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ABSTRACT

The problem of endowing large applied general equilibrium
models with numerical values for parameters is formidable.  For
example, a complete set of own- and cross-price elasticities of
demand for the ORANI model involves 2282 ≈ 60 K items.  Invoking
the minimal assumptions that demand is generated by utility maxi-
mization reduces the load to about 26 K Ñ obviously still a number
much too large for unrestrained econometric estimation.

To obtain demand systems estimates for a dozen or so generic
commodities at a top level of aggregation (categories like 'food',
'clothing and footwear', ...),  typically Johansen's (1960) lead has
been followed, and directly additive preferences imposed upon the
underlying utility function. With the move beyond one-step
linearized solutions of the ORANI model, the functional form of the
demand system adopted becomes an issue.  The most celebrated of
the additive-preference demand systems, Stone's (1954) l inear
expenditure system (LES), has one drawback for empirical work;
namely, the constancy of marginal budget shares (MBSs) Ñ a liability
shared with the Rotterdam system (Barten, 1964, 1968; Theil,
1965, 1967).   To get around this, Theil and Clements (1987) used
Holbrook Working's (1943) Engel specification in conjunction with
additive preferences; unfortunately both Working's formulation and
Deaton and Muellbauer's (1980) AIDS have the problem that, under
large changes in real incomes, budget shares can stray outside the
[0,1] interval.  It was such behaviour that led Cooper and McLaren
(1987, 1988, 1991, forthcoming 1992) to invent MAIDS, a system
with better regularity properties.  MAIDS, however, is not globally
compatible with any additive preference system.

In this paper we specify, and estimate, at the six-commodity
level, an implicitly directly additive-preference demand system
which allows MBSs to vary as a function of total real expenditure and
which is globally regular throughout that part of the the price-
expenditure space in which the consumer is at least affluent enough
to meet subsistence requirements.
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1.  Introduction

The problem of endowing large applied general equilibrium models with numerical
values for parameters is nowhere more difficult than in the consumption side of the
models.  In the ORANI model of the Australian economy1, for instance, there are 228
commodities recognized (114 input-output commodities, each with a locally made and an
overseas variant).  A complete set of own- and cross-price elasticities of demand hence
involves 2282 ≈ 60 K items.   Invoking the minimal assumption that demand is generated
by maximization of a strictly quasi-concave utility function reduces the information load to
about 26 K  (i.e., 227 + (

228
ÊÊ2 ) ).  Obviously such a large number of elasticities could not be

estimated econometrically from available data without the use of prior restrictions on
functional form.

The traditional approach in applied GE work involves starting at some higher level
of aggregation Ñ in the case of ORANI, with about a dozen generic commodities.   Each of
these is defined as a simple aggregate of a subset of the 114 input-output commodities.
The latter in turn are seen as Armington (CES) aggregates of the domestically sourced and
the foreign commodity of the same name.  The elasticities of substitution between the
domestic and the foreign variant of each input-output commodity are then estimated,
where feasible, from time-series data (see, e.g., Alaouze (1977), Reinert and Shiells
(1991), Reinert and Roland-Holst (forthcoming 1992)).

To obtain demand systems estimates for the dozen or so generic commodities
(categories like 'food', 'clothing and footwear', ...),  typically Johansen's (1960) lead has
been followed, and directly additive preferences imposed upon the underlying utility
function (e.g., Tulpul� and Powell (1978)).  The principal advantages of the additive
preference postulate are two:

(1) it greatly reduces the number of parameters that have to be estimated.
Whereas the 12 commodity system estimated under minimal assumptions
involves   (12 

  2 
)  =  66 substitution parameters, additive preferences when fitted

in the levels need involve no more than 12  (and only one, the so-called 'Frisch
parameter' if fitted in the differences);

(2) at the high level of aggregation at which it is applied, additive preferences fits
time-series data well, with little evidence of gross misspecification.

Disaggregation from the 12 or so commodities at the top level to the 100 or so input-
output commodities presents serious challenges.  Where econometric work can be done
at a finer level of disaggregation, however, it is relatively straightforward to incorporate

* The authors would like to thank Russel Cooper, Eric Ghysels, Jill Harrison, Brett Inder and
Keith McLaren for helpful suggestions.

1 Dixon, Parmenter, Sutton and Vincent (1982).
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new elasticities at the input-output level of disaggregation (Clements and Smith, 1983)
provided that the utility function is nested so as to leave undisturbed its upper levels.2

With the move beyond one-step linearized solutions of the ORANI model, the
functional form of the demand system adopted becomes an issue, even within the
additive preference framework (at which we continue to work at the top level of
aggregation).3  The most celebrated of the additive-preference demand systems, Stone's
(1954) linear expenditure system (LES), has one drawback for empirical work; namely,
the constancy of marginal budget shares (MBSs)4 Ñ a liability shared with the Rotterdam
system (Barten, 1964, 1968; Theil, 1965, 1967).   Holbrook Working (1943) provided a
parsimonious yet empirically successful way of allowing marginal budget shares to
respond to income levels;  his is the Engel specification adopted within Deaton and
Muellbauer's (1980) almost ideal demand system (AIDS).  Theil and Clements (1987)
used Working's specification in conjunction with additive preferences; unfortunately
from the current perspective, their system is formulated and implemented only in the
differentials.  And in any event, Working's formulation (and AIDS) has the problem that,
under large changes in real incomes, budget shares5  can stray outside the [0,1] interval.
It was such irregular behaviour that led Cooper and McLaren (1987, 1988, 1991, 1992a)
to modify the AIDS system to become MAIDS, a system with regular properties over a
much wider subset of the price-expenditure space. MAIDS, however, is not globally
compatible with any additive preference system.

What we hope to achieve in this paper is to specify, and to estimate, at the six-
commodity level, an additive-preference demand system that is globally regular
throughout that part of the the price-expenditure space in which the consumer is at least
affluent enough to meet subsistence requirements and which allows MBSs to vary as a
function of total real expenditure.  Such an estimated system will be directly comparable
(via its Frisch 'parameter') to other additive-preference systems currently in use in
applied general equilibrium work, but will be more flexible in its treatment of Engel
effects than the LES or Rotterdam models, and have better regularity properties than
AIDS or other versions of Working's model.  Our starting point is Hanoch (1975).

In Section 2 a special case of Hanoch's directly, but implicitly, additive-preference
demand system is set out.  In Section 3 the model is endowed with a stochastic
dimension, and a strategy for its estimation is developed.  Sections 4 and 5 respectively
contain a brief description of the data, and a full account of the estimation results.  A
concluding perspective is offered in Section 6.

2.  AIDADS Ñ A Generalization of LES

2 Failing the availability of disaggregated estimates, it is common practice to use a globally
additive preference specification, even though it is known that this is a serious
misspecification of the demand structure at the detailed level.

3 When working with small displacements of an additive-preference demand system, only the
local values of the demand elasticities are relevant.  To determine  a complete set of the latter
it is only necessary to know the local values of the expenditure elasticities, and of the Frisch
'parameter'.

4 Let  xi stand for the quantity of i demanded,  pi for its price,  and M for total nominal
expenditure.   By  the  ith marginal budget share we mean  pi∂xi/∂M.

5 By budget share or average budget share (in the notation of the previous footnote) we mean
pixi/M.
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2.1 The new expenditure system

The demand system now derived will be referred to as AIDADS (an implicitly
directly additive demand system).  Hanoch (1975) defines implicit direct additivity by the
utility function:

(2.1.1) Σ
i=1

n

ÊUi(xi , u) = 1,

where {x1, x2, ... , xn}  is the consumption bundle, u is the level of utility, and the Ui are
twice-differentiable monotonic functions satisfying appropriate concavity conditions.
Using some intuition stemming from Cooper and McLaren's MAIDS and from the LES, we
choose the Ui as follows:

(2.1.2) Ui =
[αiÊ+ÊβiÊG(u)]

Ê[1Ê+ÊG(u)]   ln (
ÊxiÊÐÊγi

ÊAÊeuÊÊ
) = φi  ln (

ÊxiÊÐÊγi

ÊAÊeuÊÊ
)  ,

(i  = 1, 2, ..., n)

where G(u) is a positive, monotonic, twice-differentiable function, and the lower-case
Greek letters are parameters, with

(2.1.3) 0  ≤   αi , βi   ≤      1; Σ
i=1

n

Êαi = 1 = Σ
i=1

n

Êβi  .

Hanoch (1975) notes that the first-order conditions for minimizing the cost M of obtaining
a given level of utility u are (2.1.1) and:

(2.1.4) λ ∂Ui/ ∂xi = pi, (i  = 1, 2, ..., n)

where λ is the Lagrange multiplier on (2.1.1) and {p1, p2, ... , pn} is the set of commodity
prices.  In the case of our choice of the Ui, (2.1.4) becomes:

(2.1.5)
λÊ[αiÊ+ÊβiÊG(u)]

(xiÊÐÊγi)Ê[1Ê+ÊG(u)]
= pi . (i  = 1, 2, ..., n)

Hence

(2.1.6) λÐÊ1 piÊ(xi Ð  γi) = [αi + βi G(u)] / [1 + G(u)]  .
(i  = 1, 2, ..., n)

Using the budget identity

(2.1.7) Σ
i=1

n

Ê  pi xi = M,

where M is total money expenditure (endogenous in this problem), by adding (2.1.6)
across i and using (2.1.3), we obtain:

(2.1.8) λÊÐ1 (M Ð p′ γ) = 1,

whence
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(2.1.9)         λ = (M Ð p′ γ) ,

where in (2.1.8) and (2.1.9) p'γ  is shorthand for ∑
i=1

n
Ê  pi γi .  Back-substituting from

(2.1.9) into (2.1.6), after rearrangement we obtain

(2.1.10a) piÊ(xi Ð  γi) = φi  (M Ð p′ γ)   , (i  = 1, 2, ..., n)

where φi was defined implicitly by (2.1.2) as

(2.1.10b) φi  =
[αiÊ+ÊβiÊG(u)]

[1Ê+ÊG(u)Ê]Ê   . (i  = 1, 2, ..., n)

For later use we note that φi may be interpreted as the share W°
i of discretionary

expenditure on commodity i in total discretionary expenditure (M - p′ γ).

In the form (2.1.10b) we see the direct connection between the LES and AIDADS;
setting every α i equal to the corresponding βi causes φi  to collapse to just βi , which
reduces (2.1.10a, b) to the LES.  Note that the φis add over i to unity.

An alternative derivation of (2.1.10a) keeps total expenditure exogenous, not only
in the final expenditure system, but also in the problem faced by the optimizing agent.
Instead of minimizing M subject to a given u with preferences constrained by (2.1.1),
maximize u subject to (2.1.1) and (2.1.7), by first constructing the Lagrangean:

(2.1.11) L = u + Λ 

 



 

Σ

i=1

n

ÊUiÊ(xi,Êu)ÊÐÊ1    +  χ (M Ð p′x)   .

The first-order conditions are (2.1.1), (2.1.7) and

(2.1.12)
∂u
∂xi

  + Λ 

 



 

∂Ui

∂xi
ÊÊÊ+ÊÊ Σ

j=1

n

ÊÊ
∂Uj
∂u ÊÊ

∂u
∂xi

  =  χ pi . (i  = 1, 2, ..., n)

By taking the total differential of (2.1.1) it is apparent that6

(2.1.13)
∂u
∂xi

= Ð  
∂Ui
∂xi

  / Σ
k=1

n

 
∂Uk
∂u

  ;   (i  = 1, 2, ..., n)

that is, that the term multiplied by Λ in (2.1.12) vanishes identically.  Substituting from
(2.1.13) into (2.1.12) and using (2.1.2), we obtain

(2.1.14a)
∂Ui
∂xi

= Ð  χ pi Σ
k=1

n

 
∂Uk
∂u   .   

(2.1.14b) = φi  /  (xi Ð γi)  . (i  = 1, 2, ..., n)

Clearing fractions and summing over i we obtain:

6 See (2.4.3) and (2.4.4) below.
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(2.1.15) χ = Ð  

 



 



(MÊÐÊp′Êγ)Ê Σ
k=1

n

ÊÊ
∂Uk
∂u  

Ð1

Back substituting from (2.1.15) into (2.1.14a), we recover (2.1.10a).

2.2 Substitution properties

Hanoch (1975, p.400) notes that the substitution elasticities associated with
implicit direct additivity are:

(2.2.1) σ i j =

ÊÊÊÊÊÊÊÊai(xi,Êu)Êaj(xj,Êu)ÊÊ

ÊÊ ∑
k=1

n
ÊakÊÊ(Êxk,Êu)ÊWkÊ    , (i≠j, i ,j = 1, 2, ..., n)

where

(2.2.2) ai(xi, u) =
ÊÐÊ∂Ui/Ê∂xiÊ

ÊÊxiÊ∂
2ÊUi/Ê(∂xiÊ∂xiÊ)ÊÊÊ

= (xi Ð  γi)/xi  

(i  = 1, 2, ..., n)
and

(2.2.3) Wk = xkpk / Μ  , (k  = 1, 2, ..., n)

where in (2.2.3) we have assumed that the consumer behaves optimally (i.e., that (2.1.4)
holds.  The Ws are to be interpreted as budget shares.   Substituting from (2.2.3) and
(2.2.2) into (2.2.1), we obtain:

(2.2.4) σ i j =
(xiÊÐÊγi)Ê(xjÊÐÊγj)Ê

xiÊxj
  /  (MÊÐÊp′Êγ)Ê

MÊÊ
   . (i≠j, i ,j = 1, 2, ..., n)

These take exactly the same form as the partial substitution elasticities in the matching
LES. If the γs are all positive (as is insisted upon in some interpretations of additive
preferences), the σij in LES and in AIDADS tend to unity as income grows very large.

At this point it is clear that AIDADS has exactly similar substitution properties to
LES, but that the former has richer Engel possibilities.  These come at the expense of an
additional (nÐ1) parameters; namely, the (nÐ1) independent values of αi.

2.3 Engel properties Ñ I

Not much further progress can be made without specifying a functional form for G.
Here we keep the LES interpretation of  γ  as the subsistence bundle, and require as well
that

(2.3.1a) lim
xÊ→Ê∞

Ê  u(x) =  ∞ ;

(2.3.1b) lim
xÊ→Êγ+

Ê  u(x) = Ð ∞ ;

(2.3.1c) lim
uÊ→Ê∞

Ê  G(u) =  ∞ ;

and
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(2.3.1d) limÊ
uÊ→ÊÐÊ∞Ê

Ê  G(u) =  0 .

(Above  x  is the bundle {x1, x2, ..., xn}, and the notation x  →   ∞ implies that every xi
grows without limit, while  x  →  γ+  implies that each xi converges to its corresponding
γiÊfrom above.)  G's monotonicity together with the bounds imposed on it above ensure
that φi behaves logistically, remaining always in the [αi, βi] interval.    It can be shown
that if  αi  <  βi,  the logistic behaviour of φi implies that the lowest value of i's marginal
budget share is αi, occurring when total expenditure is just enough to cover purchase of
the subsistence bundle γ;  the upper asymptote of MBSiÊ as expenditure grows without
limit is  βi.   If, on the other hand, αi  >  βi,  the largest value of i's marginal budget share
is αi, occurring at the subsistence expenditure level; its asymptote as expenditure grows
indefinitely large and lowest value is βi.

 The Engel elasticities in AIDADS are:

(2.3.2) εi =
φ
iÊÊÊM

ÊÊÊpiÊγiÊÊ+ÊÊφiÊÊ(M
ÊÊÊÐÊÊp′Êγ)ÊÊ

 +    
[∂φi/∂Μ]ÊΜÊÊ(MÊÊÊÐÊp′Êγ)

ÊÊÊpiÊγiÊÊ+ÊÊφiÊÊ(M
ÊÊÊÐÊÊp′Êγ)ÊÊ

=
φ
iÊÊÊM

ÊÊÊpiÊγiÊÊ+ÊÊφiÊÊ(M
ÊÊÊÐÊÊp′Êγ)ÊÊ

 +    
[∂φi/∂u]Ê[∂u/∂Μ]ÊΜÊÊ(MÊÊÊÐÊÊp′Êγ)

ÊÊÊpiÊγiÊÊ+ÊÊφiÊÊ(M
ÊÊÊÐÊÊp′Êγ)ÊÊ

  .

(i  = 1, 2, ..., n)

Further progress cannot be made without specifying a functional form for G.  The
simplest G(¥) satisfying (2.3.1c&d) is:

(2.3.3) G(u) = eu  .

In this case

(2.3.4) ∂φi/∂u =  (βi Ð  φi )  e
u /(1 + eu)  . (i  = 1, 2, ..., n)

We must defer deriving an expression for  ∂u/∂Μ   until after we have developed the
differential form of AIDADS .

2.4 Differential form of AIDADS

The log differential of (2.1.10a) is

(2.4.1)
d(xiÊÐÊγi)

(xiÊÐÊγi)
= d ln φi + d ln (M Ð p′ γ) Ð d ln pi  .

(i  = 1, 2, ..., n)

The first right-hand term above is:

(2.4.2a) d ln φi =
 



 

βiÊe

u

αiÊ+ÊβiÊe
uÊÊÊÐÊÊÊ

eu

1Ê+Êeu  du  ,

(2.4.2b) = eu  
 



 

βiÊÊÊÐÊÊÊÊαi

αiÊ+Êeu(αiÊ+Êβi)Ê+ÊβiÊe
2u  du  ,   (i  = 1, 2, ..., n)

which tends towards zero as αi → βi as expected, since in the LES φi ≡ βi is a constant.

To complete the development of (2.4.1) we need to solve for du in terms of
parameters and observables.  We start by noting, from (2.1.1), that
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(2.4.3) Σ
i=1

n

Ê 
∂Ui
∂xi   u

 dxi   =  Ð Σ
i=1

n
Ê
 
∂Ui
∂u   xi

 du  .

Setting all dxj = 0 (j ≠ i), and taking the quotient of the remaining differentials, we obtain
the ith  marginal utility7

(2.4.4)  
∂u
∂xi   xj,j≠iÊ

 = Ð   
∂Ui
∂xi

 / Σ
k=1

n

 ∂Uk
∂u Ê . (i  = 1, 2, ..., n)

The total differential of the (implicit) direct utility function u is

(2.4.5a) du = Σ
j=1

n
Ê 

∂u
∂xj

    xi,i≠j
 dxj  ,

(2.4.5b) = Ð Σ
j=1

n

  
∂Uj
∂xj

 / 

 



 

Σ

k=1

n

Ê
∂Uk
∂u   dxjÊ ,

(2.4.5c) = Σ
j=1

n

 Cj dxj (say)  .

From (2.1.2),

(2.4.6)
∂Uj
∂xj

 =  φj / (xj Ð γj)  ;     (j  = 1, 2, ..., n)

while from (2.1.2) and (2.3.3),

(2.4.7a)
∂Ui
∂u =  Ð φi  +  ln 

 



 

xiÊÐÊγi

AÊeuÊÊ
  

dφi
du  (i  = 1, 2, ..., n)

and

(2.4.7b)
dφi
du = (βi Ð φi) e

u / (1+eu)  .    (i  = 1, 2, ..., n)

Notice the logistic behaviour of φi displayed in (2.4.7b) Ñ the speed at which φi
approaches its asymptote βi approximates proportionality to its distance from that target.
Substituting (2.4.7b) into (2.4.7a), we obtain

(2.4.7c) 
∂Ui
∂u =  Ð φi  + ln 

 



 

xiÊÐÊγi

AÊeuÊÊ
 (βi Ð φi) e

u / (1 + eu).

(i  = 1, 2, ..., n)

Keeping in mind that the βis and φis each add over i to unity, the sum over i of (2.4.7c) is

7 The first time we introduce a partial derivative (and on some other occasions for emphasis),
we list explicitly the other variables being held constant.
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(2.4.8) Σ
i=1

n

 
∂Ui
∂u = Ð1  +  (

eu

1Ê+Êeu) Σ
i=1

n

 (βi Ð φi) ln (xi Ð γi).

(i  = 1, 2, ..., n)

Hence the coefficients Cj in (2.4.5c) are:

(2.4.9a)
∂u
∂xj

  =  Cj =   Ð φj 

 



 



(xjÊÐÊγj)Ê

 



 

eu

1Ê+Êeu Σ
i=1

n

Ê(βiÊÐÊφi)ÊlnÊ(xiÊÐÊγi)ÊÐÊ1 Ê

Ð1

.

Using (2.1.10a), we are able to write Cj as:

(2.4.9b) Cj =  
ÐÊpj

(MÊÐÊp′Êγ)     

 



 

eu

1Ê+Êeu Σ
i=1

n

Ê(βiÊÐ Êφi)ÊlnÊ(xiÊÐÊγi)ÊÐÊ1

Ð1

 (j=1, 2, ..., n).

2.5 Engel properties Ñ II

We are now in a position to continue development of an expression for the Engel
elasticities.  To do so we envisage a change {dx1, dx2, ..., dxn} in quantities brought about
by a change dM in total spending power at fixed prices.  Then

(2.5.1) dxi =     
∂xi
∂M   prices

 dM  .  (i= 1, 2, ..., n)

The resultant change in utility is

(2.5.2) du = Σ
j=1

n

 
∂u
∂xj   xi,Êi≠j

  
∂xj
∂M   prices

  dM  .

Taking the quotient of the differentials, we obtain

(2.5.3)
∂u
∂M   prices

= Σ
j=1

n

 Cj
  ∂xj

∂MÊ
 .

Note from (2.1.1a) that the response of the ith MBS to a change in total spending is

(2.5.4a)
∂

∂M   prices

(pi xi) =  pi 
∂xi
∂M   prices

(2.5.4b) = (M Ð p′ γ) 
∂φi
∂M + φi  .  (i  = 1, 2, ..., n)

The derivative ∂φi/∂M by the chain rule is

(2.5.5)
∂φi
∂M   prices

=
∂φi
∂u   prices

  
∂u
∂M   prices
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=  
dφi
du     

∂u
∂M   prices

  . (i  = 1, 2, ..., n)

Substituting from (2.5.3) and (2.3.4) into (2.5.5), we obtain:

(2.5.6)
∂φi
∂M =

(βiÊÐÊφi)Êe
uÊ

(1Ê+Êeu)
 Σ

j=1

n

 Cj 
∂xj
∂M   .   (i  = 1, 2, ..., n)

Substituting from (2.5.6) into (2.5.4b) and denoting the ith MBS (namely, pi ∂xi/∂M)  by
ψi, we obtain

(2.5.7) ψi  =   (M Ð p′ γ)   
 


 
(βiÊÐÊφi)Êe

uÊ

1Ê+Êeu  Σ
j=1

n

  
Cj
pj

  ψj + φi  . (i=1, 2, ..., n)

From (2.4.9b) we see that the ratio Cj/pjÊ is independent of j:

(2.5.8) Cj/pjÊ =   
ÐÊ1

(MÊÐÊp′Êγ)     

 



 

eu

1Ê+Êeu Σ
i=1

n

Ê(βiÊÐÊφi)ÊlnÊ(xiÊÐÊγi)ÊÐÊ1

Ð1

 (j=1, 2, ..., n)

Substituting from (2.5.8) into (2.5.7),  and keeping in mind that the ψis add to unity, we
obtain:

 ψi   = φi  Ð  
 


 
(βiÊÐÊφi)Êe

uÊ

1Ê+Êeu  

 


 
eu

1Ê+Êeu Σ
j=1

n

Ê(βiÊÊÐÊφj)ÊlnÊ(xjÊÐÊγj)ÊÐÊ1

Ð1

(i=1, 2, ..., n)

=     φi  Ð  
 


 
(βiÊÐÊαi)Êe

uÊ

(1Ê+Êeu)2Ê
 

 


 
eu

(1Ê+Êeu)2Ê Σ
j=1

n

Ê(βjÊÐÊαj)ÊlnÊ(xjÊÐÊγj)ÊÐÊ1

Ð 1

(i=1, 2, ..., n)

= φi  Ð  (βi Ð  αi)  

 


 
Σ

j=1

n

Ê(βjÊÐÊαj)ÊlnÊ(xjÊÐÊγj)ÊÐÊ
(1Ê+Êeu)2Ê

eu

Ð1

(i=1, 2, ..., n)

(2.5.9) = φi  Ð  (βi Ð  αi)  Ξ (i=1, 2, ..., n)

where

(2.5.10) Ξ =  

 



 

Σ

i=1

n

Ê(βiÊÐÊαi)ÊlnÊ(xiÊÐÊγi)ÊÐÊ
(1Ê+Êeu)2Ê

eu

Ð1

Rearranging  (2.1.10a), the ordinary budget shares Wi are:

(2.5.11) Wi =
 


 


φiÊ+Ê
piÊγi

MÊÐÊp′γÊ   (MÊÐÊp′γ
Μ  )  . (i=1, 2, ..., n)

The Engel elasticities  εi  are found as the ratios of the MBSs, ψi , to  Wi:
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(2.5.12) εi = ψi /Wi  , (i=1, 2, ..., n)

where the numerator of (2.5.12) is defined by (2.5.9).  The limiting values of the Engel
elasticities can be discerned by considering the limiting values of Ξ and of Wi.  As real
income grows without limit (i.e., as nominal income grows without limit at fixed prices)8

(2.5.13a) lim
MÊ→∞

 Ξ = 0 ;

(2.5.13b) lim
MÊ→∞

 Wi = φi ;

hence it is obvious that as real expenditure grows without limit, all Engel elasticities tend
toward unity.  As we shall see, however, these asymptotes are not necessarily
approached monotonically.  The other limiting case of interest is when for all i,  βi and αi
coincide.  In that case,   ψi   and  φi   also coincide, and (2.5.12) gives the LES Engel
elasticities.

Figure 2.1 shows the qualitative behaviour of budget shares as real expenditure
grows.  The different panels allow comparison of AIDADS with homothetic demand
systems (such as Cobb-Douglas and the CES direct utility function), with Working's
Model/AIDS, and with the LES.  

3.  Strategy for Estimation9

3.1 Estimating equation I Ñ  non-stochastic part

As noted above,

(3.1.1) φi  =   W
*
i = pi(xi Ð  γi)/(M Ð p′γ) (i = 1, 2, ..., n)

is the share of total discretionary spending represented by discretionary spending on
commodity i.  Hence from (2.4.7b),

(3.1.2) dW
*
i =

dφi
du   du = (βi Ð φi) e

u / (1+eu)  du . (i = 1, 2, ..., n)

8 In taking the limit of Ξ it is helpful to replace (xiÐ γi) in (2.15.12) by  φi(M Ð p ′γ)/pi (see
(2.1.10a)).

9 The estimation by maximum likelihood of an implicit function was explored by McLaren
(1991).  The development here follows McLaren's suggestion.
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Working's model/AIDS: a necessity

Working's model/AIDS: a luxury
1

   0

iβ

ln p ′ γ

Budget Share

Wi

0

Figure 2.1(a)   Engel curves which show globally constant unit elasticity

or which are irregular in certain regions (indicated by shading)

Figure 2.1(b)

Wi ii
+ { p γ  - β  p′ γ }/Μiβ=

i

p γ   / p′ γ 
i i

Log Real Total Expenditure  (ln M)

Engel Curve in the Linear Expenditure System for a necessity
The irregular region of the LES is indicated by shading.

Linear Expenditure System
Engel curve for a necessity

ii { p γ  - β  p′ γ }/Μi

Budget Share

W
i

(subsistence bundle)

Underlying utility function is homothetic (e.g., Cobb-Douglas or CES)

ii i
 p γ  > β  p′ γ 

Log Real Total Expenditure  (ln M)
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Possible Engel Curves in
AIDADS for  necessities

Engel curve for a luxury
 p γ  < β  p′ γ 

Linear Expenditure System

ii i

Budget Share

Wi

Figure 2.1(c) Engel Curve in the Linear Expenditure System for a luxury
The irregular region of the LES is indicated by shading.

1

ln p ′ γ 0
ii

 { p γ  - β  p′ γ }/Μ
i

iβ

p γ   / p′ γ 
i i

0.4 

0.3 

0.2 

0.1 

0

Figure 2.1(d) 

Wi ii
+ { p γ  - β  p′ γ }/Μiβ=

i

Budget Share

Wi

These Engel Curves for the AIDADS system were generated 
 by simulations using the framework shown in Figure 3.1.

Log Real Total Expenditure  (ln M)

Log Real Total Expenditure  (ln M)ln p′ γ
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Possible Engel Curve
in AIDADS for a luxury

1 

0.8 

0.6 

0.4 

0.2 

0 

Budget Share
       W  i

Another Possible Engel Curve
    in AIDADS for a necessity

0.3 

0.2 

0.1 

0 

Budget Share
       W  i

Figure 2.1(f) This Engel Curve for the AIDADS system was generated 
 by simulations using the framework shown in Figure 3.1.

Figure 2.1(e) These Engel Curves for the AIDADS system were generated 
 by simulations using the framework shown in Figure 3.1.

Log Real Total Expenditure  (ln M)

Log Real Total Expenditure  (ln M)

ln p ′ γ

0.4

0.6

0.5

ln p ′ γ
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Equation (3.1.1) may be expressed as:

(3.1.3) φi =  W
*
i =   pi (xi Ð γi)/(M Ð p′γ)  ,

=
piÊxi

M
 

M
(MÊÐÊp′γ) Ð 

piÊγi
(MÊÐÊp′γ)   ,

= Wi  
M

(MÊÐÊp′γ) Ð 
piÊγi

(MÊÐÊp′γ)   , (i = 1, 2, ..., n)

Taking the total differential of (2.5.11), we obtain:

(3.1.4) dWi =  (MÊÐÊp′γ
Μ Ê

 )   
 



 



dφiÊ+ÊγiÊdÊ
 


 
piÊ

MÊÐÊp′γÊ Ê

+
 


 


φiÊ+Ê
piÊγi

MÊÐÊp′γÊ   d(MÊÐÊp′γ
Μ Ê

 )  (i = 1, 2, ..., n)

Using (2.4.7b), and writing

(3.1.5) v = M Ð p′γ ,

we can rewrite (3.1.4) as:

(3.1.6) dW
Ê
i =  (MÊÐÊp′γ

Μ Ê
 )   

 



 

(βiÊÐÊφi)Êe

uÊ

Ê(1+eu)Ê
 du + 

piγiÊ

M   d ln pi +  (MÊÐÊp′γ
Μ Ê

 )  φi d ln v

Ð
 


 


φiÊ+Ê
piÊγi

MÊÐÊp′γÊ  (MÊÐÊp′γ
Μ Ê

 )    d ln M (i = 1, 2, ..., n)

  Equation (3.1.6) is a set of n linear equations in the vector w ≡ (dW

Ê
Ê
1
, dW

Ê
2, ...,

dW
Ê
n)′ .   Because the shares W

Ê
i  add to unity, only (nÐ1) of these equations are

independent.  The value of w
Ê
n is obtained as

(3.1.7) w
Ê
n = Ð  Σ

j=1

nÐ1

 w
Ê
j

An operational version of (3.1.7) is obtained by replacing d(¥) by ∆(¥t), and d(¥)/(¥)
by ∆ ln (¥),  where the difference operator is:

(3.1.8) ∆(¥t) = (¥t+1 Ð  ¥t).

By ω
Ê
it ,  ξt,  ζ

ÊÊ
t  , π

Ê
it  and  mt  we shall mean respectively:

(3.1.9) ω
Ê
it =  WÊ

it+1 Ð W
Ê
it ; (i=1, 2, ..., n; t= 1, 2, ..., TÐ1)

(3.1.10) ξt =  ∆ut ; (t= 1, 2, ..., TÐ1)

(3.1.11) π
Ê
it  = ln (

Êpit+1
pit

  ) ; (i=1, 2, ..., n; t= 1, 2, ..., TÐ1)
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(3.1.12) ζ
Ê
t = ln (  

Mt+1ÊÐÊp′t+1ÊγÊÊ

MtÊÐÊpt′ÊγÊ
  ); (t=1, 2, ..., TÐ1)

(3.1.13) mt =  ln 
 


 
Mt+1

Mt
  . (t= 1, 2, ..., TÐ1)

Then an operational version of (3.1.6) is:

(3.1.14) ω
Ê
Ê
t
 = ϑut ξt + ϑpt π

Ê
Ê
t
 + ϑvt ζ

Ê
t   Ð   ϑmt mt  , (t=1, 2, ..., TÐ1)

(nÐ1)×1          (nÐ1)×1 1×1   (nÐ1)×1   1×1               ( nÐ1)×1×1             (  nÐ1)×1 1×1

in which

(3.1.15) ith element of ϑut =
 


 
MtÊÐÊp′tÊγ

Μt
  
 



 

(βiÊÐÊφi)Êe

utÊÊ

Ê(1+eutÊ)Ê
    ; (i = 1, 2, ..., nÐ1)

(3.1.16) ith element of ϑpt =
 


 
pitÊγiÊ

ÊΜtÊ
   ; (i = 1, 2, ..., nÐ1)

 

(3.1.17) ith element of ϑvt =
 


 
MtÊÐÊp′tÊγ

Μt
   φit ; (i = 1, 2, ..., nÐ1)

 

(3.1.18) ith element of ϑut =
 


 
MtÊÐÊp′tÊγ

Μt
  
 



 

(βiÊÐÊφi)Êe

utÊÊ

Ê(1+eutÊ)Ê
   ; (i = 1, 2, ..., nÐ1)

 

(3.1.19) ith element of ϑmt =
 


 
φitÊ+Ê

pitÊγit
MtÊÐÊp′tÊγ

Ê  
 


 
MtÊÐÊp′tÊγ

Μt
  ; (i = 1, 2, ..., nÐ1)

 
where t subscripts have been made explicit to emphasize that the coefficients in (3.1.14)
are time-dependent.  (3.1.14) thus represents the tth observation on (nÐ1) non-stochastic
equations explaining the expected values of differences of the budget shares of (nÐ1) of
the goods.
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 3.2 Estimating equation II Ñ  stochastics and error correction10

Equation (3.1.14) is about as far as economic theorizing will take us.  To complete
our specification we add an error-correction term and append zero-mean disturbances
eit.  If e

Ê
t is the vector (e1t, e2t, ..., e(nÐ1)t)′, the system becomes:

(3.2.1) ω
Ê
Ê
t
 = ϑut ξt + ϑpt π

Ê
Ê
t
  + ϑvt ζ

Ê
t Ð ϑmt mt   +ÊÊρ {W¡

tÐ1ÊÐ  W
Ê
tÐ1Ê}  +  e

Ê
t

(nÐ1)×1 (nÐ1)×1 1×1   (nÐ1)×n   n×1 (nÐ1)×1×1 (nÐ1)×1 1×1 1×1       (nÐ1)×1     (t=2, 3, ..., TÐ1)

where ρ  is a scalar error correction coefficient, while W¡
tÐ1Êand W

Ê
tÐ1 respectively are the

(nÐ1)-vectors of equilibrium and realized values of WÊ
i(tÐ1).

11  We specify the eit to follow
the joint normal distribution with contemporaneous variance-covariance matrix ν2Ωt  and
with zero own and cross lag covariances. Notice that premultiplying (3.2.1) by a row
vector containing (nÐ1) negative units gives the equation for share n.

An alternative to (3.2.1) is to fit the shares equations in the levels.  Given our ability
via the differential version of the system developed above in Section 2 to generate the ut
series for any given parameter set from data on exogenous variables, it is straightforward
to implement (2.1.10a).  After a slight rearrangement, plus the addition of time
subscripts, an error correction term and stochastic errors vit , this equation can be
written12:

(3.2.2) Wit  = φit  +    
 


 
pitγiÊÐÊφiÊp′tÊγ

Μt
   − (1 − ρ) {W

¡
itÐ1ÊÐ  W

Ê
itÐ1Ê}  +  v

Ê
it ;

that is,

Wit  =  W
¡
itÊ − (1 − ρ) {W

¡
itÐ1ÊÐ  W

Ê
itÐ1Ê}  +  v

Ê
it    ;or 

(3.2.3)  Wit Ð W
¡
itÊ  =   (1 − ρ) {  W

Ê
itÐ1ÊÐ  W

¡
itÐ1Ê}     +    v

Ê
it     .  (i= 1, 2, ..., nÐ1)

10 In the treatment above we did not need to distinguish between the realized values of the
endogenous variables (the xjts and transformations thereof) and corresponding values
computed from given values of the exogenous variables (p, M) and of the parameters (α,β, γ
and  u1) via (2.1.10a).  From hereon the latter values of endogenous variables will be referred
to as their equilibrium values. When stochastic errors and an error correction term are intr-
oduced, we have to make further distinctions. We shall append the  symbol ^ to the xjts to
indicate their conditional expected equilibrium values; i.e., the values these demands would
take on if the parameters were set at the values indicated and if simultaneously the
stochastic terms assumed the value zero.   For brevity, in the text these conditional expected
values also are referred to simply as equilibrium values. Where the xjts appear without a ^,
this indicates the realized values of these variables Ñ that is, the data on them.   Further,
when equations involving an error correction mechanism are fitted, the fitted values of the
endogenous variables are the sum of two components: (i) the expected equilibrium values
conditional on the estimated values of  the parameters ; and (ii) the error correction.  We refer
to  the values so obtained simply as fitted values of endogenous variables.

11 The equilibrium value  W¡
tÐ1Ê is computed as (pi,(t-1)x

^
j(t-1))/Mt-1.

12 The coefficient  Ð (1 − ρ)  on the error correction in (3.2.2) has been chosen so that the first
difference of that equation yields (3.2.1)
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For later discussion we note in passing that a value of ρ = 0 would seem to make the
discrepancies {  W

Ê
itÐ1ÊÐ  W

¡
itÐ1Ê}  between actual and equilibrium shares a random walk. 

Following Deaton (1975), Selvanathan (1991) has recommended (and
demonstrated the efficacy of) placing sensible restrictions on the variance-covariance
matrix of the disturbances in demand systems.  In the case of a system whose left-hand
variables are changes ∆Wt in shares Wt, the recommended form of the contemporaneous
variance-covariance matrix has typical element  W

_

i(δij Ð W
_

j ),  where a superscript bar
indicates a sample average, and δij is Kronecker's delta.13   We adopt the following
covariance structure:

13 Late in our research plan it occurred to us that there is no particular reason for averaging the
shares over the sample when the model is fitted in the first differences.  In that case, Wit is
predetermined from the viewpoint of the difference WitÐ WitÐ1, and (3.2.2) could be replaced
with

 E(ete
′
t)  = ν2 (W

Ê

t
~
     Ð W

Ê

t  W
Ê

′
t)  =  ν2 Ωt    , (t=2, 3, ..., TÐ1)

  where Wt is the (nÐ 1) vector of budget shares at t.  We plan to use this covariance structure in
future work .
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(3.2.2) E(ete
′
t)  = ν2 (W

Ê

ÊÊ
~
  Ð W

Ê

Ê
Ê_

  W
Ê

′
ÊÊ 

_
   ) =  ν2 ΩÊ (t=2, 3, ..., TÐ1)

 (nÐ1)×(nÐ1) 1×1  (nÐ1)×(nÐ1) 1×1  (nÐ1)×(nÐ1)

where W
Ê

ÊÊ

_
   =  (W

Ê

Ê

_
 1, W

Ê

Ê
−
 2, ..., W

Ê

Ê
Ê−

 n−1) is the (nÐ1)-vector of mean values of  the W
Ê
itÊ and W

Ê~
Ê  is

the corresponding diagonal matrix.14  For future reference we note that ΩÊ has a simple
analytic inverse; namely15,16

(3.2.3)  ΩÊ
Ð1

 = 

 






 






Ê

1

ÊÊÊW
Ê

Ê
Ê−

1ÊÊ

ÊÊ+ÊÊ
Ê1

W
Ê

Ê
Ê−

n

Ê
1Ê

W
Ê

Ê
Ê−

n

....Ê Ê
1Ê

W
Ê

Ê
Ê−

n
Ê Ê Ê

1Ê

W
Ê

Ê
Ê−

n

Ê
1

ÊÊW
Ê

Ê
Ê−

2Ê

ÊÊ+ÊÊÊ
1Ê

W
Ê

Ê
Ê−

n

...Ê Ê
1Ê

W
Ê

Ê
Ê−

n
... ... ... ...

Ê

Ê
1Ê

W
Ê

Ê
Ê−

n

Ê
1Ê

W
Ê

Ê
Ê−

n

...
1

ÊÊÊÊW
Ê

Ê
Ê−

n−1

ÊÊ+ÊÊÊ
1Ê

W
Ê

Ê
Ê−

)n))).

3.3 Computation of ML Estimator

Equation (3.2.1) is a full-rank system of (TÐ2) realizations on (nÐ1) share equations.
To estimate it we treat the levels values of the shares Wit as predetermined, and the
changes WÊ

i,t+1 Ð WÊ
it in budget shares as codetermined.  The time-dependent coefficients

in (3.2.1) are functions of the unobservable variable ut.  We define an additional
parameter u1 as the level of utility prevailing in period 1 of the sample.  Conditional on the
parameter set, we compute the value of ut as:

(3.3.1) ut = u1 +    Σ
τ=1

tÐ1

ÊÊ∆uτ   , (t=2, 3, ..., T)

where

(3.3.2) ∆uτ  =
Ê Σ

j=1

n

ÊCjτ ∆x̂ jτ , (τ=1, 2, ..., TÐ1)

in which ∆ is defined by (3.1.8),  the x̂jτ are the utility-maximizing quantities (conditional

on the values of the parameters and on the exogenous variables Mτ and pτ),  and:

14 Given absence of autocorrelation, moving from the levels to the differences of the shares
should just multiply the error variance by 2; this constant is absorbed within ν2.

15 The lemma underlying result (3.2.3) is as follows:     Let B be an n×n non-singular matrix, and
let  Γ′  and  ∆ both  be r×n matrices, with r ≤ n.  Further, let the r×r matrix   (I + ∆BÐ1Γ) be non-
singular.   Then

(B + Γ∆)Ð1 = BÐ1Ð BÐ1Γ(Ι + ∆ΒÐ1Γ)Ð1∆BÐ1.

In the present case B is a diagonal matrix, while  (Ι + ∆ΒÐ1Γ) is a scalar.
16 If the errors vit in (3.2.2) are classically well behaved, then the covariance structure for the

errors eitin (3.2.1) has the same correlation pattern as (3.2.3), but a higher variance.
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(3.3.3) CjτÊÊÊÊÊÊÊÊ=
right-handÊsideÊofÊ(2.4.9b)ÊwithÊ^ÊÊ
andÊτÊsubscriptÊappendedÊtoÊÊxiÊ.Ê

(τ=1,Ê2,Ê...,ÊTÐ1)
ÊÊ(j=1,2,Ê...,ÊnÐ1)

Equation (3.3.1) cannot be implemented directly, since the Cjτ and the x̂jτ  are functions
of uτ  Ñ  the latter via φjτ, since

(3.3.4) x̂jτ = γj + 
φjτÊ

pjτ
  (Mτ  Ð p′τ γ) ;

(τ=1,Ê2,Ê...,ÊTÐ1)
ÊÊ(j=1,2,Ê...,ÊnÐ1)

in which φjτ  (see (2.1.10b)) is

(3.3.5) φjτ  =
[αjÊ+ÊβjÊG(uτ)]

[1Ê+ÊG(uτ)Ê]Ê
  .

(τ=1,Ê2,Ê...,ÊTÐ1)
ÊÊ(j=1,2,Ê...,ÊnÐ1)

We can, however, evaluate (3.3.2), as follows.   Taking differences of (3.3.4) (and
neglecting higher order terms), for t = 1 we obtain:

(3.3.6) ∆x̂j1 = Aj1 
∂ÊφjÊ

∂u    
t=1

 ∆u1    +    (Aj2Ê Ð  Aj1)  φj1(u1)

in which

(3.3.7) Ajt    = (Mt  Ð p′t γ) / pjt .
ÊÊÊÊÊÊÊ(t=1,Ê2)
(j=1,2,Ê...,Ên)

Next we use (2.4.7b) to evaluate the partial derivative in (3.3.6) as:

(3.3.8)  
∂ÊφjÊ

∂u    
t=1

 =   
[βjÊÐÊφjÊ(u1)]Êe

u1

Ê(1Ê+Êeu1Ê)Ê
  . (j= 1, 2, ..., n)

Substituting from (3.3.8) into (3.3.6), and thence into (3.3.2) for t = 1, we obtain:

(3.3.9) ∆u1 = Σ
j=1

n

 Cj1(u1){ 
[βjÊÐÊφjÊ(u1)]ÊÊe

u1Ê

(1+eu1)ÊÊ
  Aj1∆u1+( Aj2Ê  Ð  Aj1)φj1(u1)}.

Since from (2.4.9b)   Cj1(u1)ÊAj1  is independent of j, and  since  the terms

[βjÊÐÊφjÊ(u1)]ÊÊe
u1Ê

(1+eu1)ÊÊ

sum over j to zero  (the βjs and φjs both being shares), the coefficient of ∆u1 on the right-
hand side of (3.3.9) is zero.  Hence (3.3.9) simplifies to:

(3.3.10) ∆u1 = Σ
j=1

n

Cj1(u1) (Aj2Ê Ð  Aj1)  φj(u1)

We then compute  u2  as  (u1 + ∆u1), evaluate the new φi2s via (3.3.5), and

compute ∆u2; we cycle recursively in this way until full time series for ut and the φjts are
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built up (i=1, 2, ..., n; t= 1, 2, ..., TÐ1).17 This process is illustrated by the flow chart

given in Figure 3.1.

With this much operational knowledge of how to construct the variables and
coefficients of (3.1.14) conditional on the parameters of the system, we are able to write
the associated log likelihood function as:

(3.3.14) L = constant 1 Ð  (TÐ1) ln ν2 Ω    Ð    
Ê1

2ν2
   Σ

t=2

TÐ1

Ê  e′t Ω
Ð1  et

=  constant2  Ð  
(TÐ1)(nÐ1)

2
   ln ν2ÊÐ  

Ê1

2ν2 Σ
i=1

nÐ1

Ê Σ
j=1

nÐ1

Ê Σ
t=2

TÐ1

Êeit{
Êδij

W
_

i

  +  
1

W
_

n

 }ejt  ,

where δij again is Kronecker's delta.

The log likelihood function can be concentrated (i.e., pre-maximized) with respect
to ν2ÊÊby differentiating (3.3.14) with respect to that parameter, setting the resulting
equation to zero, and solving for ν2Ê:

 (3.3.15)  ν2Ê =
1

(nÐ1)(TÐ1) Σ
i=1

nÐ1

Ê Σ
j=1

nÐ1

Ê Σ
t=2

TÐ1

Êeit{
δij

W
_

i

  +  
1

W
_

n

 }ejt  ,

Substituting from (3.3.15) into (3.3.14), we obtain the concentrated log likelihood
function:

(3.3.16) L* =

 constant3  Ð  
(TÐ1)(nÐ1)

2    ln { Σ
i=1

nÐ1

Ê Σ
j=1

nÐ1

Ê Σ
t=2

TÐ1

Êeit{
δij

W
_

i

  +  
1

W
_

n

 }ejt  }.

The above function was maximized over [α, β, γ, ρ, u1} using GAUSS 386 version 2.2 on a
80486 IBM compatible personal computer.

17 Notice that with the φjts now available, the x
^
jts can now be directly computed;  this provides a

check on the approximation (3.3.6).
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Compute

Compute

Cjt = Ð 
  p j t

(MÊ ÐÊ p ′t γ )t 





eu

1Ê+Êe
Σ
i=1

n

βÊÐ φ)ÊlnÊ(x i)ÊÐÊ1

Ð1

t

t





u
Ê( i i ti

ÊÐÊ γ        

φ
it   =

[α iÊ+ÊβiÊG(ut)]

[1Ê+ÊG(ut )Ê]Ê
  Compute

t = t +1

Set u 1

Set values of parameters α, β, γ, ρ

   

x̂jt   =  γ
j +   

φ
jt Ê

pjt
  (M t Ð p ′

t
γ )Compute

Ê
  

Compute
ut+1   =  (u t + ∆ut)  

∆ ut = Σ
j=1

n

Cjt(u )Ê(A jt+1ÊÊÐÊÊÊÊA )ÊÊ jt (u )t jt φ t

Ê ÊÊ Ê
Ê

Exit when t = T-1

Start: t = 1

Ê      Ê
it

 γ(ln x -     )
it

^
i)

Figure 3.1: Flow chart for data/parameter transformations
in computation of the ML estimates
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4. The Data

Equations (3.2.1) and (3.2.2) were estimated from annual time series data for the
thirty-five year period spanning fiscal years 1954-55 through 1988-89.  Most of these
data were obtained directly from two ABS sources in Canberra.

Current and constant price data from 1960-61 onwards were supplied directly by
the joint publishing office of the following two ABS publications:  Australian National
Accounts:  National Income and Expenditure (Cat. No. 5206.0), and Historical Series of
Estimates of National Income and Expenditure, Australia (Cat. No. 5207.0).  These series
spanned the six commodity group disaggregation listed in Table 4.1.

Table 4.1

The Six Commodity Level of Disaggregation of

Final Consumption Expenditure

                                                                                                                                                        

(1) Food

(2) Tobacco, Cigarettes, Alcoholic drinks

(3) Clothing, Footwear

(4) Household durables

(5) Rent

(6) All other expenditure

                                                                                                                                                       

Constant-price data were based on four different constant price base years.  Overlapping
subintervals allowed linking of the data to a unique base year.  In addition, some of the
earlier constant price data were provided as quarterly data.

Current and constant-price data were not available on request for the early years of
the study period.  To cover the early years, data for the period 1953-54 though 1967-68
were obtained from the 1969 publications of Cat. No. 5206.0 (for current-price data) and
Cat. No. 5207.0 (for constant-price data).  The details regarding constant-price data are
given in Table 4.2.

Table 4.2

Details of Available  Constant-Price Data

                                                                                                                                                           

Period Base Year Type of Data
                                                                                                                                                                  

1953-54 to 1967-68 1959-60 Annual

1959-60 to 1974-75 1966-67 Quarterly

1965-66 to 1979-80 1974-75 Quarterly

1974-75 to 1988-89 1984-85 Annual
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The total expenditure variable in this model, Mt has been interpreted as nominal
expenditure per head.  Population data were obtained directly on request to Canberra
from the Demographic Section of the ABS.  These data were used to convert constant-
price expenditure data into per capita form.  There was a break in the population series
at 1971 due to the introduction of an estimate of under-enumeration from the 1971
Census.  This under-enumeration adjustment is included in all population figures from
this time onwards.  Both the original and the under-enumeration compensated figures
are available for the transition year and these measures provide a fixed proportional
adjustment for under-enumeration in earlier years.

The quarterly data were first aggregated to annual data and then the data were
linked following the principles outlined in Adams, Chung and Powell (1988) to obtain
annual real and nominal expenditure and price indices (obtained from strictly matched
series) based on a constant-price base year 1984-85.

5.  Results

We initially fitted AIDADS in the first differences with an error correction term (i.e.,
we fitted (3.2.1)); however, we present the results here in the sequence:

¥ fit in the levels without error correction18 (Table 5.1 and Figure 5.1)

¥ fit in the levels with error correction (Table 5.2 and Figures 5.2 and 5.3)

¥ fit in the differences with error correction (Table 5.3 and Figures 5.4
 and 5.5)

Had the results from our first estimation been fully satisfactory, it is unlikely that we
would have carried out the others.

5.1 Estimation in the levels

Turning to Table 5.1, we notice that corner solutions were obtained for the αiÊvalue
for Rent, the βi values for Alcohol and tobacco, and for Clothing and footwear, and
effectively also for the γi values for commodities other than Food and Clothing and
footwear. 19    Quite contrary to the findings of Theil and Clements (1987) and Adams,
Chung and Powell (1988), these estimates show a virtually constant marginal budget
share for Food over the sample.20  They suggest that Food's share at subsistence income
levels would be about 70 per cent (viz., p1γ1Ê/ (p′γ) ≈ 0.7) with Clothing and footwear
taking the remaining 30 per cent), declining to about seven percent (i.e., 100 β1) at
indefinitely high levels of affluence.  Over the thirty-five year sample, the actual variation
was from about 25 to about 15 per cent.  The asymptotic budget share for Clothing and
footwear as real expenditure grows without limit (β3) , at zero, clearly is not sensible.
Notice though that the decline over the sample from about 14 to about 6 percent of the
budget is tracked relatively well (Figure 5.1).

18 I.e., equation (3.2.2) with ρ constrained to unity.
19 We have constrained the γis to non-negative values, even though the AIDADS system (like

LES) is interpretable outside this range.  This ensures regularity for M > p′  γ, albeit it at the
cost of some flexibility.

20 Since Adams, Chung and Powell use an almost identical data base, the difference is due to
model specification and/or estimation method, not data.
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Inspection of Figure 5.1 highlights some specification problems with the model.
Not unexpectedly, durables perform very poorly, with the massive changes in liquidity, in
inflationary expectations, and in relative prices of the Whitlam years showing up very
clearly.  This is one problem which we will not be able to correct within the confines of
our static model.

Overall, the most outstanding features of Table 5.1 are the high (and increasing)
marginal budget share for Rent, and the pathological serial properties of the residuals (as
shown in the Durbin-Watson statistics).

Does adding an error correction term along the lines of equation (3.2.2) help?  The
levels fit with error correction is documented in Table 5.2 and Figure 5.2.  From the latter
it will be seen that in descriptive terms the fit is excellent.   The very low estimated value
of ρ, namely 0.053, suggests a unit root problem.  Nevertheless, the t statistic on ρ
(namely, 3.3) indicates significant difference from zero.  In any event, both the realized
and the equilibrium values of the budget shares by construction lie within the unit
interval, and hence both are I(0).  The proximity of (1 Ð ρ) to unity may be caused by
structural breaks in the data due to (a) the re-basing of series noted in Table 4.2 and (b)
the real wage explosion of 1973-7421.

 In Table 5.2 we once again find a high marginal share for Rent which increases
over the sample from 20 to 25 per cent of the budget.  The final ceiling is estimated as
28.2 per cent with very high apparent precision. Relative to  Table 1, several parameters
change by substantial margins, but these changes are not sufficiently large to destroy the
overall qualitative pattern. This surmise may be verified by comparing Figures 5.1 and
5.3, which show the equilibrium values of budget shares corresponding to the parameter
values in Tables 5.1 and 5.2. The serial properties of the residuals (as shown in the
Durbin-Watson statistics) are no longer severely pathological, though there is still
evidence of positive serial correlation.  Cross substitution elasticities are shown for the
Table 5.1 parameter estimates in Table 5.4, and for the Table 5.2 estimates in Table 5.5.

5.2 Estimation in the differences

Because we anticipated positive serial correlation, and because in any event the
implicit nature of the u function drove all of the analytics into differential form, it was
natural for us to start by estimating the model in the first differences.  The results are
shown in Table 5.3 and in Figures 5.4 and 5.5.

The results in the differences yield an estimate of the error correction coefficient ρ
which at O.048 is not too far away from the Table 5.1 estimate of 0.053.  It is not clear
that on average the serial properties of the residuals are better than those obtained in
Table 5.2.  The fit to the differences of the shares shown in
Figure 5.4 indicates that the raw data are both noisy and spiky; the fit seems to
pick up the trends, however.  The larger spikes (i.e., outlying second differences) seem
to be related to breaks in the basic data series.  The parameter estimates, however, differ
considerably from those of Tables 5.1 and 5.2.

  Tables 5.1Ð5.8 and Figures 5.1Ð5.5 follow.  Text resumes on page 34.

21 We are grateful to Eric Ghysels for suggesting the significance of the structural breaks.



An Implicitly Additive Demand System 25

Table 5.1
Maximum Likelihood Estimates of AIDADS fitted in the Levels, Without Error Correction:

Annual Australian Data,  1954-55 through 1988-89

Commodity i

 Item(a)(b)
1

Food
2

Alcohol
&

Tobacco

3
Clothing

&
Footwear

4
Durables

5
Rent

6
Other

α i
t ratio

.085
4.63

.230
27.8

.109
14.4

.156
22.1

.000
0.00

.419
31.2

βi
t ratio

.077

0.44

.000

0.00

.000

0.00

.048

0.33

.294

21×103
.581

3.27
γi

t ratio

686.28

28.9

0.53

0.68

252.87

20.4

.015

0.12

.013

0.11

.049

0.21

Marginal budget shares ψit:

in 1954-55
in 1988-89

.078

.077

.070

  .019

.033

.009

.081

.057

.205

.269

.532

 .568

Durbin-Watson
statistic

0.44 0.15 0.41 0.38 0.27 0.29

utility level in 1954-55, u1 = Ð0.348:  utility level in 1988-89, uT = +0.637.

t value for u1 =  -5.70.

Table 5.2
Maximum Likelihood Estimates of AIDADS fitted in the Levels, With Error Correction:

Annual Australian Data, 1954-55 through 1988-89

Commodity i

 Item(a)(b)
1

Food
2

Alcohol
&

Tobacco

3
Clothing

&
Footwear

4
Durables

5
Rent

6
Other

α i
t ratio

0.091

4.92

0.149

5.98

0.130

5.96

0.096

5.94

0.003

0.85

0.531

17.19
βi

t ratio
0.075

4.11

0.000

0.00

0.005

0.21

0.085

4.82

0.282

109.5

0.553

18.42
γi

t ratio
660.60

375
194.75

204
59.65
113

0.00
1.02

63.60
116

0.00
1.20

Marginal budget shares ψit:

in 1954-55
in 1988-89

0.080
0.076

0.044
0.015

0.042
0.017

0.088
0.086

0.199
0.254

0.546
0.551

Durbin-Watson
statistic

 1.56 0.87 1.43 1.15 1.57 1.40

utility level in 1954-55, u1 = Ð0.264;  utility level in 1988-89, uT = +0.624.
t value for u1 =  Ð7.65.
error correction coefficient Ð(1Ðρ) = Ð0.947;  t value for Ð(1Ðρ) = Ð59.4.

(a) The units for the γis are 1984-85 Australian dollars worth of the named commodity  per
head.

(b) The α is and βis are constrained to be non-negative and to sum to one.  The γis are
constrained to be non-negative.
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Table 5.3
Maximum Likelihood Estimates of AIDADS fitted in the First Differences,

 Annual Australian Data, 1954-55 through 1988-89

Commodity i

 Item(a)(b)
1

Food
2

Alcohol
&

Tobacco

3
Clothing

&
Footwear

4
Durables

5
Rent

6
Other

α i
t ratio

.599

6.53

.310

5.24

.051

0.07

.000

0.10

.001

0.07

.038

0.93
βi

t ratio

.039
0.49

.002
0.02

.048
2.70

.096
1263

.198
127

.617
21.9

γi
t ratio

31.76

16.7

0.73

2.52

4.20

6.04

0.00

0.03

494.09

65.7

0.21

1.35
Marginal budget shares ψit:

in 1954-55
in 1988-89

0.085

0.047

0.027

0.006

0.049

0.048

0.088

0.095

0.182

0.196

0.569

0.609
Durbin-Watson

statistic
1.87 1.23 1.58 1.17 .65 1.50

utility level in 1955-56, u1 = 0.645:  utility level in 1987-88, uT = 1.403;  t value for u1 =  3.77.

error correction coefficient ρ: 0.048;  t value for ρ = 4.90.

(a) The units for the γis are 1984-85 Australian dollars worth of the named commodity
per  head.

(b) The α is and βis are constrained to be non-negative and to sum to one.  The γis are
constrained to be non-negative.

Table 5.4
Estimated Substitution Elasticities for AIDADS at Beginning and End

of Sample (from the Levels Estimation without Error Correction)*

i=j
1

Food
2

Alcohol
&

tobacco

3
Clothing

&
Footwear

4
Durables

5
Rent

6
Other

σi i
beginning

σi i
end

1 see last
2 cols

0.524 0.277 0.524 0.524 0.524 Ð0.82 Ð2.83

2 0.318 see last
2 cols

0.593 1.124 1.124 1.124 Ð8.88 Ð13.00

3 0.117 0.508 see last 2
cols

0.593 0.593 0.593 Ð2.72 Ð7.95

4 0.318 1.383 0.508 see last
2 cols

1.125 1.125 Ð11.01 Ð11.99

5 0.318 1.383 0.508 1.385 see last
2 cols

1.125 Ð10.00 Ð4.73

6 0.318 1.383 0.508 1.385 1.385 see last
2 cols

Ð1.46 Ð1.02

*The lower triangle shows values estimated for 1954Ð55; the upper triangle values
estimated for 1988Ð89.
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0.35

0.4

0.45

0.5

Other 
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Figure 5.1 AIDADS fitted in the levels (without error correction) to 
Australian data on budget shares,1954-55 through 1988-89
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Figure 5.2 AIDADS fitted in the levels (with error correction) to Aust- 
ralian data on budget shares, 1954-55 through 1988-89
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Figure 5.3 AIDADS fitted in the differences (with error correction) to
 Australian data on budget shares, 1954-55 through 1988-89

Ñ plot of budget shares



An Implicitly Additive Demand System 31

Figure 5.4 AIDADS fitted in the differences (with error correction) to
 Australian data on budget shares, 1954-55 through 1988-89

Ñ plot of first differences of shares
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Table 5.5
Estimated Substitution Elasticities for AIDADS at Beginning and End

of Sample (from the Levels Estimation with Error Correction)*

i=j
1

Food
2

Alcohol
&

tobacco

3
Clothing

&
Footwear

4
Durables

5
Rent

6
Other

σi i
beginning

σi i
end

1 see last
2 cols

0.338 0.465 0.542 0.516 0.542 Ð0.89 Ð2.94

2 0.198 see last
2 cols

0.643 0.749 0.713 0.749 Ð5.16 Ð9.05

3 0.250 0.599 see last
2 cols

0.971 0.925 0.971 Ð9.23 Ð16.31

4 0.334 0.801 1.011 see last
2 cols

1.078 1.032 Ð13.49 Ð17.65

5 0.308 0.738 0.932 1.245 see last
2 cols

1.078 Ð8.09 Ð4.65

6 0.334 0.801 1.011 1.351 1.215 see last
2 cols

Ð1.15 Ð0.94

* The lower triangle shows values estimated for 1954Ð55; the upper triangle
values estimated for 1988Ð89.

Table 5.6
Estimated Substitution Elasticities for AIDADS at Beginning and End

of Sample (from the First Differences Estimation)*

i=j
1

Food
2

Alcohol
&

tobacco

3
Clothing

&
Footwear

4
Durables

5
Rent

6
Other

σi i
beginning

σi i
end

1 see last
2 cols

1.043 1.033 1.045 0.732 1.045 Ð3.29 Ð5.79

2 1.031 see last
2 cols

1.059 1.071 0.751 1.071 Ð8.88 Ð16.02

3 1.004 1.045 see last
2 cols

1.061 0.744 1.061 Ð19.59 Ð20.42

4 1.033 1.075 1.047 see last
2 cols

0.752 1.073 Ð16.00 Ð12.83

5 0.688 0.716 0.697 0.718 see last
2 cols

0.752 Ð3.19 Ð2.78

6 1.033 1.075 1.047 1.071 0.718 see last
2 cols

Ð1.50 Ð1.06

* The lower triangle shows values estimated for 1954Ð55; the upper triangle
values estimated for 1988Ð89.



An Implicitly Additive Demand System 33

Table 5.7
Estimated Engel and Own and Cross-Price

Elasticities for the Mid 1950s

Price which changes, j

C
om

m
od

it
y

1
Food

2
Alcohol

&
Tobacco

3
Clothing

&
Footwear

4
Durables

5
Rent

6
Other

Engel
Elasticity

εi

a

1 b

c

Ð0.290

Ð0.307
-0.822

0.001

Ð0.013
0.065

Ð0.024

Ð0.005
0.029

0.001

0.001
0.038

0.001

Ð0.001
0.056

0.003

0.007
0.254

0.308

0.317
0.379

a

2 b

c

Ð0.103

Ð0.056
0.170

Ð0.934

Ð0.587
Ð0.918

Ð0.026

0.013
0.036

0.054

0.026
0.047

0.059

0.032
0.081

0.234

0.152
0.312

0.717

0.420
0.271

a

3 b

c

Ð0.038

Ð0.079
Ð0.006

0.024

0.004
0.002

Ð0.377

Ð0.734
Ð0.972

0.020

0.030
0.001

0.021

0.037
0.007

0.086

0.180
Ð0.060

0.263

0.561
1.029

a

4 b

c

Ð0.177

Ð0.246
Ð0.106

0.037

Ð0.053
Ð0.043

Ð0.063

Ð0.022
Ð0.022

Ð0.969

Ð0.997
Ð1.025

0.033

Ð0.006
Ð0.143

0.133

0.018
Ð0.166

1.007

1.306
1.506

a

5 b

c

Ð0.516

Ð0.428
Ð0.070

Ð0.092

Ð0.132
Ð0.029

Ð0.230

Ð0.080
Ð0.014

Ð0.076

Ð0.051
Ð0.017

Ð1.083

Ð1.007
Ð0.761

Ð0.331

Ð0.301
Ð0.110

2.329

1.998
1.002

a

6 b

c

Ð0.307

Ð0.261
Ð0.097

Ð0.013

Ð0.059
Ð0.039

Ð0.127

Ð0.027
Ð0.020

Ð0.011

Ð0.001
Ð0.023

Ð0.011

Ð0.012
Ð0.136

Ð1.046

Ð1.006
Ð1.151

1.515

1.366
1.466

a Based on parameter estimates shown in Table 5.1.
b Based on parameter estimates shown in Table 5.2.
c Based on parameter estimates shown in Table 5.3.
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Table 5.8
Estimated Engel and Own and Cross-Price

Elasticities for the Late 1980s

Price which changes, j

C
om

m
od

it
y

1
Food

2
Alcohol

&
Tobacco

3
Clothing

&
Footwear

4
Durables

5
Rent

6
Other

Engel
Elasticity

εi

a

1 b

c

Ð0.506

Ð0.517
-0.875

0.001

Ð0.011
0.042

Ð0.015

Ð0.003
0.033

0.001

0.002
0.052

0.003

0.000
0.086

0.007

0.013
0.337

0.509

0.515
0.326

a

2 b

c

0.039

0.021
0.135

Ð0.939

Ð0.642
Ð0.942

0.021

0.021
0.044

0.065

0.042
0.070

0.146

0.085
0.138

0.399

0.257
0.454

0.269

0.215
0.102

a

3 b

c

0.020

0.017
Ð0.002

0.032

0.020
0.001

Ð0.517

Ð0.834
Ð0.989

0.034

0.049
0.001

0.077

0.099
Ð0.065

0.211

0.300
0.006

0.142

0.348
1.048

a

4 b

c

Ð0.035

Ð0.083
Ð0.039

0.026

Ð0.024
Ð0.014

Ð0.010

Ð0.006
Ð0.012

Ð0.972

Ð0.997
Ð1.018

0.064

Ð0.003
Ð0.120

0.174

0.017
Ð0.115

0.752

1.096
1.318

a

5 b

c

Ð0.160

Ð0.145
Ð0.027

Ð0.032

Ð0.053
Ð0.010

Ð0.063

Ð0.028
Ð0.008

Ð0.035

Ð0.032
Ð0.012

Ð1.077

Ð1.030
Ð0.785

Ð0.211

Ð0.195
Ð0.080

1.578

1.483
0.923

a

6 b

c

Ð0.105

Ð0.090
Ð0.036

Ð0.007

Ð0.027
Ð0.013

Ð0.040

Ð0.009
Ð0.011

Ð0.007

Ð0.001
Ð0.016

Ð0.016

Ð0.011
Ð0.116

Ð1.043

Ð1.006
Ð1.106

1.217

1.144
1.299

a Based on parameter estimates shown in Table 5.1.
b Based on parameter estimates shown in Table 5.2.
c Based on parameter estimates shown in Table 5.3.
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The error correction term plays only a minor role in the fit of the first differences;
moreover it is only in this term that the levels variable appears (see equation 3.2.1)).   In
spite of this, the implied fit for the levels obtained from estimation in the differences,
while not good for three of the commodities, is not hopeless Ð see Figure 5.5.  As
expected, the noisier errors lead to wider sampling uncertainty about parameter values
(compare the t ratios in Tables 5.2 and 5.3).  There is relatively serious disagreement
about the logistic parameters αi and βi between Tables 5.2 and 5.3.  Clearly the fit in the
differences is at a disadvantage in drawing inferences about these asymptotes of the
marginal budget shares.  Interestingly, the substantial variation found in Food's marginal
budget share by other difference-based estimation methods is echoed in Table 5.3.

5.3 Price, substitution and Engel elasticities

The substitution elasticities in AIDADS are variables calculated from (2.2.4);
estimated values at the beginning and end of the sample are shown in Tables 5.4 to 5.6.
The estimates from the levels fit (Tables 5.4 and 5.5) are in reasonable agreement; the fit
in the differences (Table 5.6) yields much larger substitution elasticities between Food
and the other items.  With the exception of Rent (and also Durables, according to the fit in
the differences) substitutability among commodities registers a moderate increase over
the sample (see the last two columns of Tables 5.4 Ð 5.6).

Own and cross price elasticities of demand, and Engel elasticities for the mid-
1950s and the late 1980s are give in Tables 5.7 and 5.8 respectively. For the Engel
elasticities, the two most striking differences between the fits are for Clothing and
footwear and for Rent.  In the mid 1950s the Engel elasticity for Clothing and footwear
based on levels fit without error correction (0.26) was approximately half that based on
the levels fit with error correction (0.56) and this in turn was approximately half the
elasticity based on the first differences fit (1.00).  This pattern was substantially repeated
in the late 1980s.  For the two levels estimates this difference was mainly due to
differences in the estimates of marginal budget shares, while for the first differences
estimation the difference was mainly accounted for by the divergence between the
estimated and the actual budget shares with unchanging marginal budget share.  For
Rent in the mid 1950s the Engel elasticity is around 2 according to the levels fits but
around unity according to the fit of the first differences.  This was primarily due to the
poor fit of the first differences estimated budget share for Rent at the start of the sample
period.

 Unlike the linear expenditure system, in which the relative size of income and
substitution effects causes cross price elasticities to be negative, the stronger income
effects in AIDADS lead to several positive cross price elasticities (gross substitutability
rather gross complementarity).

   6.  Concluding Remarks

Our results demonstrate that AIDADS can be estimated with a 486 personal
computer using GAUSS386.  Given the extreme nonlinearities involved (especially via the
variable u, which lacks a closed-form representation), this is encouraging.  We should
also note, however, that searches of the likelihood surface are by no means automatic,
and require a large professional input.  The tendency for what at first looks like a
promising search to suddenly crash probably indicates that the likelihood surface has
sharp ridges and deep valleys.  It follows that the search algorithm needs very fine
tuning.  This cannot really be done without writing subroutines for analytic (rather than
just numerical) evaluation of derivatives.  The additional effort involved in this step has so
far been beyond us.
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Implicit direct additivity, we have seen, allows very much richer Engel behaviour
than is possible in the linear expenditure system.  Relative to AIDS and other
specifications which follow Working (1943), AIDADS offers applied GE modellers the
security that shares will not wander outside the unit interval when the model experiences
very large shocks.  The implicit functional form of the direct utility function presents no
difficulties for the users of GEMPACK (see, e.g., Pearson (1991)) since the computational
algorithm used for solving the model works from a representation in the differentials, and
rules for updating.  These components have been provided in this paper, as well as
estimated parameters for broad commodity groups.
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