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Abstract

The use of multiple antennas at the transmitter as well as at the receiver can greatly

improve the capacity of a wireless link when operating in a rich scattering environment.

In such an arrangement all transmitting antennas radiate in the same frequency band

so the overall spectral efficiency becomes very high. Such a multiple antenna scheme,

popularly known as Multiple Input Multiple Output (MIMO) has potential application

in wireless local area networks (WLAN) and cellular micro-cells. One reason is that the

WLANs and other short range wireless systems often operate in an indoor environment,

which offers rich scattering. The other reason is the demand for higher data rates in

cellular and WLAN systems to cater for multimedia services. Recently researchers have

proposed different architectures for materializing the potential of the MIMO scheme.

VBLAST (Vertical-Bell Labs Space Time) is a popular architecture that will play an

important role in future standardizations. Furthermore, different decoding methods

have been proposed for VBLAST. The SVD (Singular Value Decomposition) based

system is envisioned as a highly effective MIMO technique in a TDD (Time Division

Duplex) framework. Such a system operates by adapting the constellation size across

different subchannels.

In this work we study the VBLAST and SVD architectures and compare the perfor-

mance and computing power requirement of these architectures. Also in this study a

new efficient decoding method for the VBLAST architecture is proposed. The original

VBLAST decoding method relies on the repetitive computation of the pseudoinverse

xi



xii

of the channel matrix. Alternatively, there are methods based on the QR decomposi-

tion, the matrix square root etc. Our new decoding method is based on a relatively

less known matrix decomposition, the Polar Decomposition. The new method requires

less computation and has several other advantages like the possibility of incremental

updates, channel rank tracking, etc. We consider three different types of channels:

IID random, slow fading and measured channels. The entire work is simulated in the

MATLAB environment.

The main contribution of this work includes: a comparative study and a head to

head comparison of the VBLAST and SVD-based MIMO systems. The application of

adaptive modulation in the SVD-based system and the introduction of a new efficient

decoding method for the VBLAST system are also included. Simulation results are

reported with comments and conclusions.
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Chapter 1

Overview of the Thesis

This chapter gives an overview of the contents of this thesis. The chapters of interest

are the following:

• Chapter 1 Overview of the thesis

• Chapter 2 Introduction: Chapter two starts by discussing the characteristics

of the radio channel such as attenuation, multipath, the Doppler effect and fad-

ing. Transmit diversity techniques are introduced and different techniques are

discussed briefly. A short paragraph shows how adaptive modulation techniques

can counter fading. Information theoretic terms such as entropy, mutual infor-

mation and capacity are elaborated. An introduction to the MIMO scheme is

given followed by the calculation of the theoretical capacity. Power control issues

are discussed. The definitions of outage capacity and system throughput, the

practical ways of measuring capacity, are given. Some simulation results are then

shown. Most of the concepts presented in this chapter are known.

• Chapter 3 Bell Labs Space Time Architecture: This chapter deals with

1
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the aspects of the VBLAST architecture. An introduction to the VBLAST ar-

chitecture is given followed by its operation. The detection method, nulling,

interference cancellation, and optimal ordering are discussed thoroughly. The

decoding algorithm is studied, and an exact unreported complexity analysis of

the decoding algorithm is done. Then it is shown how the QR decomposition

can be used to decode VBLAST signals. Benefits of forward and backward

sweeps are considered, including ordering for optimal detection. A calculation of

complexity follows. The chapter ends with some simulation results showing the

performances of the original VBLAST and the QR method.

• Chapter 4 New Detection Method for VBLAST: One of the two major

contributions of the present work and this thesis is in this chapter. The chapter

introduces a new detection method for the VBLAST system using a relatively

less known matrix decomposition, the Polar Decomposition (PD). The Polar

Decomposition is introduced and Cholesky and QR factorizations are used to

decode the VBLAST signals. The issue of optimal ordering is also discussed.

The properties of the PD are discussed, and then it is shown how these properties

are conducive to the VBLAST detection. Algorithms for the PD are reviewed

with complexity analysis. The chapter ends with some simulation results and

comments.

• Chapter 5 Singular Value Decomposition Based MIMO Systems: This
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chapter introduces the Singular Value Decomposition (SVD)-based MIMO sys-

tem. Such systems are suitable for Time Division Duplex (TDD) mode of com-

munication and can get very close to the theoretical capacity limit. The detailed

architecture and properties of the SVD system are discussed. The SVD produces

parallel subchannels of different gains and adaptive modulation is used across

them. Power control issues are also addressed. The chapter concludes with

some simulation results and comments.

• Chapter 6 Performance Comparison Results: This chapter contains the re-

sults of the simulations performed under different conditions. Three types of

channel models are considered. They are: the IID (independently and identically

distributed) random channel, a slow fading Rayleigh channel and a physical chan-

nel measured by the VUT MIMO group. The BER performance and execution

time of the different decoding methods for VBLAST are reported. A comparison

between VBLAST and SVD systems is also performed.

• Chapter 7 Conclusion and Further Work: The main observations of the

thesis are remarked in this chapter. This chapter ends by hinting at the scope

and possible directions for further work.



Chapter 2

Introduction

Chapter Outline

This chapter starts by discussing the characteristics of radio channels such as atten-

uation, multipath, the Doppler effect and fading (section 2.2). Transmit diversity

techniques are introduced in section 2.3, and then section 2.4 shows how adaptive

modulation techniques can counter the fading. Information theoretic terms such as

entropy, mutual information and capacity are elaborated in section 2.5. Section 2.6

introduces the MIMO scheme followed by a calculation of the theoretical capacity of

the MIMO channel. The definitions of outage capacity and system throughput, the

practical ways of measuring capacity, are given in sections 2.9 and 2.10 respectively.

Some simulation results are then shown in section 2.11. The chapter ends making a

few comments. Most of the concepts presented in this chapter are classical.

4
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2.1 Background

Wireless devices such as mobile phones have been gaining more and more popularity

mainly because of their mobility. Though voice was the only service available on early

phones, text service has now been added, and more recently multimedia services, such

as pictures and videos have started to emerge. These services are not widespread, but

the demand for them is on the rise. At the same time wireless local area networks

(WLAN) still have to compete with their wireline counterparts mainly because of their

high data rates. Wireless local area networks are attractive for their mobility, but the

high data rates available on the wireline network still seem to be unreachable in wireless

networks. A requirement for high data rates directly translates into a wider bandwidth

requirement which is not feasible because of the limited radio spectrum. Nevertheless,

digital wireless systems are slowly replacing ordinary analog ones. Examples include

the new standards for radio and television broadcast, the digital audio broadcasting,

DAB and digital video broadcasting, DVB.

The increasing adoption of multimedia and demand for mobility in computer

networks have resulted in a huge wireless research effort in recent years. Given the

limited radio spectrum and unfriendly propagation conditions, designing reliable high

data rate wireless networks has a lot of problems. The maximum capacity of a radio

channel with a given bandwidth is limited by the well known Shannon [1] formula.

The Shannon limit gives the maximum limit on capacity but does not say anything

about how to achieve that limit. Various techniques have been proposed to counter

the problem of propagation conditions, and achieved data rates are now very close to
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the Shannon limit. Data transmission at rates higher than the Shannon limit have

never been thought possible until very recently.

2.2 Propagation Characteristics of a Radio Channel

In a real environment radio waves from mobile devices travel through the air, build-

ings and other obstacles. Reflections from different objects cause the waves to travel

through multiple paths to the receiver. The movement of objects in the channel or

that of the receiver cause an apparent shift in the carrier frequency. A reliable commu-

nication system tries to overcome or take advantage of these channel perturbations.

2.2.1 Attenuation

Attenuation is the loss of average received signal power. Factors responsible for atten-

uation are the distance between the transmitter and receiver, the obstacles in between,

their physical properties, etc. Attenuation due to distance increases exponentially, and,

in addition to this, the presence of very large obstacles such as buildings, hills, etc

causes another type of attenuation known as log normal shadowing. Geometric models

have been proposed to explain these large scale power losses but statistical models

are often used because of their accurate description of particular real environments.

Statistically, the attenuation is considered as a random variable having a well known

distribution. A common formula used to model attenuation is

PL(d)[dB] = PL (d0) + 10n log

(

d

d0

)

+ Xσ (2.2.1)
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where, Xσ is a zero mean Gaussian distributed random variable (in dB) with standard

deviation σ (also in dB) and accounts for the log normal shadowing effect. The path

loss at any arbitrary distance d is statistically described relative to the close-in reference

point d0, the path loss exponent n, and the standard deviation σ. The exponent n can

have values from 1.6 (in indoor line of sight) up to 6 (in highly builtup cites).

2.2.2 Multipath Effects

Radio waves traveling along different paths arrive at the receiver at different times with

random phases and combine constructively or destructively. The net result is a rapid

fluctuation in the amplitude of the received signal in a short period of time or distance

travelled. However, the large scale average path loss remains constant. Multipath

propagation had previously been considered a problem, but now it is exploited to achieve

higher capacity.

The multipath structure of a channel is quantified by its delay spread or by its

root-mean-square (RMS) value. A channel having delay spread less than the symbol

period of transmission offers frequency nonselective attenuation, and a larger value

of delay spread means there is frequency selective variation in the channel. Another

parameter, the coherence bandwidth is also often used to describe the frequency se-

lectiveness and is related to the delay spread as

Bc ≈
1

50στ

(2.2.2)

where, στ is the RMS delay spread [23].
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2.2.3 The Doppler Effect

When there is relative movement between the transmitter and receiver, the carrier

frequency, as perceived by the receiver, gets changed by some amount; this is known

as the Doppler effect. The amount of frequency shift depends on the relative speed,

the direction of movement and the frequency of the carrier. In mathematical terms

fd =
v

λ
× cos θ (2.2.3)

where v is the relative speed between the transmitter and receiver, θ is the angle

between the direction of motion and the wave propagation, and λ is the carrier wave-

length. A Doppler shift can be negative as well as positive, meaning an apparent

decrease or increase in frequency, respectively. However, most often the maximum ab-

solute value is considered and normalized with respect to the symbol rate and denoted

by FdT

FdT =
|fd|

fsymbol

(2.2.4)

where fsymbol is the symbol rate. A typical office environment has FdT value of about

2−3. Another parameter, often used to characterize the time varying nature of the

channels is the coherence time which is related to the Doppler shift by

Tc ≈
9

16πfm

(2.2.5)

where fm is the maximum Doppler shift given by fm = v/λ [23].

2.2.4 Fading

The result of multipath and the Doppler shift is fading. Fading is the rapid variation in

signal strength over a short distance or time interval where the large scale attenuation
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is constant. A fade can be flat or frequency selective depending on the multipath

structure of the channel, and slow or fast depending on the Doppler effect. Flat fading

occurs when the bandwidth of the signal is less than the coherence bandwidth. This

type of fading is common, and some communication systems are designed specifically

to operate in very narrow bandwidth mode. If the signal bandwidth is wider than the

coherence bandwidth then different frequencies undergo independent fading and the

result is inter-symbol-interference (ISI).

How rapidly the channel changes as compared to the signal variation determines

whether the fading is slow or fast. The Doppler effect is the reason for this type of

fading as any movement of the receiver or any object in the channel produces a Doppler

shift. The symbol period of the transmitted signal has to be shorter than the coherence

time for a slow fading channel.

A channel can be either flat or frequency selective and either slow or fast

fading. A typical office environment is slow fading. New techniques (such as OFDM)

are designed to use very low bandwidth subchannels so that the fading can be regarded

flat. Fig. 2.1 shows typical fading for a signal with an FdT value of 0.02.

2.2.5 Fading Distributions

The fading effect is usually described statistically using the Rayleigh distribution. The

amplitude of two quadrature Gaussian signals follows the Rayleigh distribution whereas

the phase follows a uniform distribution. The probability distribution function (PDF)
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Figure 2.1: Typical Rayleigh fading of a signal.

of a Rayleigh distribution is given by

p(r) =







r

σ2 exp
(

−r2

2σ2

)

(0 ≤ r ≤ ∞)

0 (r < 0)
(2.2.6)

where σ is the RMS (amplitude) value of the received signal and σ2 is the average

power. In an indoor environment where the chance of a line of sight path is high, the

fading follows a Ricean distribution with PDF

p(r) =







r

σ2 exp
−(r2

+A2)
2σ2 I0

(

Ar

σ2

)

(A ≥ 0, r ≥ 0)

0 (r < 0)
(2.2.7)

where A is the peak amplitude of the dominant path and I0(.) is the modified Bessel

function of the first kind and order zero. Fig. 2.2 shows the PDFs of Rayleigh and

Ricean distributions.
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2.3 Diversity

In a scattering environment the individual signal path arriving at the receiver faces

independent or highly uncorrelated fading. This means that when a particular signal

path is in a fade there may be another signal path not in any fade. The receiver

can exploit this fact by receiving more than one path and choosing and/or combining

them. Widely used schemes to do this are: selection diversity where the path with

the best average signal to noise ratio (SNR) is chosen, equal gain combining where

the different paths are cophased and added together and MMSE combining where the

different paths are weighted and then added (weighting coefficients are chosen during

a training phase). Receiver diversity can improve the average SNR by 20dB to 30dB.

In practice, diversity techniques can be applied in the space, polarization, fre-

quency or time domains.
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• Space Diversity: Also known as antenna diversity, space diversity uses more

than one antenna at the receiver. The signals received on antennas separated by

a half wavelength or more tend to be decorrelated [2]. This is because in a rich

scattering environment the chance of a line of sight path is low, and most paths

are reflected or diffracted from obstacles. Usually antenna diversity is used only

at the base station because multiple antennas on the portable unit pose a design

challenge and do not justify the cost.

• Polarization Diversity: Electromagnetic waves have vertical and horizontal po-

larizations that also show decorrelation [3]. Where the required antenna spacing

for space diversity is not feasible, polarization diversity is used as an alternative

as the same antenna can be used for different polarizations. However, it is not

possible to have more than 2-way polarization diversity.

• Frequency Diversity: Frequencies separated by more than the coherence band-

width of the channel suffer independent fades. Frequency diversity takes advan-

tage of this fact by transmitting at more than one carrier frequency. The GSM

standard uses frequency hopping to achieve frequency diversity.

• Time Diversity: In time diversity the same information symbol is repeatedly

transmitted at different time slots with the hope that they will suffer independent

fading and the receiver will combine them properly. While highly effective in fast

fading environments, time diversity is not as effective in slow fading channels

unless a large decoding delay can be tolerated. A coding structure known as

interleaving is often used to realize time diversity where the receiver knows the
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code before any transmission takes place.

2.4 Adaptive Modulation

Traditional communication systems use fixed constellations among which QPSK and

MQAM are popular. A QPSK constellation uses two quadrature carriers each of which

is BPSK modulated. In MQAM the phase as well as the amplitudes of a pair of quadra-

ture carriers are varied according to the binary data. Whereas QPSK can transmit a

maximum two bits per symbol, MQAM can send log
2
M bits per symbol. However,

higher level constellations have higher probabilities of error thus requiring higher SNRs

to achieve a given bit error rate (BER). The symbol error rate (SER) of an MQAM

constellation with ideal detection is bounded by [4]

PS ≤ 1−

[

1− 2Q

(
√

3ES

(M − 1) /N0

)]2

(2.4.1)

where ES is the average symbol energy, N0 is the Gaussian noise power, M is the

constellation size and Q(.) is the Q-function. The BER is related to the SER by

PB =
2k−1

2k − 1
PS (2.4.2)

where k = log
2
M . A plot of BER vs Es/N0 for different M is shown in Fig. 2.3.

In a fading channel, the received signal power varies over time. One way to

compensate for this effect is by adapting the constellation size based on fading statistics.

This ensures overall fewer bit errors. However, there has to be some form of feedback

to the transmitter about the fading conditions, and the receiver must know which

particular constellation is being used by the transmitter. In a Time Division Duplex
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Figure 2.3: ES/N0 vs BER for MQAM constellations.

(TDD) scheme both ends of the communication link have knowledge of the channel,

and so they can adapt the constellation size without extra feedback. To make a

decision about the size of the constellation, the average available SNR (which signifies

the channel condition) and maximum acceptable target BER should be given. In some

applications (such as speech) the overall throughput is important and bit errors are

not critical, while in other applications (like file transfers) a very low BER is more

important than the throughput.

In an ideal situation, a continuous adaptation of the constellation is required

but in practice one can have only integer constellation sizes. Constellation sizes of

2k i.e, 2, 4, 8, 16, 32, etc are used commonly. In [5] it was shown that even such a

discrete adaptation can closely approximate the ideal case. In this work we use only

square constellations such as QPSK, 16QAM and 64QAM. Also 10−6 is the maximum
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acceptable BER and hence lower bounds the minimum SNR required for each of these

constellations. Fig. 2.3 implies that if the available SNR is 27dB or more 64QAM

should be used; if the SNR degrades to between 21dB and 24dB, 16QAM should be

used. If the SNR is between 13dB and 17.5dB QPSK should be used. At an SNR less

than 13dB transmission would stop.

2.5 Channel Capacity

2.5.1 Entropy and Mutual Information

The entropy of a discrete random variable X is defined as [6]

H(X) = −

n
∑

j=1

pj log
2
(pj) (2.5.1)

where pj is the probability that X = j. Entropy measures the uncertainty of a random

variable, and so, it is an indication of the information contained in that variable [6].

Based on the joint probability, the joint entropy of two random variables X, Y is defined

to be

H(X, Y ) = −

n
∑

j=1

m
∑

k=1

pjk log
2
(pjk) (2.5.2)

where pjk is the joint probability that X = j and Y = k. If X and Y are dependent

and pj(k) denotes the conditional probability that Y = k given X = j, then the

conditional entropy of Y given X, denoted by H(Y |X) is defined as

H(Y |X) = −

n
∑

j=1

m
∑

k=1

pjk log
2
(pj(k)) (2.5.3)

The mutual information of two random variables, X and Y , denoted as I(X; Y ) is

given by

I(X; Y ) = H(Y )−H(Y |X) (2.5.4)
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For any two random variables X and Y , I(X; Y ) = I(Y ; X). Also I(X; Y ) = 0

when X and Y are independent.

2.5.2 Channel Capacity

Shannon [1] defines the capacity of a channel as the maximum data rate at which data

transmitted from a transmitter, when passed through the channel, can be received at

some receiver with negligible chance of error. If the data source and received data are

viewed as random variables, then the channel capacity refers to the maximum mutual

information between them. The capacity C is

C = max
p(x)

I(X; Y ) (2.5.5)

where the maximization is taken over all possible probability distributions p(x) of X. A

data source with Gaussian probability distribution has the maximum entropy. Thus, to

achieve a data rate close to the capacity, the data source should be Gaussian distributed.

For a bandlimited channel with noise being Gaussian and white, Shannon [1] derived

the normalized capacity (capacity per unit bandwidth) to be

C = log
2
(1 + ρ) bps/Hz (2.5.6)

where ρ is the received SNR.

2.6 Multiple Input Multiple Output Scheme

The multiple input multiple output (MIMO) scheme deploys multiple antennas at the

receiver as well as at the transmitter. The data stream from a single user is demulti-

plexed and fed into the transmitting antennas all of which radiate in the same frequency
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Figure 2.4: MIMO transmission scheme.

band. By sharing the same frequency band the spectral efficiency becomes very high.

The receiver is assumed to have ideal channel estimates so it can separate and decode

the symbols transmitted from each antenna. The ability to separate out the symbols is

due to the fact that in a scattering environment, the signals received at each receiving

antenna from each transmitting antenna appear to be uncorrelated. Fig.2.4 shows a

block diagram of such a scheme.

2.7 Capacity of MIMO Systems

A baseband MIMO system with t transmit antennas and r receive antennas can be

modelled by the linear relationship

y = Hx + n (2.7.1)

where x is the (t × 1) transmit vector, y is the (r × 1) receive vector, H is the

(r× t) channel matrix and n is the (r× 1) additive white Gaussian noise vector. The

channel is assumed to be flat (narrow bandwidth) and slow fading so it does not change

during a burst of transmission. Each entry of H , hij represents the complex path gain
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between the jth transmit antenna and ith receive antenna. With hij being complex

Gaussian, the magnitude |hij| is Rayleigh distributed. In a rich scattering environment

the columns of H are assumed to be independent.

The mutual information is then

I(x;y) = H(y)−H(y|x)

= H(y)−H((Hx + n)|x)

= H(y)−H(n|x)

= H(y)−H(n) (2.7.2)

where the transmit vector x and noise vector n are assumed independent of each other.

The third equality holds because H is constant (zero entropy) during the transmission

of a whole block of x. Eq. (2.7.2) is maximized when y has the maximum entropy of

log
2
det(πeK). This requires y to be a circularly symmetric complex Gaussian vector

with covariance matrix E{yy′} = K [7] where ′ denotes complex conjugate transpose.

If the transmit vector x is also complex Gaussian vector with covariance E{xx′} = Q,

then K can be found by

K = E
{

(Hx + n) (Hx + n)
′}

= E {Hxx′H ′}+ E {nn′}

= HQH ′ + Kn

= Ks + Kn (2.7.3)

where the fact that x and n are independent and zero mean is used. Here Ks and Kn

are respectively the signal and noise parts of the observation covarience matrix. The
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maximum mutual information, which is also the capacity, is

C = H(y)−H(n)

= log
2
[det (πe (Ks + Kn))]− log

2
[det (πeKn)]

= log
2

[

det
(

(Ks + Kn) (Kn)
−1
)]

= log
2

[

det
(

Ks(Kn)−1 + Ir

)]

= log
2

[

det
(

HQH ′ (Kn)
−1

+ Ir

)]

(2.7.4)

where Ir is the r × r identity matrix. The noise received at each receiving antenna

is assumed to be uncorrelated so, Kn = σ2Ir, σ2 being the noise power on each

receiving antenna. Also, when the transmitter has no knowledge about the channel, it

is optimum to use equal power on each antenna [7]; that means Q = Pt

t
It, Pt being

the total signal power. The MIMO channel capacity then becomes

C = log
2

[

det
(

Ir +
ρ

t
HH ′

)]

(2.7.5)

where Pt/σ
2 has been replaced by ρ, the average SNR at each receiving antenna.

2.8 Power Control

According to the singular value theorem [16], any matrix H ∈ Cr×t can be decomposed

as

H = UDV ′ (2.8.1)

where U ∈ C
r×r and V ∈ C

t×t are unitary and D ∈ R
r×t is diagonal with only real

entries. The diagonal entries of D are the positive square root of the eigenvalues of
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HH ′. Thus, (2.7.1) can be written as

y = UDV ′x + n. (2.8.2)

Letting ỹ = U ′y, x̃ = V ′x and ñ = U ′n (2.8.2) becomes

ỹ = Dx̃ + ñ. (2.8.3)

As U and V are unitary, the distributions of ỹ, x̃ and ñ are respectively the same as

those of y, x and n. The original channel H is now equivalent to a set of parallel

channels whose gains are the diagonal entries of D. Since the rank of H is limited to

min{r, t}, only min{r, t} diagonal elements of D are nonzero. Denoting them by λi,

the parallel subchannels are

ỹi = λix̃i + ñi 1 ≤ i ≤ min{r, t} (2.8.4)

Telatar [7] showed that the optimum (giving maximum channel capacity) power of the

ith subchannel is
(

µ− 1

λ2

i

)+

where the parameter µ is determined by the total power

Pt such that

Pt =
∑

i

(

µ−
1

λ2

i

)+

. (2.8.5)

The notation a+ denotes max{0, a}. With this optimum power control, the channel

capacity becomes

CWF =
∑

i

(

log
2

(

µλ2

i

))

+

. (2.8.6)

Rewriting this in the form of (2.7.5), the capacity is

CWF = log
2

[

det

(

Ir +
1

σ2
HQ̃H ′

)]

(2.8.7)
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where Q̃ii =
(

µ− 1

λ2

i

)

+

. Also we have Q̃ = UQU ′, that implies Q = U ′Q̃U , the

transmit covariance matrix of the original system of (2.7.1).

Finding the value of parameter µ from (2.8.5) involves a fair amount of compu-

tation. Moreover, if the transmitter’s estimation of H is incorrect (and thus the values

λi), then waterfilling can give a worse capacity than the equal power rule. The effect

of incorrect channel estimation on waterfilling and capacity has been studied in [8].

2.9 Outage Capacity

The capacity described by (2.7.5) or (2.8.7) is instantaneous, for a given realization

of channel H . Since in Rayleigh fading the channel matrix H changes randomly, the

capacity is also random. One way to express the capacity of a such a channel is the

ergodic mean of (2.7.5) or (2.8.7). However, this mean capacity is not very useful in

termes of the outage capacity. Outage capacity is related to the outage probability,

which is the fraction of time the capacity falls below a given threshold Coutage. The

outage probability q is defined as

q = Pr{C ≤ Coutage} (2.9.1)

This can also be expressed as

1− q = Pr{C > Coutage} (2.9.2)

A capacity of 20bps/Hz with 1% outage probability means that the capacity will remain

at least 20bps/Hz for 99% of the time.
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2.10 Measurement of Capacity

The theoretical capacities as discussed above are the absolute limit under all ideal

conditions. However, a real system can only achieve a portion of that capacity. The

throughput of a real system is defined as a parallel quantity to express the spectral

efficiency of a given system. Here, capacity refers to the absolute achievable limit with

the particular system architecture.

A communication system employing MQAM constellations with ideal Nyquist

pulses (Sinc[t/Ts]), occupies a bandwith of W = 1/Ts and supports a bit rate of

R = (log
2
M)/Ts. For such an uncoded MQAM system, the throughput, in bps/Hz

is log
2
M . However, there are errors, and if the transmission is in form of blocks of

L bits, then the effective throughput in terms of the block error rate (BLER) can be

written as [10]

T = (log
2
M)× (1− BER)

= (log
2
M)×

(

1− (1− BER)
L

)

. (2.10.1)

Here, BER is the bit error rate of the data stream. For a MIMO syste there is more

than one substream of data, each of which has a throughput of (2.10.1). The total

throughput of the system is then

Ttot =

n
∑

i=1

Ti (2.10.2)

where n is the total number of substreams.
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2.11 Simulation Results

This section shows some plots derived from (2.7.5) and (2.8.7) for different SNRs and

(r, t) pairs. The outage capacity as discussed in section 2.9 can also be expressed

in terms of its cumulative distribution function (CDF). However, its complementary

cumulative distribution function (CCDF) is more often used. As an exact closed form

expression of the CDF or CCDF is highly involved, this section shows numerically

derived capacities of CCDs obtained from Monte-Carlo simulated data.

Fig. 2.5 shows the mean capacity of MIMO systems as a function of SNR

for different (r, t) combinations. The (1, 1) system capacity is equivalent to the SISO

Shannon capacity but for a Rayleigh channel. At high SNR, for a (1, 1) system the

increase in capacity is roughly 1 bit for a 3dB increase in SNR. However, in MIMO,

even for a (4, 4) system, a 3dB increase in SNR results in about 4 bits of increase in

capacity. The capacity increase is almost linear in terms of (r, t), for r = t.

The capacity CCDFs are shown in Fig. 2.6 for a system with 0dB SNR. We

can see, for example, that for a (4, 4) system the capacity is about 2.5bps/Hz with 5%

outage probability. For a (8, 8) system this is about 5.8 bps/Hz.

The capacity CCDF as a function of SNR is shown in Fig. 2.7. Only (1, 1) and

(4, 4) systems are depicted for comparison. We see that at a 5% outage probability

level the capacity increase is about 2bps/Hz for every 3dB increase in SNR whereas for

the (1, 1) case the increase is not even visible at low SNRs and is only a fraction of a

bit at high SNRs.

The benefit of waterfilling power control is demonstrated in Fig. 2.8. As
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reported by [9], waterfilling is only effective at very low SNRs. For high SNRs power

control does not improve the capacity as much as it does for low SNRs.

In producing all of the graphs, identical and independently distributed (IID)

random channels have been used, and for each trial 10, 000 versions of H have been

generated (to average the capacity or to estimate the CCDF.)
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Chapter 3

Bell Labs Space Time Architecture

Chapter Outline

This chapter deals with aspects of the VBLAST architecture. Section 3.1 introduces the

VBLAST architecture and its operation. The detection method, nulling, interference

cancellation and optimal ordering are discussed in sections 3.2 and 3.3. The decoding

algorithm is given in section 3.6, and an exact unreported complexity analysis of the

decoding algorithm is done in section 3.7. This is one of the contributions of this thesis.

Section 3.8 shows VBLAST decoding using the QR decomposition. The benefits of

forward and backward sweeps are considered in section 3.9, including ordering for

optimal detection in section 3.10. Calculation of complexity are given in section 3.11.

The chapter ends with some simulation results showing the performance of the original

VBLAST and QR methods.

27
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3.1 Introduction

To achieve the high capacities promised by using a MIMO scheme, Foschini et al [11]

proposed an architecture known as Bell Labs Space Time, BLAST for short. The origi-

nal BLAST system used a diagonally dispersed coding structure, the implementation of

which was technically involved. Instead, a modified version known as Vertical Bell Labs

Space Time, or VBLAST for short was proposed and prototyped in the laboratory [12].

A simplified block diagram of the VBLAST system is depicted in Fig. 3.1. A single

data stream is demultiplexed into t substreams, and each substream is then encoded

into constellation symbols and fed to its respective transmitter. Each transmitter is

an ordinary QAM transmitter, and the symbols are taken from a QAM constellation.

The encoding process is simply a bit to symbol mapping for each substream, and all

substreams are mapped independently. The total transmit power is equally divided

among the t transmitters. The r receivers are conventional QAM receivers operating

independently in the same frequency band. Each receiver receives signals from all the

transmitters. The channel matrix H is assumed quasistationary, meaning it remains

constant during the transmission of a whole data block. For this reason, decoding a

whole stream is decoding each symbol of that stream. The next section discusses the

detection of the individual symbols.
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3.2 Detection Process

The detection process of the VBLAST system involves is the estimation of x given y

and H in

y = Hx + n. (3.2.1)

The t elements of the transmit vector x are constellation symbols which are assumed

to be uncorrelated. We also assume that the channel matrix H is full rank. It is shown

later that the second assumption is very crucial to the operation of the VBLAST

system. The receiver knows the received vector y and has an estimation of H . The

detection process is then a multiuser detection type process. The process involves two

steps [13]:

• Slicing (and then decoding) a symbol while nulling the others

• Cancelling the effect of each new decoded symbol from the rest

3.2.1 Nulling

Denoting the ith column of H as hi the received vector can be written as

y = x1h1 + x2h2 + · · ·+ xtht + n (3.2.2)
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here xi is the transmitted symbol from the ith transmit antenna. Nulling is performed

by linearly weighting the received symbols to satisfy the zero forcing (ZF) or minimum

mean squared error (MMSE) performance criterion. The zero forcing nulling vector

wi is chosen such that

wT

i hj =

{

0 for i 6= j

1 for i = j
(3.2.3)

where ()T indicates transpose. Then, the decision statistic for the ith symbol is

di = wT

i
y

= x1w
T

i
h1 + x2w

T

i
h2 + · · ·xiw

T

i
hi · · ·+ xtw

T

i
ht + wT

i
n

= 0 + 0 + · · ·+ xi + · · ·+ 0 + ñi

(3.2.4)

A soft or hard decision now can be made on di to estimate the the transmitted symbol

x̂i = Q(di) (3.2.5)

where Q(.) is the soft/hard decision function.

3.2.2 Interference Cancellation

The effect of symbols already detected can be subtracted from the symbols yet to be

detected. This improves the overall performance when the order of detection is chosen

carefully.

Denoting the received vector y by y1, if the nulling vector is w1, then the

decision statistic for the ’first’ symbol is

d1 = wT

1
y1 (3.2.6)

If x̂1 = Q(d1) is the estimated x1 after the decision (soft or hard), then the interference

due to x̂1 on the other symbols can be subtracted by taking

y2 = y1 − x̂1h1 (3.2.7)
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assuming x̂1 = x1, i.e, the decision taken was correct. The next symbol is then detected

by finding w2 and then making a decision on wT

2
y2 and so on. The performance of

this successive cancellation and detection scheme depends on the decision taken on

each stage, as any wrong decision is propagated through all the later stages.

3.3 Optimal Detection Order

To minimize error propagation the ’strongest’ symbols are detected first. This is known

to be the optimal detection order.

A simple ‘optimal’ ordering is based on the postdetection SNR of each sub-

stream. The SNR for the ith detected symbol of vector y is given by [13]

ρi =
E {|xi|

2}

σ2(||wi||2)
(3.3.1)

where σ2 is the noise power and E{} denotes the expectation. As ||wT

i
hi||

2 =

||wi||
2||hi||

2, from (3.2.3) it is seen that a smaller ||wi||
2 value requires the corre-

sponding hi have higher 2-norm. So the SNR in (3.2.7) for the ith substream is

proportional to the norm of the ith column of H . Thus, the optimal detection order

is in decreasing order of the 2-norm of the columns of H .

3.4 Computing the ZF Nulling Vector

The vector wi in (3.2.3) is unique and is the ith row of the pseudoinverse of H [13]

wT

i
=
〈

H+
〉

i
(3.4.1)

where <>i denotes the ith row and + denotes the pseudoinverse.
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With the successive cancellation and decoding, wi
T is chosen as the ith row

of pseudoinverse of H whose 1 to i − 1 columns are set to zero. This is due to the

fact that at the ith stage the vector wi has to be orthogonal only to hj for j = i to t.

With optimal ordering, if {k1, k2, · · · kt} denotes the optimal order, at the kith stage

the ZF nulling vector wki
is

wT

ki
=
〈

H+

ki−1

〉

ki

(3.4.2)

where H
ki−1

denotes the matrix obtained from H by zeroing the columns k1, k2, · · · , ki−1.

3.5 Computing the MMSE Nulling Vector

Using the MMSE criterion, the nulling vector wi
T is the ith row of the matrix

G =

(

H ′H +
1

ρ
I

)−1

H ′ (3.5.1)

where ρ is the SNR [14]. For successive decoding and optimal ordering based on G, the

matrix G should be computed on each step from the partially zeroed H as in (3.4.2).

The MMSE criterion always results in better SNR and thus a better perfor-

mance. But the disadvantages are that the SNR has to be known at the receiver and

a matrix inverse needs to be computed.

3.6 Detection Algorithm

The full detection algorithm for ZF VBLAST can be described as follows [13]:

• initialization

1. i← 1
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2. G1 = H+

3. k1 = minj || 〈G1〉j ||
2

• iteration

1. wT

ki
= 〈Gi〉ki

2. dki
= wT

ki
yi

3. x̂ki
= Q(dki

)

4. yi+1 = yi − x̂ki
Hki

5. Gi+1 = H+

ki

6. ki+1 = minj /∈{k1,k2···ki} || 〈Gi+1〉j ||
2

7. i← i + 1

Please note that in step 3 (and 6) minj || 〈G1〉j ||
2 is used to pick the strongest symbol.

This is the due to the reason that the row j of G, which has the minimum 2-norm,

corresponds to the j-th column of H which will have the maximum 2-norm.

3.7 Complexity Analysis

The algorithm in section 3.6 spends most of its time in steps (5) and (6) where the

nulling vectors and optimal ordering are computed, and both of the steps involve the

computation of matrix pseudoinverse. Numerically, the most stable way to compute

the pseudoinverse is using the Singular Value Decomposition [16]. We consider only

multiplications and additions of complex numbers as an operation.
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• The complexity of performing the SVD of H = UΣV ′ (H is (r × t)), using the

R-SVD algorithm is 4r2t + 22t3.

• Computing the pseudoinverse G = H+ = V Σ−1U ′ needs r2t + t2 complex

operations. Because the inverse of the diagonal matrix D can be done merely

in min(r, t) operations, so it can be ignored. The first matrix multiplication

requires only t2 operations because D−1 is diagonal. The second multiplication

requires r2t operations with no need to calculate the transpose. In computing

the pseudoinverse, the zero (if any) singular values are left untouched.

So a total of 5r2t+22t3+t2 complex operations are required to compute the pseudoin-

verse. Now, steps (5) and (6) are repeated for i = 1 to t. That means the pseudoinverse

is computed for deflated H with decreasing dimensions (r× (t−k)), k = 0, 1, 2...t−1.

The total complex operations count is

t
∑

i=1

(

5r2i + 22i3 + t2
)

which after simplification becomes

8a4 +
83

6
a3 +

13

2
a2 (3.7.1)

under the assumption that r = t = a and consideration of only square or higher

exponent terms.

If the MMSE criterion (3.5.1) is used, then the cost of two matrix multiplica-

tions, one inversion and one addition comes instead of computing the pseudoinverse.

Once again it is assumed the matrix transposes are not computed explicitly. The first
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matrix multiplication requires t2r, the matrix addition requires t2 and the matrix inverse

needs 4t3 (using Gaussian Elimination) operations. The second matrix multiplication

takes t3 operations. So the operations count for (3.5.1) is 5t3 + t2r + t2. Like before,

steps (5) and (6) are repeated for t times with deflated H . The total operations count

is then
t
∑

i=1

(

5i3 + i2r + i2
)

.

Taking the square and higher order terms only and setting r = t = a, this becomes

19

12
a4 +

19

6
a3 +

23

12
a2. (3.7.2)

As a matrix inversion costs less than a pseudoinverse, the MMSE criterion requires less

computation time than the ZF criterion.

Finding the optimal decoding order (step 6) can use the results of step 5 and

does not require computing the pseudoinverse or inverse again. Thus, the complexity

of the nulling vector and optimal ordering computation grows as a fourth power of the

number of antennas.

3.8 QR Decomposition Based Detection

The computational requirements of the VBLAST decoding algorithm are prohibitive.

Thus, we now consider other alternative decoding methods based on the QR decompo-

sition, square root decomposition and other decompositions which are less complex and

often approximate. In fact, any algorithm for solving a system of linear equations can

be used to decode the VBLAST signals. This chapter focuses on the QR detection.

Consider the VBLAST transmission equation (3.2.1). For simplicity, let us consider
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r = t = a. The channel matrix H can be QR decomposed:

H = QR (3.8.1)

where Q is a unitary and R is an upper triangular matrix. Then from (3.2.1)

ỹ = Q′y

= Q′Hx + Q′n

= Q′ (QR)x + Q′n

= Rx + ñ. (3.8.2)

In explicit matrix form




















ỹ1

ỹ2

ỹ3

...

ỹa





















=





















r11 r12 · · · r1a

0 r22 · · · r2a

0 0 · · · r3a

...
...

...
...

0 0 · · · raa









































x1

x2

x3

...

xa





















+





















ñ1

ñ2

ñ3

...

ña





















. (3.8.3)

Then the ath received symbol is

ỹa = raaxa + ña. (3.8.4)

Hence the ath decision statistic da is

da =
1

raa

ỹa = xa +
1

raa

ña. (3.8.5)

Once a decision (hard or soft) is made on da, it is assumed that the estimate x̂a of the

actual transmitted symbol xa is correct, and thus its effect can be subtracted from yet

to be detected symbols. The da−1th decision statistic is then (assuming x̂a = xa)

da−1 =
1

ra−1,a−1

(ra−1,a−1xa−1 + ña−1 + ra−1,axa − ra−1,ax̂a)

= xa−1 +
1

ra−1,a−1

ña−1. (3.8.6)
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In general the ith decision statistic is

di =
1

rii

(

yi −

a
∑

j=i+1

rij x̂i

)

= xi +
1

rii

ñi. (3.8.7)

As the symbols are detected successively, any wrong decision will affect the subsequent

decisions.

3.9 Backward and Forward Sweeps

To improve the overall performance, Damen et al, [15] have proposed a two-sweep de-

tection scheme where the symbols are detected twice, once by backward substitution as

shown in the previous section and then again by forward substitution. Then for a given

symbol among the two estimates, the ’better’ one is chosen or both are averaged. For

a Forward sweep, the channel matrix H is decomposed into, using QL decomposition

H = QfL (3.9.1)

where Qf is unitary (usually different from Q)and L is now a lower triangular matrix.

Following a similar approach to (3.8.2) the received vector is

ỹ = Lx + ñ. (3.9.2)

In matrix form




















ỹ1

ỹ2

ỹ3

...

ỹa





















=





















l11 0 · · · 0

l21 l22 · · · 0

l31 l32 · · · 0
...

...
...

...

la1 la2 · · · laa









































x1

x2

x3

...

xa





















+





















ñ1

ñ2

ñ3

...

ña





















. (3.9.3)
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The first received symbol is

ỹ1 = l11x1 + ñ1. (3.9.4)

Hence, the first decision statistic d1 is

d1 =
1

l11
y1 = x1 +

1

l11
ñ1. (3.9.5)

The transmitted symbol x1 is then estimated as x̂1 from d1. Once again, it is assumed

that the estimate x̂1 is correct. The next decision statistic is then (assuming x̂1 = x1)

d2 =
1

l22
(l22x2 + ñ2 + l21x1 − l21x̂1)

= x2 +
1

l22
ñ2. (3.9.6)

In general the ith decision statistic is

di =
1

lii

(

yi −

i−1
∑

j=1

lij x̂i

)

= xi +
1

lii
ñi. (3.9.7)

3.10 Optimal Ordering

Similar to the VBLAST optimal ordering, the optimal way of detecting symbols is in

the order of decreasing SNR. In (3.8.2) and (3.9.2) the SNR contribution of the symbol

xi to the received signal is

||Ri||
2
E{|xi|

2}

σ2
= ||Li||

2
E{|xi|

2}

σ2
= ||Hi||

2
E{|xi|

2}

σ2
(3.10.1)

where Hi,Ri and Li are respectively the ith columns of H , R and L and the notation

||.||2 means the 2-norm [15]. Here σ2 is the noise power. E{|xi|
2} denotes the average

symbol energy of the symbol xi.
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So in the case of a backward sweep the columns of R should be arranged in

increasing order of norm and in the forward sweep the columns of L should be arranged

in decreasing order of norm. The ordering of columns of R and L can be done by first

permuting the columns of H and then computing the QR decomposition.

3.11 Complexity Analysis of the QR Decoder

As pointed out in [15], in QR decoding most of the time is spent finding the QR

factors of the channel matrix. In this study, the Householder method for QR and QL

decomposition has been implemented. For a × a matrix, the Householder method

requires 4

3
a3 complex operations to find R or L and an extra 4

3
a3 to get Q [16]. So, a

total of 8

3
a3 operations are required for the whole decomposition. To filter the received

vector through Q′ demands an extra a2 operations. Thus the QR method requires

8

3
a3 + a2 complex operations. For the backward and forward sweeps (QR+QL), twice

that number of complex operations 16

3
a3 + 2a2 are needed. The back substitution is

not considered here because the VBLAST system also has a similar step which was not

considered in finding the complexity of the VBLAST system.

3.12 Simulation Results

This section shows some simulation results that determine the different parameters

and factors for further simulations. Only IID random channel model is used. The IID

random and other MIMO channel models are described in Chapter 6.
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Figure 3.2: Bit error rate of the VBLAST system in IID random channel.

3.12.1 BER, BLER and Throughput

Fig. 3.2 shows the BER performance of VBLAST using different constellation sizes.

Both the ZF and MMSE criteria are used. The channel model is IID random. It is well

known that larger constellation sizes require comparatively higher SNRs for a given

BER. We see that 64QAM has the highest BER and QPSK the lowest in Fig. 3.2. Fig.

3.3 shows the probability of a block error. It should be recalled that a block is in error

when one or more bits are in error as no form of coding is used. For 64QAM the block

error rate is so high that almost every block is in error for moderate SNR.

A high Block Error Rate means a lower throughput. Fig. 3.4 shows the through-

put under the same assumptions. As it shows, using a 64QAM constellation does not

necessarily result in a high throughput. A smaller constellation like QPSK results in

a better throughput because of fewer block errors. As the SNR increases, the QPSK
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Figure 3.3: Block error rate of the VBLAST system in IID random channel.
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Figure 3.5: Bit error rate of the VBLAST system in IID random channel with optimal
ordering.

throughput settles to the maximum for a (4× 4) system. For a given system SNR and

target BER, it is tricky to find the optimum constellation size, and a simpler decision

is often opted. In this study all subsequent simulations use only QPSK. At an excep-

tionally high SNR, 64QAM or 16QAM might be used to achieve higher throughput.

Another noteworthy point is that the MMSE criterion is only useful at very low SNRs

or for smaller constellation sizes.

The effect of optimal ordering is shown in Fig. 3.5. As seen, optimal detection

order improves the BER performance by about 2dB for the ZF condition and rises to

a significant 5dB using the MMSE criterion.

The BER performance of a QR-based VBLAST system is shown in Fig. 3.6.

The use of both backward (QR) and forward (QL) sweeps can help gain an advantage

of about 2dB. In this case, the decisions made in each sweep are averaged. Decoding
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Figure 3.6: Bit error rate of QR based VBLAST system in IID random channel.
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symbols in the optimal order can also help improve the BERs as shown in Fig. 3.7.

However, the combined gain as shown in Fig. 3.8 is not so impressive. Using only the

forward sweep and optimal ordering can result in almost the same BER as using both

sweeps and optimal ordering. Throughput results are shown in Fig. 3.9.

3.12.2 Execution Time

In addition to the BER, BLER and throughput performances, the time required by

the VBLAST and VBLAST-QR methods to decode a given amount of transmitted

signal are also measured. The theoretical operation counts are plotted in Fig. 3.10.

This shows the maximum possible operation count and is an indication of the relative

complexity of the two methods. For simulation, the MATLAB software, version 6 was

used, which does not allow an operation count. Moreover, the operations count is

not a reliable metric to compare algorithms in practice. So the time required by the

computer CPU to run the decoding methods was measured. This is shown in Fig.

3.11. As it is seen from the figure, the QR method takes less time than the VBLAST

method. The margin of difference is less in Fig. 3.11 than in Fig. 3.10. The reason

for this is that the execution time has components (such as memory and disk access)

which are common to both methods. In chapter 6, the actual execution times required

by these methods are reported. To measure the execution time, 10,000 H and data

block of 100 symbols are used.
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Chapter 4

New Detection Method for VBLAST

Chapter Abstract

This chapter is one of the two major contributions of this thesis. The chapter introduces

a new detection method for the VBLAST system based on a relatively less known

matrix decomposition, the Polar Decomposition (PD). Section 4.1 introduces the PD,

and sections 4.2 and 4.3 discuss the use of Cholesky and QR factorizations in addition

to the PD for decoding VBLAST signals. The issue of optimal ordering is covered in

section 4.4. Section 4.5 lists the properties of the PD, and section 4.6 shows how these

properties are conducive to VBLAST detection. Two known algorithms for the PD are

reviewed in section 4.7 with complexity analysis in section 4.8. The chapter ends with

some simulation results and comments.

47
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4.1 The Polar Decomposition

Every matrix H ∈ Cr×t can be expressed as H = UP with U unitary and P positive

semidefinite Hermitian. The matrix P is unique and U is also unique for a nonsingular

H [17]. This is known as the Polar Decomposition.

Using the Polar Decomposition, the MIMO transmission equation (3.2.1) can

be written as

y = UPx + n. (4.1.1)

Premultiplying both sides by U ′, one finds that

U ′y = Px + U ′n (4.1.2)

which is equivalent to

ỹ = Px + ñ (4.1.3)

where we have ỹ = U ′y and ñ = U ′n. Since, U is unitary, ỹ and ñ have the same

distributions as y and n, respectively.

It is shown later that the equivalent system of (4.1.3) can be solved ( i.e, the

transmitted vector x can be estimated) with less computational cost if the properties

of P are exploited.

4.2 Detection Using the Cholesky Factorization

The Cholesky factorization of a Hermitian positive definite matrix P is P = S ′S with

S being upper triangular. The inverse of S can be computed and used to get an upper
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triangular system

S−′

ỹ = S−′

{S ′Sx + ñ} = Sx + ˜̃n (4.2.1)

where S−′

denotes the Hermitian of the inverse of S and ˜̃n = S−′

ñ. Though this

process would give the solution, it requires the matrix P to be nonsingular. The

channel matrix H is often near-rank deficient, and so the Cholesky decomposition is

likely to fail occasionally.

4.3 Detection Using the QR Factorization

Equation (4.1.3) can also be solved by computing a QR decomposition of the Hermitian

matrix P = QR. With the channel matrix H decomposed in Polar form and then the

matrix P in QR form, one writes (3.2.1) as

y = UQRx + n. (4.3.1)

Filtering the received vector y first through U ′ and then through Q′, one has an upper

triangular system

ỹ = Q′U ′y = Rx + ñ. (4.3.2)

In explicit form, letting r = t = a
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. (4.3.3)

Then the a-th received symbol is

ỹa = raaxa + ña. (4.3.4)
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Hence the a-th decision statistic da is

da =
1

raa

ỹa = xa +
1

raa

ña. (4.3.5)

Once a decision (hard or soft) is made on da, it is assumed that the decision is

correct (i.e, the estimate x̂a is the same as xa) and its effect is subtracted from yet to

be detected symbols. The (a− 1)-th decision statistic is then (assuming x̂a = xa)

da−1 = xa−1 +
1

ra−1,a−1

ña−1. (4.3.6)

In general the i-th decision statistic is

di =
1

rii

(

ỹi −

a
∑

j=i+1

rij x̂i

)

. (4.3.7)

4.4 Optimal Ordering

Following the same philosophy as VBLAST, the symbols can be detected in order of

decreasing SNR. Because the last symbol is detected first in this method, one would

like the last symbol to be the best one. This requires rearranging the columns of H

in increasing order of 2-norm (and also the rows of vector y) so that the last symbol

corresponding to the last column gets detected first and so on. The optimal ordering

can be determined just by comparing the diagonal elements of P . Because, the largest

diagonal entry of P corresponds to the strongest symbol.

4.5 Properties of the Polar Decomposition

The main mathematical properties of the Polar Decomposition are [17]
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• The Polar Decomposition can be computed from the Singular Value Decomposi-

tion. Conversely, given the Polar Decomposition a spectral decomposition of P

will result in the Singular Value Decomposition.

• The unitary matrix U of the Polar Decomposition is the nearest unitary matrix

to H where the distance is measured using the Frobenius norm.

• The Hermitian matrix P is the nearest Hermitian positive semidefinite matrix to

H where the distance is measured using 2-norm.

4.6 Behavior of Q and P Matrices

One nice feature of the Polar Decomposition is that the matrices Q and P do not

change abruptly for a slowly varying channel H . This in contrast to a conventional QR

decomposition. Fig. 4.1 shows the relative change in the Q and P matrices for a slowly

varying channel corresponding to FdT = 0.002, a typical indoor environment. This

nature of gradual change could enable tracking Q and P without requiring repetitive

calculation. The possibility of tracking is a subject for further research and is not

explored in this study.

4.7 Algorithms for the Polar Decomposition

As mentioned above, the Polar Decomposition can be computed from the Singular

Value Decomposition. If H = UsDsV
′
s

is the Singular Value Decomposition and H =
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Figure 4.1: Polar Decomposition behavior

UpPp is the Polar Decomposition, then Up and Pp can found by

Up = UsV
′
s

Pp = VsDsV
′
s

. (4.7.1)

4.7.1 Higham’s Algorithm for Polar Decomposition

In addition, there are algorithms that can compute the Polar Decomposition directly

from a given matrix. One such algorithm is described by Higham [17] is as follows.

Here H is the given matrix. It is assumed H is square and nonsingular. For

rectangular and singular matrices the algorithm can be modified. The parameter δ is

the convergence tolerance.

• initialization

1. X0 = H

2. k = −1
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• iteration

1. k = k + 1

2. γk =
(

||X−1

k
||1||X

−1

k
||inf/(||Xk||1||Xk||inf)

)
1

4

3. Xk+1 = 1

2

(

γkXk + X−′

k
/γk

)

4. until ||XK+1 −Xk||1 ≤ δ||Xk+1||1

5. U = Xk+1

6. P = 1

2
(U∗H + H∗U)

7. go to step 1

The algorithm is based on the classical Newton’s iteration to find the square

root of a number. With the initialization X0 = H , the new Xk is computed as

Xk+1 =
1

2

(

γkXk + X−′

k
/γk

)

. (4.7.2)

Here γk is just an acceleration parameter. The convergence analysis of this algorithm

is given in [19].

This iterative algorithm converges within 10 to 11 iterations. A modification

of this algorithm was later proposed in [18] also by Higham. The new algorithm has

better convergence with fewer iterations. Dubrulle [20] reported an optimum iteration

that ensures monotonic convergence. Monotonic convergence is very important in the

software implementation of a numerical algorithm.
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4.8 Complexity Analysis

The main computational burden of the proposed method lies in the computation of the

Polar Decomposition and the QR factorization. The Polar Decomposition can be found

from the SVD of H with a cost of 22a3 operations assuming the SVD is computed

using the Golub-Reinsch algorithm (R-SVD costs 26a3). The direct iterative algorithm

for Polar Decomposition due to Higham [18] converges in an average of 8 iterations

spending 8a3 complex operations. This study uses the Higham method. On top of

this, the QR factorization costs 2a3 operations while the filtering by U ′ and Q′ can be

done merely at a cost of 2a2 operations. The operations in the back substitutions in

(4.4.2) are not counted because the VBLAST method has a similar computation which

is ignored. So the total cost of this method is expected to be 10a3 + 2a2.

4.9 Simulation Results

4.9.1 BER, BLER and Throughput

The BER performance of the Polar Decomposition-based VBLAST is shown in Fig.

4.2. As seen, the optimal ordering, here also, produces slightly better BER. The Block

Error Rate and Throughput are shown in Figs. 4.3 and 4.4 respectively. Further results

are given in Chapter 6.

One thing that needs to be mentioned here is that the BER, BLER and through-

put of the original VBLAST method are exactly the same as those shown in Fig 4.2

through 4.4. This suggests a mathematical equivalence between the original VBLAST

decoding method based on repetitive pseudoinverses and this method based on the
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Figure 4.2: Bit error rate of Polar Decomposition-based VBLAST.

Polar Decomposition.

4.9.2 Execution Time

The complexities of the original VBLAST decoding method and the method based on

the Polar Decomposition are plotted in Fig. 4.5. These are the theoretical figures and

represent the worst case scenario. The execution time of both methods are shown

in Fig. 4.6. We just saw that in theory the proposed method based on the Polar

Decomposition is less complex and requires less time. The large margin between these

two methods as seen in Fig. 4.5 is actually not so large in practice as shown in Fig. 4.6.

This is because the real execution time shown in Fig. 4.6 is not just computation time,

meaning the execution time also includes time due to memory accesses, disk accesses

etc. Contributions due to these non-computation components are common to both,

reducing the gap between the two methods.
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Figure 4.3: Block error rate of Polar Decomposition-based VBLAST.
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Chapter 5

Singular Value Decomposition Based

MIMO Systems

Chapter Abstract

This chapter introduces the Singular Value Decomposition (SVD) based MIMO system.

Such systems are suitable for a Time Division Duplex (TDD) mode of communication

and can get very close to the theoretical capacity limit. The detailed architecture and

properties of the SVD are discussed. The SVD produces subchannels with different

gains, and adaptive modulation is used across them. Power control issues are also

addressed. The chapter concludes with some simulation results and comments.
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5.1 Introduction

The Singular Value Decomposition (SVD) of a matrix H is H = UDV ′, where U and

V are unitary and D is a diagonal matrix with positive real elements. The matrix H

is not required to be square to have an SVD. The elements of D are said to be the

singular values of the matrix H . These elements are also the positive square roots of

the eigenvalues of the matrix HH ′ or H ′H .

5.2 SVD Based MIMO Systems

In a Time Division Duplex channel, the channel information is available at both ends

of the communication link within a reasonable accuracy. SVD systems use this channel

information to compute the SVD. The transmitter filters vector x through V before

sending it over the channel. At the receiver, vector y and filters using U ′. The overall

transmission equation thus becomes

U ′y = ỹ = U ′(H)V x + U ′n

= U ′(UDV ′)V x + ñ

= Dx + ñ. (5.2.1)

As D is a diagonal matrix, one can write this component-wise as

ỹi = Diixi + ñi. (5.2.2)

By denoting the singular values by λi, this becomes

ỹi = λixi + ñi. (5.2.3)
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Figure 5.1: SVD-based MIMO transmission scheme.

The original MIMO system of (3.2.1) has now become an equivalent system

having a set of parallel subchannels with gains λi as shown in Fig. 5.1. The number

of subchannels depends on the minimum of (r, t) without exceeding the rank of the

channel matrix H . As the noise ni is assumed to be Gaussian, noise ñi is also Gaussian

after the unitary transformation. The singular values λi are sorted in decreasing order

of values, and the equivalent parallel subchannels have unequal gains.

A practical implementation of such a system has been reported in [21] and is

shown in Fig. 5.2. For this implementation, if the transceiver A needs to transmit

some data, it ’asks’ B to send pilots. Receiving the pilots PB1 sent by B, A performs

the SVD and uses the V matrix to transmit data at next time slot. A also sends pilots

PA1 to enable the transceiver B to transmit. However, one ovbious problem is the time

delay between two slots. If T is the time delay, a transceiver has to use V0−T instead

of V0. This problem can be solved using a linear filter at the receiver with the aid of

the second set of pilots PA2. Details can be found in [22].
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Figure 5.2: SVD-based MIMO transmission in TDD channel (taken from [22]).

5.3 Behavior of U, D and V Matrices

For a nonsingular H = UDV ′, the U matrix is the range of H (i,e, columns of U

span the range of H .) Likewise, the rows of V span the image of H . But, as the

SVD algorithm always picks the singular values in decreasing order, U and V may

change quite sharply for slightly perturbed channel matrix H . This has implications on

the feasibility of tracking the matrices U, V as the channel changes slowly over time

at both ends of the link. Fig. 6.3 shows the behavior of U, V and D over a time

varying channel corresponding to FdT = 0.002. The singular values of the channel

change fairly slowly but the matrices U and V change quite abruptly. The time lag

between the transmitter and receiver causes them to perceive slightly different channels.

The differently perceived channels can cause severe performance degradation in SVD

systems because the U and V matrices are no longer valid [26]. Some ways of taking

care of these issues are currently under research [22].
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Figure 5.3: Changes in U, V and D matrices for a slowly varying channel matrix H.

5.4 SNR of Parallel Subchannels

Since the different subchannels of the SVD system have different gains, the use of

different constellation sizes for each subchannel is a good way of achieving higher

throughput. However, to implement this, we need to know the SNR of each subchannel.

From (5.2.3), we have the received power

E{|ỹi|
2} = λ2

i E{|xi|
2}+ E{|ñi|

2} (5.4.1)

where we have used the fact that xi and ñi are statistically independent. In the above

equation the received signal power is λ2

i
E{|xi|

2} and the noise power is E{|ñi|
2} = σ2.

The SNR for the ith subchannel is then

ρi =
λ2

i
E{|xi|

2}

σ2
. (5.4.2)

The transmit symbol power E{|xi|
2} is dependent on the power allocation strategy.

This SNR can then be used to adapt the constellation size following the method
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described in section 2.8.

5.5 Power Control

The waterfilling method is the ideal power control strategy for SVD Systems, but it

requires information about the noise at the transmitter side. Once the total avail-

able power, estimates of the noise and gains of the parallel subchannels are known,

Telatar [7] showed that the optimum power of the ith subchannel is
(

µ− 1

λ2

i

)

+

. The

waterfilling parameter µ is determined by the total power Pt, such that

Pt =
∑

i

(

µ−
1

λ2

i

)+

. (5.5.1)

Again, the notation a+ denotes max{0, a}. The value of the parameter µ can be found

by an iterative loop allocating power to all good subchannels. The following MATLAB

code snippet finds the parameter µ.

[u, Sigma, v] = svd(H);

Lamda = diag(real(Sigma).^2);

mu = 0;

K = sum(Lamda ~= 0);

f = 1;

while mu < 1/Lamda(f);

f = K;

s = 0;

for t=1:K;

s = s + 1/Lamda(t);

end;

mu = (Pt + s)/K;

K = K-1;

end;
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5.6 Adaptive Modulation across Subchannels

As the different subchannels of the SVD system have different gains, each subchabnnel

should use a different constellation size. This decision can be a once off system design

parameter which does not change with the time varying channel. On the other hand, the

decision can be taken based on the slowly varying channel as well as on the individual

subchannel. The latter scheme is used in this study with a truncated waterfilling

power control strategy. The truncated power control strategy is the same as original

waterfilling except that it does not allocate any power to subchannels with an SNR

below a given threshold which is set using the minimum SNR required for QPSK

transmission with a desired performance. Any subchannel SNR which falls below the

threshold is not used in the transmission and its power is redistributed among the

other subchannels. The constellation sizes used in this study are: QPSK, 16QAM and

64QAM. Data are transmitted the in form of fixed-sized blocks, and each subchannel

of a block havs symbols from constellation of different sizes. Each block has a small

header containing the modulation information so that the receiver can properly decode

the subchannels.

5.7 Simulation Results

The BER of a simulated SVD system is shown in Fig. 5.4. The fixed QPSK curve uses

the same modulation on each subchannel. The adaptive and adaptive plus waterfilling

(wf) are expected to be flat in the ideal adaptation case. They are not flat as the

adaptation is not perfect. The merit of using adaptive modulation becomes clear in
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Figure 5.4: Bit error rate of the SVD system.

the throughput shown in Fig. 5.5. Clearly, the adaptive system has a much higher

throughput than the fixed system, and combined with the waterfilling power control,

further increases the throughput by one bit. These results are compared with those for

VBLAST in Chapter 6.
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Chapter 6

Performance Comparison Results

6.1 Introduction

This chapter is devoted to simulation results. There are two sets of simulations. One

set compares different decoding methods for VBLAST and shows that the Polar De-

composition based decoding method is better than other methods in terms of execution

time and BER. In the second set of simulations, the VBLAST system is compared with

the SVD based system. For this latter comparison, three types of channel model are

considered: an IID (independently and identically distributed) random channel, a slow

fading Rayleigh channel and a physical channel measured by the VUT MIMO group.

It should be remembered that the VBLAST and SVD systems have different architec-

tures and modes of operation. Table 6.1 shows the acronyms used in the text for the

respective MIMO systems.

In addition to these acronyms, the suffix ’opt’ will mean optimal decoding order

and ’wf’ will mean waterfilling power control. Where not specified, equal power control

is used and the decoding order is the original order.

67
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Acronym MIMO System
VBLAST-ZF VBLAST with ZF nulling vector

VBLAST-MMSE VBLAST with MMSE nulling vector
VBLAST-QR VBLAST with QR decoding

VBLAST-QRQL VBLAST with both QR and QL decoding
VBLAST-PD-QR VBLAST with PD (plus QR) decoding

SVD SVD based system with fixed constellation
SVD-MQAM SVD based system with adaptive constellation

Table 6.1: Acronyms used to denote different MIMO systems.

6.2 Channel Models

6.2.1 IID Channels

The MIMO IID channels are matrices with every element representing the gain between

a pair of receiving and transmitting antennas. Each element is a complex number with

both real and imaginary parts being drawn from zero mean, σ2 = 1

2
Gaussian distribu-

tions. Each channel matrix represents a time snapshot of the physical channel being

modelled. For each simulation a minimum of 10,000 channel matrices are generated

for each of the MIMO systems developed. Data is transmitted in blocks of 100 vec-

tor symbols with each vector having nt (number of transmitting antennas) symbols.

Each symbol represents a few bits depending on the constellation in use. For these

simulations a 4× 4 system is used, but the results can be extended to system of any

dimension.

The noise is modelled as complex white Gaussian with real and imaginary parts

being independent, zero mean and with σ2 = 1

2
. Thus the complex noise has unit

power. The system SNR is a given parameter and is the ratio of the transmitted power

to the noise. The transmitted signals are normalized so that each antenna transmits

unity power (total transmitted power is nt). The power of the noise is adjusted in



69

accordance with the SNR. Some receivers may need to have an estimate of the SNR

for MMSE decoding.

6.2.2 Slow Fading Rayleigh Channel

To generate a slow fading channel, a simulator is used, coded by Dr. Reza Berangi of

VUT. The simulator is based on the famous Clarke [23] model and asks for FdT and

the number of channel samples required. The simulator first generates SISO (single

input single output) samples. The MIMO matrix channel is then formed using a SISO

channel as each element of the matrix. Thus, each element of the MIMO channel

matrix fades over time. FdT values considered in this study are: 0.002, 0.01 and 0.05

sec, representing terminal speeds of 10cm/sec, 52cm/sec and 2.6m/sec at 5.8GHz and

T=1ms.

6.2.3 VUT Measured Channel

The MIMO group working at VUT has ongoing channel measurement activities [24].

The measurement data are used within and outside of the MIMO group. For this study

only two points are chosen from the measured channel: one with obvious line of sight

(LOS) path and one with no obvious LOS, corrresponding to points A and B in Fig.

6.1, respectively. The details of the measurement setup can be found in [25].

6.3 Variants of VBLAST

In this simulation the performances of different decoding algorithms proposed for de-

coding the VBLAST signals are compared. The decoding methods include the original
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Figure 6.1: Floor map of the measurement. Rx is receiver position, A is LOS point
and B is NLOS point.

VBLAST method (chapter 3), methods based on the QR and QL decompositions

(chapter 3) and the new method based on the Polar Decomposition (chapter 4). The

bit error rate (BER), block error rate (BLER), throughput and execution time are used

as the criteria for comparison. The IID random channel model is used for this simu-

lation. We found that for the other channel models the relative performances of the

different methods remained the same.

6.3.1 BER, BLER and Throughputs

Fig. 6.2 shows the BER for all of the decoding methods. The first thing that is evident

from Fig. 6.2 is that the QR method performs within 2 to 3dB of the original VBLAST

decoding method in terms of bit error rate. However, using both backward and forward

sweeps (i.e, QR and QL) can significantly improve the BER, yielding a performance
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Figure 6.2: Bit error rate of VBLAST for different decoding methods.

substantially better than the VBLAST method. On the other hand the Polar Decom-

position based decoding has exactly the same BER as the original VBLAST. This

interesting result leads us to believe that there is some form of mathematical equiva-

lence between the VBLAST decoding method and the proposed Polar Decomposition

based method. The veracity of this statement is yet to be established mathematically,

but extensive simulations confirmed the claim.

The BERs reported in Fig. 6.2 are without using any particular decoding order.

Using the optimal order as discussed in earlier chapters produces the results given in

Fig. 6.3.

With the optimal decoding order the results are similar. Once again the original

VBLAST method and VBLAST method based on the Polar Decomposition produce
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Figure 6.3: Bit error rate of different VBLAST decoding methods with optimal decoding
order.

Method Complexity
VBLAST 8a4 + 83

6
a3 + 13

2
a2

QR 8

3
a3 + a2

QR+QL 16

3
a3 + 2a2

Polar 10a3 + 2a2

Table 6.2: Complexities of different VBLAST methods.

exactly the same BER. This reinforces the claim of possible mathematical equiva-

lence. Again, the QR method performs similar to the VBLAST method especially at

lower SNR. The QR and QL method again has significantly better performance than

the VBLAST method.

6.3.2 Execution Time

Developed in past chapters, Table 6.2 shows the computational costs of the decoding

methods for the VBLAST architecture. These numbers are just worst case operation

counts, and the actual operation counts depend on many factors- yet they represent
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the relative complexity. A plot of these complexities is shown in Fig. 6.4. In this

study, the actual operation counts are not reported as there is no reliable known way

(in MATLAB or in any tool ) to count the number of operations. So the time they

take is compared to show the merit of the decoding methods. The time required

by a method is called the execution time. A plot of the execution times is shown

in Fig. 6.5. However, it is assumed that each execution time has two components:

the CPU time (the time required for core operations) and the memory access time

plus the time required for other operations. The time required for other operations is

measured by running the same simulation but turning the decoding module off. The

cpu time then represents the real time spent by a decoding method and can be found

by subtracting the time required for other operations from the execution time. The

CPU times are shown in Fig. 6.6. This shows the comparative merit of the decoding

methods. As seen from the figure, the Polar Decomposition based decoding method

takes the least time. Unfortunately, even though the QR+QL method achieves good

throughput performance, it also takes the maximum amount of time.

6.4 VBLAST System vs SVD-based System

In this set of simulations VBLAST and SVD-based MIMO systems are compared. These

two MIMO architectures have different modes of operation and and therefore perform

differently under different channel conditions. So, to see the behavior and performance

of both systems, the following channel models are used: an IID random channel, a

rank deficient IID channel, a slow fading channel and a measured channel .
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Figure 6.6: CPU time of VBLAST decoding methods.

6.4.1 IID Channels

The VBLAST system uses a fixed QPSK constellation because a larger constellation

means a higher BLER and so a lower throughput (as reported in chapter 3). The

simulation results are shown in Fig. 6.7. The top line is the average theoretical

capacity that can be obtained from a 4 × 4 MIMO system. As the SNR increases,

VBLAST’s throughput settles at 8bps/Hz, the maximum for a 4 × 4 QPSK system.

Though the MMSE criterion attains a slightly higher throughput, it is still far below

the theoretical capacity. The SVD system with fixed QPSK performs even worse. The

reason is that the weaker subchannels are too weak to accommodate even QPSK.

Whereas the adaptive SVD performs the best with increasing SNR. This increase also

follows the theoretical capacity, closely maintaining an almost constant gap of about

6dB. Such a 6dB gap for an uncoded system has also been reported in [10] and other
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Figure 6.7: Throughput of different MIMO systems.

papers.

The throughput values are directly related to the BLER of the systems and are

shown in Fig. 6.8. As expected, the BLER for a fixed SVD system is much higher

than the others. The SVD-adapt system should have a flat curve for ideal adaptation.

The BERs computed end to end are shown in Fig. 6.9. One noticeable thing here is

that the SVD system has a slightly higher BER than the VBLAST-ZF, yet its BLER is

much higher. Again, this is due to the fact that most of the block errors in the SVD

system are caused by the weaker subchannels, and even a single bit error is considered

to cause a block error. The zigzagness of the SVD-adapt system is caused by the

discrete adaptation of the signal constellation sizes.

Using the optimal decoding order, the performance of the VBLAST system
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Figure 6.9: Bit error rate of different MIMO systems.
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Figure 6.10: Effect of the optimal order and waterfilling.

improves slightly at the expense of some extra computational cost, whereas, the SVD-

adapt system can use power control to improve its performance. The VBLAST system

uses only equal power. Fig. 6.10 shows the throughput under such conditions. As seen,

waterfilling is of little help and only at very low SNRs. On the other hand, optimal

ordering can also help improve the throughput.

So, the SVD-based system clearly outperforms the VBLAST system in terms

of throughput. This is under the assumptions that the channel is IID, the transmitter

(and of course the receiver) knows the channel perfectly, and the receivers have perfect

estimates of the SNR.

6.4.2 IID Rank Deficient Channel

The IID rank deficient channels are the same as the IID channels except the rank of

the channel matrix is altered synthetically. This synthetic process involves computing
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Figure 6.11: Throughputs of VBLAST-ZF-opt and SVD-adap systems in rank deficient
IID channel.

the SVD (U, D, V ) of the channel matrix, setting the small unwanted singular values

in D to zero and forming the new channel matrix from the product of U , the new D

and V .

Fig. 6.11 shows the throughput of VBLAST and SVD systems in rank deficient

IID channels. The rank is varied from 4 (full rank) to 1. The VBLAST throughput

declines with decreasing channel rank whereas the SVD system can cope with the

changing channel rank thanks to the adaptive modulation. The BER curves shown in

Fig. 6.12 demonstrates why the VBLAST throughput drops off.

6.4.3 Slow Fading Rayleigh Channel

The throughput performances of the VBLAST and SVD-adapt systems are shown in

Figs. 6.13 and 6.14. During simulations FdT values of 0.002, 0.01 and 0.05 seconds
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Figure 6.12: Bit error rate of VBLAST-ZF-opt and SVD-adapt systems in rank deficient
IID channel

were used. Looking at any of the graphs, it is evident that the incorrect channel

information has an adverse effect on both of the systems. However, the SVD-adapt

system seems to be more affected than the VBLAST system. The reason for this is

the sharp change in the U, V matrices for even a slowly changing channel matrix. The

SVD system designers have to consider this problem seriously.

6.4.4 VUT Measured Channel

The characteristics of the measured MIMO channel can be best observed by looking at

the singular values of the channel samples. Before doing this, the measured data are

normalized so that they are zero mean and unity variance. Fig. 6.15 shows the singular

values of the measured channel samples at the LOS location. The singular values of

the channel samples at the NLOS point are shown in Fig. 6.16.
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Figure 6.13: Throughput of VBLAST-opt system in slow fading Rayleigh channel.
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As seen in Fig. 6.15, the presence of a LOS path does not necessarily mean

that there cannot be other useful propagation paths. In a 4× 4 MIMO system, there

can be at best four subchannels, the gains of which are the square roots of the singular

values. Though four subchannels are shown in Fig. 6.15, the gains of the 3rd and 4th

subchannels are much weaker than the first two. This means that in this LOS path

environment at best two subchannels are useful and using MIMO systems with higher

dimensions is of little use. In contrast, in the NLOS path environment, (Fig. 6.16) all

the subchannels have comparable gains. In addition to this fact, the subchannels in

the LOS case are more correlated than those in the NLOS case. Table 6.3 shows the

correlation among the singular values in both cases.

However, it should be noted that the subchannels for the LOS case are much

stronger than those for the NLOS case. The results for the LOS case are normalized

to make a fair comparison with the NLOS case; in reality, the two ’good’ subchannels

of the LOS case can transmit much more data.

LOS No LOS
Sv1 Sv2 Sv3 Sv4 Sv1 Sv2 Sv3 Sv4

Sv1 1.0000 0.4296 0.2369 0.1081 1.0000 0.2344 0.1521 0.0225
Sv2 0.4296 1.0000 0.5340 0.2138 0.2344 1.0000 0.2486 0.1525
Sv3 0.2369 0.5340 1.0000 0.3374 0.1521 0.2486 1.0000 0.3078
Sv4 0.1081 0.2138 0.3374 1.0000 0.0225 0.1525 0.3078 1.0000

Table 6.3: Correlation among the singular values of measured channels.

The throughput values of the VBLAST and SVD-adapt systems are shown in

Fig. 6.17. The behavior is similar to those for the IID channel. The BER values are

reported in Fig. 6.18. Once again the curves are similar to those for the IID channel.

Thus, the SVD-based MIMO system performs better for all of the channel
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conditions. Moreover, it can adapt to the changing conditions of rank of the channel.

However, in a slow fading channel, the SVD system is more sensitive to the changes in

the channel, and incorrect channel information can severely affect the performances.



Chapter 7

Conclusion and Further Work

This thesis compares two MIMO architectures, namely VBLAST and SVD, in terms

of performance and computational time. Furthermore, novel decoding algorithms for

the VBLAST system have been studied and compared. In addition, a new decoding

algorithm has been proposed which has the same BER performance as the original

VBLAST system but takes less time for execution. Comparing the VBLAST and SVD

systems, it is concluded that the SVD system achieves a capacity close to the theoretical

limit. In rank deficient channels, the VBLAST system fails unless modified, whereas

the SVD system can perform properly without any difficulty. However, for time varying

channels accurate channel information is critical for the operation of the SVD system.

With inaccurate channel information, the SVD system can collapse. As a result, SVD

systems are more suitable for TDD channels where the traffic is symmetrical in both

directions. For asymmetric traffic the SVD system has a huge overhead and in that

case the VBLAST system would be better. So the conclusion is that both of the

systems have advantages in different environments for different applications.
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The new VBLAST decoding algorithm proposed here uses the Polar Decom-

position of the channel matrix. In this study an existing algorithm has been used for

computing the Polar Decomposition. No effort has been made to optimize the algo-

rithm. This is an area where this work can be extended. Fixed-point implementation of

this decoding method is also to be done. As it has been shown, the Polar Decomposed

matrices do not change fast, and there is a real possibility of devising an incremental

algorithm for the slowly varying channel matrix. In this case the Polar Decomposition

need not to be calculated for every snapshot of time. Rather, results from the previous

calculation may be used.
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