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SUMMARY 

This thesis studies topology optimization method employing the 

homogenization method, with a focus on different microstructures and their 

effects on the topology optimization solutions. The method is based on 

considering the design domain as a composite having an infinite number of 

infinitely small holes which are periodically distributed. As a result of 

introducing a material density function to represent the microstructure, the 

complex nature of the topology optimization problem can be converted to a 

problem of sizing optimization of determining the values of the parameters 

describing the microstructures. The main task for the homogenization method is 

to model and formulate these microstructures. 

In the thesis, different microstructure models were investigated. The strengths 

and weaknesses of each type of microstructures were discussed. 

Homogenization method was employed to formulate the homogenized 

properties of the material. The optimality criteria and schemes of updating the 

design variables in the topology optimization process were derived for the 

newly developed microstructures and existing microstructures for which the 

information is not available in the literature. New microstructure models of 

one-material and bi-material were established. Based on these studies, a 

computer software package called Homogenization with Different 

Microstructures (HDM) incorporating fifteen existing and the new 

microstructure models was developed. By using the software, a series of 

problems were studied and solutions given by different microstructure models 
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were compared.  

Firstly, the effects of the various one-material microstructure models were 

investigated. A number of examples of topological optimization problems with 

different loading cases were solved. The loading cases considered were single 

loading, surface loading, multiple loading and gravity loading.  

For bi-material microstructure models, both cases of material without void and 

materials with void under different loading cases were studied. Benchmark 

topological optimization problems were investigated by using six different 

bi-material microstructure models that have been developed and programmed 

in the Chapter 4 and Chapter 5.   

 

In the thesis, we proposed a new method to define microstructures to permit 

using shape optimization method to find optimal microstructures or using 

simple boundary shapes to describe a microstructure, hence to avoid the use of 

the complicated topology optimization method. Two types of microstructures, 

circular and cross shape were developed under this definition. Three multi-void 

microstructures and four new bi-material models are developed.  

 

Our research shows that the cross shape and power-law models with µ  = 3, for 

both one-material and bi-material models, perform the best in terms of 

convergence and ease of implementation of the optimum layouts. The ranked 

layered model gives more complicated layouts in most cases. Triangular, 

circular and hexagon microstructure models using HDM produced similar 

 v 



optimization solutions to those of the rectangular microstructure model 

developed by Hassani and Hinton (1998).  

 

Comparing solutions of benchmark problems given by the HDM software 

incorporating all the fifteen microstructure models to those given by other 

software package demonstrates that the HDM program is effective for a range 

of structural topology optimization problems. 
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Chapter 1                                             

INTRODUCTION 

 

 

 

1.1 General 
 

The natural resources available to human beings are very limited, which means 

we should use these resources as efficiently as possible. Optimization is a tool 

for finding the best possible solution to an engineering problem.  In this 

respect, optimization plays a very important role in the engineering field. 

 

The concept of an optimum in an engineering problem is intriguing and has 

been under intensive investigation for decades. Earlier, engineering design was 

conceived as a kind of art that demanded great ingenuity and experience of the 

designer, and the development of the field was characterised by gradual 

improvement of existing types of engineering design. The design process was a 

sequential trial and error. It started from an initial design based on the 

knowledge and experience of the designer, then followed by an analysis to the 

performance of the design. Based on the information obtained, a new design 

was developed. Nowadays, intense technological competition requires 

reduction of design time and costs of the products while ensuring high quality 
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and functionality. The current concept of design places greater emphasis on 

efficient use of energy, environmental problems, saving as much natural 

resources as possible, Therefore it often involves creative activity for which 

prior engineering experience is totally lacking. Such creativity must naturally 

resorts to application of scientific methods. In recent decades, the development 

of computer technology has provided the opportunity to revolutionize the 

traditional design process. The engineering design has been changing from trial 

and error to scientifically based methods of rational design and optimization. 

This has already occurred with structural optimization. 

 

Structural optimization is a part of an optimal design field dealing with 

structural elements or structural systems and is employed in several 

engineering fields. The main task of structural optimization is to find the ‘best 

possible solution’ to a structure that meets all the multidisciplinary 

requirements imposed by functionality and manufacturing conditions. A 

structural optimization design is a rational establishment of a structure which is 

the best of all possible solutions within a prescribed objective and a set of 

constraints. Structural optimization has become a multidisciplinary subject with 

applications in many fields, such as automotive, aeronautical, mechanical, civil, 

nuclear, naval and off-shore engineering. As a result of rapidly growing 

applications of structural optimization, the importance of the research in 

structural optimization methods is realized by more and more scientists and 

engineers.  
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Topological structural optimization is regarded as one of the most challenging 

topics in structural mechanics, in which one needs to change the topology as 

well as the shape during the process of optimization. This significantly 

increases the complexity of the optimization problem.  

 

In order to overcome the difficulty of topology optimization problems, various 

optimization design techniques have been developed in recent decades. Among 

these, the homogenization method proves to be one of the general approaches 

to shape and topology optimization. This method is based on the theory of 

homogenization. The main idea of the homogenization method is to consider 

the design domain as a composite material consisting of an infinite number of 

periodically distributed small holes. By introducing a material density function, 

the complex nature of the topological optimization problem can be converted to 

a sizing optimization problem by treating the sizes of the small holes as the 

design variables. The very important task of homogenization method for 

topology optimization is to create and formulate a microstructure model for the 

design domain. 

 

Although there has been considerable work done in the field of the 

homogenization method for structural topology optimization, the studies and 

comparisons of the existing microstructures and exploration for new 

microstructures are comparatively modest and limited. More studies on 

different microstructures for homogenization method need to be carried out.  
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1.2 Aim of the Research 

 

The general aim of the research is to develop simple, general, and more 

computationally efficient microstructures to improve the homogenization 

method so that it can be put for practical use and to examine the effect of these 

different microstructures on different kinds of topology optimization problems.  

The specific aims of the proposed project are: 

a. Investigating the properties of existing microstructures. 

b. Identifying the strengths and weaknesses of each type of microstructures.  

c. Establishing new microstructures for shape and topology optimization.  

d. Deriving an efficient algorithm of optimization procedure for different 

microstructure models. 

e. Developing a general computer software package incorporating all the 

existing and new microstructures. 

f. Solving different types of optimization problems by using different 

microstructures and comparing the optimization results.  

 

1.3 Contribution of the Research 
 

In this thesis, a study on the microstructures has been carried out and new 

microstructures including one-material and bi-material microstructures have 

been proposed. These microstructures help to overcome the inherent difficulties 

of some existing microstructures and make structural topology optimization 
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design more accurate. A computer software package for topology optimization 

catering for all microstructures, existing and newly studied here, was developed. 

All these will reduce the gap between the mathematical complexity of 

topological optimization and its practical application in engineering design.  

 

1.4 Significance of the Research 
 

In the topology optimization field, the homogenization method can be used to 

solve a wide range of practical problems. In this respect, this study is 

significant in that it contributes to the development of homogenization to a 

comprehensive and practical tool in engineering. The finding from this research 

will provide useful information for researchers and design engineers in 

choosing microstructures suitable for their tasks. The computer software 

package can be used for practical applications as well as for future research and 

development. Consequently, more efficient designs using less material and 

energy can be obtained for engineering structures. 

 

1.5 Layout of the Thesis 
 

The thesis consists of nine chapters. An outline is given as follows: 

 

Chapter 1 outlines the general background and basic concept of structural 

optimization and the homogenization method as well as the aims, contribution 

and significance of the thesis. 
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Chapter 2 presents a comprehensive review of the development history and 

status of structural optimization. Different optimization methods are described 

and their advantages and limitations are discussed, topological optimization 

methods are emphasized.  

 

Chapter 3 describes the theoretical basis of the homogenization method and its 

application in topological optimization. In this chapter, the concept of periodic 

structure is first described. It is followed by the homogenization formulas in 

elastic composite materials with a periodic structure and the application of 

homogenization method in topology optimization. Next is a review on 

microstructures. In this section, different models of microstructures are studied. 

The advantages and disadvantages of current microstructures model are 

described. Finally, a brief summary is presented.  

 

Chapter 4 In this chapter, a new definition for developing microstructures is 

given. Nine new microstructure models are developed. The method for 

deriving material properties of the new microstructures is studied. 

 

Chapter 5 mainly deals with computer program implementation for different 

microstructure models, followed by the treatment of the technique of 

principal-stress based optimal orientation and checkerboard control technique. 

 

Chapter 6 In this chapter, structural topology optimization of a number of 

benchmark problems is studied. The algorithms for new microstructure models 
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1-7  

are tested and compared with other methods.   

 

Chapter 7 deals with different loading cases (single load, surface load, 

multiple load, and gravity load cases). A series of structural topological 

optimization problems are carried out. The results and their accuracy  for 

different microstructures are compared. Advantages and disadvantages of 

different microstructures are summarized. 

 

Chapter 8 conducts numerical tests on bi-material models. The two types 

investigated are: one is a model of bi-material without void and the other is 

bi-material with void. Examples of structural topological optimization under 

different loading cases are presented. Their solutions are compared. Advantages 

and disadvantages of different bi-material microstructures are summarized. 

 

Chapter 9 presents general conclusions regarding the effectiveness and 

efficiency of microstructures studied. Suggestions for further investigations 

were given.  

 

Appendix A presents the homogenization formulas in elastic composite 

materials with a periodic structure. 

Appendix B presents a typical run of the HDM software.  

Appendix C presents Optimality criteria for deep cantilever beam with a single 

load 

Finally, a list of references is given in alphabetical order of the first authors.  
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Chapter 2_________________________________________________________                      

OVERVIEW OF STRUCTURAL OPTIMIZATION 

 

 

 

This chapter reviews the development of the theory of structural optimization 

and its applications. The background of structural optimization method is first 

described, followed by mathematical description for general optimization 

problems. Approaches for structural optimization including classical calculus 

methods and numerical methods are reviewed and their algorithms are 

presented. Topology optimization is introduced in more details. The current 

situation and future directions of structural optimization are summarized. 

 

2.1 Structural Optimization Method 

 
A structural optimization design problem is described by the objectives of the 

problem, the constraints involved and the design variables. A general structural 

optimization problem is formulated as: “Minimise (or maximise) an objective 

function subject to behavioural and geometrical constraints.” 

 
The objective function or behavioral constraints are usually described as 

follows: 
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• structural volume or weight, storage capacity. 

• cost of material or manufacturing. 

• global measure of the structural performance such as stiffness, buckling 

load, plastic collapse load, natural vibration frequency, dynamic 

response, etc. 

• local structural responses such as stress, strain or displacement at 

prescribed points; maximum stress, strain or displacement in the whole 

structure, stress intensity factor, etc. 

 
Geometrical constraints are usually described as follows: 

•  manufacturing limitations. 

• availability of member sizes.  

• fabrication. 

• physical limitations.  

 
The design variables are to be determined during the optimization process. 

Design variables can be continuous or discrete. 

 

2.2 Mathematical Description of an Optimization Problem   

   
An optimization problem can be mathematically stated as searching for the 

minimum (or maximum) value of a function ( )f x  and the related variable 

vector ,  is n dimensional space, which yields the optimal 1 2( , ... ) n
nx x x=x ∈ nRR
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solution subject to some constraints. The optimization problem in its most 

general form may be expressed as follows (Haftka and Gurdal, 1992): 

 
     ( )

     ( ) 0     1, 2, ,

                    ( ) 0     k 1,2, ,
j

k k

Minimize f
Such that h j n

g n
= =

≤ =

x
x

x

ggg

ggg
h                               (2.1) 

 
where and are constraints,  j and k are the number of equality of 

constraints and inequality constraints, respectively.  

jh kg

 

The sets of design variables which satisfy all the constraints constitute the 

feasible domain. The infeasible domain is the collection of all design points 

that violate at least one of the constraints. If the objective function and both 

equality and inequality constraints are linear functions of the design variables, 

then the problem is a linear optimization problem. In a non-linear optimization 

problem, either the objective function or at least one of the constraints is a non-

linear function of the design variables. From the engineering point of view, the 

objective function f(x) is usually chosen as the structural volume, weight, cost, 

performance, serviceability or their combination. Structural optimization 

problems are usually non-linear optimization problems (Chu, 1997).  

 

2.3 Classifications of Structural Optimization 

 
According to the design variables to be optimised, the structural optimization in 

engineering field can be classified into the following three types: 
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Sizing optimization: In this type of optimization problems, the domain of the 

structure is fixed during the optimization process. Design variables for sizing 

can be discrete or continuous. Sizing optimization can usually be considered as 

the implementation of optimization at details design stage. 

 

Shape optimization: In shape optimization problems, the domain is not fixed 

but the topology is. Shape optimization is always used in the selection of the 

optimum shape of external boundary surfaces or curve. Examples of this type 

of problem include finding the boundaries of a structure, finding the location of 

joints of a skeletal structure, finding the optimal values for parameters, which 

define the middle surface of a shell structure. This may be seen as the 

implementation of the optimization techniques at the preliminary design stage. 

 

Topology optimization: In some cases, sizing and shape optimization methods 

may lead to sub-optimal results. To overcome this deficiency topology 

optimization must be considered. Topology optimization is to find the optimal 

layout of a structure within a defined design domain. Different from shape or 

sizing optimization method, the initial design domain in topology optimization 

is a grand or universal structural, for example, a rectangular plate, in some two 

dimensional design problems. The only known quantities in the problem are the 

applied loads, the possible support conditions, the volume of the structure to be 

constructed and maybe some additional design restrictions defined by the 

designer. The physical size, shape, and connectivity of the structure are not 

known. The topology, shape, and size of the structure are not represented by 
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standard parametric functions but by a set of distributed functions defined over 

the fixed design domain. These functions in turn represent a parameterization 

of the stiffness tensor of the continuum and a suitable choice of this 

parameterization, which would lead to the proper design formulation for 

topology optimization (Bendsøe and Sigmund, 2002).  Topology optimization 

is the most difficult and challenging task among the three types of structural 

optimization problems. 

 

Figure 2.1, which is extracted from Bendsøe and Sigmund (2002) shows the 

three categories of structural optimization, a) sizing optimization problem of a 

truss structure, b) shape optimization and  c)  topology structural optimization. 

 

 

Figure 2.1 Three categories of structural optimization. 

(From Bendsøe and Sigmund, 2002, page 2) 

 

2.4 Solution Methods for Structural Optimization 

 
Different approaches to solve the structural optimization problems can be 

broadly classified into classical calculus methods and numerical methods.  
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2.4.1 Calculus methods 

 
The differential calculus was introduced into optimization problem in the 17th 

century. The first use of the calculus methods to structural design can be 

attributed to Maxwell (1895) in designing the least weight layout of 

frameworks. The later research on the optimal topology of trusses by Michell 

(1904) resulted in the well known Michell type structures. The typical calculus 

methods are differential calculus and calculus of variations  

 

Differential Calculus 

 
The method of differential calculus stated that the conditions for existence of 

extreme values are the first order partial derivatives of the objective function 

with respect to the design variable to be zero.  

The formula of differential calculus is as follows:  

 
( ) 0, 1,2,...., .iF x i n∇ = =                                             (2.2) 

Where the vector x= {xl, x2,..., xn} is the extreme points. 

The differential calculus usually can only be applied to very simple cases such 

as unconstrained optimization problems.  

 
 Calculus of Variations 

Calculus of variations is a generalization of the differentiation theory. It deals 

with optimization problems having an objective function F expressed as a 
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definite integral of a functional Q, Q is defined by an unknown function y and 

some of its derivatives (Haftka and Gurdal 1992): 

 

( , ,..., )
b n

n
a

d dF Q d
d d

= ∫
y yx,y x
x x

                                                 (2.3) 

 
Where =y y(x) is directly related to the design variable x. Optimization is to 

find the form of function =y y(x)  instead of individual extreme values of 

design variables. 

The necessary condition for an extremum is the first order of variation equal to 

zero. 

( ' ...) 0
'

b

a

Q QFδ δ δ∂ ∂ d= + +
∂ ∂∫ y y x
y y

=                                               (2.4) 

Where ' /d d=y y x  

 
Taking into account of boundary conditions at fixed y(a) and y(b) (Haftka and 

Gurdal 1992), Equation (2.4) can be expressed as 

0
'

Q d Q
d

 ∂ ∂
−  ∂ ∂ y x y

=                                                      (2.5) 

This is the well known Euler-Lagrange equation. 

Although the application of calculus method is very limited, it is a very 

important stage in the development of optimization methods. Calculus methods 

have the fundamental importance in exploring mathematical nature of 

optimization and in providing the lower bound optimum against which the 

results by alternative methods can be checked (Haftka and Gurdal 1992). 
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2.4.2 Numerical methods 

 
In general structural optimization problems are highly non-linear. In the design 

of real structural systems, the use of numerical methods is unavoidable. 

Nowadays the numerical methods of structural optimization generally fall into 

the following categories: 

 
• Direct minimization techniques (e.g. mathematical programming, MP) 

• Indirect methods (e.g. optimality criteria, OC) 

• Genetic Algorithms method 

 

Mathematical Programming 

 
Mathematical programming (MP) was one of the most popular optimum search 

techniques formulated in 1950s (Heyman 1951). It is a step-by-step search 

approach involving iterative processes. Each iteration consists of two basic 

steps: 

a) differentiating the value of the objective function and its gradients with 

respect to all design variables, 

b) calculation of a change of the design variable that would result in a 

reduction of the objective function. 

 
Steps a) and b) are repeated until a local minimum of the objective function is 

reached. 
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In the early stages, the mathematical programming method was only limited to 

linear problems where the objective functions and constraints are linear 

functions of design variables. Since 1960, numerous algorithms of nonlinear 

programming techniques have been developed such as: nonlinear programming 

(NLP) (Schmit, 1960), feasible direction (Zoutendijk 1960), gradient projection 

(Rosen 1961) and penalty function method (Fiacco and McCormick 1968). At 

the same time, approximation techniques using the standard linear 

programming to address nonlinear problems, such as sequential linear 

programming (Arora 1993) have been studied. 

 
The main advantage of MP methods is that they can be applied to most 

problems within and outside the field of structural optimization. The main 

disadvantage of MP methods is that as the number of design variables and 

constraints increases, the cost of computing derivatives becomes expensive.  

 

Optimality Criteria 

 
Optimality criteria are necessary conditions for minimality of the objective 

function and these can be derived by using either variational methods or 

extremum principles of mechanics. Optimality criteria (OC) method was 

analytically formulated by Prager and co-workers in 1960s (Prager and Shield 

1968; Prager and Taylor 1968). It was later developed numerically and become 

a widely accepted structural optimization method (Venkayya et al. 1968).  

 

 2-9 



Chapter 2 – Overview of Structural Optimization 

OC methods can be divided into two types. One type is rigorous mathematical 

statements such as the Kuhn-Tucker conditions. The other is algorithms used to 

resize the structure for satisfying the optimality criterion. Different 

optimization problems require different forms of the optimality criterion.  

 

In Kuhn-Tucker conditions (Haftka and Gurdal 1992), the inequality 

constraints can be transformed into equality constraints by adding slack 

variables. In this case, the inequality constraints in Equation (2.1) can be 

written as 

2
kt  is slack variables 

2( ) 0,        1, 2,3, ,k kg t k+ = = ⋅⋅⋅x gn                                   (2.6) 

The Lagrangian function of the optimization can be defined as 

                                    (2.7) 2

1 1

 ( , , , ) ( ) ( ) ( ( ) )
gh nn

j j k k k
j k

L t f h g tλ ζ ζ λ
= =

= + + +∑ ∑x x x x

where jζ  and kλ  are Lagrangian multipliers. 

 
Differentiating the Lagrangian function (2.7) with respect to x, t, λ , and jζ  we 

obtain 

1 1

( ) ( ) 0,     1, 2, ,
gh nn

j k
j k

j ki i i i

h x g xL f i
x x x x

ζ λ
= =

∂ ∂
= + + = = ⋅⋅⋅

∂ ∂ ∂ ∂∑ ∑ n           (2.8) 

0                                             1, 2, ,j h
j

L h j
ζ
∂

= = = ⋅⋅⋅
∂

n            (2.9) 

2 0                                      1, 2, ,k k
k

L g t k n
λ
∂

= + = = ⋅⋅⋅
∂ g           (2.10) 
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2 0                                       1,2, ,k k g
k

L t k
t

λ∂
= = = ⋅⋅⋅

∂
n

n

          (2.11) 

 
From (2.10) and (2.11) we can get 

 
( ) 0,                                            1, 2, ,

0,                                             1, 2, ,

k g

k k g

g x k n

g kλ

≤ = ⋅⋅⋅

= = ⋅⋅⋅
          (2.12) 

 
This implies that when an inequality constraint is not active, the Lagrangian 

multiplier associated with the constraint is zero.  

 
By using Kuhn-Tucker conditions, the optimality conditions for the 

optimization problem can be stated as 

 

1 1

( ) ( ) 0,       1, 2, ,

0                                                   1, 2, ,

( ) 0,                                                      

gh nn
j k

j k
j ki i i i

j h
j

k

h x g xL f i n
x x x x

L h j

g x

ζ λ

ζ

= =

∂ ∂

n

= + + = =
∂ ∂ ∂ ∂

∂

⋅⋅⋅

= = = ⋅⋅⋅
∂

≤

∑ ∑

 1, 2, ,

0,                                                        1, 2, ,

0,                                                            1, 2, ,

g

k k g

k g

k

g k

k n

λ

λ

n

n

= ⋅⋅⋅

= = ⋅⋅⋅

≥ = ⋅⋅⋅

            (2.13) 

 
The optimal criteria method is one of the best-established and widely accepted 

optimization techniques.  

 
It should be mentioned here the attempt to combine both the mathematical 

programming method and optimal criteria method by dual MP methods. As 

 2-11 



Chapter 2 – Overview of Structural Optimization 

dual methods search the optimum direction in the space of Lagrangian 

multipliers instead of that of the initial design variables, it can save 

considerable computing efforts when the number of constraints is smaller than 

that of design variables (Fleury, 1979). 

 

Genetic Algorithms 

 
Genetic Algorithms (GA) were first developed in 1970s (Holland, 1975). The 

GA method uses genetic processes of reproduction, crossover and mutation. 

The procedures are summarized as follows: 

 
a) An initial population of designs is randomly created.  

b) The fitness of each individual is evaluated according to a fitness 

function.  

c) The fittest members are reproduced and allowed to cross among 

themselves.  

d) A new generation is developed with member having higher degree of 

desirable characteristics than the parent generation. 

e) This procedure is repeated until a near optimum solution has been 

reached. 

 
Although the GA method may not yet be as popular as MP or OC method, this 

method has merits of being reliable and robust (Nagendra, Haftka and Gurdal, 

1993). 
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2.5 Structural Topological Optimization  

 
With the exception of a few early landmark results (Maxwell 1895; Michell 

1904), the historical development of the field of structural optimization seems 

to have followed an opposite route to the actual structural design process 

(Haftka and Gurdal 1992; Kirsch 1993). Since its inception, research in 

numerical optimal structural design went from element stiffness design, 

through geometric and shape optimization to topology optimization design. It is 

also clear that the major impact on the structural efficiency, in the sense of 

stiffness/volume or stress/volume ratio, is determined at the conceptual stage 

by the topology and shape of the structure. No amount of fine-tuning of the 

cross-sections and thicknesses of the elements will compensate for a conceptual 

error in the topology or the structural shape (Olhoff et al. 1991). 

 

With the development of high-speed computer, the topology optimization 

method using numerical approach has been growing quickly (Haftka and 

Grandhi (1986), Kirsch (1989) and Rozvany et al. (1995)). A numerical 

approach to topological design starts with a domain of material to which the 

external loads and boundary conditions apply. The optimization algorithm then 

proceeds with removing out ineffectual material to generate best structural 

solutions. In most cases, the objective function for topology optimization 

problems is often the compliance (Taylor 1977).  
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Generally speaking, structural topology optimization can be considered as a 

material distribution problem. Two classes of structural domains have been 

used in topology optimization problems. One is called the ‘Discrete’ structure. 

Early solutions can be seen in the papers of Don et al. (1964); Dobbs and 

Felton (1969), examples of applying the concept to large-scale structures have 

been given by Zhou and Rozvany (1991). The other domain is continuous 

structures. The continuum is typically divided into appropriate finite elements 

where every element has intrinsic structural properties. They are reviewed in 

the following sections. 

 

2.5.1 Topology optimization for discrete structures 

 
According to the survey by Topping (Topping, 1993), topology optimization 

method for discrete structures can be classified into three categories: 

 

Geometric Approach 

 
In the geometric approach, the properties of cross-section and the coordinates 

of joints are design variables. During the optimization process, the number of 

joints and connecting members are fixed while some joints are permitted to 

coalesce. 

 

Hybrid Approach 

In the hybrid approach, the design variables are divided into size design 

variables and geometrical design variables and are separated in the design 
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space. During the optimization process, the element size is firstly changed 

while keeping the topology unchanged; next, optimum position of the element 

nodes is searched. 

 

Ground Structure Approach Method 

 
Combined with the MP and OC method, the ground approach method is now 

widely used in topology optimization problems. In the ground structure 

approach, a ground structure is considered as a dense set of nodes and a 

number of potential connections between the nodes. During the optimization 

process, the number and size of connecting elements are changed, but the nodes 

numbers and position are fixed. If the section area of elements are reduced to 

zero during the optimization process, the elements are considered as non-

existent and the topology is changed accordingly. 

 

A remarkable advantage of the ground structure approach method is that the 

design domain is fixed thus the problem of mesh regeneration can be avoided.  

 

2.5.2 Topology optimization for continuous structures 
 

Heuristic Methods 

 
Heuristic methods are those addressing structural optimization problems in a 

less mathematical but more intuitive way. Instead of complex mathematical 
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formulation, the heuristic methods are based on simple concepts or natural 

laws. These methods fall into two categories. 

 

Evolutionary structural method (ESO) 

 
The evolutionary structural method was first proposed by Xie and Steven 

(1993, 1994a). This method is based on the concept of slowly removing the 

inefficient material from the structure and/or gradually shifting the material 

from the strongest part of the structure to the weakest part until the structure 

evolves to the desired optimum. The ESO method offers a simple way to obtain 

optimum designs using standard finite element analysis codes. Compared to 

other structural optimisation methods, the ESO method is overwhelmingly 

attractive due to its simplicity and effectiveness. During the last ten years, ESO 

has been demonstrated to be capable of solving many problems of size, shape 

and topology optimum designs for static and dynamic problems (Rong et al, 

2001).  

 

Homogenisation Method 

 
Compared to the methods discussed above, the homogenization method is more 

complex. This method is based on the mathematical theory of homogenization, 

which has been developed since 1970’s (Babuska, 1976, Cioranescu and Paulin 

1979). The homogenization method can be used to find the effective properties 

of the equivalent homogenized material and can be applied to many areas of 

physics and engineering. Since being firstly proposed for topology optimization 
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in 1988 by Bendsøe and Kikuchi (1988), homogenization method has attracted 

the attention of many researchers and design engineers and has been used by 

industrial companies around the world for product development, particularly in 

the automobile industry.  

 
The homogenisation method has been successfully applied to both static and 

dynamic problems with weight constraint (Tenek and Hagiwara 1993, Ma et al. 

1995). With regard to the algorithm aspect, the homogenisation method uses 

traditional mathematical programming or optimality criteria as search 

techniques. The advantages of homogenization method are rigorous theoretical 

basis and good convergence behaviour. The disadvantage of homogenization 

method is that difficulties associated with those traditional methods are 

magnified in the homogenisation method.  

 

H/e-method 

The h/e-method is a hybrid method. It is an abbreviation of the combination of 

homogenization and evolutionary methods in various degrees.  Bulman, Sienz 

and Hinton (2001) developed the CATO (constrained adaptive topology 

optimization) algorithm combines idea from the two procedures: the more 

mathematically rigorous homogenization method and more intuitive 

evolutionary methods. They systematically investigated the performance of the 

algorithm for topology optimization using a series of benchmark problems and 

their study results show that in general cases, the h/e CATO algorithms 

compared well with the homogenization method. 
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2.6 Summary 
 

With the development of computer technology, structural optimization has 

become a very important design tool in engineering. The applications of 

structural optimization designs have been widely extended to various fields 

such as aerospace, transportation, mechanical and civil engineering. 

  
Numerical methods have been developed very rapidly and have been widely 

used in the structural optimization problems. With the advance of high-speed 

computers and the relatively inexpensive computational power, numerical 

methods play more and more important role in structural optimization. 

 
In structural optimization problems, topological structural optimization has the 

complex features of both sizing, and shape optimization problems. In the 

optimization process, trying to change the topology as well as the shape during 

the optimization processes makes the problem more complex. This class of 

problems is still regarded as one of the most challenging in structural 

mechanics. 

 
Homogenization method is very useful tool in solving topology structural 

optimization problems. It is regarded as the one of the most general approach to 

finding optimum shapes and topology of structures. Details of this method will 

be presented in next chapter. 
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Chapter 3_________________________________________________________ 

HOMOGENIZATION AND MICROSTRUCTURES   

                                    REVIEW 

 

 

 
 

 
By using the concept of the composite microstructures distribution, the 

homogenization method can be used to solve structural topology optimization 

problems. The results obtained have good agreements with the experimental 

data available in literature.  

 
In general, the mathematical theory of homogenization does not provide 

analytical formulas or numerical algorithms directly suited to obtaining 

answers to engineering problems. Thus, a 'gap' exists between the mathematical 

theory of homogenization and the mechanics of composites. This gap acts as 

the principal obstacle to a wide application of the methods of the mathematical 

theory of homogenization in practical work. To solve this problem, 

microstructure model of homogenization and its formulation must be well 

established. 

 
In the last ten years, researchers and engineers have done a lot of work on 

microstructures development. Up to now, various types of microstructures have 
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been proposed and used for shape and topology optimization. In this chapter, 

the detailed homogenization formulas and different microstructures are 

reviewed. 

 

3.1 Homogenization Method 

 

3.1.1 Introduction 

 
Homogenization is a mathematical method. It considers problems which are 

parameterized by a scale parameter ς  and represented by a family of functions 

w( ς ).  It allows us to "upscale" the governing differential equations and 

transforms the initial problem to a problem for a homogeneous body, where ς > 

0 is a spatial (length) scale parameter, the typical size of a pore in a basic cell.  

 

The essential step for homogenization is to determine the limit 

 

0
lim ( )
ς

ς
→

=w w                                                        (3.1) 

 
This limit can be considered as the result of the "up scaling" procedure (Figure 

3.1), followed by finding differential equations that the limit w satisfies and 

proving that formula (3.1) holds (Hornung, 1997). 

 
This method not only offers formulas for upscaling but also provides tools for 

producing rigorous mathematical convergence proofs (Hornung, 1997). 
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Figure 3.1 Homogenization limit (Hornung, 1997) 

 

From a mathematical point of view, the theory of homogenization uses the 

asymptotic expansion and the assumption of periodicity to substitute the 

differential equations with rapidly oscillating coefficients with differential 

equations whose coefficients are constant or slowly varying in such a way that 

the solutions are close to the initial equations (Oleinik, 1984). 

 
Homogenization theory, a rigorous mathematical theory, can be used as an 

alternative approach to find the properties of composites and advanced 

materials with microstructures. This theory can be applied in many areas of 

physics and engineering having finely heterogeneous continuous media such as 

heat transfer or fluid flow in porous media or, for example, electromagnetism 

in composites. In fact the basic assumption of continuous media in mechanics 

and physics can be thought of as sort of homogenization, as the materials are 

composed of atoms or molecules. 

 
The essential steps to solve problems by the homogenization method are 

assuming a periodic structure for a design domain, defining shapes of 

microstructure for the small-scale ς  and finding homogenized material 

properties. 
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3.1.2 A brief review of periodic structure 

 
In the homogenization theory, the composite structure is supposed to be made 

of sets of basic cells that have a regular periodicity. For general boundary 

condition , they have the following properties.  d tΓ ∩Γ =∅

( )pq ( )q+ =x NY x                                             (3.2) 

Where: [ ]1 2 3, , Tx x x=x is a position vector of a point.  

             q is a function of the position vector x.  

             is a constant vector 1, 2 3,
T

p Y Y Y= Y 

              N is a 3x3 diagonal matrix 

1

2

3

0 0
0 0
0 0

n
n

n

 
 =  
  

N , 

                Where  are arbitrary integer numbers.  1 2, ,n n n3

 
Most of the natural and artificial materials are heterogeneous at a micro-scale 

level. Periodic materials and structures are widely found in engineering 

practice. They are also found in nature, with various small deviations from 

periodicity.  

 

The dimension of cell or microstructure is very small compared to that of the 

structural body, the scale, of order ς (0< ς << 1). Due to high level of 

heterogeneity of material, quantities such as displacements and stresses vary 
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rapidly within a very small neighborhood ς  of a given point x. Thus, all 

quantities have two explicit dependences. One is on the macroscopic level x, 

which indicates slow variations. The other is on the microscopic level y = x/ς , 

which describes rapid oscillations. We also assume that the form and 

composition of the base cell varies in a smooth way with the macroscopic 

variable x. For example, let a property be represented by a general function, 

( )φ φ= x,y , where the dependence of the function on the microscopic variable 

y=x/ς  is periodic, ( Y )φ φ= +x,y . The functions having this nature are called 

Y-periodic functions. If we assume that ( )φ x  is a physical quantity of a 

heterogeneous medium. Then  ( )φ x  will have the oscillation as shown in Figure 

3.2 (a). An enlargement of one of the oscillations in the expanded scale is 

shown in Figure 3.2(b). The characteristic dimension of in-homogeneity and 

scale enlargement is shown in Figure 3.3.  

 

 

Figure 3.2 (a) A oscillating function (Hassani and Hinton, 1998) 
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Figure 3.2 (b) One of the oscillations in the expended scale, magnifying the 

section in (a) (Hassani and Hinton, 1998) 

 

 

(a) (b) 

Figure 3.3 (a) The periodic structure of composites and (b) an enlargement 

of a base cell  

 
If we assign a coordinate system 1 2 3( , , )x x x=x in  R  (where   is a three 

dimensional space) to define 

3 3R

Ω , a periodic domain of the composite material 

problem. The domain can be regarded as a collection of parallelepiped cells of 

identical dimensions ς Y1, ς Y2, ς Y3, which Y Y  and are the sides of the 

base cell Y in a local microscopic coordinate system. 

1, 2 3Y
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31 2/ ( , ,1 2 )xx xy , y , y ς
ς ς ς

=3y = ( ) = x . 

Therefore for a fixed x on the macroscopic level, any dependency on y is 

considered Y-periodic. For different points, the structure of the composite may 

vary, but if we look through a microscope at a point at x, the pattern is periodic. 

The behavior of the composite can be expressed by a function of scale ς  

 
0 1 2 2

1
( ) ( ) ( ) ( ) (i i

i

ςφ φ ςφ ς φ ς φ
∞

=

= + + + ⋅⋅⋅ = ∑x x, )y x,y x,y x,y               (3.3) 

To illustrate the application of the asymptotic expansion method, a problem of the 

linear elasticity for a non-homogeneous solid with a periodic structure is given by 

homogenization method in the following section.  

 

3.1.3 The homogenization formulas in elastic composite materials with a 

periodic structure 

 
The homogenization formulas in elastic composite materials with a periodic 

structure can be found in Hassani and Hinton (1998). Following is a brief 

review. 

 

Let us consider a non-homogeneous, elastic solid, which occupies a domain Ω  

in the space  with a smooth boundary 3R Γ  comprising dΓ (where displacements 

are prescribed) and Γ  (the traction boundary, where body force f and traction t 

are applied) (Figure 3.4). 

t
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Let f be the body force, u the displacement field that defines equilibrium of 

elastic structure and v the kinematically admissible virtual displacement field. 

   

Figure 3.4 A structure with cellular microstructures 

 

Let a(u, v) be the energy bilinear form 

( ) ( ) ( ) ( )ijkl ij kla E ε ε
Ω

d= Ω∫u, v x u v                                  (3.4) 

with strain-displacement relations 

1( )
2

ji
ij

j i

uu
x x

ε
 ∂∂

= + ∂ ∂ 
u 

ds

                                       (3.5) 

and the load bilinear form for external work 

( )
T

L d
Ω Γ

= ⋅ Ω+ ⋅∫ ∫v f v t v                                         (3.6) 

The linear problem of elasticity for such a body can be formulated in the 

following way: 

• equilibrium equations     0  in ij
i

j

f
x
σ∂

+ =
∂

Ω

d

                                          (3.7) 

• loading conditions         t on ,  0 on ij j i in p uσ = Γ = Γ                           (3.8) 

• linear elasticity relationship     ij ijkl klEσ ε=                                            (3.9) 
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The coefficients of elasticity { ijklE  } of a non-homogeneous body are functions 

of the spatial coordinates 1 2 3( , , )x x x=x , and are assumed to satisfy the 

following conditions (Kalamkarov and Kolpakov 1997, Bendsøe 1995): 

                            C1.  ,                                               (3.10) ijkl jikl ijlk klijE E E E= = =

                            C2   
( )

( ) ( ) and ,
ad

ijkl ad ijkl E
E E E

Ω
∈ Ω ≤x M

m

                           (3.11) 

                            C3.  ( )ijkl ij kl ij klE ε ε ε≥x ε                                                     (3.12) 

where the constants 0 < m and M < ∞  do not depend on x,  is 

admissible elasticity tensors which are allowed to vary over the domain of the 

body. 

( ) adE Ω

 

Let us consider the case when a non-homogeneous elastic material has a 

periodic structure in the coordinates 1 2 3, , ,x x x  . The rectangular base cell of the 

cellular body Y is illustrated in Figure 3.5. The boundary of the hole H is 

defined by S ( ) and is assumed to be smooth and the tractions p may 

exist inside the holes.  

H S∂ =

 

Figure 3.5 A base cell 

 

The virtual displacement equation can be constructed as: 
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e e e

t

e
e ek i

ijkl i i i i i iS
l j

u vE d f v d t v d p v dS
x xΩ Ω Γ

∂ ∂
Ω = Ω+ Γ + ∀ ∈

∂ ∂∫ ∫ ∫ ∫ v Ve e, u         (3.13) e ∈V

 
where e is a superscript indicates dependency to the cell of periodicity and V  e

is a space of admissible displacement. t  and i ip  are components of traction t 

and pressure p. 

 
By using the asymptotic expansion method, the following equation for the 

problem of the linear elasticity for a non-homogeneous solid with a periodic 

structure can be derived (see details in Appendix A).  

 
0( ) ( ) ( ) ( )1 1p kl k i k i

ijkl ijpq ijkl
q l j l j

u v vE E dY d E dY
Y y x x Y y

χ β
Ω Ψ Ω Ψ

    ∂ ∂ ∂ ∂ ∂
− Ω =      ∂ ∂ ∂ ∂ ∂     

∫ ∫ ∫ ∫
x x x d

x
Ω

1 ( ) ( )        
t

i i i if dY v d t v d
Y ΨΩ Ψ Γ

 
+ Ω+ Γ ∀ ∈  

 
∫ ∫ ∫x x v V                                           (3.14) 

Where  is a Y- periodic function being the solution of  ( )kl Vχ Ψ∈

( ) ( ) ( )         p kl i i
ijkl ijkl

q j j

v vE dY E dY
y y y
χ

ΨΨ Ψ

∂ ∂ ∂
=

∂ ∂ ∂∫ ∫
y y v V∀ ∈                (3.15) 

 and Vβ Ψ∈ , β  is a Y- periodic function being the solution of  

( ) ( )         k i
ijkl i is

l j

vE dY p v dY
y y
β

ΨΨ

∂ ∂
=

∂ ∂∫ ∫
y

∀ ∈y v V                     (3.16) 

and Ψ indicates the solid part of the cell. 

Now, if we define that 

( )1 p klH
ijkl ijkl ijpq

q

E E E
Y y

χ
Ψ

 ∂
= − ∂ 

∫ dY                                    (3.17) 

( ) k
ij ijkl

l

E
y
βσ

Ψ

∂
=

∂∫x dY                                              (3.18) 
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1( ) iif x
Y Ψ

= ∫ f dY                                                 (3.19) 

(3.14) can be written as 

0 ( ) ( ) ( )( )H k i i
ijijkl

l j j

u v vE d
x x x

σ
Ω Ω

∂ ∂ ∂ dΩ = Ω
∂ ∂ ∂∫ ∫

x x xx  

( ) ( ) ( )        
t

i i iif v d t v d ΨΩ Γ
+ Ω+ Γ ∀∫ ∫x x x v V∈                       (3.20) 

It is noticed that the formula above is very similar to the equation of virtual 

displacement (3.13). H
ijklE  defined by (3.17) is the homogenized elastic tensor. 

σ  are average ‘residual’ stresses within the cell due to the tractions p inside the 

holes and f  are the average body forces. 

The solution of the elastic composite material with a periodic structure problem 

by homogenization method can be summarized as: 

 
a. Solving the integral equations (3.15) and (3.16) in the base cell and get 

χ  and β  . 

b.  Using (3.17), (3.18) and (3.19) get H
ijklE ,  σ and f  

c. In macroscopic coordinates x, construct and solve the equation (3.20). 

 

3.1.4 Application of homogenization for topology optimization in minimum 

compliance problems 

 
A problem in topology optimization can be formulated as finding the optimal 

spatial distribution of material for a given set of loads and boundary conditions 

to minimize certain objective function. The solution usually involves three 
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classes of regions: solid, porous and empty. By using of the concept of a 

composite periodic microstructures distribution, the problem can be converted 

into a sizing optimization problem with parameters defining the microstructure 

taken as design variables. 

 
In optimal design for minimum compliance problem, we seek the optimal 

choice of elasticity tensor E  in some given set of admissible elasticity 

tensors . The admissible tensors will usually be allowed to vary over the 

domain of the body, so that  will be a function of the spatial variable x . 

The topology optimization problem can be described as (Bendsøe, 1995): 

ijkl

ijklE

adE

∈Ω

minimize  ( )

 :  ( ) ( ),    

M

ikjl ad

L

sush that a L for all

E E

∈

= ∈

∈

u V,
u

u, v v v V                                     (3.21) 

where a  and  are the energy bilinear form for the internal work and 

the load linear form described before, is the mean compliance, V denoting 

the space of kinematically admissible displacement field, the index M indicates 

that the energy bilinear form  depends on the design variables. 

(u, v) ( )L v

( )L u

Ea

 

The topology optimization procedure consists of the following steps: 

 
Step 1  Choose a suitable reference domain that allows surface tractions, fixed 

boundaries, etc. to be defined 

Step 2  Choose a composite, constructed by periodic repetition of a unit cell 

consisting of the given material with one or more holes. 
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Step 3    Solving the integral equations in the base cell and using (3.17), (3.18) 

and (3.19) get H
ijklE ,  σ and f . In macroscopic coordinates x, solving 

the equation (3.20). 

Step 4    Using structural optimization method described in Chapter 2, compute 

(3.21) for the optimal distribution of this composite material in the 

reference domain, treat the problem as a sizing problem. 

 

In general, we cannot use homogenization theory to solve engineering 

problems directly. To solve engineering problems by homogenization method, 

microstructure model and its formulation must be established first. The finding 

of equivalent homogeneous solid instead of the original non-homogeneous 

composite solid, is one of the principal applications of the mathematical theory 

of homogenization.  

 

With the advance in sciences and high technologies, a number of new materials 

and special structures have been developed. Particular material properties can 

be obtained by the design of composition and microstructures. Some man-made 

materials have special microstructure properties and are composed of multi-

phase materials. Composites technology creates the opportunity to implement 

specific physical properties into the individual regions of the structure. By 

changing the material microstructure, such as the composition and/or the fiber 

orientation, composites can exhibit desirable mechanical and thermal properties. 

Optimization of material selection and material composition provides a new era 

for  structural  engineering. The  research  of  advanced  materials  can  also  be 
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 extended to the research of homogenization microstructures design. In the next 

section, we will review these microstructures. 

 

3.2 Microstructures Review 

 
The fact that material with microstructure is an integral part of problem of 

optimal structural design was first clearly demonstrated by Cheng and Olhoff 

(Cheng, 1981) on optimal thickness distribution for elastic plates. The work by 

Cheng and Olhoff led to a series of works on optimal design problems, such as 

microstructures formulation of the problem, plate models and optimal design 

problems (Bendsøe, 1986), design of composite plates of extremal rigidity 

(Gibiansky, 1984), regularization of optimal design problems for bars and 

plates (Lurie, Fedorov and Cherkaev, 1982 a and b), least-weight design of 

perforated plates (Rozvany, Ong, Szeto, Olholf and Bendsøe, 1987), and so on. 

These studies concluded that laminated structures give more efficient designs 

and thus microstructures were built up in order to obtain the strongest 

structures. This requires a consistent way for computing effective material 

properties for materials with microstructures and this can conveniently be 

carried out using the method of homogenization. Thus, optimal design of 

structures is closely connected with studies of microstructures and the very 

important problem of finding the effective homogenized material properties for 

composite microstructures (Bendsøe, 1988).  
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Up to now, various types of microstructures have been proposed and used for 

shape and topology optimization. From the material structure point of view, 

these microstructures can be broadly classified into one-material microstructure 

and bi-material microstructures.  

 

3.2.1. One-material microstructures 

 
In one-material microstructures the material model contains one material with 

one or more voids. If a portion of the medium consists only of voids, material 

is not placed over that area. On the other hand, if there is no porosity at some 

potion, a solid structure needs to be placed at that location. There are many 

different types of one-material models used at present. These material models 

are: 

 

Ranked Layered Microstructures 

 
The basic idea of this type of microstructures is to find extremal 

microstructures, which has maximum rigidity or equivalently minimum 

compliance. These types of microstructures are also called optimal 

microstructures in the sense that they achieve optimality in the well-known 

Hashin-Shtrikman bounds (Bendsøe and Sigmund, 2002) on the effective 

properties of composite materials.  

 
Figure 3.6 shows an example of the rank layered microstructures. Each cell of 

this periodic microstructure is constructed from layers of solid material and 
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void. The so-called rank-1 material consists of alternating layers of solid 

material and void.  

 

Figure 3.6 Ranked layered microstructure (Hassani and Hinton, 1998) 

 
The rank-2 material is constructed in a similar manner, with layers of different 

ranks being orthogonal to each other. In the topology optimization problems, rank-

2 layered material model is the most commonly used in ranked layered 

microstructures. For rank-2 layered material model, the elements of the matrix of 

elasticity coefficients are functions of three parameters: ,ϑ γ , 0 1,0 1γ ϑ≤ ≤ ≤ ≤ , 

and orientation angle θ  (shown on Figure 3.6). So that the volume occupied by 

the solid sΩ is: 

 
(s dϑ γ ϑγ

Ω
Ω = + − Ω∫ )                                        (3.21) 

 
and the density of the composite can be written as 

 
( , ) ( ) sρ ρ ϑ γ ϑ γ ϑγ ρ= = + −                                      (3.22) 

where sρ  is the density of solid.  
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It is noted that by changing the value of γ  and ϑ  it is possible to cover the 

complete range of cell relative density from zero to one. 

 

Many scientists and engineers have carried out a lot of research on ranked layered 

microstructures, i.e., Gibianski and Cherkaev (1987) derived the minimum 

complementary energy density for the class of matrix layered composites of any 

rank, and applied this as an upper bound on the energy density. At the same time 

they also applied the theory of quasiconvexity to construct a lower bound on the 

complementary energy density of a composite which is valid for any 

microstructure. Optimum composites are characterized by having a 

complementary energy density which lies between these two bounds. For the 

limiting case of perforated composites, these bounds coalesce and yield analytical 

expressions for the energy density of the optimum perforated laminate 

microstructure. Olhoff (1998), continued to study the topology optimization of 

linearly elastic three-dimensional continuum structures subjected to a single case 

of static loading. Several examples of optimum topology designs of three-

dimensional structures were presented, including illustrative full three-dimensional 

layout and topology optimization problems for plate-like structures. They 

remarked that:  

• The dependence of effective macroscopic properties on the microstructure 

geometry can be expressed by an explicit analytic form for the optimum 

three-dimensional material microstructures. 

• The optimum microstructures provide a full relaxation of the three-

dimensional generalized shape optimization problem. This means that the 

3-17  



Chapter 3 Homogenization and Microstructures Review 

problem is well-posed and that the optimum solution is convergent with 

respect to finite element mesh refinement. 

• The use of optimum microstructures renders the topology optimization 

problem convex such that local optimum solutions are avoided. This 

implies that a usual sensitivity based procedure of mathematical 

programming can be applied for the solution of the complete optimization 

problem. 

 
Allaire and Aubry (1999) studied optimal microstructures for plane shape 

optimization problems and pointed out that in two dimensional spaces, when the 

eigenvalues of the average stress have opposite signs, there is no optimal periodic 

microstructure. In this case, any optimal microstructure is degenerated, to the 

rank-2 layered material, i.e. it cannot sustain a non-aligned shear stress. When the 

eigenvalues of the average stress have the same sign, the higher order layered 

material is optimal and does not degenerate. 

 

The advantage of the rank layered material model is that the effective material 

properties of the microstructures can be derived by analytical method. By using 

analytical method, Allaire and Aubry achieve optimality in the well-known 

Hashin-Shtrikman bounds on the effective properties of composite materials. 

Therefore, ranked layered microstructures are also called optimal microstructures.  

 

The disadvantage of the rank layered material model is that the rank layered 

material cells provide no resistance to shear stress in between the layers. This 
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will result in the stiffness matrix of the structure becoming singular. One-way 

of “avoiding” the singularity problem is to use a very soft material instead of 

the voids. However, in this case, the strain energy calculated during 

optimization process (commonly used for objective function) is modified 

energy. On the other hand, the combination of a very soft material with a solid 

material will cause numerical problems due to ill conditioning of the global 

stiffness matrix. For some different loading cases or different design domains, 

the structure might be unstable. 

 
At present, this type of microstructures has been studied only for compliance 

design (Rozvany, 2001), in which the total amount of external work is either 

minimized or constrained.   

 

Rectangular Microstructure 

Rectangular microstructure was first proposed by Bendsøe and Kikuchi (1988). 

This microstructure is a square cell with centrally placed rectangular hole 

(Figure 3.7). In three-dimensional spaces, this micro-cell will be a cubic cell 

with a rectangular parallelepiped hole. 

 
Rectangular microstructure is one of the most commonly used microstructure 

model for topology optimization using homogenization method. The area 

occupied by the solid material cΩ  in the base cell is given by 

(1 )c a bx xΩ = − ⋅                                              (3.23) 

 The area occupied by the solid material sΩ  in the design domain is given by 
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(1 )s a bx x d
Ω

Ω = − ⋅ Ω∫                                           (3.24) 

 
Where ,a bx x  are shown in Figure 3.7 0 1,0a bx x 1,≤ ≤ ≤ ≤  Ω  is the design 

domain and sΩ  denotes the solid part of it. 

 

Figure 3.7 Rectangular microstructure. 

 

In general, the microscopic perforations in the cellular body, with respect to the 

coordinate axes, can have different orientations and this orientation θ  will 

affect the properties of the elastic constitutive matrix. So orientation θ  is 

considered as a design variable in the formulation. The elastic module E  is 

the function of 

ijkl

,a bx x  andθ . Generally, the effective material properties of such 

a structure are derived by a series of finite element analyses for voids of 

different sizes of voids.  
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Hassani and Hinton (1998) studied the rectangular microstructure 

systematically. In their book “Homogenization and Structural Topology 

Optimization”, the effective material properties obtained by the finite element 

solution of the homogenization equation for square unit cells with Young’s 

modulus E=0.91 and the Poisson’s ratio v=0.3. Two polynomials were given. 

Several benchmark problems were studied. Computer software with 

rectangular and artificial microstructures named PLATO has been developed 

and successfully used in topology optimization problems.  

 

The advantage of rectangular microstructures is the smaller number of 

variables required if square void is chosen. The rectangular microstructure 

model gives calculated true strain energy. Therefore, a solution of minimal 

compliance can be judged based on the value of strain energy. 

 

The disadvantages of rectangular microstructure are: 

 
• The homogenization equation has to be solved by numerical techniques. 

But with high speed computer developed, this problem is easy to be 

overcome. 

• The optimization results often have “grey” region. The “grey” means it 

does not give a clear black and white image as power-law model does 

(discussed later). 
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Triangular Microstructure 
 

Triangular microstructure is less used for solving topological structural 

optimization problems. Folgado et al (1995) calculated layout optimization 

problems of plate reinforcements with buckling load (Figure 3.8). But no 

details of microstructure modelling and calculation were given.   

 

The advantage of the triangular microstructure models is that the true strain 

energy can be calculated by numerical techniques. The disadvantage of 

triangular microstructures is more complicated shape than rectangular 

microstructure and this will increase computation time and cost. 

 

Figure 3.8  Triangular microstructure (Folgado et al 1995) 

 

Hexagon Microstructure 

Hexagon microstructure model is shown in Figure 3.9. Hassani and Hinton 

(1998) showed this shape of microstructure called honeycomb base cell as an 

example of microstructures development. Up to now, this model has not been 
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seen used in solving topology optimization problems. In this research project, 

this microstructure is developed and used to solve a series of benchmark 

topology optimization problems. 

 

Figure 3.9. Hexagon microstructure 

 
The advantages and disadvantages are the same as the triangular microstructure 

model. 

 
Microstructures with Penalization 

(a)  SIMP Model 

The term "SIMP" was introduced by Rozvany in 1992. It is an acronym for 

Solid Isotropic Microstructures with Penalization. The method was proposed 

under the terms "direct approach" or "artificial material model" by Bendsøe in 

1989. The geometrical shape of this model is the same as the rectangular model 

(Figure 3.7). By applying a penalizationµ   to equation (3.23), the porous areas 

can be suppressed. This makes the solution only consist of solid and void 

regions. From a theoretical point of view, this microstructure model does not 

need homogenization (Rozvany, 2001). In SIMP model, the penalization 1µ >  

is usually between 3 and 9 suggested by Hassani and Hinton (Hassani and 
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Hinton, 1998). 

 

(b)  Power-law Model 

 
Power-law is a similar method to SIMP. The characteristic of power-law is that 

the material properties between solid and void are interpolated with a smooth 

continuous function which only depends on the material density. The Young’s 

modulus E is written as  

0( ) ( )E µρ ρ E= ⋅                                                 (3.25) 

 

where  is the Young’s modulus of solid material and 0E µ  is a penalization 

power. High values of µ  decreases the stiffness of intermediate density 

elements and makes “black and white” pattern in the results.  

 

Bendsøe and Sigmund (1999, 2002) did a systematic study on this 

microstructure model and suggest that the power µ  should be selected 

according to the rule: 

2 4max ,
1 1

µ
ν ν

≥  − + 

                                         (3.26) 

where the ν  is Poison’s ratio.  

 

The advantages of SIMP or Power-law models are: these types of models do 

not require homogenization of the microstructure. Therefore, the algorithm 

does not require higher mathematics for derivations and is easily understood. 
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Due to the penalty power used, the optimization solutions are clearer than other 

microstructures. These make the optimal solution easy to be implemented in 

practice. 

 
The disadvantages of SIMP (Power-law) are: 

• The solution depends on the value of penalization.  

• The strain energy calculated in the optimization process is not real; it does 

not necessarily converge to the true value of the optimal solution.  

• The optimal layout is dependent on the mesh. 

 

Optimum Topology Microstructures 
 

The so-called optimum topology microstructure is a microstructure developed 

by using topology optimization method. Sigmund treats the problem 

numerically as an inverse homogenization problem of generating the topology 

of a unit cell of a periodic medium (Sigmund, 1994). The method for the 

generating microstructures is as follows: 

 
Consider a given positive semi-definite rigidity tensor and consider the 

problem of finding the minimum weight truss or continuum topology for a unit 

cell Y in a periodic medium. This is an optimal design problem of generating an 

optimum topology for materials. Using standard notation for homogenization, 

this problem can be written as a topology design problem for a unit cell.  

 
 

3-25  



Chapter 3 Homogenization and Microstructures Review 

 

{ }
,

min imize Volume of cell Y

 :    
adD E

H given
ijkl ijklSubject to E E

χ∈

=
 

Notice that the condition on the homogenized coefficients in the problem is a 

strain energy criterion, making it equivalent to a multiple load minimum 

compliance problem. The volume of material is to be minimized under 

conditions of specified compliance, for a number of independent load cases (in 

the form of pre-strains).  

 

 

Figure 3.10 Minimum weight microstructures (Bendsøe, 1995). 

 
Figure 3.10 shows minimum weight 2-D microstructures (upper row shows the 

unit cells, lower row an assemblage of cells) for obtaining materials with the 

indicated rigidity in the axis of the cell, corresponding to the optimal material 

for a single strain field ε  = (1, 1, 0). This is an isotropic material with Poisson's 

ratio 1.0 (Bendsøe, 1995). The three designs all have the same weight and are 

obtained using a 4 by 4 equidistant nodal lay-out in a square cell. All 120 
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possible connections between the nodal points are considered as potential 

members.  

 

Sigmund (2000) gave the optimum topology microstructures as shown in 

Figure 3.11, 3.12, and 3.13.  

 
In Figure 3.11, four microstructures obtained by a numerical inverse 

homogenization procedure, (a) isotropic hexagonal microstructure, (b) isotropic 

triangular microstructure, (c) isotropic octagonal microstructure and (d) 

symmetric square microstructure.  

 

Figure 3.11 Four microstructures with extremal bulk moduli 

 

In Figure 3.12, three by three arrays of topology optimized microstructures for 

maximum and minimum shear moduli and volume fraction p = 0.5. 

Microstructures 1 and 5-7 are obtained from a rectangular base-cell discretized 

with 80 x 40 finite elements. Microstructures 2 and 3 are obtained using a 

square base-cell discretized with 60 x 60 elements. Microstructure 1 has high 

bulk and shear modulus and is seen to have a triangular geometry. 
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Microstructure 3 is a one-length-scale version of the negative Poisson's ratio 

herringbone structure by Milton (1992). Microstructure 5 has close to 

minimum bulk and shear modulus and is the inversion of micro structure 1. 

Microstructures 6 and 7 are hexagon-like cells, where the bulk modulus of 

microstructure 7 is close to the upper bulk bound. By gradually allowing more 

local variation in the microstructure by increasing the value of the filter 

parameter, first microstructure 8 and then microstructure 9 are obtained.  

 

 

Figure 3.12 Topology optimized microstructures for maximum 

and minimum shear moduli and volume fraction p = 0.5. 

 

Figure 3.13 shows some parameterized microstructures. The top left consists of 

triangular regions with pure phase 2 material, hexagonal regions with pure 

phase 1 material and laminated beams consisting of layers of phase 1 and phase 

2 material. The laminated region consists of infinitely fine layering of phase 1 

and 2. 
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Figure 3.13 Parameterized microstructures 

 

Up to now, many such microstructures have been developed by topology 

optimization method. Because of its complicated geometrical shapes, such 

techniques are only used in the optimal material design of microstructures. The 

microstructures developed have not been used for solving structural topology 

optimization problems.  

 

3.2.2. Bi-material microstructures 

 
The so-called bi-material microstructures contain two materials with or without 

voids. The optimization problem is defined in such a way that the geometry 

parameters of the hard, the soft materials and the void are the design variables. 

If a portion of the medium consists only of voids, material is not placed over 

that area. On the other hand, if there is no porosity at some position, a solid 

structure needs to be placed at that location.  

 
The current models used in topology optimization problems are: ranked layered 

bi-material model and power-law bi-material model: 
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Ranked layered bi-material model 

 
Rank layered bi-material model is one type of microstructure that can be 

applied in order to produce a relaxed form of the topology structural 

optimization problem. Figure 3.14 shows two types of rank layered bi-material 

models. Each cell of this periodic microstructure is constructed from layers of 

different materials and voids.  

 
            (a)            (b)              (c) 

Figure 3.14 Rank layered bi-material cell 

 
where 0 11 ,γ≤ ≤ 20 1,γ≤ ≤ 0 1ϑ≤ ≤ . 

 
For ranked layered material microstructures, the effective material properties 

generally can be derived analytically. In such an analytical approach, explicit 

expressions for the effective elastic tensor can be obtained by establishing the 

optimal upper and lower bounds for the complementary elastic energy density 

of the perforated material. These microstructures are known as “extremal” 

microstructures in the sense that they achieve optimality in the Hashin-

Shtrikman bounds on the effective properties of composite materials. This 

method can be applied to both two-dimensional and three-dimension layered 

material cell of finite rank.  
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In rank-2 bi-material model shown in Figure 3.14 (c), the volume occupied by 

hard material sΩ  and soft material lΩ  can be written as  

 
1 2( (1 ) )g g g g

s dϑ ϑ γ γ
Ω

Ω = + − Ω∫ 



2E

                                   (3.27) 

1 2(1 )(1 ) )g g g
l dϑ γ γ

Ω

Ω = − − Ω∫                                     (3.28) 

 
Olhoff et al (1992) and Thomsen (1992) used bi-material rank-2 composite for 

topology optimization problems. Their studies showed that the structures of 

optimum topology obtained within the initial formulation are mainly 

composites. As this may be undesirable in certain cases, a formulation was 

presented that penalizes formation of composite and yields structures which 

entirely consist of isotropic base materials without small-scale mixing. Some 

numerical examples pertaining to generation of optimum topologies of joints 

and assemblies of sandwich panels and beams, and optimum reinforcement 

against concentrated loads, were presented. 

 

Power-law bi-material model 

 
For power-law bi-material microstructure model, the Young’s modulus E can be 

written as: 

1 2 1 2( ) ( ) (( ) (1 ) )E Eµ µ µρ ρ ρ ρ= + −                                (3.29) 
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where ,  are Young’s modulus of harder and softer materials, 1E 2E 1ρ , 2ρ are 

design variables which represented densities of harder and softer materials, µ is 

value of penalization power. 

 

Sigmund (2001) designed of multi-physics actuators using power-law bi-

material mode and suggested invoking each property independently and writing 

the constraint as: 1 2 1
1

N
g g g

g
V Vρ ρ

=

≤∑ , . Where g is element 

number, 

1 2
1

(1 )
N

g g g

g
V Vρ ρ

=

− ≤∑ 2

gV is element volume, V , V are the constraint of material volumes, N 

is number of elements. 

1 2

 

Bi-material optimization has significant practical importance and can be used 

in many engineering field, for example, the optimal design of steel 

reinforcement in concrete or metal fibre reinforcement in ceramics. At present 

there has been very little work done on the topology optimization problems 

using bi-material microstructures. More studies on different bi-material models 

need to be carried out. 

 

3.3 Summary 

 
The homogenization method can be used to solve structural topology 

optimization problems. The results obtained have good agreements with the 

experimental data available in literature. However, the mathematical theory of 

homogenization does not provide analytical formulas or numerical algorithms 
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directly suited to obtaining answers to engineering problems. Thus, a 'gap' 

exists between the mathematical theory of homogenization and the mechanics 

of composites. To solve this problem, microstructure model of homogenization 

and its formulation must be well established. 

 
In the last ten years, researchers and engineers have done a lot of work on 

microstructures development. From the material point of view, they can be 

classified as one-material microstructures and bi-material microstructures. 

From the geometrical shape point of view, these microstructures can be divided 

into rank layered material microstructures, rectangular microstructure, 

triangular microstructure, penalization microstructures (power-law) and 

optimum topology microstructure.  

 
Microstructures play a very important role in topology structural optimization 

when using homogenization method and more studies on microstructures need 

to be carried out. In the next chapter, new models of microstructures of one-

material and bi-material are developed.  
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Chapter 4                                             

MICROSTRUCTURES STUDY 

 

 

 
From the previous chapter of microstructures review, we can see that many different 

microstructures have been developed by various researches and used in structural 

topology optimization problems. Each microstructure has its strength and weakness. 

More studies on different microstructures and development of new ones are needed 

in enhancing the homogenization method to solve practical engineering problems of 

topology optimization. In this chapter, new microstructures are defined first and then 

the algorithm to obtain their homogenized properties is presented. More benchmark 

studies on all existing and new microstructures are carried out and will be presented 

in later chapters. 

 

4.1 Development of New Microstructures  

 

In the development of microstructures here, emphasis is put on defining hole or void 

of different geometrical shapes, taking into account the following points: 

• The microstructures should allow material covering the whole range of void, 

density of composite could be changed from zero (void) to one (solid). 

4-1 
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homogenization equations.  

• The parameters of geometry should be defined as simple as possible.  

 

In this research, two simple internal boundary microstructures, three multi-void 

microstructures and four bi-material microstructures were developed.  

 

4.1.1 Simple internal boundary (SIB) microstructures  

 
Definition of SIB microstructures 
 

Assume that there are two materials filling the whole area of the cell: hard and soft 

material. The boundary line between the hard and soft materials is defined by z(x,y) 

with following properties: 

 

• The boundary z(x,y) is sufficiently smooth or sectionally smooth. 

• z(x,y) is symmetric with respect to the axes of symmetry x and y  as 

illustrated in Figure 4.1. Hence, only a quarter of the domain of the 

unit cell needs to be analyzed (Figure 4.3). 

• In order to make the problem simpler, variables are changed from 

coordinate x, y to x , y , and the boundary z(x,y) can be described by 

a function as (Figure 4.2):  

1                               if ( ) 1
 =

( )                         if  ( ) <1
f x

y
f x f x

≥



          (4.1) 

           where 0 ,1x≤ ≤ x , y  are dimensionless parameters. 
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If the area taken by hard material of the cell is denoted by sΩ , then 

1

0

4 (1 )s ydxΩ = ⋅ − ∫                        (4.2) 

 

Figure 4.1 Definition of base cell 

 

Figure 4.2 New coordinate system 

 

Figure 4.3 A quarter of the domain of the unit cell 

In the case of a void instead of soft material, to avoid singularity of the 
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microstructure, a simple scheme to define the function y  in (4.1) is presented as 

follows. Let  be the hard material fraction defined ash /s= Ω Ωh , where sΩ  is 

area taken by hard material and Ω  is the area of full cell, and δ  is a small value. 

The function (4.1) is defined as: 

 

• if 22 -δ δ≥h ,  

 

    
1         1    if ( ) 1-     

 = ( )       1     if  ( ) <1-     
0                              1   

for x z x
y z x for x z x

for x

δ δ δ
δ δ

δ

− ≤ − ≥
 ≤ −
 > −

            (4.3) 

 

• if 22 -δ δ≤h ,  

1 ,          1
      

0,               >1 ,  
a for x

y
for x

δ
δ


− ≤ −=  −



                   (4.4) 

where a is design variable, 0 a δ≤ ≤  

 

There are two ways for choosing the internal shape function:  

 

• One is using shape optimization method. In this way, the fraction of hard and 

soft materials are fixed, ( )y z x= is obtained by using shape optimization 

method. 

• The other is developing the microstructure with a simple shape function and the 

parameters of geometry as simple as possible.  

 

In order to make the microstructure geometry simpler, the second way is used in this 

project and the following microstructures are developed: 
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Circular boundary microstructure 

 

For circular microstructure, ( )y f x= defined by 2 2 2 2x y r+ = ⋅ , where  is a 

design variable for topology optimization. The areas occupied by hard material 

(black region) and soft material (grey region) for two cases are: 

0 r≤ ≤1

• For 10
2

r≤ ≤ , 24s rπΩ = − , as shown in Figure 4.4 

 

Figure 4.4 The area occupied by hard and soft material for 10
2

r≤ ≤  

• for 1 1
2

r< ≤ , 
2

12 2

2 1
4(1 ( 2 1 2 ))s r

r r
−

Ω = − − + −∫ 2x dx , as shown in Figure4.5 

 

Figure 4.5 The area occupied by hard and soft material for 1 1
2

r< ≤  
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If we consider the soft material to be a void, then the area occupied by the hard 

material sΩ  is defined as: 

• when 1
2

r0 δ−
≤ ≤ , 24s rπΩ = − , as shown in Figure 4.6  

 

 

Figure 4.6 The area occupied by hard material for 10
2

r δ−
≤ ≤  

• When1 1
2

rδ δ−
< ≤ − , as shown in Figure 4. 7 

2 2

2 2

2 (1 ) 1 2 2

0 2 (1 )
4(1 ( (1 ) 2 ))

r

s r
dx r x dx

δ δ

δ
δ

− − −

− −
Ω = − − + −∫ ∫  

 

Figure 4.7 The area occupied by hard material for 1 1
2

rδ δ−
< ≤ −  

• when1 1rδ− < ≤ , , as shown in Figure 4.8 24(1 )s rΩ = −
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Figure 4.8 The area occupied by hard material for 1 1rδ− < ≤  

 

Cross-shape boundary microstructure 

 

In this type of microstructure, the boundary shape is found by noting that: 

1,        1,      
 and      

,        > ,  ,     y>     
x r y r

y x
r x r r r


 ≤ ≤= = 




 

where is design variable and0 r≤ ≤1 0 1x≤ ≤ ,0 1y≤ ≤ . 

The formula for area calculation is defined as  

1,        
    

,        > ,  
x r

y
r x r


≤= 




                              (4.5) 

The area occupied by hard material sΩ  (black region) and soft material  (grey 

region) is shown in Figure 4.9.   

lΩ

 
1

2 2

0

2

4( 1 ) 4( ) 4(2 )

4(1 2 )

r

s
r

l

dx rdx r r r r r

r r

Ω = + = + − = −

Ω = − +

∫ ∫
                (4.6) 
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Figure 4.9 Cross-shape boundary, a) a full cell, b) is a quarter 

 

For the SIB microstructure models, the homogenization equation is solved by finite 

element method. A computer code for calculating the effective material property is 

developed and will be used together with topology optimization program. 

 

4.1.2 Multi-void microstructures 

 

For the so-called multi-void microstructure is more than one void in a 

microstructure. In the multi-void microstructure development, a symmetric 

geometrical shape with respect to the two axes of symmetry is retained. The 

difference between the single void microstructures and multi-void microstructures is 

that for the same area of solid material, the multi-void microstructures have more 

internal boundaries. This will result in different stiffness. Three types of multi-void 

microstructures are proposed. These microstructure models are: (a) triangular 

multi-void model, (b) rectangular multi-void model and (c) square multi-void model 

all shown in Figure 4.10.  
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For multi-void microstructure model, the homogenization equation is solved by finite 

element method. A general computer code for calculating the effective material 

property is also developed and used together with topology optimization program. A 

series of benchmark problems are provided in later chapters. 

 

 

Figure 4.10 Multi-void microstructures 

 

4.1.3 Bi-material microstructures 
 

In this research, the following new bi-material microstructures have been developed: 

cross shape bi-material microstructure, square bi-material microstructure, double 

rectangular bi-material microstructure and triangular bi-material microstructure (shown 

in Figure 4.11). The areas occupied by hard and soft materials are shown in Table 4.1. 

 

It can be seen that all new microstructures can be geometrically defined with a few 

parameters and their effective material property can be derived by a series of finite 

element analyses as shown in the following section. 
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Figure 4.11 Bi-material microstructures 

Model 
name 

No of 
parameters 

Area of hard 
material 

Area of soft 
material 

Design variable 
limitation 

Cross-shape 2 24 ( )a a⋅ −  4( )(1 )b a a b− − − 0 2 2a b≤ ≤ ≤1 

Square 2 21 b−  2 2b a−  
0 1a b≤ ≤ ≤  

Double 
rectangular 

4 1 2c d− ⋅  2 ( )c d a b⋅ ⋅ − ⋅  
0 2 2 1,  
0 1

a c
b d

≤ ≤ ≤
≤ ≤ ≤

Triangular 2 21 2 b− ⋅  2 22 2b a⋅ − ⋅  
20

2
a b≤ ≤ ≤  

Table 4.1 Parameters of bi-material models 
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4.2 Development of Material Properties for the New Microstructures 
 

Once the geometrical shape of microstructures is defined, the homogenization 

theory is used to determine the macroscopic mechanical properties of the materials.  

 

In the following sections, the finite element formulae and boundary conditions are 

used to develop the formulation of homogenized material properties of 

microstructures. It is followed by the algorithm development for computer 

implementation. 

 

4.2.1 Material properties development 

 

From the homogenization Equations (3.15) and (3.17) in Section 3.13, the 

homogenized elasticity tensor H
ijklE  can be expressed as (Hassani and Hinton, 1998; 

Bendsøe, 1995; and Bendsøe and Sigmund, 2002) 

( )1 p klH
ijkl ijkl ijpq

q

E E E
Y

χ
Ψ

 ∂
= − ∂ 

∫ dY
y

                   (4.7) 

with the cell problem given by: 

( ) ( ) ( )         p kl i i
ijkl ijkl i

q j j

v vE dY E dY
y y y
χ

ΨΨ Ψ

∂ ∂ ∂
=

∂ ∂ ∂∫ ∫
y y v V∀ ∈         (4.8) 

 

For a general orthotropic material in two-dimensional problems, the homogenized 

elasticity tensor H
ijklE  can be reduced to be . In this case, the 

values of only need to be set to 1 or 2. The homogenized elasticity tensor 

1111 1122 2222 1212,  ,  ,  H H H HE E E E

, ,i j , , ,p q k l

H
ijklE  can be found by investigating four cases: 
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• a: ,in which we can get , , , 1i j k l = 1111
HE   

• b: , , in which we can get 1i j= = 2k l= = 1122
HE  

• c: i j , in which we can get , , , 2k l = 2222
HE   

• d: , in which we can get 1, 1, 2i j k l= = = = 1212
HE  

Case a: ( i j, , , 1k l = ) 

 

From Equation (4.7) we have 

1 11 2 11
1111 1111 1111 1122

1 2

( ) ( )1HE E E E
Y y

χ χ
Ψ

 ∂ ∂
= − − ∂ ∂ 

∫ dY
y

                (4.9) 

Expanding (4.8) we have 

1 11 2 11 1 1 11 2 11 1 2
1111 1122 1212

1 2 1 1 2 2

1 11 2 11 2 1 2
1122 2222 1111 1122

1 2 2 1 2

( ) ( ) ( ) ( )

( ) ( )

Y

Y

v vE E E
y y y y y y

v v vE E dY E E dY
y y y y y

χ χ χ χ

χ χ

   ∂ ∂ ∂ ∂ ∂ ∂

1

v
y
∂

+ + + +   ∂ ∂ ∂ ∂ ∂ ∂   
    ∂ ∂ ∂ ∂ ∂

+ = +   ∂ ∂ ∂ ∂ ∂    

∫

∫

+∂       (4.10) 

(4.10) can also be written as 

1 111

11
1111 1122

2 2
1122 2222

2 2
1212

1 2 1 11 2 11

2 1 1 2

1

1
11

2

2

1 2

2 1

( )

0
( )0

0 0
( ) ( )

T

Y

T

v
yy E E

v E E d
y y

E
v v
y y y y

v
y E
v
y

v v
y y

χ

χ

χ χ

 ∂ ∂
   ∂∂        ∂ ∂      ∂ ∂        ∂ ∂ ∂ ∂ +  +   ∂ ∂ ∂ ∂  

 ∂
 ∂ 
 ∂

=  
∂ 

 ∂ ∂
+  ∂ ∂ 

∫

11

1122

0
Y

E dY
 
 
 
 
 

∫

11 Y

           (4.10) 

To make the formulae simpler, defining the function in (4.10) as:  
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1 111

11
1111 1122

2 2 11
1122 2222 11

2 2
1212

1 2 1 11 2 11

2 1 1 2

( )

0
( ), 0 ,

0 0
( ) ( )

v
yy

E E
v E E
y y

E
v v
y y y y

χ

χ

χ χ

 ∂ ∂
   ∂∂        ∂ ∂ = = =     ∂ ∂        ∂ ∂ ∂ ∂ +  +   ∂ ∂ ∂ ∂   

1 2 3ε(v) D = (D , D , D ) ε(χ )  (4.11)

Then (4.10) can be written as  

 

11 1Y Y
dY dY⋅ ⋅ = ⋅∫ ∫T Tε (v) D ε(χ ) ε (v) D    Ψ∀ ∈v V             (4.12) 

 

(4.9) can be expressed as 

1 11

1
1111

2 11
1111 1111 1122 1111 11

2

( )

( )1 1( ) ( )
0

0

T

H

Y Y

y
E

E E E dY E dY
Y y Y

χ

χ
Ψ

 ∂
 ∂    ∂ = − = − ∀   ∂  

   
  
 

∫ ∫ T
1D ε(  ∈χ) v V    (4.13) 

In order to solve the Equation (4.13) and get 1111
HE , discretizing the base cell by 

using the finite element method (Rao, 1999), (4.12) can be expressed as 

11( ) ( )
Y Y

dY dY⋅ ⋅ ⋅ = ⋅∫ ∫T
1B D B χ B D  T)                    (4.14) 

where g⋅B = O N  is the global strain matrix, O is the matrix of linear differential 

operators and gN is global shape function and ( )11χ)  is discretized function of 11( )χ  . 

 

1

2

2 1

0

0

y

y

y y

 ∂
∂ 

 ∂=  ∂ 
∂ ∂ 
∂ ∂  

O , andε g⋅ ⋅ ⋅11 11 11(χ) = O N (χ) = B (χ)) ) , 

 

Defining the cell stiffness matrix and force vector as: 
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Y
dY= ⋅ ⋅∫ TK B D B and                (4.15) 

Y
dY= ⋅∫ T

1f B D

 

We can see that (4.15) leads to the well known stiffness equation 

11 =K(χ) f)                                (4.16) 

If loading is an initial strain 0ε  in x direction ( 0 0 0
11 12 111, 0, 0ε ε ε= = = ), f can be 

expressed as  

0

Y Y
dY dY= ⋅ ⋅ = ⋅∫ ∫T

1f B D ε B DT                           (4.17) 

This is exactly equal to the f in (4.15). So we can calculate (4.15), (4.16) and (4.11) 

by giving an initial strain in x direction and get the 11( )χ  andε 11(χ)

1111

. According to 

(4.13), the first element of the homogenized elasticity tensor HE  can thus be 

obtained. 

 

Case b ( , k l ): 1i j= = 2= =

From (4.7) we can get  

 

1122

1 22 2 22
1122 1111 1122

1 2

( ) ( )1H

Y
E E E E

Y y
χ χ ∂ ∂

= − − ∂ ∂ 
∫ dY

y
                (4.18) 

Expanding (4.8), we have 

 

 

1 22 2 22 1 1 22 2 22 1 2
1111 1122 1212

1 2 1 1 2 2

1 22 2 22 2 1 2
2211 2222 1122 2222

1 2 2 1 2

( ) ( ) ( ) ( )

( ) ( )

Y

Y

v vE E E
y y y y y y

v v vE E dY E E dY
y y y y y

χ χ χ χ

χ χ

   ∂ ∂ ∂ ∂ ∂ ∂

1

v
y
∂

+ + + +   ∂ ∂ ∂ ∂ ∂ ∂   
    ∂ ∂ ∂ ∂ ∂

+ = +   ∂ ∂ ∂ ∂ ∂    

∫

∫

+∂    (4.19)     

 

Rearranging (4.19) we can get 

4-14 



Chapter 4 – Microstructures Study 
 

1 221

11
1111 1122

2 2
1122 2222

2 2
1212

1 2 1 22 2 22

2 1 1 2

1

1
11

2

2

1 2

2 1

( )

0
( )0

0 0
( ) ( )

T

Y

T

v
yy

E E
v E E d
y y

E
v v
y y y y

v
y

E
v
y

v v
y y

χ

χ

χ χ

 ∂ ∂
   ∂∂        ∂ ∂      ∂ ∂        ∂ ∂ ∂ ∂ +  +   ∂ ∂ ∂ ∂  

 ∂
 ∂ 
 ∂

=  
∂ 

 ∂ ∂
+  ∂ ∂ 

∫

22

2222

0
Y

E dY
 
 
 
 
 

∫

22 Y

           (4.20) 

Similarly considering 

[ ]

1 221

11
1111 1122

2 2 22
22 1122 2222

2 2
1212

1 2 1 22 2 22

2 1 1 2

( )

0
( ),  ,  = 0

0 0
( ) ( )

v
yy E E

v E E
y y

E
v v
y y y y

χ

χ

χ χ

 ∂ ∂
   ∂∂       ∂ ∂  = = =    ∂ ∂       ∂ ∂ ∂ ∂ +  +   ∂ ∂ ∂ ∂   

1 2 3ε(v) ε(χ ) D D D D   (4.21)          

Then (4.20) can be written as  

22          
Y Y

dY dY Ψ⋅ ⋅ = ⋅ ∀ ∈∫ ∫T T
2ε (v) D ε(χ) ε (v) D v V                (4.22) 

(4.18) can be written as 

22
1

1
1111

2 22
1122 1122 1122 1122 22

2

( )1 1( ) ( )
0

0

T

H

Y Y

y
E

E E E dY E dY
Y y Y

χ

χ
Ψ

 ∂
 ∂    ∂ = − = − ∀   ∂  

   
  
 

∫ ∫ T
1D ε(  ∈χ) v V

T

   (4.23) 

By using the finite element method to discretize the base cell, (4.22) can be written 

as 

22 2( )  
Y Y

dY dY⋅ ⋅ = ⋅∫ ∫TB D B χ B D)                    (4.24) 
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Where the 22( )χ) is the discretized function of 22( )χ  

If we define the stiffness and force vector as 

 

Y
dY= ⋅ ⋅∫ TK B D B and                (4.25) 

Y
dY= ⋅∫ T

2f B D

We have  

22( ) =K χ f)                                (4.26) 

Considering an initial strain loading in y direction (0ε 0 0 0
11 12 220, 0, 1ε ε ε= = =

T

), f can be 

written as  

0

Y Y
dY dY= ⋅ ⋅ = ⋅∫ ∫T

2f B D ε B D                           (4.27) 

This is exactly equal to the f in (4.25). Calculating (4.25), (4.26) and (4.21) by given 

an initial strain in y direction, the 22( )χ  and 22ε(χ) can be obtained. According to 

(4.18), the elements of the homogenized elasticity tensor 1122
HE can be calculated. 

 

Case c ( i j ): , , , 2k l =

In this case, from Equation (4.7), we have: 

1 22 2 22
2222 2222 2211 2222

1 2

( ) ( )1H

Y
E E E E

Y y
χ χ ∂ ∂

= − − ∂ ∂ 
∫ dY

y
               (4.28) 

This can also be written as: 

 

1 22

1
1122

2 22
2222 2222 2222 2222 22

2

( )

( )1 1( ) ( ))    
0

0

T

H

Y Y

y
E

E E E dY E dY
Y y Y

χ

χ
Ψ

 ∂
 ∂    ∂ = − = − ∀   ∂  

   
  
 

∫ ∫ T
2D ε( ∈χ) v V (4.29) 

Similar to the case b, 22( )χ andε 22(χ) can be obtained by calculating (4.25), (4.26) 
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(4.21),. According to (4.29), the elements of the homogenized elasticity tensor 222
HE  

can be calculated. 

v 



 

Case d ( ): 1, 1, 2i j k l= = = =

 

Expanding (4.8), we have 

1 12 2 12 1 1 12 2 12 1 2
1111 1122 1212

1 2 1 1 2 2

1 12 2 12 2 1 2
1122 2222 1212

1 2 2 1 2

( ) ( ) ( ) ( )

( ) ( )

Y

Y

v vE E E
y y y y y y

v v vE E dY E dY
y y y y y

χ χ χ χ

χ χ

   ∂ ∂ ∂ ∂ ∂ ∂
+ + + +   ∂ ∂ ∂ ∂ ∂ ∂   

     ∂ ∂ ∂ ∂ ∂
+ = +      ∂ ∂ ∂ ∂ ∂     

∫

∫
    (4.30) 1y

∂
+

∂

Considering the Equation (4.7), we can get  

1212

1 12 2 12
1212 1212 1212

2 1

( ) ( )1H

Y
E E E E

Y y
χ χ ∂ ∂

= − − ∂ ∂ 
∫ dY

y
                (4.31) 

Then Equation (4.30) can be written as 

 

 

1 121

11
1111 1122

2 2
1122 2222

2 2
1212

1 2 1 12 2 12

2 1 1 2

1

1

2

2

1 2

2 1

( )

0
( )0

0 0
( ) ( )

0
0

T

Y

T

v
yy E E

v E E d
y y

E
v v
y y y y

v
y
v
y

E
v v
y y

χ

χ

χ χ

 ∂ ∂
   ∂∂        ∂ ∂      ∂ ∂        ∂ ∂ ∂ ∂ +  +   ∂ ∂ ∂ ∂  

 ∂
 ∂ 
 ∂

=  
∂ 

 ∂ ∂
+  ∂ ∂ 

∫

1212

Y
dY

 
 
 
 
 

∫

12 Y

           (4.32) 

 

Considering 
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y y
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χ χ

 ∂ ∂
   ∂∂       ∂ ∂  = = =    ∂ ∂       ∂ ∂ ∂ ∂ +  +   ∂ ∂ ∂ ∂   

1 2 3ε(v) ε(χ ) D D D D   (4.33) 

Then (4.33) can be written as  

 

12 3          
Y Y

dY dY Ψ⋅ ⋅ = ⋅ ∀ ∈∫ ∫T Tε (v) D ε(χ ) ε (v) D v V               (4.34) 

(4.31) can be written as 

1212 1212 1212 12

1212 1 12 2 12

1 2

0 0
1 1( 0 0 ) ( )  

( ) ( )

T

H

Y Y
E E dY E dY

Y Y
E

y y
χ χ

Ψ

 
       = − = − ∀     ∂ ∂   + ∂ ∂ 

∫ ∫ T
3D ε( ∈χ) v V

T

  

(4.35) 

By using the finite element method to discretize the base cell, (4.34) can be written 

as 

12 3( )  
Y Y

dY dYχ⋅ ⋅ = ⋅∫ ∫TB D B B D)                    (4.36) 

 

Similarly as above, by defining 

Y
dY= ⋅ ⋅∫ TK B D B and                (4.37) 3Y

dY= ⋅∫ Tf B D

 

We have the stiffness equation as following 

12( =K χ ) f)                                (4.38) 

If we exert an unit initial shear strain loading (0ε 0 0 0
11 22 12

10, 0, 2ε ε ε= = = ),  

f can be written as  
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0
3Y Y

dY dY= ⋅ ⋅ = ⋅∫ ∫Tf B D ε B DT                     (4.39) 

This is the same with the Equation (4.37), by calculating (4.37), (4.38) and (4.33) 

with implying an unit initial shear strain  loading and give the displacement 0ε

12( )χ  andε 12(χ)

1212
H

. According to (4.35), the element of the homogenized elasticity 

tensor E can be obtained. 

 

4.2.2 Boundary condition 

 

Case a: 

In unit cells, the geometry of the cell is symmetric with respect to the axes of 

symmetry x’ and y’ as illustrated in Figure 4.1. The loading to be imposed in this 

case is a unit initial strain in the x direction ( 0
11ε =1, 0

22ε = 0, 0
12ε = 0). From the 

geometry and loading symmetry with respect to y’, we have 

0 0
1,( , ) ( )u x y u x Y y= − + ,

,

,

                       (4.40) 

0 0
1,( , ) ( )v x y v x Y y= +                          (4.41) 

Similarly with respect to x’, we have 

0 0
2( , ) ( , )u x y u x y Y= +                         (4.42) 

0 0
2( , ) ( , )v x y v x y Y= − +                         (4.43) 

From the definition of periodicity, we can get 

0 0
1,( , ) ( ) 0u x y u x Y y= + =                       (4.44) 

0 0
2( , ) ( , ) 0v x y v x y Y= + =                       (4.45) 

The boundary conditions according to (4.44) and (4.45), are shown in Figure 4.12. 
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Figure 4.12 Boundary conditions for case a, b and c 

Case b: 

The boundary conditions are the same as Case a. The loading to be imposed in this 

case is a unit initial strain in the y direction ( 0
11ε =0, 0

22ε = 1, 0
12ε = 0). 

Case c: 

The boundary conditions are the same as Case a. The loading to be imposed in this 

case is a unit initial strain in the y direction ( 0
11ε =0, 0

22ε = 1, 0
12ε = 0). 

 

Case d: 

We apply a unit initial shear strain ( 0
11ε =0, 0

22ε = 0, 2 0
12ε =1) with respect to the axes 

of symmetry x’ and y’ (Figure 4.1). From the anti-symmetry condition, the 

displacement may be written as 

0 0
1,( , ) ( )u x y u x Y y= + ,                         (4.46) 

0 0
1,( , ) ( )v x y v x Y y= − +                         (4.47) 

0 0
2( , ) ( , ),u x y u x y Y= − +                         (4.48) 

0 0
2( , ) ( , )v x y v x y Y= +                          (4.49) 
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Because of periodicity, we can get 

0 0
1,( , ) ( ) 0v x y v x Y y ,= + =                       (4.50) 

0 0
2( , ) ( , ) 0u x y u x y Y= + =                        (4.51) 

From (4.50) we can see that for the points located on the left and right hand side 

edges of the base cell, the vertical displacement is zero. According to (4.51) the 

nodes located on the bottom and top edges have zero horizontal displacement. These 

boundary conditions are shown in Figure 4.13. 

 
Figure 4.13 Boundary conditions for case d 

 

4.2.3 Computer program implementation 

 

A general computer code based on the Strand7 program was written to calculate all 

new microstructure properties. This computer program can also be applied to 

existing microstructure models such as triangular microstructure and hexagon 

microstructure can be calculated. The procedure is shown as following: 

 

Step 1.  Draw a square or rectangular outside line of the microstructure. 

Step 2.  Draw internal line of the microstructure. 

Step 3.  Apply initial strain loading and boundary constraint in x direction. 

Step 4.  Discretize the reference domain, and calculate displacement and strain 
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field by using Strand7 program  

Step 5.  Compute the homogenized values of  by formula (4.13) 1111
HE

Step 6.  Apply initial strain loading and boundary constraint in y direction. 

Step 7.  Calculate displacement and strain field by using Strand7 program  

Step 8.  Compute the homogenized values of  by formula (4.23),(4.29) 1122 2222,H HE E

Step 9.  Apply initial shear strain loading and anti-symmetry boundary constraint. 

Step 10.  Calculate displacement and strain field by using Strand7 program  

Step 11.  Compute the homogenized values of  by formula (4.35) 1212
HE

Step 12  Output the all values of homogenization matrix 

Step 13 Check the number of the times of internal size changing, if it is not active, 

continue, otherwise stop.  

Step 14  Resize the internal boundary line of the microstructure, go to step 3 

 

The algorithm for one-material model and bi-material model are shown in Figure 

4.14 and Figure 4.15 respectively. 

 

By using the finite element analysis and boundary conditions defined above, the 

element of the elasticity matrix can be expressed as polynomials of the 

homogenized values with different void sizes of microstructures for given material 

properties. The Figure 4.16 shows polynomials of ,  and  for 

cross shape model with material properties of 

1111
HE 1122 2222,H HE E 1212

HE

2 1E
v

0.3,
1

v = =
−

.It should be noted 

that different material properties would result in different polynomials at 

microstructure level.  
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N
o
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Stop

<1

Output the value 
  of D matrix

Apply initial share
 strain=1  loading and 
anti-symmetry boundary
     constraint

Computing homogenized value  
E(H)1212 by using 
formular(4.35 )

Calculating  displacement 
and strain field by using   
finite element  program

Calculating 
 displacement and strain field 
by using finite element 
program

Computing homogenized
  value E(H)1122 and E2222 
        by  using   formular 
          (4.23) and (4.29)

Apply initial strain=1  loading and 
boundary constraint in y direction

Computing homogenized 
value E(H)1111 by using 
formular    (4.13 )

 Calculating 
displacement and strain 
field by using   finite 
element    program

Generating finite 
    element    mesh

Apply initial strain=1  loading and 
boundary constraint in x direction

Draw internal boundary line 
     with the area of void
      equal to A=A+0.1

Draw a square with
 length of 1 and 
   A=-0.1

Figure 4.14 Algorithm for one-material model 
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 Calculating  displacement 
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area B=B+0.1

Draw a square with
 length of 1 and 
 A=-0.1, 

Figure 4.15 Algorithm for bi-material model 
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Figure 4.16 Polynomials for homogenized elasticity tensors in terms of void sizes 

for Cross shape model. 

 

4.3 Summary 
 

In this section, a new class of microstructure has been defined. By using the new 

concept, circular and cross shape microstructures were studied. Two new types of 

microstructures, multi-void microstructures and bi-material microstructures have been 

developed. The homogenization theory is used to determine the macroscopic 

mechanical properties of the materials. Finite element formulae and boundary 

conditions for the new microstructure models are given. All new microstructures will 

be used for structural topology optimization problems as presented in later chapters.   
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Chapter 5                                             

OPTIMIZATION APPROACH 

 

 

 
This chapter presents the implementation of the topology optimization 

procedures by using homogenization method. The theoretical aspect for the 

problem statement is described, the optimality criteria using Kuhn-Tucker 

conditions are formulated for new microstructures and some existing 

microstructures for which the microstructure formulation and optimization 

program have not been available in literature.  These criteria are very essential 

in formulating scheme of updating the design variables in the process of 

optimization. As mentioned previously it is these criteria that make the 

optimization approach vigorous and ensure its convergence. The determination 

of the optimal orientation by using the principal stress method is presented. A 

measure for checkerboard pattern control is developed. The topology 

optimization computer program for new microstructures and existing 

microstructures including homogenization and finite element solver is written 

and a software named HDM (Homogenization with Different Microstructures) 

is developed to implement the topology optimization by homogenization 

method. 
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5.1 Optimality Conditions for Different Microstructure Models 

 

A very important task for structural topology optimization is to find a structure 

with maximum stiffness for a fixed amount of material. In the general linear 

elasticity problems, the structure should have minimum mean compliance with 

respect to displacements or design variables.  From Section 3.14, we know 

that in optimal design for minimum compliance problem, the topology 

optimization problem can be described as (Bendsøe, 1995): 

minimize  ( )

such that: ( ) ( ),    

ikjl ad

L

a L for all

E E

∈

= ∈

∈

u V
u

u, v v v V                  (5.1) 

where  and  are respectively the energy bilinear form for the 

internal work and the load linear form described before, is the mean 

compliance, V denoting the space of kinematically admissible displacement 

field. 

(a u, v) ( )L v

( )L u

 

If the structure is fixed on the boundary dΓ , by choosing ∈u V  instead of v 

in (5.1), the following equation is obtained.  

 

( ) (a L )=u,u u  

As the strain energy is equal to 1 (
2

a u,u), the structure with minimum mean 

compliance with respect to displacements or design variables is equivalent to 

that with minimum strain energy. 
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As we know that the total potential energy with respect to displacements or 

design variables is defined as: 

1( ) ( ) ( )
2

a LΠ = −u u,u u  

where 1 (
2

a u,u)  is the strain energy and  is the mean compliance. ( )L u

The total potential energy is also equivalent to the maximum total potential 

energy with respect to displacements or design variables (Hassani and Hinton, 

1998). 

 

In the general linear elasticity problems, the structure should have maximum 

total potential energy with respect to displacements or design variables.  

 

By discretizing the reference domain using a finite element mesh, the 

optimality conditions for optimization problems can be stated as  

1 1 1

m

g=1

, ( 1, , )

1    ( )
2

     ( ( ) ) 0                                                                  (5.2)

         

g g g

m m m
T

g g
i g g g

g g
i u

x g m
u d d

Such that x

Maximize
θ

α

Ω Ω Ω
= = == ⋅⋅⋅

Π = Ω− Ω− Γ

Ω −Ω ≤

∑ ∑ ∑∫ ∫ ∫

∑

g T Tε (u)D ε(u) u f u t

,            ,                             1, 2,3, ,     g=1,2, ,l g u
i i ix x x i n m≤ ≤ = ⋅⋅⋅ ⋅ ⋅⋅

d

 

where g
ix  is design variable,  is the number of design variables, n l

ix  and 

u
ix  are lower and upper limit of g

ix , gθ  is orientation variable, ( g
i )xα is solid 

part shape function, gΩ

)

 is the volume of the element g,  is the number of 

elements, 

m

m

g=1
( ( )g gΩixα∑  is the volume of the solid part and  is the upper 

limit on volume of solid material. 

uΩ
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The tool for searching for the optimum of a structure here is using 

Kuhn-Tucker conditions. As described in Chapter 2, the Kuhn-Tucker 

conditions is a rigorous mathematical statement. It is one of the basic theories 

for non-linear optimization programming. For a convex minimization problem, 

the necessary Kuhn-tucker conditions are also sufficient. A local minimum is 

also the global one (Hassani and Hinton, 1998). In the following section, we 

will detail the formulae. 

 

5.1.1 Kuhn-Tucker conditions  

From Chapter 2, we know that in Kuhn-Tucker conditions, the inequality 

constraints are transformed into equality constraints by adding slack variables 

2
kt . In this case, the inequality constraints in Equation (2.1) can be written as 

2( ) 0,        1, 2,3, ,k kg t k+ = = ⋅⋅⋅x gn                   (5.3) 

Here, we use F(x) to indicate the objective function in the formulation (5.2), in 

which 

1 1

1 ( )= ( )
2 g g

m m m
T T

g g g
F d d

Ω Ω
= = =

Π = Ω− Ω−∑ ∑ ∑∫ ∫g Tx u ε (u)D ε(u) u f u
1

g
d

Ω
Γ∫ t      (5.4) 

and  indicate all the inequality constraints in the formulation (5.2). ( )k ig x

Then we can define the new Lagrangian function as 

2

1
( , , ) ( ) ( ( ) ) 

gn

k k i k
k

L s F g x tλ λ
=

= + +∑x x                  (5.5) 

Differentiating the Lagrangian function (5.5) with respect to x, t, and λ , we 

obtain, 
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*

* * *
1

( ) 0,            1, 2, ,
gn

k i
k

ki i i

g xL F i
x x x

λ
=

∂ ∂ n= + = =
∂ ∂ ∂∑ ⋅⋅⋅              (5.6) 

               (5.7) * 2( ) 0                                1, 2, ,k i k gg x t k n+ = = ⋅⋅⋅

2 0                        1, 2, ,k k g
k k

L L t k
t

λ
λ
∂ ∂

= = = = ⋅⋅⋅
∂ ∂

n

g⋅ ⋅⋅

⋅⋅ ⋅

            (5.8) 

From (5.7) and (5.8) we can get 

*

*

( ) 0,                                            1, 2, ,

( ) 0,                                        1, 2, ,

k i

k k i g

g x k n

g x k nλ

≤ =

= =
          (5.9) 

 

Figure 5.1 Geometrical interpretation of Kuhn-Tucker condition  

 

A geometrical interpretation of the Kuhn-Tucker conditions is illustrated in 

Figure 5.1 for the case of two constraints. 1g∇  and 2g∇  denote the gradients 

of the two constraints, for example, which are orthogonal to the respective 

constraint surfaces. The vector s shows a typical feasible direction which does 
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not lead immediately to any constraint violation. Equation (5.6) can be written 

as  

1 1 2 2(F g )gλ λ∇ = − ∇ + ∇                     (5.10) 

Assume that we want to determine whether point A is a minimum or not. To 

improve the design we need to proceed from point A in a direction s that is 

usable and feasible. For the direction to be usable, a small move along this 

direction should decrease the objective function. To be feasible, s should form 

an obtuse angle with  and 1g∇ 1g∇ . To be a direction of decreasing  it 

must form an acute angle with 

F

F∇ . Clearly from Figure 5.1, any vector which 

forms an acute angle with F∇  will also form and obtuse angle with either  

 or . Thus, the Kuhn-Tucker conditions mean that no feasible design 

with reduced objective function is to be found in the neighbourhood of A. 

Mathematically, the condition that a direction z be feasible is written as 

1g∇ 1g∇

*( ) 0T
k iz g x∇ ≤                         (5.11) 

The condition for a usable direction (one that decreases the objective function) 

is 

( )Tz F 0−∇ >                          (5.12) 

 

Multiplying the equation (5.10) by  and summing over k we obtain ks

 

*

1
( ) (

gn
T T

k k
k

z F z g xλ
=

−∇ = ∇∑ )i                        (5.13) 

 

Consider (5.11), (5.12) and (5.13), it is impossible if 0kλ ≥ . 
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For general optimization problems with inequality constraints, the 

Kuhn-Tucker conditions are a necessary condition. In these cases, we need to 

compare the entire set of local minimum and find the global one. For a convex 

minimum problem, the necessary Kuhn-tucker conditions are also sufficient, 

any local minimum is also the global one. 

 

5.1.2 Updating design variables  
 

Introducing multiplier 1 , 2
g g

i iλ λ  and λ  ( g 1,2, ,m= ⋅⋅⋅ ), the Lagrangian function 

L to the problem (5.2) may be expressed as 

m

1 1 1 g=1

m m

1 2 ,
g=1 g=1

1 ( ( ( ) ) )
2

                   ( ) ( )                1,2,3, ,     g=1,2, ,

g g g

m m m
T T T g

i u
g g g

g l g g g u
i i i i i i

L d d d x g

x x x x i n

λ α

λ λ

Ω Ω Ω
= = =

= Ω− Ω− Γ− Ω −

− − − − = ⋅⋅⋅ ⋅⋅⋅

∑ ∑ ∑ ∑∫ ∫ ∫

∑ ∑

gε (u)D ε(u) u f u t

m

Ω

(5.14) 

Differentiating the Lagrangian function (5.14) with respect to g
ix , we can get 

1 2
1 1

( )1 ( ) 0
2 g g

g gm m
T T gi

i ig g g
g gi i i

xd d
x x x

αλ λ
Ω Ω

= =

∂∂ ∂
Ω− Ω− Ω + − =

∂ ∂ ∂∑ ∑∫ ∫
D fε u ε(u) u g gλ   (5.15) 

Let: 

1 1

1 ( ) )
2

( )

g g

gm m
T T

g g
g gi

g
gi

g
i

d d
x

x
x

ϕ
αλ

Ω Ω
= =

∂ ∂

ix
Ω− Ω

∂
=

∂
Ω

∂

∑ ∑∫ ∫
D fε u ε(u u

∂           (5.16) 

According to equation (5.15) 

2 11
( )

g g
i i

g
gi

g
i

x
x

λ λϕ
αλ

−
= +

∂
Ω

∂

                     (5.17) 

• If ( ) 0
g

gi
g
i

x
x

αλ ∂ Ω >
∂

, in the kth iteration,  the design variable g
ix  has 
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been increased  towards the optimum point, here g
ix > l

ix  and lower 

side limit is not active, therefore, 1 0g
iλ = . Because of  , from 

(5.17) it follows that

2
g

iλ 0≥

1ϕ ≥ . On the other hand, when we decrease g
ix , we 

will get 1ϕ ≤ .  

1> g
ix

g
ix η

ϕ

{ }
}

nx

+

iη

η

−

1( )i k+

(1 )(

in 1

)g
i k ϕ

= +

⋅

    

,     

                                   otherw

iifη ϕ

η ϕ

− ≤ ,

,

ise

( )g
i

g
i

x
x

α
∂

g
ix

g
ix u

ix

2 0g
iλ = 1

g
iλ 0≥

ϕ ≥

1

1> g
ix

g
ix η

 

It follows that if ϕ , then we let  increase by a small value η . 

If 1ϕ ≤ , then we let  decrease by a small value . Based on this 

conclusion, we calculate the value  by using (5.17).  We update 

design variables using following formulae (Bendsøe, 1995): 

 

{ }
( ){ } {

min mmax ) , max 1

m ( ) ,1 min 1 1

(

g
i k

g g
i k i

i

x x

x x if

x


 ≥



     (5.18) 

 

• If 0gλ ∂ Ω < , in an iteration k,  the design variable  has 

been decreased  towards the optimum point. In this case <  and 

upper limit is not active, therefore, . Because of  , from 

(5.17) it follows that 1 . On the other hand, when we increase 

g
ix  ,we will getϕ ≤ .  

 

It follows that If ϕ , then we let  decrease by a small value η . 

If 1ϕ ≤ , then we let  increase by a small value . We then update 

design variables using following formulae: 
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{ } { }
( ){ } {

min

1 min

min (1 ) ,1     max 1 ,

max 1 , ,     min 1 ,1

                                   otherwise

i

i

i

g
i

g g
i i

g
i

x if x

x x x if

r

η ϕ η

}η ϕ

ϕ
+

 + ≤ −
= − ≥ +


⋅

η               (5.19) 

 

5.1.3 Optimality conditions for new microstructure models 

5.1.3.1 One-material models 

Cross shape microstructure 

For cross shape (Figure 4.9) model, the optimality conditions can be expressed 

as 

  

, ( 1, , ) 1 1

m
2

g=1

1    ( )
2

     4(2 ) 0

                    1 0                                                       

g gg g

m m m
T T

g m g g g

g g g
s

g

1
g

TMaximize d d d

Such that r r

r

γ θ Ω Ω= ⋅⋅⋅ = = =

Π = Ω− Ω−

− Ω −Ω ≤

− ≤

∑ ∑ ∑∫ ∫

∑

gu ε (u)D ε(u) u f u

  g 1, 2, ,

                    - 0                                                             g 1, 2, ,g

m

r m

= ⋅⋅⋅

≤ =

Ω
Γ∫ t

⋅ ⋅ ⋅

 (5.20)    

          

Introducing multipliers λ and 1 2,g gλ λ  ( g 1,2, ,m= ⋅⋅⋅ ), the Lagrangian function 

L to the problem (5.20) may be expressed as 

 

( ) (

1 1 1

2
1 2

1 1

1( )
2

                    4(2 ) - 1

g g g

m m m
T T

g g g

m m
g g g g g g g

s
g g g

L d d d

r r r rλ λ

Ω Ω Ω
= = =

= =

= Π = Ω− Ω− Γ

 
− − Ω −Ω − − 

 

∑ ∑ ∑∫ ∫ ∫

∑ ∑ ∑

gu ε (u)D ε(u) u f u t

)
1

T

m

λ
=

−

 (5.21) 

 

Differentiating the Lagrangian function (5.21) with respect to gr , we can get 

 

 5-9  



Chapter 5 – Optimization Approach 
 

1 2

1
2

        8 (1 ) 0,                 (g 1,2, , )

g g

g
T T

g g

g g g g

d d
r r

r mλ λ λ

Ω Ω

∂ ∂
Ω − Ω

∂ ∂

− − Ω + − = = ⋅⋅ ⋅

∫ ∫
D fε (u) ε(u) u

   (5.22) 

 

Using Kuhn-Tucker conditions, we have 

2

1
4(2 ) 0

m
g g e

s
g

r r
=

− Ω −Ω ≤∑                           (5.23) 

- gr ≤ 0



                                        (5.24) 

1 0gr − ≤                                       (5.25) 

2

1

4(2 ) 0
m

g g e
s

g

r rλ
=

 
− Ω −Ω =

 
∑                        (5.26) 

( )1 -g grλ = 0                                    (5.27) 

( )2 1g grλ − = 0                                 (5.28) 

0λ ≥                                    (5.29) 

1 0         1,2, ,g gλ ≥ = ⋅ m⋅ ⋅

⋅ ⋅

                         (5.30) 

2 0         g 1,2, ,g mλ ≥ = ⋅                          (5.31) 

If defining 

1 ( )
2

8 (1 )

g g

g
T T

g

g g

d d
r

r
ϕ

λ
Ω Ω

∂ ∂
gr

Ω− Ω
∂=

− Ω

∫ ∫
D fε u ε(u) u

∂              (5.32) 

According to (5.22), we have  

2 1
11 (

8 (1 )
)g g

g gr
ϕ λ λ

λ
= + −

− Ω
                 (5.33) 

Update the design variable as follows: 
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{ } { }
( ){ } { }

min min

1

max (1 ) ,     max 1 ,

min 1 ,1 ,     min 1 ,1

                                   otherwise

g
i i

g g
i i i

g
i i

r x if x

r r if

r

η ϕ

η ϕ η

ϕ
+

 − ≤
= + ≥ +


⋅

η−

            (5.34) 

 

Circular microstructure 
 

For circular model (Figure 4.6-4.8), the optimality conditions can be expressed 

as follows: 

 

2 2

2 2

, ( 1, , ) 1 1

m
2

g=1

2 (1 ) 1 2 2

0 2 (1 )

1    ( ) ( )
2

1     (4 ) 0                       if  0
2

  (1 ( (1 ) 2

g gg g

m m m
T g T T

g m g g g

g g
s

r

r

1
g

Maximize d d d

Such that r r

dx r x dx

γ θ

δ δ

δ

δπ

δ

Ω Ω= ⋅⋅⋅ = = =

− − −

− −

Π = Ω− Ω− Γ

−
− Ω −Ω ≤ ≤ ≤

− − + −

∑ ∑ ∑∫ ∫

∑

∫ ∫

u ε u D ε(u) u f u
Ω∫ t

m

g=1

m
2

e=1

)) 0  

1                                                                                   if  1
2

                   (1 ) 0                            if  1 1

          

g
s

g g
s

r

r r

δ δ

δ

Ω −Ω ≤

−
< < −

− Ω −Ω ≤ − ≤ ≤

∑

∑

           1 0                                                         1, 2, ,

                    - 0                                                             1, 2, ,

g

g

r g

r g

− ≤ = ⋅⋅⋅

≤ =

m

m⋅ ⋅⋅

  (5.35)            

Defining    

      
2 2

2 2

2 (1 ) 1 2 2

0 2 (1 )
(1 ) 2

r

r
dx r x dx

δ δ

δ
ϖ δ

− − −

− −
= − + −∫ ∫             (5.36) 

 

Introducing multipliers 1 2 ,g gλ λ  and λ  ( 1, 2, ,g m= ⋅⋅⋅ ), the Lagrangian 

function L to the problem (5.35) can be conducted as 
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( ) ( )

1 1 1

2
1 2

1 1 1

1( ) ( )
2

1    (4 ) - 1     if  0
2

g g g

m m m
T g T T

g g g

m m m
g g g g g g

s
e g g

L d d d

r r r r δλ π λ λ

Ω Ω Ω
= = =

= = =

= Π = Ω− Ω− Γ

− 
− − Ω −Ω − − − ≤ ≤ 

 

∑ ∑ ∑∫ ∫ ∫

∑ ∑ ∑

u ε u D ε(u) u f u t

 (5.37) 

 

( ) ( )

1 1 1

1 2
1 1 1

1( ) ( )
2

1    (1 ) - 1     if  1
2

g g g

m m m
T g T T

g g g

m m m
g g g g g

s
g g g

L d d

r r rδ

d

λ ϖ λ λ

Ω Ω Ω
= = =

= = =

= Π = Ω− Ω− Γ

  −
− − Ω −Ω − − − < < 

 

∑ ∑ ∑∫ ∫ ∫

∑ ∑ ∑

u ε u D ε(u) u f u t

δ−

 (5.38) 

 

( ) ( )

1 1 1

2
1 2

1 1 1

1( ) ( )
2

    (1 ) - 1     if  1 1

g g g

m m m
T g T T

g g g

m m m
g g g g g g

s
g g e

L d d

r r rλ λ λ

Ω Ω Ω
= = =

= = =

= Π = Ω− Ω− Γ

 
− − Ω −Ω − − − − ≤ 

 

∑ ∑ ∑∫ ∫ ∫

∑ ∑ ∑

u ε u D ε(u) u f u td

rδ ≤

  (5.39) 

 

In the equation (5.37), 10
2

r δ−
≤ ≤ , the upper side constraint for  gr  are not 

active, then . In the equation (5.38), 2 0gλ =
1 1

2
rδ δ−

< < − , the lower and upper 

side constraint for  gr  are not active, then 1 2 0g gλ λ= = . In the equation (5.39), 

1 r 1δ− ≤ ≤ , the lower side constraint for gr  are not active, then . 1
gλ 0=

Differentiating the Lagrangian function (5.37) with respect to gr , we can get 

 

1

1 ( )
2

       2 0,                 ( 1, 2, , )

g g

g
T T

g g

g g g

d d
r r

r g

ε

λπ λ

Ω Ω

∂ ∂
Ω− Ω

∂ ∂

+ Ω + = = ⋅⋅⋅

∫ ∫
D fu ε(u) u

m

       (5. 40) 

 

Differentiating the Lagrangian function (5. 38) with respect to gr , we can get 
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1 ( )
2

       0,                 ( 1, 2, , )

g g

g
T T

g g

g
g

d d
r r

g m
r
ϖλ

Ω Ω

∂ ∂
Ω− Ω

∂ ∂

∂
+ Ω = = ⋅⋅⋅

∂

∫ ∫
D fε u ε(u) u

            (5.41) 

 

Differentiating the Lagrangian function (5.39) with respect to gr , we can get 

 

2

1 ( )
2

        2 0,                 ( 1, 2, , )

g g

g
T T

g g

g g g

d d
r r

r gλ λ

Ω Ω

∂ ∂
Ω− Ω

∂ ∂

+ Ω − = = ⋅⋅⋅

∫ ∫
D fε u ε(u) u

m

       (5.42) 

By defining 

 

1 ( ) 12    when  1  
2 2

1 ( ) 12   when  1  
2

1 ( )
2   when   1 1

2

g g

g g

g g

g
T T

g g

g g

g
T T

g g

g
g

g
T T

g g

g g

d d
r r r

r

d d
r r r

r

d d
r r r

r

δϕ
πλ

δϕ δϖλ

ϕ δ
λ

Ω Ω

Ω Ω

Ω Ω

∂ ∂
Ω− Ω −∂ ∂= <

− Ω

∂ ∂
Ω− Ω −∂ ∂= <
∂

− Ω
∂

∂ ∂
Ω− Ω

∂ ∂= −
− Ω

∫ ∫

∫ ∫

∫ ∫

D fε u ε(u) u

D fε u ε(u) u

D fε u ε(u) u

≤

< −

≤ ≤

  (5.43) 

We can update design variables by the following formula: 

 

{ } { }
( ){ } {

min

1 min

min (1 ) ,1     max 1 ,

max 1 , ,     min 1 ,1

                                   otherwise

i

i

i

g
i

g g
i i

g
i

r if x

r r x if

r

η ϕ η

}η ϕ

ϕ
+

 + ≤ −
= − ≥ +


⋅

η             (5.44) 

 

Multi-void microstructures 
 

Triangular multi-void microstructure (Figure 4.10 (a)): 

The optimality conditions can be expressed as 
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, ( 1, , ) 1 1

m
2

g=1

1     ( ) ( )
2

     (1 2 ) 0

2                    0                                                       
2

g ge g

m m m
T g T T

a g m g g g

g g
s

g

1
g

Maximize d d d

Such that a

a

θ Ω Ω= ⋅⋅⋅ = =

Π = Ω− Ω−

− Ω −Ω ≤

− ≤

∑ ∑ ∑∫ ∫

∑

u ε u D ε(u) u f u t

  1, 2, ,

                    - 0                                                                 1, 2, ,g

g m

a g

= ⋅⋅⋅

≤ =

Ω
=

Γ∫

m⋅ ⋅⋅

2

 (5.45) 

 

Introducing multipliers 1,
g g
a aλ λ  and λ  ( 1, 2, ,g m= ⋅⋅⋅ ), using Lagrangian 

function and defining    

1 ( )
2

4

g g

g
T T

g

g g

d d
a

a
ϕ

λ
Ω Ω

∂ ∂
ga

Ω− Ω
∂=

− Ω

∫ ∫
D fε u ε(u) u

∂         (5.46) 

Design variables are updated by: 

{ } { }
( ){ } {1

min (1 ) ,1       max 1 ,0

max 1 ,0 ,       min 1 ,1

                                   otherwise

i

i

i

g
i

g g
i i

g
i

a if

a a if

a

η ϕ

}

η

η ϕ

ϕ
+

 + ≤
= − ≥ +


⋅

η

−

          (5.47) 

 

Rectangular multi-void microstructure (Figure 4.10 (b)): 

The optimality conditions can be expressed as 

, , ( 1, , ) 1 1

m

g=1

1    ( ) ( ) ( )
2

     (1 2 ) 0

                    1 0                                                     

g gg g g

m m m
T g T T

a b g m g g g

g g g
s

g

1
g

Maximize d d d

Such that a b

a

θ Ω Ω= ⋅⋅⋅ = =

Π = Ω− Ω− Γ

− Ω −Ω ≤

− ≤

∑ ∑ ∑∫ ∫

∑

u ε u D ε u u f
Ω

=
∫ u t

    1, 2, ,

                    - 0                                                             1, 2, ,
1                    0                                                      1, 2,2

g

g

g m

a g

b g

= ⋅⋅⋅

≤ =

− ≤ = ⋅ ,

                    - 0                                                             1, 2, ,g

m

b g

⋅ ⋅

≤ =

m⋅⋅ ⋅

m⋅⋅ ⋅

 (5.48) 

 

 5-14  



Chapter 5 – Optimization Approach 
 

Introducing multipliers 1 2 1, , , 2
g g g
a a b b

gλ λ λ λ  and λ  ( 1,2, ,g m= ⋅⋅⋅ ), using 

Lagrangian function and defining  

   
1 ( )
2

2

1 ( )
2

2

g g

g g

g
T T

g g

g g

g
T T

g e

g g

d d
a a

b

d d
b b

a

ϕ
λ

ψ
λ

Ω Ω

Ω Ω

∂ ∂
Ω− Ω

∂ ∂=
− Ω

∂ ∂
Ω− Ω

∂ ∂=
− Ω

∫ ∫

∫ ∫

D fε u ε(u) u

D fε u ε(u) u

        (5.49) 

 

Design variables are updated by 

 

{ } { }
( ){ } { }

{ } { }
( ){ } { }

min

1 min

min

1 min

min (1 ) ,1     max 1 ,

max 1 , ,     min 1 ,1

                                   otherwise

min (1 ) ,1     max 1 ,

max 1 , ,     min 1 ,1

i

i

i

g
i

g g
i i

g
i

g
i i

g g
i i i

a if x

a a x if

a

b if x

b b x if

b

η ϕ η

η ϕ η

ϕ

η ψ η

η ψ η

+

+

 + ≤ −
= − ≥ +


⋅

+ ≤ −

= − ≥ +

                                   otherwiseg
i iψ






⋅

            (5.50) 

 

Square multi-void microstructure (Figure 4.10 (c)): 

The optimality conditions can be expressed as 

, ( 1, , ) 1 1

m
2

g=1

1    ( ) ( )
2

     (1 4 ) 0

1                    0                                                        2

g gg g

m m m
T g T T

a g m g g g

g g
s

g

1
g

Maximize d d d

Such that a

a

θ Ω Ω= ⋅⋅⋅ = =

Π = Ω− Ω−

− Ω −Ω ≤

− ≤

∑ ∑ ∑∫ ∫

∑

u ε u D ε(u) u f u

 1, 2, ,

                    - 0                                                             1, 2, ,g

g

a g

= ⋅⋅⋅

≤ = ⋅⋅⋅

Ω
=

Γ∫ t

m

m

2

 (5.51) 

Introducing multipliers 1,
g g
a aλ λ  and λ  ( 1, 2, ,g m= ⋅⋅⋅ ), using Lagrangian 
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function and defining  

   
1 ( )
2

8

g g

g
T T

g

g g

d d
a

a
ϕ

λ
Ω Ω

∂ ∂
ga

Ω− Ω
∂=

− Ω

∫ ∫
D fε u ε(u) u

∂         (5.52) 

 

Design variables are updated by: 

 

{ } { }
( ){ } {

min

1 min

min (1 ) ,1     max 1 ,

max 1 , ,     min 1 ,1

                                   otherwise

i

i

i

g
i

g g
i i

g
i

a if x

a a x if

a

η ϕ η

}η ϕ

ϕ
+

 + ≤ −
= − ≥ +


⋅

η           (5.53) 

 

5.1.3.2 Bi-material Models 

Cross shape bi-material microstructure 

In the model of cross-shape bi-material microstructure (Figure 4.10 (a)), the 

optimality conditions can be expressed as 

, , ( 1, , ) 1 1

m
2

1
g=1

m

2
g=1

1    ( ) ( )
2

     4 (2 ) 0

                   4 ( )(2 ) 0

                     - 0

g gg g g

m m m
T g T T

a b g m g g g

g g g
s

g g g g e
s

g

1
g

Maximize d d d

Such that a a

b a a b

a

θ Ω Ω= ⋅⋅⋅ = =

Π = Ω− Ω− Γ

⋅ − Ω −Ω ≤

⋅ − − − Ω −Ω ≤

≤

∑ ∑ ∑∫ ∫

∑

∑

u ε u D ε(u) u f u t

                                                             1, 2, ,

                    1 0                                                         1, 2, ,

                    - 0       

g

g g

g m

b g

a b

= ⋅⋅⋅

− ≤ = ⋅⋅⋅

≤                                                   1, 2, ,g m= ⋅⋅⋅

Ω
=
∫

m

 (5.54) 

 

Introducing multipliers , ,g g
a ab b

gλ λ λ  and 1, 2λ λ  ( g 1,2, ,m= ⋅⋅ ⋅ ), the Lagrangian 

function L to the problem (5.54) can be expressed as 
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1 1

m
2

1 1
g=1

m

2 2
g=1

1( ) ( )
2

                                           4 (2 )

                                 4 ( )(2 )

g g

m m m
T g T T

g g g

g g g
s

g g g g g
s

L d d

a a

b a a b

λ

λ

Ω Ω
= = =

= Π = Ω− Ω− Γ

 
− ⋅ − Ω −Ω 

 


− ⋅ − − − Ω −Ω


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    (5.55) 

 

Differentiating the Lagrangian function (5.55) with respect to ,g ga b , and 

defining 
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              (5.56) 

It follows that  

( ){ } { }

{ } { }

( ){ } { }

{ } { }
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 m ax 1 , ,  max 1 ,
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
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


⋅

−

−
          (5.57) 

 

Square bi-materials microstructures 

In the model of square hole bi-material microstructures (Figure 4.11 (b)), the 

optimality conditions can be expressed as 
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m

 (5.58) 

Introducing multipliers , ,g g
a ab b

gλ λ λ  and 1, 2λ λ  ( 1,2, ,g m= ⋅⋅ ⋅ ), using 

Lagrangian function and defining    
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              (5.59) 

It follows that  
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
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⋅

             (5.60) 

 

Rectangular bi-material microstructures 

In the model of double rectangular bi-material microstructure (Figure 4.11 (c)) , 

the optimality conditions can be expressed as 
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(5.61) 

Introducing multipliers , , , ,g g g g g
a b ac c bd d

gλ λ λ λ λ λ  and 1, 2λ λ  ( g 1,2, ,m= ⋅⋅ ⋅ ), using 

Lagrangian function and defining    
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        (5.62) 

 

The design variables can be updated by 
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(5.63)

 

 

Triangular bi-material microstructure 

 

In the model (d) of Figure 4.10, the optimality conditions can be expressed as 
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2                    0           
2

g gg g g

m m m
T g T T

a b g m g g g

g g
s

g g g
s

g

1
g

Maximize d d d

Such that b

b a

b
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∫

 (5.64) 
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Introducing multipliers , ,g g
a ab b

gλ λ λ  and 1, 2λ λ  ( 1,2, ,g m= ⋅⋅ ⋅ ), using 

Lagrangian function and defining    
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              (5.65) 

 

 

The design variables can be updated by: 
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            (5.66) 

 

5.1.4 Optimality conditions for existing microstructure models 

Some microstructure models were developed, but the computer program codes 

for optimization have not been given in literature. In order to compare effects 

of microstructures used and the newly developed, a program code of structural 

topology optimization catering for the following microstructures is developed 

in this research. These microstructure models considered are: 
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Ranked layered model 

According to the discussion in Chapter 3, for ranked-2 layered model, the 

optimality conditions can be expressed as 
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2

 (5.67) 

Introducing multipliers 1 2 1, , ,g g g g
ϑ ϑ γ γλ λ λ λ  and λ  ( 1,2, ,g m= ⋅⋅ ⋅ ), the 

Lagrangian function L to the problem (5.67) can be expressed as 
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∑    (5.68) 

 

Similarly by differentiating the Lagrangian function (5.68) with respect to gϑ , 

we can get 

 

1 2

1 ( )
2

        ( 1) 0,                 ( 1, 2, , )

g g

g
T T

g g

g g g g

d d

g mϑ ϑ

ϑ ϑ

λ γ λ λ

Ω Ω

∂ ∂
Ω− Ω

∂ ∂

− − Ω + − = = ⋅⋅⋅

∫ ∫
D fε u ε(u) u

         (5.69) 

 

Differentiating the Lagrangian function (5.68) with respect to gγ , we can get 
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We define 
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We can update the design variables as following: 
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Triangular one-material microstructure 

For triangular model, the optimality conditions can be expressed as 
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Introducing multipliers 1, 2
g g
a aλ λ  and λ  ( 1,2, ,g m= ⋅⋅ ⋅ ), the Lagrangian 

function L to the problem (5.74) can be expressed as 
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Differentiating the Lagrangian function (5.75) with respect to ga , we can get 
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We can update design variables as 
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Hexagon microstructure 

For hexagon model, the optimality conditions can be expressed as 
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Introducing multipliers 1,
e e
a aλ λ  and λ  ( g 1,2, ,m= ⋅⋅ ⋅ ), using Lagrangian 

function and defining    
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Updating design variable by: 
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Power-law one-material model 

In the power-law one-material model, the optimality conditions can be 

expressed as 
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where minρ  is a lower bound vector on relative density. 
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Introducing multipliers 1 2,g gλ λ  and λ  ( 1,2, ,e m= ⋅⋅ ⋅ ), the Lagrangian 

function L to the problem (5.82) may be expressed as 
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By differentiating the Lagrangian function (5.82) with respect to gρ , we can get 
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         (5.84) 

By defining 
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ρ
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∫ ∫ ∂         (5.85) 

We have 

2 1
11 ( )g g
g gϕ λ λ

λρ
= + −

Ω
                   (5.86) 

 

Updating design variables as 
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Power-law bi-materials microstructure 

In the model of power-law bi-material microstructure model, the optimality 

conditions can be expressed as 

1 2, ( 1, , ) 1 1
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2 g gg g

m m m
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Introducing multipliers 1 1 2 2
1 2 1, , ,g g g g

ρ ρ ρ ρλ λ λ λ  and 1 2,λ λ  ( 1,2, ,g m= ⋅⋅ ⋅ ), the 

Lagrangian function L to the problem (5.88) can be expressed as 
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(5.89)   

Differentiating the Lagrangian function (5.88) with respect to 1 2,g gρ ρ  and 

defining
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        (5.90) 
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Design variable are updated by: 
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Ranked layered bi-materials microstructures 

The optimality conditions for rank-2 layered bi-material model can be 

expressed as 
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 (5.93) 
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Introducing multipliers 1 2 1 1 2 2
1 2 1, , , , , 2

g g g g g g
ϑ ϑ γ γ γ γλ λ λ λ λ λ  and 1 2,λ λ  ( ), 

the Lagrangian function L to the problem (5.93) can be expressed as 

1,2, ,g m= ⋅⋅ ⋅
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Differentiating the Lagrangian function (5.94) with respect to 1 2, ,g g gϑ γ γ  and 

defining    
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The design variables are updated as 
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5.2 Principal Stress Based Optimal Orientation  
 

In the homogenization method, the formulation of the material distribution is 

based on the material with periodically repeated micro-voids. The composites 

with cell symmetry described above are orthotropic, and the angle of rotation 

of the material axes of this material will influence the value of the compliance 

of the structure. The optimal rotation of an orthotropic material is very 

important for the setting of topology design and the design of composite 

structures.  

 

The optimal rotation can be found analytically (Cheng, 1988) and this is of 

great importance for computations. The general elasticity tensor G
ikjlE  can be 

calculated by 

 
2 2 2 2

1 1 1 1
( , ) ( , ) ( ) ( ) ( ) ( ) (

i i i

G g g G g e g g g g H g
ikjl ip jq kr ls ikjl

p q r s
)x x Eθ θ θ θ θ θ

= = = =

= =∑∑∑∑D E a a a a x   (5.99) 

 

where  g
ix  is design variable, i n1,2,= ⋅⋅⋅ , ( ) ( )

i i

H g H
ikjl

gE x x= D  

In the plane stress/strain problems, the rotation  can be defined by ( )gθa
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cos sin
( )

sin cos

g g
g

g g

θ θ
θ

θ θ
−

=a                      (5.100) 

 

To determine the parameter gθ , the principal stress method is used which takes 

the principal stress directions as the optimal orientation.  

 

The principal stress method was used by Suzuki and Kikuchi in 1991. Diaz and 

Bendsøe extended this method for multiple load cases in 1992. In their 

approach, for different load cases, the principal stress directions are determined 

first and then by considering the equation from stationarity of the Lagrangian 

with respect to gθ , a combined equation is obtained. By solving this equation, 

the optimal orientation was determined. Hassani and Hinton (1998) also used 

the principal stress method in their topology optimization program and 

provided quite good results for artificial and rectangular model by using the 

PLATO software. In this thesis, the optimal value of orientation of each cell is 

given by the solution data; it is not represented on the graphical optimal layout. 

 

5.3 Convergence Criterion 
 

In the HDM program (Homogenization with Different Microstructures) 

developed in this research, the criterion of convergence is stated as following:  

By checking the objective function for every design variable including the 

orientation variable, if the difference between its value in step n+1 and in step 

n divided by the value in step n is less than a small value ∆ , then an optimum 
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solution is reached.  is called convergence tolerance. By testing with 

topology optimization process and considering convergence speed and 

accuracy of optimization layout, we suggest the value 

∆

∆  between 0.01 and 

0.05. 

 

5.4 Measures to Control Checkerboard Pattern  
 

The checkerboard pattern is a region where solid and void elements distribute 

in an alternating manner (Figure 5.2(b)). Designs with checkerboard patterns 

are unrealistic and undesirable in practice. Patches of checkerboard patterns 

appear often in the solutions obtained by the homogenization method that use 

the displacement based finite element method. It was earlier believed that these 

regions represented some sort of optimal microstructure, but later research 

results showed that the checkerboard patterns are due to bad numerical 

modelling of the stiffness of the checkerboard region.  

 

Figure 5.2 Checkerboard problem 

 

One way to suppress it is to use higher-order finite elements for the 
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displacement function to avoid the checkerboard problem. Diaz and Sigmund 

(1995) and Jog and Haber (1996) show that checkerboards are mostly 

prevented when using 8 or 9-node finite elements for the homogenization 

approach. For the SIMP approach, however, checkerboards are only prevented 

using 8 or 9-node elements if the penalization power is small enough. However, 

a drawback of using higher-order finite elements is the substantial increase of 

computing (Bendsøe and Sigmund, 2002). 

 

Another effective way to control the checkerboard pattern is using filter 

technique. Bendsøe and Sigmund (2002) classified the filter techniques into 

Filtering the density and Filtering the sensitivities.  

 

The Filtering the density technique imposes explicit limitations on the 

allowable density distributions that can appear in the optimal design, and as 

such these limits have to be catered for as constraints in the optimization 

formulation. An alternative to this is to directly limit the variations of the 

densities that appear in the set of admissible stiffness tensor  by only 

admitting filtered densities in the stiffness. 

adE

 

In the Filtering the sensitivities, the filter makes the design sensitivity of a 

specific element depend on a weighted average over the element itself and its 

eight direct neighbours. Such a filter is purely heuristic, but research results 

show that it is very efficient in removing checkerboards (Bendsøe and Sigmund, 

2002).  
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In our computer program, a similar method with Filter the sensitivities is used. 

We use a modified average 'ϕ  instead of original ϕ  for one design variable 

and ', ', ', 'ϕ ψ ω φ  instead of , , ,ϕ ψ ω φ  for four design variables, which are 

described in Section 5.1  

 

First, we assign ϕ  to each node by  

 
1

1       i=1,2, , 1

m
g
i

node i
k m

g
i

i

x
m

x

ϕ
ϕ =

∑

∑
⋅⋅⋅                   (5.101) 

 

where g
ix  is the design variable, m1 is the maximum number of elements 

sharing the node , which is generally equal to the number of sides or surfaces 

of the employed finite element.  

k

 

Next, the  is assigned back to the updated element by: node
kϕ

 
2

'        k=1,2, , 2
2

m
node
k

k m
m

ϕ
ϕ =

∑
⋅⋅⋅                   (5.102)  

 

where m2 is the number of nodes in each element. 

 

5.5 Computer Program Implementation 

 

The topology optimization procedure by using homogenization method consists 
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of three different modules: homogenization, structural analysis and 

optimization. 

 

In the homogenization module, first we need to establish a model of 

microstructure. Then our aim is to develop the relationship between effective 

material properties and the geometrical shape parameters of the microstructure. 

One way to achieve this goal is to carry out a series of finite element analysis 

for the different geometrical shape parameters of the microstructure. 

Subsequently, the polynomials for the elasticity matrix of the homogeneous 

solid are obtained. Most of microstructures can be calculated by this way. With 

high speed computer technology development, more and more calculations of 

microstructure properties will use numerical method. Another way is using 

analytical formulae method, such as in the case of ranked layered one-material 

and bi-material microstructures, the effective material properties generally can 

be derived analytically. In such an analytical approach, explicit expressions for 

the effective elastic tensor can be obtained by establishing the optimal upper 

and lower bounds for the complementary elastic energy density of the porous 

material. These microstructures are known as “extremal” microstructures in the 

sense that they achieve optimality in the Hashin-Shtrikman bounds on the 

effective properties of composite materials. This method can be applied to both 

two-dimensional and three-dimensional layered material cell of finite rank. The 

third way is using a simple formula and combining it with penalty method, for 

example, Power-law material microstructure (Bendsøe and Sigmund, 2002) and 
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artificial model (Hassani and Hinton, 1998).    

 

In the structural analysis module, first a finite element model of microstructures 

needs to be established. It is common practice to use a regular mesh of 

elements, each element is a microstructure. Then for a given boundary and 

loading conditions, a finite element analysis is carried out based on the 

effective material properties that have been obtained by homogenization 

method. Stress, strains and displacements can be calculated.  

 

In the optimization module, considering the shape parameters of the 

microstructure model in finite elements as design variables, the total potential 

energy as objective function, the volume of material as global constraint, by 

using optimality criteria method and filter technique, the topology optimization 

program can be implemented.  

 

The HDM computer program developed in this research was built on a 

computer Pentium III, 128MB memory, 32MB DDR Nvidia GeForce2 GTS 

Graphics cards, using Windows 2000 Operating System. The visual graphic 

was developed by Delphi 5.0 software. The mesh development uses Strand 7 

standard finite element software by G+D Computing Pty. Ltd. Australia, which 

permits user to build models, add loads and constraints very easily and quickly. 

The following facilities are available in strand7. 

 

• Create, delete and manipulate elements with a comprehensive set of 
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tools, automatic meshing and unlimited undo.  

• Organise a complicated model into a simple set of parts using the Group 

Tree.  

• Define your own coordinate systems and beam cross-sections.  

• Check mesh quality with aspect ratio and warping contours and free 

edge detection.  

 

However, the solver of the finite element was developed and included in the 

optimization program by the author. Four and eight nodes elements are 

available. The optimization code is a combination of C++ and FORTRAN 95. 

All the programs are finally controlled by a HDM.bat batch file. Typically, for 

a 496 nodes, 450 meshes, single load problem, the analysis time is 12 minutes 

for 200 numbers of iterations. 

 

The topology optimization algorithm is as follows: 

Step 1  Program start and greeting 

Step 2  Draw a suitable reference domain and discretize the reference domain 

by generating a finite element mesh for analysis, define surface 

tractions, fixed boundaries, loads, and material properties, etc. by 

using Strand7 software.  

Step 3  Choose a microstructure model out of fifteen models available and 

optimization parameters.  

Step 4  Calculate the initial value of the design variables. The initial 
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orientation value θ  is set to zero. 

Step 5  Compute the effective material properties of the composite, using 

homogenization theory. This gives a functional relationship between 

the density of material in the composite (i.e. sizes of holes) and the 

effective material properties.  

Step 6  Carry out structure analysis to obtain stress, strain and displacement. 

Step 7  Evaluate the objective function.  

Step 8  Use filter technique to modify , , ,ϕ ψ ω φ  to ', ', ', 'ϕ ψ ω φ  

Step 9  Resize the design variables and orientation value 

Step 10 Check the volume constraint, if it is active, continue, otherwise update 

it and go back to Step 9  

Step 11 Form a new design based on the new set of design variables for each 

element 

Step 12 Check if solution has converged; if it is, go to next step, otherwise 

update design variables and go back to step 5 

Step 13 Output the image layout of new design 

 

The algorithm is illustrated in Figure 5.3 and a typical run of HDM software is 

presented in Appendix B. 

 

5.6 Summary 
 

Based on the study of homogenization method and the properties of different 
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microstructure models, a computer program named HDM (Homogenization 

with Different Microstructures) has been developed. This program includes 

five new one-material microstructure models and four new bi-material 

microstructure models. The new one-material models are: cross shape 

microstructure model, circular microstructure model, triangular multi-voids 

microstructure model, rectangular multi-voids microstructure model, and 

square multi-voids microstructure model. The new bi-material models are: 

cross shape bi-material model, square bi-material model, rectangular 

bi-material model and triangular bi-material model.  

 

The program also includes some existing microstructure models for which the 

microstructures optimization program codes are not available in the literature. 

These models are:  ranked layered model, triangular microstructure model, 

hexagon microstructure model, power-law one-material model, power-law 

bi-material model and ranked layered bi-material model.  

 

A filtering program for checkerboard pattern control was established. The filter 

method is very useful not only for checkerboard pattern control but also for 

mesh-dependence problem, which easily appeared in SIMP method. 

 

The program uses optimality criteria method for updating design variable and 

principal stress method for updating orientation variable. A simple convergence 

criterion was used. 
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In the next chapter, we use the program developed in this chapter to investigate 

some benchmark problems of topology optimization.     

 

 
Figure 5.3 Topology optimization procedure using homogenization method 



Chapter6. Algorithms Comparison 

Chapter 6________________________________________________________ 

COMPARISONS BETWEEN ALGORITHMS USING 

BENCHMARK TOPOLOGY OPTIMIZATION 

PROBLEMS 

 

 

 
 

 

In this chapter, the HDM algorithm was evaluated by studying benchmark 

problems of topology optimization of cantilever beam made of isotropic 

material and comparing the results of the HDM algorithm for structural 

topology optimization with other solutions available in the literature. The study 

of HDM algorithm is divided into two parts: one-material models and bi-

material models. In each section, benchmark problems are first described, 

followed by comparisons between the optimization solutions of HDM and 

other software packages in literature.    

 

6.1 Algorithm Test by Deep Cantilever Beam Optimization Problem 

 
A deep cantilever beam with a single load and fixed constraint is shown in 

Figure 6.1. Modulus of elasticity of solid material E MPa, the 

Poisson’s ratio v = 0.3 and volume fraction V V

51 10a = ×

%/ 20S = .  
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The optimization criterion for the minimum compliance of this problem has 

been derived by Hassani and Hinton (1998) as shown in Appendix C. The 

optimum result for this problem should be a two bar truss feature running at 

 to the vertical direction shown in Figure 6.2.  45± o

 

 

            Figure 6.1 A deep cantilever beam        Figure 6.2 Optimum feature of  

                                                                                the deep cantilever beam       

 

The optimum layouts of by HDM using nine different one-material models 

with the domain discretized to 1200 (20x60) eight-node finite elements and 

different convergence tolerance (a) 1 0.050∆ = , (b) 2 0.010∆ = , (c)  

are shown in Figures 6.3-6.11, in Figure 6.3, power-law one-material model; 

Figure 6.4, ranked layered material model; Figure 6.5, triangular material 

model; Figure 6.6, hexagon material model; Figure 6.7, cross shape material 

model; Figure 6.8, circular material model; Figure 6.9, triangular multi-void 

material model; Figure 6.10, rectangular multi-void material model; Figure 

6.11, square multi-void material model.  

3 0.005∆ =
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It should be noted that in all result graphics, white areas mean no materials, 

black areas mean the areas taken up by solid material and the grey areas mean 

the areas taken up by mixture of material with void, the intensity of the grey 

shade refects the density of the cell and one element represents one microcell. 

 

 

(a)             (b) 1 0.050∆ = 2 0.010∆ =               (c) 3 0.005∆ =   

Figure 6.3 Optimization layouts for power-law one-material model 

 

 

(a)             (b) 1 0.050∆ = 2 0.010∆ =               (c) 3 0.005∆ =   

Figure 6.4 Optimization layouts for ranked layered material model 
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(a)             (b) 1 0.050∆ = 2 0.010∆ =               (c) 3 0.005∆ =   
Figure 6.5 Optimization layouts for triangular material model 

 
 

(a)             (b) 1 0.050∆ = 2 0.010∆ =               (c) 3 0.005∆ =   
Figure 6.6 Optimization layouts for hexagon material model 

 
(a)             (b) 1 0.050∆ = 2 0.010∆ =               (c) 3 0.005∆ =   

Figure 6.7 Optimization layouts for cross shape material model 
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(a)             (b) 1 0.050∆ = 2 0.010∆ =               (c) 3 0.005∆ =   
Figure 6.8 Optimization layouts for circular material model 

 

 
(a)             (b) 1 0.050∆ = 2 0.010∆ =               (c) 3 0.005∆ =   

Figure 6.9 Optimization layouts for triangular multi-void material model 
 

 
(a)             (b) 1 0.050∆ = 2 0.010∆ =               (c) 3 0.005∆ =   

Figure 6.10 Optimization layouts for rectangular multi-void material model 
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(a)             (b) 1 0.050∆ = 2 0.010∆ =               (c) 3 0.005∆ =   

Figure 6.11 Optimization layouts for square multi-void material model 
 

The iteration numbers for different convergence tolerances are shown in Table 

6.1. 

Material 
model 

convergence 
tolerance 1 0.050∆ =

convergence 
tolerance 2 0.010∆ =

convergence 
tolerance 3 0.005∆ =

Power-law 39 130 195 

Ranked 
layered 

43 168 233 

Triangular 54 174 212 

Hexagon 49 164 273 

Cross shape 40 134 203 

Circular 63 166 286 

Triangular 
multi-void 

53 203 395 

Rectangular 
multi-void 

52 166 231 

Square 
multi-void 

59 189 248 

 
Table 6.1 Iteration numbers for different convergence tolerances 
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From the optimization results of different microstructure models we can see 

that all the one-material models using HDM software agree well with the 

optimization criterion for the minimum compliance of this problem derived by 

Hassani and Hinton (1998). We also noticed that initially the properties of the 

cell are periodically distributed throughout the domain, but the properties of the 

cells in the final results are no longer periodically distributed. Within these 

results, the ranked layered model shows a little difference. The power-law 

model performs the best. The optimization results also show that the 

convergence tolerances between 0.010 and 0.005 give similar layouts. 

 

For bi-material cases, we choose the modulus of hard and soft materials 

elasticity MPa,  MPa and Poisson’s ratio v = 0.3.  51 10aE = × 31 10bE = ×

 

Case a: bi-material without void 

The design domain was considered as a bi-material composite and it only 

contains the two materials, no voids. The aim of the optimization is to find the 

distribution of hard and soft materials in the given domain. In this case, the 

volume fractions of hard material V V/ 30H %= , soft materials V V .  / 70S = %

%

 

Case b: bi-material with void  

The design domain is considered as a bi-material composite with voids. The 

aim of the optimization is to find the distribution of hard and soft materials in 

the given domain. The volume fractions of hard material isV V and 

soft materials is V V . 

/ 20%H =

/ 30S =
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In Case a, the results of using the six different material models are shown in 

Figure 6.12. In Figure 6.12, (a) power-law, (b) ranked layered, (c) square, (d) 

cross shape, (e) rectangular and (f) triangular bi-material model. 

 

(a1) Hard material distribution     (a2) Soft material distribution 

 (a) Optimization layout for power-law bi-material model at 3µ =  

 

(b1) Hard material distribution     (b2) Soft material distribution 

 (b) Optimization layout for ranked layered bi-material model  

Figure 6.12 Optimization layouts of Case a (continued) 
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(Figure 6.12 continued) 

 

 

(c1) Hard material distribution     (c2) Soft material distribution 

(c) Optimization layout for square bi-material model  

 

 

(d1) Hard material distribution     (d2) Soft material distribution 

(d) Optimization layout for cross shape bi-material model  

Figure 6.12 Optimization layouts of Case a (continued) 
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(Figure 6.12 continued) 

 

 

(e1) Hard material distribution     (e2) Soft material distribution 

(e) Optimization layout for double rectangular bi-material model  

 

 

(f1) Hard material distribution     (f2) Soft material distribution 

(f) Optimization layout for triangular bi-material model  

Figure 6.12 Optimization layouts of Case a  
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In Case b, the results of using the six different material models are shown in 

Figure 6.13.  

 
(a1) Hard material distribution     (a2) Soft material distribution 

(a) Optimization layout for power-law bi-material model at 3µ =  

 

(b1) Hard material distribution     (b2) Soft material distribution 

(b) Optimization layout for ranked layered bi-material model 

Figure 6.13 Optimization layouts of Case b (continued) 
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(Figure 6.13 continued) 

 

 

(c1) Hard material distribution     (c2) Soft material distribution 

(c) Optimization layout for square bi-material model 

 

(d1) Hard material distribution     (d2) Soft material distribution 

(d) Optimization layout for cross shape bi-material model 

Figure 6.13 Optimization layouts of Case b (continued) 
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(Figure 6.13 continued) 

 

(e1) Hard material distribution     (e2) Soft material distribution 

(e) Optimization layout for double rectangular bi-material model 

 

(f1) Hard material distribution     (f2) Soft material distribution 

(f) Optimization layout for triangular bi-material model 

Figure 6.13 Result layouts of Case b  
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From the layouts of case a and case b shown above, we can see that the hard 

material distributions in most bi-material models are concentrated on the high 

stress areas. Most of the optimization results are of a similar pattern but the 

optimization results of ranked layered bi-material models are very much 

different from the others in both case a and case b. This is because that in the 

rank-2 layered material model, any optimal microstructure is degenerated and the 

structure cannot sustain a non-aligned shear stress. This will result in the stiffness 

matrix of the structure becoming singular. To overcome the singularity 

problem, the measure adopted in the thesis is to use a very soft material instead 

of the voids. However, the minimum strain energy calculated during 

optimization process (commonly used for objective function which is 

equivalent with maximum total potential energy) is modified energy and the 

displacements between layers are larger than those found in other models. This 

leads the result shown much difference with others. In case b, the result of 

power-law model shows some difference with others. The reason is that the 

strain energy calculated in the optimization process for power-law model is not 

real; it does not necessarily converge to the true value of the optimal solution in 

some cases. 

 

6.2 Comparing Algorithms for One-material Microstructure Models 

with Algorithms Found in Literature 

 
6.2.1 Results of topology optimization available in literature 

The  short  cantilever  beam  shown  in  Figure 6.14  bas  been studied by many 
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 authors. A point load of intensity P=1kN is applied midway down the right 

hand side of the beam. Modulus of elasticity is MPa, Poisson’s ratio, v = 

0.3. 

510E =

 

Figure 6.14 A short cantilever beam with a point load 

 

Min, Nishiwaki and Kikuchi (1999) studied this benchmark problem by 

homogenization method. In their study, the design domain is discretized to 

1440 (48 x 30) four-node finite elements with 1519 nodes as shown in Figure 

6.15.  

 

Figure 6.15 Discretized design domain (Min et al. 1999) 

 
The design goal is to obtain the optimal topology of a structure with the 

maximum stiffness. The optimal structures of the stiffness optimization with 

different volume constraints 0.2sΩ = Ω , 0.4sΩ = Ω , 0.6sΩ = Ω are shown in 

Figure 6.16.  
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             Ω =                         0.2s Ω 0.4sΩ = Ω                           0.6sΩ = Ω  

Figure 6.16 Optimal structure layouts (Min et al. 1999) 

 
Figure 6.17 illustrates the iteration history in the case of volume constraint is 

40%. 

 

Figure 6.17 Convergence in the case of volume constraint 40% (Min et al. 

1999). 

 
Hassani and Hinton (1998) developed a topology optimization program named 

PLATO based on artificial and rectangular models and studied the topology 

optimization problems and the effect of the rectangular, artificial, and ranked 

layered material models. The following pictures are the part of their research 

results on the benchmark problem. Figure 6.18 shows a optimal layout using 

rectangular model with volume constraint of 40% and the iteration history. 
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Figure 6.18 Optimal layout and iteration history (Hassani and Hinton, 1998) 

 
The optimization results of using artificial model are shown in Figure 6.19. 

 
 

 
Figure 6.19 Optimal layouts of using artificial model with different penalties µ  

(Hassani and Hinton, 1998) 

The iteration histories are given in Figure 6.20. 

6-17 



Chapter6. Algorithms Comparison 

 

 
Figure 6.20  Iteration history of using artificial model with different penaltiesµ  

(Hassani and Hinton, 1998) 

 

They also gave the optimization results and iteration history of using ranked 

layered material model shown in Figure 6.21 and 6.22: 

 
Figure 6.21 Optimization results of using ranked layered material model 

(Hassani and Hinton, 1998) 
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Figure 6.22 Iteration history of using ranked layered model (Hassani and 

Hinton, 1998) 

 
From the optimization layout and iteration history in literature, we can see that 

different software packages and using different microstructure models give 

similar results, as shown by the case of volume constraint of 40%, Figure 6.16 

and 6.19, 2.5µ =  . From Figure 6.21 we can also see that the ranked layered 

model shows a different pattern with other models. 

 

 

6.2.2. Results of HDM algorithm with different material models 

 
The same problem with the same volume constraint of 40% was solved by 

HDM. The optimization results of using HDM algorithm with different 

material models developed in Chapter 5 are shown in Figure 6.23: (a) power-

law, (b) ranked layered (c) circular, (d) triangular, (e) hexagon, (f) cross shape, 

(g) triangular multi-void, (h) rectangular multi-void and (i) square multi-void 

material model.  
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(a) Power-law one-material model.    (b) Ranked layered material model. 

 

 
(c) Circular material model.       .     (d) Triangular material model. 

 

 
(e) Hexagon material model.             (f) Cross shape material model. 

 

 

(g) Triangular multi-void model. 

Figure 6.23 Optimization results with different microstructures (continued) 
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(Figure 6.23 continued) 
 

 

(h) Rectangular multi-void model.    (i) Square multi-void model. 

Figure 6.23 Optimization results with different microstructures. 

 

Compared to the optimization layout in literature, the layout of HDM using 

eight one-material models (except ranked layered model), can provide optimal 

topology of a design domain. The result layout pattern of the ranked layered 

microstructure model shows much difference from others, but similar to the 

result of the ranked layered model of PLATO. As discussed before, the 

difference of the results is because of the fact that ranked layered model does 

not take into account shear stress between layers. For the use of topology 

optimization technique at concept design stage at present, we can say that the 

algorithm of HDM is successful.  

 

6.2.3 Optimization layouts of the power-law model and the artificial model                                  

 

From the optimization results above, we can see that the optimization layout of 

using power-law model have a very similar layout pattern with artificial model 

with larger penalty value and results given by Min et al. (1999) results. To 
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investigate further, we solved the benchmark problem by using power values 

from 1 to 10. The effect on optimization layouts is shown in Figure 6.24. 

 
(a) Power value 1µ =                (b) Power value 2µ =  

 
(c) Power value 3µ =                 (d) Power value 4µ =  

 
(e) Power value 5µ =                 (f) Power value 6µ =  

 
(g) Power value 7µ =               (h) Power value 8µ =  

Figure 6.24 Optimization results for different power values (continued) 
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(Figure 6.24 continued) 

 
(g) Power value 9µ =               (h) Power value 10µ =  

Figure 6.24 Optimization results for different power values. 

From the optimal layout patterns above, we can see that when 2µ ≤ , there are 

some grey shaded areas appearing on the optimal layouts. With increasing 

value of µ , the grey shaded area is reduced. From the results we can also see 

that there are three similar patterns shown on the results, 2µ ≤ , 3 ~ 4µ =  and 

5 ~ 10µ = . By comparison with other results in the literature, we can conclude 

that 3 ~ 4µ =  performs the best. 

 

6.2.4 Iteration history for different material models  

 
Figure 6.25 shows the iteration history for different material models. In Figure 

6.25, (a) power-law one-material model with power value 3µ = , (b) triangular 

material model, (c) hexagon material model, (d) cross shape material model, (e) 

circular material model, (f) triangular multi-void material model, (g) 

rectangular multi-void material model, (h) square multi-void material model, 

and (i) ranked layered material model.  

 
 
 

6-23 



Chapter6. Algorithms Comparison 

 
 

 
(a) Power-law one-material model. 

 

 
                  (b) Triangular material model.        (c) Hexagon material model. 

 

 
             (d) Cross shape material model.                (e) Circular material model. 

Figure 6.25 Iteration histories for different models (continued) 
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(Figure 6.25 continued) 

 

 

.          (f) Triangular multi-void model.         (g) Rectangular multi-void model. 

 

 

        (h) Square multi-void material model.   (i) Ranked layered material model. 

Figure 6.25 Iteration histories for different material models 

 
Table 6.2 shows iteration numbers and final strain energies at convergence 

tolerance  for the microstructures using HDM. 0.05∆ =
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Microstructure Model Iteration Number Final Strain Energy 

Power-law 203 0.00020 

Cross shape 235 0.00019 

Circular 211 0.000187 

Hexagon 275 0.000198 

Triangular  243 0.000189 

Rectangular Multi-void 220 0.00021 

Square Multi-void 243 0.00022 

Triangular Multi-void 279 0.000189 

Ranked layered 267 0.00128 

Table 6.2 Iteration numbers and final strain energies at convergence tolerance 

0.05∆ = 0 for the microstructures using HDM 

 

From the iteration histories and strain energies shown in Figure 6.25 and Table 

6.2 and comparison with results from literature, the convergence speed by 

HDM is good. Among these material models, power-law, triangular, cross 

shape, circular and ranked layered one-material models perform with better 

convergence than others. The studies on the convergence criteria for the 

different models will be carried out in the next chapter. 

 

6.2.5 Comparisons of iteration history for the different power values in 

power-law model with artificial model 

 

Figure 6.26 and Table 6.2 show the iteration histories and final strain energies 

for different power values of the power-law models.  
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                           (a) Power value 1µ =                        (b) Power value 2µ =  

 

                      (c) Power value 3µ =                            (d) Power value 4µ =  

 

                    (e) Power value 5µ =                              (f) Power value 6µ =  

Figure 6.26 Iteration histories for different power values (continued) 
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(Figure 6.26 continued) 

 
                       (g) Power value 7µ =                                (h) Power value 8µ =  

 
                      (i) Power value 9µ =                               (j) Power value 10µ =  

Figure 6.26 Iteration histories for different power values  

Power value Initial strain energy Final strain energy 
1 0.00022 0.00016 
2 0.00044 0.00019 
3 0.00087 0.00020 
4 0.00174 0.00020 
5 0.0034 0.00010 
6 0.0069 0.00021 
7 0.0138 0.00022 
8 0.0276 0.000225 
9 0.0536 0.00023 
10 0.1107 0.00023 

Table 6.2 Initial and final strain energy for different power values 
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It can be seen that the different power values greatly affect the initial strain 

energy value (increasing power value by 1 would double initial strain energy), 

but do not affect much the final strain energy. More studies of the effects on 

different power values will be presented in the next chapter. 

 

6.3 Comparisons between Algorithms for Bi-material Microstructure 

Models  

 
The cantilever beam was solved by Thomsen (1992) using bi-material model is 

shown in Figure 6.27. Point load of intensity P=1kN is applied midway down 

the right hand side of the beam.  

 

Figure 6.27 A cantilever beam with a point load 

 

Thomsen (1992) studied this benchmark problem using ranked layered bi-

material model. The material is modelled by one very soft material and two 

stiff materials. The stiffness ratios between "material 1" and "material 2" are set 

to be 10 and 75. The available amounts of "material 1" and "material 2" are set 

to be 20% and 65%, respectively, of the design domain volume. The structures 

have been discretized into 1152 (12 x 96) of four node elements. 
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The layout of optimal topologies of the upper half of the symmetrical layout of 

the beam is shown in Figure 6.28 and no iteration history was given by 

Thomsen. In this figure the distributions of isotropic "material 1" and "material 

2" are illustrated by black and hatched domains, respectively, whereas white 

elements represent void. It appears that stiff "material 1" is distributed along 

the upper edge of the structure in order to carry the largest normal stresses, and 

that shear stresses are carried by softer "material 2" (Thomsen, 1992). The 

symmetrical layout of the upper half of the beam for two cases of stiffen ratio 

between ‘material 1’ and ‘material 2’ are shown in Figure 6.28  

 

(a). Stiffness ratio between "material 1" and "material 2" was set to be 10 

 

(b). Stiffness ratio between "material 1" and "material 2" was set to be 75 

Figure 6.28 Optimal layout (Thomsen, 1992) 

 
In this research, the structure was discretized into 1441 nodes and 450 elements. 

The stiffness ratios between "material 1" and "material 2" are set at 10. The 

optimization layout of using HDM with six bi-material microstructure models 

is illustrated in Figure 6.29. 
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(a1) Hard material distribution 

 

(a2) Soft material distribution 

(a) Optimization layout for power-law bi-material model  

 

(b1) Hard material distribution 

 

(b2) Soft material distribution 

(b) Optimization layout for ranked layered bi-material model  

 

(c1) Hard material distribution 

Figure 6.29  Optimization layouts using HDM (continued) 
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(Figure 6.29 continued) 

 

(c2) Soft material distribution 

(c). Optimization layout for cross shape bi-material model  

 

 

(d1) Hard material distribution 

 

(d2) Soft material distribution 

(d). Optimization layout for square bi-material model  

 

 

(e1) Hard material distribution 

Figure 6.29  Optimization layouts using HDM (continued) 
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(Figure 6.29 continued) 

 

 

(e2) Soft material distribution 

(e) Optimization layout for double rectangular bi-material model  

 

(f1). Hard material distribution 

 

(f2). Soft material distribution 

(f). Optimization layout for triangular bi-material model  

Figure 6.29 Optimization layouts using HDM  

 
Figure 6.29 and 6.28 (a), show that the trends of the optimization layouts are 

identical, but not exactly the same. This is because those different 

microstructures have different layout geometrical patterns with different 

properties and these will affect the optimization solutions. The consistent 

tendency to optimum solution indicates that the HDM algorithm works well.  
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6.4 Effect of finite element discretization  

 
To study the effect of finite element discretization on the results of topology 

optimization, the benchmark problem of Figure 6.1 (the deep cantilever beam 

with a single load and fixed constraint, Modulus of elasticity of solid material 

MPa, the Poisson’s ratio v = 0.3 and volume fraction V V ) 

is studied by using one-material cross shape microstructure model. The domain 

is discretized to different meshing, from 27 elements to 1200 elements.  

51 10aE = × / 20S = %

The optimum layouts with different finite element discretization are shown in 

Figure 6.30: (a) the domain is discretized to 27 (3x9) eight-node meshes, (b) 

the domain is discretized to 75 (5x15) eight-node meshes, (c) the domain is 

discretized to 300 (10x30) eight-node meshes, (d) the domain is discretized to 

675 (15x45) eight-node meshes and (e) the domain is discretized to 1200 

(20x60) eight-node meshes.  

    
 

     (a) 27 meshes (b)75 meshes (c)300 meshes (d)675 meshes (e)1200 meshes  

Figure 6.30 Optimum layouts for different finite element discretizations. 
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Table 6.3 shows the history of iteration of strain energies for the different finite 

element discretizations, which are also plotted in Figure 6.31.  

Iteration 

number 

Strain energy 

for 27 meshes 

Strain energy 

for 75 meshes 
Strain energy 
for 300 meshes 

Strain energy 
for 675 meshes 

Strain energy 
for 1200 meshes

0 0.000258 0.000284 0.000352 0.000340 0.000270 
10 0.000146 0.000161 0.000181 0.000180 0.000142 
20 0.000067 0.000074 0.000087 0.000085 0.000075 
30 0.000052 0.000055 0.000069 0.000063 0.000066 
40 0.000048 0.000046 0.000053 0.000054 0.000057 
50 0.000046 0.000043 0.000048 0.000047 0.000054 
60 0.000046 0.000042 0.000046 0.000044 0.000050 
70 0.000046 0.000042 0.000044 0.000043 0.000048 
80 0.000046 0.000041 0.000044 0.000042 0.000046 
90 0.000046 0.000041 0.000043 0.000042 0.000044 
100 0.000046 0.000041 0.000043 0.000041 0.000044 
110 0.000045 0.000041 0.000042 0.000040 0.000043 
120 0.000045 0.000041 0.000042 0.000040 0.000043 
130 0.000045 0.000041 0.000042 0.000039 0.000042 
140 0.000045 0.000040 0.000042 0.000039 0.000042 
150 0.000045 0.000040 0.000042 0.000039 0.000042 

Table 6.3: Strain energies for the different finite element discretizations. 

 
Figure 6.31 Iteration histories for different finite element discretizations. 
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From the results above, we can see that the optimization problem with either 

coarse meshes or fine meshes can converge quickly to the optimum layout. The 

final strain energies are also similar. It should be noted that the domain used for 

homogenisation throughout this research is one microstructure itself. These 

results also confirm that homogenisation works even when the average domain 

is just a single cell as noted by Manevitch et al (2002), page 11. 

 

6.5 Conclusions 

The HDM algorithm was tested by investigating the cantilever beam problem 

and by comparing the optimization solutions of short cantilever beam problems 

given by the HDM algorithm with those given in literature. The results show 

that the HDM algorithm is effective and the solutions agree well with the 

solutions published in literature. Further studies of other problems are 

presented in the following chapters. 
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Chapter 7                                             

STUDY ON THE EFFECTS OF VARIOUS 

ONE-MATERIAL MICROSTRUCTURES ON 

TOPOLOGY OPTIMIZATION RESULTS 

 

 

 

 
To identify the influence of a microstructure model on optimization results will 

be very important to researchers in improving the homogenization method to 

make it more accessible for practical use. By solving a series of topology 

optimization problems for isotropic material, this chapter investigates the 

effects of different one-material microstructures on topology optimization. A 

range of examples of topological optimization problems and different loading 

cases are investigated. The loading cases considered here are single loading, 

surface loading, multiple loading and gravity loading.  The factors that 

influence topology optimization results such as different material models, 

different power values for the power-law model are studied. The iteration and 

convergence characteristics for different microstructure models are also 

investigated.  For each problem, first the PLATO software using rectangular 

model developed by Hassani and Hinton (1998), is used to find the topology 

optimum layout, then the HDM software using nine microstructure models is 
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used to search for the optimum layout. For the power-law model, different 

cases of power values from 1µ =  to 10 are also investigated to see the effects 

of µ  on the optimal layout.  

 

In the study on effects of microstructures in this research, only a limited 

number of elements (300~1200 mesh, 8-node) was used. This is quite 

satisfactory in the strategically important concept design stage on which 

topology optimization mainly focuses. Other researchers also used small 

number of elements in topology optimization. For example, 640 (32 X 20) 

equal elements were used by Hassani and Hinton (1998) for rectangular and 

artificial models study. Min, Nishiwaki and Kikuchi (1999) studied the simply 

supported beam benchmark problem using homogenization method by 

discretizing the design domain into 1440 (48 x 30) four-node finite elements 

with 1519 nodes as shown in Figure 6.15. 

 

7.1 Topology Optimizations with Single Load  
 

Example 7.1 A simply supported beam with a single load 
 

A simply supported beam is shown in Figure 7.1. A point load of intensity 

P=1kN is applied midway down the top side of the beam. The modulus of 

elasticity MPa, Poisson’s ratio, v = 0.3 and volume fraction Vs/V=50%. 510E =
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Figure 7.1 A simply supported beam 

 

The result of using PLATO software (Hassani and Hinton, 1998) with 

rectangular microstructure carried out in this research is shown in Figure 7.2.  

 

 

Figure 7.2 Optimization layout by PLATO software 

 

The layouts of using HDM with nine different material models are shown in 

Figure 7.3: (a) power-law, (b) triangular, (c) hexagon, (d) cross shape, (e) 

circular, (f) triangular multi-void, (g) rectangular multi-void, (h) square 

multi-void, and (i) ranked layered material model.  

 

 

(a) Power-law one-material model 

Figure 7.3 Optimization results for different microstructures by HDM with 

volume fraction 50% (continued) 
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(Figure 7.3 continued) 

 

(b) Triangular material model 

 

(c) Hexagon material model 

 
(d) Cross shape material model 

 
(e) Circular material model 

 

(f) Triangular multi-void material model. 

Figure 7.3 Optimization results for different microstructures by HDM with 

volume fraction 50% (continued) 
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(Figure 7.3 continued) 

 

(g) Rectangular multi-void material model. 

 

(h) Square multi-void material model. 

 

(i) Ranked layered material model. 

Figure 7.3 Optimization results for different microstructures by HDM with 

volume fraction 50%. 

 

Figure 7.3 shows that except for the ranked layered model, all the rest eight 

one-material models provide optimal shapes similar to that given by the 

rectangular model using PLATO software. The power-law model (at 3µ = ) 

gives the clearest image result. The optimal layout of the ranked layered model 

is different from the others, in that the material distribution is more complex, 

the layout is not as sharp and contrast, and material of high density is required 

at both left and right edges. The reason for this is as discussed in Chapter 6 that 
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because the optimal microstructure is degenerated in the rank-2 layered 

material model and the structure cannot sustain a non-aligned shear stress. This 

will result in the stiffness matrix of the structure becoming singular. The 

technique used in the thesis to overcome the singularity problem is to use a 

very soft material instead of voids. However, the minimum strain energy 

calculated during optimization process (commonly used for objective function 

which is equivalent to maximum total potential energy) is only modified 

energy. This leads to the result shown much difference with others.  

 

From the layouts above, we can also see that all the other results from different 

microstructures have a similar layout, but not exactly the same. The criterion of 

an optimal structure for this minimum compliance problem is to find the 

minimum strain energy (maximum total potential energy). Among these 

microstructure models, the strain energy can be calculated during the 

optimization process for the triangular, hexagon, cross shape, circular, 

triangular multi-void, rectangular multi-void and square multi-void material 

models. But the strain energy is modified during the optimization process for 

ranked layered and power-law models. For ranked layered and power-law 

models, Finite Element Method can be used for calculating the true value at the 

final stage of optimization. 

 

Figure 7.4 shows the iteration histories for different material models.  
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(a) Rectangular model (using PLATO)      (b) Power-law model 

 

 

      (c) Triangular material model.      (d) Hexagon material model. 

 

 

(e) Cross shape material model.     (f) Circular material model. 

Figure 7.4 Iteration histories for different models (continued) 
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(Figure 7.4 continued) 

 

 

     (g) Triangular multi-void model.   (h) Rectangular multi-void model. 

 

  (i) Square multi-void material model.   (j) Ranked layered material model. 

Figure 7.4 Iteration histories for different material models 

 

In Figure 7.4, (a) rectangular material model by using PLATO software, (b) 

power-law, (c) triangular, (d) hexagon, (e) cross shape, (f) circular, (g) 

triangular multi-void, (h) rectangular multi-void, (i) square multi-void and (j) 

ranked layered material model.  

 

Figure 7.5 shows all the iterations on the same graphic for comparison of the 

iteration histories given by the microstructure models (except ranked layered) 

using HDM. 
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Figure 7.5 Comparison of iteration histories 

  

Table 7.1 shows iteration numbers and final strain energies at convergence 

tolerance 0 for the microstructures using HDM. 0.05∆ =

 
Microstructure Model Iteration Number Final Strain Energy 

Power-law 197 0.000065 
Cross shape 233 0.000062 

Circular 245 0.000064 
Hexagon 267 0.000067 

Triangular  229 0.000066 
Rectangular Multi-void 220 0.000066 

Square Multi-void 243 0.000067 
Triangular Multi-void 279 0.000069 

Ranked layered 267 0.0019 
 

Table 7.1 Iteration numbers and final strain energies at convergence tolerance 

0.05∆ = 0 for the microstructures using HDM 
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From the iteration histories illustrated in Figure 7.4, Figure 7.5 and Table 7.1, 

we can see that all the microstructures give very good convergence, among 

them the power-law, cross shape and circular models have better convergence. 

The strain energy of the ranked layered material model is much higher than 

other material models. This is because the ranked layered model can not resist 

shear stress; displacement due to loading has to be greater, hence larger strain 

energy. In this case, the optimum value of strain energy of this material model 

is much more than those of other models.  

 

For the power-law model, we investigate further the effect of changing the 

power value µ  on the optimum layout. Figure 7.6 shows the optimization 

layouts for different power values of the power-law models from one to ten. 

 

 

(a) Power value 1µ =  

 

(b) Power value 2µ =  

Figure 7.6 Optimization results for different power values (continued) 
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(Figure 7.6 continued) 

 

(c) Power value 3µ =                  

 

(d) Power value 4µ =  

 

 

(e) Power value 5µ =                  

 

(f) Power value 6µ =  

 

(g) Power value 7µ =  

Figure 7.6 Optimization results for different power µ  (continued) 
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(Figure 7.6 continued) 

 

 

(h) Power value 8µ =  

 

(i) Power value 9µ =  

 

(j) Power value 10µ =  

Figure 7.6 Optimization results for different power values 

 

From the optimal layout given by Figure 7.6, we can see that for a small value 

of µ , a grey area is appears in the solution at the central bottom area, 

however with the value of µ  increasing, the supporting from the central 

bottom area is gradually reduced. When 9µ > , all the supports from the 

central area disappear. By comparison with other model results, the solutions of 

the power value between 2 and 7 agree well with other models. 

 

Figure 7.7 shows the iteration histories for different power values in the 
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power-law one-material model. 

 
             (a) Power value 1µ =        (b) Power value 2µ =  

 

 

          (c) Power value 3µ =            (d) Power value 4µ =  

 

 

      (e) Power value 5µ =        (f) Power value 6µ =  

Figure 7.7 Iteration histories for different power values (continued) 
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(Figure 7.7 continued) 

 
            (g) Power value 7µ =          (h) Power value 8µ =  

 

          (i) Power value 9µ =            (j) Power value 10µ =  

Figure 7.7 Iteration histories for different power values 

Table 7.2 below shows the initial and final strain energy for different power 

values calculated by HDM. 
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Power value Initial strain energy Final strain energy 

1 0.000091 0.000059 

2 0.00018 0.000065 

3 0.00036 0.000065 

4 0.00073 0.000066 

5 0.00146 0.000066 

6 0.0029 0.000068 

7 0.00583 0.000069 

8 0.01166 0.000068 

9 0.0233 0.000067 

10 0.04667 0.000071 

Table 7.1 The initial and final strain energy for different power values. 

 

From the results above, we can see that the power-law models have very good 

convergence character for the power value between 1 and 9. Although the 

initial strain energy increases very rapidly with the value of power increasing, 

the final strain energy upon convergence is very similar.   

 

On the simply supported beam problem, we can see that all the microstructure 

models (apart from the ranked layered model) agree well with the solution 

using PLATO software and have similar convergence histories. For the concept 

design stage, we can say the most of the layouts reach similar topological 

optimal layouts. By comparison of the value of the objective function of 
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optimization, the cross shape has the lowest strain energy. It also has the best 

convergence characteristics. From a manufacturing point of view, a solution 

with contrast and sharp image (black and white image) is easy to implement, 

their layouts given by power-law model with 3 5µ = :  are the best. Ranked 

layered model gives a different layout pattern. The reason for this, as discussed 

before, is that there is no shear strength in this model and it would lead to a 

larger displacements between layers.   

   

Example 7.2 Square domain with a single corner load 
 

Figure 7.8 shows a square domain with boundary constraints on the top left 

corner and the bottom edge. A point load of intensity P = 1kN is applied at the 

left bottom corner of the square domain. The modulus of elasticity MPa, 

Poisson’s ratio, v = 0.3 Two cases, Case a : the volume constraint Vs / V = 50% 

and Case b : the volume constraint Vs / V = 20%, are considered. 

510E =

 

Figure 7.8 A Square domain with a point load 
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Case a : Volume constraint Vs / V = 50% : 

 

The optimum layout given by the PLATO software using rectangular material 

model calculated by the author is shown in Figure 7.9.  

 

 
Figure 7.9 Optimum layout of using the PLATO software  

 

The optimum layouts of using HDM with other nine different material models 

are shown in Figure 7.10: (a) power-law, (b) ranked layered, (c) triangular, (d) 

hexagon, (e) cross shape, (f) circular, (g) triangular multi-void, (h) rectangular 

multi-void, and (i) square multi-void material model.  

 

(a) Power-law one-material model 3µ =  

Figure 7.10 Optimization results for different microstructures for Case a 

(continued) 
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(Figure 7.10 continued) 

 

 
   (b) Ranked layered material model.   (c) Triangular material model. 

 

(d) Hexagon material model.  (e) Cross shape material model. 

 

(f) Circular material model.     (g) Triangular multi-void model. 

Figure 7.10 Optimization results for different microstructures for Case a 

(continued) 
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(Figure 7.10 continued) 

 

 

    (h) Rectangular multi-void model.    (i) Square multi-void model.  

Figure 7.10 Optimization results for different microstructures for Case a. 

 

The results above show that all the microstructure models except the ranked 

layered model agree well with the results given by PLATO software using 

rectangular microstructure. The result of ranked layered model is again not as 

good as that given by the other eight models, because of its complex 

distribution of material, a high concentration of solid material in the middle of 

the left edge would not be sensible from an engineering point of view. The 

power-law and circular model gives the clearest and sharp images, which have 

good properties for manufacture. 

 

Case b : Volume constraint Vs / V = 20%  

 

The optimum layout by PLATO with rectangular material model calculated in 

this project is shown in Figure 7.11.  
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Figure 7.11 Optimum layout of using PLATO based on rectangular model 

The optimum layouts of using HDM with nine different material models are 

shown in Figure 7.12. In Figure 7.12, (a) power-law, (b) ranked layered, (c) 

triangular, (d) hexagon, (e) cross shape, (f) circular, (g) triangular multi-void, 

(h) rectangular multi-void, and (i) square multi-void material model.  

 

(a) Power-law model 3µ = . 

 
(b) Ranked layered material model.  (c) Triangular material model. Figure 

7.12 Results for different models for Case b (continued) 
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(Figure 7.12 continued) 

 
(d) Hexagon material model.   (e) Cross shape material model. 

 

(f) Circular material model.      (g) Triangular multi-void model. 

 

(h) Rectangular multi-void model.  (i) Square multi-void model. 

Figure 7.12 Optimization results of HDM with different microstructures  

 

The results above show that all the microstructure models agree well with the 

results of the rectangular model obtained by PLATO. The power-law and cross 
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shape models give the sharpest image of the layouts. It can be seen that in the 

case of Vs / V = 20%, the layout of the ranked layered model bears more 

resemblance to others, even though its distribution of material is still the most 

complicated. The triangular, rectangular and square multi-void models have 

more grey areas. 

 

The effects of power values of the power-law model were further investigated.  

Figure 7.13 shows the optimization layouts for different power values from one 

to ten of the power-law one-material model with the volume fraction 

Vs/V=40%. 

 

(a) Power value 1µ =            (b) Power value 2µ =  

 

          (c) Power value 3µ =          (d) Power value 4µ =  

Figure 7.13 Optimization results with different power values (continued) 
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(Figure 7.13 continued) 

 

 

  (e) Power value 5µ =          (f) Power value 6µ =  

 
(g) Power value 7µ =           (h) Power value 8µ =  

 

         (i) Power value 9µ =         (j) Power value 10µ =  

Figure 7.13 Optimization results with different power values 
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From the layout for different values of power-law model, we can see that for 

µ  from 2 to 10, all the images are sharp and of high contrast, but only the 

solutions of µ  equal to 2 and 3 agree well with other models. The layout is 

complex for µ  = 1. 

 

From this example we can see that the power-law model with µ  equal to 2 

and 3 perform the best. The cross shape and circular models also give good 

results. again, the ranked layered model shows a relatively different solution. 

 

Example 7.3 Rectangular design domain with two sides fixed under 

central single load. 
 

Figure 7.14 shows a design domain with fixed boundary constraint on the left 

and right side. A point load of intensity P = 1kN is applied midway on the top 

side of the beam.  The modulus of elasticity MPa, Poisson’s ratio, v = 

0.3 and volume fraction Vs / V = 50%. 
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Figure 7.14 A domain with fixed side boundary constraints 

 

  7- 24 



Chapter7 – Study on Effect of One-material Microstructures 
 

The optimum layout of using PLATO with rectangular material model 

calculated in this research is shown in Figure 7.15. 

 

 

Figure 7.15 Optimum layout of using PLATO with rectangular material model. 

 

The optimum layouts of using HDM with nine different material models are 

shown in Figure 7.16: (a) power-law, (b) ranked layered, (c) triangular, (d) 

hexagon, (e) cross shape, (f) circular, (g) triangular multi-void, (h) rectangular 

multi-void, and (i) square multi-void material model.  

 

 

(a) Layout of power-law one-material model. 

Figure 7.16 Optimization layouts for different microstructures (continued) 
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(Figure 7.16 continued) 

 

 
(b) Layout of ranked layered material model.  

 

 

(c) Layout of triangular material model.  

 

(j) Layout of hexagon material model. 

Figure 7.16 Optimization layouts for different microstructures (continued) 
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(Figure 7.16 continued) 

 

 (e) Layout of cross shape material model.  

 

 

(f) Layout of circular material model.  

 

 

(g) Layout of triangular multi-void material model. 

Figure 7.16 Optimization layouts for different microstructures (continued) 
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(Figure 7.16 continued) 

 

(f) Layout of rectangular multi-void material model. 

 

 
(i) Layout of square multi-void material model. 

Figure 7.16 Optimization layouts for different microstructures 

 

All the solutions using different models above give very similar layouts and 

agree well with that of the rectangular model given by PLATO software. Again 

the ranked layered material model layout shows more complicated distribution 

of material which would make it hard to implement. The cross shape and 

power-law models give the clearest layout.   

 

The effects of power values on results of the power-law models were further 

investigated.  
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Figure 7.17 shows the optimization layouts for different power values from one 

to ten for the volume fraction Vs / V = 50%. 

 

 

(a) Power value 1µ =   

 

(b) Power value 2µ =  

 

(b) Power value 3µ =  

Figure 7.17 Optimization results for different power values (continued) 
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 (Figure 7.17 continued) 

 

 

(d) Power value 4µ =  

 

(e) Power value 5µ =  

 

(f) Power value 6µ =  

Figure 7.17 Optimization results for different power values (continued) 
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(Figure 7.17 continued) 

 

 

(g) Power value 7µ =  

 

(h) Power value 8µ =  

 

 

(i) Power value 9µ =  

Figure 7.17 Optimization results for different power values (continued) 
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(Figure 7.17 continued) 

 

(j) Power value 10µ =  

Figure 7.17 Optimization results for different power values 

 

The results above show that all values of power from 1 to 10 give similar 

layouts, among them those given byµ  =2 to 10 are very clear layout image 

and would be easy to implement. Even the power value 1µ =  also gives a 

good layout. 

 

From the calculations for the single load cases, we can see that the power-law 

model with µ =2~3 always performs well. While the ranked layered model 

shows a different and more complicated solution pattern. 

 

7.2 Topology Optimization with Surface Load 
 

Many structures in the real environment are subjected to surface loading cases 

such as wind loads, traffic loads and so on. Such loads are pressure applied to a 

subdomain surface, which connects some defined points or points allowed to 
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move along some described direction. The pressure is then converted to 

consistent nodal loads at each element. 

 

Example 7.4 A model of bridge 
 

The design domain is a model of a bridge shown in Figure 7.18. The pressure 

load of intensity p = 1kN. Modulus of elasticity MPa, Poisson’s ratio, v 

= 0.3 and volume fraction Vs / V = 30%. 

510E =

 

 

Figure 7.18 A bridge model  

 

The result of using PLATO with rectangular material model calculated in this 

research is shown in Figure 7.19 

 

Figure 7.19 Result of using PLATO software 

 

The results of using HDM with nine different material models are shown in 

Figure 7.20: (a) power-law, (b) ranked layered, (c) triangular, (d) hexagon, (e) 
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cross shape, (f) circular, (g) triangular multi-void, (h) rectangular multi-void, 

and (i) square multi-void material model.  

 

(a) Result layout for power-law one-material model 

 

(b) Result layout for ranked layered material model  

 

(c) Result layout for triangular material model. 

 

(c) Result layout for hexagon material model. 

Figure 7.20 Optimization layouts for different microstructures (continued) 
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(Figure 7.20 continued) 

 

 
(e) Result layout for cross shape material model. 

 

(f) Result layout for circular material model. 

 
(g) Result layout for triangular multi-void material model. 

 

(h) Rectangular multi-void material model. 

Figure 7.20 Optimization layouts for different microstructures (continued) 
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(Figure 7.20 continued) 

 

 

(i) Layout for square multi-void material model. 

Figure 7.20 Optimization layouts for different microstructures 

 

From the layout above, we can see that all the models give similar solutions, 

even in the case of ranked layered model. This is because in the pressure load 

case, the distribution of shear stress is more gradual compared to the single 

load case. From the point of view of practical implementation of layout, the 

ranked layered model still fares least favorable because of its complex material 

distribution and the requirement of considerable material at the bottom edge.  

 

It should be noted here, the famous Sydney Harbor Bridge (In Figure 7.21) 

takes a very similar shape, indicating the ingenuity of the designers.  

 

Figure 7.21 Sydney Harbor Bridge 
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Figure 7.22 shows the iteration histories of HDM for different material models. 

 

(a) Power-law one-material model 

 

      (b) Triangular material model.          (c) Hexagon material model. 

 
(d) Cross shape material model.          (e) Circular material model. 

Figure 7.22 Iteration histories for different material models (continued) 
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(Figure 7.22 continued) 

 

 

   (f) Triangular multi-void model.     (g) Rectangular multi-void model.  

 

  (h) Square multi-void material model.   (i) Ranked layered material model. 

Figure 7.22 Iteration histories for different material models 

 

Table 7.3 shows iteration numbers and final strain energies upon convergence 

for convergence tolerance 0 for the microstructures using HDM. 0.05∆ =
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Microstructure Model Iteration Number Final Strain Energy 

Power-law 232 0.1649 

Cross shape 242 0.155 

Circular 243 0.1567 

Hexagon 274 0.1773 

Triangular  257 0.1621 

Rectangular Multi-void 264 0.1722 

Square Multi-void 253 0.1823 

Triangular Multi-void 266 0.1768 

Ranked layered 273 1.2015 

Table 7.3 Iteration numbers and final strain energies at convergence tolerance 

0.05∆ = 0 for the microstructures using HDM 

 

Figure 7.22 and Table 7.3 show that the cross shape, power-law, and circular 

models perform best in terms of convergence speed and final strain energy. 

Further investigation of the effects of power values on optimization layouts. 

Figure 7.23 shows the optimization layouts for different power values from one 

to ten of the power-law model with the volume constraint Vs / V = 30%. 

 

(a) Power value 1µ =  

Figure 7.23 Optimization layouts for different power values (continued) 
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(Figure 7.23 continued) 

 

 

(b) Power value 2µ =  

 

(d) Power value 3µ =  

 

(d) Power value 4µ =  

 

(e) Power value 5µ =  

Figure 7.23 Optimization layouts for different power values (continued) 
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(Figure 7.23 continued) 

 

(f) Power value 6µ =   

 

(g) Power value 7µ =  

 

(h) Power value 8µ =  

 

(j) Power value 9µ =  

Figure 7.23 Optimization layouts for different power values (continued) 

 

  7- 41 



Chapter7 – Study on Effect of One-material Microstructures 
 

(Figure 7.23 continued) 

 

(j) Power value 10µ =  

Figure 7.23 Optimization results for different power values 

 

The results above show that the solutions of power value µ  between 1 and 3 

agree well with other microstructure models. Those given by 4µ ≥  are very 

different, ranging from complicated layout for µ  = 4 ~ 5 to not sensible for 

µ  = 6 ~ 9. In comparison with Sydney Harbor Bridge (Figure 7.21), µ =2 or 

µ =3 give the best layouts. 

 

Figure 7.24 shows the iteration histories for different power values in the 

power-law material model.  

 

         (a) Power value 1µ =              (b) Power value 2µ =  

Figure 7.24 Iteration histories for different power values (continued) 
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(Figure 7.24 continued) 

 
          (c) Power value 3µ =             (d) Power value 4µ =  

 

     (e) Power value 5µ =                 (f) Power value 6µ =  

 

        (g) Power value 7µ =                 (h) Power value 8µ =  

Figure 7.24 Iteration histories for different power values (continued) 
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(Figure 7.24 continued) 

 

          (i) Power value 9µ =                 (j) Power value 10µ =  

Figure 7.24 Iteration histories for different power values 

 

Table 7.4 shows the initial and final strain energies for different power values. 

 Power value Initial strain energy Final strain energy 

1 0.3313 0.1615 

2 1.056 0.1619 

3 3.390 0.1649 

4 11.0125 0.269 

5 35.6349 0.2801 

6 113.0456 0.4718 

7 200.727 0.5764 

8 204.149 0.4485 

9 205.688 0.5543 

10 206.199 1.025 

Table 7.4 Initial and final strain energies for different power values. 
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From the results shown in Figure 7.24 and Table 7.4, we can see that the power 

value µ  equals to 1, 2, 3 give the best convergence and µ   4 converge to 

higher value of strain energy. The strain energy at power value 

≥

µ  between 1 

and 3 is lower than those of the value 4µ ≥ . This indicates that the layouts of 

the power value 4µ ≥  are not as good solutions. 

 

Example 7.4 shows that all the models gave a very similar layout pattern, the 

cross shape, power-law, and circular models perform the best in terms of 

convergence speed and final strain energy. It should be reiterated that for 

power-law microstructure, power value 2 ~ 3µ =  gives the most desirable 

layout pattern. 

 

Example 7.5 Square domain with pressure load 
 

A square domain with supports and pressure load is shown in Figure 7.25. The 

pressure load of intensity p = 1kN. The modulus of elasticity MPa, 

Poisson’s ratio, v = 0.3 and volume fraction Vs / V = 30%. In this example, we 

consider two loading cases:  

510E =

 

• (a) Loading surface of the reference domain is fixed in the process of 

optimization.  

• (b) Loading surface is allowed to conform to the boundary of the solid 

domain in the process of optimization. 
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  (a). Loading surface of the reference   (b). Loading surface is allowed to  

     domain is fixed in the process of   conform to the domain boundary  

     optimization.                   in the process of optimization.  

Figure 7.25 A square domain with pressure load 

 

Case a: Loading surface of the reference domain is fixed 

The results of using PLATO with rectangular material model calculated in the 

research are shown in Figure 7.26. 

 

Figure 7.26 Results of using PLATO software 

 

The results of using HDM with different material models are shown in Figure 

7.27. In Figure 7.27, (a) power-law, (b) ranked layered, (c) triangular, (d) 

hexagon material model. (e) cross shape, (f) circular, (g) triangular multi-void, 

(h) rectangular multi-void, and (i) square multi-void material model.  
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(a) Power-law one-material model.    

 

(b) Ranked layered material model.  (c) Triangular material model. 

 

   (c) Hexagon material model.      (e) Cross shape material model. 

Figure 7.27 Optimization layouts for different microstructures (continued) 
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(Figure 7.27 continued) 

 

   (f) Circular material model.     (g) Triangular multi-void material model.  

 

(h) Rectangular multi-void model.  (i) Square multi-void material model. 

Figure 7.27 Optimization layouts for different microstructures  

Similarly as above, all the solutions from the microstructures we developed 

give a similar layout pattern. As far as the requirement of the concept design 

stage is concerned, all the microstructure models are effective. From the point 

of view of implementation, cross shape and power-law microstructures offer 

the best solutions. 

 

Figure 7.28 shows the optimization layouts for different power values from one 
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to ten of the power-law model for the volume fraction Vs / V = 30%. 

 

       (a) Power value 1µ =              (b) Power value 2µ =  

 

       (c) Power value 3µ =               (d) Power value 4µ =  

 

(e) Power value 5µ =             (f) Power value 6µ =  

Figure 7.28 Optimization results for different power values (continued) 
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(Figure 7.28 continued) 
 

 

(g) Power value 7µ =              (h) Power value 8µ =  

 

      (i) Power value 9µ =                 (j) Power value 10µ =  

Figure 7.28 Optimization results for different power values 

From the result layouts, we can see that the power values µ  between 2 and 6 

agree well with other models giving the optimum layout that are easy to 

implement. The results are much different when the power value is either 1µ =  

or 7µ ≥  for which the layout is either more complicated ( 1µ = ) or not 

sensible with solid material at the top edge and void at top part of the left edge 

( 7µ ≥ ). 
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Case b: Loading surface of the reference domain is allowed to conform to the 

solid boundary. 

In this problem, load points are allowed to translate along the loading action 

lines while keeping the same values. In this case, loading surface can be 

changed with the topology of the varying domain (see Figure 7.25 (b)).   

 

The PLATO software does not have facilities to solve such problems. The 

results of using HDM with nine different models are shown in Figure 7.29.  

 

(a) Power-law one-material model.   

 
(b) Ranked layered material model.  (c) Triangular material model. 
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domain with pressure load problem in Case b (continued) 
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(Figure 7.29 continued) 

 

   (d) Hexagon material model.      (e) Cross shape material model. 

 
   (f) Circular material model.     (g) Triangular multi-void material model.  

 

(h) Rectangular multi-void model.  (i) Square multi-void material model. 

Figure 7.29 Optimization layouts for different microstructures in Case b 

  7- 52 



Chapter7 – Study on Effect of One-material Microstructures 
 

 

From the optimal layouts obtained, we can see that all the solutions from 

different microstructures give a similar pattern. For the concept design stage, 

we can say that all nine microstructure models are effective for this problem. 

Among them, power-law model those microstructures with µ  =2~3 give the 

best solution.  

 

7. 3 Topology Optimizations with Multiple Loads  

 

Many structures in the environment are subjected to a variety of load cases at 

the same time such as snow loads, traffic loads. In multiple loading cases, 

assume that there are  loads applied to the structure independently. The 

optimization problems can be redefined as 

n

 

, 1
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Where  is weighting coefficient, usually we can simply choose =1/ n . iw iw

In the optimization processes, we need to change the ', 'ϕ ψ  (Chapter 5, Section 

5.4) for single loading cases to 
1

'' '
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=
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Example 7.6 A simply supported beam with multiple load  
 

A simply supported beam is shown in Figure 7.30. Three concentrated loads of  
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intensity kN are applied downwards simultaneously at point of 

¼, ½, ¾  of the bottom side of the beam. The modulus of 

elasticity MPa, Poisson’s ratio, v = 0.3 and volume fraction Vs / V = 

40%. 

1 2 3 1p p p= = =

510E =

 

 

Figure 7.30 A simply supported beam with multiple load  

 

The results of using HDM with nine different material models are shown in 

Figure 7.31. 

 

 

(a) Power-law one-material model 

Figure 7.31 Optimization results for different microstructures (continued) 
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(Figure 7.31 continued) 

 
(b) Ranked layered material model. 

 
(c) Triangular material model 

 
(d) Hexagon material model 

 

(d) Cross shape material model 

Figure 7.31 Optimization results for different microstructures (continued) 

  7- 55 



Chapter7 – Study on Effect of One-material Microstructures 
 

(Figure 7.31 continued) 

 
(k) Circular material model 

 
(g) Triangular multi-void material model. 

 
(h) Rectangular multi-void material model. 

 

(i) Square multi-void material model. 

Figure 7.31 Optimization results for different microstructures. 
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From the results obtained we can see that all the solutions from different 

microstructure models give very similar layouts while the ranked layered 

shows a little difference. This indicates that all the microstructure models are 

effective for this multiple loading problem. Among them the cross shape and 

power-law microstructures again give the clearest layouts. 

 

7.4 Topology Optimizations with Gravity Load 

 

Example 7.7 A simply supported beam with gravity load 
 

A simply supported beam is shown in Figure 7.32. The modulus of 

elasticity MPa, Poisson’s ratio, v = 0.3. The design domain is a 

rectangular block with the dimensions of 30x10x1. Gravity load g=1kN is 

assumed. The design objective is to minimise the mean compliance under 

gravity loading for a given volume fraction Vs / V = 20%. This problem is 

related to the designing of a stone bridge in which the most considerable 

loading is self-weight. 

510E =

 
Figure 7.32 A simply supported beam under gravity loads 

The results of using HDM with nine different material models are shown in 

Figure 7.33.  
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(a) Power-law one-material model. 

  

(b) Ranked layered material model.  

  
(c) Triangular material model. 

 
 (d) Hexagon material model.  

 

(e) Cross shape material model.  

Figure 7.33 Optimization layouts for gravity load (continued) 
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(Figure 7.33 continued) 

 
(l) Circular material model.  

 

(g) Triangular multi-void material model.  

 

(h) Rectangular multi-void material model.  

 
(i) Square multi-void material model. 

Figure 7.33 Optimization layouts for gravity load 

 

The results above show that most microstructure models give similar patterns. 

The layouts of ranked layered, square multi-void, and power-law models show 

a little difference from others in that more material is required at the left and 

right edge or at the bottom edge. From the implementation point of view, the 
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cross shape model offers the best layout. The ranked layered, hexagon and 

square multi-void give much complicated patterns. At concept design stage, all 

the microstructure models are effective for this problem. 

 

7.5 Effect of Microstructures on Topology Optimization 

 

As presented in the sections above, we tested the effects of microstructures on 

topology optimization with a series of problems. We can conclude that: 

 

• Effects of the different material models on optimization layout 

 

Because of the complicated features of structural topology optimization, 

all the studies have aimed at the concept design. The studies of a series 

of topology optimization problems show that all nine new material 

models using HDM investigated in the thesis can converge to an optimal 

topology of a design domain. Overall, the cross shape model and the 

power-law model (with 3µ = ) give the clearest image result. Compared 

to other models, the result layout pattern of the ranked layered 

microstructure model is very much different from others in some 

problems. This is because the ranked layered microstructure model does 

not cater for shear stress between the layers. This will result in the 

stiffness matrix of the structure almost becoming singular and large 

displacement leading to higher strain energy. It can be seen that for a 

structure has high shear stress throughout most of its domain, the ranked 
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layered model is not suitable for finding the optimum topology.  

 

• Effects of power value for the power- law model on optimization 

solutions 

 

From the layout patterns of the benchmark problems, we can see that in 

most problems, different values of µ  give different layouts. Especially 

in the cases of surface loading that higher values of µ  do not perform 

well compared to lower value of µ . For point load cases, high values of 

µ  perform comparatively as well as lower values of µ . Compared to 

the optimization solution of other microstructure models, we suggest the 

power value 2 3µ = :  for the power-law model. 

 

• Effects of the different material models on convergence 

 

The iteration histories of optimization problems showed that the all the 

material models except ranked layered model using HDM have similar 

convergence. Among them the cross shape, power-law and circular 

microstructures performed best. This indicates the HDM program is 

stable.  The final energy of the ranked layered material model is much 

larger than other material models. This is because the ranked layered 

material model does not have shear strength and we use very soft 

material instead of voids. In power-law models, with the power value 

increasing, the initial strain energy is larger than other models, however 
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the final value of strain energy upon reaching convergence are similar.   

 

• Effects of different power values on convergence for power-law model 

 

With regard to the iteration histories, different power values greatly 

affect the initial strain energy value for power values.  In the case 

of 4µ < , the power value does not affect the final strain energy to a great 

extent. With the power value µ  increasing, the final strain energy 

increases slowly.  

 

7.6 Conclusions 
 

The applications using the nine microstructures programmed by HDM to 

topology optimization problems with different loading cases show that the 

algorithm converges for all one-material microstructure models. The final 

optimum layouts are similar for different microstructures, with that of the 

ranked layered model shows a different layout from others, especially in the 

case of point loading. The final layout given by this model has much larger 

final strain energy and not suitable for problems in which shear stress is high.  

 

Among these various microstructure models, the cross shape and the 

power-law models with µ =3 consistently perform better in terms of final 

strain energy value, convergence speed and ease of practical implementation. 

Higher values of µ  are not suitable for surface loading while most power 
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values give similar layout and final strain energies for point loading problems. 

According to the studies carried out here, for power-law microstructures we 

suggest to choose the power value µ =3 for most of optimization problems. 
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Chapter 8                                             

STUDY OF THE EFFECT OF BI-MATERIAL 

MICROSTRUCTURES ON TOPOLOGY OPTIMIZATION 

RESULTS 

 

 

 

 
In bi-material microstructures, the material model contains two materials, one 

harder and the other softer, with or without void. A void implies that there is no 

material. If a portion of the medium consists only of voids, material is not 

placed over that area. On the other hand, if there is no porosity at some position, 

a solid structure needs to be placed at that location. 

 

Bi-material optimization has significant practical importance and can be used 

in many engineering fields. For example, it can be used for the optimal design 

of steel reinforcement in concrete or metal fiber reinforcement in ceramic 

composites. At present there has been very little work done on the topology 

optimization problems by using bi-material microstructures and effects of 

different bi-material models on topology optimization solutions.  

 

In this chapter, a range of examples of topological optimization problems are 

solved using different bi-material microstructures presented in Chapter 5 for 
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isotropic material. These models are power-law bi-material model, ranked 

layered bi-material model, cross shape bi-material model, square bi-material 

model, double rectangular bi-material model and triangular bi-material model. 

A study on the effects of the different bi-material microstructures on topology 

optimization problems is also carried out.  

 

8.1 Topology Optimization Using Bi-material Models with Void  

 

First, we investigate the case of the design domain being treated as 

two-material composites with voids. The aim of the optimization is to find the 

distribution of hard and soft materials in the given domain.  

 

Example 8.1 A simply supported beam with a single load 

 
Considering the optimization problem of simply supported beam shown 

previously in Figure 7.1, the modulus of hard and soft materials elasticity are 

given as MPa, MPa and the Poisson’s ratio v = 0.3. 

The volume fraction of hard material isV V

51 10aE = × 31 10bE = ×

/ 20%H = and the soft materials is 

, Void 50%. /SV V = 30%

   

The results of using the six different bi-material models are shown in Figure 

8.1. In the following graphics, the mesh with black color means hard material 

areas, grey means soft material areas, and white means no materials.  
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(a) Power-law bi-material model at 3µ =  

 

 (b) Ranked layered bi-material model  

 
 (c) Square bi-material model  

 

(d) Cross shape bi-material model  

 

(e) Double rectangular bi-material model  

Figure 8.1 Optimization layouts of bi-material models (continued) 
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(Figure 8.1 continued) 

 

(F) Triangular bi-material model  

Figure 8.1 Optimization layouts of bi-material models 
 
 

Similar to the case of one-material model, the optimization layouts using 

bi-material models show that except for the ranked layered bi-material model, 

all models provide a similar optimum layout, although the triangular 

bi-material model shows a slight difference. The layout of ranked layered 

bi-material model is very different from others, because of it failure to account 

for shear stress. 

Figure 8.2 shows the iteration history for ranked layered bi-material model. 

 

Figure 8.2 Iteration history for ranked layered bi-material model 
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Figure 8.3 shows the iteration histories for the rest of bi-material models. 

 

Figure 8.3 Iteration histories for the rest of bi-material models 

Table 8.1 shows iteration numbers and final strain energies at convergence 

tolerance  for the bi-material microstructures using HDM. 0.05∆ =

Microstructure Model Iteration Number Final Strain Energy 

Power-law bi-material 234 0.000123 

Cross shape bi-material 269 0.000117 

Square bi-material 284 0.000152 

Rectangular bi-material 294 0.000144 

Triangular bi-material  304 0.000235 

Ranked layered bi-material 344 0.0098 

Table 8.1 Iteration numbers and final strain energies at convergence tolerance 

0.05∆ =  for the microstructures using HDM 

 

From Figure 8.3 and Table 8.1, it can be seen all models show good 

convergence, among them the cross shape has the lowest strain energy. 
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Figure 8.4 shows the optimization layout for different power values ( 1 6µ = : ) 

in power-law bi-material model. 

 

1µ =  

 

2µ =  

 

3µ =  

 

4µ =  

 

5µ =  
Figure 8.4 Optimization layouts for different power values (continued) 
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(Figure 8.4 continued) 

 

6µ =  
Figure 8.4 Optimization layouts for different power values 

 

From the optimization layouts of power-law models above, we can see that the 

power value between 2 and 5 gives a very similar layout pattern. For the power 

value equals 1 or 6, the solution shows a little difference. 

 

The optimization process of Example 8.1 shows similar result to the case of 

one-material model. Except for the ranked layered bi-material model, all 

models provide a similar optimum layout. The layout of ranked layered 

bi-material model is very different from others. This is because the structure 

cannot sustain a non-aligned shear stress. This results in more displacements 

between layers leading to the observed difference in layout pattern.  

 

Example 8.2 A square domain with single load 
 

Considering the problem of the square domain with a single corner load shown 

in Figure 7.8,  Modulus of hard and soft materials elasticity are 

MPa, MPa and the Poisson’s ratio v = 0.3. The volume 

fraction of hard material isV V

51 10aE = × 31 10bE = ×

H / 20%= and the soft material isV V , 

Void 50%.   

/ 30S = %
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The results of using the six different material models are shown in Figure 8.5. 

 

(a) Power-law at 3µ =      (b) Ranked layered bi-material  

 

       (c) Square bi-material model  (d) Cross shape bi-material model 

 

(e)Double rectangular bi-material model (f) Triangular bi-material model 

Figure 8.5 Optimization layouts of six bi-material models 
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Table 8.2 shows iteration numbers and final strain energies at convergence 

tolerance 0 for the bi-material microstructures using HDM.  0.05∆ =

Microstructure Model Iteration Number Final Strain Energy 

Power-law bi-material 245 0.00044 

Cross shape bi-material 232 0.00032 

Square bi-material 267 0.00037 

Rectangular bi-material 287 0.00053 

Triangular bi-material  378 0.00066 

Ranked layered bi-material 400 0.14 

Table 8.2 Iteration numbers and final strain energies at convergence tolerance 

0.05∆ = 0 for the microstructures using HDM 
 

The layouts of Example 8.2 show similar results with those of Example 8.1, 

that all the solutions have similar patterns except the ranked layered bi-material 

model, the layout of which is far more complicated and has much more 

iteration numbers to reach convergence. It can be seen that again the cross 

shape model performs the best with lowest strain energy. The power-law and 

the square bi-material models are also good. 

 

Example 8.3 Double sides supported beam with both sides fixed under 

central single load 
 

Considering the previously studied design domain as shown in Figure 7.14, the 

modulus of hard and soft materials elasticity are MPa, 

MPa and the Poisson’s ratio v = 0.3. The volume fraction of hard 

material is and the soft materials is 

51 10aE = ×

30%

31 10bE = ×

/ 20%HV V = /SV V = , Void 50%.  
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The results of using the six different material models are shown in Figure 8.6. 

 

(a) Power-law bi-material model at 3µ =  

 
 (b) Ranked layered bi-material model  

 

 (c) Square bi-material model  

 

 (d) Cross shape bi-material model  

Figure 8.6 Result layouts of six bi-material models (continued) 
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(Figure 8.6 continued) 

 

 (e) Double rectangular bi-material model  

 

 (f) Triangular bi-material model  

Figure 8.6 Optimization layouts of six bi-material models 

The layouts given by the six bi-material models are very similar. Again, the 

ranked layered model shows a difference with distribution of material required 

at the bottom and top edges. 

 

Example 8.4 A model of a bridge with surface load 

The design domain is a model of a bridge shown in Figure 8.7. The pressure 

load of intensity p = 1kN. The modulus of hard and soft materials elasticity 

are MPa, MPa and the Poisson’s ratio v = 0.3.  The 

volume fractions of hard material is V V

51 10aE = × 31 10bE = ×

/ 20%H = , soft material is 

, Void 50%.   / 30%V V =S
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Figure 8.7 Design domain of a bridge model  

 
The results of using the six different material models are shown in Figure 8.8. 
 

 
(a) Power-law bi-material model at 3µ =  

 

(b) Ranked layered bi-material model  

 

(b) Square bi-material model  

Figure 8.8 Optimization layouts of six bi-material models (continued) 

 

 8-12  



Chapter8 –Study of the Effects of Bi-material Microstructures 
 

(Figure 8.8 continued) 

 

 (d) Cross shape bi-material model  

 

 (e) Double rectangular bi-material model 

 

 (f) Triangular bi-material model  

Figure 8.8 Optimization layouts of six bi-material models 

 

The optimization layouts obtained by six bi-material models are similar, again 

the solution of ranked layered model shows a little difference with material 

required at bottom edge and extra pillars required.  

 

From the examples discussed above, we can see that for the topology 

optimization using bi-material model with voids cases, the cross shape 
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bi-material model performs the best with lowest strain energy and fewer 

iteration numbers. The optimal structure is also easy for implementation. The 

power-law bi-material model with 3µ =  is good compared with other models. 

The ranked layered bi-material model shows different results with higher strain 

energies and complicated layout patterns. This is because in this model optimal 

microstructure is degenerated and has no shear strength between layers. The 

strain energy calculated is a modified form of energy. All these make the 

optimal results different with others.  

 

8.2 Topology Optimization Using Bi-material Models without Void  

 

In the following problems, we consider the design domain as consisting of a 

two material composites and each cell only contains the two materials, not any 

voids. The aim of the optimization is to find the distribution of hard and soft 

materials in the given domain.  

 

Example 8.5 Short cantilever beam with single load 

The short cantilever beam is shown in Figure 8.9. A point load of intensity P = 

10kN is applied at the right bottom corner of the beam. The modulus of hard 

and soft materials elasticity are MPa and MPa, Poisson’s 

ratio, v = 0.3. The volume fractions of hard material V V , soft 

materials 

51 10aE = × 31 10bE = ×

H / 30= %

%/ 70SV V = . 
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Figure 8.9 A short cantilever beam 

The results of using the six different material models are shown in Figure 8.10. 

In the following graphics, we show the distributions of hard and soft material in 

separate pictures. The left side is hard material distributions and right side is 

soft material distributions.   

 
(a1) Hard material distribution     (a2) Soft material distribution 

 (a) Power-law bi-material model at 3µ =  

 

(b1) Hard material distribution     (b2) Soft material distribution 

(c) Ranked layered bi-material model  
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(Figure 8.10 continued) 
 

 

(c1) Hard material distribution     (c2) Soft material distribution 

(c) Square bi-material model  

 

(d1) Hard material distribution     (d2) Soft material distribution 

(d) Cross shape bi-material model  

 

 

(e1) Hard material distribution     (e2) Soft material distribution 

(d) Double rectangular bi-material model  

Figure 8.10 Optimization layouts of six bi-material models (continued) 
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(Figure 8.10 continued) 

 
(f1) Hard material distribution     (f2) Soft material distribution 

(f) Triangular bi-material model  

Figure 8.10 Optimization layouts of six bi-material models 

 

The results above show that all the bi-material models yield similar patterns, 

with the layouts of ranked layered and double rectangular models slightly 

different. As far as implantation of the solution is considered, the square and 

the power-law bi-material models yield the best layouts. 

 

Example 8.6 A simply supported beam with two point loads 
 

A simply supported beam is shown in Figure 8.11. Two point loads of intensity 

P = 5kN are applied downwards simultaneously at point of 1/3 and 2/3 of the 

top side of the beam. The modulus of hard and soft materials elasticity 

are MPa and MPa, Poisson’s ratio, v = 0.3, The volume 

fractions of hard material 

51 10aE = × 31 10bE = ×

/HV V 30%= , soft materials / 70SV V %= .  

The results of using the six different material models are shown in Figure 8.12. 
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Figure 8.11 A supported beam 

 

 

(a1) Hard material distribution     (a2) Soft material distribution 

 (a) Power-law bi-material model at 3µ =  

 

(b1) Hard material distribution     (b2) Soft material distribution 

 (b) Ranked layered bi-material model  

 
(c1) Hard material distribution     (c2) Soft material distribution 

(c) Square bi-material model  

Figure 8.12 Optimization layouts of six bi-material models (continued) 
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(Figure 8.12 continued) 

 

(d1) Hard material distribution     (d2) Soft material distribution 

(d) Cross shape bi-material model  

 

(e1) Hard material distribution     (e2) Soft material distribution 

(e) Double rectangular bi-material model  

 
(f1) Hard material distribution     (f2) Soft material distribution 

(f) Triangular bi-material model  

Figure 8.12 Optimization layouts of six bi-material models 

 

Figure 8.12 shows that all the six material models discussed above can provide 

similar topology optimization solutions of the design domain. Compared to 

other models, the layout pattern of the ranked layered bi-material model shows 

more complex pattern and very much different from others. The layouts given 

by power-law, square, cross shape and double rectangular bi-material models 

are the easiest to implement. 
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Example 8.7 A beam with both ends built in with concentrated loads at 

top and bottom edges 
 

A beam with both ends built in under concentrated loads is shown in Figure 

8.13. Two point loads of intensity P = 10kN are applied at the middle point of 

the bottom side and the top side of the beam in opposite directions as shown. 

The modulus of hard and soft materials elasticity are MPa 

and MPa, Poisson’s ratio, v = 0.3, The volume fractions of hard 

materialV V , soft material 

51 10aE = ×

31 10bE = ×

/H 30%= / 70SV V %= .  

 

 

Figure 8.13 A two side’s supported beam 

 

The results of using the six different material models are shown in Figure 8.14. 

 
(a1) Hard material distribution     (a2) Soft material distribution 

(a) Power-law bi-material model at 3µ =  

Figure 8.14 Optimization layouts of bi-material models (continued) 
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(Figure 8.14 continued) 

 

(b1) Hard material distribution     (b2) Soft material distribution 

 (b) Ranked layered bi-material model  

 
 

(c1) Hard material distribution     (c2) Soft material distribution 

(c) Square bi-material model 

 
(d1) Hard material distribution     (d2) Soft material distribution 

(d) Cross shape bi-material model  

 
(e1) Hard material distribution     (e2) Soft material distribution 

(e) Double rectangular bi-material model  

Figure 8.14 Optimization layouts of bi-material models (continued) 
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(Figure 8.14 continued) 

 

 

(f1) Hard material distribution     (f2) Soft material distribution 

(f) Triangular bi-material model  

Figure 8.14 Optimization layouts of six bi-material models 

 
It can be seen that even with a small added resistance to shear, the ranked 

layered model still yields a pattern very different from other models. Its layout 

is more complicated. All other models show a very similar layout patterns. 

While the triangular bi-material model shows a mixtures of material pattern at 

central area. 

 

Example 8.8 A model of the frame of a press machine 
 

A model of a press machine frame is shown in Figure 8.15. Pressure loads of 

intensity P = 100kN are applied as shown. The modulus of hard and soft 

materials elasticity are MPa and MPa, Poisson’s ratio, v 

= 0.3, The volume fractions of hard material V V

51 10aE = × 31 10bE = ×

H / 30%= , soft materials 

.  / 70SV V = %

The results of using the six different material models are shown in Figure 8. 16. 
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Figure 8.15 Press machine frame model 

 
 

 
(a1) Hard material distribution     (a2) Soft material distribution 

 (a) Power-law bi-material model at 3µ =  

Figure 8.16 Optimization layouts of six bi-material models (continued) 

 

 

 8-23  



Chapter8 –Study of the Effects of Bi-material Microstructures 
 

 
(Figure 8.16 continued) 

 

(b1) Hard material distribution     (b2) Soft material distribution 

 (b) Ranked layered bi-material model  

 

(c1) Hard material distribution     (c2) Soft material distribution 

(c) Square bi-material model  

Figure 8.16 Optimization layouts of six bi-material models (continued) 
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(Figure 8.16 continued) 

 

(d1) Hard material distribution     (d2) Soft material distribution 

(d) Cross shape bi-material model  

 
(e1) Hard material distribution     (e2) soft material distribution 

(e) Double rectangular bi-material model  

Figure 8.16 Optimization layouts of six bi-material models (continued) 
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(Figure 8.16 continued) 

 
(f1) Hard material distribution     (f2) Soft material distribution 

(f) Triangular bi-material model  

Figure 8.16 Optimization layouts of six bi-material models 

Similarly as in previous examples, apart from ranked layered model, all the 

other models provide similar optimum layouts. 

 

From the discussion for the problems of topology optimization using 

bi-material models without void cases, we can see that all the bi-material 

models can supply a similar layout pattern except ranked layered model. The 

reason is the same as the case of bi-material models with voids, because in the 

rank-2 layered material model, any optimal microstructure is degenerated and 

the structure cannot sustain a non-aligned shear stress. This will result in the 

stiffness matrix of the structure becoming singular. To overcome the singularity 

problem, we use a very soft material instead of the voids. However, the 
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minimum strain energy calculated during optimization process (commonly 

used for objective function which is equivalent with maximum total potential 

energy) is modified energy and the displacements between layers are larger 

than other models. All these lead to the result of ranked layered bi-material 

model showing much difference with others. 

 

8.3 Effects of Different Models on Topology Optimization 
 

Based on the results from different optimization problems considered in this 

chapter, the following effects have been observed. 

 

• Effects of the different material models on optimization layout 

 

The results of using the six bi-material models show that all the bi-material 

models give similar layout patterns. The layout pattern of the ranked 

layered microstructure model is very much different from the rest. This is 

because the ranked layered microstructure model does not bear shear stress 

between the layers. With regard to speed of convergence and the ease of 

implementation, the cross shape and the power-law bi-material models 

perform best 

 

• Effects of power values for power-law bi-material models 

 

The calculation results show that different power values affect slightly the 

optimization result layout for the power-law bi-material model by choosing 
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the value between 2 and 5 as shown in Figure 8.4. All optimal layouts have 

patterns that are easy to implement. 

 

• Effects of different bi-material models on iteration history  

 

As shown in Figure 8.3, Table 8.1 and Table 8.2 that power-law, cross 

shape models take less iteration to get convergence than other models. 

Among these six bi-material models, ranked layered bi-material model has 

much high strain energy at convergence.  

 

8.4 Conclusions 
 

In this chapter, a series of benchmark problems are presented to investigate of 

the performance of the different bi-material microstructure models. The results 

show that the six bi-material microstructure models presented in Chapter 5 can 

be used in the topology optimization problems. It can be said that all the six 

bi-material microstructure models are effective for a range of structural 

topology optimization problems. 

 

Similarly to previous finding for one-material models in Chapter 7, the ranked 

layered microstructure model gives a layout that is very different from others. 

This is because the ranked layered microstructure model does not account for 

the shear stress between the layers. All the other models give similar topology 

optimization layouts. The difference between these optimum layouts is due to 
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different geometry shapes of microstructures which will give rise to different 

relative distribution parameters and angles of orientation in the microstructures 

leading to different searching directions for the optimum. Among the six 

bi-material microstructures, the cross shape, power-law bi-material 

microstructures perform the best in terms of convergence and ease of practical 

implementation of the optimum layout. 



Chapter9 Conclusion and Recommendations 

 

Chapter 9_________________________________________________________ 

CONCLUSIONS AND RECOMMENDATIONS 

 

 

 

 

 
The objective of this research was to investigate the use of homogenization 

method for topology structural optimization problem with an emphasis on the 

study of different microstructures and their effects on the topology optimization 

results. The following objectives have been achieved: 

 
• The properties of different microstructure models were investigated 

(Chapter 3).  

• The strengths and weaknesses of each type of microstructures were 

discussed (Chapter 3).  

• New microstructure models were established and new methods to define 

microstructures were proposed permitting using shape optimization 

method to find optimum microstructures (Chapter 4).  

• Optimality criteria and schemes of updating design variables were 

formulated for these new microstructures and for existing 

microstructures, the information of which is not available in the 

literature (Chapter 5). 
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• A general computer software package, which incorporates fifteen 

existing and newly developed microstructure models for two-

dimensional structural topology optimization, is developed (Chapter 5).  

• Some benchmark structural topological optimization problems and a 

series of problems with different loading cases were solved (Chapters 

6~8).  

• Results from different microstructure models were compared (Chapters 

6~8).  

• The program for controlling checkerboard problem was developed (in 

Chapter 5). 

 

 Based on the research above, we can draw the following conclusions and 

further developments required in the area: 

  

9.1 Conclusions 

 
9.1.1 Comparison of microstructure models 

9.1.1.a Existing microstructure models 

Power-law (SIMP) model 

 
The advantages of SIMP or Power-law models are: these types of models do 

not require homogenization of the microstructure. Therefore, the algorithm 

does not require higher mathematics for derivations and are easy to be 

understood. Due to the penalty power used, the optimization solutions are 
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clearer than other microstructures. These make the optimal solution easy to be 

implemented in practice. The disadvantage of SIMP (Power-law) is the 

solution depends on the value of penalization. 

  
Our research shows that the power-law models give the clearest solution 

images among all the microstructures used and the resulting optimization 

layouts are the easiest to implement. But for some problems different power 

values may give different solutions. Therefore, choosing suitable power values 

is very important in using power-law model. According to our studies, we 

suggest choosing the power value µ  = 3 for one-material microstructure and 

between 2 and 5 for bi-material microstructure model (Chapters 6~8). 

 

Ranked layered model 

 
The advantage in using ranked layered microstructure model is that the 

effective material properties of the microstructures can be derived by analytical 

method which shows that they achieve optimality in the well-known Hashin-

Shtrikman bounds on the effective properties of composite materials. Therefore, 

ranked layered microstructures are also called optimal microstructures in this 

sense. The disadvantage is that the rank layered material cells provide no 

resistance to shear stress between the layers. This will result in the stiffness 

matrix of the structure becoming singular. One-way of “avoiding” the 

singularity problem is to use a very soft material instead of the voids. On the 

other hand, the combination of a very soft material with a solid material will 

cause numerical problems due to ill conditioning of the global stiffness matrix. 
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Our calculation results show that the results from the ranked layered model are 

much different from the solutions of other microstructure models. Their 

optimal layout are complicated and would be difficult to implement in practice, 

especially when shear stress is high throughout most of the structure as in the 

case of simply supported beam or cantilever beam under concentrated loads.  

(Chapter 3, Chapters 6~8). 

 

Triangular and Hexagon microstructure models 

  
The advantage of the triangular and hexagon microstructure models is that they 

give real calculated energy. The disadvantages of triangular microstructures are: 

comparing to rectangular microstructure model, these two models have more 

complicated shapes and this will increase computation time and cost, the 

homogenization equation has to be solved by numerical techniques. A series of 

topology optimization results obtained in this research show that the triangular 

and hexagon microstructure models give similar optimization solutions to those 

of the rectangular model (Chapters 6~7). 

 

9.1.1.b New microstructure models 

 
SIB microstructure models 

 
In the thesis, we proposed a new method to define microstructures. Two types: 

circular and cross shape microstructures, were developed. The results show that 
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the optimization solutions of these two microstructure models are similar to 

those using rectangular microstructure (Section 4.1.1, Chapters 6~7).  

 

Multi-void microstructure model 

 
Three types of multi-void microstructures were presented and compared: 

rectangular multi-void model, triangular multi-void model and square multi-

void model. The difference between the single void microstructures and multi-

void microstructures is that for the same volume of solid material, the multi-

void microstructures have more internal boundary. This will result in different 

stiffness in unit cell. But the calculation results show that the optimization 

solutions by using multi-void microstructures are similar to those given by 

single void microstructures (Section 4.1.2, Chapters 6~7). 

 
Bi-material models 

 
Four new bi-material models were developed and programmed: cross shape bi-

material model, square bi-material model, double rectangular bi-material model 

and triangular bi-material models. All these new bi-material models give 

similar patterns of optimum layouts (Section 4.1.3, Chapter 6, Chapter 8). 

 

9.1.2 Optimization results given by HDM 

 
Firstly, by testing with benchmark problems and compared with other software 

package, it can concluded that the optimization results by HDM for different 

microstructure models largely converge to solutions of similar final strain 
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energy value. This demonstrates the effectiveness of the algorithms and 

computer program in finding the optimum solution (Chapters 6~7). 

 
Secondly, for two-dimensional continuum structures investigated in this thesis, 

the computer program incorporating different microstructure models is 

effective in solving stiffness optimization problems. For one-material model, 

the loading cases considered include single loading, surface loading, multiple 

loading and gravity loading. For bi-material optimization problems, we 

consider the material without void and with void under concentrated loading 

and surface loading cases.  It can be said that all the fourteen microstructure 

models are effective for a range of structural topology optimization problems. 

 

9.1.3 Optimal layout criteria 

 
From the study in Chapter 6, Chapter 7 and Chapter 8 we can see that all the 

results from different microstructures give similar layouts, but not exactly the 

same. The reason is that the different geometry shape for different 

microstructures will provide different relative distribution parameters and angle 

of orientation in the microstructure and these will lead to different searching 

directions for optimum. The criterion for finding the optimal layout is very 

important. In the thesis we use the final value of strain energy of the layout for 

minimum compliance problems. The solution with the minimum strain energy 

is regarded as optimal structure. From the point of view of computation, speed 

of convergence would also be a factor. It was shown that HDM using fifteen 
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microstructures converges in all cases. Another criterion is the ease of 

manufacturing, the optimum layout that requires simple, clear, sharp contrast 

solutions would be more desirable. Among these microstructures, the cross 

shape and power-law with µ  = 3, for both one-material and bi-material models, 

perform the best in terms of convergence and ease of implementation of the 

optimum layouts. The ranked layered model gives more complicated layouts in 

most cases. 

 

9.1.4 Checkerboard control  

 
By using a modified average 'ϕ  instead of the original ϕ  for problems with 

one design variable in a microstructure, or up to ', ', ', 'ϕ ψ ω φ  instead of 

, , ,ϕ ψ ω φ  for problems of up to four design variables in a microstructure, as 

described in section 5.1, the checker board patterns in the optimization process 

are efficiently eliminated (Section 5.4).  

  

 9.2 Recommendations for further investigations 

 
Further research needs to be carried out in the following areas to study 

microstructures of homogenization for topology optimization:   

 

A. Optimal microstructures study 

• The newly developed microstructures did not consider the optimal 

bounds of the optimization problems such as Hashin-Shtrikman and 
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further studies need to be carried out for optimal bounds of the 

optimization problem in using the microstructure models proposed here.  

• The new definition of microstructures proposed here points to the use of 

shape optimization method to find optimum microstructures, avoiding 

the use of the more complicated topology optimization method. More 

case studies need to be investigated to develop simple shape but 

optimum microstructures.  

 

B. Investigation of other optimization problems  

Although extensive work has been conducted by using the newly 

developed microstructures for a range of optimization problems, much 

more work is still needed to look into topics; such as mesh dependency 

problems, natural frequency problems, structures with multiple 

constraints, plate and shell structures. Further research should also be 

extended to three-dimensional microstructures design. 



Appendix 

APPENDIX A 
 
The homogenization formulas in elastic composite materials with a 

periodic structure 

 

Let us consider non-homogeneous, elastic solid, which occupies a domain Ω  in 

the space R  with a smooth boundary 3 Γ  comprising dΓ (where displacements 

are prescribed) and Γ  (the traction boundary), body force f and traction t 

applied (Figure A1).  

t

   

Figure A1 A structure with cellular microstructure 

Let u to be the displacement field that defines equilibrium of elastic structure 

and v to be the kinematically admissible virtual displacement field. 

Let a(u,v) be the energy bilinear form 

( ) ( ) ( ) ( )ijkl ij kla E ε ε
Ω

d= Ω∫u, v x u v                                  (A1) 

with strain-displacement relations 

1( )
2

ji
ij

j i

uu
x x

ε
 ∂∂

= + ∂ ∂ 
u                                         (A2) 

and the load bilinear form for external work 
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( )
T

L d
Ω Γ

= ⋅ Ω+ ⋅∫ ∫v f v t vds                                         (A3) 

The linear problem of elasticity for such a body can be formulated in the 

following way: 

• equilibrium equations     0  in ij
i

j

f
x
σ∂

+ =
∂

Ω

d

                                          (A4) 

• loading conditions         t on ,  0 on ij j i in t uσ = Γ = Γ                            (A5) 

• linear elasticity relationship     ij ijkl klEσ ε=                                            (A6) 

 
The coefficients of elasticity {  } of a non-homogeneous body are functions 

of the spatial coordinates , and are assumed to satisfy the 

following conditions (Kalamkarov and Kolpakov 1997, Bendsøe 1995): 

ijklE

= (x1 2 3x ,x ,x )

                            C1.  ,                                               (A7) ijkl jikl ijlk klijE E E E= = =

                            C2   
( )

( ) ( ) and ,
ad

ijkl ad ijkl E
E E E

Ω
∈ Ω ≤x M

m

                           (A8) 

                            C3.  ( )ijkl ij kl ij klE ε ε ε≥x ε                                                     (A9) 

Where the constants 0 < m and M < ∞  do not depend on x,  is 

admissible elasticity tensors which is allowed to vary over the domain of the 

body. 

( ) adE Ω

ijlkE  is norm of coefficient of elasticity { ijklE  }. 

 
Let us further consider the case when a non-homogeneous elastic material has a 

periodic structure in the coordinates 1 2 3, , ,x x x  . The rectangular base cell of the 

cellular body Y is illustrated in Figure A2. The boundary of the hole H is 
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defined by S ( ) and is assumed to be smooth and the tractions p may 

exist inside the holes.  

H S∂ =

e eΩ Ω
Ω =∫ ∫

=Ψ Ψ(x,y)

 

Figure A2 Base cell 

The virtual displacement equation can be constructed as: 

   
e

t

e
e ek i

ijkl i i i i i iS
l j

u vE d f v d t v d p v dS
x x Γ

∂ ∂
Ω+ Γ + ∀ ∈

∂ ∂ ∫ ∫ v V , u         (A10) e ∈Ve e

where e as a superscript indicates dependency to the cell of periodicity and 
eV is a space of admissible displacements. t  and i ip  are components of 

traction t and pressure p. 

Introducing the following properties: 

             If  and y depends at least on x, then 

d
d

∂ ∂ ∂
= +
∂ ∂ ∂

Ψ Ψ Ψ y
x x y x

                                     (A11) 

               In this case, as y=x/ ς  so 

1d
d d dς

∂ ∂
= +

Ψ Ψ
x x

Ψ
y

                                     (A12) 

By using the above properties and Einsten summation convention, we can 

explore (A10) as 

0 0 1 0

2

1 1k i k k i k i
ijkl

l j l l j l j

u v u u v u vE
y y x y y y xς ς ςΩ

   ∂ ∂ ∂ ∂ ∂ ∂ ∂ + + + +   ∂ ∂ ∂ ∂ ∂ ∂ ∂    
∫  
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0 1 1 2

( )k k i k k i

l l j l l j

u u v u u v
x y x x y y

ς
    ∂ ∂ ∂ ∂ ∂ ∂ + + + + ⋅⋅⋅     ∂ ∂ ∂ ∂ ∂ ∂       

dΩ                   (A13) 

     
t

i i i i i iS
f v d t v d p v ds

ς ς

ς ς
Ω×ΨΩ Γ

= Ω+ Γ + ∀ ∈∫ ∫ ∫ v V  

where      are terms in the asymptotic expansion of u in (3.3)  0 1,   u u and u 2

Ω×ΨV ={v(x,y); (x,y) (., )×Ψ v∈Ω y } Y- periodic;  

{ ( )Ω =V v x defined in Ω v smooth enough and 
d

0Γ =v } 

{ ( )Ψ =v v y defined in ( )Ψ v y }, Y- periodic and smooth enough 

  indicates solid part of the cell; Ψ

   v smooth enough and 0
dΓ
=v  

For a Y-periodic function Φ , when ( )y 0ς → , the ( )
ς

Φ  slowly changes with x 

and

x

( ) ( )
ς

Φ →Φ
x y  in any case. ( )

ς
Φ

x  can be defined by microscopic averaging 

domain cell Y. The following functions are exist (Manevith, Andrianov and 

Oshmyan, 2002). 

1( ) ( )dY
Yς Ψ

Φ = Φ∫
x y                                               (A14) 

1( ) ( )
S

dS
Yς ς

Φ = Φ∫
x y           on S                             (A15) 

where Y  is volume of Y, Ψ is solid part of domain cell Y and S denotes 

boundary of the hole in domain cell Y.  

Therefore  we have  

1( ) ( ) ,
e

d
YςΩ Ω Ψ

Φ Ω = Φ∫ ∫ ∫
x y dYdΩ                                     (A16) 
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1( ) ( ) ,
dS S

d dSd
Yς ς Ω

Φ Ω = Φ∫ ∫ ∫
x y Ω                                     (A17) 

By equating the terms with the same power of ς  in equation (A13), we have 

01 0       k i
ijkl

l j

u vE dYd
Y y y Ω×ΨΩ Ψ

∂ ∂
Ω = ∀ ∈

∂ ∂∫ ∫ v V                                (A18) 

0 1 01 1(  )k k i k i
ijkl i iS

l l j l j

u u v u vE dY d
Y x y y y x YΩ Ψ Ω

   ∂ ∂ ∂ ∂ ∂ + + Ω =   ∂ ∂ ∂ ∂ ∂     
∫ ∫ ∫ ∫ dp v ds Ω  

Ω×Ψ∀ ∈v V                                                            (A19) 

0 1 1 21

1( )            
t

k k i k k i
ijkl

l l j l l j

i i i i

u u v u u vE d
Y x y x x y y

f v dY d t v d
Y

Ω Ψ

Ω×ΨΩ Ψ Γ

     ∂ ∂ ∂ ∂ ∂ ∂ + + +     ∂ ∂ ∂ ∂ ∂ ∂       

= Ω+ Γ ∀ ∈

∫ ∫

∫ ∫ ∫ v V

Y dΩ
                 (A20) 

Now, if we choose v = v(x) from (A19), we can get 

1( ) ( )i is
p dS v d

YΩ
0Ω =∫ ∫ x                                             (A21) 

( )is
p dS 0=∫ x, y                                                  (A22) 

This implies that the applied tractions on the boundary of the hole are self-

equilibrating.  

 
Let us choose v=v(y). By integrating by parts and applying the divergence 

theorem to the integral in , and using periodicity from (A18) we can get: Ψ

0 01 0  k k
ijkl j i ijkl is

l j l

u uE n v dS E v dY d
Y y y y ΩΩ Ψ

   ∂ ∂∂ − Ω   ∂ ∂ ∂     
∫ ∫ ∫ v V= ∀ ∈ .          (A23) 

Therefore, we have 

0

0           k
ijkl

j l

uE
y y
 ∂∂

= ∀ ∈Ψ ∂ ∂ 
y                                            (A24) 
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0

0 k
ijkl j

l

uE n
y

∂
=

∂
   on S.                                                 (A25) 

It can be concluded that  

0 ( ) (u u=x, 0 )y x                                                 (A26) 

This implies that the first term of the asymptotic expansion only depends on the 

macroscopic scale x.  

 
Now, introducing (A26) into (A19), we can get 

0 1 ( )         k k i
ijkl i is

l l j

u u v yE dY p v dS
x y y ΨΨ

 ∂ ∂ ∂
+ = ∀ ∂ ∂ ∂ 

∫ ∫ v V∈                 (A27) 

 
Upon integrating by parts, using the divergence theorem and applying the 

periodicity conditions on the opposite faces of Y, (A27) becomes 

 

0 1 0 1( ) ( )k k k k
ijkl i i ijkl is

l l j l l

u x u u x uE v n dS E
x y y x yΨ

    ∂ ∂ ∂ ∂∂
+ − +    ∂ ∂ ∂ ∂ ∂     

∫ ∫ v dY  

        i is
p v dS Ψ= ∀∫ v V∈                                      (A28) 

Therefore, we have: 

1 0 ( ) =0      on   k k
ijkl ijkl

j l j l

u u xE E
y y y x
   ∂ ∂∂ ∂

+ Ψ   ∂ ∂ ∂ ∂   
,                  (A29) 

1 0 ( )    on  Sk k
ijkl ijkl j i

l l

u u xE E n p
y x

∂ ∂
+ =

∂ ∂
                        (A30) 

Now considering (A18) by choosing v = v(x), we have 

0 1 ( )1 k k i
ijkl

l l j

u u vE dY
Y x y xΩ Ψ

  ∂ ∂ ∂ d+ Ω  ∂ ∂ ∂   
∫ ∫

x  
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1( ) ( ) ( )            .
t

i i i if dY v d t v d
Y ΩΩ Ψ Γ

= Ω+ Γ∫ ∫ ∫x x v∀ ∈V                (A31) 

Now considering (A20) by choosing v = v(y) we have 

1 2 ( )1 k k i
ijkl

l l j

u u vE d
Y x y yΩ Ψ

  ∂ ∂ ∂ Y d+ Ω  ∂ ∂ ∂   
∫ ∫

y  

1( ( ) )          i if v dY d
Y ΨΩ Ψ

= Ω∫ ∫ ∀ ∈y v V                         (A32) 

Eliminating 1
Y

, we can get the following formula: 

1 2 ( ) ( )             k k i
ijkl i i

l l j

u u vE dY f v dY
x y y ΨΨ Ψ

 ∂ ∂ ∂
+ = ∂ ∂ ∂ 

∫ ∫
y

∀ ∈y v V           (A33) 

This implies equilibrium of the base cell in the microscopic level. 

 
Our aim is to construct the homogenized elastic constants, which reflect the 

mechanical behavior of the microstructure, in macroscopic coordinate systems 

and without explicitly using the parameter ς . Therefore, we consider using 

(A27) again. 

Let  is the solution of following equation (Hassani and Hinton, 1998, 

Bendsøe, 1995 and Bendsøe and Sigmund, 2002): 

( )p kl Vχ Ψ∈

( ) ( ) ( )         p kl i i
ijkl ijkl

q j j

v vE dY E dY
y y y
χ

ΨΨ Ψ

∂ ∂ ∂
=

∂ ∂ ∂∫ ∫
y y v V∀ ∈                (A34) 

and k Vβ Ψ∈ , is a Y- periodic function being the solution of  

( ) ( )         k i
ijkl i is

l j

vE dY p v dY
y y
β

ΨΨ

∂ ∂
=

∂ ∂∫ ∫
y

∀ ∈y v V                     (A35) 

The solution will be 1u
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0
1 1 ( )( ) ( ) (kl k
i i i i

l

uu u
x

χ ∂
= − −

∂
xx x, )βy x,y%                                   (A36) 

Where are arbitrary constants of integration in y.  1
iu%

Now takes (A36) into (A31), we can get 

0 ( ) ( )1 kl
p k i

ijkl ijpq
q l j

u vE E dY d
Y y x

χ
Ω Ψ

  ∂ ∂ ∂
− Ω   ∂ ∂ ∂   

∫ ∫
x x

x
( )1 k i

ijkl
l j

vE dY d
Y y x

β
Ω Ψ

 ∂ ∂
= Ω  ∂ ∂ 
∫ ∫

x  

1 ( ) ( )        
t

i i i if dY v d t v d
Y ΨΩ Ψ Γ

 
+ Ω+ Γ  

 
∫ ∫ ∫x x v∀ ∈V                       (A37) 

Now, if we define that 

( )1 p klH
ijkl ijkl ijpq

q

E E E
Y y

χ
Ψ

 ∂
= − ∂ 

∫ dY                                    (A38) 

( ) k
ij ijkl

l

E
y
βσ

Ψ

∂
=

∂∫x dY                                              (A39) 

1( ) iif f dY
Y Ψ

= ∫x                                                 (A40) 

(A35) can be written as 

0 ( ) ( ) ( )( )H k i i
ijijkl

l j j

u v vE d
x x x

σ
Ω Ω

∂ ∂ ∂ dΩ = Ω
∂ ∂ ∂∫ ∫

x x xx  

( ) ( ) ( )        
t

i i iif v d t v d ΨΩ Γ
+ Ω+ Γ ∀∫ ∫x x x v V∈                       (A41) 

It should be noted that the formula above is very similar to the equation of 

virtual displacement (A10). H
ijklE  defined by (A38) is the homogenized elastic 

constant. σ  are average ‘residual’ stresses within the cell due to the tractions p 

inside the holes and f  are the average body forces. 
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The solution of the elastic composite material with a periodic structure problem 

by homogenization method can be summarized as: 

a. Solving the integral equations (A34) and (A35) in the base cell and get 

χ and Φ  . 

b.  Using (A38), (A39) and (A40) get H
ijklE ,  σ and f  

c. In macroscopic coordinates x, construct and solve the equation (A41). 
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APPENDIX B 
 
A typical run of the HDM software 

 
Step 1: Start HDM.bat batch file, the following picture will appear 

 

Step 2: On clicking START button the program will start Strand7 program. 

Discretize the reference domain and generate a finite element mesh, boundary 

conditions, loading case and material properties and save the output file as 

Data.txt. Then close Strand7 program. 

 

 

 
Step 3: The following picture will appear to let you choose material model and 

optimization parameters. 

A-10 



Appendix 

 

Step 4: Click Continue button, the computer will automatically start HDM.exe 

calculation procedure.  

 

Step 5: When the calculation finished, the output image will appear, for 

example, the optimum solution for power-law one-material model as following: 

 

Step 6: Click Continue button, the picture of step 3 will appear and let you 

choose material model and optimization parameters again. Click Stop button 

will stop the program. 
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APPENDIX C 
 
 
Optimality criteria for deep cantilever beam with a single load 
 
 
The deep cantilever beam with a single load and fixed constraint is shown in 

Figure C1. The optimization criterion for the minimum compliance (maximum 

stiffness) with upper side volume constraint for this problem has been derived 

by Hassani and Hinton (1998). Here we give a brief review as following: 

 

 

    Figure C1 Deep cantilever beam             Figure C2 Truss structure 

 
Firstly, a finite number of truss elements with lower side constraints for the 

cross sectional area of elements are considered. The optimization problem can 

be written as ( Hassani and Hinton, 1998): 

2

1

0 0

1

Minimize 

 0   1,2, ,

               0

n
i i

i i i

i i i i

n

i i
i

f l
a E

subject to a l a l i n

a l V

=

=

− ≤ = ⋅⋅ ⋅

− ≤

∑

∑

                     (C1)  
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where if  is internal force in element i, ,  and  are cross section area, 

length and modulus of elasticity of member i  of the truss, V is volume 

limitation and  is the lower bound of  the cross section area. 

ia il iE

0
ia

The Lagrange function can be written as 

2
0 0

1 1 1
 + ( ) (

n n n
i i

i i i i i i i
i i ii i

f lL a l a l
a E

λ λ
= = =

= − +∑ ∑ ∑ )a l V−                            (C2) 

where iλ  and λ  are Lagrange multipliers.  

Differentiating the Lagrange function of (C2) with respect to , we have ia

2

2 0i i
i i i

i i

f l l l
a E

λ λ− − + =                                              (C3) 

From (C3), the cross section area  can be obtained as ia

2

( )
i

i
i i

fa
Eλ λ

=
−

                                                 (C4) 

From Kuhn-Tucker conditions, we know that if a , the constraint 

 not active, so 

0
i a> i

0 0 0i i i ia l a l− ≤ 0;iλ =  we have 

 
2

i
i

i

fa
Eλ

=                                                      (C5) 

 if , then 0
ia a> i 0iλ ≥ , we have 

 
2

i
i

i

fa
Eλ

≤                                                    (C6) 

Using the definition of strain i

i i

f
a E

ε =  and substituting into (C5) and (C6) 

results in 
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0

0

1              

1              

i
i i

i
i i

E for a a

E for a a

ε
λ

ε
λ

= >

≤ =

                                         (C7) 

By defining a criterion function ϕ  as  

iEϕ ε
λ

=                                                        (C8) 

Then (C7) can be reduced to  

0

0

1              

1              
i

i i

ifor a a

for a a

ϕ

ϕ

= >

≤ =
                                           (C9) 

Secondly we extend the criteria by letting cross section a . In this case, 

we still have 

0i →

0λ > , for if 0λ = , the truss will have infinite rigidity. So (C9) 

can be written as  

1              0

1              0
i

i

for a

for a

ϕ

ϕ

= >

≤ =
                                     (C10) 

Now, we can extend the result to the structure of the deep cantilever beam 

which can be thought as an infinite number of elements, i.e. to a continuum 

comprising infinite number of truss-like elements in all potential direction. In 

these cases, at each point (x, y) of the domain of interest a potential truss 

member passing through that point, can be represented by the coordinates of 

the point and orientation θ  of the member, the strain in each element can be 

written as ( , , )x yε θ . The (C10) can be changed to 

( , , ) 1              ( , , ) 0
( , , ) 1              ( , , ) 0
x y for a x y
x y for a x y

ϕ θ θ
ϕ θ θ

= >
≤ =

                          (C11) 
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According to the Hassani and Hinton (1998), at each point (x, y) there exists an 

optimal passing member in the direction θ ∗  only if 

( , , ) max ( , , )x y x y
θ

ε θ ε∗ = θ                                     (C12) 

where θ ∗  is a specific value of θ . 

From (C10), the optimality criteria function is proposed to be the strain and 

choosing iEλ = , we can conclude that the condition for optimal member is the 

principal strain 

1 =1ε                                                             (C13) 

Now we consider the problem of Figure C2, the boundary conditions are  

u(0, y)=v(0, y)=0                                              (C14) 

Where u and v are displacement in x and y direction. 

The optimal layout can be defined as a set of points which belong to the half 

plane (all (x, y), which x>0) that satisfy (C14) and optimality criteria (C13). 

Therefore the displacement field should be (Rozvary et al, 1995): 

                 u(x, y)=0         and v(x, y)=2x                                       (C15) 

Apply to the condition of (C14), we have: 

0,    0,    2x y xyε ε ε= = =                                          (C16) 

where xε , yε  and xyε  are strain in x, y direction and share strain 

Results in  

1 21,    1,    and 45ε ε α= = − = o                                      (C17) 

where the 1 2, ,  and ε ε α are principal strain, orthogonal strain to the direction 

of the major principal strain and the direction of principal strain. 
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A-16 

This result indicates that the optimal bar must run at 45± o  to the vertical. By 

removing the potential members with zero force, the optimum result should be 

a two bar truss feature running at 45± o  to the vertical. Figure C2 shows the 

optimal layout. 
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