environmental 
value 
 

Dead trees 

Total 

 

 
Absent Present 

 

 Very low, low & 
moderate 

54 
          (41) 

51 
              (64) 

105  

 
High & very high 

10 
         (23) 

47 
           (34) 

57   

 
Total 64 98 162  

  

J-86 
 



Table J.14a:   Contingency table for the shoreline profile, shoreline description of a 
site against overall WGCMA Environmental value assessment.   The values show the 
number and percentage of wetlands in the Database categorized as very low, low, moderate, 
high and very high Environmental values. Non-empty cells other than for unknown have 
been shaded.  Unk’n is the abbreviation for unknown physical arrangement. 

 
Environmental 
value 
 

Habitat value 

Total 

Shoreline profile 

Shoreline description 

Unk’n 
Regular Irregular 

No 
island 

With 
island 

No 
island 

With 
island 

Unknown 
Count 0 1 0 0 0 

1 
% 0% 100% 0% 0% 0% 

Very low 
Count 0 1 0 0 0 

1 
% 0% 100% 0% 0% 0% 

Low 
Count 2 12 0 11 2 

27 
% 7% 45% 0% 41% 7% 

Moderate 
Count 3 18 1 51 4 

77 
% 4% 24% 1% 66% 5% 

High 
Count 1 21 0 25 2 

49 
% 2% 43% 0% 51% 4% 

Very high 
Count 0 3 0 4 1 

8 
% 0% 38% 0% 50% 12% 

Total 6 56 1 91 9 

163 % within  
Environmental value 

4% 34% 1% 56% 5% 

 

  

J-87 
 



Table J.14b: Contingency table for the attribute shoreline profile, shoreline 
description with very low and low Environmental value counts added and moderate, 
high and very high counts summed.  Values in brackets are the expected frequencies for 
each cell if there is no association between shoreline profile physical arrangement and the 
WGCMA Environmental value assessment.  χ2

(df=1) value = 2.697 and one-tailed p-value = 
0.0503,  which is not quite statistically significant. 

  
Environmental 
value 
 

Shoreline description 

Total 

 

 
Regular Irregular 

 

 Very low & 
low  

13 
                (9) 

13 
              (17) 

26 
 

 Moderate, high & 
very high 

43 
              (47) 

87 
           (83) 

130 
 

 
Total 56 100 156  

 

Table J.14c: Contingency table for the attribute shoreline profile, shoreline 
description with very low, low and moderate Environmental value counts added and 
high and very high counts summed.  Values in brackets are the expected frequencies for 
each cell if there is no association between shoreline profile physical arrangement and the 
WGCMA Environmental value assessment.   χ2

(df=1) value = 1.839 and one-tailed p-value = 
0.0875,  which is not statistically significant. 

  
Environmental 
value 
 

Shoreline description 

Total 

 

 
Regular Irregular 

 

 Very low, low & 
moderate 

32 
               (36) 

68 
              (64) 

100 
 

 
High & very high 

24 
              (20) 

32 
              (36) 

56 
  

 
Total 56 100 156  

  

J-88 
 



Table J.15a: Contingency table for the attribute disposal of water against overall 
Environmental value assessment.   The values show the number and percentage of 
wetlands in the Database categorized as very low, low, moderate, high and very high 
Environmental values. Non-empty cells other than for unknown have been shaded. 

 

 
Environmental 
value 
 

Hydrology  

 Disposal of water  

 

Absent 

Present 

Total 

 

 No   
impact 

Low to 
moderate 
impact  

Severe 
impact 

 

 
Unknown 

Count 1 0 0 0 
1 

 

 % 100% 0% 0% 0%  

 
Very low 

Count 1 0 0 0 
1 

 

 % 100% 0% 0% 0%  

 
Low 

Count 22 0 3 2 
27 

 

 % 82% 0% 11% 7%  

 
Moderate 

Count 59 2 10 6 
77 

 

 % 77% 3% 12% 8%  

 
High 

Count 46 0 3 0 
49 

 

 % 94% 0% 6% 0%  

 
Very high 

Count 8 0 0 0 
8 

 

 % 100% 0% 0% 0%  

 Total 137 2 16 8 
163 

 

 % within 
Environmental value 84% 1% 10% 5% 

 

 

 

  

J-89 
 



Table J.15b: Contingency table for the attribute disposal of water with very low and 
low Environmental value counts added and moderate, high and very high counts 
summed.  All columns denoting any disposal of water activity have been summed. Values 
in brackets are the expected frequencies for each cell if there is no association between 
disposal of water and the WGCMA Environmental value assessment.   χ2

(df=1) value = 0.082 
and one-tailed p-value = 0.3872,  which is not statistically significant. 

  
Environmental 
value 
 

Disposal of water 

Total 

 

 
Absent Present 

 

 Very low & 
low  

23 
               (24) 

5 
              (4) 

28 
 

 Moderate, high & 
very high 

113 
             (112) 

21 
              (22) 

134 
 

 
Total 136 26 162  

  

J-90 
 



Table J.16a: Contingency table for the attribute obstruction against overall 
Environmental value assessment.   The values show the number and percentage of 
wetlands in the Database categorized as very low, low, moderate, high and very high 
Environmental values. Non-empty cells other than for unknown have been shaded. 

 

 
Environmental 
value 
 

Hydrology  

 Obstruction  

 

Absent 

Present 

Total 

 

 No   
impact 

Low to 
moderate 
impact  

Severe 
impact 

 

 
Unknown 

Count 1 0 0 0 
1 

 

 % 100% 0% 0% 0%  

 
Very low 

Count 1 0 0 0 
1 

 

 % 100% 0% 0% 0%  

 
Low 

Count 11 0 8 8 
27 

 

 % 40% 0% 30% 30%  

 
Moderate 

Count 43 1 25 8 
77 

 

 % 56% 1% 33% 10%  

 
High 

Count 42 1 3 3 
49 

 

 % 86% 2% 6% 6%  

 
Very high 

Count 8 0 0 0 
8 

 

 % 100% 0% 0% 0%  

 Total 106 2 36 19 
163 

 

 % within 
Environmental value 65% 1% 22% 12% 

 

  

J-91 
 



Table J.16b: Contingency table for the attribute obstruction with very low and low 
Environmental value counts added and moderate, high and very high counts summed.  
All columns denoting any obstruction activity have been summed. Values in brackets are 
the expected frequencies for each cell if there is no association between obstruction and the 
WGCMA Environmental value assessment.   χ2

(df=1) value = 7.157 and one-tailed p-value = 
0.0037,  which is statistically significant. 

  
Environmental 
value 
 

Obstruction 

Total 

 

 
Absent Present 

 

 Very low & 
low  

12 
               (18) 

16 
              (10) 

28 
 

 Moderate, high & 
very high 

93 
              (87) 

41 
             (47) 

134 
 

 
Total 105 57 162  

 

Table J.16c: Contingency table for the attribute obstruction with very low, low and 
moderate Environmental value counts added and high and very high counts summed.  
All columns denoting any obstruction activity have been summed. Values in brackets are 
the expected frequencies for each cell if there is no association between obstruction and the 
WGCMA Environmental value assessment.   χ2

(df=1) value = 20.231 and one-tailed p-value 
< 0.0001,  which is extremely statistically significant. 

  
Environmental 
value 
 

Obstruction 

Total 

 

 
Absent Present 

 

 Very low, low & 
moderate 

55 
              (68) 

50 
               (37) 

105 
 

 
High & very high 

50 
             (37) 

7 
              (20) 

57 
  

 
Total 105 57 162  

  

J-92 
 



Table J.17a: Contingency table for the attribute redirection against overall 
Environmental value assessment.  The values show the number and percentage of 
wetlands in the Database categorized as very low, low, moderate, high and very high 
Environmental values. Non-empty cells other than for unknown have been shaded. 

 

 
Environmental 
value 
 

Hydrology  

 Redirection  

 

Absent 

Present 

Total 

 

 No   
impact 

Low to 
moderate 
impact  

Severe 
impact 

 

 
Unknown 

Count 0 0 1 0 
1 

 

 % 0% 0% 100% 0%  

 
Very low 

Count 1 0 0 0 
1 

 

 % 100% 0% 0% 0%  

 
Low 

Count 9 0 10 8 
27 

 

 % 33% 0% 37% 30%  

 
Moderate 

Count 24 0 37 16 
77 

 

 % 31% 0% 48% 21%  

 
High 

Count 38 0 9 2 
49 

 

 % 78% 0% 18% 4%  

 
Very high 

Count 7 0 1 0 
8 

 

 % 88% 0% 12% 0%  

 Total 79 0 58 26 
163 

 

 % within 
Environmental value 48% 0% 36% 16% 
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Table J.17b: Contingency table for the attribute redirection with very low and low 
Environmental value counts added and moderate, high and very high counts summed.  
All columns denoting any redirection activity have been summed. Values in brackets are 
the expected frequencies for each cell if there is no association between redirection and the 
WGCMA Environmental value assessment.   χ2

(df=1) value = 2.308 and one-tailed p-value = 
0.0644,,  which is not statistically significant. 

  
Environmental 
value 
 

Redirection 

Total 

 

 
Absent Present 

 

 Very low & 
low  

10 
              (14) 

18 
              (14) 

28 
 

 Moderate, high & 
very high 

69 
             (65) 

65 
             (69) 

134 
 

 
Total 79 83 162  

 

Table J.17c: Contingency table for the attribute redirection with very low, low and 
moderate Environmental value counts added and high and very high counts summed.  
All columns denoting any redirection activity have been summed. Values in brackets are 
the expected frequencies for each cell if there is no association between redirection and the 
WGCMA Environmental value assessment.   χ2

(df=1) value = 32.064 and one-tailed p-value 
< 0.0001,  which is extremely statistically significant. 

  
Environmental 
value 
 

Redirection 

Total 

 

 
Absent Present 

 

 Very low, low & 
moderate 

34 
              (51) 

71 
               (54) 

105 
 

 
High & very high 

45 
             (28) 

12 
              (29) 

57 
  

 
Total 79 83 162  

  

J-94 
 



Table J.18a: Contingency table for the attribute water storage against overall 
Environmental value assessment.  The values show the number and percentage of 
wetlands in the Database categorized as very low, low, moderate, high and very high 
Environmental values. Non-empty cells other than for unknown have been shaded. 

 

 
Environmental 
value 
 

Hydrology  

 Water storage  

 

Absent 

Present 

Total 

 

 No   
impact 

Low to 
moderate 
impact  

Severe 
impact 

 

 
Unknown 

Count 1 0 0 0 
1 

 

 % 100% 0% 0% 0%  

 
Very low 

Count 1 0 0 0 
1 

 

 % 100% 0% 0% 0%  

 
Low 

Count 21 0 4 2 
27 

 

 % 78% 0% 15% 7%  

 
Moderate 

Count 71 0 4 2 
77 

 

 % 92% 0% 5% 3%  

 
High 

Count 46 2 1 0 
49 

 

 % 94% 4% 2% 0%  

 
Very high 

Count 8 0 0 0 
8 

 

 % 100% 0% 0% 0%  

 Total 148 2 9 4 
163 

 

 % within 
Environmental value 91% 1% 6% 2% 
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Table J.18b: Contingency table for the attribute water storage with very low and low 
Environmental value counts added and moderate, high and very high counts summed.  
All columns denoting any water storage activity have been summed. Values in brackets are 
the expected frequencies for each cell if there is no association between water storage and 
the WGCMA Environmental value assessment.   χ2

(df=1) value = 5.967 and one-tailed p-
value =0.0073,  which is very statistically significant. 

  
Environmental 
value 
 

Water storage 

Total 

 

 
Absent Present 

 

 Very low & 
low  

22 
               (25) 

6 
                (3) 

28 
 

 Moderate, high & 
very high 

125 
              (122) 

9 
              (12) 

134 
 

 
Total 147 15 162  

 

 

 

 

 

  

J-96 
 



Table J.19a: Contingency table for the percentage total ferns coverage at a site against 
overall WGCMA Environmental value assessment.   The values show the number and 
percentage of wetlands in the Database categorized as very low, low, moderate, high and 
very high Environmental values. Non-empty cells other than unknown and totals have been 
shaded.  

 
Environmental 
value 
 

Vegetation intactness– critical lifeforms 

Total 
Floral types of most dominant wetland EVC 

Sum of % ferns coverage per site 

0% 1 to 
19% 

20 to 
39% 

40 to 
59% 

60 to 
79% ≥ 80% 

Unknown 
Count 1 0 0 0 0 0 

1 
% 100% 0% 0% 0% 0% 0% 

Very low 
Count 1 0 0 0 0 0 

1 
% 100% 0% 0% 0% 0% 0% 

Low 
Count 26 1 0 0 0 0 

27 
% 96% 4% 0% 0% 0% 0% 

Moderate 
Count 70 7 0 0 0 0 

77 
% 91% 9% 0% 0% 0% 0% 

High 
Count 40 6 2 1 0 0 

49 
% 82% 12% 4% 2% 0% 0% 

Very high 
Count 5 1 2 0 0 0 

8 
% 63% 12% 25% 0% 0% 0% 

Total 143 15 4 1 0 0 

163 % within  
Environmental value 

87% 9% 3% 1% 0% 0% 

 

  

J-97 
 



Table J.19b: Contingency table for the attribute ferns in dominant EVC with very 
low, low and moderate Environmental value counts added and high and very high 
counts summed.  All columns denoting ferns in dominant EVC presence have been 
summed. Values in brackets are the expected frequencies for each cell if there is no 
association between ferns in dominant EVC and the WGCMA Environmental value 
assessment.  χ2

(df=1) value = 6.161 and one-tailed p-value = 0.0065,  which is statistically 
significant. 

  
Environmental 
value 
 

Ferns 

Total 

 

 
0 >  0 

 

 Very low,  low & 
moderate 

97 
          (92) 

8 
              (13) 

105 
 

 
High & very high 

45 
         (50) 

12 
           (7) 

57 
 

 
Total 142 20 162  

  

J-98 
 



Table J.20a: Contingency table for the percentage total graminoids coverage at a site 
against overall WGCMA Environmental value assessment.  The values show the number 
and percentage of wetlands in the Database categorized as very low, low, moderate, high 
and very high Environmental values. Non-empty cells, other than for unknown, have been 
shaded.   

 
Environmental 
value 
 

Vegetation intactness– critical lifeforms 

Total 
Floral types of most dominant wetland EVC 

Sum of % graminoids coverage per site 

0% 1 to 
19% 

20 to 
39% 

40 to 
59% 

60 to 
79% ≥ 80% 

Unknown 
Count 1 0 0 0 0 0 

1 
% 100% 0% 0% 0% 0% 0% 

Very low 
Count 0 0 0 1 0 0 

1 
% 0% 0% 0% 100% 0% 0% 

Low 
Count 20 5 1 1 0 0 

27 
% 74% 18% 4% 4% 0% 0% 

Moderate 
Count 44 24 4 2 2 1 

77 
% 57% 31% 5% 3% 3% 1% 

High 
Count 30 12 5 1 1 0 

49 
% 61% 25% 10% 2% 2% 0% 

Very high 
Count 5 2 0 0 1 0 

8 
% 63% 25% 0% 0% 12% 0% 

Total 100 43 10 5 4 1 

163 % within  
Environmental value 

61% 27% 6% 3% 3% 
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Table J.20b: Contingency table for the attribute graminoids in the dominant EVC 
with very low and low Environmental value counts added and moderate, high and 
very high counts summed.  All columns denoting any graminoids presence in the 
dominant EVC have been summed. Values in brackets are the expected frequencies for 
each cell if there is no association between graminoids and the WGCMA Environmental 
value assessment.   χ2

(df=1) value = 1.516 and one-tailed p-value = 0.1091,  which is not 
statistically significant. 

  
Environmental 
value 
 

Graminoids 

Total 

 

 
0 > 0 

 

 Very low & 
low  

20 
              (17) 

8 
                (11) 

28 
 

 Moderate, high & 
very high 

79 
             (82) 

55 
               (52) 

134 
 

 
Total 99 63 162  

 

Table J.20c: Contingency table for the attribute graminoids in the dominant EVC 
with very low, low and moderate Environmental value counts added and high and 
very high counts summed.  All columns denoting graminoids presence in the dominant 
EVC have been summed. Values in brackets are the expected frequencies for each cell if 
there is no association between graminoids in the dominant EVC and the WGCMA 
Environmental value assessment.  χ2

(df=1) value = 0.003 and one-tailed p-value = 0.4776,  
which is not statistically significant. 

  
Environmental 
value 
 

Graminoids 

Total 

 

 
0 > 0 

 

 Very low, low & 
moderate 

64 
               (64) 

41 
               (41) 

105 
 

 
High & very high 

35 
             (35) 

22 
               (22) 

57 
  

 
Total 99 63 162  
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Table J.21a: Contingency table for the percentage total grasses coverage at a site 
against overall WGCMA Environmental value assessment. The values show the number 
and percentage of wetlands in the Database categorized as very low, low, moderate, high 
and very high Environmental values. Non-empty cells, other than for unknown, have been 
shaded.   

 
Environmental 
value 
 

Vegetation intactness– critical lifeforms 

Total 
Floral types of most dominant wetland EVC 

Sum of % grasses coverage per site 

0% 1 to 
19% 

20 to 
39% 

40 to 
59% 

60 to 
79% ≥ 80% 

Unknown 
Count 0 0 0 1 0 0 

1 
% 0% 0% 0% 100% 0% 0% 

Very low 
Count 1 0 0 0 0 0 

1 
% 100% 0% 0% 0% 0% 0% 

Low 
Count 25 2 0 0 0 0 

27 
% 93% 7% 0% 0% 0% 0% 

Moderate 
Count 51 20 4 2 0 0 

77 
% 66% 26% 5% 3% 0% 0% 

High 
Count 37 9 2 1 0 0 

49 
% 76% 18% 4% 2% 0% 0% 

Very high 
Count 7 1 0 0 0 0 

8 
% 88% 12% 0% 0% 0% 0% 

Total 121 32 6 4 0 0 

163 % within  
Environmental value 

74% 20% 4% 2% 0% 0% 

 

  

J-101 
 



Table J.21b: Contingency table for the attribute grasses in dominant EVC with very 
low, low and moderate Environmental value counts added and high and very high 
counts summed.  All columns denoting grasses in dominant EVC presence have been 
summed. Values in brackets are the expected frequencies for each cell if there is no 
association between grasses in dominant EVC and the WGCMA Environmental value 
assessment.   χ2

(df=1) value = 0.291 and one-tailed p-value = 0.2947, which is not statistically 
significant. 

  
Environmental 
value 
 

Grasses 

Total 

 

 
0 > 0 

 

 Very low, low & 
moderate 

77 
              (78) 

28 
               (27) 

105 
 

 
High & very high 

44 
             (43) 

13 
              (14) 

57 
  

 
Total 121 41 162  
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Table J.22a: Contingency table for the percentage total sedges coverage at a site 
against overall WGCMA Environmental value assessment.   The values show the 
number and percentage of wetlands in the Database categorized as very low, low, moderate, 
high and very high Environmental values.  Non-empty cells, other than for unknown, have 
been shaded.   

 
Environmental 
value 
 

Vegetation intactness– critical lifeforms 

Total 
Floral types of most dominant wetland EVC 

Sum of % sedges coverage per site 

0% 1 to 
19% 

20 to 
39% 

40 to 
59% 

60 to 
79% ≥ 80% 

Unknown 
Count 1 0 0 0 0 0 

1 
% 100% 0% 0% 0% 0% 0% 

Very low 
Count 1 0 0 0 0 0 

1 
% 100% 0% 0% 0% 0% 0% 

Low 
Count 23 3 1 0 0 0 

27 
% 85% 11% 4% 0% 0% 0% 

Moderate 
Count 57 15 3 1 1 0 

77 
% 74% 20% 4% 1% 1% 0% 

High 
Count 19 13 8 6 3 0 

49 
% 39% 27% 16% 12% 6% 0% 

Very high 
Count 2 4 1 1 0 0 

8 
% 25% 50% 25% 0% 0% 

Total 103 35 13 8 4 0 

163 % within  
Environmental value 

63% 21% 8% 5% 3% 0% 
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Table J.22b: Contingency table for the attribute sedges in dominant EVC with very 
low, low and moderate Environmental value counts added and high and very high 
counts summed.  All columns denoting sedges in dominant EVC presence have been 
summed. Values in brackets are the expected frequencies for each cell if there is no 
association between sedges in dominant EVC and the WGCMA Environmental value 
assessment.   χ2

(df=1) value = 25.731 and one-tailed p-value < 0.0001,  which is extremely 
statistically significant. 

  
Environmental 
value 
 

Sedges 

Total 

 

 
0 > 0 

 

 Very low, low & 
moderate 

81 
              (66) 

24 
                 (39) 

105 
 

 
High & very high 

21 
             (36) 

36 
               (21) 

57 
  

 
Total 102 60 162  

  

J-104 
 



Table J.23a: Contingency table for the percentage total shrubs coverage at a site 
against overall WGCMA Environmental value assessment.  The values show the number 
and percentage of wetlands in the Database categorized as very low, low, moderate, high 
and very high Environmental values.  Non-empty cells other than for unknown have been 
shaded.   

 
Environmental 
value 
 

Vegetation intactness– critical lifeforms 

Total 
Floral types of most dominant wetland EVC 

Sum of % shrubs coverage per site 

0% 1 to 
19% 

20 to 
39% 

40 to 
59% 

60 to 
79% ≥ 80% 

Unknown 
Count 1 0 0 0 0 0 

1 
% 100% 0% 0% 0% 0% 0% 

Very low 
Count 0 0 1 0 0 0 

1 
% 0% 0% 100% 0% 0% 0% 

Low 
Count 27 0 0 0 0 0 

27 
% 100% 0% 0% 0% 0% 0% 

Moderate 
Count 53 14 5 3 1 1 

77 
% 69% 18% 7% 4% 1% 1% 

High 
Count 25 8 8 5 3 0 

49 
% 52% 16% 16% 10% 6% 0% 

Very high 
Count 4 1 3 0 0 0 

8 
% 50% 12% 38% 0% 0% 0% 

Total 110 23 17 8 4 1 

163 % within  
Environmental value 

67% 14% 10% 5% 3% 1% 
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Table J.23b: Contingency table for the attribute shrubs in dominant EVC with very 
low, low and moderate Environmental value counts added and high and very high 
counts summed.  All columns denoting shrubs in dominant EVC presence have been 
summed. Values in brackets are the expected frequencies for each cell if there is no 
association between shrubs in dominant EVC and the WGCMA Environmental value 
assessment.   χ2

(df=1) value = 10.754 and one-tailed p-value = 0.0005,  which is extremely 
statistically significant. 

  
Environmental 
value 
 

Shrubs 

Total 

 

 
0 > 0 

 

 Very low, low & 
moderate 

80 
              (71) 

25 
               (34) 

105 
 

 
High & very high 

29 
             (38) 

28 
               (19) 

57 
  

 
Total 109 53 162  
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Table J.24a: Contingency table for the number of floral species present at a site 
against overall WGCMA Environmental value assessment. The values show the number 
and percentage of wetlands in the Database categorized as very low, low, moderate, high 
and very high Environmental values. Non-empty cells, other than for unknown, have been 
shaded.   

 
Environmental 
value 
 

Vegetation intactness– critical lifeforms 

Total Number of floral species present 

0 1 to 5 6 to 10 11 to 
15 16 to 20 > 20 

Unknown 
Count 0 0 1 0 0 0 

1 
% 0% 0% 100% 0% 0% 0% 

Very low 
Count 0 0 1 0 0 0 

1 
% 0% 0% 100% 0% 0% 0% 

Low 
Count 14 7 6 0 0 0 

27 
% 52% 26% 22% 0% 0% 0% 

Moderate 
Count 5 12 43 14 2 1 

77 
% 6% 16% 56% 18% 3% 1% 

High 
Count 0 11 21 10 6 1 

49 
% 0% 23% 43% 20% 12% 2% 

Very high 
Count 1 1 3 1 2 0 

8 
% 25% 38% 12% 25% 0% 

Total 20 31 75 25 10 2 

163 % within  
Environmental value 

12% 19% 46% 16% 6% 1% 

 

  

J-107 
 



Table J.24b: Contingency table for the attribute number of floral species present with 
very low and low Environmental value counts added and moderate, high and very 
high counts summed.  All columns denoting any floral species presence have been 
summed. Values in brackets are the expected frequencies for each cell if there is no 
association between number of floral species and the WGCMA Environmental value 
assessment.   χ2

(df=1) value = 44.352 and one-tailed p-value < 0.0001,  which is extremely 
statistically significant. 

  
Environmental 
value 
 

No. of floral species present 

Total 

 

 
0 > 0 

 

 Very low & 
low  

14 
               (3) 

14 
              (25) 

28 
 

 Moderate, high & 
very high 

6 
              (17) 

128 
             (117) 

134 
 

 
Total 20 142 162  
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Table J.25a: Contingency table for substantial modifications at a site against overall 
Environmental value assessment.  The values show the number and percentage of 
wetlands in the Database categorized as very low, low, moderate, high and very high 
Environmental values. Non-empty cells other than unknown and totals have been shaded. 

 
 
Environmental 
value 
 

Vegetation intactness– critical 
lifeforms 

 

 Substantial modifications  

 Absent Present Total  

 
Unknown 

Count 1 0 1 
 

 

 % 100% 0%  

 
Very low 

Count 1 0 
1 

 

 % 100% 0%  

 
Low 

Count 5 22 
27 

 

 % 18% 82%  

 
Moderate 

Count 42 35 
77 

 

 % 55% 45%  

 
High 

Count 44 5 
49 

 

 % 90% 10%  

 Very high Count 8 0 
8 

 

 % 100% 0%  

 Total 101 62 
163 

 

 % within  
Environmental value 

62% 38%  
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Table J.25b: Contingency table for the attribute substantial modifications at a site 
with very low and low Environmental value counts added and moderate, high and 
very high counts summed.   All columns denoting any substantial modification presence 
have been summed. Values in brackets are the expected frequencies for each cell if there is 
no association between substantial modifications and the WGCMA Environmental value 
assessment.   χ2

(df=1) value = 23.271 and one-tailed p-value < 0.0001,  which is extremely 
statistically significant. 

  
Environmental 
value 
 

Substantial modifications 

Total 

 

 
Absent Present 

 

 Very low & 
low  

6 
               (17) 

22 
              (11) 

28 
 

 Moderate, high & 
very high 

94 
              (83) 

40 
             (51) 

134 
 

 
Total 100 62 162  

 

Table J.25c: Contingency table for the attribute substantial modifications at a site 
with very low, low and moderate Environmental value counts added and high and 
very high counts summed.  All columns denoting any substantial modification presence 
have been summed.  Values in brackets are the expected frequencies for each cell if there is 
no association between substantial modifications and the WGCMA Environmental value 
assessment.   χ2

(df=1) value = 32.395 and one-tailed p-value < 0.0001,  which is extremely 
statistically significant. 

  
Environmental 
value 
 

Substantial modifications 

Total 

 

 
Absent Present 

 

 Very low, low & 
moderate 

6 
               (17) 

22 
               (11) 

105 
 

 
High & very high 

94 
             (83) 

40 
              (51) 

57 
  

 
Total 100 62 162  
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