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NOMENCLATURE 
 A Area of compartment opening (m2) 

vA   Burn area at time t (m2) 

voA  Initial burn area (m2) 

Aw Total wall and ceiling surface area in the compartment (m2) 

a Molar stoichiometric coefficient for CO 

b Molar stoichiometric coefficient for CO2 

C Flame heat transfer modulus (m3/2s1/2/W) 

CD Orifice coefficient for compartment ventilation 

cp Specific heat of gas or fuel (kJ/kg K) 

cW Specific heat of wall (kJ/kg K) 

g Gravitational constant (m/s2) 

hL Height of interface between the hot and cool gas layers (m) 

Ho Height of the doorway or window opening (m) 

h Convective transfer coefficient 

∆Hc Heat of complete combustion (J/kg fuel) 

∆Hv Heat of vaporization (J/kg fuel) 

K Extinction coefficient (1/m) 

k  Thermal conductivity (W/m K) 

kG Gas absorption coefficient (1/m) 

kGO Constant derived from experiments 

L Compartment length (m) 

m Mass flow rate (kg/s) 

ma Mass flow of gases leaving the compartment (kg/s) 

mideal Free vaporization/pyrolysis rate of the fuel (kg/m2 s) 

mo Initial mass of the fuel (kg) 

mc Mass of fuel that has been consumed by the fire (kg) 

Qc Heat release rate of the fire (W) 

QO Heat loss rate through vent openings by radiation (W) 

Qr Heat loss rate due to fuel vaporization and heating (W) 

Qv Heat loss rate through vent openings by convection (W) 

QW Heat loss rate through the walls by conduction (W) 

q Heat transfer rate (W/m2) 
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qo,ig Minimum external heat flux required to ignite the fuel (W/ m2) 

qr External heat flux to the fuel (W/ m2) 

R Fuel vaporization rate, or mass loss rate (kg/s) 

Rm Maximum burning rate for smouldering fire (kg/s) 

r Radius of area (m) 

∆r Burning rate enhancement due to heat radiation (kg/m2 s) 

T Temperature of effluent gases (K) 

TW Wall temperature (K) 

Ts Fuel surface temperature (K) 

TWI Inner wall temperature (K) 

TWO Out wall temperature (K) 

t Time (s) 

V Compartment volume (m3) 

Vfo Lateral flame speed produced by radiation (m/s) 

Vf Actual flame speed as limited by the available oxygen (m/s) 

Wo Width of the compartment opening (m) 

X Moles of water produced per mole of carbon burned 

x x dimension (m) 

Y Mass fraction of O2, CO, CO2 or vapour, identified by subscripts 

Y° Mass fraction of O2, CO, CO2 or vapour from the previous timestep, identified by 

subscripts 

δ Wall thickness (m) 

ε Gas emissivity 

φ Compartment equivalence ratio, shape factor 

γ  Stoichiometric air to fuel ratio 

µ Combustion efficiency 

µo Maximum possible combustion efficiency for fuel 

ρ Density of gas, wall or fuel material (kg/m3) 

ρo Gas density at ambient conditions (kg/m3) 

ρW Density of material of wall (kg/m3) 

σ Stefan Boltzmann constant (W/m2 K4). 
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ABSTRACT 

 
Deterministic computer fire models have progressed over recent years to the point of 

providing good predictions for some parameters of fire behaviour. However, input 

data are not always available, and many factors that affect the course of a fire are 

probabilistic in nature and cannot be determined from physics. 

 

One way of surmounting the problem of unavailability of the values of the input 

parameters is to take them as random variables. By specifying an unsafe region in the 

output space and calculating its probability, we can obtain a figure for the reliability 

of the design being tested, in terms of the probability of the unsafe region. In practice, 

evaluation of the probability distribution of the output space cannot in general be 

carried out analytically because of the complexity of the computer fire models. An 

alternative method is to use Monte-Carlo simulation. But it usually requires a large 

amount of calculation to reach sufficient accuracy, particularly if the probability of 

the unsafe region is small, as it should be if the design is to be reasonably reliable. 

Also, if the probability distribution of the input is changed, the whole Monte-Carlo 

simulation must be redone ab initio. 

 

An approach that has been recently advocated in the structural reliability context is 

that of the response surface method. It consists in representing each output parameter 

by a nonlinear function of the input parameters. Usually, a quadratic function of the 

input parameters turns out to be sufficient. Fitting of the response surface is carried 

out by regression. However, if the range of the input parameters is comparatively 

large, it is unlikely that one quadratic function will fit the whole range. It then 

becomes necessary to break up the full range of input parameters into smaller 

subranges and fit a quadratic function separately to each subrange.  

 

In this thesis, the results of a large scale Monte-Carlo simulation of a computer fire 

model, CESARE-Risk model, are summarized in the form of a simple response 

surface for each of a number of subranges of the input parameters. The subranges are 

automatically determined through the use of a powerful modern regression 

methodology before the linear multiple (quadratic) regression. A brief summary of the 
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First Order Second Moment Reliability Index Method is given. It is shown that the 

particular form of the obtained response surface allows the reliability index to be 

easily calculated. The reliability index and corresponding probability of failure are 

obtained for particular examples and the results confirmed by Monte-Carlo 

simulation. 
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CHAPTER 1 

INTRODUCTION 

1.1 Project Background 

Research into fires in buildings is a comparatively recent activity and only in the last 

few decades has a substantial effort been mounted.  Accordingly, this area of research 

can be characterized as being broad and fertile for new research.  Since research into 

fire and its effects in buildings involves many disciplines, the previous research effort 

can be characterized as being conducted in many disparate areas. 

 

Fire safety design has been highly reliant on prescriptive rules in building codes. This 

is particularly the situation for occupant safety in the case of fire. Regulations usually 

state in detail what measures should be taken in order to accomplish a minimum 

occupant fire safety level. For a review of the history of prescriptive codes and 

references see [1]. 

 

However, there are some deficiencies associated with this type of regulations. They 

are rather inflexible if not applied to a standard type building.  Prescriptive regulations 

could lead to a safety level that may be too low in some buildings, or it may lead to an 

unnecessarily expensive design [2][4]. 

 

Safety can be ensured either by comparing the proposed design with accepted 

solutions, or by using design values in the calculations that are based on a specified 

level of risk. Therefore, an advanced engineering methodology for the cost � effective 

design of fire safety and protection in buildings has been proposed and widely 

accepted [5].  The risk analysis should incorporate an uncertainty analysis because 

many variables of fire are associated with uncertainty[3][71][72][73]. However, a 

detailed methodology for implementing a realistic risk analysis, which can 

nevertheless be used by practising engineers, has not been developed to date. The 

proposed research is intended to provide a useful tool towards this goal. 

 

1.2 Problem Definition 

The aim of this research project is the identification some aspects of probability-based 

indices of safety for use by practising engineers in comparing competing designs.  
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This fundamental research is required to support the implementation of an advanced 

engineering methodology for the cost-effective design of fire safety and protection in 

buildings. 

The proposed research will bring the methodology of risk analysis in the design of fire 

safety for apartment buildings in line with risk analysis as practised by the civil 

engineering profession at large, namely the beta reliability index[72][74][75]. To date, 

only small scale simplified models have been analyzed in this way. What is proposed 

here is to carry out a full - fledged analysis of the CESARE-Risk fire and smoke 

spread model with stochastic input, using advanced regression analysis methods, and 

to set out and test a detailed methodology for evaluating the reliability index for any 

set of limiting states required. This methodology will then be available for the 

analysis of any other computer models of fire spread developed for modelling specific 

fire safety situations. 

 

1.3 Overview of this Thesis 

The research presented in this thesis is mainly concerned with a simplified form of 

response surface for each of a number of subranges of the input parameters of a large 

scale Monte-Carlo simulation of a computer fire model, the CESARE-Risk model. 

Also, the particular form of the obtained response surfaces allows the reliability index 

to be easily calculated. Thus, an advanced engineering approach for the risk-based 

design of fire safety in buildings is developed, providing a feasible and cost-effective 

methodology, which can be used by practising engineers in comparing designs. 

 

The existing computer fire models, their recent development and application, as well 

as their limitations are discussed in Chapter 2. 

 

Chapter 3 gives the background of the CESARE-Risk model and provides a complete 

theoretical discussion of the CESARE-Risk model and a description of the model's 

assumptions. Details of the four scenarios, as well as input and output variables of the 

CESARE-Risk model are also introduced in Chapter 3. 

 

Chapter 4 gives a brief overview of modern regression methods, and more details of 

the ACE (Alternating Conditional Expectations) and AVAS (Additive and Variance 
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Stabilizing Transformation) regression methodologies, which are used throughout the 

research. 

 

Chapter 5 gives a theoretical discussion of response surface methods, the calculation 

of the reliability index and the probability of failure in fire engineering. A brief 

outline and a theoretical discussion of the Monte-Carlo method and applications in 

fire engineering are also given in Chapter 5. 

 

In Chapter 6, through using the modern regression method, AVAS, we analyze and 

identify variable transformations for the maximum temperature reached under 

different events of the CESARE-Risk model. A simple response surface is derived 

which can be used for reliability design, for each of a number of subranges of the 

input parameters. The particular shape of the regression equation derived in Chapter 6 

makes the task of finding the design point[75] and reliability index very simple. 

 

Details of finding the design point and reliability index using Lagrange's method of 

undetermined multipliers, are given in Chapter 7. Also, the reliability index for 

maximum temperature reached for specific examples of the four scenarios are 

calculated. The corresponding probability of failure for each of scenarios is obtained 

by use of the First Order Second Moment (FOSM) Method[75] and results validated 

by Monte-Carlo simulation. 

 

In Chapter 8, another output variable, time to untenable conditions, is analysed. Using 

the modern regression method, ACE, we analyze and identify variable 

transformations for the time to untenable conditions under different events of the 

CESARE-Risk model. A simple response surface is derived, which can be used for 

reliability design for each of a number of subranges of the input parameters. 

 

In Chapter 9, the reliability index for the time to untenable conditions for specific 

examples of the four scenarios of the CESARE-Risk model are calculated. The 

corresponding probability of failure for each of the scenarios is obtained by the use of 

the First Order Second Moment Method and results validated by Monte-Carlo 

simulation. 
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In Chapter 10, we use a logarithmic fit to the time to untenable conditions. The 

reliability indexes of some specific examples for the four scenarios are calculated. 

Also, the corresponding probability of failure for each of them is derived  using the 

FOSM Method and the result is confirmed by Monte-Carlo simulation. A comparison 

of the reliability index derived from the ordinary fit and the index derived from a 

logarithmic fit to the time to untenable conditions is carried out. 

  

Chapter 11 presents the conclusion and further research directions. 

 

In order to carry out the risk analysis procedures a number of S-Plus functions have 

been developed (see APPENDIX). These functions are described as follows: 

Calculate the correlation between original outputs and the predict values of the output, 

Calculate the coefficients for modern regression,  

Calculate the reliability index and the probability of failure for design engineers, 

Carry out Monte - Carlo simulations for the response surfaces that were derived in the 

research, and 

Draw most figures through the whole thesis. 
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CHAPTER 2 

LITERATURE REVIEW 
 

2.1 Survey of Computer Models for fire and smoke 

There are many models available that give estimates of fire growth and fire spread. 

They can be divided into two categories: deterministic models and non-deterministic 

models. 

 

2.2 Deterministic Models 

Deterministic Models are the models that give an output without considering the 

possibility that given the same situation the estimates could change. The major 

drawback of deterministic models is that they do not take into account the randomness 

of fire phenomena. Typical deterministic models are Zone Models, Field Models and 

Network models. 

 

2.2.1 Zone Models 

Table 2-1 lists 31 zone models relating to a fire in a compartment. These models come 

from 10 countries. Twenty of them deal with only a single vented compartment, and 

the other 11 treat multiple interconnected compartments. Two models emphasize 

post-flashover; the others generally present the history of the fire both before and after 

flashover. The user must be able to input a good deal of information about the heat 

release rate of the fire in all cases. Twenty-five of these models are designed to run on 

a personal computer. The underlying physical assumptions of most of these models 

have a great deal of similarity. Some of the models, notably Hazard I, go further than 

others in predicting the consequences of a fire, such as the survival of building 

occupants [41]. 

 

A well known Zone Model is the NRCC (NRCC1 in Table 2-1) (National Research 

Council of Canada) Model.  The NRCC model was developed by Takeda and Yung in 

1992 [6]. This one-zone fire growth model can be used to predict fire growth 

characteristics and species concentrations.  
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Model Country of origin Run on PC Comments 

ARGOS Denmark Yes Multi-compartment 

ASET /ASET-B U.S.A. Yes One room/ (BASIC source code) 

BRI-2 Japan Yes Multi-compartment 

CCFM.VENTS U.S.A. Yes Multi-compartment 

CFAST U.S.A. Yes Multi-compartment 

CFIRE-X Ger./Nor. Yes One room 

CiFi France No Multi-compartment 

COMPBRN-III U.S.A. Yes One room 

COMPF2 U.S.A. Yes Post-flashover 

DACFIR-3 U.S.A. No Aircraft cabin 

DSLAYV Sweden Yes One room 

FAST U.S.A. Yes Multi-compartment 

FIRAC U.S.A. No Uses FIRIN, complex vent. systems 

FIRIN U.S.A. No Many rooms, ducts, fans, filters 

FIRST U.S.A. Yes One room 

FISBA France No One room 

FPETOOL U.S.A. Yes One room 

HarvardMarkVI U.S.A. Yes Multi-compartment 

Hazard I U.S.A. Yes Includes FAST and other models 

HEMFAST U.S.A. Yes Furniture fire in room 

IMFE Poland Yes One room; multiple vents 

MAGIC France No Multi-compartment 

NRCC1/ NRCC2 Canada Yes One room/For large office spaces 

OSU U.S.A. Yes One room 

POGAR Russia Yes One room 

R-VENT Norway Yes One room 

SFIRE-4 Sweden Yes Post-flashover 

WPI-2 U.S.A. Yes One room 

ZMFE Poland Yes One room 

 

Table 2-1: Zone models for compartment fires 

 

The NRCC fire growth model is a simplified one-zone model for single room fires. It 

treats the fire room as a well-stirred combustion chamber and assumes uniformly 

distributed quantities inside the room. Further, Victoria University of Technology has 

undertaken research in conjunction with the NRCC to develop recommendations for 
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timber-framed apartment buildings based on risk assessment work [7]. This work has 

been accepted by the authorities and included in the Building Code of Australia. 

 

Cooper and Yung [8] have improved the NRCC Fire Growth Model for Apartment 

buildings. 

 

Zone models cannot provide detailed information on fluid flow but their simplicity, 

ability to run rapidly on computers, ease of transfer from one organization to another, 

and low cost make them attractive. Zone models can be used for multiple 

compartments. 

 

2.2.2 Field Models 

There are other models that describe phenomena that occur in two (or three) 

dimensional spaces, called Field models [9]. This kind of model involves dividing the 

enclosure by two (or three) dimensional grids into elements. Field models can model 

the differences in physical parameters throughout the grid. The physical parameters 

could be temperature, species concentrations, etc.  Table 2-2 shows 10 field models 

for compartment fires.  
Model Country of origin Comments 

BF3D U.S.A. Treats buoyant heat-driven flow 

FISCO-3L Ger./Nor. One room - run on PC 

FLOW3D U.K. General fluid - dynamics code 

JASMINE U.K. Uses PHOENICS - treats radiation 

KAMELEON E-3D Norway  One room 

KAMELEON II Norway Multi-compartment 

KOBRA-3D Germany One room - no turbulence-runs on PC 

PHOENICS U.K. General fluid - dynamics code 

RMFIRE Canada One room - 2D - B. F. C. 

UNDSAFE U.S.A./Japan Treats buoyant, heat - driven flow 

 

Table 2-2: Field models for compartment fires 

In Table 2-2, two of these (FLOW3D and PHOENICS) are general fluid dynamics 

codes which are usable as basic elements of models treating fire specifically. All these 

models except two rather limited ones (FISCO-3L and KOBRA-3D) require a much 

more powerful computer than a PC, and indeed could effectively use the most 
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powerful computer available. The various field models originate in U.K., Norway, 

Germany, U.S.A., Japan and Canada [41]. More recent development of field modeling 

are described in references [68][69]. 

 

Field models do not make simplifications like Zone models, and they solve for the 

governing flow equations in each cell.  The advantage of a field model is that it can 

provide detailed information on the fluid motions. It is normally suitable for those 

problems where only one compartment is considered [10]. So it is often used in 

fundamental research to study some specific aspect of building fire. 

 

Overall, both Zone and Field models are based on conservation equations for mass, 

momentum and energy for solving for the variables of interest, such as temperature 

and gas concentrations. Both of them adopt basic sub-models to model heat release 

rate, mass release rate, radiation and so on. 

 

2.2.3 Network Models 

Network modelling has been used to solve fire and smoke protection problems 

[12,13]. Networks are made up of nodes connected by links. The building is divided 

into compartments (nodes). The temperature, pressure and species concentration in 

each of the nodes is assumed to be uniform. The nodes represent space and also the 

smoke and/or fire conditions of the space. The nodes are connected by leakage 

opening (flow paths). The links are the possible movement of the fire/smoke from 

space to space. The mass flow rates and pressure differences are related by the orifice 

flow equation. The network modelling technique uses the mass balance and flow 

equations, and expressions for temperature and smoke concentration. Network and 

graph theories have been used successfully for studying multi-compartment buildings.  

 

The reduction in cost of computers has encouraged the use of network modelling. 

Network models can predict conditions in many rooms and locations far away from 

the source of fire. They are most suitable for high-rise buildings. 

 

2.3 Non-deterministic/Probabilistic Models 

It is now generally accepted that the widely used deterministic approach to fire safety 

design is not cost effective, for the following reasons: 
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• The consideration of fire scenarios in isolation 

• The built-in arbitrariness of the choice of safety factors 

 

Probabilistic models are models that give estimates of the outcome of a fire 

phenomenon while considering the uncertainties in the process. This kind of model 

yields the relative frequency of occurrence of each pattern of growth of fire and 

spread of smoke in a large number of real fires. In the words of Ramachandran [11], 

probability modelling is concerned with final outcomes rather than the detailed 

knowledge of the processes that make it. 

 

Ling and Williamson [12] have used network modelling to solve fire and smoke 

protection problems. They proposed the use of probabilistic networks in analyzing the 

spread of smoke and the egress of people in buildings. Calculation of the probability 

of occurrence for the fire scenarios was based on Mirchandani's algorithm. The 

NRCC smoke spread model can be classified as a network model too. 

 

The work of researchers, such as Ling and Williamson [12] [13], Beck [5] [14], 

Takeda and Yung [6], Hasofer and Beck [15], Beard [16] and more recently the work 

at the Centre for Environmental Safety and Risk Engineering, Victoria University of 

Technology, has focussed on the development of an integrated system model to 

predict the performance of building fire safety.  These researches have developed new 

concepts, which have enabled the performance of the building fire safety system to be 

analyzed and quantified. In addition, they have enabled previous research results to be 

used (where appropriate) to predict the performance of various sub-elements 

comprising the system model.  However, the nature and structure of the system model 

has required, in many cases, that new research be conducted to enable predictions of 

the performance of various sub-elements of the system to be made.  

 

Stochastic fire and smoke spread models have been developed by Beck [14], Hasofer 

and Beck [15] Ramachandran [17], Takeda and Yung [6], He [18]. But existing 

models are still extremely limited in their ability to accurately predict the levels of 

risk to life safety. 
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The current fire safety system model, called CESARE-Risk model, is based on the 

original paper by Takeda and Yung [6], a recent report by Cooper and Yung [8], and 

the modification to the model by researchers at the Centre for Environmental Safety 

and Risk Engineering, VUT (see draft report He [18] December, 1998, Centre for 

Environmental Safety and Risk Engineering). It has been used to generate temperature 

and smoke data for an integrated system model which incorporates many aspects of a 

building - fire situation, such as sprinkler and alarm response, smoke spread, human 

behavior and egress, fire brigade response, structural failure, etc. [18].  It is used to 

predict the performance of building fire safety systems and to identify cost-effective 

fire safety system designs for buildings.  

 

The CESARE-Risk model is based on a Probabilistic Risk Analysis (PRA) 

foundation. PRA consists in using statistical analysis to estimate the relevant 

variability measures and then to use them within the framework of a stochastic model. 

The ultimate target is to choose the design that will fulfill the required reliability 

requirements at minimal total expected cost. 

 

2.3.1 The use of random input parameters  

The recent research on Fire Safety by Hasofer and Beck 1997 [15], introduced 

random input parameters to derive a stochastic model for compartment fire in 

buildings from basic physical laws. It consists of just three variables, which form a 

Markov vector satisfying a stochastic differential equation. The deterministic version 

of the model can be calibrated to closely mimic the results of the more elaborate 

models. In the paper [15], the model used as a basis for the physical background as 

well as for calibration is the growth model developed by NRCC and described in [6]. 

It uses a simplified one-zone approach and was developed for a risk-cost assessment 

model for apartment houses.  

 

2.3.2 Early use of response surface in fire spread model 

It is important to understand that performance requirements in the fire safety area are 

expressed in terms of risk; either explicitly or implicitly. Fundamental questions 

remain to be discussed and eventually decided upon such as: how do we evaluate 

risk?  How do risk evaluation methods differ when we look at different levels of 

design such as the whole building level, the subsystem level and the one-component 
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level? What is the link between risk calculation procedures and a deterministic design 

format based on safety factors or partial coefficients? Calculation of risk means 

calculations based on models and parameters characterised by uncertainty, usually 

described by statistical distributions. To what extent are necessary data available for 

well-defined classes of buildings? What are the differences in design procedures when 

we are considering on the one hand a well-defined class of building and, on the other 

hand, a single complex building with a unique design layout and unique fire safety 

solutions?  

 

To answer the above questions, Magnusson et al. [24] and Frantzich [4] have 

analyzed evacuation life safety in a one-room public assembly building. Limit state 

equations have been defined, using response surface approximations of output from 

computer programs. The research made a first attempt to carry out an uncertainty 

analysis and safety checking.  

 

In the paper [24], Magnusson et al. illustrated the various methods and approaches, 

which included the analytical first-order second moment method and the standard 

probability risk analysis method, by showing calculations and results for an actual 

design problem. They concentrated on risk assessment methods taken from the area of 

structural engineering, from the area of large-scale technological systems, and from 

environmental engineering. Input parameter distributions were subjectively quantified 

and classified with respect to category: knowledge or stochastic uncertainty. Risk 

assessment results comprised probability of failure, reliability index and 

complementary cumulative distribution function for evacuation time-margin 

deficit[3][71][72][73][74]. Of special interest is the calculation of confidence intervals 

for the distribution of complementary cumulative distribution functions obtained by 

the two-phase Monte Carlo sampling procedure, allowing a distinction between 

knowledge and stochastic uncertainty. The important analysis carried out analytically 

gives data of fundamental significance for an understanding of the practical design 

problem.   

 

2.3.3 Reliability analysis in the room of fire origin 

Hasofer and Beck [42] present a partial safety factor approach to the problem of 

evaluating competing designs for fire safety in the room of fire origin in a building. A 
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partial safety factor is defined as the ratio of the design value to the characteristic 

value for a load type variable and its inverse for a resistance type variable. The safety 

criterion considered is the expected number of deaths in the room or, alternatively, the 

probability of any death [74]. A death is assumed to occur when the time between the 

occurrence of the alerting cue and the onset of untenable conditions is shorter than the 

time to evacuation. 

 

First, a safety index is obtained, based on the means and standard deviations of the 

logarithms of time between the occurrence of the alerting cue and the onset of 

untenable conditions and the time required for evacuation. 

 

It is further shown that there are theoretical reasons as well as empirical evidence for 

assuming that the time between the occurrence of the alerting cue and the onset of 

untenable conditions and the time required for evacuation both have approximately a 

lognormal distribution. There is then a direct connection between the probability of 

death and the safety index, which leads to a rationale for selecting appropriate values 

of the index.  

 

Tat [21], Hasofer, Beck and Odigie [22], Hasofer and Odigie [23], show that it is 

possible to set up stochastic process models to carry out a risk analysis of fire safety 

systems. 

 

This research project will build upon the work of Professor V. R. Beck and his 

colleagues in the context of an Australia Research Council (ARC) Grant entitled 

�Modelling Non-Stationary Stochastic Processes of Fire and Smoke Spread in Multi-

storey Buildings for Cost - Effective Risk-Based Design�. 
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CHAPTER 3 

THE CESARE-RISK MODEL 

 

3.1 Overview of the CESARE-RISK Model 

The stochastic behaviour of fire was analysed in collaboration with research workers 

who are currently undertaking projects dealing with fire at CESARE. This was 

achieved by feeding a stochastic fire load input into a deterministic model to obtain a 

probability distribution of outputs. 

 

The description of this model and its general assumptions are briefly as follows: 

The purpose of the apartment fire growth model is to simulate the ignition and growth 

of fires in an apartment unit in order to help assess the fire safety performance of 

apartment buildings. This assessment is done on the basis of the amount, temperature 

and concentration of the gases generated by the model fire, the response speed and 

effectiveness of various fire protection systems, and the behaviour of building 

occupants. 

 

The apartment fire growth model calculates the characteristics of compartment fires 

that have the greatest impact on occupant safety and building damage. These 

characteristics fall into two categories: the smoke and fire hazard category and the 

detection category. The former category data include the composition, temperature 

and flow rate of compartment effluent gases, and this information can be used to 

estimate the potential for smoke spread and fire damage outside the compartment of 

fire origin. The latter category information includes the time of occurrence of specific 

fire-detection - related events, such as the time the person in the room of fire origin 

first notices the fire, the smoke detector activation time, the sprinkler activation time, 

the time of flashover and the time to fire burnout. These times can be used to 

determine the occupant response and evacuation time [18]. 

 

The model uses standard flexible polyurethane foams to represent the upholstered 

furniture and bedding typically found in an apartment. Flame spread and fire growth 

over other fuel materials can also be simulated. All physical parameters associated 

with foam may be changed to represent other fuels. However, the combustion 
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chemistry is specifically formulated to describe the products of combustion produced 

by polyurethane under a range of enclosure conditions. The ventilation conditions 

simulated by the fire growth model include natural ventilation through door and 

window openings, which may be either open or closed, and forced ventilation from an 

air handling system, such as air conditioning or smoke extraction. 

 

3.2 Assumptions of the CESARE-RISK Model 

To assess the fire safety performance of a building, a practical fire growth model for 

this application needs to be relatively simple since a large number of calculations are 

required. The aim in fire growth modelling is to develop a model that is simple 

enough to have a practical execution time without making undue sacrifices in 

accuracy [6, 18]. Therefore, the following assumptions are introduced. 

 

3.2.1 One - zone model 

Compartment fires are characterised by a hot upper layer caused by buoyancy effects 

and a relatively cool lower gas layer. The height of the interface between these two 

layers is time-dependent and decreases as the fire progresses, as does the layer 

temperature difference. Therefore, two zone models, which treat the upper and lower 

gas layers separately, are often used to represent the compartment gas temperature. If 

the compartment is under-ventilated (such as in door closed scenario), these models 

have impractically long computation times for this application and often predict 

premature fire extinction. The latter is due to the rapid descent of the upper layer 

predicted by two-zone models under closed-door conditions, which suffocates the fire 

by reducing the inflow vent area [6]. An additional problem posed by using two-zone 

models is that the modelling of flame spread over fuel surfaces becomes very 

complicated. A two-zone model incorporating flame spread would require the 

development of a moving plume sub-model. Because the fire plume is a complex 

phenomenon the development of a moving plume sub-model would be difficult, time 

consuming and unnecessarily accurate. 

 

In order to eliminate the difficulties presented by two-zone models, a one-zone model, 

which incorporates lateral flame spread over fuel surfaces to simulate the growth of a 

fire and calculates a single, transient gas temperature for the compartment, is 

employed. This significantly reduces computation time and allows a more 
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conservative estimate of under-ventilated fires. The following conditions and 

assumptions are employed: 

(1) The ceiling, walls and floor of the compartment are fire separations. 

(2) The compartment is small (1 to 2 average-size residential rooms). 

(3) The compartment gases are well mixed (at uniform temperature and pressure). 

(4) Flow through multiple compartment openings is weighted by area. 

(5) The compartment wall temperatures are uniform and equal. 

As the tool (CESARE-Risk) is basically developed to calculate the risk to occupants it 

is therefore most relevant for the pre-flashover situation. For this case the two-zone 

model usually gives a better prediction of the conditions and even better predictions 

will have with a CFD. However, the statistical methodology developed in this thesis is 

not restricted to the one-zone model only. The method suits all models. 

 

3.2.2 Heat transfer mechanisms 

Heat transfer from both of the compartment to the rest of the building and from the 

compartment to the burning fuel occurs through radiation, convection, and 

conduction. In this model, the compartment floor is treated as an adiabatic boundary. 

Heat transfer to fuel is assumed to occur mainly by radiation. Heat losses through the 

compartment boundaries take place by radiation, convection and conduction through 

the compartment walls, openings and ceiling.  

 

3.2.3 Furniture arrangement 

The arrangement of furniture in the compartment can give rise to an infinite number 

of possible fire scenarios, the statistical occurrence of which would be quite difficult 

to model. Therefore, a worst-case arrangement is assumed and the furniture is 

modelled as a single mass in the compartment and results in a conservative (from the 

safety point of view) estimate of fire severity.  In general, the upholstered surfaces of 

the furniture determine the progress of combustion; thus the combustion properties of 

flexible polyurethane foam are used as a benchmark to simulate the combustion 

behaviour of apartment furniture. Some of the parameters are made adjustable to cater 

for variations in flame-spread rate, heat of combustion, etc [18]. 

 

The furniture is assumed to exist as a single mass in the center of the room and to 

possess uniform properties. In the model, the size of the fuel mass reflects the amount 
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of ignitable combustible in the room. Therefore, large fuel masses are used to 

simulate flashover fires, in which all room furnishings ignite, whereas smaller fuel 

masses are used to simulate the burning of isolated furnishings caused by flaming 

fires. 

 

3.2.4 Material properties 

Many material properties, such as heat capacity, thermal conductivity and density, 

vary with temperature. In the temperature range normally experienced by the 

materials in the fire compartment (20°C-1200°C), however, only the gas density 

changes significantly. Therefore, for the purposes of simplicity, all material properties 

are assumed to remain constant at their ambient values except the gas density. Since 

heat capacities and thermal conductivities rise with temperature, this assumption is 

expected to result in conservative predictions of fire severity. 

 

3.2.5 Fire detection/suppression 

The fire growth model does not calculate the effects of fire suppression since the 

activation of the fire devices is often difficult to predict as the time required for a 

given device to activate depends on its location and sensitivity. 

 

3.2.6 Other assumptions  

Other assumptions specific to the model are shown in the following modelling 

equations (Symbols and units are fully defined in section NOMENCLATURE). 

 

3.2.6.1 Compartment ventilation 

The compartment ventilation rate ma is dependent on buoyant forces created by 

temperature differences across the compartment openings. During the ventilation 

controlled state of well developed fires, it determines the rates of combustion, species 

production and heat release. 

 

The upper half of the compartment fills with hot gases and the temperature rises in 

this hot layer as the fire progresses, causing an increase in pressure that drives hot 

gases through the upper half of the compartment opening, while cool, dense air enters 

from below. The following relation from Steckler et al [49] models this mechanism 
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for gas flow into the compartment (this formula is also used to calculate gas flow out 

of the compartment in the Cesare-Risk model because they are very close in practice 

even though they are not the same theoretically): 
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where CD is the orifice coefficient for the compartment opening,,  Ho is the total 

height of the opening and hL is the height of the interface between the hot and cool 

gas layers, g is the gravitational constant, ρo is the gas density at ambient conditions, 

To is the temperature outside the compartment, T is the gas temperature inside the 

compartment (since the model is a one zone model employing a single room 

temperature), Ao is the area of the opening. 

 

The interface between the hot and cool air masses passing through the compartment 

opening is assumed to be at 0.5 H0 (halfway up the compartment opening). The 

Cesare-Risk model uses this assumption for simplicity even though the location of the 

neutral layer can be very easily calculated [70]. In the simplified model, an average 

flow coefficient of 0.7 is used for both inflow and outflow. 

 

3.2.6.2 Flame spread 

The rate of flame spread from the point of ignition directly affects the fuel mass loss 

and burning rates. The current compartment flame spread model assumes that the 

lateral flame spread rate depends on the net external radiative heat flux to the 

combustible and the oxygen (O2) concentration in the compartment [6]: 
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where YO2i is the oxygen mass fraction in the compartment and Vf is the lateral flame 

spread velocity. Vfo is the radiation-dependent flame velocity, given by: 
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where qo,ig  is the minimum external heat flux required to ignite the fuel (W/ m2), qr is 

external heat flux to the fuel (W/m2), C is the flame heat transfer modulus 

(m3/2s1/2/W). 
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Heat fed back to the fuel by the compartment enclosure can be expressed as: 

])1([ 444
SWr TTTq −−−= εεσ          (3-4) 

where σ is the Stefan Boltzmann constant (W/m2 K4), ε is the gas emissivity,  and T, 

TW and TS are the gas, inner wall and fuel surface temperatures, respectively. 

)exp(1 LkG−−=ε             (3-5) 

Where L is the compartment length and kG is the gas absorption coefficient, which is 

assumed to vary linearly with the product gas concentration 

PROGOG Ykk = .             (3-6) 

YPRO is the mass fraction of product gases and kGO is a constant derived from 

experiments.  

The ignited area of the fuel is considered to be roughly circular and thus grows 

according to the relationship 

( )22 ∫+== dtVArA fVOv πππ          (3-7) 

where AVO is the initial burning area and r is radius. 

 

3.2.6.3 Mass loss rate for flaming fires 

The distinction between the fuel mass loss rate and the fuel burning rate is that the 

first refers to all of the vapour that is driven from the fuel, whereas the second refers 

only to the portion of evolved vapour that is converted into products. The mass loss 

rate R of the fuel for flaming fires depends on the ignited area, the concentration of 

oxygen in the burning environment and the radiative heat flux to the fuel [18]. 
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where mideal is the free vaporization/pyrolysis rate of the fuel (kg/m2 s) and  ∆r is the 

enhancement to the mass loss rate due to heat radiation by the compartment walls: 
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where ∆Hv is the heat of vaporization (J/kg fuel). 

Cooper and Yung modified the above R by taking into account the reduction in mass 

loss rate due to oxygen concentration and fuel consumption as follows: 
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where Yo2F is the mass fraction of post-combustion oxygen, mo is the initial mass of 

the fuel and mc is the mass of fuel that has been consumed by the fire. n = 1 at 

CESARE-RISK model for CESARE-Risk�s experimental building fire facility instead 

of  Cooper and Yung�s n = 2 (see [18]). 

 

3.2.6.4 Heat release rate for flaming fires 

The heat release rate of the fuel is determined by the mass loss rate for fuel controlled 

fires, and by the ventilation rate for ventilation controlled fires. It is given by the 

equation: 
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where ∆Hc is the heat of complete combustion (J/kg fuel), γ is the stoichiometric air to 

fuel ratio. The combustion efficiency µ is estimated as follows: 
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The compartment equivalence ratio φ is defined as the normal fuel vapour to oxygen 

mass ratio present in the compartment. This equivalence ratio gives a more 

conservative estimate of combustion efficiency, and prevents premature extinction of 

the fire when there are no openings, or only a small amount of leakage.  This 

eliminates the dependency of φ on the ventilation rate in the early stages of the fire 

and is thus more likely to give low predictions of φ for fires in sealed compartments. φ 

is calculated by considering the mass ratio of vaporized fuel to oxygen present in the 

compartment: 
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where ρ is the gas density, V is the compartment volume, t is time and Yo
VAP and Yo

O2F 

are the mass fractions of vaporized fuel and oxygen, respectively. 

 

3.2.6.5 Species concentrations 

The species being considered in the fire growth model are oxygen, the product gases 

(mainly CO and CO2) and unburned fuel vapour. The concentrations of these species 

depend on reaction stoichiometry and the ventilation, fuel mass loss and burn rates. 

Since the model consists of time-discretised equations, suitable average oxygen, 
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product gas and fuel vapour concentration value for each time-step must be 

calculated. Treating the compartment as a well-stirred batch reactor allows the 

calculation to be carried out. The well-stirred batch reactor is filled at the beginning of 

each time step and emptied to its initial volume just before the end of each time-step, 

requiring that the concentrations be calculated on the basis of the total mass of gas 

contacting the compartment over a given time-step. The following sections give the 

detail of the calculations. 

 

3.2.6.5.1 Oxygen concentration 

The model calculates two oxygen concentrations. One is the pre-combustion mass 

fraction of oxygen in the compartment, which is the concentration of oxygen that 

would exist in the compartment if no chemical transformation of the vaporised fuel 

had taken place. This is calculated by adding the mass of oxygen already in the 

compartment to the mass injected over the current time-step and dividing by the total 

mass of all the gas that will have contacted the compartment during the current time-

step: 
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 where ∆t is the time-step. 
 

The other oxygen concentration calculated by the model includes the oxygen 

consumption term. This is the true oxygen concentration at the end of each time-step 

when both fuel vaporisation and chemical reaction have taken place: 
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3.2.6.5.2 Product gas concentration   

The mass fraction of product gases in the compartment at the end of each time-step is: 
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where o
PROY  represents the product gas mass fraction from the previous time-step. The 

denominator represents the mass of gas that will have contacted the compartment. The 

second term in the numerator represents the combination of oxygen and fuel to form 

product gases.  
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3.2.6.5.3 Fuel vapour concentration 

Vaporized fuel that fails to burn, either because of insufficient oxygen or imperfect 

fuel/air mixing, accumulates in the compartment with the other gaseous species. The 

average concentration of fuel vapour in the compartment for a given time-step is 

calculated similarly to that of oxygen by including a production and depletion term: 
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where o
VAPY  represents the product vapour mass fraction from the previous time-step 

and (1 - µ) represents the unburned fraction of vapour produced over the time period 

∆t. 

 

3.2.6.5.4 Product gas composition 

The calculation is carried out separately for flaming fires and smouldering fires. 

 

3.2.6.5.4.1 Flaming fires 

For flaming combustion of foams, plastics and other synthetic substances, the 

simplified product gas is assumed to consist of water vapour, CO and CO2. The 

relative proportion of these is determined by the reaction stoichiometry for the fuel. 

This takes the general form: 

Fuel + O2 → a CO + b CO2 + X H2O        (3-18) 

where a is the molar stoichiometric coefficient for CO, b is the molar stoichiometric 

coefficient for CO2 and X is the number of moles of water produced in the normalised 

stoichiometry.  The equation above is normalised so that: 

a + b = 1.0 mole            (3-19) 

The mass ratio of CO and CO2 is assumed to be linear for the purposes of this 

analysis. The relationship that is assumed for this model is based on the fact that CO2 

production increases with the amount of oxygen available in the ambient air and 

relates the molar stoichiometric coefficients a and b by 

44 b = KYO2F (28 a)           (3-20) 

where K is a tunable constant that depends on the fuel type (260 for polyurethane). 

Equation (3-20) is only a first order approximation and is deficient when oxygen 

concentration approaches zero. A value of 1 is inconsistent with experimental 

observations as this will lead to a zero value of predicted CO2 concentration. To avoid 
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this situation, a maximum value of 0.5 was set in the computation algorithm, which is 

consistent with experimental observations. This value will lead to a maximum CO to 

CO2 mass ratio of 0.64. 

The CO and CO2 fractions are obtained through the following relationships: 
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The coefficients a and b are obtained by simultaneously solving
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3.2.6.5.4.2 Smouldering fires 

For smouldering fires: 

PROCO YY 05.0=             (3-23)  

PROCO YY 56.02 = .            (3-24) 

Note that the unaccounted fraction of YPRO consists of a wide variety of gases 

including H2O and other compounds. 

 

3.2.6.6 Compartment temperature 

The compartment containing the fire is treated as well-mixed combustor in which a 

single transient energy balance can be written to obtain the room temperature T.  The 

temperature in the compartment is based on the heat of combustion for the fuel 

involved instead of being linked to the production of individual species because of the 

limited knowledge of chemical kinetics for large-scale fires. The ventilation and fuel 

mass loss rates also affect the compartment temperature, as these quantities dictate the 

net energy flux across the compartment boundaries. Therefore, the energy balance for 

the compartment is given by: 

rovWcp QQQQQ
t
TVc −−−−=

∆
∆ρ          (3-25) 

where Qc is the rate of heat release to the room by combustion, QW is the rate of heat 

loss through the compartment walls, Qv is the rate of heat loss through the 

compartment opening by convection, Qo is the rate of heat loss rate through the 

compartment opening by radiation and Qr is the rate at which heat is transferred from 
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the room to the fuel for vaporisation and heating, cp is the gas specific heat, V is the 

compartment volume, ρ is the gas density. 

The rate of heat loss through the compartment walls is: 

)]()([ 44
WIWIWw TThTTAQ −+−= εσ          (3-26) 

where AW is the total wall and ceiling surface area in the compartment, ε is the gas 

emissivity, σ is the Stefan Boltzmann constant (W/m2 K4), TWI is the inner wall 

temperature and h is the convective transfer coefficient for the wall. 

The convective heat-loss through the compartment opening is: 

( ) ( )Spoapv TTRcTTmcQ −+−=           (3-27) 

where ma is the compartment ventilation rate, R is the mass lost rate, cp is the specific 

heat of wall. This energy term represents the heat loss from the room due to the 

convection of gases in and out of the room and heat lost to the vaporised fuel in 

heating it from Ts to T. 

The radiative heat loss through the compartment opening is: 

])1([ 444
oWIoo TTTAQ σσεεσ −−+=          (3-28) 

where TWI is the inner wall temperature, To is the temperature outside the 

compartment, σ is the Stefan Boltzmann constant (W/m2K4) and Ao is the area of the 

compartment opening.  

The heat requirement for solid fuel heating and vaporization is expressed as: 

vvSr HRATTQ ∆+−= )( 44σε          (3-29) 

where ∆Hv is the heat required to create one unit mass of vapour, Av is the ignited 

area. The first term represents the energy conducted into the fuel in order to heat it, 

the second term represents the energy required to vaporise the fuel at Ts , Ts  is the 

fuel surface temperature. 
 

3.2.6.7 Wall temperature  

The wall temperature TW within each wall varies with distance from the heated 

surface and is calculated through the one dimensional heat conduction: 
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where x is the wall thickness coordinate, ρW is the material density, cW is the specific 

heat and k is the thermal conductivity. 
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The above equation (3-30) requires the definition of two boundary conditions, one for 

the inside surface of the wall and one for the outside wall surface (see 3-31).  
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where k is the thermal conductivity of the wall material, δ is the wall thickness and h 

is the convective heat transfer coefficient. These boundary conditions represent the 

radiative and convective exchanges between the inner and outer wall surface and the 

surrounding gas. For the purpose of simplicity, the emissivities of the compartment 

walls and surfaces outside the compartment are assumed to be 1.0 (see [18]).  

 

3.2.6.8 Fuel surface temperature 

The temperature of the fuel surface is assumed to be controlled by the same 

mechanisms that control the temperature of surfaces in the lower portion of the 

compartment. This assumption is necessary in order to give a more conservative 

estimate of the heat flux to the fuel as mentioned previously. The fuel and lower 

compartment surfaces are thus modelled as a conductive body between radiative heat 

flux boundaries: 
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Where kf is the fuel conductivity, cf is the fuel specific heat and ρf is the fuel density. 

 

The fuel is assumed to radiate to a temperature equal to the ambient temperature To 

from its base and to a temperature equal to the compartment gas temperature T from 

its surface. The radiation boundaries of the fuel are thus similar to those for the walls, 

but without the convective heat transfer term: 
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where l is the fuel thickness, Tsi and Tso are the temperatures of the fuel surfaces 

facing the ceiling and floor of the compartment, respectively. The above equations 
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(3.33) contain the assumption that the floor under the fuel remains close to the 

ambient temperature. 

 

3.3 Scenarios of the CESARE-RISK Model 

In the CESARE-RISK model, four scenarios are considered: Door open, Window 

open; Door open, Window closed; Door closed, Window open; Door closed, Window 

closed. They will be represented symbolically by DOWO; DOWC; DCWO; DCWC. 

The events are also shown in Figure 3-1. 

 

DOWO DOWC DCWO DCWC

Apartment
one door

one window

 

Figure 3-1: Scenarios of apartment fire 

3.4 Input variables of the CESARE-RISK Model 

The stochastic nature of the input for the CESARE-RISK model is described in the 
following Table 3-1. 
 

Variables Name of variables Symbol Unit Distribution Interval 

x1 Length of room L cm Uniform (300, 1000) 

x2 Width of room Wr cm Uniform (300, 1000) 

x3 Height of room Hr cm Uniform (240, 300) 

x4 Window width factor fW  Uniform (0.5, 1.0) 

x5 Window height factor fH  Uniform (0.4, 1.0) 

x6 Fuel density ρf kg/m2 Uniform (20, 60) 

x7 Fuel Area factor fA  Uniform (0.3, 0.9) 

x8 Flame Spread Rate Rf m/sec Uniform (0.1, 2.0) 

 
Table 3-1: Stochastic input variables 

 
 

In the above Table 3-1: 

fW = Ww /Wr, where Ww is the window width in cm, 
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fH = Hw /Hr, where Hw is the window height in cm, 

ρf = mf  × 104/ Wr L, where mf is the fuel mass in kg, 

fA =πrf
2 / Wr L, where rf

2 is the fuel radius in cm. 

 

The available data have been obtained by sampling the values of the eight input 

parameters given in the table 1 independently from the specified probability 

distributions. There are 10,000 simulation data sets available, 2,500 for each of the 

four scenarios. 
 

3.5 Output variables of the CESARE-RISK Model 

The output variables from running the model include: time to light smoke, time to 

medium smoke, time to heavy smoke, time to flare over, time to untenable conditions, 

maximum temperature reached and active time. 

 

In this research, we shall concentrate on the analysis of just two output variables: the 

maximum temperature reached and the time to untenable conditions, for the four 

scenarios. 
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CHAPTER 4 

MODERN REGRESSION METHODOLOGY 

 

4.1 Introduction  

Nonlinear transformation of variables is a commonly used practice in regression 

problems. Two common goals are stabilization of error variance and symmetrization 

/normalization of error distribution. A more comprehensive goal is to find those 

transformations that produce the best-fitting additive model. Knowledge of such 

transformations aids in the interpretation and understanding of the relationship 

between the response and predictors. 

 

There are several modern regression methods, such as Alternating Conditional 

Expectations (ACE), Additive and Variance Stabilizing Transformation (AVAS), Fit 

Linear Regression (lm), Least Trimmed Squares Regression (ltsreg), Projection 

Pursuit Regression (ppreg) that could be used to do regression on the data. ACE and 

AVAS are suited for the data in this research. 

 

4.2 The Alternating Conditional Expectations (ACE) methodology 

ACE (Alternating Conditional Expectations) is an intuitively appealing technique 

introduced by Breiman and Friedman in 1985 [34]. The idea is to find nonlinear 

transformations θ(y), φ1(x1), φ2(x2), �,  φp(xp) of the response y and carriers (or 

"independent variables") x1,x2,�,xp, respectively, such that the additive model 

θ(y) = φ1(x1)+ φ2(x2)+ �+  φp(xp) +ε         (4-1) 

is a good approximation for the data yi,xi1,xi2,�,xip, i = 1, �, n. Let y, x1, x2, �, xp be 

random variables with joint distribution F, and let expectations be taken with respect 

to F. Consider the goodness-of-fit measure 

e e
E y x

E yp
k kk

k p

2 2
1

2
1

2= =
−

=

=∑
( , , , )

{[ ( ) ( )] }
[ ( )]

θ φ φ
θ φ

θ
K .     (4-2) 

The measure e2 is the fraction of variance not explained by regressing θ(y), on φ1(x1), 

φ2(x2), �,  φp(xp). The data-based version of e2 is  
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where $θ  and the $φk , estimates of θ  and φk , are standardized so that $( )θ yi  and the 

$ ( )φk ikx  have mean zero:  
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1
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1
, k = 1, �, p.  

For the usual linear regression case, where $( )θ y y yi i= − and  

$ ( ) ( ) $ , , $ ( ) ( ) $φ β φ β1 1 1 1 1 1x x x x x x x xi i p ip p ip p p− = − − = −K with $ , , $β β1 K p  the least squares 

regression coefficients, we have 
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and the squared multiple correlation coefficient is given by R eLS
2 21= − . 

 

4.2.1 Further Details of ACE 

The ace transformations θ* and φ φ φ1 2
∗ ∗ ∗, , ,K p  are the result of minimizing  

e ep
2

1
2( , , , ) ( , )θ φ φ θ φK = . Since we wish to minimize e2 ( , )θ φ , the reason for 

dividing by E yθ 2 ( )  becomes clear: we want to avoid obtaining the trivial and useless 

solution 

θ φ φ( ) ( ) ( )y x xp p= = = ≡1 1 0L . 

To see why the term "alternating conditional expectations" came into being, consider 

the case p = 1, where 
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It may be shown that the solutions θ φ∗ ∗,  must satisfy the simultaneous equations 
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where for arbitrary random variables z and w, E[z|w] denotes the conditional 

expectation of z given w. Under reasonable assumptions this theoretical solution can 

be shown to be the limit of an iterated sequence of alternating conditional 

expectations: 
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For the data-based ACE algorithm one must estimate the above conditional 

expectations, using good estimates $ ( )( )φ j
ix  and $ ( )( )θ j

iy  at each iteration j. 

 

At iteration j, one has available as bivariate data the values ( , $ ( )) ( , ~ )( )x y x yi
j

i i iθ − =1 , 

 i = 1, �, n which may be used to estimate $ ( )( )φ j x  in the first half of the iteration 

step. One then has bivariate data ( , $ ( )) ( ,~ )( )y x y xi
j

i i iφ = , i = 1, �, n, with which to 

estimate $ ( )( )θ j y in the second half of the iteration step, thereby completing the jth 

iteration. In each of these half steps, the estimates $ ( )( )φ j
ix  and $ ( )( )θ j

iy  of the 

conditional expectations φ θ( ) ( )( ) [ ( )| ]j
i

j
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obtained using a sophisticated scatter plot smoother called supersmoother (see [56] 

for detailed information about supersmoother). 

 

In order to deal with the case of p ≥ 2, ACE uses an iterative technique called 

backfitting [56]. In the first half-step of the jth iteration, the backfitting procedure 

computes estimates $ ( )( )φ j
ix  for each carrier xi, one at a time, treating 
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as the response, and cycling through the xi's until convergence 

is achieved.  Then the $ ( )( )θ j y  is computed as an estimate of E x yk
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complete the second half-step of the jth iteration. 

 

4.2.2 Key property of ACE 

The key property of the ACE is the following: Suppose the true additive model is  

θ φ ε0 0

1
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where φ φ1
0

1
0( ), , ( )x xp pK  has a multivariate normal distribution, ε has a normal 

distribution with mean zero and ε is independent of x1, x2, �, xp. Then the ACE 

iteration sequence θ φ φ( ) ( ) ( ), ,...,j j
p

j
1 , which is the generalization of equation (4-5) to 

multiple carriers by using backfitting, converges to θ φ φ0
1
0 0, ,..., p  respectively. The 

corresponding data-based iteration sequence of estimates θ φ φ( ) ( ) ( ), ,...,j j
p

j
1  will, at 

convergence, provide estimates $, $ ,..., $θ φ φ1 p  of the true model transformations 

θ φ φ0
1
0 0, ,..., p . See Breiman and Friedman [34] for more detailed comments on ACE. 

 

4.3 The Additive and Variance Stabilizing Transformation (AVAS) Regression 

Methodology 

Like ACE, the AVAS regression methodology tries to find transformations θ(y), 

φ1(x1), φ2(x2), �,  φp(xp) such that  

θ(y) = φ1(x1)+ φ2(x2)+ �+  φp(xp) +ε         (4-7) 

provides a good additive model approximation for the data yi, xi1, xi2, �, xip, i= 1, 2, �, 

n. However, AVAS differs from ACE in that it chooses θ(y) to achieve a special 

variance stabilizing feature. In particular the goal of AVAS is to estimate 

transformations θ φ φ φ, ,...,,1 2 p , which have the properties 
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and 

var[ ( )| ( )]θ φy xi ii

p

=∑ 1
= constant.           (4-9) 

Here E[z|w] is the conditional expectation of z given w. The additivity structure (4-8) 

is the same as for ACE, and correspondingly the φi's are calculated by the backfitting 

algorithm 

φ θ φk k i i k
i k
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∑          (4-10) 

cycling through k = 1, 2,�,p until convergence. The variance stabilizing aspect comes 

from (4-9). The conditional variance in equation (4-9) is estimated by a different 

scatter plot smoothing technique (for details see [56]). The equality (4-9) is 

approximately achieved by estimating the classic variance stabilizing transformation 

(See Section 4.3.2). 
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4.3.1 Key properties of AVAS 

(a) Suppose that the true additive model is 

θ φ ε0 0

1
( ) ( )y xi

i

p

i= +
=
∑           (4-11) 

with ε independent of x1, x2, �, xp, and var(ε) = constant. Then the iterative 

AVAS algorithm for (4-8) - (4-10), described below for the data versions of (4-8) 

to (4-10), yields a sequence of transformations θ φ φ( ) ( ) ( ), ,...,j j
p

j
1  which converge 

to the true transformation θ φ φ0
1
0 0, ,..., p  , as the number of iterations j tends to 

infinity. Correspondingly, the data-based version of this iteration yields a 

sequence of transformations $ , $ ,..., $( ) ( ) ( )θ φ φj j
p

j
1  which, at convergence, provide 

estimates $, $ ,..., $θ φ φ1 p  of the true model transformations θ φ φ0
1
0 0, ,..., p . 

(b) AVAS appears not to suffer from some of the anomalies of ACE, that is, not 

finding good estimates of a true additive model (equation 4-11) when normality 

of ε and joint normality of φ1(x1), φ2(x2), �,  φp(xp) fail to hold. 

(c) AVAS is a generalization of the Box-Cox (1964) [57] maximum-likelihood 

procedure for choosing a power transformation yλ of the response. AVAS also 

generalizes the Box-Tidwell [58] procedure for choosing transformations of the 

carriers x1, x2, �, xp, and is much more convenient than the Box-Tidwell 

procedure (see also Weisberg [59]). 

(d) $( )θ y is a monotone transformation, since it is the integral of a nonnegative 

function. This is important if one wants to predict y by inverting $θ : monotone 

transformations are invertible, and hence we can predict y with 

])(�[��
1

1 ∑ =
−= p

i ii xy φθ . This predictor has no particular optimality property, but is 

simply one straightforward way to get a prediction of y once an AVAS model has 

been fitted. 

 

4.3.2 Further details of AVAS 

Let 
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where $( )θ y  is an arbitrary transformation of y. $( )θ y  will be the "previous" estimate 

of θ(y) in the overall iterative procedure described below. Given the variance function 

v(u), it is known that ∑
=

=
p

i
ii uxyg

1
])(|))(�(var[ φθ will be constant if g is computed 

according to the rule 
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for an appropriate constant c. See Box and Cox [57]. 

 

The detailed steps in the population version of the AVAS algorithm are as follows: 

1. Initialize:   

Set $( ) ( ) / [var( )] /θ y y Ey y= − 1 2  and backfit on x1, x2, �, xp to get $ ,..., $φ φ1 p , that is 

$( ) ( ( )| )φ θx E y x← . 

2. Get the new transformation of y: 

a. Compute the variance-stabilizing transformation 
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b. Compute the variance-stabilizing transformation ∫=
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c. Set ))(�()(� ygy θθ =  and standardize 
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3. Get the new $φi 's: 

 Backfit $( )θ y  on x1, x2, �, xp to obtain new estimates $ ,..., $φ φ1 p . 

4. Iterate steps 2 and 3 until  

R e E y xi ii

p2 2 2
1

1 1= − = − −
=∑$ [ $( ) $ ( )]θ φ         (4-14) 

does not change. 

Of course, the above algorithm is actually carried out using the sample of data yi, xi1, 

�, xip, i = 1, �, n, with expectations replaced by sample averages, conditional 

expectations replaced by scatter plot smoothing techniques and population variances 

replaced by sample variances. See Tibshirani 1988 [35] for more detailed comments 

on AVAS. 
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CHAPTER 5 

RESPONSE SURFACE METHODS AND RELIABILITY 

 INDEX ANALYSIS 

 

5.1 Response surface methods 

In studying the structure of limit state functions, the following two problems are often  

encountered by researchers: 

1. The functions are not known explicitly; 

2. They have a complicated functional form.  

 

Suppose that the state function is given in terms of a response variable Y with 

Y = g (X1 ,X2 ,�,Xn  )           (5-1)  

but the functional form of g is unknown. Here the X1 ,X2 ,�,Xn  are called the 

independent or regressor variables and Y the dependent or response variable. The 

usual method of statistical inference to find such a relationship is the response surface 

method (see [40], [43], [44] and [45]). A brief review of response surface methods as 

they  relate to this research will be given in the following sections. 

 

5.1.1 Basic ideas of response surfaces 

Suppose that the response variable Y depends on the input variables X1, X2, ��, Xn. 

Experiments are conducted with input variables X = (X1, X2, ��, Xn ) a sufficient 

number of times to define the response surface to the level of accuracy desired. Each 

experiment can be represented by a point with coordinates Xj = ( X1j, X2j, ��,Xnj )  in 

an n-dimensional space. At each point, a value of yj is observed. Although the actual 

response Y is a function of the input variables, that is Y = g(X1, X2, ��, Xn), this 

function is generally unavailable in closed form. The classical response surface 

procedure is to approximate g(X) by an nth order polynomial ~g (X) with 

undetermined coefficients. Statistical analysis is performed to determine the unknown 

coefficients in the polynomial ~g (X) such that the error of approximation is minimum 

in the region of interest. Normally, a log transformation is not considered, when there 

is no reason to believe that the deviations from the response surface are significantly 

non-normal. However, in certain conditions, such as output involving a non-negative 
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response, such as a waiting time, a log transformation will improve the fit (see 

Chapter 10 in the thesis). 

 

More generally, the response surface method consists of the following steps: 

1. Choice of one of several families of functions, which appear to be suitable to 

approximate the unknown function g(x1, x2, ��, xn), 

2. If possible, design of experiments, which will give optimal estimators of the 

parameters of the functions chosen in the last step, 

3. Validation of the derived approximation model by statistical tests or other 

methods. 

 

5.1.2 Selection of the order of the polynomial 

The selection of the order of the approximating polynomial and points xi for 

experimentation require careful consideration. Up to a certain degree, a higher order 

polynomial improves the accuracy of the approximation at the expense of additional 

computation. The rate of increase in accuracy reduces with increasing the degree of 

the polynomial but the computational costs increase exponentially. Moreover, higher 

order polynomials can exhibit erratic behaviour in the sub-domains not covered by the 

experiments [47].  

  

For reliable estimates, one needs to have a good approximation to g(X) around the 

design (or minimum norm) point, that is the region of the failure domain DF  that 

contributes most to the overall failure probability. Since we neither know the actual 

limit state function nor the actual design point, the accuracy of the estimate depends 

on the accuracy of the polynomial approximation in the region of the design point.  

 

5.1.2.1 Quadratic approximation 

A second order response surface for n input variables is described by a quadratic 

model, 

 
~g (X) =A + XTB +XTCX          (5-2) 

where A, BT = [B1, B2, ��, Bn], and, 
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are the undetermined coefficients. Experiments are conducted as per the adopted 

design and the resulting system of equations may be put in the form. 

G = Dd + e             (5-3) 

where d is a vector of constants A, Bi, Cij, the matrix D contains constant, linear, 

quadratic and cross-combination functions of the Xj and e is the error vector, the 

components ei of which consist of a lack of fit error resulting from approximating g 

by ~g , and a pure experimental error, assumed to be a zero mean random vector. The 

solution, 

E(d) = (DTD)-1DTG           (5-4) 

provides the expected values of the unknown coefficients. 

 

Other polynomial interpolation schemes using Lagrangian and Hermite polynomials 

are possible, although no specific examples of their application for reliability analysis 

could be located. At a higher level of sophistication, Ditlevsen and Madsen [39] have 

presented a random field model for stochastic interpolation between point by point 

measured values of a spatially distributed material property. 

 

A possible further step in response surface methodology is to test the significance of 

the contribution of terms in the derived functional form, for example, in a quadratic 

polynomial, the significance of the square terms. If they are not significant, a simpler 

model without these terms might be used instead of the whole polynomial expression. 

If experiments are made, we have in general some random variability. If the random 

experiment is run m times for the same values of x1, x2, ��, xn, the resulting values 

y1, y2,��,ym of the response variable will be different. This means that there is 

inherently a pure random error. Therefore the model should be put in the form 

 

 y g x x x x x xn n= +( , , , ) ( , , , )1 2 1 2KK KKε       (5-5) 

 

with ε( , , , )x x xn1 2 KK  representing the error term. To judge the quality of a model, 

estimates of the magnitude of this error term are important. Since in such an 
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experimental design we have different responses for the identical set of regressor 

variables, it will not be possible in general to fit a model without any error term. 

If the experiments are of a numerical nature, contribution to this pure error arises from 

the impossibility of working in the space of all the influencing variables. Usually, a 

projection in a space of reduced dimension is introduced, where then the influence of 

the neglected variables results in a random effect. 

 

The commonly used orthogonal experimental designs are 2n and 3n factorial designs 

[50, 51, 52, 53] 

 

These factorial designs, though efficient, lead to unacceptably high computational 

efforts with the increase in number of variables for complex systems and may become 

more time consuming than simulation. 

 

An iterative response surface approach for reliability analysis was presented by 

Bucher and Bourgund [54]. The experimental design in each iteration consists of as 

many locations as the total number of undetermined coefficients in the polynomial 

 ~( )g x a b x c xi i i i
i

n

i

n

= + +
==
∑∑ 2

11
       (5-6) 

in which xi, i = 1, 2,�, n are basic variables and the parameters a, bi, ci are to be 

determined. 

 

The constants are to be determined by using (2n+1) values of g(x) at the mean values 

µi of the random variables Xi, and at iiii hx σµ ±= , in which hi is an arbitrary factor 

and σi is the standard deviation of Xi. 

 

The new center point  for interpolation is chosen on a straight line from mean vector 

to the minimum norm point [54]. The total number of evaluations of g(x) is (4n+1) . 

To improve the accuracy of the response surface, Rajashekhar and Ellingwood [55] 

added the cross terms in the polynomial developed by Bucher and Bourgund [54].  

 ∑ ∑∑
= = =≥
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The total number of experiments to be conducted for each approximation would then 

increase to (n+1)(n+2)/2. This method does not appear to have any particular 

advantage with regard to computational effort and accuracy as compared to more 

conventional methods for selecting experimental points. 

 

5.2 The methodology adopted in this thesis 

5.2.1 Steps in the procedure 

1. For each scenario we apply a modern regression method (AVAS or ACE 

depending on which appears most successful). Visual assessment of the plots of 

transformed inputs against the transformed output indicates different modes of fire 

growth for different ranges of the inputs. The data set is then split into subsets 

covering the ranges of input identified. 

2. For each subset we carry out a polynomial regression of a special type, namely 

one for which each input appears as a polynomial, but there are no product terms 

between the inputs because this will considerably simplify the reliability 

calculation. As will be shown in the following chapters, it is enough to use 

quadratic polynomials. 

3. For each subset we carry out, where appropriate,  a cubic transformation of the 

predicted output  so as to further improve the fit of the predicted output values to 

the observed output values. 

 

Throughout the procedure, we measure the goodness of fit of the regression by 

evaluating the correlation between the predicted values and the observed values. The 

square of this correlation measures the amount of variation in the input that is 

explained by the regression.  

 

The use of correlation here carries no implication that there is a random element in the 

computer model. That model is in fact purely deterministic. Here the use of 

correlation  is as described by R.A.Fisher (quoted by  Searle 1987 p.13 [66]): �a 

simple method of arranging arithmetical facts so as to isolate and display the essential 

features of a body of data with the utmost simplicity�. Correlation here simply 

measures the departure of the regression approximation from the full computer model. 
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5.2.2 Outliers and their treatment 

In the course of applying the procedure outlined in subsection 5.2.1 there were usually 

some data points that were clearly �outliers�.  

An outlier is defined as �an observation that is so different from the bulk of the 

observations that it stands out�. It is customary, when such outliers are detected, to 

reject them, as they tend to grossly distort the results of the analysis. ([67] Staudte and 

Sheather 1990). Outliers in the analysis of the CESARE-RISK computer model arise 

because certain particular combinations of inputs lead to unstable outputs where small 

errors in the computations can lead to large variations in the output. 

In an engineering context, two conditions are required to make  rejection of outliers 

acceptable: 

1. The proportion of outliers in the data set must be small. 

2. Omitting them, which is equivalent to replacing the corresponding outputs with 

their predicted values in the design calculations, should be overwhelmingly 

conservative, i.e. should make the design safer. 

 As will be seen at the end of Chapter 6, those two conditions were fulfilled in the 

study of maximum temperature.  

For the study of time to untenable conditions (chapters 8 and 10) no outliers were 

detected. 

 

5.3 Reliability index and the failure probability in fire engineering 

The aim of probabilistic design in fire engineering is to ensure that the probability that 

the design is safe is greater than 1-pF, where pF is an acceptable level of failure 

probability. Safety is defined as follows: We consider a set of physical variables 

representing the model: X = X1, �, Xn. In the n-dimensional space of these physical 

variables we define a limit hypersurface G(X) which divides the space into a safe 

region and a failure region. The variables of the fire model are stochastic and 

therefore induce a probability distribution in the physical variable space. The 

reliability of the design is the probability of the safe region. Calculating the reliability 

of a design directly from the fire model requires a very large amount of computation. 

The purpose of the regression analysis described in the preceding section is to make it 

possible to use a simplified approach which can be used by practising engineers to 

obtain a reliability index for the considered design. 
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We propose to apply the well-known First Order Second Moment Method (Hasofer 

and Lind 1974 [36]) to obtain what is known as the β reliability index. This method 

has been widely used in structural engineering (Melchers 1987 [37]) and has recently 

been advocated in fire engineering by Frantzich et al 1997 [38] and Ramachandran 

1998 [75]. 

 

The procedure is as follows: 

1) Carry out a linear transformation  on the vector X of physical variables so as to 

obtain a vector U of uncorrelated variables, each having zero mean and unit 

standard deviation. 

2) Find the image G*(U) of the limit state function G(X) in the U space. 

3) Find the distance from the origin to the limit state function in the U space. This is 

the β reliability index. 

 

This can be illustrated in two dimensions by Figure 5-1. Clearly, if we draw a series 

of concentric circles around the origin, the β index will simply be the distance of the 

origin to the point D at which one circle just touches the limit curve. This point is 

known as the design point. 

 
 

U1

U2G*(U)

T(U)

Dβ

Failure area

 
 

Figure 5-1: Illustration of the β index in two dimensions 
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It is to be noted that as long as the limit surface is relatively smooth it is well 

approximated by the tangent hyperplane to the limit state surface T(U) at D.  If, in 

addition, the new variables U have approximately a multivariate normal distribution, 

which is often the case, it is shown in the reliability literature that the reliability of the 

design, i.e. the probability of the safe region, is approximately equal to Φ(β)  where Φ 

is the distribution function of the standard normal distribution. The probability of 

failure pF is given by Φ(-β). 

 

To estimate risk in fire, the probability of failure must be found. The final step of the 

research is the development and application of a model that can be used to estimate 

the probability of failure in the fire model.  

 

The first order second moment analysis is illustrated in Figure 5-1. There the limit 

state function G(X) consists of two basic random variables,  x1 and  x2 . But the ideas 

are readily extended to more than two basic random variables.  

 

In Figure 5-1.  T(U) = 0 is the tangent hyperplane. Therefore, point D is the checking 

point of failure (also called design point). The safety index β can calculated as 

follows: 

  2
1)min( 2

2
2
1 uu +=β .           (5-8) 

 

In an n-dimensional space with a hyperplane limit state function, the shortest distance, 

the safety index β , is then 

2
1

2min 






= ∑
n

i
iuβ             (5-9) 

where the ui represent the coordinates of any point on the limit state surface. 

 

5.4 The Monte Carlo method and applications  

5.4.1  The Monte Carlo method 

There are many situations in probabilistic risk analysis when there is no analytic 

algorithm that will evaluate the required probabilities. Alternatively, the available 

algorithm is extremely complex and can only be carried out at great expense of effort 

and computer time. 
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An alternative method is known as Monte Carlo simulation. It depends on the fact that 

the histogram of a large random sample approximates the probability function of the 

underlying random variable. 

 

Suppose that the output variable required to carry out the risk analysis, denoted by Y, 

is given as a function of a vector X of underlying variables: X = X1, X2, �, Xn, in the 

form  

Y = f (X).            (5-10) 

 

In the Monte Carlo method, a random sample of size N of the vector of underlying 

variables, X1, X2, �, XN is generated. Each such vector is called a realization of the 

vector X.  To each realization there corresponds a value of the output variable Y. Thus 

we obtain a sample of size N from the output variable Y. Provided N is chosen 

appropriately large, the histogram of Y will approximate its distribution as closely as 

required. 

 

5.4.2 The confidence interval for a Monte Carlo simulation 

Suppose that a Monte Carlo simulation of size N is carried out to determine the 

probability of some subset A of the output space. Suppose that the output of n 

simulations is in A. The Monte Carlo estimator of pA, the probability of A, is  

$pA  = n/N. Now each realization of the input can be thought of as a Bernoulli trial 

with probability of success pA. It is not difficult to calculate a confidence interval for 

the estimator (see [20], [27]), for example the 95% confidence interval for the 

estimator $pA  is 

 

N
ppp AA

A
)�1(�

96.1� −
m .          (5-11) 

 

Clearly, the larger N, the shorter the confidence interval and the greater the precision 

of the estimator. In fact, the length of the confidence interval varies inversely as the 

square root of the number of simulations. 
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5.4.3 Confirmation of reliability by Monte Carlo 

Monte Carlo simulation can be used to confirm the probability of failure obtained 

from the reliability index. The easiest method is to work in the U space. A set of N 

realizations of the standardized vector U is generated and each U is tested to 

determine whether it falls in the safe region or failure region. The probability of the 

failure region is then estimated by n/N, where n is the number of vectors U that fall in 

the failure region. 

 

The details of the application of reliability index and Monte Carlo simulations for fire 

engineering in this research will be further discussed in Chapter 6 and Chapter 7. 
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CHAPTER 6 

MODERN REGRESSION ANALYSIS OF 

MAXIMUM TEMPERATURE 
In this chapter, through using the modern regression method, AVAS, a simple 

response surface will be derived for the maximum temperature reached under 

different events of the CESARE-Risk Model, for each of a number of subranges of 

the input parameters.  

 

6.1 Modern regression analysis of DOWO scenario 

6.1.1 The stochastic nature of DOWO scenario 

6.1.1.1 The stochastic nature of the input for DOWO scenario 

The stochastic nature of the input is described in the following Table 6-1-1. 
Variables Name of variables Symbol Unit Distribution Interval 

x1 Length of Room L [cm] Uniform (300, 1000) 

x2 Width of Room Wr [cm] Uniform (300, 1000) 

x3 Height of Room Hr [cm] Uniform (240, 300) 

x4 Window Width Factor fW  Uniform (0.5, 1.0) 

x5 Window Height Factor fH  Uniform (0.4, 1.0) 

x6 Fuel Density ρf [kg/ m2] Uniform (20, 60) 

x7 Fuel Area Factor fA  Uniform (0.3, 0.9) 

x8 Flame Spread Rate Rf [m/sec] Uniform (0.1, 2.0) 

Table 6-1-1: the stochastic input parameters of DOWO scenario 
 
In Table 6-1-1: Ww = fW⋅ Wr, where Ww is window width; Hw = fH⋅ Hr, where Hw is 

window height; mf = 104×Wr⋅ L⋅ρf, where mf  is fuel mass (kg); rf = (Wr⋅ L⋅fA /π)1/2 

,where rf is fuel radius. 

The available data have been obtained by sampling the values of the eight input 

parameters given in the table independently from the specified probability 

distributions. There are 2,500 simulation data available for DOWO scenario. 

 
6.1.1.2 The stochastic output for DOWO scenario 

In this section, we shall concentrate on the analysis of just one output variable: the 

maximum temperature reached, denoted by y. 
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6.1.2 AVAS regression analysis for DOWO scenario 

By applying the AVAS regression on the DOWO data (2,500 data sets), we obtained 

eight transformed inputs and one transformed output. Plots of the transformed data 

against the original data are shown in Figure 6-1-1. 

 

 
 

Figure 6-1-1: Plots of the transformed variables against the original data (X2) 
 

When there are two different rates of grow in the transformed data curve, this 

corresponds to a different mode of fire growth. Analyzing Figure 6-1-1leads to the 

following conclusions: 

1. From the plot of variable x1, which is the length of the room, it is clear that there 

were different modes of fire growth for room length L, less than 600 cm and room 

length greater than 600 cm.  

2. There were also different fire growth modes of variable x8 , which is the flame 

spread rate Rf. It is clear that there is a change of behavior when the flame spread 

rate is greater than 0.455 m/sec and when the flame spread rate is less than 0.455 

m/sec.  

and also the transformed value of variable x3 is comparatively small and thus can be 

neglected.Therefore, I have created two sub-range data sets for L > 600 cm (L < 600 

cm will be discussed later) as follows: 

X233: L > 600 cm, Rf > 0.455 m/sec; X232: L > 600 cm, Rf < 0.455 m/sec. 
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6.1.2.1 AVAS regression analysis for X233 

There were 1176 data points satisfying the constraints L > 600 cm and Rf > 0.455 

(i.e.X233). By using AVAS regression analysis on X233 data set, it is clear that seven 

data points were outliers, as shown in Figure 6-1-2, which is a scatter plot of the 

transformed y against its predicted value from the regression. Deleting them left us 

with 1169 data points (X2331). It also turned out that the room height, x3, and the 

flame spread rate x8, can be ignored in the regression calculations under the applied 

constraints because their effect is very small. So the set of indices used was just i = 

1,2, 4,5,6,7. 

 
Figure 6-1-2: Scatter plot of transformed y against ypred 

 
Figure 6-1-3: Scatter plot of transformed y against ypred (outliers removed) 
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Figure 6-1-4: Scatter plot of transformed y against ypred (including x8) 

 
 

Figure 6-1-5: Plots of the transformed variables against the original data (X2331) 
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To the 1169 data points we fitted by linear regression a quadratic regression formula 

of the form 

y a x b x ci i i i
i

n

i

n

= + + +
==
∑∑ 2

11
ε .         (6-1-1) 

The coefficient c = 682.4. The ai and bi were as in Table 6-1-2. 
i 1 2 3 4 5 6 7 

bi 0.0867 0.0511 0.3892 271. 3 309.7 2.4186 -155.3 

ai -0.0001 -0.0000  -0.0006 -97.27 -123.4 -0.0181 34.65 

Table 6-1-2: Values of quadratic regression coefficients for X2331 

Letting 

y a x b x ct i i i i
i

n

i

n

= + +
==
∑∑ 2

11
          (6-1-2) 

It was found that the correlation between y and yt was 0.988. The scatter plot of y 

against yt is shown in Figure 6-1-6. 

 

The second step in the fitting is to improve the fit of yt to y by using a cubic regression 

formula of the form 

y C C y C y C yt t t= + + + +0 1 2
2

3
3 ε         (6-1-3) 

The coefficients turned out to be:    

C0 = 1898.7; C1 = -6.459; C2 = 0.008978; C3 = -3.423e-006. 

Setting 

y C C y C y C ypred t t t= + + +0 1 2
2

3
3         (6-1-4) 

The correlation achieved between y and ypred is now 0.992. A scatter plot of y against 

ypred is shown in Figure 6-1-7. 

Note: When we ignored x3 and x8.  

The coefficient c was 743.2. The bi and ai are as in Table 6-1-2a. 
i 1 2 4 5 6 7 

bi 0.0910 0.0459 273.6 311.6 2.435 -154.1 

ai -0.0001 0.000 -98.83 -125.1 -0.0183 33.80 

 

Table 6-1-2a: Values of quadratic regression coefficients (ignored x3 and x8) 
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It was found that the correlation between y and yt was 0.969. More detailed discussion 

of this issue were given by Hasofer and Qu [65]. 

 

Figure 6-1-6: Scatter plot of y against ypred (quadratic fitted) 
 

 
Figure 6-1-7: Scatter plot of y against ypredf (cubic fitted to quadratic values) 
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6.1.2.2 AVAS regression analysis of X232 

There were 261 data sets satisfying the constraints  L >600 cm and Rf < 0.455 m/sec. 

By using AVAS regression analysis on X232 data set, (see Figure 6-1-8), it is clear 

that there were two different modes of fire growth for room width Wr, that is x2. When 

Wr < 700 cm, we have a new sub-range data set X2322 (159 observations), and when 

Wr > 700 cm, data set X2323 (102 observations). 

 

 
 
 

Figure 6-1-8: Plots of transformed variables against original data of X232 
 

 

6.1.2.2.1 AVAS regression analysis for X2322 

Through using AVAS regression analysis on X2322 data set , it is clear that  there are 

several data points that are outliers, as shown in Figure 6-1-9. Deleting them left us 

with 148 data points, which we call it X2322f. and the AVAS correlation rose from 

0.395 (X2322) to 0.954 (X2322f). 

 

We apply again the AVAS algorithm and plot the predicted transformed variables 

against the original data of X2322f (see Figure 6-1-10).  
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Figure 6-1-9: Scatter plot of y against AVAS ypred of X2322 
 

 
 

Figure 6-1-10: Plots transformed variables against original data of X2322f 
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To the 148 data sets we fitted a quadratic regression formula of the form 

y a x b x ci i i i
i

n

i

n

= + + +
==
∑∑ 2

11
ε           (6-1-5) 

The coefficient c = 570.0. The ai and bi were as in Table 6-1-3. 
i 1 2 3 4 5 6 7 8 

bi 0.1058 0.1415 0.4145 238.3 257.8 2.799 -59.32 439.5 

ai -0.00010 -0.00012 -0.00054 -72.18 -88.69 -0.02461 -17.15 -685.9 

 

Table 6-1-3: Values of quadratic regression coefficients for X2322f 

Letting 

y a x b x cpred i i i i
i

n

i

n

= + +
==
∑∑ 2

11
          (6-1-6) 

 

It was found that the correlation between y and ypred (quadratic fitted) is 0.941. (cubic 

fitted 0.944), and a scatter plot of y against ypred is shown in Figure 6-1-11. 

 

 

 
Figure 6-1-11: Scatter plot of y against ypred for X2322f  
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6.1.2.2.2 AVAS regression analysis for X2323 (102 obs) 

We apply the AVAS algorithm to the data set X2323 and plot the predicted 

transformed maximum temperature against maximum temperature as shown in Figure 

6-12. Deleting the outliers in Figure 6-1-12 left us with 83 observations (data set 

X2323f) and the correlation was increased from 0.690 to 0.924. The plots of 

transformed variables against the original data of X2323f are shown as in Figure 6-1-

13. 

 
Figure 6-1-12: Scatter plot of y against yp2323 of X2323 

 

 

Figure 6-1-13: Plots transformed variables against original data of X2323f 
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To the 83 data points we fitted a quadratic regression formula of the form 

y a x b x ci i i i
i

n

i

n

= + + +
==
∑∑ 2

11
ε          (6-1-7) 

The coefficient c = 1148.0. The ai and bi were as in Table 6-1-4. 
 

i 1 2 3 4 5 6 7 8 

bi 0.1505 -0.3401 -5.549 309.5 479.2 3.491 -18.99 1860.9 

ai -0.00014 0.00021 0.01119 -115.5 -232.5 -0.04117 -61.08 -2802.1 

 
Table 6-1-4: Values of quadratic regression coefficients for X2323f 

Letting 

y a x b x ct i i i i
i

n

i

n

= + +
==
∑∑ 2

11
          (6-1-8) 

The correlation between y and yt (quadratic) is 0.908. 

We improve the fit by using a formula of the form: 

y C C y C y C yt t t= + + + +0 1 2
2

3
3 ε         (6-1-9) 

 

 
Figure 6-1-14: Scatter plot of y against ypred for X2323f (cubic) 

 
 

The coefficients turned out to be: 

C0 = -23098.4; C1 = 63.95; C2 = -0.05693; C3 = 0.00001708. 
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Letting 

y C C y C y C ypred t t t= + + +0 1 2
2

3
3         (6-1-10) 

the correlation achieved between y and ypred is now 0.929. The scatter plot of y against 

ypredf  is shown in Figure 6-1-14. 

 

6.1.3 AVAS regression analysis for X22  (room length L < 600 cm) 

We apply the AVAS algorithm and the plots of the transformed variables against 

original data are shown in Figure 6-1-15. 

 

Analysing Figure 6-1-15, from the plot of x8, which is the flame spread rate, it is clear 

that there is a change of behaviour at 0.66 m/sec. It turns out that there are 752 

observations satisfying the constraints of length of room L < 600 cm and flame spread 

rate Rf ≥ 0.66 m/sec, which are referred to as X223. And there are 311 observations 

satisfying the constraints L < 600 cm, Rf < 0.66 m/sec, which we call X222. 

 

 
Figure 6-1-15: Plots of transformed variables against original data of X22  
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6.1.3.1 AVAS regression analysis for X223 

We apply the AVAS algorithm and plot the transformed variables against the original 

data. The result of transformed data against the original data is shown in Figure 6-1-

16. The correlation coefficient was 0.514. 

 

 
 
 

Figure 6-1-16: Plots transformed variables against original data for X223 
 

 

From the plot of x7, which is the fuel area factor fA, it is clear that there is a change of 

behaviour at 0.455. This value, x7 = 0.455, separated the data set into two new sub-

sub-range data sets. It turns out that there are 202 observations satisfying the 

constraints of the length of the room L < 600 cm, flame spread rate Rf > 0.66 m/sec 

and fA < 0.455, which is referred as X2232. And there are 550 observations satisfying 

the constraints of the L < 600 cm , Rf ≥ 0.66 m/sec and fA > 0.455, which we call it 

X2233. 
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6.1.3.1.1 AVAS regression analysis for X2233 

By using the AVAS regression analysis on X2233 data set we obtain the result of 

transformed maximum temperature against predicted value of AVAS shown in Figure 

6-1-17.  It is clear that there were seven data points outliers (17, 65, 41, 79, 

27,171,112). Deleting them left us with 543 data points which are referred as X2233f. 

We apply the AVAS algorithm to X2233f and the plots of transformed variables 

against original data of X2233f. The result is shown in Figure 6-1-18, and the 

correlation coefficient is increased from 0.795 to 0.981.  

 
 

Figure 6-1-17: Scatter plot of transformed y against yp2233 for X2233 
 

To the 543 data points we fitted a quadratic regression formula of the form 

y a x b x ci i i i
i

n

i

n

= + + +
==
∑∑ 2

11
ε          (6-1-11) 

The coefficient c = 461.6. The ai and bi were as in Table 6-1-5. 
i 1 2 3 4 5 6 7 8 

bi 1.033 0.03170 0.07184 248.6 287.8 2.234 -29.11 7.609 

ai -0.00095 -0.00002 -0.00006 -96.62 -124. 2 -0.01720 -29.63 -3.086 

 
Table 6-1-5: Values of quadratic coefficients for X2233f 
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Figure 6-1-18: Plots of transformed variables against original data for X2233f 

 
Letting 

y a x b x cpred i i i i
i

n

i

n

= + +
==
∑∑ 2

11
         (6-1-12) 

the correlation between y and ypred (quadratic fit) is 0.984. A scatter plot of y against 

ypred for X2233f (quadratic fit) is shown in Figure 6-1-19. 

 
Figure 6-1-19: Scatter plot of y against ypred for X2233f (quadratic fit) 
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When x8 which is flame spread rate is ignored i = 1 to 7 instead of i = 1 to 8. 

 

Again, to the 543 data points we fitted a quadratic regression formula of the form 

y a x b x ci i i i
i

n

i

n

= + + +
==
∑∑ 2

11
ε .         (6-1-13) 

The coefficient c = 458.8. The ai and bi were as in Table 6-1-6.   
i 1 2 3 4 5 6 7 

bi 1.028 0.03217 0.1252 250.5 285.7 2.237 -27.85 

ai -0.00095 -0.00002 -0.00015 -97.76 -122.7 -0.01722 -30.70 

 
Table 6-1-6: Values of quadratic coefficients for X2233f(x8 is ignored) 

 
Letting 

y a x b x cpred i i i i
i

n

i

n

= + +
==
∑∑ 2

11
         (6-1-14) 

the correlation between y and ypred (quadratic fit) is now 0.984. A scatter plot of y 

against ypred for X2233f (quadratic fit) is shown in Figure 6-1-20. 

 
Figure 6-1-20: Scatter plot of y against ypred for X2233f(x8 is ignored) 
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6.1.3.1.2 AVAS regression analysis for X2232 

By using the AVAS algorithm for X2232, the correlation coefficient was 0.598. Let 

us plot the transformed variables against the original data of X2232. The result is 

shown as in Figure 6-1-21. From the plot of variable x7, which is the fuel area factor 

fA, it is clear that there is a change of behaviour at 0.345. Therefore, this value (x7 = 

0.345) separates X2232 into two new sub-sub-range data sets. We have, when x7 < 

0.345, X22321 with 69 observations and when x7 > 0.345 , X22322 with 133 

observations. 
 

 
 

 
Figure 6-1-21: Plots transformed variables against original data for X2232 

 
 
 
6.1.3.1.2.1 AVAS regression analysis for X22322 

We use the AVAS analysis on data X22322. A scatter plot of transformed y against 

ypred for X22322 is shown Figure 6-1-22. From the scatter plot, it is clear that there are 

some outlier data (11, 14, 15, 21, 22, 23, 24, 28, 29, 30, 32, 36, 37, 43, 57, 78, 88, 

102, 109). Deleting them leaves us with X22322f which has 114 observations. And 

now the correlation coefficient achieved is 0.977. 
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The plot of the transformed variables against the original data of X22322f is shown in 

Figure 6-1-23.  
 
 

 
Figure 6-1-22: Scatter plot of transformed y against ypred for X22322 

 
 

 
Figure 6-1-23: Plots transformed variables against original data for X22322f 
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To the 114 data points we fitted a quadratic regression formula of the form 

y a x b x ci i i i
i

n

i

n

= + + +
==
∑∑ 2

11
ε .         (6-1-15) 

 

The coefficient c = 650.0. The ai and bi were as in Table 6-1-7. 
i 1 2 3 4 5 6 7 8 

bi 1.137 0.04865 -1.075 229.1 186.1 2.687 -81.40 1.573 

ai -0.00101 -0.00002 0.00193 -100.1 -71.56 -0.02164 25.80 -0.9917 

 
Table 6-1-7: Values of quadratic coefficients for X22322f 

 

Letting 

y a x b x cpred i i i i
i

n

i

n

= + +
==
∑∑ 2

11
         (6-1-16) 

 

The correlation between y and ypred (quadratic fitted) is 0.995. A scatter plot of y 

against ypred is shown in Figure 6-1-24. 
 
 

 
Figure 6-1-24: Scatter plot of y against ypred for X22322f  
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6.1.3.1.2.2 AVAS regression analysis for X22321 

By using the AVAS regression analysis on the data set X22321, the transformed 

variables against the original data are shown in Figure 6-1-25.  
 

 
Figure 6-1-25: Plots of transformed variables against original data of X22321 

 
 

To the data set X22321 we fitted a quadratic regression formula of the form 

y a x b x ci i i i
i

n

i

n

= + + +
==
∑∑ 2

11
ε .         (6-1-17) 

The coefficient c = 650.0. The ai and bi were as in Table 6-1-8. 
i 1 2 3 4 5 6 7 8 

bi 2.267 0.5354 12.11 -213.7 554.1 19.50 -24734 243.2 

ai -0.00153 -0.00026 -0.02482 -59.53 -667.5 -0.1942 39029 -84.68 

 

Table 6-1-8: Values of quadratic coefficients for X22321 

Letting 

y a x b x ct i i i i
i

n

i

n

= + +
==
∑∑ 2

11
         (6-1-18) 

the correlation between y and yt (quadratic) is 0.873. 
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We improve the fit by using a formula of the form: 

y C C y C y C yt t t= + + + +0 1 2
2

3
3 ε .        (6-1-19) 

The coefficients turned out to be: 

C0 = 2733.3; C1 = -10.46; C2 = 0.01484; C3 = -6.072e-006. 

Letting 

y C C y C y C ypredf t t t= + + +0 1 2
2

3
3         (6-1-20) 

the correlation between y and ypredf is now 0.938.  

The scatter plot of y against ypredf is shown Figure 6-1-26. 

 
Figure 6-1-26: Scatter plot of y against ypredf for X22321 

 
 
6.1.3.2 AVAS regression analysis for X222 

To X222 (311 observations), we apply the AVAS algorithm and plot the AVAS 

predicted maximum temperature against transformed values. The result is shown in 

Figure 6-1-27. And the correlation coefficient was 0.407.  

 

It is clear that there were some outliers data point. Deleting the outliers (5, 167, 7, 

311,74, 240, 211, 10, 48, 2, 40, 250, 118, 49, 176, 257, 153, 301, 221, 186, 235, 4, 19, 

6, 62) left us with X222f (282 observations). 
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Applying the AVAS algorithm to data set X222f (282 obs), the plots of transformed 

variables against original data is shown in Figure 6-1-28. And the correlation 

coefficient is now 0.979. 
 

 
Figure 6-1-27: Scatter plot of yp222 against transformed y of X222 

 
 

 
 
 

Figure 6-1-28: Plots transformed variables against original data of X222f 
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To the data set X222f we fitted a quadratic regression formula of the form 

y a x b x ci i i i
i

n

i

n

= + + +
==
∑∑ 2

11
ε .         (6-1-21) 

The coefficient c = 465.2. The ai and bi were as in Table 6-1-9. 
i 1 2 3 4 5 6 7 8 

bi 0.9427 0.03459 0.4844 237.9 292.9 1.623 -104.5 43.17 

ai -0.00083 -0.00002 -0.00086 -94.74 -134.9 -0.01030 29.05 -54.58 

 
Table 6-1-9: Values of quadratic coefficients for X222f 

 

Letting 

y a x b x cpred i i i i
i

n

i

n

= + +
==
∑∑ 2

11
         (6-1-22) 

the correlation between y and ypred is 0.979. 

And a scatter plot of y and ypred is shown in Figure 6-1-29. 
 

 
 

Figure 6-1-29: Scatter plot of y against ypred for X222f  
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6.2 AVAS regression analysis for DOWC scenario 

We apply the AVAS algorithm and plot the predicted transformed maximum 

temperature ypred against the transformed maximum temperature as shown in Figure 6-

2-1. The correlation coefficient was 0.415. Through applying the AVAS regression 

algorithm to the DOWC data, we obtain eight transformed inputs and one transformed 

output. Plots of the transformed data against the original data are shown in Figure 6-2-

2.  

 

 
Figure 6-2-1: The predicted transformed output ypred against the transformed output 

 
Figure 6-2-2: Plots of the transformed variables against the original data 
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Figure 6-2-2 leads to the following conclusions: 

• From the plot of variable x1, which is the length of the room, it is clear that there is 

a change of behaviour at a width of 700 cm. 

• It is also clear that for variable x8, which is the flame spread rate, there is a change 

of behaviour at 0.5 m/sec. 

Therefore, we have obtained four sub-range data sets as follow: 

X433: L > 700cm, Rf ≥ 0.5 m/sec; X432: L > 700cm, Rf < 0.5 m/sec; 

X423: L < 700cm, Rf ≥ 0.5 m/sec; X422: L < 700cm, Rf < 0.5 m/sec. 

 

6.2.1 AVAS regression analysis for X433 

It turns out that there are 850 observations satisfying the constraints of the length of 

room L > 700cm, flame spread rate Rf ≥ 0.5 m/sec. We apply the AVAS algorithm to 

the data X433 and plot the transformed maximum temperature ty against the predicted 

transformed ypred values. The result is shown in Figure 6-2-3. And the correlation 

coefficient achieved is 0.980. 

 

 
 

Figure 6-2-3: Plot the predicted transformed maximum temperature  
against the transformed values 
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Figure 6-2-4: Plots of the transformed variables against the original data 
 
  
 

To the 850 data points we fitted a quadratic regression formula of the form 

ε+++= ∑ ∑
∈ ∈Ii Ii

iiii xaxbcy 2 , I = 1 to 8.       (6-2-1) 

 

The coefficient c = 566.0, and coefficients bi and ai were as in Table 6-2-1. 
i 1 2 3 4 5 6 7 8 

bi 0.0786 0.0649 1.047 315.8 322.6 2.580 -134.3 -6.703 

ai -0.0001 0.0000 -0.0018 -125.6 -130.4 -0.0198 14.50 2.310 

 
Table 6-2-1: Values of quadratic regression coefficients for X433 

 
Letting 

∑ ∑
∈ ∈

++=
Ii Ii

iiiit xaxbcy 2           (6-2-2) 

the correlation between y and yt is 0.952. A scatter plot of y and yt is shown in Figure 

6-2-5. 
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The second step in the fitting is to improve the fit of yt to y by using a cubic regression 

formula of the form 
*3

3
2

210 ε++++= tttppred yCyCyCCy .      (6-2-3) 

 

By using Linear Least-Squares Fit the coefficients turned out to be: 

C0 = 1123.2; C1 = 0.6684; C2 = 0.002190; C3 = -3.7057e-006. 

 

Setting  

 3
3

2
210 tttppred yCyCyCCy +++=          (6-2-4) 

 

the correlation between y and yppred is now 0.955. 

A scatter plot of y and ypred is shown in Figure 6-2-6. 

 

 
 
 

Figure 6-2-5: A scatter plot of yt against original maximum temperature y 
 



 83

 
 

Figure 6-2-6: A scatter plot of yppred against original maximum temperature y 
 
 

6.2.2 AVAS regression analysis for X432 

There are 202 data sets satisfying the constraints of L > 700 cm, and Rf < 0.5 m/sec. 

By using the AVAS regression analysis on X432, the correlation coefficient is 0.577. 

A scatter plot of transformed output against predicted value in the AVAS is shown in 

Figure 6-2-7. Plots of transformed variables against the original data are shown in 

Figure 6-2-8. It is clear that there are different modes of fire growth for room width 

Wr, that is x2, below and above 700 cm. So we separated X432 into two new sub-sub-

range data sets: when Wr < 700cm, we have X4322 with 121 observations; when Wr > 

700cm, we have X4323 with 81 observations. 

 

6.2.2.1 AVAS regression analysis for X4322 

It turns out that there are 121 observations satisfying the constraints of X4322. 

Through using the AVAS regression analysis on X4322 data set, the result of 

predicted maximum temperature against transformed maximum temperature is shown 

in Figure 6-2-9. Deleting the outliers data (109, 83, 88, 119, 113, 43, 82) left us with 

114 observations which we call X4322f. and the correlation coefficient achieved is 

0.972. We apply the AVAS algorithm and the plots of the transformed variables 

against original data of X4322f are shown as in Figure 6-2-10. 
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Figure 6-2-7: Scatter plot of transformed y against yp432 for X432 
 

 

 
Figure 6-2-8: Plots of transformed variables against original data for X432 
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Figure 6-2-9: Scatter plot of transformed y against yp4322 for X4322 

 
.  

 
Figure 6-2-10: Plots transformed variables against original data of X4322f 
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To the 114 data points we fitted a quadratic regression formula of the form (6-2-1) 

.      

The coefficient c was 33.43 and bi and aI were as in Table 6-2-2.  
 

i 1 2 3 4 5 6 7 8 

bi 0.2645 0.09921 3.791 146.7 247.4 3.676 -26.89 627.4 

ai -0.00019 -0.00007 -0.00681 -5.327 -75.42 -0.03627 -53.79 -896.8 

 
Table 6-2-2: Values of quadratic regression coefficients for X4322f 

 

Letting 

y a x b x ct i i i i
i

n

i

n

= + +
==
∑∑ 2

11
          (6-2-5) 

it was found that the correlation between y and yt is 0.937. And a scatter plot of y 

against yt is shown in Figure 6-2-11. 

 

The second step in the fitting is to improve the fit of yt to y by using a cubic regression 

formula of the form 

y C C y C y C yt t t= + + + +0 1 2
2

3
3 ε .        (6-2-6) 

 

The coefficients turned out to be:    

C0 = 34496.4; C1 = -99.02; C2 =0.09651; C3 = -0.00003099. 

 

Letting 

 y C C y C y C ypredf t t t= + + +0 1 2
2

3
3         (6-2-7) 

 

the correlation achieved between y and ypredf is now 0.942. And a scatter plot of y 

against ypredf is shown in Figure 6-2-12. 
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Figure 6-2-11: Scatter plot of y against yt (quadratic) for X4322f 
 
 

 
Figure 6-2-12: Scatter plot of y against ypredf (cubic fit) for X4322f 
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6.2.2.2 AVAS regression analysis for X4323(81 obs) 

Through using AVAS regression analysis on the X4323 data set it is easy to see that 

some points are outliers (10, 22, 30, 35, 37, 39, 49, 54, 56, 57, 64, 65, 66, 74, 78, 81). 

Deleting them left us with 65 observations, which we call X4323f. And the 

correlation coefficient achieved is 0.969. 

 

We apply the AVAS algorithm to X4323f. Plots of the transformed variables against 

original data of X4323f are shown in Figure 6-2-13. 
 
 
 
 

 
Figure 6-2-13: Plots of transformed variables against original data of X4323f 

 

To the 65 data points (X4323f), we fitted a quadratic regression formula of the form 

(6-2-1). 

.      

The coefficients are c = 772.5 and bi and aI in Table 6-2-3. 
i 1 2 3 4 5 6 7 8 

bi 2.842 -0.1562 -10.30 -316.9 836.6 4.246 -331.4 1913.7 

ai -0.00177 0.00011 0.01958 301.6 -491.5 -0.04846 166.4 -2477.7 

 
Table 6-2-3: Values of quadratic regression coefficients for X4323f 
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Letting 

y a x b x ct i i i i
i

n

i

n

= + +
==
∑∑ 2

11
          (6-2-8) 

it was found that the correlation between y and yt is 0.964. And a scatter plot of y 

against yt is shown in Figure 6-2-14.  

 

The second step in the fitting is to improve the fit of yt to y by using a cubic regression 

formula of the form 

y C C y C y C yt t t= + + + +0 1 2
2

3
3 ε .        (6-2-9) 

The coefficients turned out to be:  

C0 = -3286.1; C1 = 8.634; C2 = -0.005496; C3 = 1.156e-006. 

 

Letting 

  y C C y C y C ypred t t t= + + +0 1 2
2

3
3          (6-2-10) 

the correlation achieved between y and ypred is now 0.973. A scatter plot of y against 

ypred is shown in Figure 6-2-15. 

 
Figure 6-2-14: Scatter plot of y against yt for X4323f 
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Figure 6-2-15: Scatter plot of y against ypred for X4323f 
 
 
 
6.2.3 AVAS regression analysis for X422  

There are 310 data points satisfying the constraints of L < 700 cm, and Rf < 0.5 m/sec. 

By using the AVAS regression analysis on X422, the correlation coefficient was 

0.4418. The result of plots of transformed variables against the original data is shown 

in Figure 6-2-16. It is clear that there are different modes of fire growth for room 

width Wr, that is x2, for below and above 760 cm. So X422 is split into two new sub-

sub-range data sets: when  room width Wr < 760 cm , we have X4222 with 200 

observations; when Wr > 760 cm , data set X4223 with 110 observations. 

 

6.2.3.1 AVAS regression analysis for X4222 

Through using the AVAS analysis on X4222  data set, the result of predicted 

maximum temperature against transformed maximum temperature is shown in Figure 

6-2-17. Deleting the outliers data (59, 120, 72, 116, 155, 193, 9, 16, 57, 152, 42, 180, 

19, 5, 185, 102, 156, 123, 109, 8) left us with 180 observations which we call X4222f. 

and the correlation coefficient achieved is 0.960. 
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Figure 6-2-16: Plots of transformed variables against original data for X422 

 
 

 

We apply the AVAS algorithm to X4222f. The plots of transformed variables against 

original data of X4222f are shown in Figure 6-2-18. 

 

To the 180 data points we fitted a quadratic regression formula of the form (6-2-1) 

 
.      

The coefficient c was 509.9. The coefficients ai and bi were as in Table 6-2-4. 
i 1 2 3 4 5 6 7 8 

bi 0.8394 0.1048 -0.08281 218.6 322.9 1.940 -112.1 228.6 

ci -0.00073 -0.00009 0.00027 -81.44 -152.1 -0.01333 30.65 -345.4 

 
 

Table 6-2-4: Values of quadratic regression coefficients for X4222f 
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Figure 6-2-17: Scatter plot of transformed y against predicted y for X4222 
 
 

 
 

Figure 6-2-18: Plots of transformed variables against original data for X4222f 
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Letting 

y a x b x cpred i i i i
i

n

i

n

= + +
==
∑∑ 2

11
         (6-2-11) 

it was found that the correlation between y and ypred was 0.964. 

A scatter plot of y against ypred is shown in Figure 6-2-19. 
 

 
 
 

Figure 6-2-19: Scatter plot of  y against ypred for X4222f (quadric fit) 
 
 

 

6.2.3.2 AVAS regression analysis for X4223 

A plot of predicted maximum temperature against transformed maximum temperature 

using AVAS regression analysis on X4223 data set is shown in Figure 6-2-20. 

Deleting the outliers ( 2, 5, 6, 8, 13, 15, 22, 23, 26, 37, 45, 57, 62, 67, 87, 89, 93, 96, 

100, 110) left us with 90 observations which are called X4223f. We apply the AVAS 

analysis to X4223f. The correlation coefficient achieved rises from 0.479 to 0.963. 

The plots of transformed variables against original data of X4223f are shown in 

Figure 6-2-21. 
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Figure 6-2-20: Scatter plot of transformed y against yp4223 for X4223 
 
 

 
 
 

Figure 6-2-21: Plots of transformed variables against original data for X4223f 
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To data set X4223f, we fitted a quadratic regression formula of the form (6-2-1) 

.      

The coefficient c was 580.6. The ai and bi were as in Table 6-2-5. 
i 1 2 3 4 5 6 7 8 

bi 0.8521 -0.6834 1.614 296.8 315.6 1.058 -5.492 235.3 

ai -0.00074 0.00039 -0.00312 -132.5 -139.9 -0.00601 -49.96 -313.5 

 
Table 6-2-5: Values of quadratic coefficients for X4223f 

 

Letting  

y a x b x cpred i i i i
i

n

i

n

= + +
==
∑∑ 2

11
         (6-2-12) 

it was found that the correlation between y and ypred was 0.959. The scatter plot of y 

against ypred is shown in Figure 6-2-22. 
 
 

 
Figure 6-2-22: Scatter plot of y against ypred (quadratic) for X4223f 
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6.2.4 AVAS regression analysis for X423  

There are 1138 simulation data points in X423 ( satisfying the constraints of L < 700 

cm , Rf > 0.5m/sec). Using the AVAS algorithm analysis on the data set X423,  the 

correlation coefficient was 0.5182. The plots of transformed variables against the 

original data are shown in Figure 6-2-23. 
 

 
Figure 6-2-23: Plots of the transformed variables against the original data (X423) 

 
 

In Figure 6-2-23, from the plot of variable x7, which is the fuel area factor fA, it is 

clear that there is a change of behaviour at a fuel area factor of 0.45. So we separated 

the data set X423 into two new sub-sub-range data sets. We call them X4233 and 

X4232 

 

6.2.4.1 AVAS regression analysis for X4233 

It turns out that there are 849 observations satisfying the constraints of fuel area factor 

fA > 0.45. We apply the AVAS algorithm to X4233 and the correlation coefficient is 

0.853. The scatter plot of the AVAS predicted output against transformed values is 

shown in Figure 6-2-24. It is obvious that there are 7 outliers, 47th, 122th,  144th, 189th, 

285th,  63th,  88th. Deleting them left us with 842 observations which we denoted by 

X4233f. By applying the AVAS algorithm to X4233f, the correlation coefficient 
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achieved is 0.9825. The plots of transformed variables against original data are shown 

in Figure 6-2-25. 

 
 
 

Figure 6-2-24: Scatter plot of ypred  against transformed y for X4233 
 

 

 
 
 
 

Figure 6-2-25: Plots of the transformed variables against the original data (X4233f) 
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To data set X4233f, we fitted a quadratic regression formula of the form (6-2-1) 

 

The coefficient c was 481.8, coefficients bi and aI were in Table 6-2-6. 
i 1 2 3 4 5 6 7 8 

bi 0.7527 0.02394 0.5466 244.4 288.3 2.040 -79.87 -0.1892 

ai -0.00063 -0.00001 -0.00092 -90.59 -121.5 -0.01490 3.638 -0.1799 

 
Table 6-2-6: Values of quadratic regression coefficients for X4233f 

Letting 

y a x b x cpred i i i i
i

n

i

n

= + +
==
∑∑ 2

11
         (6-2-13) 

it was found that the correlation between y and ypred is 0.9826. And a scatter plot of y 

against ypred is shown in Figure 6-2-26. 
 

 
 

Figure 6-2-26: Scatter plot of y against ypred  
 
 
 

6.2.2.4.1*  Ignoring x8 and x3 

From analysing Figure 6-2-25, it is clear that the scale of variable x8 is extraordinary 

smaller than others.  And it is also obvious that variable x3 is much smaller in 

comparison with others (excepted x8), so x8 and x3 can be ignored in the additive 

model. 
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To the  data set X4233f, we fitted a quadratic regression formula of the form (x8 is 

ignored) 

y a x b x ci i i i
i

n

i

n

= + + +
==
∑∑ 2

11
ε .        (6-2-14) 

The coefficients are c = 483.2 and  bi and ai given by Table 6-2-7. 
i 1 2 3 4 5 6 7 

bi 0.7512 0.02427 0.5345 244.9 287.7 2.048 -80.42 

ci -0.000631 -0.000011 -0.000898 -90.88 -121.1 -0.01501 3.971 

 

Table 6-2-7: Values of quadratic coefficients for X4233f 

Letting 

y a x b x cpred i i i i
i

n

i

n

= + +
==
∑∑ 2

11
        (6-2-15) 

it was found that the correlation between y and ypred is 0.9825 (x8 is ignored).  

A scatter plot of y against ypred is shown in Figure 6-2-27. 

 
 
 

Figure 6-2-27: Scatter plot of y against ypred (x1 to x7) 
 

 
 



 100

To the data set X4233f, we fitted a quadratic regression formula of the form (x3 and x8 

are ignored) 

y a x b x ci i i i
i

n

i

n

= + + +
==
∑∑ 2

11
ε .        (6-2-16) 

The coefficients c = 559.8, bi and ai are as in Table 6-2-8. 
i 1 2 4 5 6 7 

bi 0.7526 0.02502 249.7 287.4 2.038 -80.79 

ai -0.000633 -0.000011 -94.05 -120.9 -0.01484 4.421 

 

Table 6-2-8: Values of quadratic regression coefficients for X4233f 

Letting 

y a x b x cpred i i i i
i

n

i

n

= + +
==
∑∑ 2

11
        (6-2-17) 

it was found that the correlation between y and ypred is 0.9822. A scatter plot of y 

against ypred for this case is shown in Figure 6-2-28. 

 

 
 
 
 

Figure 6-2-28: Scatter plot of y against ypred for X4233f (x3, x8 are ignored) 
 

Comparison of the above three values of correlation between y and ypred: 0.9826, 

0.9825 (x8 is ignored) and 0.9822 (x8 and x3 are ignored) leads us to the conclusion: 

input parameter x8 and x3 can be ignored in the additive model in X4233f. 
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6.2.4.2 AVAS regression analysis for X4232 

It turns out that there are 289 observations satisfying the constraint on the fuel area 

factor fA < 0.45. On applying the AVAS algorithm regression to the data set X4232 

the correlation coefficient was 0.575. The plots of the transformed variables against 

original data of X4232 are shown in Figure 6-2-29. 
 

 
Figure 6-2-29: Plots of the transformed variables against the original data X4232  

 
From the plot of variable x5, which is the window width factor fW, it is clear that there 

is a change of behaviour at a window width factor of 0.72.  This point separated the 

data X4232 into two sub-sub-ranges: when fW < 0.72 we have X42322 with 162 

observations; when fW > 0.72 we have X42323 with 127 observations. 

 

6.2.4.2.1 AVAS regression analysis for X42322  

After deleting outliers (149, 138, 98, 13, 12, 89, 160, 141, 137) from X42322 we are 

left with 153 observations, called X42322f. By using AVAS algorithm on data set 

X42322f, the correlation coefficient achieved is 0.9812. The plots of the transformed 

variables against original data are shown in Figure 6-2-30. It turns out that x8 can be 

ignored since the transformed scale range is very small compared with the others. 
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Figure 6-2-30: Plots of the transformed variables against the original data (X42322f) 
 

 

To the 153 data points, we fitted a quadratic regression formula of the form  

y a x b x ci i i i
i

n

i

n

= + + +
==
∑∑ 2

11
ε , i = 1 to 7.      (6-2-18) 

The coefficient c was 633.3 and  bi and aI were as in Table 6-2-9. 
i 1 2 3 4 5 6 7 

bi 0.8127 0.03726 -0.7869 247.7 228.1 2.590 120.6 

ai -0.00066 -0.00002 0.00139 -105.2 -98.25 -0.01952 -297.0 

 
Table 6-2-9: Values of quadratic coefficients for X42322f (x8 are ignored) 

 
Letting 

y a x b x cpred i i i i
i

n

i

n

= + +
==
∑∑ 2

11
         (6-2-19) 

 
it is found that the correlation between y and ypred is 0.990. 
 
 A scatter plot of y against ypred is shown in Figure 6-2-31. 
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Figure 6-2-31: Scatter plot of y against ypred for X42322f  
 

 

6.2.4.2.2 AVAS regression analysis for X42323 

There are 127 observations satisfying constraints: L < 700 cm, Rf  > 0.5 m/sec, fA < 

0.45 and fH ≥ 0.72. By applying AVAS analysis to this data set X42323, the 

correlation coefficient is now 0.827. The plots of the transformed variables against 

original data are shown in Figure 6-2-32. It turns out that x8 can be ignored since the 

transformed scale range is very small compared with the others. 

 
 

Figure 6-2-32: Plots of transformed variables against original data of X42323 
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To the 127 data points we fitted a quadratic regression formula of the form  

y a x b x ci i i i
i

n

i

n

= + + +
==
∑∑ 2

11
ε .         (6-2-20) 

The coefficient c was -4089.4 and coefficients bi and aI were as in Table 6-2-10. 
i 1 2 3 4 5 6 7 

bi 3.301 0.3134 11.04 654.4 2471.1 10.93 6603.7 

ai -0.00276 -0.00015 -0.02328 -642.8 -1618.0 -0.09240 -7215.0 

 
Table 6-2-10: Values of quadratic regression coefficients for X42323 (x8 is ignored) 

Letting  y a x b x ct i i i i
i

n

i

n

= + +
==
∑∑ 2

11
        (6-2-21) 

it was found that the correlation between y and yt was 0.8316. 

 

The second step in the fitting is to improve the fit of yt to y by using a cubic regression 

formula of the form 

y C C y C y C yt t t= + + + +0 1 2
2

3
3 ε .        (6-2-22) 

The coefficients turned out to be:  

C0 = 5042.0; C1 = -18.21; C2 = 0.02324; C3 = -9.026e-006. 

Letting   y C C y C y C ypredf t t t= + + +0 1 2
2

3
3        (6-2-23) 

the correlation between y and ypredf is now 0.9119. And a scatter plot of y against ypredf 

is shown in Figure 6-2-33. 

 
 
 
 
 

Figure 6-2-33: Scatter plot of y against ypredf of X42323  
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6.3 AVAS regression analysis for DCWO scenario 

Applying the AVAS algorithm to the scenario the scatter plot of the predicted 

transformed maximum temperature against the transformed maximum temperature is 

shown in Figure 6-3-1. The correlation coefficient was 0.591.  
 

 
 

Figure 6-3-1: The predicted values against the transformed maximum temperature 
 

Plots of the transformed variables against the original data in DCWO scenario were 

shown in Figure 6-3-2. 

 

Figure 6-3-2 leads to the following conclusions: 

1. From the plot of variable x1, which is the length of the room L, it is clear that 

there is a change of behaviour at a width of 600 cm. 

2. It is also clear that for variable x8, which is the flame spread rate Rf, there is a 

change of behaviour at 0.45. 

Therefore, we have obtained four sub-range data sets as follows: 

X133: L > 600 cm, Rf ≥0.45 m/sec;  X132: L > 600 cm, Rf < 0.45 m/sec; 

X123: L < 600 cm, Rf ≥0.45 m/sec;  X122: L < 600 cm, Rf < 0.45 m/sec. 
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Figure 6-3-2 Plots of the transformed variables against the original data 
 
 
6.3.1 AVAS regression analysis for X133: 

It turns out that there are 1181 observations satisfying the constraints of length of 

room L > 600 cm, flame spread rate Rf ≥ 0.45 m/sec. We apply the AVAS regression 

algorithm to this data set and the correlation coefficient obtained is 0.9452. The 

scatter plot of the predicted values of maximum temperature against the transformed 

values is shown in Figure 6-3-3.  

 

From Figure 6-3-3, it is clear that there are 5 outliers. Deleting them left us with 1176 

data points, which we named X133f. By applying AVAS to data set X133f the 

correlation coefficient achieved is 0.9840. The predicted values of  maximum 

temperature against the transformed values are shown in Figure 6-3-4. And the plots 

of the transformed variables against the original data for X133f are shown in Figure 6-

3-5. 

It turns out that x8 can be ignored since the transformed scale range is very small 

compared with the others. 
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Figure 6-3-3: The predicted values of maximum temperature against the  

transformed values 

 
 

 
 

Figure 6-3-4: The predicted values of maximum temperature against  
the transformed values (X133f) 
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Figure 6-3-5: Plots of the transformed variables against the  
original data (for X133f) 

 
 

To the data set X133f, we fitted a quadratic regression formula of the form 

ε+++= ∑ ∑
∈ ∈Ii Ii

iiii xaxbcy 2 , I = 1,2,3,4,5,6,7.     (6-3-1) 

The intercept c was 177.5. And coefficients bi and ai were as in Table 6-3-2. 
i 1 2 3 4 5 6 7 

bi 0.1544 0.1597 0.9302 423.9 804.6 2.832 -178.2 

ai -0.0001 0.0001 -0.0009 -166.7 -373.8 -0.0228 44.14 

 

Table 6-3-2: Values of quadratic regression coefficients for X133f  

Letting 

y c b x a xpred i i i i
i Ii I

= + +
==
∑∑ 2          (6-3-2) 

it was found that the correlation between y and ypred is 0.9859. 

A scatter plot of y against  ypred is shown in Figure 6-3- 6. 
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Figure 6-3-6: Scatter plot of y against ypredf for DCWO scenario  
 
 

6.3.2 AVAS regression analysis for X132 

There were 256 data points satisfying the constraints L > 600 cm and Rf < 0.45 m/sec. 

We apply the AVAS regression analysis to the X132 data set. The scatter plot of 

transformed maximum temperature against predicted values of X132 is shown in 

Figure 6-3-7.  

 

It is clear that there are 14 outlier data points (3, 6, 7, 17, 19, 20, 21, 22, 24, 25, 27, 

37, 56, 62). Deleting them left us with 242 observations, which are named X132f.  

 

By applying the AVAS algorithm to X132f the correlation coefficient achieved is 

increased from 0.508 to 0.906. The plots of transformed variables against original 

data of X132f are shown in Figure 6-3-8.  

 

To the data set X132f, we fitted a quadratic regression formula of the form 

ε+++= ∑ ∑
∈ ∈Ii Ii

iiii xaxbcy 2 , I = 1 to 8.      (6-3-3) 
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Figure 6-3-7: Scatter plot of transformed output against predicted values of X132  
 

 
Figure 6-3-8: Plots of transformed variables against original data (X132f) 
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The intercept c was 403.3, and coefficients bi and ai were as in Table 6-3-3. 
i 1 2 3 4 5 6 7 8 

bi 0.1423 0.1480 -2.971 483.8 821.0 4.074 -151.2 1628.7 

ai -0.00015 -0.00011 0.00641 -178.1 -366.5 -0.04616 42.03 -2504.5 

 

Table 6-3-3: Values of quadratic regression coefficients for X132f 

 

Letting 

∑ ∑
∈ ∈

++=
Ii Ii

iiiit xaxbcy 2          (6-3-4) 

it was found that the correlation between y and yt is 0.921. 

A scatter plot of y against yt (= ypred ) is shown in Figure 6-3- 9 

 

To improve the fit of yt to y we use a cubic regression formula of the form 

y C C y C y C ypredf t t t= + + + +0 1 2
2

3
3 ε * .       (6-3-5) 

 

The coefficients are: 

C0 = -1231.7, C1= 2.976, C2 = -0.0002542, C3 = -4.807e-007. 

 

Letting 
3

3
2

210 tttpredf yCyCyCCy +++=         (6-3-6) 

 

 

the correlation achieved between y and ypredf is now 0.932. 

And the scatter plot of y against ypredf is now shown in 6-3-10. 
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Figure 6-3-9: Scatter plot of y against ypred (quadratic fitted for X132f) 

 

 
Figure 6-3-10: Scatter plot of y against ypredf (cubic fitted) 

 

6.3.3 AVAS regression analysis for X123: 

There were 855 data points satisfying the constraints L < 600 cm and Rf ≥ 0.45 m/sec. 

By using the AVAS regression analysis on X132 data set, the correlation coefficient 

was 0.702. The plots of transformed variables against original data of X132 are shown 

in Figure 6-3-11.  
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Figure 6-3-11: Plots of transformed variables against original data for X123 
 

 

It is clear that there are different modes of fire growth for room height Hr, which is x3, 

above and below x3 = 270 cm. When Hr < 270 cm, we have a new data set X1232 

with 439 observations; When Hr > 270, we have another data set X1233 with 416 

observations.  

 

6.3.3.1 AVAS regression analysis for X1232 

We apply the AVAS algorithm regression analysis to data set X1232. The correlation 

coefficient is 0.861. A plot of transformed maximum temperature against predicted 

values in AVAS is shown in Figure 6-3-12. It was obvious that there were six outliers  

(162, 173, 69, 8, 104, 354). Deleting them left us with data set X1232f that has 434 

observations. 

 

By applying the AVAS algorithm to X1232f, the correlation coefficient achieved is 

0.9425. Plots of the transformed variables against original data of X1232f are shown 

in Figure 6-3-13.  
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Figure 6-3-12: Scatter plot of transformed output against predicted values of AVAS 
 

 
 
 

Figure 6-3-13: Plots of transformed variables against original data  
 
 
 
 
To the data set X1232f, we fitted a quadratic regression formula of the form 

ε+++= ∑ ∑
∈ ∈Ii Ii

iiii xaxbcy 2 , I = 1 to 8.      (6-3-7) 
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The intercept c = 351.9, the coefficients bi and ai were as in Table 6-3-4. 
i 1 2 3 4 5 6 7 8 

bi 0.8503 0.1017 -0.2871 338.3 658.1 2.013 -147.3 16.84 

ai -0.00082 -0.00004 0.00082 -134.1 -362.5 -0.01361 45.58 -7.510 

 

Table 6-3-4: Values of quadratic regression coefficients for X1232f 

Letting 

∑ ∑
∈ ∈

++=
Ii Ii

iiiit xaxbcy 2          (6-3-8) 

it is found that the correlation between y and yt (= ypred ) is 0.950. 

A scatter plot of y against ypred is shown in Figure 6-3-14. 

 
Figure 6-3-14: Scatter plot of y against ypred for X1232f 

 
 

6.3.3.2 AVAS regression analysis for X1233 

By using the AVAS algorithm regression analysis on data X1233, the correlation 

coefficient was 0.650. The transformed maximum temperature against predicted 

values in AVAS is shown in Figure 6-3-15. Deleting 20 outliers left us with X1233ff 

which contains 395 data points.  We apply the AVAS to X1233ff. The correlation 

coefficient achieved is 0.922. Plots of the transformed variables against original data 

of X1233ff are shown in Figure 6-3-16. 
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Figure 6-3-15: Transformed output against predicted values in AVAS 
 
 

To the data set X1233ff, we fitted a quadratic regression formula of the form 

ε+++= ∑ ∑
∈ ∈Ii Ii

iiii xaxbcy 2 , I = 1,2,4,5,6,7.    (6-3-9) 

The intercept c was 194.5, the coefficients bi and ci were as in Table 6-3-5. 
i 1 2 4 5 6 7 

bi 1.214 0.1498 402.8 685.5 1.948 -108.9 

ai -0.001130 -0.000084 -176.9 -407.3 -0.01104 18.57 

 

Table 6-3-5: Values of quadratic fit coefficients for X1233ff 
 

Letting 

∑ ∑
∈ ∈

++=
Ii Ii

iiiipred xaxbcy 2         (6-3-10) 

it is found that the correlation between y and ypred (quadratic fit) is 0.932.  

A scatter plot of y against ypred (quadratic for X1233ff, x3, x8 are ignored because their 

effect is very small) is shown in Figure 6-3-17. 
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Figure 6-3-16: Plots of transformed variables against original data of  X1233ff 

 
 

 
Figure 6-3-17: Scatter plot of y against ypred  

 
 

6.3.4 AVAS regression analysis for X122 

There were 208 data sets satisfying the constraints  L < 600 cm, Rf < 0.45 m/sec. By 

using AVAS regression analysis on X122, the correlation coefficient was 0.498. A 
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scatter plot of transformed output against predicted values in AVAS is shown in 

Figure 6-3-18. From Figure 6-3-18, it is clear that there were ten outliers (5, 6, 8, 

10,14, 40,48,74, 

113,118). Deleting them left us with 198 observations that we named X122ff. We 

apply the AVAS algorithm to X122ff. The correlation coefficient achieved is 0.9309. 

Plots of the transformed variables against original data X122ff are shown in Figure 6-

3-19. 

 
 

Figure 6-3-18: Scatter plot AVAS transformed output against predicted values 
 
To the data set X122ff, we fitted a quadratic regression formula,  

ε+++= ∑ ∑
∈ ∈Ii Ii

iiii xaxbcy 2 , I = 1,2,3,4,5,6,7,8.    (6-3-11) 

The coefficient c was 45.17, coefficients bi and ai were as in Table 6-3-6. 
i 1 2 3 4 5 6 7 8 

bi 0.7308 0.1041 1.881 346.8 683.0 1.448 -72.46 382.4 

ai -0.00064 -0.00006 -0.00346 -149.9 -391.2 -0.00845 -5.835 -613.6 

 

Table 6-3-6: Values of quadratic coefficients for X122ff (198 obs) 

Letting 

y c b x a xpred i i i i
i Ii I

= + +
==
∑∑ 2          (6-3-12) 

it is found that the correlation between y and  ypred is 0.9287.  
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Figure 6-3-19: Transformed variables against original data of X122ff  
 
 

From the Figure 6-3-19, it is clear that fire changed its growth behavior at x3 = 270 

cm, (x3 is the height of room Hr). This separates the data set X122 into two new sub-

sub-range data sets: X1222 when Hr < 270 cm, and X1223 when Hr > 270 cm.  

 

6.3.4.1 AVAS regression analysis for X1222 

We apply the AVAS algorithm on data X1222. Plots of transformed variable against 

original data are shown in Figure 6-3-20. 

 
To data X1222, we fitted a quadratic regression formula  

ε+++= ∑ ∑
∈ ∈Ii Ii

iiii xaxbcy 2          (6-3-13) 

The coefficient ci was -335.4, coefficients bi and ai were in Table 6-3-7: 
i 1 2 3 4 5 6 7 8 

bI 0.5945 0.04071 4.170 561.9 683.5 2.468 -65.22 559.0 

aI -0.00056 -0.00001 -0.00771 -292.4 -367.2 -0.01889 -23.11 -881.9 

 
Table 6-3-7: Values of quadratic fit coefficients for X1222 (111 obs) 

Letting 

∑ ∑
∈ ∈

++=
Ii Ii

iiiipred xaxbcy 2          (6-3-14) 
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it is found that the correlation between y and ypred is 0.9385. 

And a scatter plot of y against  ypred is shown in Figure 6-3-21. 

 
Figure 6-3-20: Plots transformed variables against original data for X1222 

 

Figure 6-3-21: Scatter plot of y against ypred of X1222 
 

 

6.3.4.2 AVAS regression analysis for X1223 

We apply the AVAS algorithm on data X1223. Plots of transformed variables against 

original data are shown in Figure 6-3-22. 
 



 121

 
Figure 6-3-22: Plots transformed variables against original data for X1223 

 
 

To data X1223, we fitted a quadratic regression formula  

ε+++= ∑ ∑
∈ ∈Ii Ii

iiii xaxbcy 2 , I = 1 to 8.      (6-3-15) 

 
The coefficients are c = 7923.7, bi and ai  as in Table 6-3-8. 
 

i 1 2 3 4 5 6 7 8 

bi 1.087 -0.00909 -53.70 98.00 820.3 1.340 80.41 546.2 

ai -0.00099 0.00001 0.09388 0.3936 -504.2 -0.01083 -126.2 -840.6 

 
Table 6-3-8: Values of quadratic fit coefficients for X1223  

 
Letting 

∑ ∑
∈ ∈

++=
Ii Ii

iiiipred xaxbcy 2          (6-3-16) 

 

it is found that the correlation between y and ypred is 0.9403. A scatter plot of y against 

ypred is shown in Figure 6-3-23.  
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Figure 6-3-23: Scatter plot of y against ypred (quadratic fit values) of X1223 

 
 
6.4 AVAS Regression analysis for DCWC scenario  

We apply the AVAS regression to the 2500 data sets of DCWC (denoted by X35) 

scenario.  The scatter plot of transformed y against predicted values in AVAS is 

shown in Figure 6-4-1. 
 

 
 
 

Figure 6-4-1: Scatter plot of transformed y (res35$ty) against ypred 
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It is clear that some special things happened that caused the maximum temperature to 

change suddenly. Plots of the transformed variables against the original data X35 are 

shown in Figure 6-4-2. 

 

 
 
 

Figure 6-4-2: Plots of the transformed (AVAS) variables against the original data X35 
 
 

By analyzing Figure 6-4-2. It is clear that x8, which is the flame spread rate Rf , is the 

input that correlates best with the output, the maximum temperature, in this scenario. 

The correlation between x8 and y (the output) is 0.8799. Further analysis shows that 

there are behavior changes at x8 = 0.96 m/sec and at x8 = 1.32 m/sec.  

 

Therefore, we separated the data X35 into three new sub-range data sets: 

X351 with 1166 observations, with x8 < 0.96 m/sec; 

X352 with 467 observations, with 0.96 m/sec < x8 <1.32 m/sec; 

X353 with 867 observations, with 1.32 m/sec < x8. 
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6.4.1 AVAS regression analysis of X351  

By using the AVAS regression analysis on data X351, a scatter plot of transformed y 

against ypred in the AVAS is shown in Figure 6-4-3. And plots of the transformed 

variables against original data are shown in Figure 6-4-4. The correlation coefficient 

is 0.9929. 

 
Figure 6-4-3: Scatter plot of transformed output against predicted values 

 
 

 
Figure 6-4-4: Plots of the transformed variables against original data of X351 
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From analyzing Figure 6-4-4, it is clear that the influence of input variables x4, x5 and 

x6 on the output in X351 is not significant, so they can be ignored in the regression 

formula. 

 

To the data X351 we fitted a formula of the form: 

ε++=∑
∈

cxby
Ii

ii .           (6-4-1) 

where I = 1,2,3,7,8. 

 

The coefficients turned out to be:  

c =140.0, b1=-0.0091, b2=-0.0162, b3=-0.0762, b7=-32.03, and b8=177.9. 

 

Setting  

cxby
Ii

iipred +=∑
∈

, I = 1,2,3,7,8        (6-4-2) 

it was found that the correlation between y and ypred is 0.9861. A scatter plot of y 

against ypred is shown in Figure 6-4-5. 

 

Figure 6-4-5: Scatter plot of y against ypred (X351) 
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6.4.2 AVAS regression analysis for X353 ( 867 observations) 

By using the AVAS regression on X353, the correlation coefficient was 0.8244. Plots 

of the transformed variables against original data are shown in Figure 6-4-6. 

 
 

Figure 6-4-6: Plots of the transformed variables against the original data X353 
 

From Figure 6-4-6, it is clear from the plot of x1, which is the length of room L, that 

there is a behavior change at x1 = 600 cm. Therefore, this point separates X353 into 

two new sub-sub-range data sets: X3532 when x1 < 600 cm, and X3533 when x1 > 

600 cm. 

 

6.4.2.1 AVAS regression analysis for X3533 

We use AVAS regression analysis on X3533 (488 points). The scatter plot of output 

against predicted values in AVAS is shown in Figure 6-4-7. Deleting three outliers 

left us with data X35333 (485 points). Plots of transformed variables against the 

original data are shown in Figure 6-4-8. 

 

To the X35333 data set, we fitted a quadratic regression formula of the form 

ε+++=∑ ∑
= =

cxbxay
n

i

n

i
iiii

1 1

2 .         (6-4-3) 
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The coefficient c was 284.4. Coefficients ai and bi were as in Table 6-4-1. 
 

i 1 2 3 4 5 6 7 8 

bi 0.1765 0.1531 0.1807 416.6 816.1 2.781 -162.3 -22.45 

ai -0.000149 -0.00008 0.0004786 -162.0 -383.1 -0.02195 30.52 6.416 

 
Table 6-4-1: Values of quadratic regression coefficients for X35333 

 
Figure 6-4-7: Scatter plot of y against ypred of X3533 

 
 

 
Figure 6-4-8: Plots of the transformed variables against the original data for X35333 
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Letting  cxbxay
n

i

n

i
iiiipred ++=∑ ∑

= =1 1

2         (6-4-4) 

it was found that the correlation between y and ypred was 0.9864. A scatter plot of y 

against ypred is shown in Figure 6-4-9. 

 
Figure 6-4-9: Scatter plot of y against ypred of X35333 

 
6.4.2.2 AVAS regression analysis for X3532  

We apply the AVAS regression analysis to data X3532. It was found that there were 

12 outliers. Deleting them (7, 157, 46, 30, 12, 82, 116, 249, 91, 27, 160, 77), we have 

X35321 which has 367 observations. And the transformed variables against original 

data are shown in Figure 6-4-10. 

 

To the X35321 data set, we fitted a quadratic regression formula of the form 

ε+++=∑ ∑
= =

cxbxay
n

i

n

i
iiii

1 1

2 .         (6-4-5) 

The coefficient c was 74.15. Coefficients ai and bi were as in Table 6-4-2. 
i 1 2 3 4 5 6 7 8 

bi 0.9711 0.09508 2.180 442.0 625.6 2.828 -68.73 -156.2 

ai -0.00093 -0.00004 -0.00393 -197.7 -350.8 -0.02116 -14.93 45.49 

 

Table 6-4-2: Values of quadratic regression coefficients for X35321 
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Setting 

cxbxay
n

i

n

i
iiiipred ++=∑ ∑

= =1 1

2          (6-4-6) 

it was found that the correlation between y and ypred is 0.9373. The scatter plot of y 

against ypred is shown in Figure 6-4-11. 

 
Figure 6-4-10: Plots of the transformed variables against the original data for X35321 

 

 
 

Figure 6-4-11: Scatter plot of y against ypred X35321 
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6.4.3 AVAS regression analysis for X352 (0.96<Rf ≤ 1.32 m/sec) 

The scatter plots of one variable against another for X352 are shown in Figure 6-

4-12. 

 

From analyzing Figure 6-4-12, sub-scatter plot of x7 against x8 has a special influence 

on the output, and further analysis shows that there is a change of behaviour of fire 

growth at equation: 

x x8 708 0 603= +. .   

This equation x x8 708 0 603= +. .  separates data X352 into two new data sets, referred 

to as X3521 and X3522 as follows 

X3521: when x x8 708 0 603< +. . with 259 observations, and  

X3522: when x x8 708 0 603> +. . with 208 observations.  

 

 
 

Figure 6-4-12: The scatter plots of one variable against another for X352. 
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6.4.3.1 AVAS regression analysis for X3522 

By using the AVAS regression analysis on X3522, the transformed maximum 

temperature against the transformed predicted values of maximum temperature is 

shown in Figure 6-4-13. It is clear that there were some outliers. 

 

Deleting outliers (6,7,12,14,21,30,40,44,63,69,83,87,134,146,167,186,208) in Figure 

6-4-13, left us with new data set which we call it X3522f  (191 obs). And its 

transformed variables against original data are shown in Figure 6-4-14. 

 

 
 

Figure 6-4-13: Transformed values against the predicted values of y in AVAS 
 
To the X3522f data set we fitted a quadratic regression formula of the form 

ε+++=∑ ∑
= =

cxbxay
n

i

n

i
iiii

1 1

2 .         (6-4-7) 

The coefficient c was 823.0. Coefficients ai and bi were as in Table 6-4-3. 
i 1 2 3 4 5 6 7 8 

bi 0.2535 0.1816 -0.5933 350.6 684.8 3.330 -130.8 -653.9 

ai -0.00019 -0.00010 0.00150 -125.1 -336.7 -0.02716 34.38 264.5 

 

Table 6-4-3: Values of quadratic regression coefficients for X3522f 
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Letting 

cxbxay
n

i

n

i
iiiipred ++=∑ ∑

= =1 1

2          (6-4-8) 

it is found that the correlation between y and ypred (quadratic fit) is 0.937. The scatter 

plot is shown in Figure 6-4-15. 

 

 
Figure 6-4-14: Transformed variables against original data in X3522f 

 

 
Figure 6-4-15: Scatter plot of y against ypred (quadratic fitted to X3522f) 
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6.4.3.2 AVAS regression analysis for X3521 

The scatter plots of one variable against another for X3521 are shown in Figure 6-4-

16. 

 

 

 
 

Figure 6-4-16: The scatter plots of one variable against another for X3521 
 
 
 

From analyzing Figure 6-4-16, sub-scatter plot of x7 against x8 (which are fuel area 

factor and flame spread rate respectively) has a special influence on the output, and 

further analysis shows that there is a change of behaviour of fire growth at equation:  

78 3235.08503.0 xx +=  

This equation 78 3235.08503.0 xx +=  separates data X3521 into two new data sets, 

referred to as X35211 and X35212 as follows 

 

 X35211with 113 observations: when 78 3235.08503.0 xx +< ; 

 X35212 with 146 observations: when 78 3235.08503.0 xx +> . 
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6.4.3.2.1 AVAS regression analysis for X35211 

By using AVAS regression analysis on X35211, the plots of transformed variables 

against the original data are shown in Figure 6-4-17. 

 

 
Figure 6-4-17: Transformed variables against original data of X35211 

 
From analysing Figure 6-4- 17, it is found that inputs x4, x5 and x6 can be ignored 

because their effect is very small. To the X35211data set we fitted a quadratic 

regression formula of the form 

ε+++=∑ ∑
∈ ∈

cxbxay
i i

iiii
1 1

2 , I = 1,2,3,7,8.      (6-4-9) 

The coefficient c = -20.96. The ai and bi were as in Table 6-4-4. 
i 1 2 3 7 8 

bi 0.03135 -0.01837 0.4483 -50.87 431.6 

ai -0.0000345 -1.835e-006 -0.0006558 7.633 -159.3 

 
Table 6-4-4: Values of quadratic regression coefficients for X35211 

 

Letting 

cxbxay
i i

iiiipred ++=∑ ∑
∈ ∈1 1

2          (6-4-10) 

it is found that the correlation between y and ypred (quadratic fit) is 0.9789, and the 

scatter plot is shown in Figure 6-4-18. 
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Figure 6-4-18: Scatter plot of y against ypred (quadratic fitted) of X35211 

 
6.4.3.2.2 AVAS regression analysis for X35212 

By using the AVAS regression analysis on X35212, the scatter plot of  transformed 

temperature against the transformed predicted values of the maximum temperature is 

shown in Figure 6-4-19.  And plots of the transformed variables against the original 

data are shown in Figure 6-4-20. 

 
 
 
 

Figure 6-4-19: Scatter plot of transformed y against ypred in AVAS of X35212 
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Figure 6-4-20: Transformed variables against original data AVAS of X35212 

 
To X35212,  we fitted a quadratic regression formula of the form 

ε+++=∑ ∑
∈ ∈

cxbxay
Ii Ii

iiii
2 , I = 1 to 8.       (6-4-11) 

The coefficient c = 2635.2, bi and ai are as in Table 6-4-5. 
i 1 2 3 4 5 6 7 8 

bi 1.114 0.1621 -15.62 305.0 437.0 -14.28 453.9 -4389.5 

ai -0.00131 -0.00075 0.03580 -61.60 -134.7 0.2087 -1691.5 3814.9 

 
Table 6-4-5: Values of quadratic regression coefficients for X35212 

Letting 

cxbxay
Ii Ii

iiiit ++=∑ ∑
∈ ∈

2           (6-4-12) 

it was found that the correlation between y and yt is 0.8061, and the scatter plot of y 

against yt is shown in Figure 6-4-21. 

 

To improve the correlation, we fit yt with a cubic formula:  

ε++++= 3
3

2
210 tttpredf yCyCyCCy .       (6-4-13) 

The coefficients are                            

  C0 = 337.3; C1 = -1.799; C2 = 0.005254; C3 = -2.700e-006. 
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Setting  
3

3
2

210 tttpredf yCyCyCCy +++=         (6-4-14) 

the correlation between y and ypredf is now 0.8748, and the scatter plot of y against 

ypredf is shown in Figure 6-4-22. 

 
 

Figure 6-4-21: Scatter plot of y against ypred (quadratic fitted) 

 
 

Figure 6-4-22: Scatter plot of y against ypredf (cubic fitted) 
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6.5 Statistics of outliers 

Tables 6-5-1 to 6-5-4 show the number of outliers in each subset of the four scenarios. 

The total number of outliers was 259 out of 10,000 data sets, i.e. less than 2.6%. In 

addition all but one of the outliers lay below the regression line. This means that 

neglecting them and replacing them by a predicted value that was larger than the 

observed value in computing the reliability of a design would make the design safer 

(since the evaluated reliability would be lower than the one computed directly from 

the computer model). 

 

The only outlier that lay  above the regression line was in subset X122 (labelled 6 in 

Figure 6-3-18) and in any case lay in the lower range of maximum temperatures, so 

that rejecting it could not realistically affect the reliability of any reasonable design. 
 

Total observations Number of outliers 

X233:             1176 7 

X2322:             159 11 

X2323:             102 19 

X22322:           133 19 

X22321:             69 0 

X2233:             550 7 

Name of 

sub-ranges 

X222:               311 29 

Total                        2500 92 

 
Table 6-5-1 Outliers for DOWO scenario 

 
 

Total observations Number of outliers 

X133:     1181 5 

X132:      256 14 

X1232:    439 6 

X1233:    416 21 

Name of 

sub-ranges 

X122:      208 10 

Total               2500 56 

 

Table 6-5-2 Outliers for DCWO scenario 
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Total observations Number of outliers 

X433:      850 0 

X4322:    121 7 

X4323:      81 16 

X4222:    200 20 

X4223:    110 20 

X4233:    849 7 

X42322:  162 9 

Name of 

sub-ranges 

X42323:  127 0 

Total               2500 79 

 

Table 6-5-3 Outliers for DOWC scenario 
 
 
 

 
 

Total observations Number of outliers 

X351:     1166 0 

X3533:     488 3 

X3532:     379 12 

X3522:     208 17 

X35211:   113 0 

Name of 

sub-ranges 

X35212:   146 0 

Total                2500 32 

 

Table 6-5-4 Outliers for DCWC scenario 

 

 

 

 

 

6.6 Summary of the regression analysis results 

The regression results can be summarized as below: 

1. The AVAS regression analysis result for DOWO scenario is summarized in 

Figure 6-6-1. 

 



 140

 

 
 

Figure 6-6-1: DOWO scenario  
 

2. The AVAS regression analysis result for DCWO scenario is summarized in 

Figure 6-6-2. 

 

X1331(1176obs)
cor:0.9859

Rf>0.45m/sec
X133(1181obs)

X132f(242obs)
cor:0.9320

Rf<0.45m/sec
X132(256obs)

L>600cm

X1232f(433obs)
cor:0.9502

Hr<270cm
X1232(439obs)

X1233ff(395obs)
cor:0.9322

Hr>270cm
X1233(416obs)

Rf>0.45m/sec
X123(855obs)

Hr<270cm
X1222(111obs)

cor:0.9385

Hr>270cm
X1223(90obs)

cor:0.9403

Rf<0.45m/sec
X122(208obs)

cor:0.9286(198obs)

L<600cm

Door closed
Window open
X1(2500obs)

 
 

Figure 6-6-2: DCWO scenario  

 
 
 

3. The AVAS regression analysis result for DOWC scenario is summarized in 

Figure 6-6-3. 

 
 

X2331(1169obs)
cor:0.9878

Rf>0.455m/sec
X233(1176obs)

X2322f(148obs)
cor:0.9431

Wr<700cm
X2322(159obs)

X2323f(83obs)
cor:0.9294*

Wr>700cm
X2323(102obs)

Rf<0,455m/sec
X232(261obs)

L > 600 cm

X22322f(114obs)
cor:0.9948

fA > 0.345
X22322(133obs)

fA < 0.345
X22321(69obs)

cor:0.9384*

fA<0.455
X2232(202obs)

X2233f(543obs)
cor:0.9837

fA>0.455
X2233(550obs)

Rf>0.66m/sec
X223(752obs)

X222f(282obs)
cor:0.9794

Rf<0.66m/sec
X222(311obs)

L < 600 cm

Door open
Window open
X2(2500obs)
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Figure 6-6-3: DOWC scenario  
 

 

4. The AVAS regression analysis result for DCWC scenario is summarized in 

Figure 6-6-4. 

Rf<0.96m/sec
X351(1166obs)

cor:0.9861**
input(I=1,2,3,7,8)

X35333(485obs)
cor:0.9864
cor:0.9907*

L>600cm
X3533(488obs)

X35321(367obs)
cor:0.9373
cor:0.9373*

L<600cm
X3532(379obs)

Rf>1.32m/sec
X353(867obs)

X3522f(191obs)
cor:0.9370

X3522
(208 obs)

X35211(113obs)
cor:0.9789

X35212(146)
cor:0.8061
cor:0.8748*

X3521
(259 obs)

0.96m/sec<Rf<1.32m/sec
X352(467obs)

Door closed
window closed
X35(2500obs)

 
 

 
Figure 6-6-4: DCWC scenario  

 
 

In Figures 6-6-1 to 6-6-4, rectangular boxes represent sub-ranges in the scenario. cor 

represent the correlation between original outputs (maximum temperature reached) 

and the predicted values by using the specified regression formulas. The values of 

correlation with an asterisk represent the correlation when a cubic fitted formula is 

used to improve the correlation. 

 

 

 

 

Rf > 0.5 m/sec
X433 (850 obs)

cor: 0.9518

X4322f (114 obs)
cor: 0.9369
cor: 0.9419*

Wr < 700 cm
X4322 (121 obs)

X4323f (65 obs)
cor: 0.9640
cor: 0.9734*

Wr > 700 cm
X4323 (81obs)

Rf < 0.5 m/sec
X432 (202 obs)

L > 700 cm

X4222f (180 obs)
cor: 0.9637

Wr <760 cm
X4222 (200 obs)

X4223f (90 obs)
cor: 0.9590

Wr > 760 cm
X4223 (110 obs)

Rf < 0.5 m/sec
X422 (310 obs)

X4233f (842 obs)
cor: 0.9826

fA >0.45
X4233 (849 obs)

fW < 0.72
X42322 (162 obs)
X42322f (153 obs)

cor: 0.9895

fW > 0.72
X42323 (127 obs)

cor: 0.8316
cor: 0.9119*

fA < 0.45
X4232 (289 obs)

Rf > 0.5 m/sec
X4232(289 obs)

L < 700 cm

Door open
window closed
X4(2500 obs)
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CHAPTER 7 

RELIABILITY ANALYSIS IN DESIGN FOR MAXIMUM 

TEMPERATURE REACHED 
 
In this chapter, details of finding the design point and reliability index using 

Lagrange's method of undetermined multipliers will be given. Also, the reliability 

index for specific examples of maximum temperature reached for four scenarios will 

be calculated. The corresponding probability of failure for each of the scenarios is 

obtained by the use of FOSM Method and results validated by Monte-Carlo 

simulation. 

 

7.1 Reliability index methodology in fire engineering 

The particular shape of the regression equation derived from AVAS in Chapter 6 

makes the task of finding the design point and the reliability index not difficult. For a 

fixed value of yt the limit surface equation is  

y a x b x ct i i i i
i

n

i

n

i= + +
==
∑∑ 2

11
         (7-1-1) 

Suppose the physical variables X are independent and normally distributed. For i = 1, 

�, n let Xi have mean µi and standard deviation σi and let 

u
x

i
i i

i
=

− µ
σ .            (7-1-2) 

Let the image of the limit surface in the U plane be 

y A u B u Ci i
i

n

i i
i

n

i= + +
= =
∑ ∑2

1 1
.         (7-1-3) 

The design point D (which can be used to derive design values) is defined as the point 

on the limit surface nearest to the origin. In other words, we look for a vector u 

satisfying equation (7-1-3) that minimizes ∑
=

=
n

i
iu

1

22β . 

It can be easily found by using Lagrange's method of undetermined multipliers.  

Let  

y u A u B u Ci
i

n

i i i i i
i

n

i

n
* = + + +

= ==
∑ ∑∑λ 2

1

2

11
       (7-1-4) 
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Then we must have 

∂
∂ λ
y
u

u A u B
i

i i i i

*

= + + =2 2 0          (7-1-5) 

from which we deduce 

( )u
B

Ai
i

i

=
−

+2 λ
.            (7-1-6) 

Replacing in equation (7-1-3), we see that λ  must satisfy the following equation 

(7-1-7) 

( ) ( )
A B

A

B
A

C yi i

i

i

i
i

i

n

i

n

i

n 2

2

2

111 4 2λ λ+
−

+
+ =

===
∑∑∑ .      (7-1-7)) 

This is a polynomial equation in λ of order 2n. 

Because of the construction of the problem, this equation always has at least one real 

root. We choose the real root that minimizes β =
=∑ uii

n 2
1

. This minimum value of β 

is the required reliability index. 

 

The corresponding probability of failure is given approximately by  

pF = −Φ( )β .            (7-1-8) 

The above methodology will be illustrated by applications in the following sections. 

 

7.1.1      Choosing the correct subset for  calculating the reliability index 

When calculating the reliability index corresponding to a given limit surface, it is 

necessary to ensure that the limit surface in the neighbourhood  of the design point is 

represented by the regression equation appropriate to that design point. In the first 

instance, the regression equation corresponding to the mean values of the inputs 

should be used and the design point found. If the design point does not lie in the same 

subset as the mean point, the subset in which it lies should be found and a new 

reliability calculation should be performed. If  necessary, this procedure should be 

repeated until the design point lies in the subset corresponding to the regression 

equation used. 

 

In all the examples that will be presented in the thesis the mean point and the design 

point lie in the same subset. 
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7.2 Reliability analysis of the DOWO scenario 

7.2.1 Reliability Index for Engineering Design in DOWO scenario 

Consider the DOWO scenario, when room length L > 600 cm and fire spread rate Rf > 

0.455m/sec.  For simplicity, we shall take just two input variables to be random: the 

fuel density ρf , denoted by x6 and the fuel area factor fA, denoted by x7. The other 

input variables will be taken to be constant. This would usually be the case when 

dealing with a known building, since these other variables are just geometrical 

dimensions, apart from the flame spread rate Rf . However, we saw in Chapter 6 that 

the flame spread rate does not appear in the regression equation as long as it is larger 

than 0.455 m/sec in this scenario. Let N (µ, σ) denote a normal random variable with 

mean µ  and standard deviation σ. The assumed values are as follows:  

L = 800 cm, W = 500 cm, H = 250 cm, fw = 0.7, fH= 0.5, ρf = N(30,2), fA =  

N(0.6,0.1),  Rf = 1.5 m/sec. 

Let: x6=ρf,  x7 = fA. 

The limiting state is taken to be 1050max =y °C. This limiting state is chosen here to 

demonstrate the methodology for calculating the probability of failure defined as the 

probability of exceeding a given value. It is needed to determine the probability of 

danger to life and structure damage. Another probability of failure would be obtained 

with a different limiting condition. After introducing the given data into the formula 

developed in previous sections, Chapter 6, the regression equation is reduced to 

1.10473.155419.201810.065.34 76
2
6

2
7 +−+−= xxxxyt    (7-2-1)  

Equation (7-2-1) was standardised by using the following equations according to (7-1-

2) 

u
x

1
6 6

6
=

− µ
σ

            (7-2-2a) 

 u
x

2
7 7

7
=

− µ
σ

.            (7-2-2b)  

This yields 

  i
i

ii
i

ii CuBuAy ++= ∑∑
==

2

1

2

1

2           (7-2-3)  

where 
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A a
B a b
C a b c

1 1 1
2

1 1 1 1 1 1

1 1 1
2

1 1 1

2
=

= +

= + +

σ
σ µ σ

µ µ
 

and 

.
2

222
2
222

222222

2
222

cbaC
baB

aA

++=

+=

=

µµ
σµσ

σ
 

We find 

A1= -0.0732, B1= 2.674, C1= 1099.2, A2= 0.3380, B2= -11.36, C2= -80.31, and Ci = 

C1+ C2 = 1099.2 - 80.31 = 1018.9. 

The standardized equation (limit state function) for the two standardized variables is 

as follows 

9.101836.113380.0674.20732.0 2
2
21

2
1 +−++−= uuuuy    (7-2-4) 

From Lagrange's method of undetermined multipliers λ  

( ) ( ) max
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2
2

1

2

1
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2

2
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24
yuC
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A
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i

i

i
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== = =

λ
λλ

.    (7-2-5) 

 

It is not difficult to derive the values of λ  from the equation (7-2-5): 

λ :  0.0573   0.0573   -0.1798  -2.978    

From equation (7-1-6), we have (7-2-6a,b) as follows:  

( )u
B

A1
1

12
=

−
+λ

            (7-2-6a) 

( )u
B

A2
2

22
=

−
+λ

            (7-2-6b) 

2
2

2
1

1

22 uuu
n

i
i +==∑

=
β           (7-2-7) 

 

From equations (7-2-6) and (7-2-7), the corresponding values of β can be calculated 

β : 89.51   89.51   34.51   2.204. 

Obviously the smallest value β =2.204 is the reliability index. Illustration of the result 

is given in Figure 7-2-1 and Figure7-2-2. 

 



 146

From equation (7-1-8), the corresponding probability of failure is given 

approximately by 01376.0)( =−Φ= βFp . Therefore, the probability for the 

maximum temperature to be greater than 1050 °C is 0.0138 in the specified DOWO 

scenario. 

 

 

 
 
 

Figure 7-2-1: Illustration of the β index for the numerical example 
 

 
 
 

Figure 7-2-2: Illustration of the β index for the numerical example 
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7.2.2 Validation by Monte - Carlo simulation 

The probability just obtained by using the reliability index in section 7.2.1 can be 

validated by Monte Carlo simulation: out of 200,000 simulations, 2,721 fell in the 

failure region y > 1050 °C, giving an estimated probability of failure of pF(carlo)= 

0.01361. The 95% confidence interval for the estimate is (0.0131, 0.0141), which 

contains the value (0.0138) obtained in using the reliability index method in the 

previous section 7.2.1.  

 

7.3 Reliability analysis of the DOWC scenario 

7.3.1 Reliability Index for Engineering Design in DOWC scenario 

Consider the DOWC scenario, when room length L > 700 cm and fire spread rate Rf > 

0.5m/sec (X433). For simplicity, we shall take as before just two input variables to be 

random: the fuel density ρf , denoted by x6 and the fuel area factor fA, denoted by x7. 

The assumed values are as follows: L = 999.5 cm, W = 600 cm, H = 260 cm, fw = 0.7, 

fH = 0.6, ρf = N(40,2), fA = N(0.8,0.1), Rf = 1.2 m/sec. 

x6 =ρf , x7 = fA  

 

The regression equation is 

5.10353.13450.145803.20198.0 7
2
76

2
6 +−++−= xxxxyt    (7-3-1) 

 

The standardised equation is 

y A u B u Ci i i i
i

i
i

= + +
==
∑∑ 2

6

7

6

7

         (7-3-2) 

 

The following values of coefficients are obtained: 

 A6= -0.0792, A7= 0.1450, B6= 1.9926, B7 = -11.11, C6 = 1107.1, C7 = -98.20, 

 Ci = C6+C7 = 1008.9. 

 

The standardized regression equation (limit state function) for the two-variable 

problem is  

9.100811.111450.09926.10792.0 7
2
76

2
6 +−++−= uuuuy    (7-3-3) 
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From Lagrange's method of undetermined multipliers λ and for ymax = 1035 °C, it is 

not difficult to derive the values of λ as: 

λ: 0.0743    -0.0738  0.0743  -2.6452. 

By using equation (7-3-2a) and (7-3-2b) with 

β 2 2

6

7

6
2

7
2= = +

=
∑ u u ui
i

          (7-3-4) 

the reliability indices are: 

β: 203.1   78.39   203.1   2.253.  

 

Obviously the smallest value β = 2.253  is the reliability index. Illustration of the 

reliability index result is given in Figure 7-3-1 and Figure 7-3-2. 

 

In this scenario, the approximate value of the probability for the maximum 

temperature greater than 1035°C is: 

01214.0)253.2(1)(1)( =Φ−=Φ−=−Φ= ββfailurep . 

 

 

 
 
 

Figure 7-3-1: Illustration of index for the numerical example (X433) 
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Figure 7-3-2: Illustration of index for the numerical example (X433) 

 
7.3.2 Validation by Monte Carlo simulation 

The probability just given can be validated by Monte Carlo simulation: Out of 

200,000 simulations, 2464 fell in the failure region yt > 1035°C, giving an estimated 

probability of failure of 0.01232. The 95% confidence interval for the estimate is 

(0.01184, 0.01280), which contains the value (0.01214) obtained in the previous 

section. 

 

7.4 Reliability analysis of the DCWO scenario 

7.4.1 Reliability Index for Engineering Design in DCWO scenario 

In DCWO scenario, when room length L > 600 cm and fire spread rate Rf > 0.45m/sec 

(X133f), for simplicity, we shall take just two input variables to be random: the fuel 

density ρf , denoted by x6 and the fuel area factor fA, denoted by x7.  

 

The assumed values are as follows:  

L= 999.5 cm, W = 600 cm, H =260 cm, fw = 0.7, fH = 0.6, ρf = N(40,2),  fA = 

N(0.8,0.1),  

Rf = 1.2m/sec. 

Let: x6=ρf,  x7 = fA. 
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After bringing the given data into the formula developed in Chapter 6, we get the 

following reduced equation 

2.96775.104414.00209.209107.0 7
2
76

2
6 +−++−= uuuuyt .  (7-4-1) 

 

The limiting state is taken to be ymax = 990°C. By using Lagrange�s method of 

undetermined multipliers, it is not difficult to derive the values of λ as: 

 

λ: 0.0792  0.0792  -0.2337 -3.254 

and the corresponding values of β are as: 

β: 85.52  85.52  26.07  1.935. 

 

It is clear that the smallest value of  β , 1.935, is the required reliability index. 

 

From equation (7-1-8), the approximate probability of failure in this case is: 

 pF =  Φ(-1.935) = 0.02648. 

 

Illustration of the result is given in Figure 7-4-1 and Figure 7-4-2. 

 

 

 
Figure 7-4-1: Illustration of the reliability index for the numerical example 
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Figure 7-4-2: Illustration of the reliability index for the numerical example 

 

 

7.4.2 Validation by Monte - Carlo simulation 

The probability just given can be validated by Monte Carlo simulation: Out of 

200,000 simulations, 5,229 fell in the failure region yt > 990, giving an estimated 

probability of failure of 0.02615. The 95% confidence interval for the estimate is 

(0.02545, 0.02684), which contains the value 0.02648 obtained in the previous 

section. 

 

7.5 Reliability analysis of the DCWC scenario 

7.5.1 Reliability Index for Engineering Design in DCWC scenario (X351) 

Consider the DCWC scenario, when the fire spread rate Rf < 0.96m/sec. Here, we 

shall take the two following input variables to be random: the fuel area factor fA, 

denoted by x7 and the fire spread rate Rf, denoted by x8. The other input variables will 

be taken to be constant. This would usually be the case when dealing with a known 

building, since these other variables are geometrical dimensions. Moreover, we saw in 
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Chapter 6 that window width factor, window height factor and fuel density do not 

appear in the regression equation when Rf < 0.96m/sec in DCWC scenario.  

 

The assumed values are as follows 

 L = 900 cm, Wr = 500 cm, Hr = 260 cm, fA = N(0.6,0.1), Rf = N(0.8,0.1) 

We have the regression equation: 

yp = b7x7  + b8x8 + 143.5.          (7-5-1) 

By using u7 = (x7 � 0.6)/0.1, u8 = (x8 � 0.8)/0.1, we derive the standardised limiting 

state function as: 

yp = 17.79u8 � 3.203u7+266.6.         (7-5-2) 

For  ymax = 295 °C,  we have the limit equation: 

17.79u8 � 3.2034u7 � 28.39 = 0.        (7-5-3) 

The reliability index is (the shortest distant from the origin to the limit curve line) 

β = 1.571. 

Thus the approximate value of the probability of failure from equation (7-1-8) is: 

 pF = Φ(-1.571) = 0.0581. 

An illustration of the result is given in Figure 7-5-1. 

 
 

 

Figure 7-5-1: Illustration of the β index for the numerical example of DCWC (X351) 
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7.5.2 Validation by Monte - Carlo simulation for X351 

The probability just given can be validated by Monte Carlo simulation: Out of 

200,000 simulations 11493 fell in the failure region yp > 295 °C, giving an estimated 

probability of failure of 0.0575. The 95% confidence interval for the estimate is 

(0.0565, 0.0585), which contains the value (0.0581) obtained in the previous section 

 

7.5.3 Reliability index analysis for the DCWC scenario (when Rf > 1.32) 

Consider the DCWC scenario, when the fire spread rate Rf > 1.32 m/sec (X3533). For 

simplicity, we shall take as before just two input variables to be random: the fuel 

density ρf, denoted by x6 and the fuel area factor fA, denoted by x7 .  

 

The assumed values of input are as follows:  

L = 900 cm, W = 600 cm, H = 260 cm, fw = 0.8, fH = 0.7, ρf = N(50,2), fA = N(0.6,0.1),  

Rf = 1.5 m/sec.  

Setting x6 =ρf , x7 = fA . 

 

 

The regression equation is: 

5.10607812.202195.03.16252.30 6
2
67

2
7 ++−−= xxxxyt    (7-5-4) 

and the reduced regression equation is 

 1.10581624.1088.057.123052.0 6
2
67

2
7 ++−−= uuuuyt .   (7-5-5) 

 

The limiting state is taken to be ymax = 1100°C. 

 

Using Lagrange�s method of undetermined multipliers, it is easy to calculate the 

values of λ as: 

  λ:   0.0859   -0.1628    0.0859  -2.347 

and the corresponding values of β are: 

β : 276.6   44.19   276.6   3.088. 
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The smallest value of  β = 3.088, and it is the reliability index. Therefore, the 

approximate probability of failure is: 

 pF = Φ(-3.088) = 0.0010. 
 
Illustration of the result is given in Figure 7-5-2 and Figure 7-5-3.  

 
 

Figure 7-5-2: Illustration of the β index for the numerical example (X35333) 

 
 

 

 

Figure 7-5-3: Illustration of the β index for the numerical example (X35333) 
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7.5.4 Validation by Monte-Carlo simulation: 

The probability obtained by the β index can be validated by Monte Carlo simulation: 

Out of 200,000 simulations 220 fell in the failure region yt > 1100 °C, giving an 

estimated probability of failure of 0.0011. The 95% confidence interval for the 

estimate is (0.00096, 0.00125), which contains the value (0.0010) obtained by using 

the β index methodology in the previous section. 

 

7.6 Discussion of the regression results  

The appropriate values of the highest temperature reached were chosen for each 

selected scenario, as shown in Table 7-1. The results of reliability analysis for the 

selected scenarios are also shown in Table 7-1. The analysis is based on data for 

specified constraints and specified input which were introduced in previous sections. 

 
Scenarios Number Tem. β Φ (-β) pF 95% conf_interval 

DOWO:X233 1169 1050°C 2.204 0.01376 0.01361 (0.0131, 0.0141) 

DOWC:X433 850 1035°C 2.253 0.01214 0.01232 (0.01184, 0.01280) 

DCWO:X133 1176 990°C 1.935 0.02648 0.02615 (0.02545, 0.02684) 

1166 295°C 1.571 0.0581 0.0575 (0.0565, 0.0585) DCWC:X351 

        X35333 485 1100°C 3.088 0.0010 0.0011 (0.00096, 0.00125) 

Table 7-1: The results of reliability analysis for four scenarios  

In table 7-1:  

Number = number of observations; Tem. = highest temperature reached; β = 

reliability index; Φ = distribution function of normal standard distribution; pF = 

probability of failure from Monte-Carlo simulation; 95% conf_interval = 95% 

confidence interval of Monte-Carlo simulation. 
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CHAPTER 8  

MODERN REGRESSION FOR TIME TO UNTENABLE 

CONDITIONS IN FIRES 
 

8.1 Introduction 

In this chapter, we will analyze another output variable, time to untenable conditions. 

Time to untenable conditions is defined as the time to a fatality occurring to 

occupants, that is, either occupant incapacitation will occur when the COHb (carboxy 

haemoglobin) dosage in blood exceeds a critical level or exposure to heat radiation 

reaches a critical high level. 
 
8.1.1 Calculation of COHb Value  

During evacuation under smoke conditions, occupants who are exposed to the smoke 

accumulate a COHb dosage in the blood, through inhaling CO and CO2. Occupant 

incapacitation will occur when the contents of COHb in the blood exceed a critical 

level estimated to be 20% of total Hb. Fatality will occur when the critical level 

reaches 50%. 

 

An equation (derived from experimental human exposures) for the prediction of 

COHb concentration is given by Stewart et al [60], 

∫ ××××= −
t

dtRMVtCOCOHb
0

036.15 )(10317.3%      (8-1-1) 

where CO(t) is the CO concentration in ppm as a function of time, RMV is the volume 

of air breathed (L/min) and t is the time of exposure (min.).  

 

The toxic gases considered in CESARE-Risk are CO and CO2 only, because for most 

practical situations the composition of the fire atmosphere is such that the toxic 

effects of CO are the most important. The effect of CO2 is calculated by the Fire 

Growth Model. The CO2 concentration is used to determine a factor by which the 

COHb from CO is multiplied to take into account the increase of the breathing rate 

caused by CO2. This factor is calculated using  
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8.6/)9086.1%2468.0exp( 22
+×= COVCO       (8-1-2) 

 

where VCO2 is the multiplication factor for CO2 induced hyperventilation. 

 

 

Thus, the total COHb with the effect of CO2 is  

 

∫ ×××= −
2

1

2

036.14 )}({102925.8%
t

t
COVdttppmCOCOHb     (8-1-3) 

where 25 L/min is used for the rate of breathing which is the breathing rate for adults 

with light activity. 

 

8.1.2 Fatality Caused by Heat 

In this section another cause of incapacitation, exposure to heat radiation in a building 

cell, will be presented. 

 

The most important sources of heat are radiative heat from the fire and convective 

heat from the hot gases. According to Babrauskas [61], the tenability limit for 

radiative heat flux Qr is 2.5 kW/m2 (0.25 W/cm2). The radiative heat flux is closely 

related to the temperature. For simplicity, only temperature will be used for 

determining the occupant fatality condition. 

 

For exposure to convective heat, the concept of fractional lethal dose (FLD) can be 

used to predict whether a fatality will occur. FLD is defined to be 

FLD = dose received at time t/ dose to cause fatality.  (8-1-4) 

 

The fractional lethal dose due to convective heat (FLDT) is calculated using: 

 

∫
−×+−×=

t

T
tTtTdtFLD

0

))
83.29

)(89.60exp(52)
18.4

)(89.60exp(3.199/(  (8-1-5) 
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where T(t) is the temperature of the hot gases as a function of time; t is the time at 

which the FLD is calculated. 

 

When FLDT is greater or equal to 1, the occupants are assumed to be fatalities. This 

equation is derived from the data presented in Purser [62] using curve fitting 

techniques. 

Details of the above calculation in CESARE-RISK model can be found in Sanabria 

and Li [63]. 

 

8.2 Stochastic nature of time to untenable conditions 

 

8.2.1 Stochastic nature of input variables 

The stochastic nature of the inputs is the same as for the maximum temperature in the 

previous section. 

 

8.2.2 Output variable 

In the following section, we shall concentrate on the analysis of the time to untenable 

conditions = min (CO, Heat), denoted by T.  

 

As before, we shall consider four scenarios:  

Door closed, window open (DCWO);  

Door open, window closed (DOWC);  

Door closed, window closed (DCWC) and  

Door open, window open (DOWO).  

 

There are 10,000 simulation data sets available, 2,500 for each of the four scenarios. 

 

8.3 Modern regression analysis for DCWO scenario 

Applying the ACE regression algorithm to the DCWO data, referred to as U1, we 

obtain eight transformed inputs and a transformed output. Plots of the transformed 

data against the original data are shown in Figure 8-3-1. 
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Figure 8-3-1: Plots of transformed variables against original data of U1 

 

Figure 8-3-1 leads to the following conclusion: From the plot of variable x8, which is 

flame spread rate Rf, it is clear that there is a change of behaviour at x8 = 0.5 m/sec. 

There are significant mode changes in the curve of variable x8, quick decrease and 

slow decrease. This corresponds to different modes of fire growth, and also the 

transformed value of variable x6 is comparatively small thus can be neglected. This 

can be seen in the following section 8.3.1. It turns out that there are 512 data sets 

satisfying the constraint Rf < 0.5 m/sec, which we call U12, and 1988 data sets 

satisfying the constraint Rf ≥ 0.5 m/sec, which we call U13. 

 

8.3.1 ACE regression analysis of U12 

Using the ACE algorithm on U12, the plots of transformed variables against original 

data are as shown in Figure 8-3-2. From analyzing Figure 8-3-2, it also turns out that 

x6, the fuel density, can be ignored in the regression calculations for U12. So the set of 

indices used was just I = 1, 2, 3, 4, 5, 7, 8. 
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Figure 8-3-2: Plots of transformed variables against original data of U12 

 

 

To the data set U12,  we fitted a quadratic regression formula of the form 

T a x b x ct i i i i
i I

= + + +
∈
∑ ( )2 ε .         (8-3-1) 

The coefficient c =  3055.3, and  the coefficients bi and ai were as in Table 8-3-1. 
i 1 2 3 4 5 7 8 

bi 1.0401 0.9837 -15.53 390.5 745.0 -54.22 -10183 

ai -0.000485 -0.000260 0.03158 -0.6815 -202.4 94.84 11840 

 
Table 8-3-1: Values of quadratic regression coefficients of U12  

 
 

Letting  

T a x b x ct i i i i
i I

= + +
∈
∑ ( )2          (8-3-2) 

it was found that the correlation between T and Tt was 0.9772. 

 

A scatter plot of T against Tt is shown in Figure 8-3-3. 
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The second step in the fitting is to improve the fit of Tt by using a cubic regression 

formula of the form 

T C C T C T C Tp t t t= + + + +0 1 2
2

3
3 ε * .       (8-3-3) 

The coefficients turned out to be:  

C0 = 175.3, C1 = 0.9422, C2 = -0.0003677, C3 = 1.984e-007. 

 

Letting  

T C C T C T C Tp t t t= + + +0 1 2
2

3
3         (8-3-4) 

 

the correlation achieved between T and Tp is now 0.9926. 

A scatter plot of T and Tp is shown in Figure 8-3- 4. 

 

 
 
 

Figure 8-3-3: Scatter plot of T against Tt (quadratic) for U12 (x6 is ignored) 
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Figure 8-3-4: Scatter plot of T against Tp (cubic) for U12(x6 is ignored) 

 

8.3.2 ACE regression analysis of U13 

Using the ACE algorithm on U13, the plots of transformed variables against original 

data are shown in Figure 8-3-5. It also turns out that the fuel density, x6, can be 

ignored in the regression calculations in U13. So the set of indices used was just i = 1, 

2, 3, 4, 5, 7, 8. 

 
Figure 8-3-5: Transformed variables against original data for U13 
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To the data set U13, we fitted a quadratic regression formula of the form (8-3-1) 

 

The coefficient c =  30.81, and  the coefficients bi and ai were as in Table 8-3-2. 
i 1 2 3 4 5 7 8 

bi 0.2558 0.2725 2.050 197.1 198.3 -3.937 -678.6 

ai -0.000105 -0.000060 -0.003031 -60.44 -49.73 14.25 184.0 

 

Table 8-3-2:Values of quadratic regression fitted coefficients for U13  

 

Letting  

T a x b x ct i i i i
i I

= + +
∈
∑ ( )2           (8-3-5) 

it was found that the correlation between T and Tt was 0.9811. The scatter plot is 

shown in Figure 8-3-6. 

 

The second step in the fitting is to improve the fit of Tt by using a cubic regression 

formula of the form 

T C C T C T C Tp t t t= + + + +0 1 2
2

3
3 ε ' .        (8-3-6) 

The coefficients turned out to be:  

C0 = 59.71, C1 = 0.9165, C2 = -0.001111, C3 = 2.082e-006 

 

Letting  

T C C T C T C Tp t t t= + + +0 1 2
2

3
3 .         (8-3-7) 

the correlation achieved between T and Tp is now 0.9940. 

 

A scatter plot of T against Tp is shown in Figure 8-3-7. 
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Figure 8-3-6: Scatter plot of T against Tt (quadratic fitted) for U13  
 

 
 

Figure 8-3-7: Scatter plot of T against Tp (cubic fitted) for U13 
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8.4 Modern regression analysis for DOWO scenario 

Applying the ACE regression algorithm to the DOWO scenario, which is referred to 

as data U2, we obtain eight transformed inputs and a transformed output. Plots of the 

transformed data against the original data are shown in Figure 8-4-1. 

 
 
 

Figure 8-4-1: Plots transformed variables in ace against original data for U2 
 
 
 
 
The plots lead to the following conclusion: From the plot of variable x8, which is 

flame spread rate, it is clear that there is a change of behaviour at x8 = 0.5 m/sec. 

It turns out that there are 512 data sets satisfying the constraint Rf < 0.5 m/sec, which 

we call U22, and 1988 data sets satisfying the constraint Rf ≥ 0.5 m/sec, which we call 

U23. 

 

8.4.1 ACE regression analysis of U22 

Using the ACE algorithm on U22, the plots of transformed variables against original 

data are shown in Figure 8-4-2. Analyzing Figure 8-4-2, it again turns out that the fuel 

density, x6, can be ignored in the regression calculations in U22. So the set of indices 

used was just i = 1, 2, 3, 4, 5, 7, 8. 
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Figure 8-4-2: Plots of transformed variables against original data for U22 

 

To the data set U22, we fitted a quadratic regression formula of the form (8-3-1) 

 

The coefficient c =  3287.4, and  the coefficients bi and ai were as in Table 8-4-1. 
i 1 2 3 4 5 7 8 

bi 1.094 0.8576 -14.38 320.8 469.2 -119.6 -10790 

ai -0.000525 -0.000190 0.02914 37.92 -50.83 145.4 12547 

 

Table 8-4-1:Values of quadratic regression coefficients of U22 (x6 is ignored) 

 

Letting  
T a x b x ct i i i i

i I
= + +

∈
∑ ( )2           (8-4-1) 

 

it was found that the correlation between T and Tt was 0.9811. The scatter plot of T 

against Tt is shown in Figure 8-4-3. 
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The second step in the fitting is to improve the fit of Tt by using a cubic regression 

formula of the form 

T C C T C T C Tp t t t= + + + +0 1 2
2

3
3 ε ' .        (8-4-2) 

The coefficients turned out to be:  

C0 = 158.2, C1 = 0.9924, C2 = -0.0003657, C3 = 1.772e-007 

 

Letting  

T C C T C T C Tp t t t= + + +0 1 2
2

3
3          (8-4-3) 

the correlation achieved between T and Tp is now 0.9938. 

A scatter plot of T against Tp is shown in Figure 8-4-4. 

 
 

 
 
 

Figure 8-4-3: Scatter plot of T against Tt (quadratic) for U22 
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Figure 8-4-4: Scatter plot of T against Tp (cubic) for U22  
 
 

8.4.2 ACE regression analysis of U23 

Using the ACE algorithm on U23, the plots of transformed variables against original 

data are shown in Figure 8-4-5. From analyzing Figure 8-4-5, it again turns out that 

the fuel density, x6, can be ignored in the regression calculations in U23. So the set of 

indices used was just i = 1, 2, 3, 4, 5, 7, 8. 

 
 

Figure 8-4-5: Plots of transformed variables in ACE against original data for U23 
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To the data set U23, we fitted a quadratic regression formula of the form (8-3-1). 

 

The coefficient c =  165.2, and  the coefficients bi and ai were as in Table 8-4-2. 

 
i 1 2 3 4 5 7 8 

bi 0.2600 0.2482 1.766 192.4 123.9 -3.450 -719.9 

ai -0.000108 -0.000050 -0.002571 -59.48 -8.837 13.28 195.3 

 

Table 8-4-2: Values of quadratic regression coefficients for U23 
 

Letting  

T a x b x ct i i i i
i I

= + +
∈
∑ ( )2           (8-4-4) 

it was found that the correlation between T and Tt was 0.9843. A scatter plot of T 

against Tt is shown in Figure 8-4-6 

 

The second step in the fitting is to improve the fit of Tt by using a cubic regression 

formula of the form 

 

T C C T C T C Tp t t t= + + + +0 1 2
2

3
3 ε ' .        (8-4-5) 

The coefficients turned out to be:  

C0 = 45.49, C1 = 1.043, C2 = -0.001326, C3 = 2.057e-006. 

 

Letting  

T C C T C T C Tp t t t= + + +0 1 2
2

3
3          (8-4-6) 

the correlation achieved between T and Tp is now 0.9950. 

 

A scatter plot of T against Tp is shown in Figure 8-4-7. 
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Figure 8-4-6: Scatter plot of T against Tt (quadratic fitted) for U23  
 

 
 

Figure 8-4-7: Scatter plot of T against of Tp (cubic fitted) for U23  
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8.5 Modern regression analysis for DCWC scenario 

Applying the ACE regression algorithm to the DCWC, which is referred to as U3 

data, we obtain eight transformed inputs and a transformed output. Plots of the 

transformed data against the original data are shown in Figure 8-5-1. 
 
Figure 8-5-1 leads to the following conclusion:  

From the plot of variable x8, which is flame spread rate Rf, it is clear that there is a 

change of behaviour at a x8 = 0.5 m/sec.  It turns out that there are 512 data sets 

satisfying the constraint Rf  < 0.5 m/sec, which we call U32, and 1988 data sets 

satisfying the constraint  Rf  ≥ 0.5 m/sec, which we call U33. 

 

8.5.1 ACE regression analysis of U32 

Using the ACE algorithm on U32, the plots of transformed variables against original 

data are shown in Figure 8-5-2. It turns out that x4, x5, x6 (they are window width 

factor, window height factor and fuel density) can be ignored in the regression 

calculations in U32 (That x4 and x5 can be ignored should have been expected, since 

the window is closed). So the set of indices used was just i = 1, 2, 3, 7, 8. 

 

 
 
 

Figure 8-5-1: Plots of transformed variables against original data in ACE for U3 
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Figure 8-5-2: Plots of transformed variables against original data in ACE for U32 

 

 

To the data set U32, we fitted a quadratic regression formula of the form 

T a x b x ct i i i i
i I

= + + +
∈
∑ ( )2 ε .         (8-5-1) 

The coefficient c =  1163.5, and  the coefficients bi and ai were as in Table 8-5-1. 
i 1 2 3 7 8 

bi 0.5374 0.4909 -3.478 -1.801 -3647 

ci -0.0001782 -0.0001420 0.007544 22.65 3889 

 

Table 8-5-1: Values of quadratic regression coefficients for U32 
 
 

Letting  

T a x b x ct i i i i
i I

= + +
∈
∑ ( )2           (8-5-2) 

it was found that the correlation between T and Tt was 0.9875. A scatter plot of T 

against Tt is shown in Figure 8-5-3. 
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The second step in the fitting is to improve the fit of Tt by using a cubic regression 

formula of the form 

T C C T C T C Tp t t t= + + + +0 1 2
2

3
3 ε ' .        (8-5-3) 

 

The coefficients turned out to be:  

C0 = 22.17, C1 = 1.326, C2 = -0.001161, C3 = 8.565e-007 

 

Letting  

T C C T C T C Tp t t t= + + +0 1 2
2

3
3          (8-5-4) 

the correlation achieved between T and Tp is now 0.9958. 

 

A scatter plot of T against Tp is shown in Figure 8-5-4. 

 

 
 

Figure 8-5-3: Scatter plot of T against Tt (quadratic fitted) for U32  
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Figure 8-5-4: Scatter plot of T against Tp (cubic fitted ) for U32  
 
 

8.5.2 ACE regression analysis of U33 (Rf ≥ 0.5 m/sec) 

Using the ACE algorithm on U33, the plots of transformed variables against original 

data are shown in Figure 8-5-5. From Figure 8-5-5, it also turns out that x4, x5, x6 (they 

are window width factor, window height factor and fuel density) can be ignored in the 

regression calculations in U33. So the set of indices used was just i = 1, 2, 3, 7, 8. 
 

 

 

Figure 8-5-5: Plots of transformed variables against original data for U33 
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To the data set U33, we fitted a quadratic regression formula of the form (8-5-1) 

 

The coefficient c =  231.3, and  the coefficients bi and ai were as in Table 8-5-2. 
i 1 2 3 7 8 

bi 0.1458 0.1812 1.005 3.184 -436.4 

ci -0.00002680 -0.00004694 -0.001488 12.42 118.3 

 

Table 8-5-2: Values of quadratic regression coefficients for U33 
 

Letting  

T a x b x ct i i i i
i I

= + +
∈
∑ ( )2           (8-5-5) 

it was found that the correlation between T and Tt was 0.9861. A scatter plot of T 

against Tt is shown in Figure 8-5-6. 

 

The second step in the fitting is to improve the fit of Tt by using a cubic regression 

formula of the form 

T C C T C T C Tp t t t= + + + +0 1 2
2

3
3 ε ' .        (8-5-6) 

The coefficients turned out to be:  

C0 = 19.47, C1 = 1.208, C2 = -0.002617, C3 = 5.326e-006 

 

Letting  

T C C T C T C Tp t t t= + + +0 1 2
2

3
3          (8-5-7) 

the correlation achieved between T and Tp is now 0.9959. 

 

A scatter plot of T against Tp is shown in Figure 8-5-7. 
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Figure 8-5-6: Scatter plot of T against Tt (quadratic fitted) for U33  

 

 
Figure 8-5-7: Scatter plot of T against Tp (cubic) for U33 

 
 

 

8.6 Modern regression analysis for DOWC scenario 

Applying the ACE regression algorithm to the DOWC scenario, which is referred to 

as data U4, we obtain eight transformed inputs and a transformed output. Plots of the 

transformed data against the original data are shown in Figure 8-6-1. 
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Figure 8-6-1: Plots of transformed variables against original data for U4 
 
 
 

The plots lead to the following conclusion: From the plot of variable x8, which is 

flame spread rate Rf, it is clear that there is a change of behaviour at x8 = 0.5 m/sec. It 

turns out that there are 512 data sets satisfying the constraints Rf < 0.5 m/sec, which 

we call U42, and 1988 data sets satisfying the constraint Rf ≥ 0.5 m/sec, which we call 

U43. 

 

8.6.1 ACE regression analysis of U42 

Using the ACE algorithm on U42, the plots of transformed variables against original 

data are shown in Figure 8-6-2. It also turns out that x4, x5, x6 (they are window width 

factor, window height factor and fuel density) can be ignored in the regression 

calculations in U42. So the set of indices used was just i = 1, 2, 3, 7, 8. 
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Figure 8-6-2: Plots of transformed variables against original data for U42 

 

To the data set U42, we fitted a quadratic regression formula of the form (8-5-1) 

The coefficient c = 1875.2, and the coefficients bi and ai were as in Table 8-6-1. 
i 1 2 3 7 8 

bi 0.6733 0.4759 -4.768 -33.10 -5826 

ai -0.0002828 -0.0001694 0.009414 71.86 6403 

 

Table 8-6-1: Values of quadratic regression coefficients for U42  

Letting  

T a x b x ct i i i i
i I

= + +
∈
∑ ( )2           (8-6-1) 

it was found that the correlation between T and Tt was 0.9924. A scatter plot of T 

against Tt is shown in Figure 8-6-3. 

 

The second step in the fitting is to improve the fit of Tt by using a cubic regression 

formula of the form 

T C C T C T C Tp t t t= + + + +0 1 2
2

3
3 ε ' .        (8-6-2) 

 

The coefficients turned out to be:  

C0 = 19.84, C1 = 1.166, C2 = -0.0005202, C3 = 3.135e-007. 
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Letting  

T C C T C T C Tp t t t= + + +0 1 2
2

3
3          (8-6-3) 

the correlation achieved between T and Tp is now 0.9954. 

A scatter plot of T against Tp is shown in Figure 8-6-4. 
 

 

 
 
 

Figure 8-6-3: Scatter plot of T against Tt (quadratic fitted) for U42  

 
Figure 8-6-4: Scatter plot of T against Tp (cubic) for U42 
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8.6.2 ACE regression analysis of U43  

Using the ACE algorithm on U43, the plots of transformed variables against original 

data are shown in Figure 8-6-5. Further analyzing Figure 8-6-5, it again turns out that 

x4, x5, x6 (they are window width factor, window height factor and fuel density) can be 

ignored in the regression calculations in U43. So the set of indices used was just i = 1, 

2, 3, 7, 8. 

 
 

Figure 8-6-5: Plots of transformed variables against original data for U43 

 

To the data set U43, we fitted a quadratic regression formula of the form (8-5-1) 

 

The coefficient c =  301.3, and  the coefficients bi and ai were as in Table 8-6-2. 
i 1 2 3 7 8 

bi 0.1665 0.1454 1.038 5.446 -491.9 

ai -0.00004267 -0.00002992 -0.001600 9.949 133.4 

 

Table 8-6-2: Values of quadratic regression coefficients for U43  

 

 

Letting  

T a x b x ct i i i i
i I

= + +
∈
∑ ( )2           (8-6-4) 

it was found that the correlation between T and Tt was 0.9886. 
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A scatter plot of T against Tt is shown in Figure 8-6-6. 
 

 
Figure 8-6-6: Scatter plot of  T against Tt (quadratic fitted ) for U43 

 
 

The second step in the fitting is to improve the fit of Tt by using a cubic regression 

formula of the form 

T C C T C T C Tp t t t= + + + +0 1 2
2

3
3 ε ' .        (8-6-5) 

 

The coefficients turned out to be:  

C0 = 1.485, C1 = 1.393, C2 = -0.002934, C3 = 4.963e-006. 

 

Letting  

T C C T C T C Tp t t t= + + +0 1 2
2

3
3          (8-6-6) 

the correlation achieved between T and Tp is now 0.9963. 

A scatter plot of T against Tp is shown in Figure 8-6-7. 
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Figure 8-6-7: Scatter plot of T against Tp (cubic fitted) for U43 
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8.7 Summary of the events and result of correlation 

The ACE regression analysis for time to untenable conditions can be summarized as 
follows in Figure 8-7-1. 
 

 
 

 
 
 
 

Figure 8-7-1: Events and result of correlation for time to untenable condition 
 
 
In Figure 8-7-1: 

1. Fuel density, x6 is ignored in the regression analysis of data sets U12, U13, U22 

and U23;  

2. Window width factor, window height factor and fuel density are ignored (they are 

denoted by x4, x5 and x6 ) in the regression analysis of data sets U32, U33, U42 

and U43; 

3. For correlation values marked with asterisk in Figure 8-7-1 a cubic was fitted to 

quadratic formula predicted values. 
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CHAPTER 9 

RELIABILITY ANALYSIS IN DESIGN FOR TIME TO 

UNTENABLE CONDITIONS 
In this chapter, the reliability index for a specific example for time to untenable 

conditions for four scenarios will be calculated. The corresponding probability of 

failure for each of the scenarios will be obtained by the use of First Order Second 

Moment Method and the results validated by Monte � Carlo simulation. 

 

9.1 Reliability analysis of the DCWO scenario 

9.1.1 Reliability index for engineering design in DCWO scenario 

Consider the DCWO scenario, when the flame spread rate Rf ≥ 0.5 m/sec (U13). For 

simplicity, we shall take just two input variables to be random: room width Wr, which 

is denoted by x2 and flame spread rate Rf, which is denoted by x8. The other input 

variables will be taken to be constant.  However, we saw in Chapter 8 that x6 does not 

appear in the regression equation as long as Rf > 0.5 m/sec in this scenario. Let N(µ, 

σ) denote a normal random variable with mean µ, and standard deviation σ.  

 

The assumed values are as follows: 

L = 600 cm,  Wr = N(450, 20),  Hr = 250 cm,  fW = 0.7,  fH = 0.6, ρf = 50,  fA = 0.6,  

Rf = N(0.7, 0.1). 

The limiting state is taken to be Tt = 311.1 (time to untenable conditions given Tp = 

300 seconds). This limiting state is chosen to demonstrate the methodology to get the 

probability of failure defined as the probability of exceeding a given value. It is 

needed to determine the probability of reaching untenable conditions which could 

cause danger to occupants. Another probability of failure would be the result if with a 

different limiting value. After introducing the given data into the formula developed 

in Chapter 8, the standardized regression equation for the two variable problem is 

reduced to 

5.40710.428396.1390.402357.0 8
2
82

2
2 +−++−= uuuuTt . 

Through Lagrange's method of undetermined multipliers λ, it is not difficult to derive 

the values of λ as:  
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λ: 0.008282  -0.02788  -0.7837    6.462 

and the corresponding values of  the reliability indices β are: 

β: 144.0         44.22        20.12      2.559 

The smallest value β = 2.559 is the reliability index. 

In this scenario, from equation (7-1-8), the approximate value of the probability of 

failure is:  

pF = Φ(-2.559) =  0.00526. 

Illustration of the result is given in Figure 9-1-1, and Figure 9-1-2. 
 

Figure 9-1-1: Illustration of reliability index for the numerical example U13 
 

 

Figure 9-1-2: Illustration of reliability index for the numerical example U13 

(Enlarged central part) 
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9.1.2 Validation by Monte � Carlo simulation 
 
The probability just given can be validated by Monte � Carlo simulation: Out of 

100000 simulations, 518 observations fell in the failure region Tt < 311.1 (Tp < 300 

seconds), giving an estimated probability of failure 0.00518. The histogram of the 

distribution is also shown in Figure 9-1-3. The 95% confidence interval for the 

estimate is (0.00474, 0.00562), which contains the value (0.00526) obtained by using 

reliability index in the previous section.  

 
 

 

 
 

Figure 9-1-3: Histogram of U13 Tt in Monte �Carlo simulation 
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9.2 Reliability analysis of the DOWO scenario 

9.2.1 Reliability index for engineering design in DOWO scenario 

Consider the DOWO scenario, when flame spread rate Rf ≥ 0.5 m/sec (U23).  For 

simplicity, we shall take as before just two input variables to be random: room width 

Wr, which is denoted by x2 and the flame spread rate Rf, which is denoted by x8. The 

other input variables will be taken to be constant.  However, we saw in Chapter 8 that 

x6 does not appear in the regression equation as long as Rf ≥ 0.5 m/sec in this scenario. 

Let N(µ, σ) denote a normal random variable with mean µ, and standard deviation σ.  

 

The assumed values are as follows: 

L = 600 cm,  Wr = N(450, 20),  Hr = 250 cm,  fW = 0.7,  fH = 0.6, ρf = 50,  fA = 0.6,  

Rf = N(0.7, 0.1) 

 

The limiting state is taken to be Tt = 330.9 (Tp = 320 seconds). After bringing the 

given data into the formula developed in Chapter 8, we get the following reduced 

standardized regression equation: 

9.43564.44953.1083.401958.0 8
2
82

2
2 +−++−= uuuuTt . 

 

Through using Lagrange's method of undetermined multipliers described in equation 

(7-1-4) to (7-1-7), it is not difficult to derive the values of λ as:  

λ:     0.006893   -0.02331   -0.8319 6.549 

 and the corresponding values of β  as: 

β:    161.3   48.98    20.047   2.644 

It is clear that the smallest value of β = 2.644, is the required reliability index. 

From equation (7-1-8), the approximate value of the probability of failure in this case 

is  

pF =  Φ(-2.644) =   0.00410. 

 

Illustration of the result is given in Figure 9-2-1 and Figure 9-2-2. 
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Figure 9-2-1: Illustration of  index for the numerical example U23 
 
 
 

 

 

Figure 9-2-2: Illustration of index for the numerical example U23 

(Enlarged central part) 
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9.2.2 Validation by Monte � Carlo simulation 

 The probability just given can be validated by Monte � Carlo simulation: Out of 

100000 simulations, 419 observations fell in the failure region Tt < 330.9 (Tp = 320 

seconds), giving an estimated probability of failure 0.00419. The histogram of the 

distribution is also shown in Figure 9-2-3. The 95% confidence interval for the 

estimate is (0.00379, 0.00459) , which contains the value ( 0.00410) obtained by using 

reliability index in the previous section. 

 
 

 

 

 
 

 

Figure 9-2-3: Histogram of U23 Tt in Monte � Carlo simulation 
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9.3 Reliability analysis of the DCWC scenario 

 

9.3.1 Reliability index for engineering design in DCWC scenario 

Consider the DCWC scenario, when flame spread rate Rf ≥ 0.5 m/sec (U33).  For 

simplicity, we shall take as before just two input variables to be random: room width 

Wr, denoted by x2 and flame spread rate Rf, denoted by x8. The other input variables 

will be taken to be constant.  However, we saw in Chapter 8 that x4 , x5 and x6 do not 

appear in the regression equation as long as Rf ≥ 0.5 m/sec in this scenario. Let N(µ, 

σ) denote a normal random variable with mean µ, and standard deviation σ.  

 

The assumed values are as follows: 

L = 600, Wr = N(450, 20) cm, Hr = 250 cm, fW = 0.7, fH = 0.6, ρf = 50, fA = 0.6,  

Rf = N(0.7, 0.1) 

 

The limiting state is taken to be Tt = 237.4 (Tp = 230 seconds). After introducing the 

given data into the formula developed in Chapter 8, we get the following reduced 

standardized regression equation:  

3.29807.27183.1780.201878.0 8
2
82

2
2 +−++−= uuuuTt . 

 

Through using Lagrange's method of undetermined multipliers λ described in 

equation (7-1-4) to (7-1-7), it is not difficult to derive the values of λ as:  

λ: 0.0043   -0.0078   -0.5064  4.263 
 

and the corresponding values of β are: 

β:  96.43    53.52    20.18   2.507. 

 

It is clear that the smallest value of β = 2.507, is the required reliability index. 

Thus, from equation (7-1-8), the approximate probability of failure in this case is:  

pF =  Φ(-2.507) =  0.00608.  
 

Illustration of the result is given in Figure 9-3-1 and Figure 9-3-2. 
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Figure 9-3-1: Illustration of the index for the numerical example of U33 
 
 

 
 

Figure 9-3-2: Illustration of the index for the numerical example of U33 
(Enlarged central part) 
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9.3.2 Validation by Monte � Carlo simulation 

The probability just given can be validated by Monte � Carlo simulation: Out of 

100000 simulations, 591 observations fell in the failure region Tt < 237.4 (Tp = 230 

seconds), giving an estimated probability of failure 0.00591. The histogram is 

illustrated in Figure 9-3-3. The 95% confidence interval for the estimate is (0.00543, 

0.00639), which contains the value (0.00608) obtained by using reliability index in 

the previous section. 

 
 

  

 
 

 
 

Figure 9-3-3: Histogram of U33 Tt in Monte � Carlo simulation 
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9.4 Reliability analysis of the DOWC scenario 

 

9.4.1 Reliability index for engineering design in DOWC scenario 

Consider the DOWC scenario, when flame spread rate Rf ≥ 0.5 m/sec (U43).  For 

simplicity, we shall take as before just two input variables to be random: room width 

Wr, denoted by x2 and flame spread rate Rf, denoted by x8. The other input variables 

will be taken to be constant.  However, we saw in Chapter 8 that x4, x5 and x6 do not 

appear in the regression equation as long as Rf ≥ 0.5 m/sec in this scenario. Let N(µ, 

σ) denote a normal random variable with mean µ, and standard deviation σ.  

 

The assumed values are as follows: 

L = 600 cm, Wr = N(450, 20) cm, Hr = 250 cm,  fW = 0.7,  fH = 0.6, ρf = 50,  fA = 0.6,  

Rf = N(0.7, 0.1) 

The limiting state is taken to be Tt = 257.2 (Tp = 250  seconds). After bringing the 

given data into the formula developed in Chapter 8, we get the reduced standardized 

regression equation as:  

5.33252.30334.1369.201197.0 8
2
82

2
2 +−++−= uuuuTt . 

 

Through using Lagrange's method of undetermined multipliers λ described in 

equation (7-1-4) to (7-1-7), it is not difficult to derive the values of λ as:  

λ: 0.0034    -0.0077     -0.5652    4.146 
and the corresponding values of β are: 

β:  138.2   61.33    19.97      2.800. 

It is clear that the smallest value of β =-2.800, is the required reliability index. 

 

Therefore, from equation (7-1-8), the approximate probability of failure in this case is: 

pF =  Φ(-2.800) = 0.00255. 
 

Illustration of the result is given in Figure 9-4-1 and Figure 9-4-2. 
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Figure 9-4-1: Illustration of β index for the numerical example of U43 
 

 

 
 
 
 

Figure 9-4-2: Illustration of β index for the numerical example of U43 
(Enlarged central part) 
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9.4.2 Validation by Monte � Carlo simulation 

The probability just given can be validated by Monte � Carlo simulation: Out of 

100000 simulations, 275 observations fell in the failure region Tt < 257.2 (Tp = 250 

seconds), given an estimated probability of failure 0.00275. The histogram of the 

distribution is illustrated in Figure 9-4-3. The 95% confidence interval for the 

estimate is (0.00243, 0.00307), which contains the value (0.00255) obtained by using 

reliability index in the previous section. 

 

 
 
 

 
Figure 9-4-3: Histogram of U43 Tt in Monte � Carlo simulation 
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9.5 Comparison of the time to untenable conditions  in four scenarios of the 

CESARE-Risk Model 

To compare the four scenarios: DOWO, DOWC, DCWO and DCWC in the 

CESARE-Risk model, we set the input parameters with  same values in these four 

scenarios. For simplicity, we take two input variables to be random: the width of room 

Wr, denoted by x2 and the flame spread rate Rf, denoted by x8. The other input 

variables are constant. x2 has normal distribution with mean 450 and standard 

deviation 20. x8 has normal distribution with mean 0.7 and standard deviation 0.1. The 

other input variables are constant. The values of the input parameters are shown in 

Table 9-5-1.  

 
Variables Name of variables Symbol  Unit Values 

x1 Length of Room L cm 600 

x2 Width of Room Wr cm N(450, 20) 

x3 Height of Room Hr cm 250 

x4 Window Width Factor fW  0.7 

x5 Window Height Factor fH  0.6 

x6 Fuel Density ρf  kg/ m2 50 

x7 Fuel Area Factor fA  0.6 

x8 Flame Spread Rate Rf m/sec N(0.7, 0.1) 

 

Table 9-5-1: The values of input parameters for comparing analysis 

Appropriate values of the time to untenable conditions were chosen for each scenario, 

as shown in Table 9-5-2. The results of reliability analysis for the four scenarios are 

shown in the Table 9-5-2. The analysis is based on data for which Rf ≥ 0.5 m/sec. 
 
Scenario N1 N2 N12 Tun β Φ(-β) pF 95% conf_interval 

DCWO 656 1332 1988 300 2.5585 0.00526 0.00518 (0.00474, 0.00562) 

DOWO 489 1499 1988 320 2.6438 0.00410 0.00419 (0.00379, 0.00459) 

DCWC 1769 219 1988 230 2.5073 0.00608 0.00591 (0.00543, 0.00639) 

DOWC 1519 469 1988 250 2.8001 0.00255 0.00275 (0.00243, 0.00307) 

 

Table 9-5-2: The results of reliability analysis for four scenarios 
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Let: 

TUN1 = time to untenable conditions due to heat reaching fatality level; 

TUN2 = time to untenable conditions due to CO reaching fatality level; 

 

In Table 9-5-2: 

N1 = number of observations for which TUN1 < TUN2 (CO reached fatality level 

before Heat reached fatality level ); 

N2 = number of observations for which TUN1 > TUN2 (Heat reached fatality level 

before CO reached fatality level); 

N12 = total number of observations  

β = reliability index; 

Φ = distribution function of normal standard distribution; 

Tun = minimum required time to untenable conditions, in seconds, for safety; 

pF = probability of failure from Monte-Carlo simulation; 

95% conf_interval = 95% confidence interval of Monte-Carlo simulation. 

 

The results, in Table 9-5-2, lead to following conclusions: 

 
a) In DCWO scenario, there are 1988 observations. In 67% of the observations 

untenable conditions were caused by CO reaching fatality level before heat 

reached fatality level. In 33% of the observations untenable conditions were 

caused by heat. 

 

b) In DOWO scenario, there are 1988 observations. In 75% of the observations 

untenable conditions were caused by CO reaching fatality level before heat 

reached fatality level. In 25% of the observations untenable conditions were 

caused by heat. 

 

c) In DCWC scenario, there are 1988 observations. In 11% of the observations 

untenable conditions were caused by CO reaching fatality level before heat 

reached fatality level. In 89% of the observations untenable conditions were 

caused by heat.  
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d) In DOWC scenario, there are 1988 observations. In 24% of the observations 

untenable conditions were caused by CO reaching fatality level before heat 

reached fatality level. In 76% of the observations untenable conditions were 

caused by heat. 

 

From Figure 9-5-1, which is the transformed time to untenable conditions against 

reliability index β, it is clear that:   

 
 

 

 

Figure 9-5-1: The transformed time to untenable conditions Tt against 

 reliability index β for four scenarios 
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Scenario DCWC has the smallest value of reliability index β ( which implies largest 

probability of failure) for each value of Tt , time to untenable conditions, so that 

DCWC is the most dangerous scenario to the occupants for the assumed input data in 

Table 9-5-1.  

 

Scenario DOWO has the largest value of reliability index β (which implies smallest 

probability of failure) for each value of Tt , time to untenable conditions, so that 

DOWO is the safest scenario for the occupants for the assumed input data in Table 9-

5-1.  
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CHAPTER 10 

REGRESSION ANALYSIS FOR TIME TO UNTENABLE 

CONDITIONS BY USING 

LOGARITHMIC FIT TO THE OUTPUT 

 
In this chapter, we shall use a logarithmic fit to the output, time to untenable 

conditions. Then, the reliability index for some examples for the four scenarios will 

be calculated. Also the corresponding probability of failure for each of scenarios 

derived from FOSM method will be compared with Monte Carlo simulation and with 

the direct fit results. 

 

10.1 Regression analysis for U13 in DCWO scenario 

10.1.1 Derivation of regression equations for DCWO scenario 

To the data set U13, we fitted a regression formula of the form (I = 1, 2, 3, 4, 5, 7, 8.) 

log( ) ( )T a x b x ctL i i i i
i I

= + + +
∈
∑ 2 ε .        (10-1-1) 

The coefficient c = 4.636, and coefficients bi and ai were as in Table 10-1-1. 
i 1 2 3 4 5 7 8 

bi 0.0008904 0.001136 0.003880 0.5549 0.7209 0.01602 -1.402 

ai -4.161e-007 -4.202e-007 -4.863e-006 -0.1652 -0.2498 0.01485 0.3062 

Table 10-1-1: Values of quadratic regression coefficients for U13 

Setting  

log( ) ( )T a x b x ctL i i i i
i I

= + +
∈
∑ 2          (10-1-2) 

T a x b x ctL i i i i
i I

= + +
∈
∑exp( ( ) )2          (10-1-3) 

it was found that the correlation between TtL and the original value T was 0.9978. 

 

The second step in the fitting is to improve the fit of TtL by using a cubic regression 

formula of the form 

T C C T C T C TPL L L tL L tL L tL L= + + + + ∗
0 1 2

2
3

3 ε .      (10-1-4) 

The coefficients turned out to be: 

CL0 = -4.318, CL1 = 1.099, CL2 = -0.0004658, CL3 = 5.677e-007. 
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Letting 

T C C T C T C TPL L L tL L tL L tL= + + +0 1 2
2

3
3        (10-1-5) 

the correlation between TpL and the original values T is 0.9985. 

A scatter plot of T against TtL is shown in Figure 10-1-1. 

A scatter plot of T against TpL is shown in Figure 10-1-2. 

 

 

 
 

Figure 10-1-1: Scatter plot of original output T against TtL for U13 
 

 
 

Figure 10-1-2: Scatter plot of original output T against TpL for U13 
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10.1.2 Calculation of reliability index for DCWO scenario 

In DCWO scenario, we just take two input variables to be random: room width Wr, 

which is denoted by x2 and flame spread rate Rf , which is denoted by x8. The other 

input variables will be taken to be constant. Let N(µ, σ) denote a normal random 

variable with mean µ and standard deviation σ.  

 

The assumed values are as follows:  

L = 600, Wr = N(450,20), Hr = 250,  fW = 0.7,  fH = 0.6, ρf = 50,  fA = 0.6, Rf = N(0.7, 

0.1). 

 

The limiting state is taken to be TpLmin = 300 seconds. The corresponding TtLmin = 

301.2, and the standardized limit equation is 

 

946.509735.0003062.001515.00001681.0)2.301log( 8
2
82

2
2 +−++−= uuuu . 

 

Using the methodology described in equations (7-1-4) to (7-1-7) in Chapter 7: 

 

the values of λ are:  

λ:  0.00006086 0.00006086 -0.001335  0.01575 
  
and the corresponding values of β are: 

   β : 72.36  72.36  28.64   2.633. 

So, the smallest value β = 2.633 is the reliability index. 

 

From equation (7-1-8), the approximate value of the probability of failure is: 

pF = Φ(-2.633) = 0.00423. 

 

Illustration of the result is given in Figure 10-1-3 and 10-1-4. 
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Figure 10-1-3: Illustration of reliability index for U13 (logarithmic fit)  

 

 

 

Figure 10-1-4: Illustration of reliability index for U13 (logarithmic fit)  

(Enlarged central part) 
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10.1.3 Validation by Monte - Carlo simulation 

The probability just given by the reliability index can be validated by Monte - Carlo 

simulation: Out of 100000 simulations, 447 observations fell in the failure region Tp < 

300 seconds (TtL < 301.2  seconds), giving an estimated probability of failure of 

0.00477. The histogram is shown in Figure 10-1-5. The 95% confidence interval for 

the estimate is (0.00406, 0.00488), which contains the value (0.00423) obtained by 

using the reliability index in the previous section 10.1.2. 

 

 
 
 

Figure 10-1-5: Histogram of Monte Carlo simulation for U13 
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10.2 Regression analysis of U23 in DOWO scenario 

10.2.1 Derivation of regression equations for DOWO scenario 

To the data set U23, we fitted a regression formula of the form 

log( ) ( ) *T a x b x ctL i i i i
i I

L= + + +
∈
∑ 2 ε , I = 1,2,3,4,5,7,8.    (10-2-1) 

 

The coefficient c = 5.102, and coefficients bi and ai were as in Table 10-2-1. 
i 1 2 3 4 5 7 8 

bi 0.0008828 0.0009746 0.002679 0.4939 0.4470 0.01757 -1.419 

ai -4.1906e-07 -3.4301e-07 -2.9298e-06 -0.1402 -0.09876 0.01027 0.3102 

Table 10-2-1: Values of quadratic regression coefficients for U23 

 

Setting  

log( ) ( )T a x b x ctL i i i i
i I

= + +
∈
∑ 2          (10-2-2) 

T a x b x ctL i i i i
i I

= + +
∈
∑exp( ( ) )2          (10-2-3) 

it was found that the correlation between TtL and the original value T is 0.9984. 

 

The second step in the fitting is to improve the fit of TtL by using a cubic regression 

formula of the form 

T C C T C T C TPL L L tL L tL L tL L= + + + + ∗
0 1 2

2
3

3 ε .      (10-2-4) 

 

The coefficients turned out to be: 

CL0 = -7.254, CL1 = 1.119, CL2 = -0.0004849, CL3 = 5.394e-007. 

 

Letting 

T C C T C T C TPL L L tL L tL L tL= + + +0 1 2
2

3
3        (10-2-5) 

the correlation between TpL and the original values T is 0.9990. 

 A scatter plot of T against TtL is shown in Figure 10-2-1. 

A scatter plot of T against TpL is shown in Figure 10-2-2. 
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Figure 10-2-1: A scatter plot of T against TtL for U23 
 
 

 
 
 

Figure 10-2-4: A scatter plot of T against TpL for U23 
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10.2.2 Calculation of reliability index for DOWO scenario 

In DOWO scenario, we just take two input variables to be random: fuel area factor 

Wr, which is denoted by x2 and flame spread rate Rf , which is denoted by x8. The 

other input variables will be taken to be constant.  Let N(µ, σ) denote a normal 

random variable with mean µ and standard deviation σ.  

 

The assumed values are as follows:  

L = 600, Wr = N(450, 20), Hr = 250, fW = 0.7,  fH = 0.6, ρf = 50,  fA = 0.6, Rf = N(0.7, 

0.1). 

 

The limiting state is taken to be TpLmin = 320 seconds, and the corresponding value of 

TtLmin = 321.1.  

 

Thus the regression equation reduces in U plane to: 

019.60985.0003102.001332.00001372.0)1.321log( 8
2
82

2
2 +−++−= uuuu . 

                (10-2-6) 

Using the methodology described in equations (7-1-4) to (7-1-7) in Chapter 7: 

the values of λ are  

λ: 0.00005426    0.00005426 -0.001361  0.01528 

and the corresponding values of β are 

   β : 81.78    81.78  28.63    2.715.  

So the smallest value β = 2.715 is the reliability index. 

 

From equation (7-1-8), the approximate value of the probability of failure is: 

pF = Φ(-2.715) = 0.00332. 

 

Illustration of the result is given in Figures 10-2-3 and 10-2-4. 
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Figure 10-2-3: Illustration of reliability index for U23 (logarithmic fit) 

 

Figure 10-2-3: Illustration of reliability index for U23 (logarithmic fit) 

 (Enlarged central part) 
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10.2.3 Validation by Monte - Carlo simulation 

The probability just given by the reliability index can be validated by Monte - Carlo 

simulation: Out of 100000 simulations, 334 observations fell in the failure region Tp < 

320 seconds (TtL < 321.1 seconds), giving an estimated probability of failure of 

0.00334. The histogram is shown in Figure 10-2-5. The 95% confidence interval for 

the estimate is (0.00298, 0.00370), which contains the value (0.00332) obtained by 

using the reliability index in the previous section 10.2.2. 
 

 

 

 
 

Figure 10-2-5: Histogram of Monte Carlo simulation for U23 
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10.3 Regression analysis for U33 in DCWC scenario 

10.3.1 Derivation of regression equations for DCWC scenario 

To the data set U33, we fitted a regression formula of the form 

log( ) ( ) *T a x b x ctL i i i i
i I

L= + + +
∈
∑ 2 ε . I = 1,2,3,7,8.     (10-3-1) 

The coefficient c = 5.240, and coefficients bi and ai were as in Table 10-3-1. 
i 1 2 3 7 8 

bi 0.0008228 0.0009558 0.002149 0.04475 -1.293 

ai -2.830e-007 -3.502e-007 -2.336e-006 0.01545 0.2913 

Table 10-3-1: Values of quadratic regression coefficients for U33 

 

Setting  

log( ) ( )T a x b x ctL i i i i
i I

= + +
∈
∑ 2          (10-3-2) 

T a x b x ctL i i i i
i I

= + +
∈
∑exp( ( ) )2          (10-3-3) 

it was found that the correlation between TtL and original value T is 0.9984. 

 

The second step in the fitting is to improve the fit of TtL by using a cubic regression 

formula of the form 

T C C T C T C TPL L L tL L tL L tL L= + + + + ∗
0 1 2

2
3

3 ε .      (10-3-4) 

 

The coefficients turned out to be: 

CL0 = -8.501, CL1 = 1.171, CL2 = -0.000939, CL3 = 1.480e-006. 

 

Letting 

T C C T C T C TPL L L tL L tL L tL= + + +0 1 2
2

3
3        (10-3-5) 

the correlation between TpL and the original values T is 0.9990. 

 

A scatter plot of T against TtL is shown in Figure 10-3-1. 

A scatter plot of T against TpL is shown in Figure 10-3-2. 
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Figure 10-3-1: A scatter plot of T against TtL for U33 
 
 

 
 
 

Figure 10-3-2: A scatter plot of T against TpL for U33 
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10.3.2 Calculation of reliability index for DCWC scenario 

In DCWC scenario, we just take two input variables to be random: fuel area factor Wr, 

which is denoted by x2 and flame spread rate Rf, which is denoted by x8. The other 

input variables will be taken to be constant.  Let N(µ, σ) denote a normal random 

variable with mean µ and standard deviation σ.  

 

The assumed values are as follows: 

L = 600, Wr = N(450,20), Hr = 250, fW = 0.7,  fH = 0.6, ρf = 50,  fA = 0.6, Rf = N(0.7, 

0.1). 

 

The limiting state is taken to be TpLmin = 230 seconds. The corresponding value of 

TtLmin = 230.9, and the regression equation reduces in U plane to:  

653.508847.0002913.001281.00001401.0)9..230log( 8
2
82

2
2 +−++−= uuuu .  

                (10-3-3) 

 

Using the methodology described in equation (7-1-4) to (7-1-7) in Chapter 7: 

the values of λ are 

λ:  0.0001   0.0001   -0.0013  0.0146 

and the corresponding values of β are 

   β :  73.57    73.57   27.37    2.565. 

The smallest value β = 2.565 is the reliability index. 

 

From equation (7-1-8), the approximate value of the probability of failure is: 

pF = Φ(-2.565) = 0.00517. 

 

Illustration of the result is given in Figure 10-3-3 and 10-3-4. 
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Figure 10-3-3: Illustration of reliability index for U33 (logarithmic fit) 
 

 

 

 

Figure 10-3-4: Illustration of reliability index for U33 (logarithmic fit) 

 (Enlarged central part) 
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10.3.3 Validation by Monte - Carlo simulation 

The probability just given by the reliability index can be validated by Monte - Carlo 

simulation: Out of 100000 simulations, 529 observations fell in the failure region Tp < 

230 seconds (TtL < 230.9 seconds), giving an estimated probability of failure of 

0.00529. The histogram is shown in Figure 10-3-5. The 95% confidence interval for 

the estimate is (0.00484, 0.00574), which contains the value (0.00517) obtained by 

using the reliability index in the previous section 10.3.2. 
 
 

 

 

 
 
 

Figure 10-3-5: Histogram of Monte Carlo simulation for U33 
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10.4 Regression analysis for U43 in DOWC scenario 

10.4.1 Derivation of regression equations for DOWC scenario 

The set of indices used was just I = 1, 2, 3, 7, 8. 

To the data set U43, we fitted a regression formula of the form 

log( ) ( ) *T a x b x ctL i i i i
i I

L= + + +
∈
∑ 2 ε .        (10-4-1) 

The coefficient c = 5.553, and coefficients bi and ai were as in Table 10-4-1. 
i 1 2 3 7 8 

bi 0.0008355 0.0007051 0.001737 0.04742 -1.338 

ai -3.182e-007 -2.257e-007 -1.902e-006 0.007970 0.2988 

Table 10-4-1: Values of quadratic regression coefficients for U43 

 

Setting  

log( ) ( )T a x b x ctL i i i i
i I

= + +
∈
∑ 2          (10-4-2) 

T a x b x ctL i i i i
i I

= + +
∈
∑exp( ( ) )2          (10-4-3) 

it was found that the correlation between TtL and the original value T is 0.9987. 

The second step in the fitting is to improve the fit of TtL by using a cubic regression 

formula of the form 

T C C T C T C TPL L L tL L tL L tL L= + + + + ∗
0 1 2

2
3

3 ε .      (10-4-4) 

 

The coefficients turned out to be: 

CL0 = -19.88, CL1 = 1.284, CL2 = -0.001238, CL3 = 1.639e-006. 

 

Letting 

T C C T C T C TPL L L tL L tL L tL= + + +0 1 2
2

3
3        (10-4-5) 

the correlation between TpL and the original values T is 0.9992. 

 

A scatter plot of T against TtL is shown in Figure 10-4-1. 

A scatter plot of T against TpL is shown in Figure 10-4-2. 
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Figure 10-4-1: A scatter plot of T against TtL in U43L 
 
 
 

 
 
 

Figure 10-4-2: A scatter plot of T against TpL in U43L 
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10.4.2 Calculation of reliability index for DCWC scenario 

In DCWC scenario, we just take two input variables to be random: fuel area factor Wr, 

which denoted by x2 and flame spread rate Rf, which denoted by x8. The other input 

variables will be taken to be constant.  Let N(µ, σ) denote a normal random variable 

with mean µ and standard deviation σ.  

 

The assumed values are as follows:  

L = 600, Wr = N(450,20), Hr = 250, fW = 0.7,  fH = 0.6, ρf = 50,  fA = 0.6, Rf = 

N(0.7,0.1). 

 

The limiting state is taken to be TpLmin = 250 seconds, and the corresponding value of 

TtLmin = 250.7. The regression equation reduces in U plane to:  

767.509201.0002988.001004.000009029.0)7.250log( 8
2
82

2
2 +−++−= uuuu . 

                (10-4-3) 

 

Using the methodology described in equations (7-1-4) to (7-1-7) in Chapter 7: 

 

The values of λ are 

λ:  0.0000   0.0000   -0.0013  0.0131 

  and the corresponding values of β are 

   β :  93.95    93.95   27.63    2.891  

The smallest value β = 2.891 is the reliability index. 

 

From equation (7-1-8), the approximate value of the probability of failure is: 

pF = Φ(-2.891) = 0.00192. 

 

Illustration of the result is given in Figure 10-4-3 and 10-4-4. 

 

 

 

 



 218

 

 
 

 

Figure 10-4-3: Illustration of reliability index for U43 (logarithmic fit) 

 

 

Figure 10-4-4: Illustration of reliability index for U43 (logarithmic fit) 

 (Enlarged central part) 
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10.4.3 Validation by Monte - Carlo simulation 

The probability just given by reliability index can be validated by Monte - Carlo 

simulation: Out of 100000 simulations, 198 observations fell in the failure region Tp < 

250 seconds (TtL < 250.7 seconds), giving an estimated probability of failure of 

0.00198. The histogram is shown in Figure 10-4-5. The 95% confidence interval for 

the estimate is (0.00170, 0.00226), which contains the value (0.00192) obtained by 

using the reliability index in the previous section 10.4.2. 
 
 
 

 

 
 

Figure 10-4-5: Histogram of Monte Carlo simulation for U43 
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10.5 Results for time to untenable conditions with logarithmic fit to output 

To compare the four scenarios: DOWO, DOWC, DCWO and DCWC in the 

CESARE-Risk model with logarithmic fit to the output, time to untenable conditions, 

we set the input parameters with  same values in these four scenarios. For simplicity, 

we take two input variables to be random: the width of room Wr, denoted by x2 and 

the flame spread rate Rf, denoted by x8. The other input variables are constant. x2 has 

normal distribution with mean 450 and standard deviation 20. x8 has normal 

distribution with mean 0.7 and standard deviation 0.1. The values of the input 

parameters are shown in Table 10-5-1.  

 
Variables Name of variables Symbol  Unit Values 

x1 Length of Room L cm 600 

x2 Width of Room Wr cm N(450, 20) 

x3 Height of Room Hr cm 250 

x4 Window Width Factor fW  0.7 

x5 Window Height Factor fH  0.6 

x6 Fuel Density ρf  kg/ m2 50 

x7 Fuel Area Factor fA  0.6 

x8 Flame Spread Rate Rf m/sec N(0.7, 0.1) 

 

Table 10-5-1: The values of input parameters for comparison analysis 

 
Appropriate values of the time to untenable conditions were chosen for each scenario, 

as shown in Table 10-5-2. The results of reliability analysis for the four scenarios, are 

shown in Table 10-5-2 (when Rf ≥ 0.5 m/sec). 
 
Scenario N1 N2 N12 Tun βL Φ(-βL) pF 95% conf_interval 

DCWO 656 1332 1988 300 2.6334 0.00423 0.00477 (0.00406, 0.00488) 

DOWO 489 1499 1988 320 2.7146 0.00332 0.00334 (0.00298, 0.00370) 

DCWC 1769 219 1988 230 2.5645 0.00517 0.00529 (0.00484, 0.00574) 

DOWC 1519 469 1988 250 2.8908 0.00192 0.00198 (0.00170, 0.00226) 

Table 10-5-2: The results of reliability analysis for four scenarios 
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Let: 

TUN1 = time to untenable conditions due to heat reaching fatality level; 

TUN2 = time to untenable conditions due to CO reaching fatality level; 

In Table 10-5-2: 

N1 = observations TUN1 < TUN2 ( CO reached fatality level before Heat reached 

fatality level , 300°C ); 

N2 = observations TUN1 > TUN2 (Heat reached fatality level, 300°C before CO 

reached  fatality level); 

N12 = total number of observations (TUN12=min (TUN1,TUN2)); 

β = reliability index;  

βL = reliability index with fit to logarithmic output; 

Φ = distribution function of normal standard distribution; 

Tun = time to untenable conditions, seconds; 

pF = probability of failure from Monte-Carlo simulation; 

95% conf_interval = 95% confidence interval of Monte-Carlo simulation. 

 

Scenario (Rf ≥ 0.5) N12 Tun β Φ(-β) βL Φ(-βL) 

DCWO 1988 300 2.5585 0.00526 2.6334 0.00423 

DOWO 1988 320 2.6438 0.00410 2.7146 0.00332 

DCWC 1988 230 2.5073 0.00608 2.5645 0.00517 

DOWC 1988 250 2.8001 0.00255 2.8908 0.00192 

Table 10-5-3: Comparation of β and βL  

 

From table 10-5-3, the value of reliability index βL is slightly larger than the value β 

within the same scenario, for same values of input parameters and same value of the 

time to untenable conditions. This is because the logarithmic fit resulted in more 

curvature to the limit state surface (line). Of course, more curvature here leads to 

more accurate fit, as can be seen from comparing correlations between T ~ Tp to T ~ 

TpL in the same data set of same scenario, which will give a slightly larger value of 

reliability index β. This can be seen clearly through the comparison of  limit state 

lines and related β and βL in Figure 10-5-1 to Figure 10-5-8. 
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Figure 10-5-1: Comparation of limit state lines and related β and βL of U13 
 

 
Figure 10-5-2: Comparation of limit state lines and related β and βL of U13  

(Enlarged central part, dot line is logarithmic fit) 
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Figure 10-5-3: Comparation of limit state lines and related β and βL of U23 

 

 
 
 

Figure 10-5-4: Comparation of limit state lines and related β and βL of U23  

(Enlarged central part, dot line is logarithmic fit) 
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Figure 10-5-5: Comparation of limit state lines and related β and βL of U33 

 

 
 
 

Figure 10-5-6: Comparation of limit state lines and related β and βL of U33 

 (Enlarged central part, dot line is logarithmic fit) 
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Figure 10-5-7: Comparation of limit state lines and related β and βL of U43 

 

 
 
 

Figure 10-5-8: Comparation of  limit state lines and related β and βL of U43 

 (Enlarged central part, dot line is logarithmic fit) 
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CHAPTER 11 

CONCLUSION AND RECOMMENDATIONS 
The aim of the research presented in this thesis was 

(1) To identify some aspects of probability-based indices of safety for use by 

practising  engineers in comparing competing building designs through using 

statistical analysis in fire engineering.  

(2) To develop a methodology which can be used with minimal effort to obtain an 

accurate value for the reliability of a considered design, once the probability of the 

input is decided.  

The main contribution of this research is the use of the modern regression methods, 

AVAS and/or ACE, followed by polynomial approximations to the non - linear 

transformations of the parameters, which provides us with simple response surfaces 

that represent the output of a computer fire model, the CESARE-Risk Model. Once 

the probability distribution of the input is decided, the response surfaces can be used 

with minimal effort to obtain an accurate value for the reliability index, which is the 

probability of failure of the building design based on fire safety. The probability of 

failure can be obtained by First Order Second Moment (FOSM) calculation or by 

Monte-Carlo simulation. The procedure is shown in Figure 11-1. 

 

This research confines itself to four scenarios: DOWC, DCWO, DCWC, and DOWO, 

eight input parameters and two output parameters: maximum temperature reached and 

time to untenable conditions, to illustrate the methodology. A comparison of the 

results of time to untenable conditions for the four scenarios is show in table 11-1. 

 
Scenario N12 Tun β Φ(-β) pF 95% conf_interval 

DCWO 1988 300 2.5585 0.00526 0.00518 (0.00474, 0.00562) 

DOWO 1988 320 2.6438 0.00410 0.00419 (0.00379, 0.00459) 

DCWC 1988 230 2.5073 0.00608 0.00591 (0.00543, 0.00639) 

DOWC 1988 250 2.8001 0.00255 0.00275 (0.00243, 0.00307) 

Table 11-1: The results of reliability analysis for four scenarios 

The methodology has been tested on other output parameters, with equal success. 
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Figure 11-1: Procedure for calculation of the reliability of a considered design 

 

The value of the developed methodology that is described in this thesis depends on 

the accuracy of the results of the computer model used. But the author is confident 

that the developed  method will remain equally  successful when  applied to better 

CESARE-Risk Model data

Choose a modern regression method: 
AVAS/ACE analysis specific output 

Determine subranges of input 
parameters for the specified output

Derive response surface: 
appropriate expression for the   
output by statistical regression 
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of undetermined multipliers

Obtain reliability index and the  
corresponding probability of 
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FOSM method 

Validate the result by 
Monte-Carlo simulation
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computer fire models that will no doubt be developed in coming years. Even with the 

best computer models, the problem of uncertainty in the input parameters will still 

need to be addressed, and the methodology presented in this thesis will make the task 

much easier. 
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APPENDIX 

FUNCTIONS 
 
A.1  Functions for finding values of regression coefficients 
 
reslm<-function(x, y) 
{ 
 #reslm:calculate the coefficients of X 
 x11 <- x[, 1] 
 x12 <- x11^2 
 x21 <- x[, 2] 
 x22 <- x21^2 
 x31 <- x[, 3] 
 x32 <- x31^2 
 x41 <- x[, 4] 
 x42 <- x41^2 
 x51 <- x[, 5] 
 x52 <- x51^2 
 x61 <- x[, 6] 
 x62 <- x61^2 
 x71 <- x[, 7] 
 x72 <- x71^2 
 x81 <- x[, 8] 
 x82 <- x81^2 
 res <- lm(y ~ x11 + x12 + x21 + x22 + x31 + x32 + x41 + x42 + x51 + x52 + 

x71 + x72 + x81 + x82) 
 res 
} 
  
 
 
resUlm<-function(x,y) 
{ 
 #reslmU:calculate the coefficients of X 
 x11 <- x[, 1] 
 x12 <- x11^2 
 x21 <- x[, 2] 
 x22 <- x21^2 
 x31 <- x[, 3] 
 x32 <- x31^2 
 x41 <- x[, 4] 
 x42 <- x41^2 
 x51 <- x[, 5] 
 x52 <- x51^2 
 x61 <- x[, 6] 
 x62 <- x61^2 
 x71 <- x[, 7] 
 x72 <- x71^2 
 x81 <- x[, 8] 
 x82 <- x81^2 
 resU<-lm(y~x11+x12+x21+x22+x31+x32+x71+x72+x81+x82) 
 resU 
} 
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A.2  Functions for calculating predicted values, correlations and draw scatterplots 
 
YtG1andLA<-function(x, y) 
{ 
 #YtG1andL:calculate predicted values:with or without log to U13: 
 #x6 is ignored: 
 #reslm:calculate the coefficients of X 
 x11 <- x[, 1] 
 x12 <- x11^2 
 x21 <- x[, 2] 
 x22 <- x21^2 
 x31 <- x[, 3] 
 x32 <- x31^2 
 x41 <- x[, 4] 
 x42 <- x41^2 
 x51 <- x[, 5] 
 x52 <- x51^2 
 x61 <- x[, 6] 
 x62 <- x61^2 
 x71 <- x[, 7] 
 x72 <- x71^2 
 x81 <- x[, 8] 
 x82 <- x81^2 
 res <- lm(y ~ x11 + x12 + x21 + x22 + 
  x31 + x32 + x41 + x42 + x51 + 
  x52 + x71 + x72 + x81 + x82) 
 reslm(x, y)$coef 
 aa <- reslm(x, y)$coef[1] 
 bb <- c(reslm(x, y)$coef[2], reslm( 
  x, y)$coef[4], reslm(x, y)$ 
  coef[6], reslm(x, y)$coef[ 
  8]) 
 bb <- c(bb, reslm(x, y)$coef[10], reslm( 
  x, y)$coef[12], reslm(x, y)$ 
  coef[14]) 
 cc <- c(reslm(x, y)$coef[3], reslm( 
  x, y)$coef[5], reslm(x, y)$ 
  coef[7], reslm(x, y)$coef[ 
  9]) 
 cc <- c(cc, reslm(x, y)$coef[11], reslm( 
  x, y)$coef[13], reslm(x, y)$ 
  coef[15]) 
 yt<-

aa+bb[1]*x11+bb[2]*x21+bb[3]*x31+bb[4]*x41+bb[5]*x51+bb[6]*x71+bb[7]*x81 
 ytG1<-

yt+cc[1]*x12+cc[2]*x22+cc[3]*x32+cc[4]*x42+cc[5]*x52+cc[6]*x72+cc[7]*x82 
  
 dd <- c(lsfit(cbind(ytG1, ytG1^2, ytG1^ 
  3), y)$coef) 
 ytG1f <- dd[1] + dd[2] * ytG1 + dd[ 
  3] * ytG1^2 + dd[4] * ytG1^ 
  3 
 correlation1<-cor(ytG1,y) 
 correlation2<-cor(ytG1f,y) 
  
 x <- U13[, 1:8] 
 y <- log(U13[, 9]) 
 x11 <- x[, 1] 
 x12 <- x11^2 
 x21 <- x[, 2] 
 x22 <- x21^2 
 x31 <- x[, 3] 
 x32 <- x31^2 
 x41 <- x[, 4] 
 x42 <- x41^2 
 x51 <- x[, 5] 
 x52 <- x51^2 
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 x61 <- x[, 6] 
 x62 <- x61^2 
 x71 <- x[, 7] 
 x72 <- x71^2 
 x81 <- x[, 8] 
 x82 <- x81^2 
 res <- lm(y ~ x11 + x12 + x21 + x22 + 
  x31 + x32 + x41 + x42 + x51 + 
  x52 + x71 + x72 + x81 + x82) 
 reslm(x, y)$coef 
 aa <- reslm(x, y)$coef[1] 
 bb <- c(reslm(x, y)$coef[2], reslm( 
  x, y)$coef[4], reslm(x, y)$ 
  coef[6], reslm(x, y)$coef[ 
  8]) 
 bb <- c(bb, reslm(x, y)$coef[10], reslm( 
  x, y)$coef[12], reslm(x, y)$ 
  coef[14]) 
 cc <- c(reslm(x, y)$coef[3], reslm( 
  x, y)$coef[5], reslm(x, y)$ 
  coef[7], reslm(x, y)$coef[ 
  9]) 
 cc <- c(cc, reslm(x, y)$coef[11], reslm( 
  x, y)$coef[13], reslm(x, y)$ 
  coef[15]) 
 ytL<-

aa+bb[1]*x11+bb[2]*x21+bb[3]*x31+bb[4]*x41+bb[5]*x51+bb[6]*x71+bb[7]*x81 
 yt1L<-

ytL+cc[1]*x12+cc[2]*x22+cc[3]*x32+cc[4]*x42+cc[5]*x52+cc[6]*x72+cc[7]*x82 
 yt1Le <- exp(yt1L) 
 ddL <- c(lsfit(cbind(yt1Le, yt1Le^ 
  2, yt1Le^3), U13[, 9])$coef) 
 yt1Lef <- ddL[1] + ddL[2] * yt1Le + 
  ddL[3] * yt1Le^2 + ddL[4] * 
  yt1Le^3 
 correlation3<-cor(yt1Le,U13[,9]) 
 correlation4<-cor(yt1Lef,U13[,9]) 
 graphics.off() 
 win.graph() 
 plot(U13[,9],yt1Le,xlab="T",ylab="Tt") 
 win.graph() 
 plot(U13[,9],yt1Lef,xlab="T",ylab="Tp") 
 graphics.off() 
 win.graph() 
 plot(ytG1f, yt1Lef, xlim = c(100, 800), 
  ylim = c(100, 800), type = "l") 
} 
  
 
 
 
 
 
 
YtG2andLA<-function(x, y) 
 
{ 
 #YtG2andL:calculate predicted values:with or without log to U23: 
 #x6 is ignored: 
 #reslm:calculate the coefficients of X 
 x11 <- x[, 1] 
 x12 <- x11^2 
 x21 <- x[, 2] 
 x22 <- x21^2 
 x31 <- x[, 3] 
 x32 <- x31^2 
 x41 <- x[, 4] 
 x42 <- x41^2 
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 x51 <- x[, 5] 
 x52 <- x51^2 
 x61 <- x[, 6] 
 x62 <- x61^2 
 x71 <- x[, 7] 
 x72 <- x71^2 
 x81 <- x[, 8] 
 x82 <- x81^2 
 res <- lm(y ~ x11 + x12 + x21 + x22 + 
  x31 + x32 + x41 + x42 + x51 + 
  x52 + x71 + x72 + x81 + x82) 
 reslm(x, y)$coef 
 aa <- reslm(x, y)$coef[1] 
 bb <- c(reslm(x, y)$coef[2], reslm( 
  x, y)$coef[4], reslm(x, y)$ 
  coef[6], reslm(x, y)$coef[ 
  8]) 
 bb <- c(bb, reslm(x, y)$coef[10], reslm( 
  x, y)$coef[12], reslm(x, y)$ 
  coef[14]) 
 cc <- c(reslm(x, y)$coef[3], reslm( 
  x, y)$coef[5], reslm(x, y)$ 
  coef[7], reslm(x, y)$coef[ 
  9]) 
 cc <- c(cc, reslm(x, y)$coef[11], reslm( 
  x, y)$coef[13], reslm(x, y)$ 
  coef[15]) 
 yt<-

aa+bb[1]*x11+bb[2]*x21+bb[3]*x31+bb[4]*x41+bb[5]*x51+bb[6]*x71+bb[7]*x81 
 ytG2<-

yt+cc[1]*x12+cc[2]*x22+cc[3]*x32+cc[4]*x42+cc[5]*x52+cc[6]*x72+cc[7]*x82 
  
 dd <- c(lsfit(cbind(ytG2, ytG2^2, ytG2^ 
  3), y)$coef) 
 ytG2f <- dd[1] + dd[2] * ytG2 + dd[ 
  3] * ytG2^2 + dd[4] * ytG2^ 
  3 
 x <- U23[, 1:8] 
 y <- log(U23[, 9]) 
 x11 <- x[, 1] 
 x12 <- x11^2 
 x21 <- x[, 2] 
 x22 <- x21^2 
 x31 <- x[, 3] 
 x32 <- x31^2 
 x41 <- x[, 4] 
 x42 <- x41^2 
 x51 <- x[, 5] 
 x52 <- x51^2 
 x61 <- x[, 6] 
 x62 <- x61^2 
 x71 <- x[, 7] 
 x72 <- x71^2 
 x81 <- x[, 8] 
 x82 <- x81^2 
 res <- lm(y ~ x11 + x12 + x21 + x22 + 
  x31 + x32 + x41 + x42 + x51 + 
  x52 + x71 + x72 + x81 + x82) 
 reslm(x, y)$coef 
 aa <- reslm(x, y)$coef[1] 
 bb <- c(reslm(x, y)$coef[2], reslm( 
  x, y)$coef[4], reslm(x, y)$ 
  coef[6], reslm(x, y)$coef[ 
  8]) 
 bb <- c(bb, reslm(x, y)$coef[10], reslm( 
  x, y)$coef[12], reslm(x, y)$ 
  coef[14]) 
 cc <- c(reslm(x, y)$coef[3], reslm( 
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  x, y)$coef[5], reslm(x, y)$ 
  coef[7], reslm(x, y)$coef[ 
  9]) 
 cc <- c(cc, reslm(x, y)$coef[11], reslm( 
  x, y)$coef[13], reslm(x, y)$ 
  coef[15]) 
 ytL<-

aa+bb[1]*x11+bb[2]*x21+bb[3]*x31+bb[4]*x41+bb[5]*x51+bb[6]*x71+bb[7]*x81 
 yt2L<-

ytL+cc[1]*x12+cc[2]*x22+cc[3]*x32+cc[4]*x42+cc[5]*x52+cc[6]*x72+cc[7]*x82 
 yt2Le <- exp(yt2L) 
 ddL <- c(lsfit(cbind(yt2Le, yt2Le^ 
  2, yt2Le^3), U23[, 9])$coef) 
 yt2Lef <- ddL[1] + ddL[2] * yt2Le + 
  ddL[3] * yt2Le^2 + ddL[4] * 
  yt2Le^3 
 correlation3<-cor(yt2Le,U23[,9]) 
 correlation4<-cor(yt2Lef,U23[,9]) 
 graphics.off() 
 win.graph() 
 plot(U23[,9],yt2Le,xlab="T",ylab="Tt") 
 win.graph() 
 plot(U23[,9],yt2Lef,xlab="T",ylab="Tp") 
  
 win.graph() 
 plot(ytG2f, yt2Lef, xlim = c(100, 800), 
  ylim = c(100, 800), type = "l") 
} 
  
 
 
 
 
YtG3andLA<-function(x, y) 
{ 
 #YtG3andL:calculate predicted values:with or without log to U23: 
 #x4,x5,x6 are ignored: 
 #reslmU:calculate the coefficients of X 
 x11 <- x[, 1] 
 x12 <- x11^2 
 x21 <- x[, 2] 
 x22 <- x21^2 
 x31 <- x[, 3] 
 x32 <- x31^2 
 x41 <- x[, 4] 
 x42 <- x41^2 
 x51 <- x[, 5] 
 x52 <- x51^2 
 x61 <- x[, 6] 
 x62 <- x61^2 
 x71 <- x[, 7] 
 x72 <- x71^2 
 x81 <- x[, 8] 
 x82 <- x81^2 
 resU<-lm(y ~ x11 + x12 + x21 + x22 + 
  x31 + x32 + x71 + x72 + x81 + 
  x82) 
 resUlm(x, y)$coef  
 aa <- resUlm(x, y)$coef[1] 
 bb <- c(resUlm(x, y)$coef[2], resUlm( 
  x, y)$coef[4], resUlm(x, y)$ 
  coef[6], resUlm(x, y)$coef[ 
  8], resUlm(x, y)$coef[10]) 
  
 cc <- c(resUlm(x, y)$coef[3], resUlm( 
  x, y)$coef[5], resUlm(x, y)$ 
  coef[7], resUlm(x, y)$coef[ 
  9],resUlm(x, y)$coef[11]) 
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 yt<-aa+bb[1]*x11+bb[2]*x21+bb[3]*x31+bb[4]*x71+bb[5]*x81 
 ytG2<-yt+cc[1]*x12+cc[2]*x22+cc[3]*x32+cc[4]*x72+cc[5]*x82 
  
 dd <- c(lsfit(cbind(ytG2, ytG2^2, ytG2^ 
  3), y)$coef) 
 ytG2f <- dd[1] + dd[2] * ytG2 + dd[ 
  3] * ytG2^2 + dd[4] * ytG2^ 
  3 
 correlation1<-cor(ytG2,y) 
 correlation2<-cor(ytG2f,y) 
  
 x <- U33[, 1:8] 
 y <- log(U33[, 9]) 
 x11 <- x[, 1] 
 x12 <- x11^2 
 x21 <- x[, 2] 
 x22 <- x21^2 
 x31 <- x[, 3] 
 x32 <- x31^2 
 x41 <- x[, 4] 
 x42 <- x41^2 
 x51 <- x[, 5] 
 x52 <- x51^2 
 x61 <- x[, 6] 
 x62 <- x61^2 
 x71 <- x[, 7] 
 x72 <- x71^2 
 x81 <- x[, 8] 
 x82 <- x81^2 
  
 aa <- resUlm(x, y)$coef[1] 
 bb <- c(resUlm(x, y)$coef[2], resUlm( 
  x, y)$coef[4], resUlm(x, y)$ 
  coef[6], resUlm(x, y)$coef[ 
  8], resUlm(x, y)$coef[10]) 
  
 cc <- c(resUlm(x, y)$coef[3], resUlm( 
  x, y)$coef[5], resUlm(x, y)$ 
  coef[7], resUlm(x, y)$coef[ 
  9], resUlm(x, y)$coef[11]) 
  
 ytL<-aa+bb[1]*x11+bb[2]*x21+bb[3]*x31+bb[4]*x71+bb[5]*x81 
 yt2L<-ytL+cc[1]*x12+cc[2]*x22+cc[3]*x32+cc[4]*x72+cc[5]*x82 
 yt2Le <- exp(yt2L) 
 ddL <- c(lsfit(cbind(yt2Le, yt2Le^ 
  2, yt2Le^3), U33[, 9])$coef) 
 yt2Lef <- ddL[1] + ddL[2] * yt2Le + 
  ddL[3] * yt2Le^2 + ddL[4] * 
  yt2Le^3 
 correlation3<-cor(yt2Le,U33[,9]) 
 correlation4<-cor(yt2Lef,U33[,9]) 
 graphics.off() 
 win.graph() 
 plot(U33[,9],yt2Le,xlab="T",ylab="Tt") 
 win.graph() 
 plot(U33[,9],yt2Lef,xlab="T",ylab="Tp") 
 
 win.graph() 
 plot(ytG2f, yt2Lef, xlim = c(100, 800), 
  ylim = c(100, 800), type = "l") 
} 
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YtG4andLA<-function(x, y) 
{ 
 #YtG4andL:calculate predicted values:with or without log to U43: 
 #x4,x5,x6 are ignored: 
 #reslmU:calculate the coefficients of X 
 x11 <- x[, 1] 
 x12 <- x11^2 
 x21 <- x[, 2] 
 x22 <- x21^2 
 x31 <- x[, 3] 
 x32 <- x31^2 
 x41 <- x[, 4] 
 x42 <- x41^2 
 x51 <- x[, 5] 
 x52 <- x51^2 
 x61 <- x[, 6] 
 x62 <- x61^2 
 x71 <- x[, 7] 
 x72 <- x71^2 
 x81 <- x[, 8] 
 x82 <- x81^2 
 resU<-lm(y ~ x11 + x12 + x21 + x22 + 
  x31 + x32 + x71 + x72 + x81 + 
  x82) 
 resUlm(x, y)$coef  
 aa <- resUlm(x, y)$coef[1] 
 bb <- c(resUlm(x, y)$coef[2], resUlm( 
  x, y)$coef[4], resUlm(x, y)$ 
  coef[6], resUlm(x, y)$coef[ 
  8], resUlm(x, y)$coef[10]) 
  
 cc <- c(resUlm(x, y)$coef[3], resUlm( 
  x, y)$coef[5], resUlm(x, y)$ 
  coef[7], resUlm(x, y)$coef[ 
  9],resUlm(x, y)$coef[11]) 
  
 yt<-aa+bb[1]*x11+bb[2]*x21+bb[3]*x31+bb[4]*x71+bb[5]*x81 
 ytG2<-yt+cc[1]*x12+cc[2]*x22+cc[3]*x32+cc[4]*x72+cc[5]*x82 
  
 dd <- c(lsfit(cbind(ytG2, ytG2^2, ytG2^ 
  3), y)$coef) 
 ytG2f <- dd[1] + dd[2] * ytG2 + dd[ 
  3] * ytG2^2 + dd[4] * ytG2^ 
  3 
 correlation1<-cor(ytG2,y) 
 correlation2<-cor(ytG2f,y) 
  
 x <- U43[, 1:8] 
 y <- log(U43[, 9]) 
 x11 <- x[, 1] 
 x12 <- x11^2 
 x21 <- x[, 2] 
 x22 <- x21^2 
 x31 <- x[, 3] 
 x32 <- x31^2 
 x41 <- x[, 4] 
 x42 <- x41^2 
 x51 <- x[, 5] 
 x52 <- x51^2 
 x61 <- x[, 6] 
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 x62 <- x61^2 
 x71 <- x[, 7] 
 x72 <- x71^2 
 x81 <- x[, 8] 
 x82 <- x81^2 
  
 aa <- resUlm(x, y)$coef[1] 
 bb <- c(resUlm(x, y)$coef[2], resUlm( 
  x, y)$coef[4], resUlm(x, y)$ 
  coef[6], resUlm(x, y)$coef[ 
  8], resUlm(x, y)$coef[10]) 
  
 cc <- c(resUlm(x, y)$coef[3], resUlm( 
  x, y)$coef[5], resUlm(x, y)$ 
  coef[7], resUlm(x, y)$coef[ 
  9], resUlm(x, y)$coef[11]) 
  
 ytL<-aa+bb[1]*x11+bb[2]*x21+bb[3]*x31+bb[4]*x71+bb[5]*x81 
 yt2L<-ytL+cc[1]*x12+cc[2]*x22+cc[3]*x32+cc[4]*x72+cc[5]*x82 
 yt2Le <- exp(yt2L) 
 ddL <- c(lsfit(cbind(yt2Le, yt2Le^ 
  2, yt2Le^3), U43[, 9])$coef) 
 yt2Lef <- ddL[1] + ddL[2] * yt2Le + 
  ddL[3] * yt2Le^2 + ddL[4] * 
  yt2Le^3 
 correlation3<-cor(yt2Le,U43[,9]) 
 correlation4<-cor(yt2Lef,U43[,9]) 
  
 graphics.off() 
 win.graph() 
 plot(U43[,9],yt2Le,xlab="T",ylab="Tt") 
 win.graph() 
 plot(U43[,9],yt2Lef,xlab="T",ylab="Tp") 
 
 win.graph() 
 plot(ytG2f, yt2Lef, xlim = c(100, 800), 
  ylim = c(100, 800), type = "l") 
} 
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A.3  Functions for finding reliability index 
 
BetaG1<-function(x, y) 
{ 
 #BetaG1:calculate lambda, beta to U13: 
 #x6 is ignored: 
 #reslm:calculate the coefficients of X 
 x11 <- x[, 1] 
 x12 <- x11^2 
 x21 <- x[, 2] 
 x22 <- x21^2 
 x31 <- x[, 3] 
 x32 <- x31^2 
 x41 <- x[, 4] 
 x42 <- x41^2 
 x51 <- x[, 5] 
 x52 <- x51^2 
 x61 <- x[, 6] 
 x62 <- x61^2 
 x71 <- x[, 7] 
 x72 <- x71^2 
 x81 <- x[, 8] 
 x82 <- x81^2 
 res <- lm(y ~ x11 + x12 + x21 + x22 + 
  x31 + x32 + x41 + x42 + x51 + 
  x52 + x71 + x72 + x81 + x82) 
 reslm(x, y)$coef 
 aa <- reslm(x, y)$coef[1] 
 bb <- c(reslm(x, y)$coef[2], reslm( 
  x, y)$coef[4], reslm(x, y)$ 
  coef[6], reslm(x, y)$coef[ 
  8]) 
 bb <- c(bb, reslm(x, y)$coef[10], reslm( 
  x, y)$coef[12], reslm(x, y)$ 
  coef[14]) 
 cc <- c(reslm(x, y)$coef[3], reslm( 
  x, y)$coef[5], reslm(x, y)$ 
  coef[7], reslm(x, y)$coef[ 
  9]) 
 cc <- c(cc, reslm(x, y)$coef[11], reslm( 
  x, y)$coef[13], reslm(x, y)$ 
  coef[15]) 
 #calculate reliability index beta T=240sec: 
 ymin <- 311.0956 
 input <- c(600, 450, 250, 0.7, 0.6, 
  50, 0.6, 0.7) 
 constant <- aa + bb[1] * input[1] + 
  bb[3] * input[3] + bb[4] *  
  input[4] 
 constant <- constant + bb[5] * input[ 
  5] + bb[6] * input[7] 
 constant <- constant + cc[1] * input[ 
  1]^2 + cc[3] * input[3]^2 + 
  cc[4] * input[4]^2 
 constant <- constant + cc[5] * input[ 
  5]^2 + cc[6] * input[7]^2 
 constant 
 #cc[2]*x[,2]^2+bb[2]*x[,2]+cc[7]*x[,8]^2+bb[7]*x[,8]+constant-yt=0 
 sigma1 <- 20 
 mu1 <- 450 
 sigma2 <- 0.1 
 mu2 <- 0.7 
 A7 <- cc[2] * sigma1^2 
 B7 <- 2 * cc[2] * sigma1 * mu1 + bb[ 
  2] * sigma1 
 A8 <- cc[7] * sigma2^2 
 B8 <- 2 * cc[7] * sigma2 * mu2 + bb[ 



 244

  7] * sigma2 
 C <- cc[2] * mu1^2 + bb[2] * mu1 + cc[ 
  7] * mu2^2 + bb[7] * mu2 +  
  constant 
 #ymin=A7*u7^2+B7*u7+A8*u8^2+B8*u8+C standardized constraint function: 
 #calculate lambda,beta 
 D0 <- 4 * (C - ymin) * A7^2 * A8^2 - 
  2 * B7^2 * A7 * A8^2 - 2 * B8^ 
  2 * A8 * A7^2 + A7 * A8^2 * 
  B7^2 + A7^2 * A8 * B8^2 
 D1 <- 4 * (C - ymin) * (2 * A7 * A8^ 
  2 + 2 * A7^2 * A8) - 2 * B7^ 
  2 * (A8^2 + 2 * A7 * A8) - 2 * 
  B8^2 * (A7^2 + 2 * A7 * A8) + 
  2 * (A7 * A8 * B7^2 + A7 * A8 * 
  B8^2) 
 D2 <- 4 * (C - ymin) * (A8^2 + A7^ 
  2 + 4 * A7 * A8) - 2 * B7^ 
  2 * (2 * A8 + A7) - 2 * B8^ 
  2 * (2 * A7 + A8) + A7 * B7^ 
  2 + A8 * B8^2 
 D3 <- 4 * (C - ymin) * (2 * A7 + 2 * 
  A8) - (2 * B7^2 + 2 * B8^2) 
 D4 <- 4 * (C - ymin) 
 lambda <- Re(polyroot(c(D0, D1, D2, 
  D3, D4))) 
 u7 <-  - B7/(2 * (lambda + A7)) 
 u8 <-  - B8/(2 * (lambda + A8)) 
 beta <- (u8^2 + u7^2)^(1/2) 
 round(rbind(lambda, beta), digits = 8) 
} 
 
 
 
 
 
 
 
 
 
 
BetaG2<-function(x, y) 
{ 
 #BetaG2:calculate lambda, beta to U23: 
 #x6 is ignored: 
 #reslm:calculate the coefficients of X 
 x11 <- x[, 1] 
 x12 <- x11^2 
 x21 <- x[, 2] 
 x22 <- x21^2 
 x31 <- x[, 3] 
 x32 <- x31^2 
 x41 <- x[, 4] 
 x42 <- x41^2 
 x51 <- x[, 5] 
 x52 <- x51^2 
 x61 <- x[, 6] 
 x62 <- x61^2 
 x71 <- x[, 7] 
 x72 <- x71^2 
 x81 <- x[, 8] 
 x82 <- x81^2 
 res <- lm(y ~ x11 + x12 + x21 + x22 + 
  x31 + x32 + x41 + x42 + x51 + 
  x52 + x71 + x72 + x81 + x82) 
 reslm(x, y)$coef 
 aa <- reslm(x, y)$coef[1] 
 bb <- c(reslm(x, y)$coef[2], reslm( 
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  x, y)$coef[4], reslm(x, y)$ 
  coef[6], reslm(x, y)$coef[ 
  8]) 
 bb <- c(bb, reslm(x, y)$coef[10], reslm( 
  x, y)$coef[12], reslm(x, y)$ 
  coef[14]) 
 cc <- c(reslm(x, y)$coef[3], reslm( 
  x, y)$coef[5], reslm(x, y)$ 
  coef[7], reslm(x, y)$coef[ 
  9]) 
 cc <- c(cc, reslm(x, y)$coef[11], reslm( 
  x, y)$coef[13], reslm(x, y)$ 
  coef[15]) 
 #calculate reliability index beta T=320sec: 
 ymin <- 330.9244 
 input <- c(600, 450, 250, 0.7, 0.6, 
  50, 0.6, 0.7) 
 constant <- aa + bb[1] * input[1] + 
  bb[3] * input[3] + bb[4] *  
  input[4] 
 constant <- constant + bb[5] * input[ 
  5] + bb[6] * input[7] 
 constant <- constant + cc[1] * input[ 
  1]^2 + cc[3] * input[3]^2 + 
  cc[4] * input[4]^2 
 constant <- constant + cc[5] * input[ 
  5]^2 + cc[6] * input[7]^2 
 constant 
 #cc[2]*x[,2]^2+bb[2]*x[,2]+cc[7]*x[,8]^2+bb[7]*x[,8]+constant-yt=0 
 sigma1 <- 20 
 mu1 <- 450 
 sigma2 <- 0.1 
 mu2 <- 0.7 
 A7 <- cc[2] * sigma1^2 
 B7 <- 2 * cc[2] * sigma1 * mu1 + bb[ 
  2] * sigma1 
 A8 <- cc[7] * sigma2^2 
 B8 <- 2 * cc[7] * sigma2 * mu2 + bb[ 
  7] * sigma2 
 C <- cc[2] * mu1^2 + bb[2] * mu1 + cc[ 
  7] * mu2^2 + bb[7] * mu2 +  
  constant 
 #ymin=A7*u7^2+B7*u7+A8*u8^2+B8*u8+C standardized constraint function: 
 #calculate lambda,beta 
 D0 <- 4 * (C - ymin) * A7^2 * A8^2 - 
  2 * B7^2 * A7 * A8^2 - 2 * B8^ 
  2 * A8 * A7^2 + A7 * A8^2 * 
  B7^2 + A7^2 * A8 * B8^2 
 D1 <- 4 * (C - ymin) * (2 * A7 * A8^ 
  2 + 2 * A7^2 * A8) - 2 * B7^ 
  2 * (A8^2 + 2 * A7 * A8) - 2 * 
  B8^2 * (A7^2 + 2 * A7 * A8) + 
  2 * (A7 * A8 * B7^2 + A7 * A8 * 
  B8^2) 
 D2 <- 4 * (C - ymin) * (A8^2 + A7^ 
  2 + 4 * A7 * A8) - 2 * B7^ 
  2 * (2 * A8 + A7) - 2 * B8^ 
  2 * (2 * A7 + A8) + A7 * B7^ 
  2 + A8 * B8^2 
 D3 <- 4 * (C - ymin) * (2 * A7 + 2 * 
  A8) - (2 * B7^2 + 2 * B8^2) 
 D4 <- 4 * (C - ymin) 
 lambda <- Re(polyroot(c(D0, D1, D2, 
  D3, D4))) 
 u7 <-  - B7/(2 * (lambda + A7)) 
 u8 <-  - B8/(2 * (lambda + A8)) 
 beta <- (u8^2 + u7^2)^(1/2) 
 round(rbind(lambda, beta), digits = 8) 
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} 
 
 
 
 
 
 
 
 
BetaG3<-function(x, y) 
{ 
#BetaG3:calculate lambda,beta for G3:x4 to x6 are ignored: 
 x11 <- x[, 1] 
 x12 <- x11^2 
 x21 <- x[, 2] 
 x22 <- x21^2 
 x31 <- x[, 3] 
 x32 <- x31^2 
 x71 <- x[, 7] 
 x72 <- x71^2 
 x81 <- x[, 8] 
 x82 <- x81^2 
 aa <- resUlm(x, y)$coef[1] 
 bb <- c(resUlm(x, y)$coef[2], resUlm(x, y)$coef[ 
  4], resUlm(x, y)$coef[6], resUlm(x, y)$ 
  coef[8], resUlm(x, y)$coef[10]) 
 cc <- c(resUlm(x, y)$coef[3], resUlm(x, y)$coef[ 
  5], resUlm(x, y)$coef[7], resUlm(x, y)$ 
  coef[9], resUlm(x, y)$coef[11])  
 #calculate reliability index beta for Tp=230sec: 
 ymin <-  237.3830 
 input <- c(600, 450, 250, 0.7, 0.6, 50, 0.6,  
  0.7) 
 constant <- aa + bb[1] * input[1] + bb[4] *  
  input[7] + bb[3] * input[3] 
 constant <- constant + cc[1] * input[1]^2 + cc[ 
  4] * input[7]^2 + cc[3] * input[3]^2 
 constant  
 #cc[2]*x[,7]^2+bb[2]*x[,7]+cc[5]*x[,8]^2+bb[5]*x[,8]+constant-ymin=0 
 sigma1 <- 20 
 mu1 <- 450 
 sigma2 <- 0.1 
 mu2 <- 0.7 
 A7 <- cc[2] * sigma1^2 
 B7 <- 2 * cc[2] * sigma1 * mu1 + bb[2] * sigma1 
 A8 <- cc[5] * sigma2^2 
 B8 <- 2 * cc[5] * sigma2 * mu2 + bb[5] * sigma2 
 C <- cc[2] * mu1^2 + bb[2] * mu1 + cc[5] * mu2^ 
  2 + bb[5] * mu2 + constant  
 #ymin=A7*u7^2+B7*u7+A8*u8^2+B8*u8+C standardized constraint function: 
#calculate lambda,beta 
 D0 <- 4 * (C - ymin) * A7^2 * A8^2 - 2 * B7^2 *  
  A7 * A8^2 - 2 * B8^2 * A8 * A7^2 + A7 *  
  A8^2 * B7^2 + A7^2 * A8 * B8^2 
 D1 <- 4 * (C - ymin) * (2 * A7 * A8^2 + 2 * A7^ 
  2 * A8) - 2 * B7^2 * (A8^2 + 2 * A7 *  
  A8) - 2 * B8^2 * (A7^2 + 2 * A7 * A8) +  
  2 * (A7 * A8 * B7^2 + A7 * A8 * B8^2) 
 D2 <- 4 * (C - ymin) * (A8^2 + A7^2 + 4 * A7 *  
  A8) - 2 * B7^2 * (2 * A8 + A7) - 2 * B8^ 
  2 * (2 * A7 + A8) + A7 * B7^2 + A8 * B8^ 
  2 
 D3 <- 4 * (C - ymin) * (2 * A7 + 2 * A8) - (2 *  
  B7^2 + 2 * B8^2) 
 D4 <- 4 * (C - ymin) 
 lambda <- Re(polyroot(c(D0, D1, D2, D3, D4))) 
 u7 <-  - B7/(2 * (lambda + A7)) 
 u8 <-  - B8/(2 * (lambda + A8)) 
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 beta <- (u8^2 + u7^2)^(1/2) 
 round(rbind(lambda, beta), digits = 4)  
 #choose smallest beta 
} 
 
 
 
 
 
 
BetaG4<-function(x, y) 
{ 
#BetaG4:calculate lambda,beta for G3:x4 to x6 are ignored: 
 x11 <- x[, 1] 
 x12 <- x11^2 
 x21 <- x[, 2] 
 x22 <- x21^2 
 x31 <- x[, 3] 
 x32 <- x31^2 
 x71 <- x[, 7] 
 x72 <- x71^2 
 x81 <- x[, 8] 
 x82 <- x81^2 
 aa <- resUlm(x, y)$coef[1] 
 bb <- c(resUlm(x, y)$coef[2], resUlm(x, y)$coef[ 
  4], resUlm(x, y)$coef[6], resUlm(x, y)$ 
  coef[8], resUlm(x, y)$coef[10]) 
 cc <- c(resUlm(x, y)$coef[3], resUlm(x, y)$coef[ 
  5], resUlm(x, y)$coef[7], resUlm(x, y)$ 
  coef[9], resUlm(x, y)$coef[11])  
 #calculate reliability index beta Tp=250sec: 
 ymin <-  257.1608 
 input <- c(600, 450, 250, 0.7, 0.6, 50, 0.6,  
  0.7) 
 constant <- aa + bb[1] * input[1] + bb[4] *  
  input[7] + bb[3] * input[3] 
 constant <- constant + cc[1] * input[1]^2 + cc[ 
  4] * input[7]^2 + cc[3] * input[3]^2 
 constant  
 #cc[2]*x[,2]^2+bb[2]*x[,2]+cc[5]*x[,8]^2+bb[5]*x[,8]+constant-ymin=0 
 sigma1 <- 20 
 mu1 <- 450 
 sigma2 <- 0.1 
 mu2 <- 0.7 
 A7 <- cc[2] * sigma1^2 
 B7 <- 2 * cc[2] * sigma1 * mu1 + bb[2] * sigma1 
 A8 <- cc[5] * sigma2^2 
 B8 <- 2 * cc[5] * sigma2 * mu2 + bb[5] * sigma2 
 C <- cc[2] * mu1^2 + bb[2] * mu1 + cc[5] * mu2^ 
  2 + bb[5] * mu2 + constant  
 #ymin=A7*u2^2+B7*u2+A8*u8^2+B8*u8+C standardized constraint function: 
#calculate lambda,beta 
 D0 <- 4 * (C - ymin) * A7^2 * A8^2 - 2 * B7^2 *  
  A7 * A8^2 - 2 * B8^2 * A8 * A7^2 + A7 *  
  A8^2 * B7^2 + A7^2 * A8 * B8^2 
 D1 <- 4 * (C - ymin) * (2 * A7 * A8^2 + 2 * A7^ 
  2 * A8) - 2 * B7^2 * (A8^2 + 2 * A7 *  
  A8) - 2 * B8^2 * (A7^2 + 2 * A7 * A8) +  
  2 * (A7 * A8 * B7^2 + A7 * A8 * B8^2) 
 D2 <- 4 * (C - ymin) * (A8^2 + A7^2 + 4 * A7 *  
  A8) - 2 * B7^2 * (2 * A8 + A7) - 2 * B8^ 
  2 * (2 * A7 + A8) + A7 * B7^2 + A8 * B8^ 
  2 
 D3 <- 4 * (C - ymin) * (2 * A7 + 2 * A8) - (2 *  
  B7^2 + 2 * B8^2) 
 D4 <- 4 * (C - ymin) 
 lambda <- Re(polyroot(c(D0, D1, D2, D3, D4))) 
 u7 <-  - B7/(2 * (lambda + A7)) 
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 u8 <-  - B8/(2 * (lambda + A8)) 
 beta <- (u8^2 + u7^2)^(1/2) 
 round(rbind(lambda, beta), digits = 4)  
 #choose smallest beta 
} 
 
 
 
BetaG1L<-function(x, y) 
{ 
 #BetaG1L:calculate lambda, beta to U13: 
 #x6 is ignored: 
 #reslm:calculate the coefficients of X 
 x11 <- x[, 1] 
 x12 <- x11^2 
 x21 <- x[, 2] 
 x22 <- x21^2 
 x31 <- x[, 3] 
 x32 <- x31^2 
 x41 <- x[, 4] 
 x42 <- x41^2 
 x51 <- x[, 5] 
 x52 <- x51^2 
 x61 <- x[, 6] 
 x62 <- x61^2 
 x71 <- x[, 7] 
 x72 <- x71^2 
 x81 <- x[, 8] 
 x82 <- x81^2 
 res <- lm(y ~ x11 + x12 + x21 + x22 + 
  x31 + x32 + x41 + x42 + x51 + 
  x52 + x71 + x72 + x81 + x82) 
 reslm(x, y)$coef 
 aa <- reslm(x, y)$coef[1] 
 bb <- c(reslm(x, y)$coef[2], reslm( 
  x, y)$coef[4], reslm(x, y)$ 
  coef[6], reslm(x, y)$coef[ 
  8]) 
 bb <- c(bb, reslm(x, y)$coef[10], reslm( 
  x, y)$coef[12], reslm(x, y)$ 
  coef[14]) 
 cc <- c(reslm(x, y)$coef[3], reslm( 
  x, y)$coef[5], reslm(x, y)$ 
  coef[7], reslm(x, y)$coef[ 
  9]) 
 cc <- c(cc, reslm(x, y)$coef[11], reslm( 
  x, y)$coef[13], reslm(x, y)$ 
  coef[15]) 
 #calculate reliability index beta for Tp=217.3738: 
 ymin <-  log(301.1548) 
 input <- c(600, 450, 250, 0.7, 0.6, 
  50, 0.6, 0.7) 
 constant <- aa + bb[1] * input[1] + 
  bb[3] * input[3] + bb[4] *  
  input[4] 
 constant <- constant + bb[5] * input[ 
  5] + bb[6] * input[7] 
 constant <- constant + cc[1] * input[ 
  1]^2 + cc[3] * input[3]^2 + 
  cc[4] * input[4]^2 
 constant <- constant + cc[5] * input[ 
  5]^2 + cc[6] * input[7]^2 
 constant 
 #cc[2]*x[,2]^2+bb[2]*x[,2]+cc[7]*x[,8]^2+bb[7]*x[,8]+constant-yt=0 
 sigma1 <- 20 
 mu1 <- 450 
 sigma2 <- 0.1 
 mu2 <- 0.7 
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 A7 <- cc[2] * sigma1^2 
 B7 <- 2 * cc[2] * sigma1 * mu1 + bb[ 
  2] * sigma1 
 A8 <- cc[7] * sigma2^2 
 B8 <- 2 * cc[7] * sigma2 * mu2 + bb[ 
  7] * sigma2 
 C <- cc[2] * mu1^2 + bb[2] * mu1 + cc[ 
  7] * mu2^2 + bb[7] * mu2 +  
  constant 
 #ymin=A7*u7^2+B7*u7+A8*u8^2+B8*u8+C standardized constraint function: 
 #calculate lambda,beta 
 D0 <- 4 * (C - ymin) * A7^2 * A8^2 - 
  2 * B7^2 * A7 * A8^2 - 2 * B8^ 
  2 * A8 * A7^2 + A7 * A8^2 * 
  B7^2 + A7^2 * A8 * B8^2 
 D1 <- 4 * (C - ymin) * (2 * A7 * A8^ 
  2 + 2 * A7^2 * A8) - 2 * B7^ 
  2 * (A8^2 + 2 * A7 * A8) - 2 * 
  B8^2 * (A7^2 + 2 * A7 * A8) + 
  2 * (A7 * A8 * B7^2 + A7 * A8 * 
  B8^2) 
 D2 <- 4 * (C - ymin) * (A8^2 + A7^ 
  2 + 4 * A7 * A8) - 2 * B7^ 
  2 * (2 * A8 + A7) - 2 * B8^ 
  2 * (2 * A7 + A8) + A7 * B7^ 
  2 + A8 * B8^2 
 D3 <- 4 * (C - ymin) * (2 * A7 + 2 * 
  A8) - (2 * B7^2 + 2 * B8^2) 
 D4 <- 4 * (C - ymin) 
 lambda <- Re(polyroot(c(D0, D1, D2, 
  D3, D4))) 
 u7 <-  - B7/(2 * (lambda + A7)) 
 u8 <-  - B8/(2 * (lambda + A8)) 
 beta <- (u8^2 + u7^2)^(1/2) 
 round(rbind(lambda, beta), digits = 8) 
} 
 
 
BetaG2L<-function(x, y) 
{ 
 #BetaG2L:calculate lambda, beta to U23: 
 #x6 is ignored: 
 #reslm:calculate the coefficients of X 
 x11 <- x[, 1] 
 x12 <- x11^2 
 x21 <- x[, 2] 
 x22 <- x21^2 
 x31 <- x[, 3] 
 x32 <- x31^2 
 x41 <- x[, 4] 
 x42 <- x41^2 
 x51 <- x[, 5] 
 x52 <- x51^2 
 x61 <- x[, 6] 
 x62 <- x61^2 
 x71 <- x[, 7] 
 x72 <- x71^2 
 x81 <- x[, 8] 
 x82 <- x81^2 
 res <- lm(y ~ x11 + x12 + x21 + x22 + 
  x31 + x32 + x41 + x42 + x51 + 
  x52 + x71 + x72 + x81 + x82) 
 reslm(x, y)$coef 
 aa <- reslm(x, y)$coef[1] 
 bb <- c(reslm(x, y)$coef[2], reslm( 
  x, y)$coef[4], reslm(x, y)$ 
  coef[6], reslm(x, y)$coef[ 
  8]) 
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 bb <- c(bb, reslm(x, y)$coef[10], reslm( 
  x, y)$coef[12], reslm(x, y)$ 
  coef[14]) 
 cc <- c(reslm(x, y)$coef[3], reslm( 
  x, y)$coef[5], reslm(x, y)$ 
  coef[7], reslm(x, y)$coef[ 
  9]) 
 cc <- c(cc, reslm(x, y)$coef[11], reslm( 
  x, y)$coef[13], reslm(x, y)$ 
  coef[15]) 
 #calculate reliability index beta for Tp=320: 
 ymin <-  log(321.1342) 
 input <- c(600, 450, 250, 0.7, 0.6, 
  50, 0.6, 0.7) 
 constant <- aa + bb[1] * input[1] + 
  bb[3] * input[3] + bb[4] *  
  input[4] 
 constant <- constant + bb[5] * input[ 
  5] + bb[6] * input[7] 
 constant <- constant + cc[1] * input[ 
  1]^2 + cc[3] * input[3]^2 + 
  cc[4] * input[4]^2 
 constant <- constant + cc[5] * input[ 
  5]^2 + cc[6] * input[7]^2 
 constant 
 #cc[2]*x[,2]^2+bb[2]*x[,2]+cc[7]*x[,8]^2+bb[7]*x[,8]+constant-yt=0 
 sigma1 <- 20 
 mu1 <- 450 
 sigma2 <- 0.1 
 mu2 <- 0.7 
 A7 <- cc[2] * sigma1^2 
 B7 <- 2 * cc[2] * sigma1 * mu1 + bb[ 
  2] * sigma1 
 A8 <- cc[7] * sigma2^2 
 B8 <- 2 * cc[7] * sigma2 * mu2 + bb[ 
  7] * sigma2 
 C <- cc[2] * mu1^2 + bb[2] * mu1 + cc[ 
  7] * mu2^2 + bb[7] * mu2 +  
  constant 
 #ymin=A7*u7^2+B7*u7+A8*u8^2+B8*u8+C standardized constraint function: 
 #calculate lambda,beta 
 D0 <- 4 * (C - ymin) * A7^2 * A8^2 - 
  2 * B7^2 * A7 * A8^2 - 2 * B8^ 
  2 * A8 * A7^2 + A7 * A8^2 * 
  B7^2 + A7^2 * A8 * B8^2 
 D1 <- 4 * (C - ymin) * (2 * A7 * A8^ 
  2 + 2 * A7^2 * A8) - 2 * B7^ 
  2 * (A8^2 + 2 * A7 * A8) - 2 * 
  B8^2 * (A7^2 + 2 * A7 * A8) + 
  2 * (A7 * A8 * B7^2 + A7 * A8 * 
  B8^2) 
 D2 <- 4 * (C - ymin) * (A8^2 + A7^ 
  2 + 4 * A7 * A8) - 2 * B7^ 
  2 * (2 * A8 + A7) - 2 * B8^ 
  2 * (2 * A7 + A8) + A7 * B7^ 
  2 + A8 * B8^2 
 D3 <- 4 * (C - ymin) * (2 * A7 + 2 * 
  A8) - (2 * B7^2 + 2 * B8^2) 
 D4 <- 4 * (C - ymin) 
 lambda <- Re(polyroot(c(D0, D1, D2, 
  D3, D4))) 
 u7 <-  - B7/(2 * (lambda + A7)) 
 u8 <-  - B8/(2 * (lambda + A8)) 
 beta <- (u8^2 + u7^2)^(1/2) 
 round(rbind(lambda, beta), digits = 8) 
} 
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BetaG3L<-function(x, y) 
{ 
#BetaG3L:calculate lambda,beta for G3:x4 to x6 are ignored: 
 x11 <- x[, 1] 
 x12 <- x11^2 
 x21 <- x[, 2] 
 x22 <- x21^2 
 x31 <- x[, 3] 
 x32 <- x31^2 
 x71 <- x[, 7] 
 x72 <- x71^2 
 x81 <- x[, 8] 
 x82 <- x81^2 
 aa <- resUlm(x, y)$coef[1] 
 bb <- c(resUlm(x, y)$coef[2], resUlm(x, y)$coef[ 
  4], resUlm(x, y)$coef[6], resUlm(x, y)$ 
  coef[8], resUlm(x, y)$coef[10]) 
 cc <- c(resUlm(x, y)$coef[3], resUlm(x, y)$coef[ 
  5], resUlm(x, y)$coef[7], resUlm(x, y)$ 
  coef[9], resUlm(x, y)$coef[11])  
 #calculate reliability index beta Tp=230: 
 ymin <-  log(230.9052) 
 input <- c(600, 450, 250, 0.7, 0.6, 50, 0.6,  
  0.7) 
 constant <- aa + bb[1] * input[1] + bb[4] *  
  input[7] + bb[3] * input[3] 
 constant <- constant + cc[1] * input[1]^2 + cc[ 
  4] * input[7]^2 + cc[3] * input[3]^2 
 constant  
 #cc[4]*x[,7]^2+bb[4]*x[,7]+cc[5]*x[,8]^2+bb[5]*x[,8]+constant-ymin=0 
 sigma1 <- 20 
 mu1 <- 450 
 sigma2 <- 0.1 
 mu2 <- 0.7 
 A7 <- cc[2] * sigma1^2 
 B7 <- 2 * cc[2] * sigma1 * mu1 + bb[2] * sigma1 
 A8 <- cc[5] * sigma2^2 
 B8 <- 2 * cc[5] * sigma2 * mu2 + bb[5] * sigma2 
 C <- cc[2] * mu1^2 + bb[2] * mu1 + cc[5] * mu2^ 
  2 + bb[5] * mu2 + constant  
 #ymin=A7*u2^2+B7*u2+A8*u8^2+B8*u8+C standardized constraint function: 
#calculate lambda,beta 
 D0 <- 4 * (C - ymin) * A7^2 * A8^2 - 2 * B7^2 *  
  A7 * A8^2 - 2 * B8^2 * A8 * A7^2 + A7 *  
  A8^2 * B7^2 + A7^2 * A8 * B8^2 
 D1 <- 4 * (C - ymin) * (2 * A7 * A8^2 + 2 * A7^ 
  2 * A8) - 2 * B7^2 * (A8^2 + 2 * A7 *  
  A8) - 2 * B8^2 * (A7^2 + 2 * A7 * A8) +  
  2 * (A7 * A8 * B7^2 + A7 * A8 * B8^2) 
 D2 <- 4 * (C - ymin) * (A8^2 + A7^2 + 4 * A7 *  
  A8) - 2 * B7^2 * (2 * A8 + A7) - 2 * B8^ 
  2 * (2 * A7 + A8) + A7 * B7^2 + A8 * B8^ 
  2 
 D3 <- 4 * (C - ymin) * (2 * A7 + 2 * A8) - (2 *  
  B7^2 + 2 * B8^2) 
 D4 <- 4 * (C - ymin) 
 lambda <- Re(polyroot(c(D0, D1, D2, D3, D4))) 
 u7 <-  - B7/(2 * (lambda + A7)) 
 u8 <-  - B8/(2 * (lambda + A8)) 
 beta <- (u8^2 + u7^2)^(1/2) 
 round(rbind(lambda, beta), digits = 4)  
 #choose smallest beta 
} 
 
 
BetaG4L<-function(x, y) 
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{ 
#BetaG4L:calculate lambda,beta for G4:x4 to x6 are ignored in log: 
 x11 <- x[, 1] 
 x12 <- x11^2 
 x21 <- x[, 2] 
 x22 <- x21^2 
 x31 <- x[, 3] 
 x32 <- x31^2 
 x71 <- x[, 7] 
 x72 <- x71^2 
 x81 <- x[, 8] 
 x82 <- x81^2 
 aa <- resUlm(x, y)$coef[1] 
 bb <- c(resUlm(x, y)$coef[2], resUlm(x, y)$coef[ 
  4], resUlm(x, y)$coef[6], resUlm(x, y)$ 
  coef[8], resUlm(x, y)$coef[10]) 
 cc <- c(resUlm(x, y)$coef[3], resUlm(x, y)$coef[ 
  5], resUlm(x, y)$coef[7], resUlm(x, y)$ 
  coef[9], resUlm(x, y)$coef[11])  
 #calculate reliability index beta Tp=250sec: 
 ymin <-  log(250.6776) 
 input <- c(600, 450, 250, 0.7, 0.6, 50, 0.6,  
  0.7) 
 constant <- aa + bb[1] * input[1] + bb[4] *  
  input[7] + bb[3] * input[3] 
 constant <- constant + cc[1] * input[1]^2 + cc[ 
  4] * input[7]^2 + cc[3] * input[3]^2 
 constant  
 #cc[2]*x[,2]^2+bb[2]*x[,2]+cc[5]*x[,8]^2+bb[5]*x[,8]+constant-ymin=0 
 sigma1 <- 20 
 mu1 <- 450 
 sigma2 <- 0.1 
 mu2 <- 0.7 
 A7 <- cc[2] * sigma1^2 
 B7 <- 2 * cc[2] * sigma1 * mu1 + bb[2] * sigma1 
 A8 <- cc[5] * sigma2^2 
 B8 <- 2 * cc[5] * sigma2 * mu2 + bb[5] * sigma2 
 C <- cc[2] * mu1^2 + bb[2] * mu1 + cc[5] * mu2^ 
  2 + bb[5] * mu2 + constant  
 #ymin=A7*u2^2+B7*u2+A8*u8^2+B8*u8+C standardized constraint function: 
#calculate lambda,beta 
 D0 <- 4 * (C - ymin) * A7^2 * A8^2 - 2 * B7^2 *  
  A7 * A8^2 - 2 * B8^2 * A8 * A7^2 + A7 *  
  A8^2 * B7^2 + A7^2 * A8 * B8^2 
 D1 <- 4 * (C - ymin) * (2 * A7 * A8^2 + 2 * A7^ 
  2 * A8) - 2 * B7^2 * (A8^2 + 2 * A7 *  
  A8) - 2 * B8^2 * (A7^2 + 2 * A7 * A8) +  
  2 * (A7 * A8 * B7^2 + A7 * A8 * B8^2) 
 D2 <- 4 * (C - ymin) * (A8^2 + A7^2 + 4 * A7 *  
  A8) - 2 * B7^2 * (2 * A8 + A7) - 2 * B8^ 
  2 * (2 * A7 + A8) + A7 * B7^2 + A8 * B8^ 
  2 
 D3 <- 4 * (C - ymin) * (2 * A7 + 2 * A8) - (2 *  
  B7^2 + 2 * B8^2) 
 D4 <- 4 * (C - ymin) 
 lambda <- Re(polyroot(c(D0, D1, D2, D3, D4))) 
 u7 <-  - B7/(2 * (lambda + A7)) 
 u8 <-  - B8/(2 * (lambda + A8)) 
 beta <- (u8^2 + u7^2)^(1/2) 
 round(rbind(lambda, beta), digits = 4)  
 #choose smallest beta 
} 
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A.4 Functions for drawing figures to illustrate reliability index and response surface for 
specific examples 

 
 
StateU1<-function(x, y) 
{ 
#StateU1:lambda, beta,constraint,design point D; 
#x6 is ignored in U13: 
#reslm:calculate the coefficients of X 
 x11 <- x[, 1] 
 x12 <- x11^2 
 x21 <- x[, 2] 
 x22 <- x21^2 
 x31 <- x[, 3] 
 x32 <- x31^2 
 x41 <- x[, 4] 
 x42 <- x41^2 
 x51 <- x[, 5] 
 x52 <- x51^2 
 x61 <- x[, 6] 
 x62 <- x61^2 
 x71 <- x[, 7] 
 x72 <- x71^2 
 x81 <- x[, 8] 
 x82 <- x81^2 
 res <- lm(y ~ x11 + x12 + x21 + x22 + x31 + x32 + 
  x41 + x42 + x51 + x52 + x71 + x72 + x81 + 
  x82) 
 reslm(x, y)$coef #calculate correlations: 
 aa <- reslm(x, y)$coef[1] 
 bb <- c(reslm(x, y)$coef[2], reslm(x, y)$coef[4 
  ], reslm(x, y)$coef[6], reslm(x, y)$ 
  coef[8]) 
 bb <- c(bb, reslm(x, y)$coef[10], reslm(x, y)$ 
  coef[12], reslm(x, y)$coef[14]) 
 cc <- c(reslm(x, y)$coef[3], reslm(x, y)$coef[5 
  ], reslm(x, y)$coef[7], reslm(x, y)$ 
  coef[9]) 
 cc <- c(cc, reslm(x, y)$coef[11], reslm(x, y)$ 
  coef[13], reslm(x, y)$coef[15]) 
 ypred <- aa + bb[1] * x11 + bb[2] * x21 + bb[3] * 
  x31 + bb[4] * x41 + bb[5] * x51 + bb[6] * 
  x71 + bb[7] * x81 
 ypred <- ypred + cc[1] * x12 + cc[2] * x22 + cc[ 
  3] * x32 + cc[4] * x42 + cc[5] * x52 +  
  cc[6] * x72 + cc[7] * x82 #ypred 
#graphics.off() 
#win.graph() 
#plot(y, ypred) 
#win.graph() 
 dd <- c(lsfit(cbind(ypred, ypred^2, ypred^3), y 
  )$coef) 
 ypredf <- dd[1] + dd[2] * ypred + dd[3] * ypred^ 
  2 + dd[4] * ypred^3 #plot(y, ypredf) 
 correlation1 <- cor(y, ypred) 
 correlation2 <- cor(y, ypredf) 
 round(rbind(correlation1, correlation2), digits 
   = 6)  
 #calculate reliability index beta: 
 ymin <- 311.0956 
 input <- c(600, 450, 250, 0.7, 0.6, 50, 0.6,  
  0.7) 
 constant <- aa + bb[1] * input[1] + bb[6] *  
  input[7] + bb[3] * input[3] 
 constant <- constant + bb[4] * input[4] + bb[5] * 
  input[5] 
 constant <- constant + cc[1] * input[1]^2 + cc[ 
  6] * input[7]^2 + cc[3] * input[3]^2 
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 constant <- constant + cc[4] * input[4]^2 + cc[ 
  5] * input[5]^2 
 constant  
 #cc[2]*x[,2]^2+bb[2]*x[,2]+cc[7]*x[,8]^2+bb[7]*x[,8]+constant-yt=0 
 sigma1 <- 20 
 mu1 <- 450 
 sigma2 <- 0.1 
 mu2 <- 0.7 
 A7 <- cc[2] * sigma1^2 
 B7 <- 2 * cc[2] * sigma1 * mu1 + bb[2] * sigma1 
 A8 <- cc[7] * sigma2^2 
 B8 <- 2 * cc[7] * sigma2 * mu2 + bb[7] * sigma2 
 C <- cc[2] * mu1^2 + bb[2] * mu1 + cc[7] * mu2^ 
  2 + bb[7] * mu2 + constant  
 #ymin=A7*u7^2+B7*u7+A8*u8^2+B8*u8+C standardized constraint function: 
#calculate lambda,beta 
 D0 <- 4 * (C - ymin) * A7^2 * A8^2 - 2 * B7^2 *  
  A7 * A8^2 - 2 * B8^2 * A8 * A7^2 + A7 *  
  A8^2 * B7^2 + A7^2 * A8 * B8^2 
 D1 <- 4 * (C - ymin) * (2 * A7 * A8^2 + 2 * A7^ 
  2 * A8) - 2 * B7^2 * (A8^2 + 2 * A7 *  
  A8) - 2 * B8^2 * (A7^2 + 2 * A7 * A8) +  
  2 * (A7 * A8 * B7^2 + A7 * A8 * B8^2) 
 D2 <- 4 * (C - ymin) * (A8^2 + A7^2 + 4 * A7 *  
  A8) - 2 * B7^2 * (2 * A8 + A7) - 2 * B8^ 
  2 * (2 * A7 + A8) + A7 * B7^2 + A8 * B8^ 
  2 
 D3 <- 4 * (C - ymin) * (2 * A7 + 2 * A8) - (2 *  
  B7^2 + 2 * B8^2) 
 D4 <- 4 * (C - ymin) 
 lambda <- Re(polyroot(c(D0, D1, D2, D3, D4))) 
 u7 <-  - B7/(2 * (lambda + A7)) 
 u8 <-  - B8/(2 * (lambda + A8)) 
 beta <- (u8^2 + u7^2)^(1/2) 
 round(rbind(beta, lambda), digits = 4)  
 #choose smallest beta 
 betas <- min(beta) 
 betas #Find design point: 
 U7 <- seq(-10, 50, 0.1) 
 delta <- (B8^2 - 4 * A8 * (A7 * U7^2 + B7 * U7 +  
  C - ymin))^(1/2) 
 U81 <- ( - B8 + delta)/(2 * A8) 
 U82 <- ( - B8 - delta)/(2 * A8) 
 U8 <- cbind(U82, U81) 
 U91 <- (betas^2 - U7^2)^(1/2) 
 U92 <-  - (betas^2 - U7^2)^(1/2) 
 U9 <- cbind(U92, U91) 
 U8f <- cbind(U8, U9) 
 graphics.off() 
 win.graph() 
 par(pty = "s") 
 matplot(U7, U8f, col = 1, xlim = c(-10, 50),  
  ylim = c(-20, 40), type = "l", xlab = "u2", ylab = "u8") 
 win.graph() 
 par(pty = "s") 
 matplot(U7, U8f, col = 1, xlim = c(-5, 5), ylim 
   = c(-5, 5), type =  "l", xlab = "u2", ylab = "u8") 
} 
 
 
 
 
 
 
StateU2<-function(x, y) 
{ 
#StateU2:lambda, beta,constraint,design point D; 
#x6 is ignored in U23: 
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#reslm:calculate the coefficients of X 
 x11 <- x[, 1] 
 x12 <- x11^2 
 x21 <- x[, 2] 
 x22 <- x21^2 
 x31 <- x[, 3] 
 x32 <- x31^2 
 x41 <- x[, 4] 
 x42 <- x41^2 
 x51 <- x[, 5] 
 x52 <- x51^2 
 x61 <- x[, 6] 
 x62 <- x61^2 
 x71 <- x[, 7] 
 x72 <- x71^2 
 x81 <- x[, 8] 
 x82 <- x81^2 
 res <- lm(y ~ x11 + x12 + x21 + x22 + x31 + x32 + 
  x41 + x42 + x51 + x52 + x71 + x72 + x81 + 
  x82) 
 reslm(x, y)$coef #calculate correlations: 
 aa <- reslm(x, y)$coef[1] 
 bb <- c(reslm(x, y)$coef[2], reslm(x, y)$coef[4 
  ], reslm(x, y)$coef[6], reslm(x, y)$ 
  coef[8]) 
 bb <- c(bb, reslm(x, y)$coef[10], reslm(x, y)$ 
  coef[12], reslm(x, y)$coef[14]) 
 cc <- c(reslm(x, y)$coef[3], reslm(x, y)$coef[5 
  ], reslm(x, y)$coef[7], reslm(x, y)$ 
  coef[9]) 
 cc <- c(cc, reslm(x, y)$coef[11], reslm(x, y)$ 
  coef[13], reslm(x, y)$coef[15]) 
 ypred <- aa + bb[1] * x11 + bb[2] * x21 + bb[3] * 
  x31 + bb[4] * x41 + bb[5] * x51 + bb[6] * 
  x71 + bb[7] * x81 
 ypred <- ypred + cc[1] * x12 + cc[2] * x22 + cc[ 
  3] * x32 + cc[4] * x42 + cc[5] * x52 +  
  cc[6] * x72 + cc[7] * x82 #ypred 
#graphics.off() 
#win.graph() 
#plot(y, ypred) 
#win.graph() 
 dd <- c(lsfit(cbind(ypred, ypred^2, ypred^3), y 
  )$coef) 
 ypredf <- dd[1] + dd[2] * ypred + dd[3] * ypred^ 
  2 + dd[4] * ypred^3 #plot(y, ypredf) 
 correlation1 <- cor(y, ypred) 
 correlation2 <- cor(y, ypredf) 
 round(rbind(correlation1, correlation2), digits 
   = 6)  
 #calculate reliability index beta: 
 ymin <- 330.9244 
 input <- c(600, 450, 250, 0.7, 0.6, 50, 0.6,  
  0.7) 
 constant <- aa + bb[1] * input[1] + bb[6] *  
  input[7] + bb[3] * input[3] 
 constant <- constant + bb[4] * input[4] + bb[5] * 
  input[5] 
 constant <- constant + cc[1] * input[1]^2 + cc[ 
  6] * input[7]^2 + cc[3] * input[3]^2 
 constant <- constant + cc[4] * input[4]^2 + cc[ 
  5] * input[5]^2 
 constant  
 #cc[2]*x[,2]^2+bb[2]*x[,2]+cc[7]*x[,8]^2+bb[7]*x[,8]+constant-yt=0 
 sigma1 <- 20 
 mu1 <- 450 
 sigma2 <- 0.1 
 mu2 <- 0.7 
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 A7 <- cc[2] * sigma1^2 
 B7 <- 2 * cc[2] * sigma1 * mu1 + bb[2] * sigma1 
 A8 <- cc[7] * sigma2^2 
 B8 <- 2 * cc[7] * sigma2 * mu2 + bb[7] * sigma2 
 C <- cc[2] * mu1^2 + bb[2] * mu1 + cc[7] * mu2^ 
  2 + bb[7] * mu2 + constant  
 #ymin=A7*u7^2+B7*u7+A8*u8^2+B8*u8+C standardized constraint function: 
#calculate lambda,beta 
 D0 <- 4 * (C - ymin) * A7^2 * A8^2 - 2 * B7^2 *  
  A7 * A8^2 - 2 * B8^2 * A8 * A7^2 + A7 *  
  A8^2 * B7^2 + A7^2 * A8 * B8^2 
 D1 <- 4 * (C - ymin) * (2 * A7 * A8^2 + 2 * A7^ 
  2 * A8) - 2 * B7^2 * (A8^2 + 2 * A7 *  
  A8) - 2 * B8^2 * (A7^2 + 2 * A7 * A8) +  
  2 * (A7 * A8 * B7^2 + A7 * A8 * B8^2) 
 D2 <- 4 * (C - ymin) * (A8^2 + A7^2 + 4 * A7 *  
  A8) - 2 * B7^2 * (2 * A8 + A7) - 2 * B8^ 
  2 * (2 * A7 + A8) + A7 * B7^2 + A8 * B8^ 
  2 
 D3 <- 4 * (C - ymin) * (2 * A7 + 2 * A8) - (2 *  
  B7^2 + 2 * B8^2) 
 D4 <- 4 * (C - ymin) 
 lambda <- Re(polyroot(c(D0, D1, D2, D3, D4))) 
 u7 <-  - B7/(2 * (lambda + A7)) 
 u8 <-  - B8/(2 * (lambda + A8)) 
 beta <- (u8^2 + u7^2)^(1/2) 
 round(rbind(beta, lambda), digits = 4)  
 #choose smallest beta 
 betas <- min(beta) 
 betas #Find design point: 
 U7 <- seq(-10, 50, 0.1) 
 delta <- (B8^2 - 4 * A8 * (A7 * U7^2 + B7 * U7 +  
  C - ymin))^(1/2) 
 U81 <- ( - B8 + delta)/(2 * A8) 
 U82 <- ( - B8 - delta)/(2 * A8) 
 U8 <- cbind(U82, U81) 
 U91 <- (betas^2 - U7^2)^(1/2) 
 U92 <-  - (betas^2 - U7^2)^(1/2) 
 U9 <- cbind(U92, U91) 
 U8f <- cbind(U8, U9) 
 graphics.off() 
 win.graph() 
 par(pty = "s") 
 matplot(U7, U8f, col = 1, xlim = c(-10, 50),  
  ylim = c(-20, 40), type = "l", xlab = "u2", ylab = "u8") 
 win.graph() 
 par(pty = "s") 
 matplot(U7, U8f, col = 1, xlim = c(-5, 5), ylim 
   = c(-5, 5), type =  "l", xlab = "u2", ylab = "u8") 
} 
 
 
 
 
 
 
StateU3<-function(x, y, n) 
{ 
#StateU3:calculate U33:lambda,beta constraint,design point D x4~6 are 

ignored: 
 x11 <- x[, 1] 
 x12 <- x11^2 
 x21 <- x[, 2] 
 x22 <- x21^2 
 x31 <- x[, 3] 
 x32 <- x31^2 
 x71 <- x[, 7] 
 x72 <- x71^2 
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 x81 <- x[, 8] 
 x82 <- x81^2 
 aa <- resUlm(x, y)$coef[1] 
 bb <- c(resUlm(x, y)$coef[2], resUlm(x, y)$coef[ 
  4], resUlm(x, y)$coef[6], resUlm(x, y)$ 
  coef[8], resUlm(x, y)$coef[10]) 
 cc <- c(resUlm(x, y)$coef[3], resUlm(x, y)$coef[ 
  5], resUlm(x, y)$coef[7], resUlm(x, y)$ 
  coef[9], resUlm(x, y)$coef[11]) 
 ypred <- aa + bb[1] * x11 + bb[2] * x21 + bb[3] * 
  x31 + bb[4] * x71 + bb[5] * x81 
 ypred <- ypred + cc[1] * x12 + cc[2] * x22 + cc[ 
  3] * x32 + cc[4] * x72 + cc[5] * x82  
 #ypred 
 graphics.off() 
 win.graph() 
 plot(y, ypred) 
 win.graph() 
 dd <- c(lsfit(cbind(ypred, ypred^2, ypred^3), y 
  )$coef) 
 ypredf <- dd[1] + dd[2] * ypred + dd[3] * ypred^ 
  2 + dd[4] * ypred^3 
 plot(y, ypredf) 
 correlation1 <- cor(y, ypred) 
 correlation2 <- cor(y, ypredf) 
 round(rbind(correlation1, correlation2), digits 
   = 6)  
 #calculate reliability index beta: 
 ymin <- 237.3830 
 input <- c(600, 450, 250, 0.7, 0.6, 50, 0.6,  
  0.7) 
 constant <- aa + bb[1] * input[1] + bb[3] *  
  input[3] + bb[4] * input[7] 
 constant <- constant + cc[1] * input[1]^2 + cc[ 
  3] * input[3]^2 + cc[4] * input[7]^2 
 constant  
 #cc[2]*x[,2]^2+bb[2]*x[2]+cc[5]*x[,8]^2+bb[5]*x[,8]+constant-ymin=0 
 sigma1 <- 20 
 mu1 <- 450 
 sigma2 <- 0.1 
 mu2 <- 0.7 
 A7 <- cc[2] * sigma1^2 
 B7 <- 2 * cc[2] * sigma1 * mu1 + bb[2] * sigma1 
 A8 <- cc[5] * sigma2^2 
 B8 <- 2 * cc[5] * sigma2 * mu2 + bb[5] * sigma2 
 C <- cc[2] * mu1^2 + bb[2] * mu1 + cc[5] * mu2^ 
  2 + bb[5] * mu2 + constant  
 #ymin=A7*u7^2+B7*u7+A8*u8^2+B8*u8+C standardized constraint function: 
#calculate lambda,beta 
 D0 <- 4 * (C - ymin) * A7^2 * A8^2 - 2 * B7^2 *  
  A7 * A8^2 - 2 * B8^2 * A8 * A7^2 + A7 *  
  A8^2 * B7^2 + A7^2 * A8 * B8^2 
 D1 <- 4 * (C - ymin) * (2 * A7 * A8^2 + 2 * A7^ 
  2 * A8) - 2 * B7^2 * (A8^2 + 2 * A7 *  
  A8) - 2 * B8^2 * (A7^2 + 2 * A7 * A8) +  
  2 * (A7 * A8 * B7^2 + A7 * A8 * B8^2) 
 D2 <- 4 * (C - ymin) * (A8^2 + A7^2 + 4 * A7 *  
  A8) - 2 * B7^2 * (2 * A8 + A7) - 2 * B8^ 
  2 * (2 * A7 + A8) + A7 * B7^2 + A8 * B8^ 
  2 
 D3 <- 4 * (C - ymin) * (2 * A7 + 2 * A8) - (2 *  
  B7^2 + 2 * B8^2) 
 D4 <- 4 * (C - ymin) 
 lambda <- Re(polyroot(c(D0, D1, D2, D3, D4))) 
 u7 <-  - B7/(2 * (lambda + A7)) 
 u8 <-  - B8/(2 * (lambda + A8)) 
 beta <- (u8^2 + u7^2)^(1/2) 
 round(rbind(lambda, beta), digits = 8)  
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 #choose smallest beta 
 betas <- min(beta) 
 betas #Find design point: 
 U7 <- seq(-10, 60, 0.1) 
 delta <- (B8^2 - 4 * A8 * (A7 * U7^2 + B7 * U7 +  
  C - ymin))^(1/2) 
 U81 <- ( - B8 + delta)/(2 * A8) 
 U82 <- ( - B8 - delta)/(2 * A8) 
 U8 <- cbind(U82, U81) 
 U91 <- (betas^2 - U7^2)^(1/2) 
 U92 <-  - (betas^2 - U7^2)^(1/2) 
 U9 <- cbind(U91, U92) 
 U8f <- cbind(U8, U9) #win.graph() 
#matplot(U7, U9,xlim = c(-15, 15), ylim = c(-15, 15)) 
#win.graph() 
#matplot(U7, U8,xlim = c(-15, 15), ylim = c(-15, 15)) 
 win.graph() 
 par(pty = "s") 
 matplot(U7, U8f, col = 1, xlim = c(-10, 60),  
  ylim = c(-30, 40), type = "l", xlab = "u2", ylab = "u8") 
 win.graph() 
 par(pty = "s") 
 matplot(U7, U8f, col = 1, xlim = c(-5, 5), ylim 
   = c(-5, 5), type =  "l", xlab = "u2", ylab = "u8") 
} 
 
 
 
 
 
StateU4<-function(x, y, n) 
{ 
#StateU4:calculate U43:lambda,beta constraint,design point D x4~6 are 

ignored: 
 x11 <- x[, 1] 
 x12 <- x11^2 
 x21 <- x[, 2] 
 x22 <- x21^2 
 x31 <- x[, 3] 
 x32 <- x31^2 
 x71 <- x[, 7] 
 x72 <- x71^2 
 x81 <- x[, 8] 
 x82 <- x81^2 
 aa <- resUlm(x, y)$coef[1] 
 bb <- c(resUlm(x, y)$coef[2], resUlm(x, y)$coef[ 
  4], resUlm(x, y)$coef[6], resUlm(x, y)$ 
  coef[8], resUlm(x, y)$coef[10]) 
 cc <- c(resUlm(x, y)$coef[3], resUlm(x, y)$coef[ 
  5], resUlm(x, y)$coef[7], resUlm(x, y)$ 
  coef[9], resUlm(x, y)$coef[11]) 
 ypred <- aa + bb[1] * x11 + bb[2] * x21 + bb[3] * 
  x31 + bb[4] * x71 + bb[5] * x81 
 ypred <- ypred + cc[1] * x12 + cc[2] * x22 + cc[ 
  3] * x32 + cc[4] * x72 + cc[5] * x82  
 #ypred 
 graphics.off() 
 win.graph() 
 plot(y, ypred) 
 win.graph() 
 dd <- c(lsfit(cbind(ypred, ypred^2, ypred^3), y 
  )$coef) 
 ypredf <- dd[1] + dd[2] * ypred + dd[3] * ypred^ 
  2 + dd[4] * ypred^3 
 plot(y, ypredf) 
 correlation1 <- cor(y, ypred) 
 correlation2 <- cor(y, ypredf) 
 round(rbind(correlation1, correlation2), digits 
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   = 6)  
 #calculate reliability index beta: 
 ymin <- 257.1608 
 input <- c(600, 450, 250, 0.7, 0.6, 50, 0.6,  
  0.7) 
 constant <- aa + bb[1] * input[1] + bb[3] *  
  input[3] + bb[4] * input[7] 
 constant <- constant + cc[1] * input[1]^2 + cc[ 
  3] * input[3]^2 + cc[4] * input[7]^2 
 constant  
 #cc[2]*x[,2]^2+bb[2]*x[2]+cc[5]*x[,8]^2+bb[5]*x[,8]+constant-ymin=0 
 sigma1 <- 20 
 mu1 <- 450 
 sigma2 <- 0.1 
 mu2 <- 0.7 
 A7 <- cc[2] * sigma1^2 
 B7 <- 2 * cc[2] * sigma1 * mu1 + bb[2] * sigma1 
 A8 <- cc[5] * sigma2^2 
 B8 <- 2 * cc[5] * sigma2 * mu2 + bb[5] * sigma2 
 C <- cc[2] * mu1^2 + bb[2] * mu1 + cc[5] * mu2^ 
  2 + bb[5] * mu2 + constant  
 #ymin=A7*u7^2+B7*u7+A8*u8^2+B8*u8+C standardized constraint function: 
#calculate lambda,beta 
 D0 <- 4 * (C - ymin) * A7^2 * A8^2 - 2 * B7^2 *  
  A7 * A8^2 - 2 * B8^2 * A8 * A7^2 + A7 *  
  A8^2 * B7^2 + A7^2 * A8 * B8^2 
 D1 <- 4 * (C - ymin) * (2 * A7 * A8^2 + 2 * A7^ 
  2 * A8) - 2 * B7^2 * (A8^2 + 2 * A7 *  
  A8) - 2 * B8^2 * (A7^2 + 2 * A7 * A8) +  
  2 * (A7 * A8 * B7^2 + A7 * A8 * B8^2) 
 D2 <- 4 * (C - ymin) * (A8^2 + A7^2 + 4 * A7 *  
  A8) - 2 * B7^2 * (2 * A8 + A7) - 2 * B8^ 
  2 * (2 * A7 + A8) + A7 * B7^2 + A8 * B8^ 
  2 
 D3 <- 4 * (C - ymin) * (2 * A7 + 2 * A8) - (2 *  
  B7^2 + 2 * B8^2) 
 D4 <- 4 * (C - ymin) 
 lambda <- Re(polyroot(c(D0, D1, D2, D3, D4))) 
 u7 <-  - B7/(2 * (lambda + A7)) 
 u8 <-  - B8/(2 * (lambda + A8)) 
 beta <- (u8^2 + u7^2)^(1/2) 
 round(rbind(lambda, beta), digits = 8)  
 #choose smallest beta 
 betas <- min(beta) 
 betas #Find design point: 
 U7 <- seq(-10, 60, 0.1) 
 delta <- (B8^2 - 4 * A8 * (A7 * U7^2 + B7 * U7 +  
  C - ymin))^(1/2) 
 U81 <- ( - B8 + delta)/(2 * A8) 
 U82 <- ( - B8 - delta)/(2 * A8) 
 U8 <- cbind(U82, U81) 
 U91 <- (betas^2 - U7^2)^(1/2) 
 U92 <-  - (betas^2 - U7^2)^(1/2) 
 U9 <- cbind(U91, U92) 
 U8f <- cbind(U8, U9) #win.graph() 
#matplot(U7, U9,xlim = c(-15, 15), ylim = c(-15, 15)) 
#win.graph() 
#matplot(U7, U8,xlim = c(-15, 15), ylim = c(-15, 15)) 
 win.graph() 
 par(pty = "s") 
 matplot(U7, U8f, col = 1, xlim = c(-10, 60),  
  ylim = c(-30, 40), type = "l", xlab = "u2", ylab = "u8") 
 win.graph() 
 par(pty = "s") 
 matplot(U7, U8f, col = 1, xlim = c(-5, 5), ylim 
   = c(-5, 5), type =  "l", xlab = "u2", ylab = "u8") 
} 
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StateU1L<-function(x, y) 
{ 
#StateU1L:lambda, beta,constraint,design point D; 
#x6 is ignored in U13 with logorithmic fit to Tt: 
#reslm:calculate the coefficients of X 
 x11 <- x[, 1] 
 x12 <- x11^2 
 x21 <- x[, 2] 
 x22 <- x21^2 
 x31 <- x[, 3] 
 x32 <- x31^2 
 x41 <- x[, 4] 
 x42 <- x41^2 
 x51 <- x[, 5] 
 x52 <- x51^2 
 x61 <- x[, 6] 
 x62 <- x61^2 
 x71 <- x[, 7] 
 x72 <- x71^2 
 x81 <- x[, 8] 
 x82 <- x81^2 
 res <- lm(y ~ x11 + x12 + x21 + x22 + x31 + x32 + 
  x41 + x42 + x51 + x52 + x71 + x72 + x81 + 
  x82) 
 reslm(x, y)$coef #calculate correlations: 
 aa <- reslm(x, y)$coef[1] 
 bb <- c(reslm(x, y)$coef[2], reslm(x, y)$coef[4 
  ], reslm(x, y)$coef[6], reslm(x, y)$ 
  coef[8]) 
 bb <- c(bb, reslm(x, y)$coef[10], reslm(x, y)$ 
  coef[12], reslm(x, y)$coef[14]) 
 cc <- c(reslm(x, y)$coef[3], reslm(x, y)$coef[5 
  ], reslm(x, y)$coef[7], reslm(x, y)$ 
  coef[9]) 
 cc <- c(cc, reslm(x, y)$coef[11], reslm(x, y)$ 
  coef[13], reslm(x, y)$coef[15]) 
 ypred <- aa + bb[1] * x11 + bb[2] * x21 + bb[3] * 
  x31 + bb[4] * x41 + bb[5] * x51 + bb[6] * 
  x71 + bb[7] * x81 
 ypred <- ypred + cc[1] * x12 + cc[2] * x22 + cc[ 
  3] * x32 + cc[4] * x42 + cc[5] * x52 +  
  cc[6] * x72 + cc[7] * x82 #ypred 
#graphics.off() 
#win.graph() 
#plot(y, ypred) 
#win.graph() 
 dd <- c(lsfit(cbind(ypred, ypred^2, ypred^3), y 
  )$coef) 
 ypredf <- dd[1] + dd[2] * ypred + dd[3] * ypred^ 
  2 + dd[4] * ypred^3 #plot(y, ypredf) 
 correlation1 <- cor(y, ypred) 
 correlation2 <- cor(y, ypredf) 
 round(rbind(correlation1, correlation2), digits 
   = 6)  
 #calculate reliability index beta Tp=300 sec: 
 Ttmin<-301.1548 
 ymin <- log(Ttmin) 
 input <- c(600, 450, 250, 0.7, 0.6, 50, 0.6,  
  0.7) 
 constant <- aa + bb[1] * input[1] + bb[6] *  
  input[7] + bb[3] * input[3] 
 constant <- constant + bb[4] * input[4] + bb[5] * 
  input[5] 
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 constant <- constant + cc[1] * input[1]^2 + cc[ 
  6] * input[7]^2 + cc[3] * input[3]^2 
 constant <- constant + cc[4] * input[4]^2 + cc[ 
  5] * input[5]^2 
 constant  
 #cc[2]*x[,2]^2+bb[2]*x[,2]+cc[7]*x[,8]^2+bb[7]*x[,8]+constant-yt=0 
 sigma1 <- 20 
 mu1 <- 450 
 sigma2 <- 0.1 
 mu2 <- 0.7 
 A7 <- cc[2] * sigma1^2 
 B7 <- 2 * cc[2] * sigma1 * mu1 + bb[2] * sigma1 
 A8 <- cc[7] * sigma2^2 
 B8 <- 2 * cc[7] * sigma2 * mu2 + bb[7] * sigma2 
 C <- cc[2] * mu1^2 + bb[2] * mu1 + cc[7] * mu2^ 
  2 + bb[7] * mu2 + constant  
 #ymin=A7*u7^2+B7*u7+A8*u8^2+B8*u8+C standardized constraint function: 
#calculate lambda,beta 
 D0 <- 4 * (C - ymin) * A7^2 * A8^2 - 2 * B7^2 *  
  A7 * A8^2 - 2 * B8^2 * A8 * A7^2 + A7 *  
  A8^2 * B7^2 + A7^2 * A8 * B8^2 
 D1 <- 4 * (C - ymin) * (2 * A7 * A8^2 + 2 * A7^ 
  2 * A8) - 2 * B7^2 * (A8^2 + 2 * A7 *  
  A8) - 2 * B8^2 * (A7^2 + 2 * A7 * A8) +  
  2 * (A7 * A8 * B7^2 + A7 * A8 * B8^2) 
 D2 <- 4 * (C - ymin) * (A8^2 + A7^2 + 4 * A7 *  
  A8) - 2 * B7^2 * (2 * A8 + A7) - 2 * B8^ 
  2 * (2 * A7 + A8) + A7 * B7^2 + A8 * B8^ 
  2 
 D3 <- 4 * (C - ymin) * (2 * A7 + 2 * A8) - (2 *  
  B7^2 + 2 * B8^2) 
 D4 <- 4 * (C - ymin) 
 lambda <- Re(polyroot(c(D0, D1, D2, D3, D4))) 
 u7 <-  - B7/(2 * (lambda + A7)) 
 u8 <-  - B8/(2 * (lambda + A8)) 
 beta <- (u8^2 + u7^2)^(1/2) 
 round(rbind(beta, lambda), digits = 4)  
 #choose smallest beta 
 betas <- min(beta) 
 betas #Find design point: 
 U7 <- seq(-10, 50, 0.1) 
 delta <- (B8^2 - 4 * A8 * (A7 * U7^2 + B7 * U7 +  
  C - ymin))^(1/2) 
 U81 <- ( - B8 + delta)/(2 * A8) 
 U82 <- ( - B8 - delta)/(2 * A8) 
 U8 <- cbind(U82, U81) 
 U91 <- (betas^2 - U7^2)^(1/2) 
 U92 <-  - (betas^2 - U7^2)^(1/2) 
 U9 <- cbind(U92, U91) 
 U8f <- cbind(U8, U9) 
 graphics.off() 
 win.graph() 
 par(pty = "s") 
 matplot(U7, U8f, col = 1, xlim = c(-10, 50),  
  ylim = c(-20, 40), type = "l", xlab = "u2", ylab = "u8") 
  
 U7 <- seq(-5, 5, 0.1) 
 delta <- (B8^2 - 4 * A8 * (A7 * U7^2 + B7 * U7 +  
  C - ymin))^(1/2) 
 U81 <- ( - B8 + delta)/(2 * A8) 
 U82 <- ( - B8 - delta)/(2 * A8) 
 U8 <- cbind(U82, U81) 
 U91 <- (betas^2 - U7^2)^(1/2) 
 U92 <-  - (betas^2 - U7^2)^(1/2) 
 U9 <- cbind(U92, U91) 
 U8f <- cbind(U8, U9) 
  
 win.graph() 
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 par(pty = "s") 
 matplot(U7, U8f, col = 1, xlim = c(-5, 5), ylim 
   = c(-5, 5), type =  "l", xlab = "u2", ylab = "u8") 
} 
 
 
 
 
 
 
StateU2L<-function(x, y) 
{ 
#StateU2L:lambda, beta,constraint,design point D; 
#x6 is ignored in U23 with logorithmic fit to Tt: 
#reslm:calculate the coefficients of X 
 x11 <- x[, 1] 
 x12 <- x11^2 
 x21 <- x[, 2] 
 x22 <- x21^2 
 x31 <- x[, 3] 
 x32 <- x31^2 
 x41 <- x[, 4] 
 x42 <- x41^2 
 x51 <- x[, 5] 
 x52 <- x51^2 
 x61 <- x[, 6] 
 x62 <- x61^2 
 x71 <- x[, 7] 
 x72 <- x71^2 
 x81 <- x[, 8] 
 x82 <- x81^2 
 res <- lm(y ~ x11 + x12 + x21 + x22 + x31 + x32 + 
  x41 + x42 + x51 + x52 + x71 + x72 + x81 + 
  x82) 
 reslm(x, y)$coef #calculate correlations: 
 aa <- reslm(x, y)$coef[1] 
 bb <- c(reslm(x, y)$coef[2], reslm(x, y)$coef[4 
  ], reslm(x, y)$coef[6], reslm(x, y)$ 
  coef[8]) 
 bb <- c(bb, reslm(x, y)$coef[10], reslm(x, y)$ 
  coef[12], reslm(x, y)$coef[14]) 
 cc <- c(reslm(x, y)$coef[3], reslm(x, y)$coef[5 
  ], reslm(x, y)$coef[7], reslm(x, y)$ 
  coef[9]) 
 cc <- c(cc, reslm(x, y)$coef[11], reslm(x, y)$ 
  coef[13], reslm(x, y)$coef[15]) 
 ypred <- aa + bb[1] * x11 + bb[2] * x21 + bb[3] * 
  x31 + bb[4] * x41 + bb[5] * x51 + bb[6] * 
  x71 + bb[7] * x81 
 ypred <- ypred + cc[1] * x12 + cc[2] * x22 + cc[ 
  3] * x32 + cc[4] * x42 + cc[5] * x52 +  
  cc[6] * x72 + cc[7] * x82 #ypred 
#graphics.off() 
#win.graph() 
#plot(y, ypred) 
#win.graph() 
 dd <- c(lsfit(cbind(ypred, ypred^2, ypred^3), y 
  )$coef) 
 ypredf <- dd[1] + dd[2] * ypred + dd[3] * ypred^ 
  2 + dd[4] * ypred^3 #plot(y, ypredf) 
 correlation1 <- cor(y, ypred) 
 correlation2 <- cor(y, ypredf) 
 round(rbind(correlation1, correlation2), digits 
   = 6)  
 #calculate reliability index beta Tp=320 sec: 
 Ttmin<-321.1342 
 ymin <- log(Ttmin) 
 input <- c(600, 450, 250, 0.7, 0.6, 50, 0.6,  
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  0.7) 
 constant <- aa + bb[1] * input[1] + bb[6] *  
  input[7] + bb[3] * input[3] 
 constant <- constant + bb[4] * input[4] + bb[5] * 
  input[5] 
 constant <- constant + cc[1] * input[1]^2 + cc[ 
  6] * input[7]^2 + cc[3] * input[3]^2 
 constant <- constant + cc[4] * input[4]^2 + cc[ 
  5] * input[5]^2 
 constant  
 #cc[2]*x[,2]^2+bb[2]*x[,2]+cc[7]*x[,8]^2+bb[7]*x[,8]+constant-yt=0 
 sigma1 <- 20 
 mu1 <- 450 
 sigma2 <- 0.1 
 mu2 <- 0.7 
 A7 <- cc[2] * sigma1^2 
 B7 <- 2 * cc[2] * sigma1 * mu1 + bb[2] * sigma1 
 A8 <- cc[7] * sigma2^2 
 B8 <- 2 * cc[7] * sigma2 * mu2 + bb[7] * sigma2 
 C <- cc[2] * mu1^2 + bb[2] * mu1 + cc[7] * mu2^ 
  2 + bb[7] * mu2 + constant  
 #ymin=A7*u7^2+B7*u7+A8*u8^2+B8*u8+C standardized constraint function: 
#calculate lambda,beta 
 D0 <- 4 * (C - ymin) * A7^2 * A8^2 - 2 * B7^2 *  
  A7 * A8^2 - 2 * B8^2 * A8 * A7^2 + A7 *  
  A8^2 * B7^2 + A7^2 * A8 * B8^2 
 D1 <- 4 * (C - ymin) * (2 * A7 * A8^2 + 2 * A7^ 
  2 * A8) - 2 * B7^2 * (A8^2 + 2 * A7 *  
  A8) - 2 * B8^2 * (A7^2 + 2 * A7 * A8) +  
  2 * (A7 * A8 * B7^2 + A7 * A8 * B8^2) 
 D2 <- 4 * (C - ymin) * (A8^2 + A7^2 + 4 * A7 *  
  A8) - 2 * B7^2 * (2 * A8 + A7) - 2 * B8^ 
  2 * (2 * A7 + A8) + A7 * B7^2 + A8 * B8^ 
  2 
 D3 <- 4 * (C - ymin) * (2 * A7 + 2 * A8) - (2 *  
  B7^2 + 2 * B8^2) 
 D4 <- 4 * (C - ymin) 
 lambda <- Re(polyroot(c(D0, D1, D2, D3, D4))) 
 u7 <-  - B7/(2 * (lambda + A7)) 
 u8 <-  - B8/(2 * (lambda + A8)) 
 beta <- (u8^2 + u7^2)^(1/2) 
 round(rbind(beta, lambda), digits = 4)  
 #choose smallest beta 
 betas <- min(beta) 
 betas #Find design point: 
 U7 <- seq(-10, 50, 0.1) 
 delta <- (B8^2 - 4 * A8 * (A7 * U7^2 + B7 * U7 +  
  C - ymin))^(1/2) 
 U81 <- ( - B8 + delta)/(2 * A8) 
 U82 <- ( - B8 - delta)/(2 * A8) 
 U8 <- cbind(U82, U81) 
 U91 <- (betas^2 - U7^2)^(1/2) 
 U92 <-  - (betas^2 - U7^2)^(1/2) 
 U9 <- cbind(U92, U91) 
 U8f <- cbind(U8, U9) 
 graphics.off() 
 win.graph() 
 par(pty = "s") 
 matplot(U7, U8f, col = 1, xlim = c(-10, 50),  
  ylim = c(-20, 40), type = "l", xlab = "u2", ylab = "u8") 
  
 U7 <- seq(-5, 5, 0.1) 
 delta <- (B8^2 - 4 * A8 * (A7 * U7^2 + B7 * U7 +  
  C - ymin))^(1/2) 
 U81 <- ( - B8 + delta)/(2 * A8) 
 U82 <- ( - B8 - delta)/(2 * A8) 
 U8 <- cbind(U82, U81) 
 U91 <- (betas^2 - U7^2)^(1/2) 
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 U92 <-  - (betas^2 - U7^2)^(1/2) 
 U9 <- cbind(U92, U91) 
 U8f <- cbind(U8, U9) 
  
 win.graph() 
 par(pty = "s") 
 matplot(U7, U8f, col = 1, xlim = c(-5, 5), ylim 
   = c(-5, 5), type =  "l", xlab = "u2", ylab = "u8") 
} 
 
 
 
 
 
StateU3L<-function(x, y, n) 
{ 
#StateU3:calculate U33:lambda,beta constraint,design point D x4~6 are 

ignored: 
#with logorithmic fit to Tt: 
 x11 <- x[, 1] 
 x12 <- x11^2 
 x21 <- x[, 2] 
 x22 <- x21^2 
 x31 <- x[, 3] 
 x32 <- x31^2 
 x71 <- x[, 7] 
 x72 <- x71^2 
 x81 <- x[, 8] 
 x82 <- x81^2 
 aa <- resUlm(x, y)$coef[1] 
 bb <- c(resUlm(x, y)$coef[2], resUlm(x, y)$coef[ 
  4], resUlm(x, y)$coef[6], resUlm(x, y)$ 
  coef[8], resUlm(x, y)$coef[10]) 
 cc <- c(resUlm(x, y)$coef[3], resUlm(x, y)$coef[ 
  5], resUlm(x, y)$coef[7], resUlm(x, y)$ 
  coef[9], resUlm(x, y)$coef[11]) 
 ypred <- aa + bb[1] * x11 + bb[2] * x21 + bb[3] * 
  x31 + bb[4] * x71 + bb[5] * x81 
 ypred <- ypred + cc[1] * x12 + cc[2] * x22 + cc[ 
  3] * x32 + cc[4] * x72 + cc[5] * x82  
 #ypred 
 graphics.off() 
 win.graph() 
 plot(y, ypred) 
 win.graph() 
 dd <- c(lsfit(cbind(ypred, ypred^2, ypred^3), y 
  )$coef) 
 ypredf <- dd[1] + dd[2] * ypred + dd[3] * ypred^ 
  2 + dd[4] * ypred^3 
 plot(y, ypredf) 
 correlation1 <- cor(y, ypred) 
 correlation2 <- cor(y, ypredf) 
 round(rbind(correlation1, correlation2), digits 
   = 6)  
 #calculate reliability index beta Tp=230: 
 Ttmin<-230.9052 
 ymin <- log(Ttmin) 
 input <- c(600, 450, 250, 0.7, 0.6, 50, 0.6,  
  0.7) 
 constant <- aa + bb[1] * input[1] + bb[3] *  
  input[3] + bb[4] * input[7] 
 constant <- constant + cc[1] * input[1]^2 + cc[ 
  3] * input[3]^2 + cc[4] * input[7]^2 
 constant  
 #cc[2]*x[,2]^2+bb[2]*x[2]+cc[5]*x[,8]^2+bb[5]*x[,8]+constant-ymin=0 
 sigma1 <- 20 
 mu1 <- 450 
 sigma2 <- 0.1 
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 mu2 <- 0.7 
 A7 <- cc[2] * sigma1^2 
 B7 <- 2 * cc[2] * sigma1 * mu1 + bb[2] * sigma1 
 A8 <- cc[5] * sigma2^2 
 B8 <- 2 * cc[5] * sigma2 * mu2 + bb[5] * sigma2 
 C <- cc[2] * mu1^2 + bb[2] * mu1 + cc[5] * mu2^ 
  2 + bb[5] * mu2 + constant  
 #ymin=A7*u7^2+B7*u7+A8*u8^2+B8*u8+C standardized constraint function: 
#calculate lambda,beta 
 D0 <- 4 * (C - ymin) * A7^2 * A8^2 - 2 * B7^2 *  
  A7 * A8^2 - 2 * B8^2 * A8 * A7^2 + A7 *  
  A8^2 * B7^2 + A7^2 * A8 * B8^2 
 D1 <- 4 * (C - ymin) * (2 * A7 * A8^2 + 2 * A7^ 
  2 * A8) - 2 * B7^2 * (A8^2 + 2 * A7 *  
  A8) - 2 * B8^2 * (A7^2 + 2 * A7 * A8) +  
  2 * (A7 * A8 * B7^2 + A7 * A8 * B8^2) 
 D2 <- 4 * (C - ymin) * (A8^2 + A7^2 + 4 * A7 *  
  A8) - 2 * B7^2 * (2 * A8 + A7) - 2 * B8^ 
  2 * (2 * A7 + A8) + A7 * B7^2 + A8 * B8^ 
  2 
 D3 <- 4 * (C - ymin) * (2 * A7 + 2 * A8) - (2 *  
  B7^2 + 2 * B8^2) 
 D4 <- 4 * (C - ymin) 
 lambda <- Re(polyroot(c(D0, D1, D2, D3, D4))) 
 u7 <-  - B7/(2 * (lambda + A7)) 
 u8 <-  - B8/(2 * (lambda + A8)) 
 beta <- (u8^2 + u7^2)^(1/2) 
 round(rbind(lambda, beta), digits = 8)  
 #choose smallest beta 
 betas <- min(beta) 
 betas #Find design point: 
 U7 <- seq(-10, 60, 0.1) 
 delta <- (B8^2 - 4 * A8 * (A7 * U7^2 + B7 * U7 +  
  C - ymin))^(1/2) 
 U81 <- ( - B8 + delta)/(2 * A8) 
 U82 <- ( - B8 - delta)/(2 * A8) 
 U8 <- cbind(U82, U81) 
 U91 <- (betas^2 - U7^2)^(1/2) 
 U92 <-  - (betas^2 - U7^2)^(1/2) 
 U9 <- cbind(U91, U92) 
 U8f <- cbind(U8, U9) #win.graph() 
#matplot(U7, U9,xlim = c(-15, 15), ylim = c(-15, 15)) 
#win.graph() 
#matplot(U7, U8,xlim = c(-15, 15), ylim = c(-15, 15)) 
 win.graph() 
 par(pty = "s") 
 matplot(U7, U8f, col = 1, xlim = c(-10, 60),  
  ylim = c(-30, 40), type = "l", xlab = "u2", ylab = "u8") 
  
 U7 <- seq(-5, 5, 0.1) 
 delta <- (B8^2 - 4 * A8 * (A7 * U7^2 + B7 * U7 +  
  C - ymin))^(1/2) 
 U81 <- ( - B8 + delta)/(2 * A8) 
 U82 <- ( - B8 - delta)/(2 * A8) 
 U8 <- cbind(U82, U81) 
 U91 <- (betas^2 - U7^2)^(1/2) 
 U92 <-  - (betas^2 - U7^2)^(1/2) 
 U9 <- cbind(U91, U92) 
 U8f <- cbind(U8, U9) 
  
 win.graph() 
 par(pty = "s") 
 matplot(U7, U8f, col = 1, xlim = c(-5, 5), ylim 
   = c(-5, 5), type =  "l", xlab = "u2", ylab = "u8") 
} 
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StateU4L<-function(x, y, n) 
{ 
#StateU3:calculate U43:lambda,beta constraint,design point D x4~6 are 

ignored: 
#with logorithmic fit to Tt: 
 x11 <- x[, 1] 
 x12 <- x11^2 
 x21 <- x[, 2] 
 x22 <- x21^2 
 x31 <- x[, 3] 
 x32 <- x31^2 
 x71 <- x[, 7] 
 x72 <- x71^2 
 x81 <- x[, 8] 
 x82 <- x81^2 
 aa <- resUlm(x, y)$coef[1] 
 bb <- c(resUlm(x, y)$coef[2], resUlm(x, y)$coef[ 
  4], resUlm(x, y)$coef[6], resUlm(x, y)$ 
  coef[8], resUlm(x, y)$coef[10]) 
 cc <- c(resUlm(x, y)$coef[3], resUlm(x, y)$coef[ 
  5], resUlm(x, y)$coef[7], resUlm(x, y)$ 
  coef[9], resUlm(x, y)$coef[11]) 
 ypred <- aa + bb[1] * x11 + bb[2] * x21 + bb[3] * 
  x31 + bb[4] * x71 + bb[5] * x81 
 ypred <- ypred + cc[1] * x12 + cc[2] * x22 + cc[ 
  3] * x32 + cc[4] * x72 + cc[5] * x82  
 #ypred 
 graphics.off() 
 win.graph() 
 plot(y, ypred) 
 win.graph() 
 dd <- c(lsfit(cbind(ypred, ypred^2, ypred^3), y 
  )$coef) 
 ypredf <- dd[1] + dd[2] * ypred + dd[3] * ypred^ 
  2 + dd[4] * ypred^3 
 plot(y, ypredf) 
 correlation1 <- cor(y, ypred) 
 correlation2 <- cor(y, ypredf) 
 round(rbind(correlation1, correlation2), digits 
   = 6)  
 #calculate reliability index beta Tp=250 sec: 
 Ttmin<-250.6776 
 ymin <- log(Ttmin) 
 input <- c(600, 450, 250, 0.7, 0.6, 50, 0.6,  
  0.7) 
 constant <- aa + bb[1] * input[1] + bb[3] *  
  input[3] + bb[4] * input[7] 
 constant <- constant + cc[1] * input[1]^2 + cc[ 
  3] * input[3]^2 + cc[4] * input[7]^2 
 constant  
 #cc[2]*x[,2]^2+bb[2]*x[2]+cc[5]*x[,8]^2+bb[5]*x[,8]+constant-ymin=0 
 sigma1 <- 20 
 mu1 <- 450 
 sigma2 <- 0.1 
 mu2 <- 0.7 
 A7 <- cc[2] * sigma1^2 
 B7 <- 2 * cc[2] * sigma1 * mu1 + bb[2] * sigma1 
 A8 <- cc[5] * sigma2^2 
 B8 <- 2 * cc[5] * sigma2 * mu2 + bb[5] * sigma2 
 C <- cc[2] * mu1^2 + bb[2] * mu1 + cc[5] * mu2^ 
  2 + bb[5] * mu2 + constant  
 #ymin=A7*u7^2+B7*u7+A8*u8^2+B8*u8+C standardized constraint function: 
#calculate lambda,beta 
 D0 <- 4 * (C - ymin) * A7^2 * A8^2 - 2 * B7^2 *  
  A7 * A8^2 - 2 * B8^2 * A8 * A7^2 + A7 *  
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  A8^2 * B7^2 + A7^2 * A8 * B8^2 
 D1 <- 4 * (C - ymin) * (2 * A7 * A8^2 + 2 * A7^ 
  2 * A8) - 2 * B7^2 * (A8^2 + 2 * A7 *  
  A8) - 2 * B8^2 * (A7^2 + 2 * A7 * A8) +  
  2 * (A7 * A8 * B7^2 + A7 * A8 * B8^2) 
 D2 <- 4 * (C - ymin) * (A8^2 + A7^2 + 4 * A7 *  
  A8) - 2 * B7^2 * (2 * A8 + A7) - 2 * B8^ 
  2 * (2 * A7 + A8) + A7 * B7^2 + A8 * B8^ 
  2 
 D3 <- 4 * (C - ymin) * (2 * A7 + 2 * A8) - (2 *  
  B7^2 + 2 * B8^2) 
 D4 <- 4 * (C - ymin) 
 lambda <- Re(polyroot(c(D0, D1, D2, D3, D4))) 
 u7 <-  - B7/(2 * (lambda + A7)) 
 u8 <-  - B8/(2 * (lambda + A8)) 
 beta <- (u8^2 + u7^2)^(1/2) 
 round(rbind(lambda, beta), digits = 8)  
 #choose smallest beta 
 betas <- min(beta) 
 betas #Find design point: 
 U7 <- seq(-10, 60, 0.1) 
 delta <- (B8^2 - 4 * A8 * (A7 * U7^2 + B7 * U7 +  
  C - ymin))^(1/2) 
 U81 <- ( - B8 + delta)/(2 * A8) 
 U82 <- ( - B8 - delta)/(2 * A8) 
 U8 <- cbind(U82, U81) 
 U91 <- (betas^2 - U7^2)^(1/2) 
 U92 <-  - (betas^2 - U7^2)^(1/2) 
 U9 <- cbind(U91, U92) 
 U8f <- cbind(U8, U9) #win.graph() 
#matplot(U7, U9,xlim = c(-15, 15), ylim = c(-15, 15)) 
#win.graph() 
#matplot(U7, U8,xlim = c(-15, 15), ylim = c(-15, 15)) 
 win.graph() 
 par(pty = "s") 
 matplot(U7, U8f, col = 1, xlim = c(-10, 60),  
  ylim = c(-30, 40), type = "l", xlab = "u2", ylab = "u8") 
  
 U7 <- seq(-5, 5, 0.1) 
 delta <- (B8^2 - 4 * A8 * (A7 * U7^2 + B7 * U7 +  
  C - ymin))^(1/2) 
 U81 <- ( - B8 + delta)/(2 * A8) 
 U82 <- ( - B8 - delta)/(2 * A8) 
 U8 <- cbind(U82, U81) 
 U91 <- (betas^2 - U7^2)^(1/2) 
 U92 <-  - (betas^2 - U7^2)^(1/2) 
 U9 <- cbind(U91, U92) 
 U8f <- cbind(U8, U9) 
  
 win.graph() 
 par(pty = "s") 
 matplot(U7, U8f, col = 1, xlim = c(-5, 5), ylim 
   = c(-5, 5), type =  "l", xlab = "u2", ylab = "u8") 
} 
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A.5 Functions for Monte-Carlo simulation by using response surface 
 
 
CarloG1<-function(x, y, n) 
{ 
#CarloG1:#x6 is ignored,variables:x2,x8: 
 x11 <- x[, 1] 
 x12 <- x11^2 
 x21 <- x[, 2] 
 x22 <- x21^2 
 x31 <- x[, 3] 
 x32 <- x31^2 
 x41 <- x[, 4] 
 x42 <- x41^2 
 x51 <- x[, 5] 
 x52 <- x51^2 
 x61 <- x[, 6] 
 x62 <- x61^2 
 x71 <- x[, 7] 
 x72 <- x71^2 
 x81 <- x[, 8] 
 x82 <- x81^2 
 res <- lm(y ~ x11 + x12 + x21 + x22 + x31 + x32 + 
  x41 + x42 + x51 + x52 + x71 + x72 + x81 + 
  x82) 
 reslm(x, y)$coef #calculate correlations: 
 aa <- reslm(x, y)$coef[1] 
 bb <- c(reslm(x, y)$coef[2], reslm(x, y)$coef[4 
  ], reslm(x, y)$coef[6], reslm(x, y)$ 
  coef[8]) 
 bb <- c(bb, reslm(x, y)$coef[10], reslm(x, y)$ 
  coef[12], reslm(x, y)$coef[14]) 
 cc <- c(reslm(x, y)$coef[3], reslm(x, y)$coef[5 
  ], reslm(x, y)$coef[7], reslm(x, y)$ 
  coef[9]) 
 cc <- c(cc, reslm(x, y)$coef[11], reslm(x, y)$ 
  coef[13], reslm(x, y)$coef[15]) 
 Tmin <- 311.0956 
 ymax <-  Tmin 
 input <- c(600, 450, 250, 0.7, 0.6, 50, 0.6, 0.7) 
 constant <- aa + bb[1] * input[1] + bb[6] *  
  input[7] + bb[3] * input[3] 
 constant <- constant + bb[4] * input[4] + bb[5] *input[5] 
 constant <- constant + cc[1] * input[1]^2 + cc[ 
  6] * input[7]^2 + cc[3] * input[3]^2 
 constant <- constant + cc[4] * input[4]^2 + cc[ 
  5] * input[5]^2 
 constant  
 #cc[2]*x[,2]^2+bb[2]*x[,2]+cc[7]*x[,8]^2+bb[7]*x[,8]+constant-yt=0 
 sigma1 <- 20 
 mu1 <- 450 
 sigma2 <- 0.1 
 mu2 <- 0.7 
 A7 <- cc[2] * sigma1^2 
 B7 <- 2 * cc[2] * sigma1 * mu1 + bb[2] * sigma1 
 A8 <- cc[7] * sigma2^2 
 B8 <- 2 * cc[7] * sigma2 * mu2 + bb[7] * sigma2 
 C <- cc[2] * mu1^2 + bb[2] * mu1 + cc[7] * mu2^ 
  2 + bb[7] * mu2 + constant 
 x7 <- rnorm(n, mu1, sigma1) 
 x8 <- rnorm(n, mu2, sigma2) 
 u7 <- (x7 - mu1)/sigma1 
 u8 <- (x8 - mu2)/sigma2 
 Tt <- A7 * u7^2 + B7 * u7 + A8 * u8^2 + B8 * u8 + 
  C 
 graphics.off() 
 win.graph() 
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 hist(Tt) 
 pnorm <- length(Tt[Tt < ymax])/n 
 round(rbind(Tmin, ymax, pnorm), digits = 6) 
} 
 
 
 
 
 
CarloG2<-function(x, y, n) 
{ 
#CarloG2:#x6 is ignored,variables:x2,x8: 
 x11 <- x[, 1] 
 x12 <- x11^2 
 x21 <- x[, 2] 
 x22 <- x21^2 
 x31 <- x[, 3] 
 x32 <- x31^2 
 x41 <- x[, 4] 
 x42 <- x41^2 
 x51 <- x[, 5] 
 x52 <- x51^2 
 x61 <- x[, 6] 
 x62 <- x61^2 
 x71 <- x[, 7] 
 x72 <- x71^2 
 x81 <- x[, 8] 
 x82 <- x81^2 
 res <- lm(y ~ x11 + x12 + x21 + x22 + x31 + x32 + 
  x41 + x42 + x51 + x52 + x71 + x72 + x81 + 
  x82) 
 reslm(x, y)$coef #calculate correlations: 
 aa <- reslm(x, y)$coef[1] 
 bb <- c(reslm(x, y)$coef[2], reslm(x, y)$coef[4 
  ], reslm(x, y)$coef[6], reslm(x, y)$ 
  coef[8]) 
 bb <- c(bb, reslm(x, y)$coef[10], reslm(x, y)$ 
  coef[12], reslm(x, y)$coef[14]) 
 cc <- c(reslm(x, y)$coef[3], reslm(x, y)$coef[5 
  ], reslm(x, y)$coef[7], reslm(x, y)$ 
  coef[9]) 
 cc <- c(cc, reslm(x, y)$coef[11], reslm(x, y)$ 
  coef[13], reslm(x, y)$coef[15]) 
 Tmin <- 330.9244 
 ymax <-  Tmin 
 input <- c(600, 450, 250, 0.7, 0.6, 50, 0.6, 0.7) 
 constant <- aa + bb[1] * input[1] + bb[6] *  
  input[7] + bb[3] * input[3] 
 constant <- constant + bb[4] * input[4] + bb[5] *input[5] 
 constant <- constant + cc[1] * input[1]^2 + cc[ 
  6] * input[7]^2 + cc[3] * input[3]^2 
 constant <- constant + cc[4] * input[4]^2 + cc[ 
  5] * input[5]^2 
 constant  
 #cc[2]*x[,2]^2+bb[2]*x[,2]+cc[7]*x[,8]^2+bb[7]*x[,8]+constant-yt=0 
 sigma1 <- 20 
 mu1 <- 450 
 sigma2 <- 0.1 
 mu2 <- 0.7 
 A7 <- cc[2] * sigma1^2 
 B7 <- 2 * cc[2] * sigma1 * mu1 + bb[2] * sigma1 
 A8 <- cc[7] * sigma2^2 
 B8 <- 2 * cc[7] * sigma2 * mu2 + bb[7] * sigma2 
 C <- cc[2] * mu1^2 + bb[2] * mu1 + cc[7] * mu2^ 
  2 + bb[7] * mu2 + constant 
 x7 <- rnorm(n, mu1, sigma1) 
 x8 <- rnorm(n, mu2, sigma2) 
 u7 <- (x7 - mu1)/sigma1 
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 u8 <- (x8 - mu2)/sigma2 
 Tt <- A7 * u7^2 + B7 * u7 + A8 * u8^2 + B8 * u8 + 
  C 
 graphics.off() 
 win.graph() 
 hist(Tt) 
 pnorm <- length(Tt[Tt < ymax])/n 
 round(rbind(Tmin, ymax, pnorm), digits = 6) 
} 
 
 
 
 
 
 
CarloG3<-function(x, y, n) 
{ 
#CarloG3:#x4~6 are ignored,variables:x2,x8: 
 x11 <- x[, 1] 
 x12 <- x11^2 
 x21 <- x[, 2] 
 x22 <- x21^2 
 x31 <- x[, 3] 
 x32 <- x31^2 
 x41 <- x[, 4] 
 x42 <- x41^2 
 x51 <- x[, 5] 
 x52 <- x51^2 
 x61 <- x[, 6] 
 x62 <- x61^2 
 x71 <- x[, 7] 
 x72 <- x71^2 
 x81 <- x[, 8] 
 x82 <- x81^2 
 resU <- lm(y ~ x11 + x12 + x21 + x22 + x31 + x32 + 
   x71 + x72 + x81 + x82) 
 resUlm(x, y)$coef  
 aa <- resUlm(x, y)$coef[1] 
 bb <- c(resUlm(x, y)$coef[2], resUlm(x, y)$coef[4 
  ], resUlm(x, y)$coef[6], resUlm(x, y)$ 
  coef[8], resUlm(x, y)$coef[10]) 
  
 cc <- c(resUlm(x, y)$coef[3], resUlm(x, y)$coef[5 
  ], resUlm(x, y)$coef[7], resUlm(x, y)$ 
  coef[9], resUlm(x, y)$coef[11]) 
  
 Tmin <- 237.3830 
 ymax <-  Tmin 
 input <- c(600, 450, 250, 0.7, 0.6, 50, 0.6, 0.7) 
 constant <- aa + bb[1] * input[1] + bb[3] *  
  input[3] + bb[4] * input[7] 
 constant <- constant + cc[1] * input[1]^2 + cc[ 
  3] * input[3]^2 + cc[4] * input[7]^2 
 constant  
 #cc[2]*x[,2]^2+bb[2]*x[,2]+cc[7]*x[,8]^2+bb[7]*x[,8]+constant-ymax=0 
 sigma1 <- 20 
 mu1 <- 450 
 sigma2 <- 0.1 
 mu2 <- 0.7 
 A7 <- cc[2] * sigma1^2 
 B7 <- 2 * cc[2] * sigma1 * mu1 + bb[2] * sigma1 
 A8 <- cc[5] * sigma2^2 
 B8 <- 2 * cc[5] * sigma2 * mu2 + bb[5] * sigma2 
 C <- cc[2] * mu1^2 + bb[2] * mu1 + cc[5] * mu2^ 
  2 + bb[5] * mu2 + constant 
 x7 <- rnorm(n, mu1, sigma1) 
 x8 <- rnorm(n, mu2, sigma2) 
 u7 <- (x7 - mu1)/sigma1 
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 u8 <- (x8 - mu2)/sigma2 
 Tt <- A7 * u7^2 + B7 * u7 + A8 * u8^2 + B8 * u8 + C 
 graphics.off() 
 win.graph() 
 hist(Tt) 
 pnorm <- length(Tt[Tt < ymax])/n 
 round(rbind(Tmin, ymax, pnorm), digits = 6) 
} 
 
 
 
 
 
CarloG4<-function(x, y, n) 
{ 
#CarloG4:#x4~6 are ignored,variables:x2,x8: 
 x11 <- x[, 1] 
 x12 <- x11^2 
 x21 <- x[, 2] 
 x22 <- x21^2 
 x31 <- x[, 3] 
 x32 <- x31^2 
 x41 <- x[, 4] 
 x42 <- x41^2 
 x51 <- x[, 5] 
 x52 <- x51^2 
 x61 <- x[, 6] 
 x62 <- x61^2 
 x71 <- x[, 7] 
 x72 <- x71^2 
 x81 <- x[, 8] 
 x82 <- x81^2 
 resU <- lm(y ~ x11 + x12 + x21 + x22 + x31 + x32 + 
   x71 + x72 + x81 + x82) 
 resUlm(x, y)$coef  
 aa <- resUlm(x, y)$coef[1] 
 bb <- c(resUlm(x, y)$coef[2], resUlm(x, y)$coef[4 
  ], resUlm(x, y)$coef[6], resUlm(x, y)$ 
  coef[8], resUlm(x, y)$coef[10]) 
  
 cc <- c(resUlm(x, y)$coef[3], resUlm(x, y)$coef[5 
  ], resUlm(x, y)$coef[7], resUlm(x, y)$ 
  coef[9], resUlm(x, y)$coef[11]) 
  
 Tmin <- 257.1608 
 ymax <-  Tmin 
 input <- c(600, 450, 250, 0.7, 0.6, 50, 0.6, 0.7) 
 constant <- aa + bb[1] * input[1] + bb[3] *  
  input[3] + bb[4] * input[7] 
 constant <- constant + cc[1] * input[1]^2 + cc[ 
  3] * input[3]^2 + cc[4] * input[7]^2 
 constant  
 #cc[2]*x[,2]^2+bb[2]*x[,2]+cc[5]*x[,8]^2+bb[5]*x[,8]+constant-ymax=0 
 sigma1 <- 20 
 mu1 <- 450 
 sigma2 <- 0.1 
 mu2 <- 0.7 
 A7 <- cc[2] * sigma1^2 
 B7 <- 2 * cc[2] * sigma1 * mu1 + bb[2] * sigma1 
 A8 <- cc[5] * sigma2^2 
 B8 <- 2 * cc[5] * sigma2 * mu2 + bb[5] * sigma2 
 C <- cc[2] * mu1^2 + bb[2] * mu1 + cc[5] * mu2^ 
  2 + bb[5] * mu2 + constant 
 x7 <- rnorm(n, mu1, sigma1) 
 x8 <- rnorm(n, mu2, sigma2) 
 u7 <- (x7 - mu1)/sigma1 
 u8 <- (x8 - mu2)/sigma2 
 Tt <- A7 * u7^2 + B7 * u7 + A8 * u8^2 + B8 * u8 + C 
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 graphics.off() 
 win.graph() 
 hist(Tt) 
 pnorm <- length(Tt[Tt < ymax])/n 
 round(rbind(Tmin, ymax, pnorm), digits = 6) 
} 
 
 
 
 
 
 
CarloG1L<-function(x, y, n) 
{ 
#CarloG1L:#x6 is ignored,variables:x2,x8: 
 x11 <- x[, 1] 
 x12 <- x11^2 
 x21 <- x[, 2] 
 x22 <- x21^2 
 x31 <- x[, 3] 
 x32 <- x31^2 
 x41 <- x[, 4] 
 x42 <- x41^2 
 x51 <- x[, 5] 
 x52 <- x51^2 
 x61 <- x[, 6] 
 x62 <- x61^2 
 x71 <- x[, 7] 
 x72 <- x71^2 
 x81 <- x[, 8] 
 x82 <- x81^2 
 res <- lm(y ~ x11 + x12 + x21 + x22 + x31 + x32 + 
  x41 + x42 + x51 + x52 + x71 + x72 + x81 + 
  x82) 
 reslm(x, y)$coef #calculate correlations: 
 aa <- reslm(x, y)$coef[1] 
 bb <- c(reslm(x, y)$coef[2], reslm(x, y)$coef[4 
  ], reslm(x, y)$coef[6], reslm(x, y)$ 
  coef[8]) 
 bb <- c(bb, reslm(x, y)$coef[10], reslm(x, y)$ 
  coef[12], reslm(x, y)$coef[14]) 
 cc <- c(reslm(x, y)$coef[3], reslm(x, y)$coef[5 
  ], reslm(x, y)$coef[7], reslm(x, y)$ 
  coef[9]) 
 cc <- c(cc, reslm(x, y)$coef[11], reslm(x, y)$ 
  coef[13], reslm(x, y)$coef[15]) 
 Tmin <- 301.1548 
 ymax <-  log(Tmin) 
 input <- c(600, 450, 250, 0.7, 0.6, 50, 0.6, 0.7) 
 constant <- aa + bb[1] * input[1] + bb[6] *  
  input[7] + bb[3] * input[3] 
 constant <- constant + bb[4] * input[4] + bb[5] *input[5] 
 constant <- constant + cc[1] * input[1]^2 + cc[ 
  6] * input[7]^2 + cc[3] * input[3]^2 
 constant <- constant + cc[4] * input[4]^2 + cc[ 
  5] * input[5]^2 
 constant  
 #cc[2]*x[,2]^2+bb[2]*x[,2]+cc[7]*x[,8]^2+bb[7]*x[,8]+constant-yt=0 
 sigma1 <- 20 
 mu1 <- 450 
 sigma2 <- 0.1 
 mu2 <- 0.7 
 A7 <- cc[2] * sigma1^2 
 B7 <- 2 * cc[2] * sigma1 * mu1 + bb[2] * sigma1 
 A8 <- cc[7] * sigma2^2 
 B8 <- 2 * cc[7] * sigma2 * mu2 + bb[7] * sigma2 
 C <- cc[2] * mu1^2 + bb[2] * mu1 + cc[7] * mu2^ 
  2 + bb[7] * mu2 + constant 
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 x7 <- rnorm(n, mu1, sigma1) 
 x8 <- rnorm(n, mu2, sigma2) 
 u7 <- (x7 - mu1)/sigma1 
 u8 <- (x8 - mu2)/sigma2 
 TtL <- A7 * u7^2 + B7 * u7 + A8 * u8^2 + B8 * u8 + C 
 TtL<-exp(TtL) 
 graphics.off() 
 win.graph() 
 hist(TtL) 
 pnorm <- length(TtL[TtL < Tmin])/n 
 round(rbind(Tmin, pnorm), digits = 6) 
} 
 
 
 
 
 
 
CarloG2L<-function(x, y, n) 
{ 
#CarloG2L:#x6 is ignored,variables:x2,x8: 
 x11 <- x[, 1] 
 x12 <- x11^2 
 x21 <- x[, 2] 
 x22 <- x21^2 
 x31 <- x[, 3] 
 x32 <- x31^2 
 x41 <- x[, 4] 
 x42 <- x41^2 
 x51 <- x[, 5] 
 x52 <- x51^2 
 x61 <- x[, 6] 
 x62 <- x61^2 
 x71 <- x[, 7] 
 x72 <- x71^2 
 x81 <- x[, 8] 
 x82 <- x81^2 
 res <- lm(y ~ x11 + x12 + x21 + x22 + x31 + x32 + 
  x41 + x42 + x51 + x52 + x71 + x72 + x81 + 
  x82) 
 reslm(x, y)$coef #calculate correlations: 
 aa <- reslm(x, y)$coef[1] 
 bb <- c(reslm(x, y)$coef[2], reslm(x, y)$coef[4 
  ], reslm(x, y)$coef[6], reslm(x, y)$ 
  coef[8]) 
 bb <- c(bb, reslm(x, y)$coef[10], reslm(x, y)$ 
  coef[12], reslm(x, y)$coef[14]) 
 cc <- c(reslm(x, y)$coef[3], reslm(x, y)$coef[5 
  ], reslm(x, y)$coef[7], reslm(x, y)$ 
  coef[9]) 
 cc <- c(cc, reslm(x, y)$coef[11], reslm(x, y)$ 
  coef[13], reslm(x, y)$coef[15]) 
 Tmin <- 321.1342 
 ymax <-  log(Tmin) 
 input <- c(600, 450, 250, 0.7, 0.6, 50, 0.6, 0.7) 
 constant <- aa + bb[1] * input[1] + bb[6] *  
  input[7] + bb[3] * input[3] 
 constant <- constant + bb[4] * input[4] + bb[5] *input[5] 
 constant <- constant + cc[1] * input[1]^2 + cc[ 
  6] * input[7]^2 + cc[3] * input[3]^2 
 constant <- constant + cc[4] * input[4]^2 + cc[ 
  5] * input[5]^2 
 constant  
 #cc[2]*x[,2]^2+bb[2]*x[,2]+cc[7]*x[,8]^2+bb[7]*x[,8]+constant-yt=0 
 sigma1 <- 20 
 mu1 <- 450 
 sigma2 <- 0.1 
 mu2 <- 0.7 
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 A7 <- cc[2] * sigma1^2 
 B7 <- 2 * cc[2] * sigma1 * mu1 + bb[2] * sigma1 
 A8 <- cc[7] * sigma2^2 
 B8 <- 2 * cc[7] * sigma2 * mu2 + bb[7] * sigma2 
 C <- cc[2] * mu1^2 + bb[2] * mu1 + cc[7] * mu2^ 
  2 + bb[7] * mu2 + constant 
 x7 <- rnorm(n, mu1, sigma1) 
 x8 <- rnorm(n, mu2, sigma2) 
 u7 <- (x7 - mu1)/sigma1 
 u8 <- (x8 - mu2)/sigma2 
 TtL <- A7 * u7^2 + B7 * u7 + A8 * u8^2 + B8 * u8 + C 
 TtL<-exp(TtL) 
 graphics.off() 
 win.graph() 
 hist(TtL) 
 pnorm <- length(TtL[TtL < Tmin])/n 
 round(rbind(Tmin, pnorm), digits = 6) 
} 
 
 
 
 
 
 
CarloG3L<-function(x, y, n) 
{ 
#CarloG3L:#x4~6 are ignored,variables:x2,x8: 
 x11 <- x[, 1] 
 x12 <- x11^2 
 x21 <- x[, 2] 
 x22 <- x21^2 
 x31 <- x[, 3] 
 x32 <- x31^2 
 x41 <- x[, 4] 
 x42 <- x41^2 
 x51 <- x[, 5] 
 x52 <- x51^2 
 x61 <- x[, 6] 
 x62 <- x61^2 
 x71 <- x[, 7] 
 x72 <- x71^2 
 x81 <- x[, 8] 
 x82 <- x81^2 
 resU <- lm(y ~ x11 + x12 + x21 + x22 + x31 + x32 + 
   x71 + x72 + x81 + x82) 
 resUlm(x, y)$coef  
 aa <- resUlm(x, y)$coef[1] 
 bb <- c(resUlm(x, y)$coef[2], resUlm(x, y)$coef[4 
  ], resUlm(x, y)$coef[6], resUlm(x, y)$ 
  coef[8], resUlm(x, y)$coef[10]) 
  
 cc <- c(resUlm(x, y)$coef[3], resUlm(x, y)$coef[5 
  ], resUlm(x, y)$coef[7], resUlm(x, y)$ 
  coef[9], resUlm(x, y)$coef[11]) 
  
 Tmin <- 230.9052 
 ymax <-  log(Tmin) 
 input <- c(600, 450, 250, 0.7, 0.6, 50, 0.6, 0.7) 
 constant <- aa + bb[1] * input[1] + bb[3] *  
  input[3] + bb[4] * input[7] 
 constant <- constant + cc[1] * input[1]^2 + cc[ 
  3] * input[3]^2 + cc[4] * input[7]^2 
 constant  
 #cc[2]*x[,2]^2+bb[2]*x[,2]+cc[7]*x[,8]^2+bb[7]*x[,8]+constant-ymax=0 
 sigma1 <- 20 
 mu1 <- 450 
 sigma2 <- 0.1 
 mu2 <- 0.7 
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 A7 <- cc[2] * sigma1^2 
 B7 <- 2 * cc[2] * sigma1 * mu1 + bb[2] * sigma1 
 A8 <- cc[5] * sigma2^2 
 B8 <- 2 * cc[5] * sigma2 * mu2 + bb[5] * sigma2 
 C <- cc[2] * mu1^2 + bb[2] * mu1 + cc[5] * mu2^ 
  2 + bb[5] * mu2 + constant 
 x7 <- rnorm(n, mu1, sigma1) 
 x8 <- rnorm(n, mu2, sigma2) 
 u7 <- (x7 - mu1)/sigma1 
 u8 <- (x8 - mu2)/sigma2 
 TtL <- A7 * u7^2 + B7 * u7 + A8 * u8^2 + B8 * u8 + C 
 TtL<-exp(TtL) 
 graphics.off() 
 win.graph() 
 hist(TtL) 
 pnorm <- length(TtL[TtL < Tmin])/n 
 round(rbind(Tmin, pnorm), digits = 6) 
} 
 
 
 
 
 
 
CarloG4L<-function(x, y, n) 
{ 
#CarloG4L:#x4~6 are ignored,variables:x2,x8: 
 x11 <- x[, 1] 
 x12 <- x11^2 
 x21 <- x[, 2] 
 x22 <- x21^2 
 x31 <- x[, 3] 
 x32 <- x31^2 
 x41 <- x[, 4] 
 x42 <- x41^2 
 x51 <- x[, 5] 
 x52 <- x51^2 
 x61 <- x[, 6] 
 x62 <- x61^2 
 x71 <- x[, 7] 
 x72 <- x71^2 
 x81 <- x[, 8] 
 x82 <- x81^2 
 resU <- lm(y ~ x11 + x12 + x21 + x22 + x31 + x32 + 
   x71 + x72 + x81 + x82) 
 resUlm(x, y)$coef  
 aa <- resUlm(x, y)$coef[1] 
 bb <- c(resUlm(x, y)$coef[2], resUlm(x, y)$coef[4 
  ], resUlm(x, y)$coef[6], resUlm(x, y)$ 
  coef[8], resUlm(x, y)$coef[10]) 
  
 cc <- c(resUlm(x, y)$coef[3], resUlm(x, y)$coef[5 
  ], resUlm(x, y)$coef[7], resUlm(x, y)$ 
  coef[9], resUlm(x, y)$coef[11]) 
  
 Tmin <- 250.6776 
 ymax <-  log(Tmin) 
 input <- c(600, 450, 250, 0.7, 0.6, 50, 0.6, 0.7) 
 constant <- aa + bb[1] * input[1] + bb[3] *  
  input[3] + bb[4] * input[7] 
 constant <- constant + cc[1] * input[1]^2 + cc[ 
  3] * input[3]^2 + cc[4] * input[7]^2 
 constant  
 #cc[2]*x[,2]^2+bb[2]*x[,2]+cc[7]*x[,8]^2+bb[7]*x[,8]+constant-ymax=0 
 sigma1 <- 20 
 mu1 <- 450 
 sigma2 <- 0.1 
 mu2 <- 0.7 
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 A7 <- cc[2] * sigma1^2 
 B7 <- 2 * cc[2] * sigma1 * mu1 + bb[2] * sigma1 
 A8 <- cc[5] * sigma2^2 
 B8 <- 2 * cc[5] * sigma2 * mu2 + bb[5] * sigma2 
 C <- cc[2] * mu1^2 + bb[2] * mu1 + cc[5] * mu2^ 
  2 + bb[5] * mu2 + constant 
 x7 <- rnorm(n, mu1, sigma1) 
 x8 <- rnorm(n, mu2, sigma2) 
 u7 <- (x7 - mu1)/sigma1 
 u8 <- (x8 - mu2)/sigma2 
 TtL <- A7 * u7^2 + B7 * u7 + A8 * u8^2 + B8 * u8 + C 
 TtL<-exp(TtL) 
 graphics.off() 
 win.graph() 
 hist(TtL) 
 pnorm <- length(TtL[TtL < Tmin])/n 
 round(rbind(Tmin, pnorm), digits = 6) 
} 
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A.6 Functions for comparing reliability index both standard and logarithmic fit and drawing 

figures to illustrate their difference 
 
 
 
 
StateU1S<-function(x, y) 
 
 
{ 
#StateU1S:lambda, beta,constraint,design point D; 
#x6 is ignored in U13: 
#reslm:calculate the coefficients of X 
 x11 <- x[, 1] 
 x12 <- x11^2 
 x21 <- x[, 2] 
 x22 <- x21^2 
 x31 <- x[, 3] 
 x32 <- x31^2 
 x41 <- x[, 4] 
 x42 <- x41^2 
 x51 <- x[, 5] 
 x52 <- x51^2 
 x61 <- x[, 6] 
 x62 <- x61^2 
 x71 <- x[, 7] 
 x72 <- x71^2 
 x81 <- x[, 8] 
 x82 <- x81^2 
 res <- lm(y ~ x11 + x12 + x21 + x22 + x31 + x32 + 
  x41 + x42 + x51 + x52 + x71 + x72 + x81 + 
  x82) 
 reslm(x, y)$coef #calculate correlations: 
 aa <- reslm(x, y)$coef[1] 
 bb <- c(reslm(x, y)$coef[2], reslm(x, y)$coef[4 
  ], reslm(x, y)$coef[6], reslm(x, y)$ 
  coef[8]) 
 bb <- c(bb, reslm(x, y)$coef[10], reslm(x, y)$ 
  coef[12], reslm(x, y)$coef[14]) 
 cc <- c(reslm(x, y)$coef[3], reslm(x, y)$coef[5 
  ], reslm(x, y)$coef[7], reslm(x, y)$ 
  coef[9]) 
 cc <- c(cc, reslm(x, y)$coef[11], reslm(x, y)$ 
  coef[13], reslm(x, y)$coef[15]) 
 ypred <- aa + bb[1] * x11 + bb[2] * x21 + bb[3] * 
  x31 + bb[4] * x41 + bb[5] * x51 + bb[6] * 
  x71 + bb[7] * x81 
 ypred <- ypred + cc[1] * x12 + cc[2] * x22 + cc[ 
  3] * x32 + cc[4] * x42 + cc[5] * x52 +  
  cc[6] * x72 + cc[7] * x82 #ypred 
#graphics.off() 
#win.graph() 
#plot(y, ypred) 
#win.graph() 
 dd <- c(lsfit(cbind(ypred, ypred^2, ypred^3), y 
  )$coef) 
 ypredf <- dd[1] + dd[2] * ypred + dd[3] * ypred^ 
  2 + dd[4] * ypred^3 #plot(y, ypredf) 
 correlation1 <- cor(y, ypred) 
 correlation2 <- cor(y, ypredf) 
 round(rbind(correlation1, correlation2), digits 
   = 6)  
 #calculate reliability index beta: 
 ymin <- 311.0956 
 input <- c(600, 450, 250, 0.7, 0.6, 50, 0.6,  
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  0.7) 
 constant <- aa + bb[1] * input[1] + bb[6] *  
  input[7] + bb[3] * input[3] 
 constant <- constant + bb[4] * input[4] + bb[5] * 
  input[5] 
 constant <- constant + cc[1] * input[1]^2 + cc[ 
  6] * input[7]^2 + cc[3] * input[3]^2 
 constant <- constant + cc[4] * input[4]^2 + cc[ 
  5] * input[5]^2 
 constant  
 #cc[2]*x[,2]^2+bb[2]*x[,2]+cc[7]*x[,8]^2+bb[7]*x[,8]+constant-yt=0 
 sigma1 <- 20 
 mu1 <- 450 
 sigma2 <- 0.1 
 mu2 <- 0.7 
 A7 <- cc[2] * sigma1^2 
 B7 <- 2 * cc[2] * sigma1 * mu1 + bb[2] * sigma1 
 A8 <- cc[7] * sigma2^2 
 B8 <- 2 * cc[7] * sigma2 * mu2 + bb[7] * sigma2 
 C <- cc[2] * mu1^2 + bb[2] * mu1 + cc[7] * mu2^ 
  2 + bb[7] * mu2 + constant  
 #ymin=A7*u7^2+B7*u7+A8*u8^2+B8*u8+C standardized constraint function: 
#calculate lambda,beta 
 D0 <- 4 * (C - ymin) * A7^2 * A8^2 - 2 * B7^2 *  
  A7 * A8^2 - 2 * B8^2 * A8 * A7^2 + A7 *  
  A8^2 * B7^2 + A7^2 * A8 * B8^2 
 D1 <- 4 * (C - ymin) * (2 * A7 * A8^2 + 2 * A7^ 
  2 * A8) - 2 * B7^2 * (A8^2 + 2 * A7 *  
  A8) - 2 * B8^2 * (A7^2 + 2 * A7 * A8) +  
  2 * (A7 * A8 * B7^2 + A7 * A8 * B8^2) 
 D2 <- 4 * (C - ymin) * (A8^2 + A7^2 + 4 * A7 *  
  A8) - 2 * B7^2 * (2 * A8 + A7) - 2 * B8^ 
  2 * (2 * A7 + A8) + A7 * B7^2 + A8 * B8^ 
  2 
 D3 <- 4 * (C - ymin) * (2 * A7 + 2 * A8) - (2 *  
  B7^2 + 2 * B8^2) 
 D4 <- 4 * (C - ymin) 
 lambda <- Re(polyroot(c(D0, D1, D2, D3, D4))) 
 u7 <-  - B7/(2 * (lambda + A7)) 
 u8 <-  - B8/(2 * (lambda + A8)) 
 beta <- (u8^2 + u7^2)^(1/2) 
 round(rbind(beta, lambda), digits = 4)  
 #choose smallest beta 
 betas <- min(beta) 
 betas #Find design point: 
 U7 <- seq(-5, 35, 0.1) 
 delta <- (B8^2 - 4 * A8 * (A7 * U7^2 + B7 * U7 +  
  C - ymin))^(1/2) 
 U81 <- ( - B8 + delta)/(2 * A8) 
 U82 <- ( - B8 - delta)/(2 * A8) 
 U8 <- cbind(U82, U81) 
 U91 <- (betas^2 - U7^2)^(1/2) 
 U92 <-  - (betas^2 - U7^2)^(1/2) 
 U9 <- cbind(U92, U91) 
 U8f <- cbind(U8, U9) 
 graphics.off() 
 win.graph() 
 par(pty = "s") 
 matplot(U7, U8f, col = 1, xlim = c(-10, 50),  
  ylim = c(-20, 40), type = "l", xlab = "u2", ylab = "u8") 
  
  
#StateU1L:lambda, beta,constraint,design point D; 
#x6 is ignored in U13 with logorithmic fit to Tt: 
#reslm:calculate the coefficients of X 
 x<-U13[,1:8] 
 y<-log(U13[,9]) 
 x11 <- x[, 1] 
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 x12 <- x11^2 
 x21 <- x[, 2] 
 x22 <- x21^2 
 x31 <- x[, 3] 
 x32 <- x31^2 
 x41 <- x[, 4] 
 x42 <- x41^2 
 x51 <- x[, 5] 
 x52 <- x51^2 
 x61 <- x[, 6] 
 x62 <- x61^2 
 x71 <- x[, 7] 
 x72 <- x71^2 
 x81 <- x[, 8] 
 x82 <- x81^2 
 res <- lm(y ~ x11 + x12 + x21 + x22 + x31 + x32 + 
  x41 + x42 + x51 + x52 + x71 + x72 + x81 + 
  x82) 
 reslm(x, y)$coef #calculate correlations: 
 aa <- reslm(x, y)$coef[1] 
 bb <- c(reslm(x, y)$coef[2], reslm(x, y)$coef[4 
  ], reslm(x, y)$coef[6], reslm(x, y)$ 
  coef[8]) 
 bb <- c(bb, reslm(x, y)$coef[10], reslm(x, y)$ 
  coef[12], reslm(x, y)$coef[14]) 
 cc <- c(reslm(x, y)$coef[3], reslm(x, y)$coef[5 
  ], reslm(x, y)$coef[7], reslm(x, y)$ 
  coef[9]) 
 cc <- c(cc, reslm(x, y)$coef[11], reslm(x, y)$ 
  coef[13], reslm(x, y)$coef[15]) 
 ypred <- aa + bb[1] * x11 + bb[2] * x21 + bb[3] * 
  x31 + bb[4] * x41 + bb[5] * x51 + bb[6] * 
  x71 + bb[7] * x81 
 ypred <- ypred + cc[1] * x12 + cc[2] * x22 + cc[ 
  3] * x32 + cc[4] * x42 + cc[5] * x52 +  
  cc[6] * x72 + cc[7] * x82 #ypred 
#graphics.off() 
#win.graph() 
#plot(y, ypred) 
#win.graph() 
 dd <- c(lsfit(cbind(ypred, ypred^2, ypred^3), y 
  )$coef) 
 ypredf <- dd[1] + dd[2] * ypred + dd[3] * ypred^ 
  2 + dd[4] * ypred^3 #plot(y, ypredf) 
 correlation1 <- cor(y, ypred) 
 correlation2 <- cor(y, ypredf) 
 round(rbind(correlation1, correlation2), digits 
   = 6)  
 #calculate reliability index beta Tp=300 sec: 
 Ttmin<-301.1548 
 ymin <- log(Ttmin) 
 input <- c(600, 450, 250, 0.7, 0.6, 50, 0.6,  
  0.7) 
 constant <- aa + bb[1] * input[1] + bb[6] *  
  input[7] + bb[3] * input[3] 
 constant <- constant + bb[4] * input[4] + bb[5] * 
  input[5] 
 constant <- constant + cc[1] * input[1]^2 + cc[ 
  6] * input[7]^2 + cc[3] * input[3]^2 
 constant <- constant + cc[4] * input[4]^2 + cc[ 
  5] * input[5]^2 
 constant  
 #cc[2]*x[,2]^2+bb[2]*x[,2]+cc[7]*x[,8]^2+bb[7]*x[,8]+constant-yt=0 
 sigma1 <- 20 
 mu1 <- 450 
 sigma2 <- 0.1 
 mu2 <- 0.7 
 A7 <- cc[2] * sigma1^2 
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 B7 <- 2 * cc[2] * sigma1 * mu1 + bb[2] * sigma1 
 A8 <- cc[7] * sigma2^2 
 B8 <- 2 * cc[7] * sigma2 * mu2 + bb[7] * sigma2 
 C <- cc[2] * mu1^2 + bb[2] * mu1 + cc[7] * mu2^ 
  2 + bb[7] * mu2 + constant  
 #ymin=A7*u7^2+B7*u7+A8*u8^2+B8*u8+C standardized constraint function: 
#calculate lambda,beta 
 D0 <- 4 * (C - ymin) * A7^2 * A8^2 - 2 * B7^2 *  
  A7 * A8^2 - 2 * B8^2 * A8 * A7^2 + A7 *  
  A8^2 * B7^2 + A7^2 * A8 * B8^2 
 D1 <- 4 * (C - ymin) * (2 * A7 * A8^2 + 2 * A7^ 
  2 * A8) - 2 * B7^2 * (A8^2 + 2 * A7 *  
  A8) - 2 * B8^2 * (A7^2 + 2 * A7 * A8) +  
  2 * (A7 * A8 * B7^2 + A7 * A8 * B8^2) 
 D2 <- 4 * (C - ymin) * (A8^2 + A7^2 + 4 * A7 *  
  A8) - 2 * B7^2 * (2 * A8 + A7) - 2 * B8^ 
  2 * (2 * A7 + A8) + A7 * B7^2 + A8 * B8^ 
  2 
 D3 <- 4 * (C - ymin) * (2 * A7 + 2 * A8) - (2 *  
  B7^2 + 2 * B8^2) 
 D4 <- 4 * (C - ymin) 
 lambda <- Re(polyroot(c(D0, D1, D2, D3, D4))) 
 u7 <-  - B7/(2 * (lambda + A7)) 
 u8 <-  - B8/(2 * (lambda + A8)) 
 beta <- (u8^2 + u7^2)^(1/2) 
 round(rbind(beta, lambda), digits = 4)  
 #choose smallest beta 
 betas <- min(beta) 
 betas #Find design point: 
 delta <- (B8^2 - 4 * A8 * (A7 * U7^2 + B7 * U7 +  
  C - ymin))^(1/2) 
 U81 <- ( - B8 + delta)/(2 * A8) 
 U82 <- ( - B8 - delta)/(2 * A8) 
 U8L <- cbind(U82, U81) 
 U91 <- (betas^2 - U7^2)^(1/2) 
 U92 <-  - (betas^2 - U7^2)^(1/2) 
 U9L <- cbind(U92, U91) 
 U8fL <- cbind(U8L, U9L) 
 #graphics.off() 
 win.graph() 
 par(pty = "s") 
 matplot(U7, U8fL, col = 1, xlim = c(-10, 50),  
  ylim = c(-20, 40), type = "l", xlab = "u2", ylab = "u8") 
  
 U8U<-cbind(U8f,U8fL) 
 win.graph() 
 par(pty = "s") 
 matplot(U7, U8U, col = 1, xlim = c(-10, 40), ylim 
   = c(-10, 40), type ="l", xlab = "u2", ylab = "u8") 
 U8U<-cbind(U8f,U8fL) 
 win.graph() 
 par(pty = "s") 
 matplot(U7, U8U, col = 1, xlim = c(-5, 5), ylim 
   = c(-5, 5), type ="l", xlab = "u2", ylab = "u8") 
 
} 
 
 
 
 
 
 
StateU2S<-function(x, y) 
 
 
{ 
#StateU2S:lambda, beta,constraint,design point D; 
#x6 is ignored in U23: 
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#reslm:calculate the coefficients of X 
 x11 <- x[, 1] 
 x12 <- x11^2 
 x21 <- x[, 2] 
 x22 <- x21^2 
 x31 <- x[, 3] 
 x32 <- x31^2 
 x41 <- x[, 4] 
 x42 <- x41^2 
 x51 <- x[, 5] 
 x52 <- x51^2 
 x61 <- x[, 6] 
 x62 <- x61^2 
 x71 <- x[, 7] 
 x72 <- x71^2 
 x81 <- x[, 8] 
 x82 <- x81^2 
 res <- lm(y ~ x11 + x12 + x21 + x22 + x31 + x32 + 
  x41 + x42 + x51 + x52 + x71 + x72 + x81 + 
  x82) 
 reslm(x, y)$coef #calculate correlations: 
 aa <- reslm(x, y)$coef[1] 
 bb <- c(reslm(x, y)$coef[2], reslm(x, y)$coef[4 
  ], reslm(x, y)$coef[6], reslm(x, y)$ 
  coef[8]) 
 bb <- c(bb, reslm(x, y)$coef[10], reslm(x, y)$ 
  coef[12], reslm(x, y)$coef[14]) 
 cc <- c(reslm(x, y)$coef[3], reslm(x, y)$coef[5 
  ], reslm(x, y)$coef[7], reslm(x, y)$ 
  coef[9]) 
 cc <- c(cc, reslm(x, y)$coef[11], reslm(x, y)$ 
  coef[13], reslm(x, y)$coef[15]) 
 ypred <- aa + bb[1] * x11 + bb[2] * x21 + bb[3] * 
  x31 + bb[4] * x41 + bb[5] * x51 + bb[6] * 
  x71 + bb[7] * x81 
 ypred <- ypred + cc[1] * x12 + cc[2] * x22 + cc[ 
  3] * x32 + cc[4] * x42 + cc[5] * x52 +  
  cc[6] * x72 + cc[7] * x82 #ypred 
#graphics.off() 
#win.graph() 
#plot(y, ypred) 
#win.graph() 
 dd <- c(lsfit(cbind(ypred, ypred^2, ypred^3), y 
  )$coef) 
 ypredf <- dd[1] + dd[2] * ypred + dd[3] * ypred^ 
  2 + dd[4] * ypred^3 #plot(y, ypredf) 
 correlation1 <- cor(y, ypred) 
 correlation2 <- cor(y, ypredf) 
 round(rbind(correlation1, correlation2), digits 
   = 6)  
 #calculate reliability index beta: 
 ymin <- 330.9244 
 input <- c(600, 450, 250, 0.7, 0.6, 50, 0.6,  
  0.7) 
 constant <- aa + bb[1] * input[1] + bb[6] *  
  input[7] + bb[3] * input[3] 
 constant <- constant + bb[4] * input[4] + bb[5] * 
  input[5] 
 constant <- constant + cc[1] * input[1]^2 + cc[ 
  6] * input[7]^2 + cc[3] * input[3]^2 
 constant <- constant + cc[4] * input[4]^2 + cc[ 
  5] * input[5]^2 
 constant  
 #cc[2]*x[,2]^2+bb[2]*x[,2]+cc[7]*x[,8]^2+bb[7]*x[,8]+constant-yt=0 
 sigma1 <- 20 
 mu1 <- 450 
 sigma2 <- 0.1 
 mu2 <- 0.7 
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 A7 <- cc[2] * sigma1^2 
 B7 <- 2 * cc[2] * sigma1 * mu1 + bb[2] * sigma1 
 A8 <- cc[7] * sigma2^2 
 B8 <- 2 * cc[7] * sigma2 * mu2 + bb[7] * sigma2 
 C <- cc[2] * mu1^2 + bb[2] * mu1 + cc[7] * mu2^ 
  2 + bb[7] * mu2 + constant  
 #ymin=A7*u7^2+B7*u7+A8*u8^2+B8*u8+C standardized constraint function: 
#calculate lambda,beta 
 D0 <- 4 * (C - ymin) * A7^2 * A8^2 - 2 * B7^2 *  
  A7 * A8^2 - 2 * B8^2 * A8 * A7^2 + A7 *  
  A8^2 * B7^2 + A7^2 * A8 * B8^2 
 D1 <- 4 * (C - ymin) * (2 * A7 * A8^2 + 2 * A7^ 
  2 * A8) - 2 * B7^2 * (A8^2 + 2 * A7 *  
  A8) - 2 * B8^2 * (A7^2 + 2 * A7 * A8) +  
  2 * (A7 * A8 * B7^2 + A7 * A8 * B8^2) 
 D2 <- 4 * (C - ymin) * (A8^2 + A7^2 + 4 * A7 *  
  A8) - 2 * B7^2 * (2 * A8 + A7) - 2 * B8^ 
  2 * (2 * A7 + A8) + A7 * B7^2 + A8 * B8^ 
  2 
 D3 <- 4 * (C - ymin) * (2 * A7 + 2 * A8) - (2 *  
  B7^2 + 2 * B8^2) 
 D4 <- 4 * (C - ymin) 
 lambda <- Re(polyroot(c(D0, D1, D2, D3, D4))) 
 u7 <-  - B7/(2 * (lambda + A7)) 
 u8 <-  - B8/(2 * (lambda + A8)) 
 beta <- (u8^2 + u7^2)^(1/2) 
 round(rbind(beta, lambda), digits = 4)  
 #choose smallest beta 
 betas <- min(beta) 
 betas #Find design point: 
 U7 <- seq(-5, 35, 0.1) 
 delta <- (B8^2 - 4 * A8 * (A7 * U7^2 + B7 * U7 +  
  C - ymin))^(1/2) 
 U81 <- ( - B8 + delta)/(2 * A8) 
 U82 <- ( - B8 - delta)/(2 * A8) 
 U8 <- cbind(U82, U81) 
 U91 <- (betas^2 - U7^2)^(1/2) 
 U92 <-  - (betas^2 - U7^2)^(1/2) 
 U9 <- cbind(U92, U91) 
 U8f <- cbind(U8, U9) 
 graphics.off() 
 win.graph() 
 par(pty = "s") 
 matplot(U7, U8f, col = 1, xlim = c(-10, 50),  
  ylim = c(-20, 40), type = "l", xlab = "u2", ylab = "u8") 
  
  
#StateU2L:lambda, beta,constraint,design point D; 
#x6 is ignored in U13 with logorithmic fit to Tt: 
#reslm:calculate the coefficients of X 
 x<-U23[,1:8] 
 y<-log(U23[,9]) 
 x11 <- x[, 1] 
 x12 <- x11^2 
 x21 <- x[, 2] 
 x22 <- x21^2 
 x31 <- x[, 3] 
 x32 <- x31^2 
 x41 <- x[, 4] 
 x42 <- x41^2 
 x51 <- x[, 5] 
 x52 <- x51^2 
 x61 <- x[, 6] 
 x62 <- x61^2 
 x71 <- x[, 7] 
 x72 <- x71^2 
 x81 <- x[, 8] 
 x82 <- x81^2 
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 res <- lm(y ~ x11 + x12 + x21 + x22 + x31 + x32 + 
  x41 + x42 + x51 + x52 + x71 + x72 + x81 + 
  x82) 
 reslm(x, y)$coef #calculate correlations: 
 aa <- reslm(x, y)$coef[1] 
 bb <- c(reslm(x, y)$coef[2], reslm(x, y)$coef[4 
  ], reslm(x, y)$coef[6], reslm(x, y)$ 
  coef[8]) 
 bb <- c(bb, reslm(x, y)$coef[10], reslm(x, y)$ 
  coef[12], reslm(x, y)$coef[14]) 
 cc <- c(reslm(x, y)$coef[3], reslm(x, y)$coef[5 
  ], reslm(x, y)$coef[7], reslm(x, y)$ 
  coef[9]) 
 cc <- c(cc, reslm(x, y)$coef[11], reslm(x, y)$ 
  coef[13], reslm(x, y)$coef[15]) 
 ypred <- aa + bb[1] * x11 + bb[2] * x21 + bb[3] * 
  x31 + bb[4] * x41 + bb[5] * x51 + bb[6] * 
  x71 + bb[7] * x81 
 ypred <- ypred + cc[1] * x12 + cc[2] * x22 + cc[ 
  3] * x32 + cc[4] * x42 + cc[5] * x52 +  
  cc[6] * x72 + cc[7] * x82 #ypred 
#graphics.off() 
#win.graph() 
#plot(y, ypred) 
#win.graph() 
 dd <- c(lsfit(cbind(ypred, ypred^2, ypred^3), y 
  )$coef) 
 ypredf <- dd[1] + dd[2] * ypred + dd[3] * ypred^ 
  2 + dd[4] * ypred^3 #plot(y, ypredf) 
 correlation1 <- cor(y, ypred) 
 correlation2 <- cor(y, ypredf) 
 round(rbind(correlation1, correlation2), digits 
   = 6)  
 #calculate reliability index beta Tp=300 sec: 
 Ttmin<-321.1342 
 ymin <- log(Ttmin) 
 input <- c(600, 450, 250, 0.7, 0.6, 50, 0.6,  
  0.7) 
 constant <- aa + bb[1] * input[1] + bb[6] *  
  input[7] + bb[3] * input[3] 
 constant <- constant + bb[4] * input[4] + bb[5] * 
  input[5] 
 constant <- constant + cc[1] * input[1]^2 + cc[ 
  6] * input[7]^2 + cc[3] * input[3]^2 
 constant <- constant + cc[4] * input[4]^2 + cc[ 
  5] * input[5]^2 
 constant  
 #cc[2]*x[,2]^2+bb[2]*x[,2]+cc[7]*x[,8]^2+bb[7]*x[,8]+constant-yt=0 
 sigma1 <- 20 
 mu1 <- 450 
 sigma2 <- 0.1 
 mu2 <- 0.7 
 A7 <- cc[2] * sigma1^2 
 B7 <- 2 * cc[2] * sigma1 * mu1 + bb[2] * sigma1 
 A8 <- cc[7] * sigma2^2 
 B8 <- 2 * cc[7] * sigma2 * mu2 + bb[7] * sigma2 
 C <- cc[2] * mu1^2 + bb[2] * mu1 + cc[7] * mu2^ 
  2 + bb[7] * mu2 + constant  
 #ymin=A7*u7^2+B7*u7+A8*u8^2+B8*u8+C standardized constraint function: 
#calculate lambda,beta 
 D0 <- 4 * (C - ymin) * A7^2 * A8^2 - 2 * B7^2 *  
  A7 * A8^2 - 2 * B8^2 * A8 * A7^2 + A7 *  
  A8^2 * B7^2 + A7^2 * A8 * B8^2 
 D1 <- 4 * (C - ymin) * (2 * A7 * A8^2 + 2 * A7^ 
  2 * A8) - 2 * B7^2 * (A8^2 + 2 * A7 *  
  A8) - 2 * B8^2 * (A7^2 + 2 * A7 * A8) +  
  2 * (A7 * A8 * B7^2 + A7 * A8 * B8^2) 
 D2 <- 4 * (C - ymin) * (A8^2 + A7^2 + 4 * A7 *  
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  A8) - 2 * B7^2 * (2 * A8 + A7) - 2 * B8^ 
  2 * (2 * A7 + A8) + A7 * B7^2 + A8 * B8^ 
  2 
 D3 <- 4 * (C - ymin) * (2 * A7 + 2 * A8) - (2 *  
  B7^2 + 2 * B8^2) 
 D4 <- 4 * (C - ymin) 
 lambda <- Re(polyroot(c(D0, D1, D2, D3, D4))) 
 u7 <-  - B7/(2 * (lambda + A7)) 
 u8 <-  - B8/(2 * (lambda + A8)) 
 beta <- (u8^2 + u7^2)^(1/2) 
 round(rbind(beta, lambda), digits = 4)  
 #choose smallest beta 
 betas <- min(beta) 
 betas #Find design point: 
 delta <- (B8^2 - 4 * A8 * (A7 * U7^2 + B7 * U7 +  
  C - ymin))^(1/2) 
 U81 <- ( - B8 + delta)/(2 * A8) 
 U82 <- ( - B8 - delta)/(2 * A8) 
 U8L <- cbind(U82, U81) 
 U91 <- (betas^2 - U7^2)^(1/2) 
 U92 <-  - (betas^2 - U7^2)^(1/2) 
 U9L <- cbind(U92, U91) 
 U8fL <- cbind(U8L, U9L) 
 #graphics.off() 
 win.graph() 
 par(pty = "s") 
 matplot(U7, U8fL, col = 1, xlim = c(-10, 50),  
  ylim = c(-10, 50), type = "l", xlab = "u2", ylab = "u8") 
 U8U<-cbind(U8f,U8fL) 
 win.graph() 
 par(pty = "s") 
 matplot(U7, U8U, col = 1, xlim = c(-10, 40), ylim 
   = c(-10, 40), type ="l", xlab = "u2", ylab = "u8") 
 U8U<-cbind(U8f,U8fL) 
 win.graph() 
 par(pty = "s") 
 matplot(U7, U8U, col = 1, xlim = c(-5, 5), ylim 
   = c(-5, 5), type ="l", xlab = "u2", ylab = "u8") 
 
} 
 
 
 
 
 
 
StateU3S<-function(x, y) 
 
 
{ 
#StateU3S:calculate U33:lambda,beta constraint,design point D x4~6 are 

ignored: 
 x11 <- x[, 1] 
 x12 <- x11^2 
 x21 <- x[, 2] 
 x22 <- x21^2 
 x31 <- x[, 3] 
 x32 <- x31^2 
 x71 <- x[, 7] 
 x72 <- x71^2 
 x81 <- x[, 8] 
 x82 <- x81^2 
 aa <- resUlm(x, y)$coef[1] 
 bb <- c(resUlm(x, y)$coef[2], resUlm(x, y)$coef[ 
  4], resUlm(x, y)$coef[6], resUlm(x, y)$ 
  coef[8], resUlm(x, y)$coef[10]) 
 cc <- c(resUlm(x, y)$coef[3], resUlm(x, y)$coef[ 
  5], resUlm(x, y)$coef[7], resUlm(x, y)$ 
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  coef[9], resUlm(x, y)$coef[11]) 
 ypred <- aa + bb[1] * x11 + bb[2] * x21 + bb[3] * 
  x31 + bb[4] * x71 + bb[5] * x81 
 ypred <- ypred + cc[1] * x12 + cc[2] * x22 + cc[ 
  3] * x32 + cc[4] * x72 + cc[5] * x82  
 #ypred 
 graphics.off() 
 #win.graph() 
 #plot(y, ypred) 
 #win.graph() 
 dd <- c(lsfit(cbind(ypred, ypred^2, ypred^3), y 
  )$coef) 
 ypredf <- dd[1] + dd[2] * ypred + dd[3] * ypred^ 
  2 + dd[4] * ypred^3 
 #plot(y, ypredf) 
 correlation1 <- cor(y, ypred) 
 correlation2 <- cor(y, ypredf) 
 round(rbind(correlation1, correlation2), digits 
   = 6)  
 #calculate reliability index beta: 
 ymin <- 237.3830 
 input <- c(600, 450, 250, 0.7, 0.6, 50, 0.6,  
  0.7) 
 constant <- aa + bb[1] * input[1] + bb[3] *  
  input[3] + bb[4] * input[7] 
 constant <- constant + cc[1] * input[1]^2 + cc[ 
  3] * input[3]^2 + cc[4] * input[7]^2 
 constant  
 #cc[2]*x[,2]^2+bb[2]*x[2]+cc[5]*x[,8]^2+bb[5]*x[,8]+constant-ymin=0 
 sigma1 <- 20 
 mu1 <- 450 
 sigma2 <- 0.1 
 mu2 <- 0.7 
 A7 <- cc[2] * sigma1^2 
 B7 <- 2 * cc[2] * sigma1 * mu1 + bb[2] * sigma1 
 A8 <- cc[5] * sigma2^2 
 B8 <- 2 * cc[5] * sigma2 * mu2 + bb[5] * sigma2 
 C <- cc[2] * mu1^2 + bb[2] * mu1 + cc[5] * mu2^ 
  2 + bb[5] * mu2 + constant  
 #ymin=A7*u7^2+B7*u7+A8*u8^2+B8*u8+C standardized constraint function: 
#calculate lambda,beta 
 D0 <- 4 * (C - ymin) * A7^2 * A8^2 - 2 * B7^2 *  
  A7 * A8^2 - 2 * B8^2 * A8 * A7^2 + A7 *  
  A8^2 * B7^2 + A7^2 * A8 * B8^2 
 D1 <- 4 * (C - ymin) * (2 * A7 * A8^2 + 2 * A7^ 
  2 * A8) - 2 * B7^2 * (A8^2 + 2 * A7 *  
  A8) - 2 * B8^2 * (A7^2 + 2 * A7 * A8) +  
  2 * (A7 * A8 * B7^2 + A7 * A8 * B8^2) 
 D2 <- 4 * (C - ymin) * (A8^2 + A7^2 + 4 * A7 *  
  A8) - 2 * B7^2 * (2 * A8 + A7) - 2 * B8^ 
  2 * (2 * A7 + A8) + A7 * B7^2 + A8 * B8^ 
  2 
 D3 <- 4 * (C - ymin) * (2 * A7 + 2 * A8) - (2 *  
  B7^2 + 2 * B8^2) 
 D4 <- 4 * (C - ymin) 
 lambda <- Re(polyroot(c(D0, D1, D2, D3, D4))) 
 u7 <-  - B7/(2 * (lambda + A7)) 
 u8 <-  - B8/(2 * (lambda + A8)) 
 beta <- (u8^2 + u7^2)^(1/2) 
 round(rbind(lambda, beta), digits = 8)  
 #choose smallest beta 
 betas <- min(beta) 
 betas #Find design point: 
 U7 <- seq(-5, 35, 0.1) 
 delta <- (B8^2 - 4 * A8 * (A7 * U7^2 + B7 * U7 +  
  C - ymin))^(1/2) 
 U81 <- ( - B8 + delta)/(2 * A8) 
 U82 <- ( - B8 - delta)/(2 * A8) 
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 U8 <- cbind(U82, U81) 
 U91 <- (betas^2 - U7^2)^(1/2) 
 U92 <-  - (betas^2 - U7^2)^(1/2) 
 U9 <- cbind(U91, U92) 
 U8f <- cbind(U8, U9) #win.graph() 
#matplot(U7, U9,xlim = c(-15, 15), ylim = c(-15, 15)) 
#win.graph() 
#matplot(U7, U8,xlim = c(-15, 15), ylim = c(-15, 15)) 
 win.graph() 
 par(pty = "s") 
 matplot(U7, U8f, col = 1, xlim = c(-10, 50),  
  ylim = c(-10, 50), type = "l", xlab = "u2", ylab = "u8") 
  
#StateU3:calculate U33:lambda,beta constraint,design point D x4~6 are 

ignored: 
#with logorithmic fit to Tt: 
 x<-U33[,1:8] 
 y<-log(U33[,9])  
 x11 <- x[, 1] 
 x12 <- x11^2 
 x21 <- x[, 2] 
 x22 <- x21^2 
 x31 <- x[, 3] 
 x32 <- x31^2 
 x71 <- x[, 7] 
 x72 <- x71^2 
 x81 <- x[, 8] 
 x82 <- x81^2 
 aa <- resUlm(x, y)$coef[1] 
 bb <- c(resUlm(x, y)$coef[2], resUlm(x, y)$coef[ 
  4], resUlm(x, y)$coef[6], resUlm(x, y)$ 
  coef[8], resUlm(x, y)$coef[10]) 
 cc <- c(resUlm(x, y)$coef[3], resUlm(x, y)$coef[ 
  5], resUlm(x, y)$coef[7], resUlm(x, y)$ 
  coef[9], resUlm(x, y)$coef[11]) 
 ypred <- aa + bb[1] * x11 + bb[2] * x21 + bb[3] * 
  x31 + bb[4] * x71 + bb[5] * x81 
 ypred <- ypred + cc[1] * x12 + cc[2] * x22 + cc[ 
  3] * x32 + cc[4] * x72 + cc[5] * x82  
 #ypred 
 #graphics.off() 
 #win.graph() 
 #plot(y, ypred) 
 #win.graph() 
 dd <- c(lsfit(cbind(ypred, ypred^2, ypred^3), y 
  )$coef) 
 ypredf <- dd[1] + dd[2] * ypred + dd[3] * ypred^ 
  2 + dd[4] * ypred^3 
 #plot(y, ypredf) 
 correlation1 <- cor(y, ypred) 
 correlation2 <- cor(y, ypredf) 
 round(rbind(correlation1, correlation2), digits 
   = 6)  
 #calculate reliability index beta Tp=230: 
 Ttmin<-230.9052 
 ymin <- log(Ttmin) 
 input <- c(600, 450, 250, 0.7, 0.6, 50, 0.6,  
  0.7) 
 constant <- aa + bb[1] * input[1] + bb[3] *  
  input[3] + bb[4] * input[7] 
 constant <- constant + cc[1] * input[1]^2 + cc[ 
  3] * input[3]^2 + cc[4] * input[7]^2 
 constant  
 #cc[2]*x[,2]^2+bb[2]*x[2]+cc[5]*x[,8]^2+bb[5]*x[,8]+constant-ymin=0 
 sigma1 <- 20 
 mu1 <- 450 
 sigma2 <- 0.1 
 mu2 <- 0.7 
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 A7 <- cc[2] * sigma1^2 
 B7 <- 2 * cc[2] * sigma1 * mu1 + bb[2] * sigma1 
 A8 <- cc[5] * sigma2^2 
 B8 <- 2 * cc[5] * sigma2 * mu2 + bb[5] * sigma2 
 C <- cc[2] * mu1^2 + bb[2] * mu1 + cc[5] * mu2^ 
  2 + bb[5] * mu2 + constant  
 #ymin=A7*u7^2+B7*u7+A8*u8^2+B8*u8+C standardized constraint function: 
#calculate lambda,beta 
 D0 <- 4 * (C - ymin) * A7^2 * A8^2 - 2 * B7^2 *  
  A7 * A8^2 - 2 * B8^2 * A8 * A7^2 + A7 *  
  A8^2 * B7^2 + A7^2 * A8 * B8^2 
 D1 <- 4 * (C - ymin) * (2 * A7 * A8^2 + 2 * A7^ 
  2 * A8) - 2 * B7^2 * (A8^2 + 2 * A7 *  
  A8) - 2 * B8^2 * (A7^2 + 2 * A7 * A8) +  
  2 * (A7 * A8 * B7^2 + A7 * A8 * B8^2) 
 D2 <- 4 * (C - ymin) * (A8^2 + A7^2 + 4 * A7 *  
  A8) - 2 * B7^2 * (2 * A8 + A7) - 2 * B8^ 
  2 * (2 * A7 + A8) + A7 * B7^2 + A8 * B8^ 
  2 
 D3 <- 4 * (C - ymin) * (2 * A7 + 2 * A8) - (2 *  
  B7^2 + 2 * B8^2) 
 D4 <- 4 * (C - ymin) 
 lambda <- Re(polyroot(c(D0, D1, D2, D3, D4))) 
 u7 <-  - B7/(2 * (lambda + A7)) 
 u8 <-  - B8/(2 * (lambda + A8)) 
 beta <- (u8^2 + u7^2)^(1/2) 
 round(rbind(lambda, beta), digits = 8)  
 #choose smallest beta 
 betas <- min(beta) 
 betas #Find design point: 
 delta <- (B8^2 - 4 * A8 * (A7 * U7^2 + B7 * U7 +  
  C - ymin))^(1/2) 
 U81 <- ( - B8 + delta)/(2 * A8) 
 U82 <- ( - B8 - delta)/(2 * A8) 
 U8 <- cbind(U82, U81) 
 U91 <- (betas^2 - U7^2)^(1/2) 
 U92 <-  - (betas^2 - U7^2)^(1/2) 
 U9 <- cbind(U91, U92) 
 U8fL <- cbind(U8, U9) #win.graph() 
#matplot(U7, U9,xlim = c(-15, 15), ylim = c(-15, 15)) 
#win.graph() 
#matplot(U7, U8,xlim = c(-15, 15), ylim = c(-15, 15)) 
 win.graph() 
 par(pty = "s") 
 matplot(U7, U8fL, col = 1, xlim = c(-5, 35),  
  ylim = c(-5, 35), type = "l", xlab = "u2", ylab = "u8") 
  
 U8U <- cbind(U8f, U8fL) 
 win.graph() 
 par(pty = "s") 
 matplot(U7, U8U, col = 1, xlim = c(-5, 35), ylim 
   = c(-5, 35), type =  "l", xlab = "u2", ylab = "u8") 
 
 win.graph() 
 par(pty = "s") 
 matplot(U7, U8U, col = 1, xlim = c(-5, 5), ylim 
   = c(-5, 5), type =  "l", xlab = "u2", ylab = "u8") 
} 
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StateU4S<-function(x, y) 
 
 
{ 
#StateU4S:calculate U33:lambda,beta constraint,design point D x4~6 are 

ignored: 
 x11 <- x[, 1] 
 x12 <- x11^2 
 x21 <- x[, 2] 
 x22 <- x21^2 
 x31 <- x[, 3] 
 x32 <- x31^2 
 x71 <- x[, 7] 
 x72 <- x71^2 
 x81 <- x[, 8] 
 x82 <- x81^2 
 aa <- resUlm(x, y)$coef[1] 
 bb <- c(resUlm(x, y)$coef[2], resUlm(x, y)$coef[ 
  4], resUlm(x, y)$coef[6], resUlm(x, y)$ 
  coef[8], resUlm(x, y)$coef[10]) 
 cc <- c(resUlm(x, y)$coef[3], resUlm(x, y)$coef[ 
  5], resUlm(x, y)$coef[7], resUlm(x, y)$ 
  coef[9], resUlm(x, y)$coef[11]) 
 ypred <- aa + bb[1] * x11 + bb[2] * x21 + bb[3] * 
  x31 + bb[4] * x71 + bb[5] * x81 
 ypred <- ypred + cc[1] * x12 + cc[2] * x22 + cc[ 
  3] * x32 + cc[4] * x72 + cc[5] * x82  
 #ypred 
 graphics.off() 
 #win.graph() 
 #plot(y, ypred) 
 #win.graph() 
 dd <- c(lsfit(cbind(ypred, ypred^2, ypred^3), y 
  )$coef) 
 ypredf <- dd[1] + dd[2] * ypred + dd[3] * ypred^ 
  2 + dd[4] * ypred^3 
 #plot(y, ypredf) 
 correlation1 <- cor(y, ypred) 
 correlation2 <- cor(y, ypredf) 
 round(rbind(correlation1, correlation2), digits 
   = 6)  
 #calculate reliability index beta: 
 ymin <- 257.1608 
 input <- c(600, 450, 250, 0.7, 0.6, 50, 0.6,  
  0.7) 
 constant <- aa + bb[1] * input[1] + bb[3] *  
  input[3] + bb[4] * input[7] 
 constant <- constant + cc[1] * input[1]^2 + cc[ 
  3] * input[3]^2 + cc[4] * input[7]^2 
 constant  
 #cc[2]*x[,2]^2+bb[2]*x[2]+cc[5]*x[,8]^2+bb[5]*x[,8]+constant-ymin=0 
 sigma1 <- 20 
 mu1 <- 450 
 sigma2 <- 0.1 
 mu2 <- 0.7 
 A7 <- cc[2] * sigma1^2 
 B7 <- 2 * cc[2] * sigma1 * mu1 + bb[2] * sigma1 
 A8 <- cc[5] * sigma2^2 
 B8 <- 2 * cc[5] * sigma2 * mu2 + bb[5] * sigma2 
 C <- cc[2] * mu1^2 + bb[2] * mu1 + cc[5] * mu2^ 
  2 + bb[5] * mu2 + constant  
 #ymin=A7*u7^2+B7*u7+A8*u8^2+B8*u8+C standardized constraint function: 
#calculate lambda,beta 
 D0 <- 4 * (C - ymin) * A7^2 * A8^2 - 2 * B7^2 *  
  A7 * A8^2 - 2 * B8^2 * A8 * A7^2 + A7 *  
  A8^2 * B7^2 + A7^2 * A8 * B8^2 
 D1 <- 4 * (C - ymin) * (2 * A7 * A8^2 + 2 * A7^ 
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  2 * A8) - 2 * B7^2 * (A8^2 + 2 * A7 *  
  A8) - 2 * B8^2 * (A7^2 + 2 * A7 * A8) +  
  2 * (A7 * A8 * B7^2 + A7 * A8 * B8^2) 
 D2 <- 4 * (C - ymin) * (A8^2 + A7^2 + 4 * A7 *  
  A8) - 2 * B7^2 * (2 * A8 + A7) - 2 * B8^ 
  2 * (2 * A7 + A8) + A7 * B7^2 + A8 * B8^ 
  2 
 D3 <- 4 * (C - ymin) * (2 * A7 + 2 * A8) - (2 *  
  B7^2 + 2 * B8^2) 
 D4 <- 4 * (C - ymin) 
 lambda <- Re(polyroot(c(D0, D1, D2, D3, D4))) 
 u7 <-  - B7/(2 * (lambda + A7)) 
 u8 <-  - B8/(2 * (lambda + A8)) 
 beta <- (u8^2 + u7^2)^(1/2) 
 round(rbind(lambda, beta), digits = 8)  
 #choose smallest beta 
 betas <- min(beta) 
 betas #Find design point: 
 U7 <- seq(-5, 35, 0.1) 
 delta <- (B8^2 - 4 * A8 * (A7 * U7^2 + B7 * U7 +  
  C - ymin))^(1/2) 
 U81 <- ( - B8 + delta)/(2 * A8) 
 U82 <- ( - B8 - delta)/(2 * A8) 
 U8 <- cbind(U82, U81) 
 U91 <- (betas^2 - U7^2)^(1/2) 
 U92 <-  - (betas^2 - U7^2)^(1/2) 
 U9 <- cbind(U91, U92) 
 U8f <- cbind(U8, U9) #win.graph() 
#matplot(U7, U9,xlim = c(-15, 15), ylim = c(-15, 15)) 
#win.graph() 
#matplot(U7, U8,xlim = c(-15, 15), ylim = c(-15, 15)) 
 win.graph() 
 par(pty = "s") 
 matplot(U7, U8f, col = 1, xlim = c(-10, 50),  
  ylim = c(-10, 50), type = "l", xlab = "u2", ylab = "u8") 
  
#StateU4:calculate U33:lambda,beta constraint,design point D x4~6 are 

ignored: 
#with logorithmic fit to Tt: 
 x<-U43[,1:8] 
 y<-log(U43[,9])  
 x11 <- x[, 1] 
 x12 <- x11^2 
 x21 <- x[, 2] 
 x22 <- x21^2 
 x31 <- x[, 3] 
 x32 <- x31^2 
 x71 <- x[, 7] 
 x72 <- x71^2 
 x81 <- x[, 8] 
 x82 <- x81^2 
 aa <- resUlm(x, y)$coef[1] 
 bb <- c(resUlm(x, y)$coef[2], resUlm(x, y)$coef[ 
  4], resUlm(x, y)$coef[6], resUlm(x, y)$ 
  coef[8], resUlm(x, y)$coef[10]) 
 cc <- c(resUlm(x, y)$coef[3], resUlm(x, y)$coef[ 
  5], resUlm(x, y)$coef[7], resUlm(x, y)$ 
  coef[9], resUlm(x, y)$coef[11]) 
 ypred <- aa + bb[1] * x11 + bb[2] * x21 + bb[3] * 
  x31 + bb[4] * x71 + bb[5] * x81 
 ypred <- ypred + cc[1] * x12 + cc[2] * x22 + cc[ 
  3] * x32 + cc[4] * x72 + cc[5] * x82  
 #ypred 
 #graphics.off() 
 #win.graph() 
 #plot(y, ypred) 
 #win.graph() 
 dd <- c(lsfit(cbind(ypred, ypred^2, ypred^3), y 
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  )$coef) 
 ypredf <- dd[1] + dd[2] * ypred + dd[3] * ypred^ 
  2 + dd[4] * ypred^3 
 #plot(y, ypredf) 
 correlation1 <- cor(y, ypred) 
 correlation2 <- cor(y, ypredf) 
 round(rbind(correlation1, correlation2), digits 
   = 6)  
 #calculate reliability index beta Tp=230: 
 Ttmin<-250.6776 
 ymin <- log(Ttmin) 
 input <- c(600, 450, 250, 0.7, 0.6, 50, 0.6,  
  0.7) 
 constant <- aa + bb[1] * input[1] + bb[3] *  
  input[3] + bb[4] * input[7] 
 constant <- constant + cc[1] * input[1]^2 + cc[ 
  3] * input[3]^2 + cc[4] * input[7]^2 
 constant  
 #cc[2]*x[,2]^2+bb[2]*x[2]+cc[5]*x[,8]^2+bb[5]*x[,8]+constant-ymin=0 
 sigma1 <- 20 
 mu1 <- 450 
 sigma2 <- 0.1 
 mu2 <- 0.7 
 A7 <- cc[2] * sigma1^2 
 B7 <- 2 * cc[2] * sigma1 * mu1 + bb[2] * sigma1 
 A8 <- cc[5] * sigma2^2 
 B8 <- 2 * cc[5] * sigma2 * mu2 + bb[5] * sigma2 
 C <- cc[2] * mu1^2 + bb[2] * mu1 + cc[5] * mu2^ 
  2 + bb[5] * mu2 + constant  
 #ymin=A7*u7^2+B7*u7+A8*u8^2+B8*u8+C standardized constraint function: 
#calculate lambda,beta 
 D0 <- 4 * (C - ymin) * A7^2 * A8^2 - 2 * B7^2 *  
  A7 * A8^2 - 2 * B8^2 * A8 * A7^2 + A7 *  
  A8^2 * B7^2 + A7^2 * A8 * B8^2 
 D1 <- 4 * (C - ymin) * (2 * A7 * A8^2 + 2 * A7^ 
  2 * A8) - 2 * B7^2 * (A8^2 + 2 * A7 *  
  A8) - 2 * B8^2 * (A7^2 + 2 * A7 * A8) +  
  2 * (A7 * A8 * B7^2 + A7 * A8 * B8^2) 
 D2 <- 4 * (C - ymin) * (A8^2 + A7^2 + 4 * A7 *  
  A8) - 2 * B7^2 * (2 * A8 + A7) - 2 * B8^ 
  2 * (2 * A7 + A8) + A7 * B7^2 + A8 * B8^ 
  2 
 D3 <- 4 * (C - ymin) * (2 * A7 + 2 * A8) - (2 *  
  B7^2 + 2 * B8^2) 
 D4 <- 4 * (C - ymin) 
 lambda <- Re(polyroot(c(D0, D1, D2, D3, D4))) 
 u7 <-  - B7/(2 * (lambda + A7)) 
 u8 <-  - B8/(2 * (lambda + A8)) 
 beta <- (u8^2 + u7^2)^(1/2) 
 round(rbind(lambda, beta), digits = 8)  
 #choose smallest beta 
 betas <- min(beta) 
 betas #Find design point: 
 delta <- (B8^2 - 4 * A8 * (A7 * U7^2 + B7 * U7 +  
  C - ymin))^(1/2) 
 U81 <- ( - B8 + delta)/(2 * A8) 
 U82 <- ( - B8 - delta)/(2 * A8) 
 U8 <- cbind(U82, U81) 
 U91 <- (betas^2 - U7^2)^(1/2) 
 U92 <-  - (betas^2 - U7^2)^(1/2) 
 U9 <- cbind(U91, U92) 
 U8fL <- cbind(U8, U9) #win.graph() 
#matplot(U7, U9,xlim = c(-15, 15), ylim = c(-15, 15)) 
#win.graph() 
#matplot(U7, U8,xlim = c(-15, 15), ylim = c(-15, 15)) 
 win.graph() 
 par(pty = "s") 
 matplot(U7, U8fL, col = 1, xlim = c(-5, 35),  
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  ylim = c(-5, 35), type = "l", xlab = "u2", ylab = "u8") 
  
 U8U <- cbind(U8f, U8fL) 
 win.graph() 
 par(pty = "s") 
 matplot(U7, U8U, col = 1, xlim = c(-5, 35), ylim 
   = c(-5, 35), type =  "l", xlab = "u2", ylab = "u8") 
 
 win.graph() 
 par(pty = "s") 
 matplot(U7, U8U, col = 1, xlim = c(-5, 5), ylim 
   = c(-5, 5), type =  "l", xlab = "u2", ylab = "u8") 
} 
 
 
 
 
 
 
 
 
 
 
 
 
 


