
          �     

CENTRE of

POLICY
STUDIES and

the IMPACT
PROJECT

Menzies Building
Monash University Wellington Road
CLAYTON Vic 3168 AUSTRALIA
Telephone:   from overseas:
(03) 905 2398, (03) 905 5112      

                                                     61 3 905 2398
    61 3 905 5112

Fax numbers: from overseas:
(03) 905 2426, (03)905 5486 61 3 905 2426 or 61 3 905 5486
e-mail impact@vaxc.cc.monash.edu.au

 Water Pricing and Investment in
Melbourne:  General  Equilibrium  Analysis

with Uncertain Streamflow

by

J. Mark HORRIDGE, Peter B. DIXON
and

Maureen T. RIMMER

Centre of Policy Studies, Monash University
and

Impact Project, Monash University

Preliminary Working Paper No. IP-63    December 1993

ISSN 0 062 10369 0 ISBN 0 642 10361 5

The Centre of Policy Studies (COPS) is a research centre at Monash University
devoted to quantitative analysis of issues relevant to Australian economic policy.
The Impact Project is a cooperative venture between the Australian Federal
Government and Monash University, La Trobe University, and the Australian
National University.  During the three years January 1993 to December 1995 COPS
and Impact will operate as a single unit at Monash University with the task of
constructing a new economy-wide policy model to be known as MONASH.  This
initiative is supported by the Industry Commission on behalf of the Commonwealth
Government, and by several other sponsors.  The  views expressed herein do not
necessarily represent those of any sponsor or government.



CONTENTS

ABSTRACT i

INTRODUCTION 1

THE MODEL 2

Description 2
The Water Authority Optimization Problem (WAOP) 5
The Dam-operating Entity 6
Results from the Model:  Sample Simulations 8

UNCERTAINTY IN STREAMFLOW:
THE RISKINESS OF THE WAOP STRATEGIES 11

Statistical Analysis of Data on Streamflow, Demand,
Evaporation and Unused Water 13
Monte Carlo Analysis of the Riskiness of WAOP Strategies 16

CONCLUSION 17

Acknowledgments 18

LITERATURE CITED 25

LIST OF TABLES

Table 1: The Dam-operating Entity 7

Table 2: Simulated Water Harvest and Usage, 1913-90, Gigalitres 12

Table 3: Regression and Monte Carlo Simulation Model 15

Table 4: Monte Carlo Results 16

LIST OF FIGURES

Figure 1: Overview of Water Model 3

Figure 2: Dam Capital 10

Figure 3: Average Water Price:  Effect of Q Safety Factor 10

Figure 4: Effect of Q Safety Factor on Stored Water 12

Figure 5: Water Harvesting and Storage Technology 13



i

ABSTRACT

We describe the theory, computation and results of a multiperiod
general equilibrium model designed to assist an urban water authority in
its pricing and investment decisions.  The model includes gestation
periods in the creation of dams, main sewers and treatment plants.  I t
allows for lumpy capital items and recognizes cost differences in the
provision of services in peak and non-peak times.  Its general
equilibrium framework is convenient for handling links between the
water authority and the rest of the economy, especially the housing
sector.

We have used two computational approaches.  In the first, we
reformulate the model as a single-entity optimization problem and then
apply a linear programming package.  We have found that a better
approach is to apply Newton-Raphson methods to a formulation of the
model as a set of equations depicting purely competitive behaviour in all
productive activities.

A special feature of this paper is an integration of the modelÕs results,
obtained under the assumption of certainty, with data on weather-
induced variations in streamflow and demand.  Using Monte Carlo
techniques we assess the risks of water shortages associated with the
investment and pricing strategies that our model indicates.

Key Words and Phrases : water  pricing and investment; uncertain
streamflow; water policy in a general equilibrium model; water policy for
Melbourne; linear programming; Newton-Raphson; Monte Carlo; peak
and non-peak.



WATER PRICING AND INVESTMENT IN MELBOURNE:  GENERAL

EQUILIBRIUM ANALYSIS WITH UNCERTAIN STREAMFLOW

by

Mark Horridge, Peter B. Dixon and Maureen Rimmer1

INTRODUCTION

Until recently, market forces have had little effect on the production and use of
water in Melbourne.  The Melbourne water authority derived most of its revenue from
taxes levied on house and land values.  Householders were entitled to a generous
quota of ÒfreeÓ water and the charges for additional water were low.  Water usage was
little affected by price, making Melbourne water policy a clear example of what Hanke
(1978) described as supply management.  That is, extrapolating from past trends, the
water authority predicted future needs and undertook whatever capital works were
necessary to meet them.

 Today that pattern is changing.  Environmentalists decry the steady conversion of
valleys to reservoirs, while a reduction in Federal capital grants to State Governments
has curtailed all types of infrastructural  investment.  In this climate, water policy
reform  has accelerated.  Volumetric charges are starting to replace taxes and large
capital plans are being subjected to critical assessment.  Catch-cries such as Òuser
paysÓ and ÒcorporatizationÓ herald a shift in the water authorityÕs role:  from a tax-
funded supplier of exogenous needs to a self-funding or even profit-making seller of
water services.

 This paper is part of a continuing project by Dixon et al. (1989, 1990, 1992) to set
the determination of appropriate water policy for Melbourne on a more rigorous basis.
In common with other contributors to the literature on optimal water pricing and
investment [see, for example, Hirshleifer et al. (1969), Riordan (1971a & b), Gysi and
Loucks (1971), Dandy et al. (1984) and Ng (1987)], we formulate a model in which
maximization of community welfare requires marginal cost pricing.  However, we try
to extend the literature by calculating marginal costs in a model which includes a
more detailed description of demand and technology than has previously appeared in
applied studies dealing with the economics of urban water.

 The previous literature relies on highly simplified partial equilibrium (one
industry) models.  Typically, it is assumed that the water authority sells a single
commodity (or equivalently a group of commodities supplied in fixed proportions).
This commodity (ÒwaterÓ) is produced using materials, labour and capital.  Material
and labour inputs are usually assumed to be proportional to water output up to a
point where output is constrained by capital capacity.  Because of indivisibilities, the
capital stock must expand in discrete jumps.  This leads to the familiar saw-tooth
path for the optimal price of water: the price falls after an expansion of capital
capacity and rises until the next expansion is justified.

1 The first two authors are members of the Centre of Policy Studies and the third of
the IMPACT Project, both located at Monash University, Clayton, Victoria 3168,
Australia.
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 Our model has six types of water commodities and three types of water authority
capital.  It includes creation processes for capital stocks and allows for gestation lags.
Another distinguishing feature is our general equilibrium formulation.  With this
approach we recognize the roles of economy-wide resource constraints and of special
links between the water industry and other parts of the urban economy, e.g., the
housing industry.   A final noteworthy feature of our model is its integration with data
on streamflow.  We have not presented this aspect of our work elsewhere and it is the
main topic of the present paper.  By using a long series of streamflow data we are
able to include an important aspect of uncertainty in our analysis of MelbourneÕs
water pricing and investment problem.

 The remainder of the paper is laid out as follows.  In the next section we provide
an overview of our pricing and investment model and describe our solution method.
We review some simulation results, and show how these are related to ad hoc safety
margins which are designed to prevent unanticipated water shortages caused by
drought.  The effect on both water supply and demand of stochastic changes in
weather are investigated in the third section.  We estimate a regression model of
these effects.  The regression model is used in a series of Monte Carlo experiments
which combine typical variations in weather with underlying water supply and
demand patterns derived from our original pricing and investment model.  We predict
the frequency of water shortages for various safety margins.  The final section
summarizes our conclusions and mentions some areas for future research.

THE  MODEL
Description

We base our description of the pricing and investment model on Figure 1.  A
complete listing of equations, parameter values and data sources for our Melbourne
application is given in Dixon and Baker (1992).

 At the top of the figure, the household sector chooses consumption levels for six
products for each of 50 two-year periods.  In making these choices, households
maximize a multiperiod utility function subject to a budget constraint which limits the
present value of expenditures to the present value of disposable income.  The water
authority influences the householdsÕ choices by setting prices for water products and
by charging a tax on housing.

 The six products entering the household utility function are housing services,
inside water summer, inside water winter, outside water winter, outside water
summer and all other goods.  The distinction between inside water and outside water
is that inside water must be taken away through the sewage system.  Outside water
is used, for example, on gardens and is not taken away.

 In Melbourne, the water reticulation system is subject to peak load on summer
evenings (November to March, 5 pm to 9 pm).  To allow us to analyse peak load
issues, we view the two products inside and outside water summer as being
combinations of water consumed in peak and non-peak times.  These combinations
are specified by CES functions (Arrow et al., 1961).

 By appropriate choice of parameter values in the utility and CES functions we
built into the Melbourne application the idea that households find the four
products inside water summer, inside water winter, outside water summer
and outside water winter to be poor substitutes for each other.  On the other hand,
they find outside water summer peak to be a good substitute for outside water
summer non-peak.  Consequently, we assume that a surcharge on outside
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summer peak usage would be an effective way of inducing households to switch some
of their peak-period usage to non-peak times.  Similarly, we specify good substitution
possibilities between inside water summer peak and inside water summer non-peak.

 The industrial sector in our model (bottom left corner of Figure 1) produces other
goods, new houses and inputs for the water authority.  Output of these three goods is
limited by a CET  production possibilities frontier (Powell and Gruen, 1968).  This
frontier moves out exogenously over the modelÕs 100-year horizon reflecting labour
force growth and technological progress.  In each period, producers are assumed to
choose the combination of other goods, new houses and water authority inputs to
maximize the total value of output.  Thus the relative supplies of these three goods are
sensitive in our model to relative prices.  For example, if the water authority wishes to
expand its activities in any period, then it must offer a higher price for water authority
inputs.  This moves the urban economyÕs resources away from the production of
other goods and new houses and into the production of water authority inputs.
Although not shown in Figure 1, wages and profits generated in the industrial sector
feed into the income side of the household sectorÕs budget constraint.

 Of the three goods emanating from the industrial sector, other goods undergo no
transformation on their way to the household sector.  Although this is not shown in
the diagram, we normally allow other goods to be traded.  In this case, household
demand for other goods is equated to output from the industrial sector plus imports
minus exports.

 New houses produced in each period add to the housing stock.  The housing
stock includes the connecting pipes to water services.  These connections are
maintained by the water authority.  This is indicated in Figure 1 by the M input to
housing capital.  Because of this maintenance role, the water authority is justified in
levying a charge on house ownership.

 Each period, the housing stock produces housing capital services.  These must
be combined with sewer services to produce housing services.  The combination is
specified by a Leontief function (i.e., a unit of housing service requires a given
quantity of sewer service).  Sewer services are produced each period by sewer
capital.  In effect, we assume that provided various capacity constraints are tight,
then expansion in the supply of housing services requires expansions in both the
housing stock and in the provision of main sewers.  This link between the housing
stock and main sewers provides a second justification in our model for non-
volumetric changes to be levied on owners of houses.

 The third product of the industrial sector, inputs to the water authority, is used
by the authority to produce maintenance and operating services and three types of
capital (main sewers, dams and sewage treatment plants).  Gestation lags are
introduced by specifying that water authority inputs are required in the creation of
new units of capital in periods before these units are added to capital stocks.  As
indicated by the M inputs to the capital stock boxes in Figure 1, maintenance of water
authority capital requires inputs of  maintenance and operating services.

 As we have seen already, sewer capital produces sewer services which are a
necessary part of the production of housing services.  Treatment capital produces
treatment services.  These, together with water and maintenance and operating
services, are required to produce the three inside water products.  For both inside
and outside water products, differences in the use of maintenance and operating
services per kilolitre of supply are used to introduce differences in the costs of
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meeting demands in peak and non-peak times.  Notice that treatment services are not
required for the outside water products.

 Dam capital produces two services, storage capacity and catching capacity (i.e.,
access to streamflow).  By linking dam capital with catching capacity we recognize
that new dams are normally created in new catchment areas.  Each period, catching
capacity provides additions to water stocks  while storage capacity provides an upper
bound.

 Water supply in each period is obtained by drawing on water stocks and is used
in the production of water products.  It is also dissipated in leakages.

 The Water Authority Optimization Problem  (WAOP)

To complete the model, we must specify the behaviour of the water authority.
That is, we must specify how the authority plans its investments, sets the levy on
house ownership and determines prices for different types of water products.  In
most applications of the model, we have assumed that the authority behaves as
follows.

 Problem A (the WAOP).  The authority plans its investments and charges to maximize
household utility subject to

¥ the behaviour of the industrial and household sectors,
¥ water technology constraints,  and
¥ economy-wide resource and accounting constraints.

Sometimes we have added further constraints.  For example, we have assumed that
the authority is obliged to charge the same price per kilolitre for all types of water.  A
comparison of the solution of the one price problem with that of the multiprice
problem gives an indication of the value of installing metering equipment to allow the
multiprice solution to be implemented.

 For computations, formulation A is inconvenient.  Both the objective function and
many of the behavioural constraints (coming from consumer demand and producer
supply equations) are non-linear.  However, the problem may be recast in a more
tractable form.  With the household sector being a price-taking, budget-constrained
utility maximizer, with the industrial sector being a price-taking, production-
possibilities-constrained revenue  maximizer, and with the water authority setting
policies which result in the highest possible level of household utility, the respective
aims of all three entities are in complete harmony.  The outcome is the same as if a
benevolent dictator had arranged the activities of all so as to maximize consumer
utility.  Thus the following problem has just the same answer as the WAOP.

 Problem B.  A benevolent dictator chooses all production levels and consumption
quantities, and plans investment in a way which maximizes consumer utility subject
to:

¥ water technology constraints, and
¥ economy-wide resource constraints and accounting constraints.

That Problem A, which includes explicit behavioural assumptions for three economic
entities, can be reduced to a single-entity problem (Problem B) is not surprising.  The
correspondence between multi-entity general equilibrium systems and single-entity
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optimization problems is well-known [Dixon (1975) and Ginsburgh and Waelbroeck
(1976)].  The advantage of the reduction is that B is easier to solve than A.  Apart from
the CET transformation frontier, all BÕs constraints are linear.  The few non-linear
constraints may be approximated by a series of line segments, so that a standard
linear programming package can be used.  Most versions of the water model have
been solved this way, with satisfactory results, using the MINOS package.  However
the LP problem is large (around 19,000 constraints).  This has made computations
slow, limiting our freedom to experiment with different variants of the model.

 Another approach to solving the WAOP is to recast it as a general equilibrium
system in which all activities of the water authority are conducted as though
embedded in purely competitive markets.  For example, as we will explain in the next
subsection, using this approach we assume that there is a price-taking, cost
minimizing, dam-operating entity which sells plain water at marginal cost.  Similarly,
we assume that there are price-taking cost-minimizing main sewer and treatment
entities selling services at marginal cost.  With the specification of the water authority
broken up in this way, we can solve the WAOP via:

 Problem C.  Find prices and quantities to reconcile

¥ the demands of a utility-maximizing, budget-constrained, price-taking
household sector with

¥ the outputs of resource-constrained, purely competitive water and
industrial sectors.

That purely competitive behaviour in all markets will give the highest possible level of
household utility is to be expected from the numerous theorems on the optimality of a
purely competitive general equilibrium (Intriligator, 1971, chapter 10).  In the present
context, the equivalence of Problem C and the WAOP can be established by showing
that the equation system to be solved in Problem C is the same as the set of Kuhn-
Tucker or first-order conditions for a solution of Problem B.

 Recently we have found that solutions of the WAOP can be computed much more
quickly by applying Newton-Raphson techniques to solve Problem C than by using
MINOS on Problem B.  Compared with the approach using a standard LP package,
successful application of Newton-Raphson techniques requires a more intimate
knowledge of the equation system being solved and the underlying mathematics of
the algorithm.  Another disadvantage of Newton-Raphson is that convergence can
occasionally be a problem.  Nevertheless, for our model, these disadvantages are far
outweighed by gains in computational efficiency.

 The dam-operating entity
In this subsection we illustrate the Problem-C approach to the WAOP by

describing the behaviour of the dam-operating entity.  By choosing this entity, we are
also able to set out some equations which are required for an understanding of our
analysis in the next section concerning uncertain streamflow.

 Part (a) of Table 1 shows a stripped-down version of the dam-operating entityÕs
cost minimizing problem.  For presentational convenience, the algebra is for one-year
periods rather than the two-year periods used in our computations, and we omit
various details such as terminal conditions and maintenance of dam capital.  Although
demands for water, X(s), are exogenous in the cost-minimizing problem, they are
endogenous in the complete general equilibrium system. Our assumption in Table 1 is
that whatever the demands turn out to be, they will be satisfied at minimum
cost.
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Table 1
  The Dam-operating Entity

                                                                                                                                       
(a) The cost minimizing problem
Choose non-negative values for  

I(s), increment to dam capital in period s, s = 11, ..., 100,  
K(s), dam capital in period s, s = 11, ..., 100,  
W(s), stock of water at the start of period s, s = 2, ..., 100,  

to minimize

C = Σ
s=1

100Ê

Ê r(s)ÊÊPWAI(s)ÊÊγ 






Σ

i=1

10

ÊÊÊI(s+i)ÊV(s+i)/10Ê

subject to

1 λ1(s) : K(s-1) + I(s) - K(s) ≥ 0, s=11, ..., 100,

2 λ2(s) : W(s) - W(s+1) - X(s) + βK(s) ≥ 0, s=1, ..., 100,

3 λ3(s) : αK(s) - W(s) ≥ 0, s=2, ..., 100,

4 λ4(s) : QW(s) - X(s) ≥ 0, s=1, ..., 100,

where
α is the storage capacity of unit of dam capacity,
β is the annual yield of water per unit of dam capital,
γ    is the    amount of water    authority inputs needed to construct a unit of    dam capital,
X(s) is water supplied, period s,
PWAI(s) is the price of water authority inputs, period s,
Q is the drought safety factor, setting an upper bound on the fraction of the
water stock which can be used,
r(s) is the interest discount factor applying to period s,
the λi(s)Õs are non-negative Lagrangean multipliers, and
the V(s)Õs are parameters allowing for lumpiness.
We make V(s) very large for most  years and equal to one for the others.  
Increments will occur only in years where V(s) is one.  By placing these at, say,
10-yearly intervals, we produce results in which increments tend to be large and
dam capacity increases in discrete jumps.

(b) The Lagrangean conditions for a solution of the cost minimizing problem

I Min 







Σ

i=1

10

ÊÊr(s-i)ÊPWAI(s-i)ÊγV(s)/10Ê-Êλ1(s)Ê;ÊÊÊI(s)Ê  =ÊÊ0 s=11,Ê...,100,

Κ λ1(s) - λ1(s+1) - βλ2(s) - αλ3(s) = 0, s=11, ... ,100,

W -λ2(s) + λ2(s-1) + λ3(s) - Qλ4(s) = 0, s=2, ..., 100,

1 K(s-1) + I(s) - K(s) = 0, s=11, ..., 100,

2 Min { }W(s)Ê-ÊW(s+1)Ê-ÊX(s)Ê+ÊβK(s);Êλ2(s)  = 0, s=1, ..., 100,

3 Min { }αK(s)Ê-ÊW(s);Êλ3(s)  = 0, s=2, ..., 100,

4 Min { }QW(s)Ê-ÊX(s)Ê;Êλ4(s)  = 0, s=1, ..., 100.

(c) Marginal-cost pricing of the output of dam activities

Pw(s) = (λ2(s) + λ4(s))/r(s), s=1, ..., 100,
where Pw(s) is the price of plain water in period s.
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 The objective function is a discounted sum of costs of dam increments.  The cost
of the increment in any year is incurred over the previous 10 years.  Consequently, in
each year s,  expenditure is associated with increments which come online in years
s+1 to s+10.  Because we have adopted a 10 year gestation period for dams, we treat
K(s) and I(s) for s=1,...,10 as pre-determined − they reflect decisions which have
been made before year 1.

 The first constraint allows for the accumulation of capital.  The second constraint
says that water accumulated from year to year cannot exceed the difference between
water yield, βK(s), and demand, X(s).  If the dam becomes full, water overflows, and
so the accumulation will be less − due to the third constraint.

 The last constraint states that usage in any year must be less than some fraction
Q of available stocks.  In our model, the water authority plans on the basis of
certainty, but retains sufficient water in reserve to meet the contingency of a drought.

 Part (b) of Table 1 illustrates the equations that make up the general equilibrium
system in Problem C.  The equations shown in part (b) are the Kuhn-Tucker
conditions for the cost-minimizing problem in part (a).  The ÒMinÓ notation allows us to
express each of the complementary slackness conditions in a single equation.  Where
we can be certain that a constraint will be binding or that a choice variable will be
positive, we can avoid the ÒMinÓ formulation.  We have done this in Table 1(b) for the
Kuhn-Tucker conditions relating to K(s), W(s) and the capital accumulation constraint.
In solving Problem C, there is a small computational advantage in avoiding
unnecessary ÒMinÓ equations.

 The ÒMinÓ equations are treated in the same way as other equations in
implementing standard non-linear solution techniques.  For example, in applying the
Newton-Raphson method with analytic derivatives to a system containing the equation

Min(a;b)  =  0  , (1)
we write

Mina(a;b).∆a  +  Minb(a;b).∆b  =  -Min(a;b) (2)

where

Mina(a;b) = 1  if  a < b, 0 otherwise, and Minb(a;b) = 1-Mina(a;b) .

 Part (c) of Table 1 shows another equation of the general equilibrium system in
Problem C: the marginal-cost pricing condition for water.  [λ2(s) + λ4(s)] is the
derivative of the Lagrangean with respect to X(s): this gives the effect on total
discounted costs of a unit increase in X(s).  Dividing by r(s) expresses this in terms of
prices in period s.

 Results from the model:  sample simulations

This subsection contains a description of a set of solutions of the WAOP for
Melbourne.  The main assumptions are that

¥ dams can be brought on line only in the years 2002, 2012, 2022, ... .  By
spacing the increments to dam capital (K) at 10 year intervals, we impose
the idea of lumpiness with increments tending to be quite large.
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¥ the water authority is cautious about running down its water stocks.  We
look at several cases.  In the first we set Q at 0.37, i.e. in any year s, the
water authority is assumed to be unwilling to allow its sales and leakages to
be more than 37 per cent of the water stock on hand at the beginning of the
year.  This Q value was suggested by the authority.  Then we make more
adventurous settings, allowing Q to rise to 0.5.

 The path of dam capital (K) with Q=0.37 is shown in Figure 2.  The most striking
feature is that no increment is made until 2022.  Even then, the increment is
negligible.  The first large increment is in 2032 with significant increments at 10 year
intervals in 2042, 2052, etc..

 During the 1980s the Melbourne Water Authority completed the Thomson dam.
This more than doubled the storage capacity of the Melbourne system taking it from
about 800 gigalitres to 1773 gigalitres. (In terms of Table 1, αK(1992) is 1773.)  The
Thomson project also increased the annual yield of the Melbourne system from about
450 gigalitres to 650 gigalitres (i.e. βK(1992) = 650). Water sales and leakages in
1992, X(1992), were only 462 gigalitres.  In view of these figures, it is not surprising
that our model implies that there is no need for new dam capital for a very long time.
This is despite expected annual growth in MelbourneÕs economy of 2.5 per cent (1.5
per cent population growth and 1 per cent productivity improvements).

 Apart from the current water demand and supply situation,  another factor
contributing to the modelÕs projection of a long pause in dam creation is pricing.  In
1992, Melbourne residents paid the Water Authority about 20 cents for an extra
kilolitre of water.  This was for all types of water.  Despite the abundance of water,
our model indicates that this price was too low.  Twenty cents is not sufficient to
cover the delivery costs per kilolitre from the dams to households and is certainly
insufficient to cover volume-related treatment costs of inside water. In other words,
with its present pricing strategy, the water authority is not covering marginal costs.
As can be seen from the heavy (Q=0.37) line in Figure 3, the model implies that the
average price of water (averaged over the different types) should be raised
immediately from $0.20 to about $0.45.  This would reduce annual usage from 462
million kilolitres in 1992 to about 420 million in 1994.

 Before significant dam expansion takes place in 2032, Figure 3 indicates that
growth in water usage should be inhibited by a series of price rises.  These reflect the
onset of capacity shortages.  For example, the rise in the average price of water
between 2010 and 2014 reflects scarcity of inside water treatment capacity.
Expansion of this capacity commences in 2014.  By this time, population and income
growth have increased the marginal value of inside water sufficiently to justify the
capital expenditures needed to expand its supply.

 It is not until 2032 that population and income growth have pushed the water-
demand curve out far enough to justify a significant expansion of dam capital.  Over
the period 2018 to 2032, increases in water prices are needed to hold usage to levels
that are compatible with almost no expansion in dam capital.  By 2032, the average
value placed by the community on extra water supply is about $1.1 per kilolitre.  This
is sufficient to justify the costs of expanding supply through the installation of new
dams.

 Because of our lumpiness assumption, there is a sharp increase in water
availability in the period after dam expansion (2034).  This causes a fall in prices.
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As the water-demand curve continues its rightward migration, the water authority
inhibits usage growth through price increases until water from the next dam
expansion becomes available in 2044.

 One curious feature of Figure 3 is the apparent negative trend − the peaks and
the troughs gradually get lower.  This is a general equilibrium effect reflecting a
gradual reduction in the share of water services in GDP and, correspondingly, in the
opportunity cost of inputs used by the water authority.

 Figures 3 and 4 give WAOP results for different values of Q.  As Q is increased
the path of water stocks moves lower − smaller water stocks are required to support
any given path of sales.  It is also true that the path of dam capital (K) moves lower.
However, the differences are quite small making it inconvenient to show them on a
diagram.  For example, when Q=0.37, K(2032)=4.34. When Q=0.50, K(2032)=4.28.
For Melbourne, the main problem is in providing capture capacity not storage
capacity (the Melbourne technology has a high α/β ratio).  Thus, as we increase Q
(reducing required storage levels) we generate only minor reductions in requirements
for dam capital − dam capital is still required in its capture role. In work on Sydney
where the α/β ratio is much lower, we found that increases in Q allow quite large
reductions in K.  In Sydney, plenty of water is captured. The problem is to find a
space to store it.

 An interesting aspect of Figure 3 is the price-smoothing effect of increases in Q.
Higher values of Q allow the water authority to improve the allocation of water sales
across the 10-year dam cycle.  With a high value of Q, the water authority can run
down water stocks towards the end of the 10-year dam cycle (Figure 4) when water is
scarce and build them up at the beginning of the next cycle when water is plentiful.
With a low value of Q, this process is inhibited by the need to maintain large water
stocks at the end of the cycle.  With a low Q, increased sales at the end of the cycle
would be possible only with large stocks.

UNCERTAINTY IN STREAMFLOW:  THE RISKINESS

OF THE WAOP STRATEGIES

The WAOP was solved under conditions of certainty.  In particular, we ignored
variations in climatic conditions and assumed that new water becomes available in
year s at the annual rate of βK(s).  In reality, streamflow in MelbourneÕs catchment
areas is highly uncertain and over the last 100 years there have been several long
droughts.  For example, in each of the ten years 1979 to 1988, streamflow was below
average.  In half of those years it was less than 75 per cent of average and in 1982 it
was less than 35 per cent.

 In setting a value for β (the water yield per unit of capital) we tried to adopt an
attitude to climatic risk similar to that of the water authority.  The authority has
estimated that with its present dam assets (3.419 in our units) it could meet a
constant annual demand of 650 gigalitres for 100 years with almost no chance (an
acceptably low risk) of running out of water.  Consequently we set β at 650/3.419,
i.e., β represents a safe annual yield per unit of dam capital.  As explained already,
we also built a safety margin into the WAOP by insisting that the pricing and
investment strategy be formulated so that if the net availability of new water were to
follow the path βK(s), then water usage in any year s, X(s), would be less than a
fraction Q (0.37 in our base-case) of the yearÕs opening water stocks, W(s).

 Despite our seemingly conservative choices for the values of β and Q, and
general agreement with our other parameter settings and assumptions, the
initial reaction of Melbourne water officials to our results has been that
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Figure 4:  Effect of Q Safety Factor on Stored Water

implementation of strategies derived from the WAOP (especially the delaying of
significant expansion of dam capital until 2032) would expose Melbourne to
unacceptable risks of drought-related water shortages.  In this section, we assess
these risks for WAOP strategies computed with different values of Q.  Suitable data
for doing this were given to us by the Melbourne water authority.  These are shown
partially in Table 2.  The complete data set is available from the authors.

Table 2
  Simulated Water Harvest and Usage,  

1913-90, Gigalitres
                                                                                                                     

Year Water Level(a) Streamflow(b) Demand(c) Unused(d) Evaporation
(W) (S) (D) (U) (E)

1913 1480 1270 668 440 19

1914 1623 649 674 220 29
¥
¥
¥

1990 1064 1241 667 434 26

Mean 1542 1193  650 525 22
                                                                                                                     

(a) YearÕs opening stock.  The maximum possible level for W (i.e., Wmax) is 1773.  
This occurs in 9 years.

(b) Refers to potentially harvestable water in rivers in catchment areas.  
Variations in streamflow reflect variations in weather.

(c) Underlying demand (including leakages), X(s), is set at 650.  Actual demand,
D(s), varies from 650, reflecting variations in weather conditions.

(d) This consists of streamflow which is not taken into dams and of dam overflow.
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Statistical analysis of data on streamflow, demand,
evaporation and unused water

The water authority data set is itself derived from a model, but reflects real
historical variations in weather.  It shows how water supply and usage would have
varied over the 78 years 1913-90 if the same system of dams etc. as exists today had
been in place all of that time.  A steady base level demand of 650 gigalitres is
assumed.  Superimposed on this flat underlying scenario are the actual variations in
rainfall and temperature from 1913-90.  The water authorityÕs model translates these
weather variations into demand and supply variations.  On the demand side their
model incorporates observed past correlations between weather and usage, whilst
the supply side derives from a very detailed hydraulic description of the entire
Melbourne catchment, storage and reticulation systems.  The path of water stocks is
computed from the identity

W(s+1) = W(s) + S(s) - D(s) - U(s) - E(s). (3)

 Table 3 shows the results we obtained from some statistical modelling of the
water authority data set.  In regression (i), we assume that streamflow is lognormally
distributed.  We found that it exhibits positive first-order serial correlation,
consistent with the tendency for Melbourne to experience sequences of drought
years.  (The K appearing in this equation is constant in the water authority data and
plays no role in the regression analysis.  Its role is in the Monte Carlo simulations
discussed below.)  In regression (ii), we found demand to be negatively correlated
with streamflow Ð low streamflow is associated with long, hot, garden-thirsty
summers.  (X is constant in the regression analysis.)  Similarly in regression (iii) we
found evaporation to be negatively correlated with streamflow.

 In modelling the ÔunusedÕ part of streamflow, we were guided by a metaphor Ð see
Figure 5.  The funnel represents the catchment area of the Melbourne

(  K)

Streamflow (S)

Barrel

Funnel

Demand (D)

Limited
Flow
Storage
Capacity

Catchment

Overflow (F)

Overflow (B)

Evaporation (E)

F + B = U

α

Figure 5:  Water Harvesting and Storage Technology

system, the barrel its storage capacity.  The stem of the funnel has only limited flow
capacity Ð  because flow capacity is costly, and so it makes sense to cater for less
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than the maximum possible flow that the funnel might generate.  During prolonged
periods of intense rain, therefore, the funnel overflows, even if the barrel is not full.  Working 

U(s)  =  F(s) + B(s) (4)

where

F(s)  =  g1[S(s)] + εf(s) ;  εf ~ N(0,σ
2
f )  , (5)

B(s)  =  B1(s) + g2[W(s)] + εb ;  εb ~ N(0,σ
2
b )  , (6)

and

B1(s)  =  0  if  W(s+1) < Wmax  . (7)

Equation (4) is an identity stating that unused is the sum of funnel overflow and
barrel overflow.  Equation (5) links funnel overflow to streamflow.  Equations (6) and
(7) express barrel overflow as the sum of two components.  The first (B1) is zero in
years in which the dam is not full at the end of the year.  The other component (g2)
allows for the possibility that although the dam was not full at the end of the year, it
was full during the year.  We relate this possibility to the opening water stock, W(s).

 For the purpose of estimating the parameters of the functions g1 and g2, we
manipulated (3) − (7) into a standard format for a Tobit model with censored data
(Greene, 1991, pp.565-6):

U(s)  =  H(s)  if  H(s) >  Umin(s)  ,

U(s)  =  Umin(s)   if  H(s) ≤  Umin(s)  ,

where H is the unobservable variable defined by

H(s)  =  g1[S(s)] + g2[W(s)] +  ε  ,      ε ~ N(0,σ
2
f+b)  ,

and

Umin(s)  =  -Wmax(s) + W(s) + S(s) - D(s) - E(s)  .

After some experimentation, we specified g1 as quadratic and g2 as linear,
obtaining the results given in regression equation (iv) in Table 3.  Having estimated
the behaviour of H, we can use equation (v) to calculate the behaviour of U.
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Table 3
  Regression and Monte Carlo Simulation Model

                                                                                                                                   

(a) Variables
S Streamflow
D Demand for water, includes leakages
X Underlying demand for water, i.e., demand under  

average weather conditions
W Stock of water at the beginning of the year
U Unused water
Wmax Dam storage capacity
H Funnel overflow plus Ònon-fullÓ year barrel overflow
K Dam capital
E Evaporation

(b) Regression equations
The water authority data are generated assuming constant underlying demand at
650 and a constant dam capital stock at todays level.  Thus, in fitting the regression
equations, we set X at 650 in all years and K at 3.419.

(i) ln(S/K) = α1 + α2ln[(S/K)-1] + ε1 Streamflow regression

α1 = 4.764 (7.22)   α2 = 0.179 (1.57)

sd(ε1) = 0.33   R2 = 0.03   DW = 1.91

(ii) ln(D/X) = β1 + β2ln(S/K) + ε2 Demand regression

β1 = 0.384 (7.14)    β2 = -0.066 (-7.16)

sd(ε2) = 0.027   R2 = 0.41   DW = 1.78

(iii) ln(E/K) = γ1 + γ2ln(S/K) + ε3 Evaporation regression

γ1 = 3.74 (11.32)  γ2 = -0.32 (-5.71)

sd(ε3) = 0.165  R2 = 0.30  DW = 2.08

(iv) H/K = a + b(S/K) + c(S/K)2 + d(W/K) + ε4 Regression explaining

part of 'unused'

Tobit Estimates:
a = -41.19 (-2.41) b = 0.0474 (0.71)
c = 0.00090 (11.55) d = 0.119 (5.20)
sd(ε4) = 15.51 (11.77) R2 = 0.99

(c) Identities to complete the Monte Carlo simulation model

(v) U = Max(W - Wmax + S - D - E; H) Total unused

(vi) W+1 = W + S - D - E - U Water accounting identity

(vii) Wmax = 518.6K Dam storage capacity

[In our data base Wmax = 1773 and K = 3.419.  Thus we set the parameter α
(defined in Table 1) at 518.6.]
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 Monte Carlo analysis of the riskiness of WAOP strategies

We used the system of equations (i) - (vii) in Table 3 to generate many scenarios of
water supply and usage, each scenario being for a century.   For all scenarios, the
paths of dam capital (K(s), s=0,...,100) and of underlying demand (X(s), s=1,...,100)
were given, together with the initial values of streamflow, S(0), and water stock, W(1).
To generate a scenario, we started by drawing for each of the 100 years 4 normal
deviates − one for each regression in Table 3 - with variances estimated from the
regressions.  Then we calculated the path of the water stock recursively as follows.
With the drawn values for εi(1), i=1,...,4 and with given values for S(0)/K(0), K(1),
X(1) and W(1), equations (i) - (iv) yield values for S(1), D(1), E(1) and H(1).  From (vii) we
can calculate Wmax(1).  U(1) can now be calculated from (v) and W(2) from (vi).  With

values in place for S(1), K(1), K(2), X(2) and W(2), and with drawn values for εi(2),
i=1,...,4, we can now calculate W(3) and so on.  Results from 30,000 century-long
scenarios calculated in this way are shown in Table 4.

The first 10,000 scenarios mimic the water authorityÕs calculations in Table 2.
That is, we assumed X(s)=650 and K(s)=3.419 for all s.  We simply imposed
alternative weather patterns through our drawings for the εiÕs.  We found that 0.45
per cent of centuries were marked by one or more years when water stocks ran out
altogether.  According to the water authority, the last 18 per cent of

Table 4

Monte Carlo Results

Levels

Fixed Demand
and Capital

(X=650, K=3.419)

Demand and
Capital Paths
derived  from

WAOP
with Q= 0.37

Demand and
Capital Paths
derived from

WAOP
with Q= 0.5

Years Centuries Years Centuries Years Centuries

Ran out of water 107 45 69 32 82 35

Below 18% full
(safe minimum)

567 251 223 114 431 219

Below 50% full 23,182 6,272 14,479 4,136 25,776 5,818

Below 75% full 272,711 9,995 171,108 9,919 315,196 9,999

Total 1,000,000 10,000 1,000,000 10,000 1,000,000 10,000

water in the dams is of poor quality: 2.51 per cent of centuries experienced one or
more years when water levels fell to this unpalatable level.  Since the authority
considers 650 gigalitres to be the present systemÕs safe yield, we deduced that it
considers the risks indicated in the first panel of Table 4 to be acceptably low.  We
use these levels of risk as a standard against which to measure the strategies
suggested by the WAOP.



Water Pricing in Melbourne 17

 In the second 10,000 scenarios, we set the paths of X(s) and K(s) according to the
WAOP solution computed with Q=0.37.  In this case 0.32 per cent of centuries were
marked by empty dams and 1.14 per cent of centuries experienced one or more
years when water levels fell to the 18 per cent mark.  We conclude that, contrary to
the water authorityÕs fears, the WAOP strategy with Q=0.37 surpasses the safety
standards regarded by the authority as reasonable.

 In the third set of scenarios, X(s) and K(s) followed the paths given by the WAOP
with Q=0.5.  The higher setting for Q is equivalent to a relaxation of the safety
constraint that we imposed to allow for unanticipated variations in weather.  Thus, we
would expect an increase in the riskiness of the WAOP strategy.  With Q=0.5, 0.35
per cent of centuries had empty dams and 2.19 per cent experienced the 18 per cent
level:  riskier than the Q=0.37 strategy but still bettering the water authorityÕs safety
standards.  The higher level of Q offers the community two benefits:  water prices
fluctuate less, and slightly less dam capital is needed.

CONCLUSION

 Our paper has fallen into two parts.  The first describes a multiperiod, general
equilibrium model of water pricing and investment.  Initially we solved the model by
formulating it as a single-entity, linear programming problem.  Recently we have
worked with an alternative formulation consisting of a set of equations depicting
utility-maximizing behaviour by consumers and purely competitive behaviour by the
industrial sector and by entities concerned with activities such as dam operation and
sewage treatment.  Relative to our earlier LP approach, we found that application of
Newton-Raphson techniques to the equations of this multi-entity competitive
formulation gave large gains in computational efficiency.

 To illustrate the competitive formulation, we derived the equations describing the
behaviour of the dam-operating entity.  In so doing, we drew attention to an ad hoc
constraint imposed in our model to guard against water shortage during droughts.
Even with this constraint imposed, the optimal plan for Melbourne indicated by our
model was regarded as risky by the Melbourne water authority.

 In the second part of the paper we measured risks of running short of water
under different price and investment strategies.  Water authority data were used in a
statistical analysis of weather-induced variations in streamflow, demand and lost or
wasted water.  Monte Carlo simulations were then used to find what probability of
shortage was implied by the authorityÕs estimate of the Ôsafe yieldÕ of a unit of dam
capital.  More Monte Carlo simulations measured the corresponding probabilities
associated with optimal price/investment strategies derived from our model.  We
found that the model-derived strategies involved risk levels lower than those
apparently acceptable to the water authority.

 There are many ways in which our research could be extended.  Some will involve
applications of our existing model and solution programs while others will require
further modelling and programming developments.

 Projects in the first category include various sensitivity analyses.  For example, it
would be interesting to allow in our Monte Carlo experiments not only for streamflow
uncertainty but also for parameter uncertainty.  This could be introduced by
variations in parameter values consistent with the ranges of uncertainty suggested by
the t-statistics in our regression equations.
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 Another sensitivity project is to analyse the implications of a sharp drop in
streamflow caused by a forest fire.  Chapman et. al (1991) have estimated that a
major fire such as that of 1939 could reduce the average annual yield of the
Melbourne catchment area by about 15 per cent for up to 100 years.

 In the category of extensions requiring further modelling and programming is an
analysis of optimal reactive policies.  Our aim would be the derivation of optimal
policies taking account of the fact that policies can be revised if water stocks run low.
This would take us into the realm of stochastic dynamic programming requiring,
perhaps, thousands of solutions of our full general equilibrium model.  Recognition of
this possibility is part of the explanation of our decision to look beyond our initial LP
approach for a more computationally efficient method of solving our model.
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