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Abstract 

Finding suitable ways to develop models for predicting unknown data classes is a chal­

lenging task in data mining and machine learning. The improvement of the quality of 

data sets and combining AdaBoost with a weak learner is an important contribution to 

the development of these prediction models. 

The objectives of this thesis are to build accurate, stable and effective breast cancer sur­

vivability prediction models using breast cancer data obtained from the Srinagarind 

Hospital in Thailand. To achieve these objectives, five approaches were proposed in­

cluding: 1) £-means and RELIEF to improve accuracy and stability of prediction models 

generated from AdaBoost algorithms; 2) C-Support Vector Classification Filtering (C-

SVCF) to identify and eliminate outliers; 3) a combination of C-SVCF and over-

sampling approaches to handle both outliers and imbalanced data problems; 4) a hybrid 

AdaBoost and Random Forests to build stronger prediction models; and 5) C4.5 to form 

breast cancer survivability decision trees and rules. To illustrate capability, perform­

ance and effectiveness of these approaches, extensive experimental studies have been 

conducted using W E K A version 3.5.6, AdaBoost M A T L A B Toolbox, L I B S V M and 

C4.5 program. 
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Empirical results in this study show that fc-means and RELIEF algorithms improve the 

accuracy and stability of prediction models built from AdaBoost algorithms. Although 

the application of these algorithms is unable to achieve a significant improvement in 

accuracy, this study is useful for investigating the limitation of AdaBoost. On the other 

hand, C-SVCF is not only effective in identifying and eliminating outliers yet also can 

improve the accuracy and Area Under the receiver operating characteristic Curve 

(AUC) of the prediction models up to 24.12% and 29.69%, respectively. Moreover, a 

combination of C-SVCF and over-sampling approaches, which is able to handle an im-

balanced problem of data, provides the improvement of accuracy, sensitivity, specific­

ity, AUC score and F-measure of the models up to 29.83%, 29.83%, 47.34%, 38.59% 

and 33.38%, respectively. Furthermore, a hybrid AdaBoost and Random Forests pro­

vides an accuracy of prediction models up to 97.55% which is better than AdaBoost and 

Random Forests. In addition, C4.5 and C4.5rules are used to provide decision trees and 

decision rules which are easily understood by health practitioners. 

This thesis has systematically investigated the survivability analysis of breast cancer via 

data mining and provided suitable approaches for developing accurate and reliable 

breast cancer survivability prediction models. Furthermore, this thesis also provides 

accurate decision trees and rules for assisting medical practitioners in their decision­

making processes for breast cancer patients in Thailand. 
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Chapter 1 

Introduction 

This thesis aims to develop accurate, stable and effective breast cancer survivability 

prediction models using data mining processes to predict breast cancer survivability at 

Srinagarind Hospital in Thailand. Building accurate and reliable prediction models 

from historical data is expected to provide valuable information for assisting medical 

practitioners in their decision-making processes, thus enhancing provision of care, 

treatment monitoring, and quality assurance for patients [1]. Currently, no relevant 

studies have been conducted using breast cancer data at Srinagarind Hospital in Thai­

land, making the present study significantly useful to applications, not only in Thailand, 

but also in the less developed South East Asian region. Furthermore, this study's de­

velopment of effective new approaches to building accurate and reliable prediction 

models in data mining, adds to its significance. 

1.1 Background 

Breast cancer is the second most common cause of cancer death among women in Thai­

land [2]. It has been increasing in the past several years, with more than 5,000 new 

cases reported every year. Several research studies have contributed to investigating 

factors in diseases such as lifestyle changes, dietary patterns, and genetic issues [3], 

Also, much research has analysed the causes and outcomes of the disease 
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Chapter 1: Introduction 2 

which can assist patients in understanding how to make decisions about their quality of 

life in accordance with their finances [4] [5]. Traditional tools for analysing patients' 

survival including Kaplan-Meier and the Cox proportional hazard model, are commonly 

used to estimate the survival rate of a particular patient suffering from a disease over a 

particular time period [6]. However, these tools are unable to provide an accurate pre­

diction for an individual patient's outcomes, due to the fact that they only use singular 

variate and linear analysis techniques to predict future trends [7]. 

Currently, data mining is widely used in medical domains, including early diagnosis of 

diseases [8] and patients' risk factors [9] [10], and prescription of suitable drugs and 

treatments [11] [12] [13]. In data mining, classification is one of the most commonly 

utilised techniques in building a model for predicting the unseen data [14] [15] [16] 

[17]. Besides, classification techniques have been proven to be more accurate than the 

traditional tools mentioned above [7] [18]. In relation to techniques of analysing breast 

cancer survivability, Ohno-Machado [18] found Neural Networks to be better than Cox 

Proportional Hazards (traditional tool), whereas Delen, Walker and Kadam [4] showed 

that the accuracy of a decision tree (C5) outperforms Neural Networks and logistic re­

gression using a large 5-year breast cancer survivability data set from SEER databases. 

Similarly, Bellaachia and Guven [19] utilised SEER databases to build a 5-year breast 

cancer survivability prediction model, confirming that the accuracy of the decision tree 

(C4.5) is superior to Neural Networks and Naive Bayes. Despite these findings, Jons-

dottir, Hvannberg, Sigurdsson and Sigurdsson [20] argued that it is difficult to find an 

algorithm that is accurate and consistent in all data sets especially in a small data size. 

This is due to problems including selecting suitable attributes to build the model and 

quality of medical data (e.g. outliers and imbalanced data), which lead to reduction in 
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the performance, effectiveness and stability of prediction models [21] [22] [23]. In or­

der to solve these problems in the present study, four major problems are addressed: 

1) How to identify the suitable attributes in order to improve the accuracy and sta­

bility of prediction models. 

2) How to identify and eliminate outliers in order to improve the performance and 

effectiveness of classifiers. 

3) How to improve the performance and effectiveness of classifiers in imbalanced 

data problems. 

4) How to build accurate and effective breast cancer survivability prediction mod­

els. 

1.2 Research issues investigated in this thesis 

In order to build accurate breast cancer survivability prediction models, five ap­

proaches are proposed. The first approach uses new AdaBoost algorithms (Real, Gen­

tle and Modest) to build a 5-year breast cancer survivability prediction model. The 

performance of these models is investigated to gain a better understanding of the rela­

tive importance of their features. This is done through employing a fc-means algorithm 

and RELIEF attributes selection to improve the performance and stability of AdaBoost 

classifiers. Unlike Qahwaji, Al-Omari, Colak and Ipson [24] who only compared the 

performance of Real, Gentle and Modest classifiers using simple random to divide data 

sets without reducing bias and variance of the results, the present study utilises random 

stratified 10-fold cross-validation to divide a data set with reducing bias and variance 

of the results. This approach is chosen due to the belief that employment of a £-means 

algorithm to transform the numeric attribute into a discrete attribute and RELIEF to 
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select suitable attributes, can enhance performance and stability of the models. More­

over, using random stratified 10-fold cross-validation is expected to increase the reli­

ability of experiment results. 

The second approach proposes C-Support Vector Classification filtering (C-SVCS) to 

improve quality of breast cancer survivability data sets. This approach can signifi­

cantly improve the accuracy and Area Under the receiver operating characteristic 

Curve (AUC) scores of prediction models and is computationally inexpensive [25]. 

Outlier filtering framework has traditionally been built in three main steps including: 1) 

generation of a data set without outliers; 2) adding a level of outliers to the outlier free 

data set; and 3) using learning algorithms to evaluate performance of approaches. 

However, this thesis employs a different outlier filtering framework to achieve better 

prediction performance, following three main steps: 1) obtain original data; 2) apply C-

SVCF to identify and eliminate outliers; and 3) evaluate the capability of C-SVCF 

throughout the performance of prediction results using well-known learning algo­

rithms. In the traditional framework, the capability of the filtering approach has been 

evaluated using only a small number of learning algorithms. For example, Verbaeten 

and Assche [26] simply utilised precision, tree size and accuracy of a model generated 

from a decision tree learning algorithm to evaluate the performance of their filtering 

approach. However, this thesis applies the accuracy and AUC score of models gener­

ated from seven well-known learning algorithms (C4.5, Conjunctive Rule, Naive 

Bayes, Nearest Neighbour, Random Committee, Random Forests and Radial Basis 

Function Network) to evaluate the capability and effectiveness of the C-SVCF ap­

proach. Even though C-SVC is commonly used to build prediction models [27] [28] 

[29], in this thesis it is employed to identify outliers, thus providing an appropriate ap-
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proach to identifying outliers while significantly improving the performance and effec­

tiveness of the classifiers. 

The third approach proposes the combination of Outlier filtering and Over-Sampling 

(OOS) to resolve problems related to outliers and imbalanced data. A recent study by 

Padmaja, Dhulipalla, Bapi and Krishna [30] utilised a three step framework to improve 

data quality: 1) employ ^-Nearest Neighbours (&-NN) to eliminate outliers in a minor­

ity class; 2) apply over-sampling to increase the size of this minority class; and 3) ex­

ploit under-sampling to reduce the size of the majority class. However, their frame­

work only filtered outliers from the minority class, allowing outliers in the majority 

class to remain. Therefore, in order to tackle this problem, the present study adopts 

four main steps to improve data quality: 1) remove outliers from data sets using C-

Support Vector Classification filtering approach; 2) divide the data set into majority 

and minority classes; 3) resize the minority class to the same size as the majority class 

using an over-sampling approach; and 4) combine majority and minority classes into 

one data set. This framework is preferred to eliminate outliers in both minority and 

majority classes. Furthermore, this study employs five evaluation methods including 

accuracy, sensitivity, specificity, Area Under the receiver operating characteristic 

Curve (AUC) and F-measure of models, to evaluate the capability and effectiveness of 

outlier filtering approaches, and to increase the significance and reliability of experi­

mental results. 

The fourth approach uses AdaBoost which is an attractive ensemble technique in ma­

chine learning since it is used to improve the performance of classifiers by combining 

with a weak learner [31] [32] [33]. Several studies have successfully combined 

AdaBoost with weak learners to solve classification problems. For example, Li, Wang 
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and Sung [34] combined AdaBoost with Support Vector Machine ( S V M ) to demon­

strate that this combination has a better generalisation performance than only SVM. On 

the other hand, Leshem and Ritov [33] combined AdaBoost with Random Forests to 

build a motor traffic flow prediction model, showing that this combination has low error 

rates and is better than basic AdaBoost (AdaBoost with Decision Stump). Nevertheless, 

few research studies have employed this combination in the medical field. Therefore, a 

combination of AdaBoost and Random Forests is used to build the 3-, 5-, 8- and 10-year 

breast cancer survivability prediction models in this study. Moreover, several evalua­

tion methods (accuracy, sensitivity, specificity, Area Under the receiver operating char­

acteristic Curve (AUC), F-measure and Kappa statistics) are employed to measure the 

performance and effectiveness of prediction models. 

The final approach utilises C4.5 and C4.5rules to build 3-, 5-, 8- and 10-year breast can­

cer survivability decision trees and rules models. These models are easily understood 

by medical practitioners and combine with previous practitioner knowledge to enhance 

decision making systems. 

1.3 Contributions of the thesis 

The main contributions of this thesis are to develop new medical data mining ap­

proaches to build accurate and reliable breast cancer survivability prediction models as 

follows: 

1) Utilise AdaBoost algorithms to construct breast cancer survivability prediction 

models, followed by £-means and RELIEF to improve the accuracy and stability; 

2) Apply C-Support Vector Classification Filtering to identify and eliminate outliers 

from breast cancer survivability data sets to improve data quality; 
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3) Combine C-Support Vector Classification Filtering and Over-sampling ap­

proaches to further improve data quality in both outliers and imbalanced data 

problems; 

4) Integrate AdaBoost with Random Forests to build accurate and reliable breast 

cancer survivability prediction models, which opens up an avenue to extending 

the medical outcomes applications; and 

5) Employ C4.5 and C4.5rules to build 3-, 5-, 8- and 10-year breast cancer surviv­

ability prediction decision trees and rules. 

1.4 Outline of the thesis 

In presenting the development of accurate and effective breast cancer survivability pre­

diction models, this thesis comprises nine chapters. Chapter 1 contains general knowl­

edge about the aims and outline of this thesis. 

Chapter 2 discusses data mining and knowledge discovery. Issues about data mining 

classification together with the well-known techniques including C4.5, Classification 

And Regression Tree (CART), Naive Bayesian (NB), ^-Nearest Neighbour (£-NN), 

Support Vector Machines (SVM) and rule-based, are discussed. 

Chapter 3 presents the background of breast cancer and its treatments. Survival analy­

sis and traditional tools for analysing patients' survivability are described. Furthermore, 

in order to comprehend data mining tools used in the medical field, an analysis of data 

mining problems in the medical field is presented. 

Chapter 4 proposes a fc-means clustering and RELIEF data selection algorithm to trans­

form the numerical attribute into groups, and to choose relevant attributes to build pre-
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diction models. The capability and effectiveness of the proposed approach are evalu­

ated using accuracy, sensitivity and specificity of prediction models. 

Chapter 5 presents a C-Support Vector Classification Filter (C-SVCF) to identify and 

remove outliers to improve the quality of 5-year breast cancer survivability data. The 

capability and effectiveness of this approach are measured using the accuracy and Area 

Under the receiver operating characteristic Curve (AUC) of prediction models. 

Chapter 6 proposes a combination of Outlier filtering and Over-Sampling (called OOS) 

to improve data quality in relation to outliers and imbalanced data. In order to assess 

the capability and effectiveness of the OOS approach, several measurement methods 

including accuracy, sensitivity, specificity, Area Under the receiver operating character­

istic Curve (AUC) and F-measure of models are utilised. 

Chapter 7 presents a combination of AdaBoost and Random Forests algorithms to de­

velop breast cancer survivability prediction models. Performance and effectiveness of 

prediction models are evaluated using accuracy, sensitivity, specificity, AUC, F-

measure and Kappa statistics. 

Chapter 8 utilises C4.5 and C4.5rules to build 3-, 5-, 8- and 10-year breast cancer sur­

vivability decision trees and decision rules, as they provide an actual tree and rule which 

are easily understood by medical practitioners in accessing the knowledge-base for de­

cision-making processes. 

Lastly, Chapter 9 concludes the dissertation and presents future directions for the re­

search into data mining for breast cancer survivability. 



Chapter 2 

Literature Review 

This chapter reviews the background of data mining, discussing its processes and pre­

senting its tasks. As data mining commonly utilises a classification for building predic­

tion models, this classification, supervised and unsupervised, is analysed, and classifica­

tion problems are discussed in order to understand these problems. To investigate the 

performance and effectiveness of prediction models, data selections including 10-fold 

and stratified 10-fold cross-validation and evaluation methods including accuracy, sen­

sitivity, specificity, Receiver Operating Characteristic (ROC) curve, Area Under the re­

ceiver operating characteristic Curve (AUC), F-measure and Kappa statistics, are also 

discussed. Finally, basic classification techniques including C4.5, Classification And 

Regression Tree (CART), Naive Bayesian (NB), ^-Nearest Neighbour (&-NN), Support 

Vector Machines (SVM) and Rule-Based are reviewed in order to understand the 

strength and limitation of these basic techniques. 

2.1 Data mining 

Data mining refers to processes used to extract useful information and knowledge from 

large databases [35]. Dale and Bench-Capon [36] pointed out that data mining is a new 

term for knowledge discovery in a large data set to extract relationships from a mass 

9 
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of data. Wong, Lam, Leung, Ngan and Cheng [37] strongly argued that data mining 

can be considered as one step in knowledge discovery for databases (KDD). Similarly, 

Ramirez, Cook, Peterson and Peterson [38] referred to data mining as a particular step 

in the process of knowledge discovery, while KDD is referred to as the overall process. 

In fact, the two terms are sometimes drawn upon interchangeably. 

Recently, data mining has been widely used, not only for analysing medical data but 

also in Web, text and images data. In relation to medical mining, many research studies 

have utilised data mining to analyse medical data. For example, Yi and Fuyong [39] 

applied a data mining process using C-Support Vector Machine (C-SVM) to analyse 

breast cancer data sets from the University of Wisconsin Hospitals. Their results indi­

cated that this technique significantly improved the accuracy of the classifiers in unseen 

test sets, however, in their study this technique was limited to small data sets. Further­

more, Chang [40] employed data mining processes, decision tree and association rules 

to classify delay levels according to physical illness, language, motor and social emo­

tional developmental delays. He concluded that his results can assist healthcare profes­

sionals in understanding the development of young children during the process of 

evaluation and diagnosis. 

In relation to Web mining, several research studies have utilised data mining to analyse 

on-line user behaviour and user on-line traversal patterns (internet sites) [41] [42] [43]. 

For example, Madria, Raymond, Bhowmick and Mohania [44] employed Web data 

mining, e.g. association rule, to define relationships between nodes and links of a Web 

data set. Their results showed that data mining provided a further step in revealing the 

patterns and linked properties of a document in Web data mining. In addition, Yan, 

Shen, Peng and Pan [45] used a parallel Web mining algorithm to build a link prediction 
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model in the environment of W e b cluster servers. Their results demonstrated that their 

model reduced the time complexity and cost of analysis. 

On the other hand, text mining uses data mining processes to categorise class labels for 

new documents based on previous documents [46] [47] [48]. For instance, Zhang and 

Yang [49] presented that Ridge Regression is better than Support Vector Machine 

(SVM) in the case of imbalanced data. Conversely, Li and Staunton [48] designated 

Association Rule-based Classifier By Categories (ARC-BC) in order to provide high 

accuracy for building associative text classifiers in small data sets. 

Similar to text mining, many research studies have made use of data mining to recog­

nise images. For example, Olukunle and Ehikioya [50] suggested that an association 

rule technique is suitable for extracting hidden information from medical image data. 

However, Melgani and Bruzzone [27] recommended that a Support Vector Machine 

(SVM) classifier is superior to both Radial Basis Function Neural Networks and k-

Nearest Neighbour classifiers when classifying hyper-spectral remote sensing images. 

In this study, the term data mining is used and medical mining is of interest because 

analysing medical data can assist medical practitioners to enhance the provision of care 

and quality assurance. In order to understand data mining, its processes and tasks are 

reviewed. 

2.1.1 Data mining processes 

In relation to business areas, data mining processes consist of six steps [51] including 

business requirements analysis, data requirements analysis, data mining opportunity 

identification, data mining project implementation, business application and business 

results analysis. Likewise, Shearer [52] introduced the Cross-Industry Standard Process 

for Data Mining (CRISP-DM) with six steps containing business understanding, data 
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understanding, data preparation, modeling, evaluation and deployment for developing 

prediction models. However, Han and Kamber [53] presented seven steps including 

data cleaning, data integration, data selection, data transformation, data mining, pattern 

evaluation and knowledge presentation. In short, according to Han and Kamber [53], 

data mining processes can be summarised into four main steps as follows. 

1) Pre-processing includes data integration, data selection, data transformation and 

data cleaning. Data integration combines multiple data sources. Data selection 

identifies and extracts the data from domains. Data transformation transforms 

or consolidates data into an appropriate form for data mining. Data cleaning 

removes outlier/noise in data. 

2) Mining involves the process of selecting and/or developing the technique of data 

mining to extract description and prediction patterns. 

3) Evaluating includes the process of measuring performance of the prediction 

models. 

4) Knowledge presentation refers to the step of presenting the knowledge from the 

mining stage in a suitable form for end-users. 

In order to build an accurate and reliable prediction model, pre-processing and mining 

processes are the most challenging steps in the data mining process [53] [54] [5] [20]. 

This may be due to the fact that both processes significantly improve the performance 

and effectiveness of models [54] [5] [20] [55] [30], Therefore, in this thesis, pre­

processing is also discussed, as well as mining processes. 
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2.1.2 Data mining tasks 

Data mining tasks incorporate two primary tasks including prediction and description 

[53]. Prediction involves using known class values in a data set to predict unknown 

class values. The main prediction tasks in data mining contain classification and regres­

sion. Classification is utilised to assign an unlabelled class value to predefine categori­

cal classes. On the other hand, regression is exploited to map a data record to a numeri­

cal class attribute. 

Unlike prediction, description embraces describing the data and its behaviour in order to 

be interpretable to users. The main descriptive tasks in data mining include clustering, 

summarisation and dependency modelling. Clustering is employed to define a finite set 

of categories or clusters describing data. Summarisation is used to illustrate a subset of 

the data in a compact way. Dependency modelling is exploited to express the signifi­

cant dependencies between data attributes using a particular model. 

In this thesis, classification for predicting the unlabelled class attribute is the main con­

cern due to the fact that it provides techniques to develop effective models used in deci­

sion-making systems. 

2.2 Classification 

Classification is a learning process which involves learning knowledge from a labelled 

class attribute and applying learned knowledge to an unlabelled class attribute [53]. It 

consists of supervised and unsupervised classifications. Supervised classification refers 

to tasks for building a model from a labelled class attribute in training data [53]. In con­

trast to supervised classification, unsupervised classification refers to tasks for formu-
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lating a class attribute from an unlabelled class attribute by grouping high dimension 

data into a similar class [53] [56] [57]. 

Many research studies have employed supervised classification to form prediction mod­

els. For example, Buciu, Kotropoulos and Pitas [58] utilised Support Vector Machine 

(SVM) for building a prediction model to detect human face data. Their results indi­

cated that SVM was stable in terms of bias and variance. However, Okun and Priisalu 

[59] employed a Random Forests algorithm to build an ensemble decision tree for can­

cer classification based on gene expression. They claimed that this decision tree pro­

vided an important relevance gene. 

On the other hand, several research studies have utilised unsupervised classification to 

cluster image data to improve the quality of images. An example of this is a study car­

ried out by Shalvi and DeClaris [11] in which a self-organisation map was used for 

grouping two dimensional images of morphology, and then data mining and data visu­

alisation techniques were applied to illustrate the morphology images. However, Pham 

[56] introduced Edge-Adaptive Fuzzy C-Means (EAFCM) clustering techniques to 

group two dimensional images of tissue samples. His results showed that EAFCM out­

performed fuzzy C-means clustering. 

This thesis concentrates on supervised classification to develop accurate and reliable 

prediction models. In order to reduce confusion about the term, the word classification 

will be used to indicate supervised classification. Moreover, to understand the concepts 

and terms of classification the following are discussed: types of classification, a simple 

example of the classification problem, data selection for classification procedures and 

evaluation methods. 
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2.2.1 Classification problems 

Classification problems refer to problems of separating a data set into a smaller class, 

and determining whether particular data in the data set is in a particular class or not 

[60]. Many classification problems have been addressed in data mining, machine learn­

ing, pattern recognition and statistics [61] [14] [62] [24] [63]. In order to understand 

classification problems, a simple binary classification problem is given in Figure 2.1 

[64]. 
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Figure 2.1: Simple classification 

Figure 2.1 shows a simple classification problem. Data in this problem consist of in­

stances and attributes. Instances refer to data in each row, and these are also called ex­

amples, vectors and tuples. On the other hand, attributes refer to values in each column, 

and these are also called features and variables. For the rest of this thesis, the term an 

instance will refer to data in a row and an attribute will refer to data in a column. There 
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are two types of the instance including numerical and categorical. Numerical instances 

refer to continuous values, while categorical instances refer to a finite set of categories. 

Attribute also has two types including predictor attributes and dependent attributes 

(called class attribute). In order to build a model and evaluate the model, a data set is 

commonly divided into training and test sets using a data selection method. The train­

ing set is composed of instances with labelled classes. This training set is used to build 

a prediction model or classifier. On the other hand, a test set contains instances with 

unlabelled classes. It is used to measure the performance of the models. 

2.2.2 Data selection 

Data selection methods (cross-validation, random sampling and bootstrap) are used to 

divide an original data set into training and test sets. Different methods have their own 

strategies to partition the original data set and combine the results of multiple partitions. 

The most commonly used data selection method is cross-validation due to the fact that it 

provides less bias and variance of classification results than random sampling and boot­

strap [53] [4] [65]. Two cross-validation methods, including 10-fold and stratified 10-

fold, are discussed. 

2.2.2.1 10-fold cross-validation 

The 10-fold cross-validation method is widely used in data mining, machine learning 

and patterns recognition due to the fact that it spends less time dividing the data set into 

training and test sets [66]. However, the distribution of the class attribute in training 

and test sets using a data selection method is different from the original class attribute. 

This leads to instability in predicting results [67]. This method divides a data set (D) 

into 10 subsets {dh d2, ..., d]0}. The first experiment uses partition {<//} for a test set 
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(T2\ and the remaining partition {d2-d10} is used for a training set (Ji). The second ex­

periment uses partition {d2} for a test set, and the remaining partitions {du d3, ..., d]0} 

are used for a training set. These training and test sets are performed 10 times. Several 

research studies have investigated the effectiveness of data selection methods. For ex­

ample, de Lacerda, de Carvalho and Ludermir [66] pointed out that 10-fold cross-

validation outperforms booststep and holdout (random sampling) methods using a ge­

netic classifier. 

2.2.2.2 Stratified 10-fold cross-validation 

Stratified 10-fold cross-validation is widely employed in medical research [68] [65], as 

this kind of method reduces the bias and variance of classification results in the evalua­

tion process [53] [64]. Moreover, it leads to an increase in the performance of models, 

which results in greater reliability. There are four main processes of stratified 10-fold 

cross-validation including [53]: 

1) division of the data set into a set of subclasses; 

2) assignment of a new sequence number to each set of subclasses; 

3) random selection of subclasses into 10 subsets; and 

4) combination of each fold of each subclass into a single fold. 

As a result, the size of each single fold is approximately equal to the original data set. 

In this way, many research studies have utilised this method. For instance, Flores and 

Gonzalez [68] intensively utilised the stratified 10-fold cross-validation to evaluate 

Neural Networks and decision tree algorithms in mammograms of breast cancer data. 

Also, Kohavi [67] demonstrated that stratified 10-fold cross-validation performs better 

than other methods in terms of the bias and variance of estimated accuracies. 
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Therefore, choosing the most suitable data selection method leads to generating a model 

which provides a better performance of the classification result [67] [66]. For this rea­

son, stratified 10-fold cross-validation has been chosen to reduce the bias and variance 

as well as to improve the classification results in the present study. 

2.2.3 Evaluation methods 

Evaluation methods are used to illustrate and evaluate the performance and effective­

ness of models. The way of evaluating the performance of the model includes generali­

sation and reconstitution errors [53]. Generalisation errors refer to evaluation of a 

model using a test set, while reconstitution errors refer to evaluation of a model using a 

training set. The effectiveness of such a model is not only predicted correctly in an un­

seen test set, but also provides meaningful and understandable classifier behaviours. In 

this section, accuracy, sensitivity, specificity, Receiver Operating Characteristic (ROC) 

curve, Area Under the receiver operating characteristic Curve (AUC), F-measure and 

Kappa statistics, based on the confusion matrix, are discussed. 

Confusion matrix refers to the relational table of actual classes and predicted classes 

used for calculating the performance of classifiers [53]. It is also used to measure the 

level of effectiveness of the classification model by presenting the number of correct 

and incorrect classifications of each possible class value being classified [69]. The con­

fusion matrix is shown in Figure 2.2. 

Actual 

Classes 

Positive 

Negative 

Predicted Classes 

Positive 

TruePost 

FalsePost 

Negative 

FalseNeg 

TrueNeg 

Figure 2.2: A confusion matrix 
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Figure 2.2 illustrates a confusion matrix of classes 'Positive' and 'Negative'. The con­

fusion matrix is used to calculate the performance of the classifier in which: 

• TruePost is the true positive value which is the number of correct predictions in 

a positive class; 

• FalsePost is the false positive value which is the number of incorrect predictions 

in a positive class; 

• TrueNeg is the true negative value which is the number of correct predictions in 

a negative class; and 

• FalseNeg is the false negative value which is the number of incorrect predictions 

in a negative class. 

2.2.3.1 Accuracy, sensitivity and specificity 

Accuracy, sensitivity and specificity are basic performance measurements in classifica­

tion problems [53]. Accuracy reflects the possible discrepancies between a predicted 

class and an actual class. It also refers to the percentage of correctness of positive and 

negative classes among the test set defined in Equation 2.1. Sensitivity refers to the true 

positive rate in the test set defined in Equation 2.2 while specificity refers to the true 

negative rate in the test set defined in Equation 2.3. 

TruePost + TrueNeg 
accuracy = (2.1) 

TruePost + FalsePost + TrueNeg + FalseNeg 

TruePost 
sensitivity = (2.2) 

TruePost + FalsePost 

TrueNeg 
specificity = (2.3) 

TrueNeg + FalseNeg 
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W h e n the classifier can predict all cases correctly, the value of a perfect test will be 100 

percent of both sensitivity and specificity. Much research has measured the perform­

ance of classifiers using accuracy, sensitivity and specificity including Delen, Walker 

and Kadam [4], Delen and Patil [65], Bellaachia and Guven [19], and Kazmierska and 

Malicki [70]. 

2.2.3.2 Receiver operating characteristic curve 

Receiver Operating Characteristic (ROC) curve is widely used in evaluating medical 

images, because it provides the analysis of diagnostic tasks such as disease prevalence 

and cost-benefit relations in decision-making systems [71] [72]. Moreover, the ROC 

curve provides more robust evaluation than traditional comparisons such as error rates 

[73] [72]. As a result, it has often been employed both as an evaluation criterion for the 

predictive performance of classification in data mining and as an alternative single-

number measure for evaluating the performance of learning algorithms [74]. 

The ROC curve utilises two-dimensional graphs to show the true positive rate (TPR) 

defined in Equation 2.4 and the false positive rate (FPR) defined in Equation 2.5 [75] 

[76] [72]. TPR is plotted on the 7axis, while FPR is plotted on the Zaxis. 

TruePost 
TPR = (2.4) 

TruePost + FalseNeg 

FalsePost 
FPR = (2.5) 

TrueNeg + FalsePost 

Two important points in the ROC curve include the lower left point (0: 0) and the upper 

right point (1: 1) (see Figure 2.3). The lower left point (0: 0) represents the strategy of 

never issuing a positive classification, as these classifiers commit no false positive rates 

and gain on true positives rates. The upper right point (1:1) represents the opposite 
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strategy of unconditionally issuing positive classifications. The R O C curve is displayed 

in Figure 2.3. 

Figure 2.3: Receiver operating characteristic curve 

Figure 2.3 shows that classifier A is better than classifier B. Several research studies 

have utilised the ROC curve to evaluate classifiers. For instance, Biesheuvel, Ver-

gouwe, Steyerberg, Grobbee and Moons [77] employed the ROC curve to interpret the 

results of two regression models including Polytomous and Dichotomous logistic re­

gression for diagnosis of cancer. Their results showed that the ROC curve provided a 

simple illustration for demonstrating the performance of the classifiers. Likewise, Liao, 

Nolte and Collins [78] made use of the ROC curve to present the performance of multi-

sensor decision fusion algorithms that combine the local decisions of existing detection 

algorithms for different sensors. However, Webb and Ting [79] pointed out that ROC is 

unsuited to predicting models under varying class distributions, and presents difficulties 

in distinguishing the performance of classifiers in some cases. 

2.2.3.3 Area under the receiver operating characteristic curve 

Area Under the receiver operating characteristic Curve (AUC) is commonly used for 

evaluating medical diagnosis systems [75] [76] [80]. Recently, this method has been 
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proposed as an alternative measurement criterion for evaluating the predictive ability of 

learning algorithms by randomly selecting the instance of one class which has a smaller 

estimated probability among other classes [75] [76] [80]. The AUC of A and B classifi­

ers is exhibited in Figure 2.4 below. 

Figure 2.4: The area under the R O C curve 

Figure 2.4 shows that the A U C of A classifier is larger than the B classifier, meaning 

that A classifier is better than B classifier. Besides, it can be interpreted into a numeric 

range which has scores between 0 and 1. As a result, many research studies have util­

ised AUC scores for comparing classifiers' performance. For example, Jiang [81] suc­

cessfully employed average AUC scores to analyse the optimal linear in Artificial Neu­

ral Networks (ANN) output. Furthermore, Huang and Ling [82] found that AUC is a 

more accurate measurement method than the ROC curve. 

2.2.3.4 F-measure 

F-measure incorporates the evaluation of effectiveness expressed in terms of hits, 

misses, false alarms and correct rejections used in text recognition and information re­

trieval systems [83]. It is computed using both precision (P) defined in Equation 2.6 

and recall (R) defined in Equation 2.7. Therefore, F-measure is defined in Equation 2.8. 
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P TruePost (2 6) 

TruePost + FalsePost 

R =
 TruePost (2.7) 

TruePost + FalseNeg 

F - measure = (2-8) 
P + R 

In order to achieve a high F-measure, both recall and precision have to be balanced. 

That means achieving a high value for either one of them does not lead to a high F-

measure value. Several research studies have utilised F-measure to measure perform­

ance and effectiveness of classification models. By way of illustration, Li and Park [84] 

employed F-measure to measure the categorised effectiveness of Artificial Neural Net­

works in text categorisation. Their results showed that F-measure was superior for 

evaluating the effectiveness of text models. Likewise, Musicant, Kumar and Ozgur 

[85] measured the minimisation number of misclassified points using F-measure. Their 

results indicated that F-measure was able to present the effectiveness of Support Vector 

Machine classifiers. 

2.2.3.5 Kappa statistics 

Kappa statistics are one of the most extensively used methods for nominal scales, intra-

class correlation coefficients [86] and measurement of the agreement normalised for 

chance agreement [87] [88]. It has been used in evaluation functions for assessing the 

value of individual members of the population [87]. Kappa statistics are used for evalu­

ating a classifier based on both the probability of actual agreement P(A) defined in 

Equation 2.9 and the probability of chance agreement P(E) defined in Equation 2.10. 

Therefore, Kappa statistics are defined in Equation 2.11. 
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= TruePost+ TrueNeg ~ ~ 

TrueNeg + FalseNeg 

T>< ™ (TruePost + FalseNeg)(TruePost + FalsePost) 
F(K) = 

(TrueNeg + FalseNeg) 
(FalseNeg + TrueNeg)(FalsePost + TrueNeg) (2-10) 
(TrueNeg + FalseNeg) 

Kappa =P^-P(E) (2.11) 
1 - P(E) 

In this way, Kappa statistics are an alternative method to evaluate classifiers in classifi­

cation problems. Although Thomsen, Olsen and Nielsen [89] pointed out that the 

Kappa statistics method is unable to handle the bias between observers, several re­

searchers have successfully exploited Kappa statistics as a criteria measurement for 

model selection. For instance, Gao, Warren and Warren-Forward [90] utilised Kappa 

statistics to evaluate the reliability of inter-rater and intra-rater of visual mammography 

density. Their results showed that a higher Kappa statistics value increased the reliabil­

ity of visual mammography density. 

In this dissertation, the accuracy, sensitivity, specificity, AUC, F-measure and Kappa 

statistics of classifiers are employed to evaluate the performance and effectiveness of 

classification models generated by classification techniques. In order to understand the 

strength and weakness of these techniques, basic classification techniques are discussed. 

2.3 Basic classification techniques 

Classification is one of the most widely used techniques in data mining, knowledge dis­

covery, artificial intelligence, pattern recognition and machine learning. It enables re­

searchers to extract models describing important data classes or to predict future data 

trends [53] [91] [92] [93] [1] [94]. These techniques have been rapidly developed and 
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diffused across many disciplines including finance and investment, manufacturing, 

business and marketing and medical health care [95]. They also allow users to describe 

and predict information from large and small sets of data. Therefore, in this section, 

basic classification techniques including C4.5, Classification And Regression Tree 

(CART), Naive Bayesian (NB), Neural Networks (NN), Jfc-Nearest Neighbour (k-NN), 

Support Vector Machine (SVM) and rule-based classifier are discussed in order to un­

derstand basic concepts for developing prediction models (classifiers). 

2.3.1 C4.5 

C4.5 [96] is a classic decision tree algorithm in machine learning. It is used to build a 

tree structure for classifying a data set related to a class attribute consisting of nodes and 

leaves [53] [97] [98]. In C4.5, nodes represent rules which categorise data according to 

attributes, and leaves represent the condition in each rule. A basic decision tree algo­

rithm is a straightforward algorithm, as shown in Algorithm 2.1 [53]. 
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Algorithm 2.1: A basic decision tree 

Input: 
D: Data set; 
attribute Jist: the set of candidate attributes; 
Attribute selectionjnethod: a procedure to determine the splitting criterion; 

Output: 
N: Decision tree classifier; 

(1) Create a node N; 
(2) If instances in D are all of the same class (C) then 
(3) return N as a leaf node labelled with the class C; 
(4) End if 
(5) If attribute Jist is empty then 
(6) Return N as a leaf node labelled with the majority class in D: //majority voting 
(7) Apply Attributeselectionjnethod (D,attribute_list); 
(8) Label node N with splitting_criterion; 
(9) End if 
(10) If splitting_attribute is discrete-valued and 

Multiway splits allowed then // not restricted to binary trees then 
(11) attribute list <- attribute Jist - Splittingjxttribute; 
(12) For7=1 of splitting_criterion do 

//partition the tuples and grow subtree from each partition 
(13) let Dj be the set of data tuples in D satisfying outcome./; // a partition 
(14) if Dj is empty then 
(15) attach a leaf labelled with the maj ority class in D to node N; 
(16) Else 
(17) Attach the node and return it by 

Generate_decision_tree(Dj,attribute_list) to node N; 
(18) End if 
(19) End for 
(20) End if 
(21) Return N. 

Algorithm 2.1 displays a decision tree algorithm to generate a decision tree model from 

a data set, D refers to a complete data set with its class labels. Attribute list refers to a 

list of attributes described in the data set and Attribute_selection_method refers to a 

heuristic procedure used to select the best attribute from a given data set. 

C4.5 starts with partitioning the instances into smaller subsets by using Gain Ratio for 

selecting the best attribute with unequal class labels from a large number of instances. 

Following this, the recursive strategy applies the top-down greedy algorithm to build a 

tree. The Gain Ratio is defined in Equation 2.12 as follows: 
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GainRatio(A)= ™ n W (2.12) 
SplitInfor(A) 

In Equation 2.12, Gain Ratio depends on Gain (called Gain Information) and Splitlnfor 

(called Split Information). Gain Information is computed using Equations 2.13. It is 

based on information theory defined in Equations 2.14 and 2.15, respectively. 

Gain(A) = Infor(D) - InforA (D). (2.13) 

Infor(D) = -£ Pj \og2(Pj). (2.14) 

InforA(D) = TOxJ] Pj log2(/>,). (2.15) 
y=i \v\ ;=i 

On the other hand, Split Information represents the potential information generated by 

splitting a data set (D) into partitions (v) which corresponds to outcomes of attribute (A) 

in a data set. Split Information is computed from Equation 2.16. 

JL D, D; 
Splitfor(A) = - £!-l-;tlog2(-A. (2.16) 

j=\ \D\ D 

The attribute with the maximum Gain Ratio is selected as the splitting attribute. How­

ever, when the split information is 0, then the Gain Ratio becomes unstable. Therefore, 

a constraint on the Information Gain is added to avoid this situation. An example of 

computing Gain Ratio is given in Example 2.1. 

Example 2.1: In order to understand the process of building the decision tree using 

C4.5 technique, the weather data set introduced by Quinlan [96] is customised and pre­

sented as a 5-year breast cancer survivability data set. This is due to the fact that this 

simple data set is easy to understand for building the decision tree [53] [96], The data 

set is shown in Table 2.1. 
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Table 2.1: Example of 5-year breast cancer survivability 

Record No. age stage received-chemo received-surgery survivability 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 

youth 
youth 
middle-aged 
senior 
senior 
senior 
middle-aged 
youth 
youth 
senior 
youth 
middle-aged 
middle-aged 
senior 

IV 
IV 
IV 
III 
II 
II 
II 
III 
II 
III 
III 
III 
rv 
III 

no 
no 
no 
no 
yes 
yes 
yes 
no 
yes 
yes 
yes 
no 
yes 
no 

no 
yes 
no 
no 
no 
yes 
yes 
no 
no 
no 
yes 
yes 
no 
yes 

'Alive' 
'Alive' 
'Dead' 
'Dead' 
'Dead' 
'Alive' 
'Dead' 
'Alive' 
'Dead' 
'Dead' 
'Dead' 
'Dead' 
'Dead' 
'Alive' 

Table 2.1 shows a simple data set which consists of five attributes and 14 instances. 

These attributes include 'age', 'stage', 'received-chemo', 'received-surgery' and 'sur­

vivability' (class attribute). This class attribute has two distinct values ('Dead' and 

'Alive'). The 'Dead' class refers to patients who die within five years after the first di­

agnosis while the 'Alive' class refers to patients who are still alive for five years or 

more after the first diagnosis. In order to build the decision tree from the above in­

stances, Gain Ratio (Equations 2.12), Gain Information (Equations 2.13) and Split In­

formation (Equation 2.16) are computed below. 

In order to calculate Gain Information, both Information and Information of each attrib­

ute are needed. Information is computed using Equation 2.14. 

Infor(D) = -— log, (—) - — log, (—) = 0.940 bits. 
J v > 14 5 2 V 1 4 14 62 14 

Then Information of each attribute is computed using Equation 2.15. 

/»/^W = ^(-|'og2|-|.og!|) 

4 4 4 0 0 
+ — * (— log2 log, -) 
14 v 4 524 4 e V 
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5 •/ 3i 3 2 , 2, 

+ — (— log, log, —) 
14 5 &25 5 &2 5 
= 0.694 bits. 

4 1 1 3 3 
— *(-Llog2---log,-; 
14 v 4 5 2 4 4 S2

4' 

% , , (0) = - * (— log2 -A -~A log2 4) 

6 */ 2, 2 4, 4, 
+ H ( - 6 1 ° g 2 6 - 6 , 0 g 2 6 ) 

4 */ 2, 2 2, 2, 
+ — * (— log, log, —) 
14 4 6 2 4 4 & 2 4 J 

= 0.911 bits. 
7 4 4 3 3 

Inforreceivedchemo(D) = — * (--log2 - - y log2 -) 

+ ^(~IogaI-|loga|) 

= 0.788 bits. 

MorreceMsurgery (D) = — * (-- log2 - - - log2 -) 

6 *, 31 3 3, 3N 

+ — *( log log,-) 
14 6 26 6 26 
= 0.892 bits. 

Gain Information of each attribute is generated below. 
Gain(age) = Infor(D) - Inforage (D) = 0.94-0.694 = 0.246 bits. 

Gain(stage) = Infor(D)-Inforstage(D) = 0.94-0.911 = 0.029 bits. 

Gain(chemo) = Infor(D) - Inforchemo(D) = 0.94-0.788 = 0.151 bits 

Gain(surgery) = Infor(D)-Inforsurgery(D) = 0.94-0.892 = 0.048 bits 

Splitting Information of each attributes is computed below. 

SplUInfo^m^-^nog^-^nog^-^og^) = 1.577bits 

4 4 6 6 4 4 
— *log2(—)- — * log2 (—)- — * log2(—, 
14 2 14 14 2 14 14 S2 14 

* M n / ^ ( ^ ) = -^*log20--*log2(-)--*log2(-) = 1.557 bits 

SplitInfochemAD) = -^*\og2(^)-^nog2(^) = 1.000 bits 
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* ^ A „ ^ ( ^ ) = - ^ * l o g 2 ( ^ ) - ^ * l o g 2 ( A ) = 0.985 bits 

Lastly, Gain Ratio is computed to select the best attribute to become a root of a decision 

tree. 

GainRatio(age) = — =0.156 
1.577 

0 029 
GainRatio (stage) = —'• =0.019 

1.557 

GainRatio(chemo) = — =0.151 

GainRatio(surgery) 

1.000 

0.048 

0.985 
= 0.048 

It appears that of 'age' attribute is a root of the decision tree due to the fact that it has 

the highest Gain Ratio among other attributes. The 'age' values ('youth', 'middle_age' 

and 'senior') become the branches which are growing in each attribute value. The final 

decision tree of this example is shown in Figure 2.5. 

\yes 

'Dead') ( Alive 
** — 

Figure 2.5: Final decision tree model 

Figure 2.5 displays an example of a final 5-year breast cancer survivability decision tree 

model. It indicates that if a patient has breast cancer at a senior level and receives sur­

gery then this patient is predicted to die within five years after the first diagnosis. 
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In this way, the C4.5 decision tree model is easy to interpret from a tree structure [98] 

[99] and provides a short computation time for building a model [98] [99] [100]. How­

ever, it is limited in robustness and overfitting and is time consuming in memory usage 

[99] [100]. As a result, much research has provided several approaches to enhance the 

performance of the C4.5 classifier. For example, Ruggieri [97] adopted a binary search 

of the threshold in a training set to improve the generating time used in the main mem­

ory. His results indicated that the computation time in the main memory increased up to 

five times, while producing the same decision tree. On the other hand, Yao, Liu, Lei 

and Yin [99] utilised attribution selection to improve the effectiveness and robustness of 

a C4.5 classifier. 

2.3.2 Classification and regression tree 

Classification And Regression Tree (CART) [101] is a widely used decision tree tech­

nique. It uses a rule-based approach to generate a binary tree through a binary recursive 

partitioning process that splits nodes based on the 'yes' and 'no' answer of the predic­

tors. These rules, generated at each step, maximise the class purity within the two re­

sulting subsets ('yes' and 'no'). Each subset is then split further, based on the inde­

pendent rules. CART uses a Gini Index purity criterion of a single attribute to split a 

node, based on a rule. The Gini Index purity criterion of classification and regression 

tree is shown in Equation 2.17. 

m 

Gini(D) = \-1£pf. (2.17) 

In this equation, D refers to a data set; and pi refers to the probability that an instance 

in D belongs to class C;. The value of p, is estimated by |QD|/|D| and the sum is com­

puted over m classes. Therefore, Gini Index provides a binary split for each attribute. 
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When considering a binary split, a weighted sum of the impurity of each resulting parti­

tion is defined as in Equation 2.18 below. 

GiniA (D) = febw(A)+^Gini(D2). (2.18) 

In this way, each of the possible binary splits of each attribute is considered. For a dis­

crete attribute, the subset that gives the minimum Gini Index for that attribute is selected 

as its splitting subset. However, some attributes may be used many times while others 

may not be used at all. In order to understand the computing of the Gini Index, an ex­

ample of the Gini Index is given in Example 2.2 below. 

Example 2.2: This example uses data from Table 2.1 to build a decision tree using the 

Gini Index as follows. Firstly, Equation 2.17 is used to compute the Gini Index impu­

rity of a data set (D). 

Gini(D) = 1 - (—f - (—)2 = 0.459. 
v147 vi47 

Secondly, the Gini Index of each attribute is computed as show below (e.g. the condi­

tions of'age' attribute are 'youth' and 'middle_age' (Giniage^oulhmiddleage}(D)). 

Giniagee{youth_middle _age](D) = -^Gini(Dl) + -Gini(D2) 

H^ V V ) u{ V V 
= 0.457 

Gmiage^ulhtSe„ior](D) = ̂ Gini(D1) + ^Gini(D2) 

10f, ,5,2_,5,2V 4f,_.4.2_.0.2 
U{ 10 10 J 14' 

= 0.357. 

9 5 
Gini i .„ x(D) = —Gini(D,) +—Gini(D2) 
*-"'"agee [middle age,senior )\^J . A 1 4 

9 (, ,l,i , 2 ^ , 5 

= 0.394 

( 2 3 ^ 

i-e2-e 
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In order to split the 'stage' attribute into a binary split, the Gini Index of'stage' attribute 

is computed. 

10 4 
Giriislage^nM)(D) = —Gini(D^) + —Gini(D2) = 0.443 

Ginime 6 {lum](D) = ^-Gini(Dx) + ^Gini(D2) = 0.458 

10 4 
GinislageAmM](D) = —Gini (D,) + —Gini (D2) = 0.450 

Therefore, Gini stage cir and
 cin* > has been obtained as the best split with a Gini Index of 

0.443. Moreover, Gini stage {• ii.mr} and Gini stage {< mjnr} have Gini Index values of 0.458 

and 0.450, respectively. 

Finally, the Gini Index of each attribute is compared and selected in order to find the 

best binary split using the minimum Gini Index. As a result, the 'age' attribute and sub­

set of GiniageeyoulhtSenjor^ gives the minimum Gini Index overall, with a reduction in im­

purity to 0.459-0.357 = 0.102. As a result, 'age' attribute is selected as the root node as 

C4.5. 

In real world data, models generated from CART often encounter an overfitting prob­

lem [53] [102]. Moreover, CART often generates classifiers with many nodes from a 

few predictors that make the trees extremely complex and difficult to interpret [53] 

[102] [103]. Several research studies have developed an alternative CART algorithm to 

address these problems. For example, Chipman, George and McCulloch [104] pro­

posed a Bayesian CART using stochastic search methods to avoid greediness and insta­

bility problems. On the other hand, Tibshirani and Knight [105] used a bootstrap-based 

method for searching through a data set to improve the performance of classifiers. 
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2.3.3 Naive Bayesian 

Naive Bayesian (NB) [106] is commonly used to build a model in machine learning and 

data mining. Because it is both time and space efficient when it builds the frequency 

table, it does not need to store the training data set in memory [53] [70]. However, it 

has an overfitting problem [70] [107]. The Naive Bayesian classifier, Naive Bayesian is 

defined in Equation 2.19. 

P(X | C,) = P(xx | Ci)xP(x21 Ct)x...xP(x„ | C.) 

P(X\Cl)-Y[P(xk\Ci) 

where, P refers to the prior probability of each class, X refers to the vector of data e.g. 

(xjjc2, • • -^n), n refers to the number of instances and C, refers to a class / in a data set. 

This technique can handle both categorical and numerical attributes. In the case of an 

attribute value as a category, P(xk\C,) is the number of instances in a class C, having the 

value Xk for the attribute, divided by |C(J,D;|, the number of instances in class C,. O n the 

other hand, if an attribute value is a number, the mean (ju) and standard deviation (a) 

is used to compute P(xk | C,). TheP(xk | C,) is defined as in Equation 2.20 below. 

P(xk\Ci) = g(xk,vq,aCi) (2.20) 

where: 

g(x4,ft,,<rC)) = -jJUe"
J^~ (2.21) 

To predict the class label of X, P(X\Ci)P(C$ is the evaluation for each C,-. The classifier 

predicts that the class label of instanced is the class Q. 

P(X\Ci)P(Q) for \<j<m,j*i. (2.22) 

In this way, several research studies have employed Naive Bayesian to build optimising 

models from their data. For instance, Kazmierska and Malicki [70] employed Naive 

Bayesian to build a model to assess the individual risk of cancer progression after re-
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ceiving radiotherapy treatment for brain tumour patients. Their results showed that this 

model provided high accuracy (84%), specificity (87%) and sensitivity (80%). 

2.3.4 IT-nearest neighbour 

The ^-Nearest Neighbour (fc-NN) [108] is a commonly used technique to build a model 

for classifying data in pattern recognition and machine learning [53] [108] [109]. Al­

though it handles both numeric and categorical attributes, it suffers from noisy data 

which leads to an overfitting problem and is time consuming in training a model [109]. 

In order to build a model containing numeric attributes, Euclidean Distance is used to 

measure the closest point between two points of instances (Xx and X2), as repesented in 

Equation 2.23. 

dist(Xx,X1)=\fj(xXi-xli)
1 • (2-23) 

where, Xx refers to (xujC\2,...xXt) and X2 refers to (*2i,jc22,...,je2n). On the other hand, in 

order to build a model with category attributes, a distance-based method is used to com­

pare them intrinsically and assign equal weight to each attribute. 

In this way, many research studies have utilised £-NN to classify text documents. For 

example, Li and Staunton [48] performed the &-NN algorithm to classify the effect of 

multi-texture segmentation. Their results indicated that the number of k equal to five 

was suitable for classifying their multi-texture segmentation. Likewise, Colvo, Lar-

ranaga and Lozano [110] employed fc-NN to build models using binary unbalanced data. 

Their results demonstrated that ifc-NN classifier increased the classification performance 

in independent classes. Hu, Yu and Xie [109] employed fc-NN for selecting the suitable 

attributes in their data. Their results showed that fc-NN was suitable for selecting attrib­

utes which leads to the improvement of the accuracy of the classifiers. 
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2.3.5 Support vector machine 

Support Vector Machine (SVM) [111] is a novel classification technique based on Neu­

ral Networks technology. It uses a statistical learning theory to classify a binary data set 

by finding a linear optimal hyper-plane to maximise the margin for separating both 

positive and negative classes [112] [111]. It provides a flexible and low error rate for 

classification tasks [64]. Nevertheless, it has problems with high dimensionality and 

complexity of models that is hard to interpret [113]. In order to clearly understand the 

linear support vector machine, a binary linearly separable line is exhibited in Figure 2.6. 

Figure 2.6: A binary linearly separable classification problem 

Figure 2.6 displays the separation line for a binary linearly separable classifica­

tion problem. The boundaries of two classes are separated with boundaries Bl and B2. 

The data points on a boundary (called support vector) are used to find the maximum 

margin in the hyper-plane (called H). As a result, the liner SVM algorithm is illustrated 

in Algorithm 2.2 below. 
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Algorithm 2.2: Linear support vector machine 

Input: 
S: a training set (x^y,), z=l,2,...,«; xisR";yie{+1,-1}; 
«: the number of instances; 

Output: 
/(x): output space; 

(1) Find an optimal separating hyper-plane using Equation 2.24 

minimise (in w,b)= -• L2| with / = 1,2,.., n (2.24) 
2 I I 

subject to y, (w -x,+b) > 1 (2.25) 

In the Equation 2.24, w refers to weight vector; b refers to a bias for all elements of the 
training set; 

(2) Use characteristics of the language multipliers (or) to solve optimisation problem 
using the Equation 2.26 

maximise (ina ) = £a, -^H^a^y^Xj (2.26) 

where x, refers to data in class i, x} refers to data in classy, (a,) > 0 and V at yt = 0; and 

(3) f(x) is showed in the Equation 2.27 

f(x) = sign(w -x + b) (2.27) 

N 

where w = ̂ aiyixl . (2.28) 
;=1 

Unfortunately, most real world data are often non-linear; therefore, four kernel func­

tions including linear, polynomial, radial basis and sigmoid are commonly utilised to 

solve a quadratic optimisation problem in a data set to optimise the hyper-plane. The 

kernel functions are shown in Table 2.2. 

Table 2.2: Kernel functions 

Kernel functions Mathematical forms 
Linear kernel K(xt ,Xj) = (x, • Xj) 

Polynomial kernel of degree d K(x, ,*_,.) = (yx, • x; + f)
d 

Radial basis function K^x, > x.) = exp j_ r|x. _ Xj |
2 J 

Sigmoid kernel with r e N K(x, ,Xj) = taziiiQx, • x; + r) 

Note: y refers to g a m m a and /-refers to the coefficient of data. 
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M a ny research studies have employed S V M to build a prediction model. For instance, 

Yi and Fuyong [39] applied SVM to discover breast cancer diagnosis patterns from the 

University of Wisconsin Hospitals. Their results showed that SVM was suitable for di­

agnosing breast cancer patterns. Similarly, Coussenment and Poel [113] made use of 

SVM to build churn prediction models from their customer relationship management 

(CRM) system. Their results revealed that SVM outperforms logistic regression in a 

balanced data set. 

2.3.6 Rule-based classifier 

Rule-based classifier refers to a set of 'If-Then' rules for representing information and 

knowledge in databases [64] [53]. Moreover, it can be made more comprehensible by 

reducing the number of conditions in classification rules [114]. Although a common 

rule is usually derived from human experts as linguistic knowledge [115], a rule gener­

ated from data mining algorithms can be easy to understand [44] [50]. In addition, it 

can be used to combine with previous knowledge of the domain in the knowledge­

bases, and decision-making as well as guideline systems. Most rules are generated ei­

ther directly from a data set (called association rule) or decision tree (called decision 

rule) [53]. 

Association rule provides a useful measure of the relationship between data by defining 

the association between an attribute and an instance within a data set [53] [44]. It com­

monly uses an Apriori algorithm to find frequent item sets. Although it is easy to un­

derstand the outcomes, it is time consuming in producing the rules [44] [50] [116]. 

Much research has employed association rules to discover relationship patterns in medi­

cal data and Web mining. For example, Ordonez, Omiecinski, Braal, Santana, 

Ezquerra, Taboada, Cooke, Krawczynska and Garcia [117] introduced association rules 
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to predict patient heart disease. Their results demonstrated that some rules can confirm 

the high risks of heart disease. Similarly, Madria, Raymond, Bhowmick and Mohania 

[44] made use of association rules to explore the warehouse of Web data. Their results 

presented that the Apriori algorithm is better than the search content and structure 

method. Conversely, Olukunle and Ehikioya [50] successfully employed the FP-growth 

algorithm to enhance the medical images extracting time. 

On the other hand, decision rule is a popular technique and provides several rules gen­

erated from decision tree with high performance. The Tf-Then' rules are extracted from 

a root to a leaf node and split along a path using 'And' to form the rule antecedent (Tf) 

until class prediction then forms the rule consequent ('Then'). Although it is easy to 

understand the outcomes and it has high prediction results, it often generates the dupli­

cation rules [64] [53]. Several research studies have utilised the decision rule technique 

to explore the relationship of attributes in a data set. For instance, Bensaid, Bouhouch, 

Bouhouch, Fellat and Amri [118] used a fuzzy rule-based technique induced from an 

ID3 model for classifying an electrocardiogram database. Alternatively, Tsakonas, 

Dounias, Jantzen, Axer, Bjerregaard and von Keyserlingk [119] employed a crisp rule-

based technique to induce the rules from a genetic algorithm for classifying medical da­

tabases. 

2.4 Chapter summary 

In this chapter, data mining and Knowledge Discovery in Databases (KDD) have been 

analysed. Also, data mining processes, and classification and examples of its problems, 

have been discussed. Subsequently, data selection used in evaluation procedures and 

measurement methods including accuracy, sensitivity, specificity, Receiver Operating 
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Characteristic (ROC) curve, Area Under the receiver operating characteristic Curve 

(AUC), F-measure and Kappa statistics were discussed. In order to understand the 

strangeness and weakness of these well-known learning algorithms, C4.5, Classification 

And Regression Tree (CART), Naive Bayesian, ^-Nearest Neighbour, Support Vector 

Machines and rule-based classifier have been discussed. In the next chapter, breast can­

cer survivability will be considered in order to understand data and prepare data sets for 

building the prediction models. 



Chapter 3 

Breast Cancer Survivability 

In the previous chapter, the background of data mining and its processes were reviewed. 

In order to investigate and evaluate prediction models, classification learning, evalua­

tion procedures, measurement methods and basic classification techniques were dis­

cussed. 

As the main purpose of this thesis is to build accurate and reliable breast cancer surviv­

ability prediction models using data mining methods, this chapter reviews breast cancer 

and its treatments to investigate its causes and outcomes. In order to understand breast 

cancer survivability, breast cancer research studies, survival analysis and traditional 

tools for analysing the patient's survival are discussed. In order to investigate data min­

ing used in medical fields, the current data mining tools used in the medical field are 

enumerated. The chapter concludes with an understanding of the breast cancer surviv­

ability data at Srinagarind Hospital in Thailand, in order to prepare data sets suited to 

data mining tools. 

3.1 Breast cancer nature and treatments 

Cancer refers to abnormal, out of control cell growth in the body [120]. Breast cancer is 

a major cause of concern not only in the United States of America and Austra-

41 
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lia but also in Thailand. In the United States, it is the second highest cause of death 

among women who are diagnosed at a rate of almost one-in-three [121]. Likewise, the 

National Breast Cancer Centre (NBCC) reported that breast cancer is the most common 

invasive cancer diagnosed in Australia [121]. Similarly in Thailand, breast cancer is the 

second most frequent cause of cancer incidence among women [2] and it has been in­

creasing every year [122]. 

In clinical practice, the developmental stages of breast cancer start from stage 0, and 

progress to stage IV [120]. Stage 0 is used to describe a non-invasive breast cancer. 

Stage I describes invasive breast cancer in which the tumour measures up to two centi­

metres with no lymph nodes involved. Stage II describes both invasive breast cancer in 

which the tumour measures from two to five centimetres, and cancer that has spread to 

the lymph nodes under the arm on the same side as the breast cancer. Stage III is di­

vided into subcategories of IIIA and IIIB. In stage IIIA, the tumour measures more than 

five centimetres, or there is significant involvement of lymph nodes. In stage IIIB, the 

tumour has spread to the breast-skin, chest-wall or internal mammary lymph nodes. 

Stage IV describes an invasive breast cancer where the tumour has spread beyond the 

breast to under the arm and internal mammary lymph nodes. At this stage, a tumour 

may have spread to the supraclavicular lymph nodes, lungs, liver, bone or brain. 

Clearly, in improving the ways that medical practitioners can access information to as­

sist them in diagnosing these stages and prescribing the most suitable treatment, their 

patients can expect improved outcomes [123]. 

Treatment of breast cancer provides a typical example of inconsistency in clinical prac­

tice because the cancer varies depending on types and stages, as well as overall condi­

tion [124]. Recently, medical treatments have included biological therapies, chemo-
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therapy, complementary medicine and surgery. However, cancer treatments may vary 

depending on whether the goals of treatments are to cure, to prevent spreading, or to 

relieve symptoms. Thus, research in the field of breast cancer detection and treatment 

helps patients to have an idea of the prognosis of the likely course and outcome of their 

disease as well as the latest treatments. For instance, Andreetta and Smith [125] re­

ported that treatment using adjuvant aromatase inhibitor in the first stage can reduce 

cancer progressions. Nevertheless, one or more treatment modalities are usually used to 

obtain the most effective treatment to increase the patient survival period [1]. 

3.2 Breast cancer research 

In the breast cancer research context, numerous research studies have investigated the 

risk factors of breast cancer. For example, Parker and Folsom [126] reported that sud­

den weight loss in the past can increase the risk of breast cancer. Similarly, Wasserman, 

Flatt, Natarajan, Laughlin, Matusalem, Faerber, Rock, Barrett-Connor and Pierce [127] 

found that certain types of dietary intake can be a risk factor for women in relation to 

breast cancer. Breast cancer research is commonly studied in the context of laboratory, 

observation and clinical trials [120] [123]. Laboratory studies prove a hypothesis under 

controlled conditions to yield detailed results. However, these results are generally only 

a small part of the sample data used. Observational studies inspect the characteristics of 

total populations to illustrate the factors of breast cancer related to specific outcomes; 

however, these studies are often unable to present the causes and effects of the out­

comes. Clinical trials involve medical studies of humans and are able to show a cause 

and effect in the relationships between attributes and outcomes of breast cancer. These 
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have been used extensively in the development of drugs and procedures in the treatment 

of breast cancer. 

This thesis focuses on the use of clinical data to develop prediction models and to dis­

cover the relationships between available attributes and patients' survivability in the 

context of breast cancer. These models are designed to assist medical research studies 

in identifying certain patterns of breast cancer progression in the service of health main­

tenance, and in providing information about a patient's condition. 

3.3 Survival analysis 

In the breast cancer context, "survival" is the length of time lived after the initial diag­

nosis of cancer [121]. Similarly, Delen, Walker and Kadam [4] denoted "survival" as a 

patient remaining alive for a specified period of time following the diagnosis of cancer. 

In relation to medical prognoses, survival analysis has generally been divided into either 

a single point in time or several points in time [18]. 

Single point in time refers to the specific time period of patient survival during their 

treatment [18]. This kind of analysis is extensively used in oncology studies, and aims 

to produce an estimate of the probability of occurrence of the event of interest before a 

certain time. Although this method is able to present a useful estimate of survival iso­

lated as a single point in time, it is unable to provide predictions of how quickly breast 

cancer could develop in a given patient nor able to illustrate the temporal patterns of 

breast cancer development. However, a new period analysis has been introduced as a 

superior method for analysing medical data in relation to data mining processes. Period 

analysis deals with building survival analysis models in a medical prognosis field [4]. 

This period analysis refers to the actual survival period of patients from their diagnosis 
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until time of death. It is used to monitor survival rates and provide up-to-date informa­

tion [18] [4]. Using period analysis to predict patients' survival is important in the field 

of breast cancer because it can determine the most suitable type of therapy, matches pa­

tients for clinical trials, and provides more accurate patient information [128]. 

In contrast to a single point in time, Several points in time refers to the probability of 

disease development during the life of an individual [18]. Outcomes of these types of 

models can be either discrete (death) or continuous (survival-length of stay in the inten­

sive care unit). This kind of analysis gives a prolonged period of time, allowing a 

meaningful survival curve to be generated. It also provides better survival curves than 

using single point, due to the fact that it is usually based on the assumption of outcome 

dependency to produce the hazards function in order to analyse the survival data. 

In analysing patients' survival rate in order to study their long term survival, 10 years or 

longer has traditionally been used to calculate breast cancer outcomes [6]. However, 

more recently, a 5-year survival analysis has been introduced for developing models in 

relation to the improvement of early detection and treatment related to breast cancer 

[121] [129]. As a result, several recent research studies have built a 5-year breast can­

cer survivability prediction model using a new single point in time. For instance, 

Burke, Rosen and Goodman [128] utilised a 5-year survival period to predict patient 

survivability. Similarly, Delen, Walker and Kadam [4] showed that the 5-year breast 

cancer survivability analysis provides helpful information for medical practitioners. 

Likewise, Clinical Best Practice in Australia [121] has changed and now provides a 5-

year relative survival report rather than a 10-year survival report. Therefore, in the pre­

sent study a new single point in time, a 5-year survival period, is mainly used for build­

ing breast cancer survivability prediction models. 
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3.4 Traditional survival analysis tools 

The prediction models are valuable tools used to assist in determining a prognosis and 

in deciding whether to apply an appropriate treatment [130]. The most commonly used 

tools for building the prediction models include Kaplan-Meier survivor curves, Cox 

Proportional Hazards and Logistic Regression. 

Kaplan-Meier survivor curves are simple, non-parametric models used to summarise 

survival data for an individual at time period (t), which is the condition of his or her 

survival at a previous time period (M) [18]. These provide actuarial life tables and pro­

duce-limit estimator of survivor functions for illustrating survival curves of a group of 

individuals who share a common particular variable. For instance, Boorjian, Crispen, 

Lohse, Leibovich and Blute [131] employed Kaplan-Meier to estimate the survival rate 

of their patients who were suffering from synchronous and metachronous renal cell car­

cinomas. Their results indicated that metachronous tumours had a greater degree of 

pathological concordance than synchronous lesions. As a result, two different variables 

can be compared but the number of patients in each resulting group must not fall below 

a minimum point, beyond which the reliable survival cure cannot be generated [18]. 

Cox Proportional Hazards are multivariate semi-parametric regression models that al­

low continuous covariates and involve the assumptions of a simplifying transformation 

in an initial data and the hazards for the different groups of proportions of the survival 

periods. Thus, these models are multiple-point models used to estimate the survival of 

particular patients by calculating the related conditions of the patient with the baseline 

hazard. Although DAmbrosio [132] applied this method to build models using descrip­

tive attributes in Biochemical Failure (BF) after definitive radiotherapy of prostate can­

cer data, it is unable to provide generalisation errors in an unseen test set [7] [18]. 
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Logistic regression is a generalisation of linear regression used for predicting the bi­

nary or several class attributes by using a single point in time [80] [133]. Although it 

used to build the model to predict odds of occurrence, it is unable to build a model with 

discrete attributes. For instance, Mertens, Flisher, Satre and Weisner [134] employed 

logistic regression models to examine substance-abuse related medical condition, inte­

grated medical and chemical dependency, and on-going primary care predicting remis­

sion of chemical dependency problems at five years. The data set consisted of 598 

chemical dependency patients. Their results illustrated mean, median, minimum and 

maximum numbers of substance-abuse related medical conditions (SAMCs) per partici­

pant, as 1.7, 2.0, 0 and 8, respectively. Similarly, Heidcma and Nagelkerke [135] dem­

onstrated that the accuracy of the Logistic Regression models is better than the accuracy 

of Classification and Regression Tree (CART) models using a validation set from breast 

cancer patients data. 

3.5 Data mining in breast cancer 

In relation to analysing breast cancer data, data mining is one of the most promising and 

challenging tools for model generation [53] [136] [1] [19]. It has been applied in breast 

cancer research including diagnosis of diseases [137] [138], prediction of the effective­

ness of treatments [1], prognostic and predictive factors [139] [140] and especially 

breast cancer survivability [19] [4]. This is because data mining requires less domain 

experts to propose a hypothesis, has a high performance in terms of results and is capa­

ble of mining large data sets with high dimension attributes [4] [53] [65]. As a result, 

various techniques have been applied for building reliable and accurate prediction mod­

els including Neural Networks, decision tree, rule-based and support vector machine. 
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Neural Networks is an supervised learning classification which uses Multi-Layer Per-

ceptron (MLP) with back-progration by utilising a set of weights to connect between 

input and output units [53]. They provide a robust approximator function to solve clas­

sification problems [84]. Although they have the ability to build highly complex mod­

els for non-linear functions, generating a model is time consuming and the model is 

hard to be interpreted [81]. A large body of research has employed Neural Networks 

(NN) algorithms to build predictive and descriptive models. For example, Lundina, 

Lundina, Burked, Toikkanenb, PylkkSnenc and Joensuua [141] utilised a Neural Net­

works algorithm to build 5-, 10- and 15-year breast cancer survival prediction models 

from 951 breast cancer patients. They found that a Neural Networks model outperforms 

logistic regression models for 5-, 10- and 15-year survival periods using AUC in unseen 

test sets. 

Decision Tree is a tree structure consisting of nodes and leaves. Nodes represent rules 

which categorise data according to attributes while leaves represent the condition in 

each rule [53]. This technique provides the most promising results, easy interpretation 

of the tree structure, and the ability to convert to rule-based classifiers. For this reason, 

decision tree techniques have been used to build the prediction model in breast cancer 

data. For example, Delen, Walker and Kadam [4] demonstrated that decision tree 

model (C5) provides better accuracy than Artificial Neural Networks (ANN) and Logis­

tic Regression using 5-year breast cancer survivability data sets from SEER databases. 

This data set consists of 16 attributes including race, marital status, primary site code, 

histology, behaviour, grade, extension of disease, lymph node involvement, radiation, 

stage of cancer, site specific surgery code, age, tumour size, number of positive nodes, 

number of nodes and number of primaries. 
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Rule-based refers to a set of 'If-Then' rules which can be generated from the decision 

tree or directly from the training set. Although rule-based models sometimes have a 

lower performance than other techniques, they are easily understood by medical practi­

tioners [53] [8]. Several research studies have employed rule-based algorithms to build 

prediction rules using breast cancer data sets. For example, Kohli, Krishnamurti and 

Jedidi [138] utilised a Conjunctive Rule algorithm to build prediction rules using the 

University of Wisconsin's data set. They found that these rules can be readily used in a 

clinical setting because these rules are simple and have the same structure as the rules 

currently used in clinical diagnosis. 

Support Vector Machine (SVM) [112] is a novel classification technique. It uses Neural 

Networks to find a linear optimal hyper-plane to maximise the margin for separating a 

binary class attribute in classification problems [112] [111]. Although models gener­

ated from SVM are difficult to interpret, they are accurate, flexible and significantly re­

sistant to overfitting problems [64] [39]. Much research has employed Support Vector 

Machine (SVM) to generate the prediction models. For example, Yi and Fuyong [39] 

exploited C-Support Vector Machines (C-SVM) to discover breast cancer diagnosis pat­

terns at the University of Wisconsin Hospitals. Their results showed that SVM was 

suitable for diagnosing breast cancer patterns. Likewise, Wang, Wu, Liang and Guo 

[142] showed that Least Square Support Vector Machine (LS-SVM) based on an Inde­

pendent Components Analysis (ICA) provides a good diagnosis of breast cancer tu­

mours. 
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3.6 Problems of breast cancer data in data mining 

One of the problems in mining cancer data is the uncertain format of breast cancer data 

[143]. Most researchers manually retrieve the cancer data from the database into the text 

file before correcting and transforming them into the data mining format. Unlike cancer 

data, financial data are commonly based on codes which can retrieved directly into the 

data mining format. However, when applying data mining, problems in breast cancer 

data are still occur such as missing data, outliers and imbalanced data frequently occurs 

[13] [23] [21]. These problems directly affect the performance and effectiveness of the 

prediction models [23] [21]. 

3.6.1 Missing data 

Missing data refers to unknown and null values in data sets [53] [21]. Although this 

kind of data decreases the ability of algorithms to learn from observations and accurate 

prediction, most learning algorithms can handle missing data well [144]. In relation to 

breast cancer data in the medical field, there are three causes of missing data including 

occasional effects, medical decisions and progress in laboratory examinations [21]. 

Firstly, occasional effects refer to an unclear hypothesis of the attributes based on data 

collection. These sources of data are often observed in business databases. Secondly, 

medical decisions refer to physical and laboratory examinations data that medical ex­

perts have neglected to record in the system for any reason. Finally, progress in labora­

tory examinations refers to data that are often removed by medial experts in order to 

gain accurate diagnosis and treatment prior to recording it in the system. 

Several techniques in data mining can handle missing data well, such as ^-Nearest 

Neighbour, C4.5 and Naive Bayesian. For instance, Liu, Lei and Wu [145] investigated 
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the performance of classifiers in different levels of missing data. Their results indicated 

Naive Bayesian as superior to k-NN and C4.5 in handling data with missing values. On 

the other hand, Mussa and Tshilidzi [144] combined Neural Networks and genetic algo­

rithms to handle missing data in their data sets. Their results showed that the number of 

missing data affects the accuracy of prediction results. 

3.6.2 Outliers 

Outliers refer to instances which do not follow the common rules, whereas data mining 

discards these instances as noise or exceptions [146] [147] [148]. This kind of data 

commonly results in the poor performance of the learned model in unseen data (called 

overfitting problems) [26]. In relation to methods for handling outliers, there are three 

commonly used approaches including, outlier filtering, outlier correction and robust al­

gorithms [149]. 

Outlier filtering approaches employ the learning algorithm to identify and eliminate 

outliers from mislabelled instances in the data set [25]. Although models from outlier-

free may lead to misinterpretation, these prediction models provide better performance 

and less model building time [150]. Several research studies have employed outlier fil­

tering approaches for identifying and eliminating outliers from misclassified instances 

in data sets. For example, Verbaeten and Assche [26] utilised Inductive Logic Pro­

gramming (ILP) to remove outliers. Their results showed that the accuracy of the deci­

sion tree increased rapidly after removing outliers. In contrast, Zhou and Jiang [151] 

made use of a Neural Networks ensemble to identify and eliminate misclassified in­

stances from data sets. Their results indicated that using Neural Networks ensembles 

can remove outliers resulting in improving the accuracy of the decision tree (C4.5). 
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Outlier correction approaches are built upon the assumption that each attribute in the 

data is correlated with others [150], These approaches are often used in attributes track­

ing of video images to correct and retain such images using a simple iterative scheme 

[152]. Although they are computationally expensive and sometimes introduce undesir­

able features into a data set during the process of correction, these methods provide the 

benefit of preserving the maximum information available in the data set to increase per­

formance [25] [150], Several research studies have employed outlier correction ap­

proaches to improve video images. For example, Huynh, Hartley and Heyden [152] 

used statistics to identify and correct outlier instances in an image sequence. Their re­

sults showed that statistics provided less re-projection errors in the image sequence data 

set. Likewise, Broersen [153] employed a statistic linear interpolation to identify and 

correct outliers in Turbulence data. His experimental results showed that after correct­

ing outliers, the accuracy of the ARMAsel model increased. 

Robust algorithms are used to build a complex control mechanism to overcome overfit-

ting problems and improve the generalisation of a learned model [154]. Several algo­

rithms such as Inductive Learning by Logic Minimisation (ILLM), C4.5 and ^-Nearest 

Neighbour (&-NN) provide this mechanism. ILLM uses a saturation filter [155], while 

C4.5 utilises a pruning mechanism [96]. On the other hand, the £-NN algorithm ex­

ploits the appropriate choice of number (k) of nearest neighbours [108]. 

3.6.3 Imbalanced data 

Imbalanced data are the number of instances in which one class in the data set outnum­

bers instances in the other classes [22] [156]. This is a common problem in not only 

breast cancer data but also credit card fraud detection and software defect prediction 

[157] [158]. Usually, the classification algorithm exhibits poor performance while deal-
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ing with imbalanced data, biasing the results towards the majority class [30]. Re­

sampling approaches including under-sampling and over-sampling in pre-processing are 

commonly used for re-balancing a data set [156] [159] [160]. 

Under-sampling is used to decrease the size of the majority class to the same size as the 

minority class. Although the models from under-sampling may lose some useful infor­

mation and lead to misinterpretation, they can be used to improve the performance of 

classification in an imbalanced data set [22] [158]. Many research studies have utilised 

an under-sampling approach to re-balance imbalanced data. For example, Alejo, Gar­

cia, Sotoca, Mollineda and Sanchez [158] successfully exploited an under-sample ap­

proach using the Nearest Neighbour rule to reduce the majority class. Their results 

demonstrated that this approach was suitable for enhancing the accuracy of the Neural 

Networks classifier. In contrast, Barandelaa, Sanchez, Garciaa and Rangel [22] demon­

strated that the under-sampling approach was ineffective in improving the performance 

of classifiers in four data sets including Phoneme, Satimage, Glass and Vehicle from the 

UCI Databases Repository. 

Unlike under-sampling, over-sampling is used to increase the size of the minority class 

to the same size as the majority class in order to improve the distribution differential 

between classes in an imbalanced data set. Although it is difficult to find the best dis­

tribution of minority and majority classes in the training set, it can lead to increasing the 

performance of classifiers after re-balancing the data set [157] [161]. Much research 

has utilised an over-sampling approach to re-balance data sets. For example, He, Han 

and Wang [157] employed this over-sampling to increase the size of a minority class to 

the same size as the majority class in different level distributions to find the best per­

formance. Their results specified that using 500 over-sampling rates improved the per-
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formance of C4.5 by at least 6% or more. Likewise, Pelayo and Dick [161] employed 

the Synthetic Minority Over-sampling TEchnique (SMOTE) to increase the size of the 

minority class. Their results showed that SMOTE improved the average accuracy by up 

to 23% on four benchmark data sets from a NASA project. 

3.7 Data understanding and preparation 

Understanding and preparation of data is an important and time consuming step towards 

building the prediction models [93] [53]. In this thesis, breast cancer data were ob­

tained at Srinagarind Hospital which is the only medical school associated hospital in 

Northeast Thailand. It was established in 1972 as a part of the faculty of medicine at 

Khon Kaen University. Here, patients have increased by 20,000 annually with the cur­

rent number of patients totalling 100,000. In particular, Patient Statistics Records 

showed that in 1996, 1997 and 1998 the total cases of breast cancer in the Northeast 

were 1,163, 1,210 and 1,218, respectively [2]. Since the medical data used in this study 

is related to human beings, ethical, legal and social issues play an important role. Thus, 

approval of official permission according to Victoria University ethics procedures was 

required. In addition, privacy, security and confidentiality are of great concern in the 

medical data in data mining. As a result, all data in this study is de-identified following 

the title 45 Code of Federal Regulations part 46 (called 45 CFR 46) for protection of 

human rights. 

These data involved patient information and the choice of treatment for patients diag­

nosed with breast cancer between January 1985 and December 2006 in Northeast Thai­

land. The raw data comprise 4,312 patients, and include fields for each record in the 

database. In order to understand and prepare the input data to suit the data mining for-
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mat, three aspects are given: 1) understanding the meaning of attributes; 2) examining 

the data in databases; and 3) analysing 5-year patients' survival related to their age and 

stage at first diagnosis from 1985 to 2004. 

3.7.1 Breast cancer attributes 

In order to understand the meaning of each attribute in the database, breast cancer at­

tributes referred to a field that is fixed-width within the database are shown in Table 3.1. 

Table 3.1: Breast cancer attributes 

No. Attributes Description 

Patient's unique identification number 

Patient's sex 

Patient's age at the first diagnosis 

Patient's marital status (single, married, monk, unknown) 

Patient's occupation at diagnosis 

Patient's race 

Patient's region of residence 

Patient's diagnosis date 

Patient's basis of diagnosis 

Topography diagnosis of a patient with breast cancer 

Morphology diagnosis of a patient with breast cancer 

Extent of breast cancer at diagnosis 

Stage of breast cancer at diagnosis 

Choice of received surgery (yes/no/unknown) 

Choice of received radiation (yes/no/unknown) 

Choice of received chemotherapy (yes/no/unknown) 

Choice of received hormonal therapy (yes/no/unknown) 

Choice of received immunotherapy (yes/no/unknown) 

Choice of received other treatments (yes/no/unknown) 

Choice of received treatments for particular symptoms 
(yes/no/unknown) 

Last date of patient's visit to hospital 

Patient's survival status on 17 January 2007 

Cause of patient's death (cancer/other/unknown) 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

Patient ID 

Sex 

Age 

Marital status 

Occupation 

Race 

Region 

Diagnosis date 

Basis of diagnosis 

Topography 

Morphology 

Extent 

Stage 

Received surgery 

Received radiation 

Received chemotherapy 

Received hormonal therapy 

Received immunotherapy 

Received other therapy 

Received supportive therapy 

Last follow up data 

Survival status 

Cause of death 
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Table 3.1 displays 23 attributes including 'Patient ID', 'Sex', 'Age', 'Marital status', 

'Occupation', 'Race', 'Region', 'Diagnosis date', 'Basis of diagnosis', 'Topography', 

'Morphology', 'Extent', 'Stage', 'Received surgery', 'Received radiation', 'Received 

chemotherapy', 'Received hormonal therapy', 'Received immunotherapy', 'Received 

other therapy', 'Received supportive therapy', 'Last follow up data', 'Survival status' 

and 'Cause of death'. 

3.7.2 Examining breast cancer databases 

In order to successfully build prediction models, it is necessary to have an overall sum­

marisation of data by assigning a case number for each patient and a unique record 

number for each specific tumour [53]. The basic statistics including the percentage of 

missing data, mean distribution and the range of maximum and minimum values are 

shown in Table 3.2. 

Table 3.2: Descriptive statistics 

No. 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 

Attributes 

Age diagnosis 
Marital Status 
Occupation 
Race 
Region 
Basis of diagnosis 
Topography 
Morphology 
Extent 
Stage 
Received surgery 
Received radiation 
Received chemotherapy 
Received hormonal therapy 
Received immunotherapy 
Received other therapy 
Received supportive therapy 

Missing (%) 

0 
0.02 

22.33 
0.02 
0.02 

0 
0 
0 
0 

62.73 
25.41 

0 
0 

46.54 
46.54 

0 
0 

Mean 

48.60 
1.90 

559.87 
1.02 

1 
6.15 

508.43 
8397.55 

5.23 
6.68 
1.27 
1.70 
1.35 
5.23 
5.25 
1.95 
1.91 

Min 

8 
1 
0 
1 
1 
1 

500 
8000 

1 
0 
1 
1 
1 
1 
1 
1 
1 

Max 

91 
9 

996 
9 
9 
7 

509 
9591 

9 
9 
2 
2 
2 
9 
9 
2 
2 
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Table 3.2 displays the statistical results of 18 attributes which exclude patients' ID, sex, 

last follow up data, survivability status and cause of death. It indicates that some attrib­

utes have more than 30% of missing values and some have only one value. This may be 

due to the fact that some patients were diagnosed in this hospital but received treatments 

in other hospitals. 

3.7.3 5-year breast cancer survival analysis 

In order to understand and prepare the survival behaviours of data, 5-year breast cancer 

survival rates are analysed. The 5-year survival rate is used to generate the following 

reports: relative survival according to the patient's age; relative survivals recording to 

the patient's stage of breast cancer at diagnosis; and relative survival proportion, from 

1985 to 2004. 

Firstly, relative survival according to the patient's age is used to show the comparison 

between the number of breast cancer survivals and the total number of breast cancer pa­

tients of the same age range and sex using a 5-year survival rate. Percentages of the 5-

year relative survival related to patient's age of diagnosis are illustrated in Figure 3.1. 

1985-1989 

1990-1994 

1995-1999 

2000-2004 

Figure 3.1: Breast cancer in females: Percentages of a 5-year relative survival and age of 
patients at the first diagnosis from 1985 to 2004 

20-29 30-39 40-49 50-59 60-69 

Patient's age at the first diagnosis 

70-79 
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Figure 3.1 displays the percentage of a 5-year breast cancer survival in relation to pa­

tients aged between 20 and 79 years, diagnosed from 1985 to 2004. Results indicate 

that in the years 1985 and 1989, women aged 20-29 years have 40% of 5-year relative 

survival, then fell to 23.70% for women aged 30-39, 31.33% for women aged 40-49, 

21.03% for women aged 50-59, 16.13% for women aged 60-69 and 12% for women 

aged 70-79, respectively. From 1990-2004, there is a more significant increase in the 

relative survival of women aged 30-39 years compared to other age groups. 

Secondly, Relative survival among breast cancer stages is used to present the compari­

son between survival patients after five years with breast cancer among the number of 

total patients in the same breast cancer stage and sex at the first diagnosis. The percent­

age of a 5-year relative survival related to the stage of breast cancer is exhibited in Fig­

ure 3.2. 

-•-1985-1989 

-•-1990-1994 

-*-1995-1999 

-Wr- 2000-2004 

I II III IV 

Breast cancer stages 

Figure 3.2: Breast cancer in females: Percentages of a 5-year relative survival and stage at 

diagnosis from 1985-2004 

Figure 3.2 presents the percentage of a 5-year breast cancer relative survival related to 

the stage of breast cancer at the first diagnosis from 1985 to 2004. The results show 

that the 5-year relative survival for women diagnosed from 1995-1999 is highest at 

around 22.33% for stage II breast cancer. Furthermore, patients with breast cancer at 
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stage II have a high probability of surviving for more than five years after the first diag­

nosis. Patients at stage I have less chance of survival than patients at stages III and IV. 

This may be due to the fact that these patients are rarely diagnosed at stage I when com­

pared to the total population of that period. 

Lastly, Relative survival proportions are used to present the percentage of survival pe­

riod of patients diagnosed with breast cancer each year. Relative survival proportions 

are displayed in Figure 3.3. 

•1985-1989 

•1990-1994 

-1995-1999 

•2000-2004 

4 5 6 7 

Years after diagnosis 

10 

Figure 3.3: Relative survival proportions 

Figure 3.3 presents the relative survival proportion after the first diagnosis of breast 

cancer in females from 1985-2004. The results indicate that 1-year relative survival in­

creased from 66.81% to 71.08% and 5-year relative survival decreased from 24.75% to 

17.25%. This may be due to the fact that the diagnosis of breast cancer was already in 

stages III and IV. 

As a result, data from Srinagarind Hospital databases have a number of limitations in­

cluding missing and imbalanced data. However, outliers are not discussed in this chap­

ter due to the difficulty of finding a suitable method to deal with this problem. 



Chapter 3: Breast Cancer Survivability 60 

3.8 Chapter summary 

In this chapter, breast cancer and its treatments have been reviewed and survival analy­

sis in the field of medical prognosis discussed in order to provide up-to-date informa­

tion. Following this, breast cancer research, survival analysis, traditional survival 

analysis tools, data mining tools and the problem of breast cancer data in data mining 

were discussed. In order to develop accurate and reliable breast cancer survivability 

prediction models, attributes and missing data were examined and a 5-year breast cancer 

survival follow-up was analysed. In the next chapter, dimension reduction methods and 

attribute selection in pre-processing will be investigated in order to improve the per­

formance of the AdaBoost classifiers. 



Chapter 4 

Data Pre-processing via AdaBoost 

In the previous chapter, breast cancer and its treatments were reviewed to better under­

stand the commonly recognised causes and outcomes. Moreover, traditional statistical 

survival analysis and data mining tools were discussed and the problems of data mining 

related to the medical fields were presented as well. Subsequently, understandings of 

the behaviours of these data were also discussed, in order to prepare data sets for build­

ing breast cancer survivability prediction models at Srinagarind Hospital in Thailand. 

In this chapter, the main problem for identifying the suitable attributes that improve the 

performance and stability of prediction models generated by new AdaBoost is ad­

dressed. This work has been published as follows: 

• J. Thongkam, G. Xu, Y. Zhang and F Huang, Breast cancer survivability via 

AdaBoost algorithms, in Proceedings of the Second Australasian Workshop on 

Health Data and Knowledge Management (HDKM 2008), pp. 1-10, Jan. 22-25, 

Wollongong, Australia, 2008. 

In addressing the above problem, a pre-processing using &-means and RELIEF are pro­

posed to improve data quality and select suitable attributes. In order to evaluate the ca­

pability and effectiveness of the proposed process, random stratified 10-fold cross-

validation, accuracy, sensitivity and specificity are employed. Experimental results are 

then provided and discussed to evaluate this approach. This chapter concludes with the 

chapter summary. 

61 
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4.1 Motivation 

AdaBoost (a successor of boosting) is a most popular ensemble method [32]. It is used 

to combine with a base learner to form a better model (classifier) [31]. Moreover, 

AdaBoost was reported to be low in error rates in a low outlier data set [32] [31]. Much 

research has utilised AdaBoost to solve classification problems in object detection in­

cluding face recognition, video sequences and signal processing systems [162] [163]. 

For instance, Jinbo, Li and Wenhuang [164] utilised Gentle and Modest AdaBoost algo­

rithms for predicting customer churn data using a top-decile lift criterion to evaluate the 

prediction models (classifiers). Their results showed that Gentle and Modest AdaBoost 

prediction models outperformed SVM and C4.5 prediction models. Although AdaBoost 

algorithms provide prediction models with low error rates, problems in medical data 

often decrease the performance of prediction models and cause unstable classification 

results [21]. Therefore, pre-processing in data mining is needed in order to improve the 

quality of data to generate better prediction models [80] [53]. The most commonly used 

methods in pre-processing include data transformation and attribute selection. 

Data transformation is used to change numerical attributes into discrete attributes, 

which leads to the reduction of the complexity of data sets and increases the perform­

ance of prediction models [165] [166]. Medical practice commonly uses ranking to 

transform a numerical attribute such as age into groups (e.g. 10 years) for analysing 

data. In relation to data mining, a &-means algorithm is commonly used to dynamically 

partition data into groups, using the nearest distance from the assign point [167] [168]. 

Several research studies have employed fc-means to partition their data. For example, 

Xia, Lyu, Lok and Hyabg [169] employ a A:-means algorithm to reduce the number of 

data to reduce the CPU time and memory used in the training process. Their results in-
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dicated that the performance of Support Vector Machine ( S V M ) improved after using 

the £-means algorithm. 

On the other hand, attribute selection is used to select the relevant attributes to build 

accurate and stable models [170] [171]. It is also known as variable selection, feature 

reduction, feature selection, or variable subset selection, however, in this study the term 

attribute selection is in use. Machine learning has provided several attribute selection 

methods including RELIEF, Information Gain and Support Vector Machine. However, 

RELIEF is one of the most successful attribute selection methods, due to its simplicity 

and effectiveness in forming discrete class attributes [172] [173]. Therefore, in this 

chapter a it-means algorithm and RELIEF attribute selection are proposed to improve 

the data quality in order to enhance the performance and stability of breast cancer sur­

vivability prediction models generated from new Modest AdaBoost algorithms. 

4.2 Algorithms and research framework 

In this section, the &-means algorithm, RELIEF for attribute selection, and AdaBoost 

algorithms are reviewed. Following this, the pre-processing framework is illustrated. 

4.2.1 JT-means algorithm 

£-means is an unsupervised learning algorithm, most well-known in data mining [53] 

[69]. It is used to separate the nearest distance between instances into the number of 

cluster (k) [73]. Although finding the number of clusters is difficult and related to the 

performance of a model, it is an effective method of finding the approximate optimal 

solution [53] [168] [174]. The £-means algorithm is presented in Algorithm 4.1. 



Chapter 4: Data Pre-processing via AdaBoost 64 

Algorithm 4.1: AT-means algorithm 

Input: ~' 
D: a data set; 
K: a number of clusters; 

Output: 
A: a set of data in each cluster; 

(1) Assign the number of clusters (K) to initial cluster centers; 

(2) F o r £ = l toK 

(3) Assign or re-assign each instance to the cluster to which the instance is the 

most similar, based on the mean value of the objects in the cluster; 

(4) Update the cluster means and calculate the mean value of the instance for each 

cluster; 

(5) End for 

(6) Return A. 

Several research studies have utilised &-means algorithm in image mining to improve 

the quality of images. One interesting example is provided by Zhang, Lee and 

Whangbo [175], They employed a &-means algorithm to cluster the side face attributes 

and decide the indexes of the side face. Their results showed that this algorithm was 

able to group the side face data into 5 groups. On the other hand, the fc-means algorithm 

was used to identify and eliminate outliers by Tang and Khoshgoftaar [176], Their re­

sults indicated that using £-means for identifying and eliminating outliers led to improv­

ing the performance of C4.5. As a result, the fc-means algorithm is a powerful algorithm 

not only used to reduce instance dimensions, but also to improve the performance of 

classification models. Therefore, the age attribute is grouped using the &-means algo­

rithm to improve the data quality. 

4.2.2 RELIEF attribute selection 

RELIEF is an instance-based attribute ranking algorithm [173] which utilises the ran­

dom sampling to locate the nearest neighbour from the same and opposite class. This 
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method is suited to selecting important attributes to improve the effectiveness of predic­

tion models [172]. Although Sun and Li [177] argued that this algorithm has problems 

with the original attribute space as it is not in the weighted space and lacks a mechanism 

to eliminate outliers, it generates a clear score which is easy to understand. RELIEF for 

attribute selection defined from the weight w, on input feature j can be computed in 

Equation 4.1. 

wJ=P(xJ*x'J)-P{xJ*x'J) (4.1) 

In the Equation 4.1 above, P refers to probability of the nearest instances, Xj refers to 

the randomly selected training sample, and xdj and x* are the two nearest training in­

stances to Xj in the death and alive classes, respectively. Several research studies have 

notably employed RELIEF to select appropriate attributes in their data. For example, 

Hall and Holmes [178] demonstrated that C4.5 achieved a higher performance after ap­

plying RELIEF for selecting dependent attributes. Therefore, due to the simplicity and 

effectiveness in machine learning [172], RELIEF was applied as the attribute selection 

method for selecting relative significant attributes from data sets in this chapter. 

4.2.3 AdaBoost algorithms 

AdaBoost is the most popular ensemble method in machine learning and it has been 

shown to significantly enhance the prediction accuracy of the base learner [179] [180]. 

It is not only used to maintain a distribution or set of weights over the training set, but 

also for presenting self-rated confidence scores which estimate the reliability of predic­

tions [180]. Although it has disadvantages for classifying noisy data [172] [181] and 

imbalanced data [182] in binary classification problems, it requires less input parame­

ters, needs little prior knowledge about the base learner, handles the numerical class 
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well, and has a high flexibility in combining with other methods for finding weak hy­

potheses [32] [31] [179], In order to understand the mechanism of AdaBoost, eight 

steps of the AdaBoost algorithm are reviewed in Figure 4.2. 

Algorithm 4.2: Basic AdaBoost 

Input: 
S: a training set where S=(xt, y;) and 0=1,2,...,«); 
K: the number of iterations; 

Output: 
H(x): a set of classifier; 

(1) Assign S sample (x,yi),.;(x„yn);x.,eX,y, e(-l,+l); 

(2) Initialise the weights of Dx{i)=\ln, i=\,...,«); 

(3)For*=l to/:do 

(4) Call WeakLeam, providing it with the distribution Dk; 

(5) Get weak hypothesis hk:X->(-\,+\) with its error: ek= ^Dk(i); 

te\ TT A * A- * -u *• n r, ,., Dk(i)exp(-akykkk(xk)) '=*<»'>** 

(6) Update distribution Dk: Dk+l (/) = — — — — — H^LLL . 
(7) End for 

'£«A(*) (K 

(8) Return H{x) = Jfe" 
u=i 

In the above algorithm 4.2, a training set (5) consists of (xi ,yi),...(xn,yn), where each xt 

belongs to some domain or instance space X, and each label yt is in the label set Y=(-

1,+1). Although AdaBoost repeatedly assigns a weak learning algorithm in a series of 

rounds k =\,...,K, the weight on the training example i on round t is denoted as £>*(/). 

The same weight will set at the starting point (Dx(i)=\IN, /=1,.. .,N). Then the weight of 

the misclassified example is increased to concentrate on the hard examples in the train­

ing set. Zk refers to the normalisation constant (chosen so that Dk+\ will be a distribu­

tion). In (6) akis used to improve the generalising result, and also solve the overfitting 

and noise sensitivity problem [183]. Consequently, the final hypothesis Hix) refers to a 

weighted majority vote of the k weak hypotheses where it is the weight assigned to hk. 

Although a Decision Stump algorithm is commonly used as base learner in AdaBoost, 
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in this chapter Classification and Regression Trees (CART) [32] is utilised to generate a 

tree structure through recursively splitting until the predictor space is completely parti­

tioned into a set of non-overlapping subspaces effective in capturing the local character 

and complex interaction. In order to show the performance of AdaBoost prediction 

models, three types of AdaBoost including Real, Gentle and Modest are employed as 

follows: 

1) Real AdaBoost [183] is developed by replacing the akW\th 

ak=2 {~W?- (4>2) 

W>= 2>). (4.3) 
i=ykhk(xk)=b 

In this case D is minimised and Wb refers to the class probability estimate to 

construct a real value of akhk(x) and become a basic boosting algorithm. 

2) Gentle AdaBoost [183] is developed from the Real AdaBoost algorithm by up­

dating ak as Equation 4.4. 

at=-ln(—-
 L). (4.4) 

k 2 W_x+W_x
 K ' 

This change improves the generalising error and also solves the overfitting and 

noise sensitivity problems. Although several research studies have suggested 

that this algorithm has a similar performance to the Real AdaBoost, Vezhnevets 

and Vezhnevets [32] found that Gentle often outperforms Real AdaBoost in 

terms of stability [31] [183]. 

3) Modest AdaBoost [32] modified the formula of cck as in Equation 4.5. 

a. = W+x (1 - W_x - W_x(1 - W_x) (4.5) 



Chapter 4: Data Pre-processing via AdaBoost 68 

This formula is a further change to the formula for calculating the weight of in­

stances to improve the generalising error. Thus, Vezhnevets and Vezhnevets 

[32] investigated the performance of this Modest AdaBoost in the UCI Machine 

Learning Repository data sets (including breast cancer, ionosphere, diabetes and 

hepatitis) using error rates of prediction models. Their results showed that Mod­

est AdaBoost outperformed Gentle AdaBoost in breast cancer, ionosphere and 

hepatitis. 

4.2.4 Pre-processing research framework 

Pre-processing is an important and time consuming process [53] [38]. It commonly in­

volves data transformation and attributes selection methods to improve data quality. 

Data transformation is used to transform the low level into the higher level information 

(e.g. numerical values into discrete values). Attribute selection is used to reduce dimen­

sions of attributes by removing irrelevant or redundant attributes making the patterns 

more easily understood. Several research studies have utilised transformation and at­

tribute selection to reduce the number of attributes under consideration and to find in­

variant representation of the data [38] [184] [185]. In this context, the research frame­

work involved in pre-processing [186] and selecting the best models is illustrated in 

Figure 4.1. 
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Figure 4.1: Pre-processing framework 

Figure 4.1 shows the pre-processing research framework used in this study. It is mainly 

divided into four steps as follows: 

1) Employ &-means to transform age attribute into three groups; 

2) Transform the occupation attribute into workers, officers and managers; 

3) Utilise RELIEF to select the relevant attributes; and 

4) Apply AdaBoost algorithms to build the breast cancer prediction models and se­

lect the best performance. 

4.3 Methodology 

In relation to the data mining task, the methodology of the data preparation and steps for 

applying pre-processing are described. 
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4.3.1 Data preparation 

In this chapter, the data set is generated using data collected from Srinagarind Hospital 

databases between January 1990 and December 2001. Thus, the initial data comprises 

2,462 patients with several attributes. After selecting only identified female patients 

and removing the incomplete and unknown instances (records), the input data set con­

sists of 736 instances. Twelve attributes including a numeric attribute, 10 discrete at­

tributes, and one class attribute are selected. The numerical attribute consists of an 

'Age', while discrete attributes consist of'Marital status', 'Occupation', 'Basis of diag­

nosis', 'Topography', 'Morphology', 'Extent', 'Stage', 'Received surgery', 'Received 

radiation', 'Received chemotherapy' and 'Survivability status'. The list of 12 attributes 

is presented in Table 4.1 below. 

Table 4.1: Input attributes before applying pre-processing 

No. 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 

Attributes 
Age at diagnosis 
Marital status 
Occupation 
Basis of diagnosis 
Topography 
Morphology 
Extent 
Stage 
Received surgery 
Received radiation 
Received chemotherapy 
Survivability status (class attribute) 

Field N a m e 
Age 
Married 
Occ 
Basis 
Top 
Mor 
Extent 
Stage 
Surg 
Radi 
Chem 
Class 

Attribute Values 
-

3 
27 
6 
9 
14 
4 
4 
2 
2 
2 
2 

Table 4.1 shows the initial attributes used in this chapter. According to binary classifi­

cation problems related to 5-year breast cancer survivability, the class attribute consists 

of two classes including 'Dead' and 'Alive'. These classes are generated such that a 

patient surviving less than 60 months is coded as 0 ('Dead') and 60 months or more is 

code as 1 ('Alive'). Therefore, the class attribute includes 394 patients ('Dead') and 

342 patients ('Alive'). 
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4.3.2 Applying pre-processing 

In order to improve the quality of data, the first three steps of the research framework 

(Figure 4.1) are applied. Firstly, the £-means algorithm is applied to group the age at­

tribute into three groups including youth (22-43 years), middle-age (44-56 years) and 

senior (57-81 years) age ranks. Secondly, based on occupation, the occupation attribute 

is transformed into three groups including workers, officers and managers. Thirdly, 

RELIEF is used as the attribute selection method to align the relative attributes with re­

spect to their scores. The results obtained from RELIEF are presented in Figure 4.2. 

Figure 4.2: RELIEF scores 

Figure 4.2 illustrates that extension of breast cancer has the highest score among other 

attributes in the 5-year breast cancer survivability data set. After running pre-

investigation by eliminating the low sore attribute each time, eight attributes including 

'Extent', 'Stage', 'Basis', 'Age', 'Morphology', 'Occupation', 'Received surgery' and 

'Survivability status' are considered to produce a better performance in building the 

breast cancer survivability prediction model. The selected attributes are shown in Table 

4.2. 
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Table 4.2: Input attributes after applying pre-processing 

No. Attributes Attribute Values 
1 Extent 4 
2 Stage 4 
3 Basis 6 
4 Age 3 
5 Morphology 14 
6 Occupation 3 
7 Received surgery 2 
8 Survivability status (class attribute) 2 

Table 4.2 displays new input attributes and the number of values after applying dimen­

sion reduction methods, and the attribute selection used for building prediction models. 

Initiating this process may increase the accuracy and stability of prediction models. 

4.4 Approach validation 

In order to evaluate the performance and effectiveness of the proposed approach, the 

accuracy, sensitivity and specificity (see Section 2.2.3.1) of AdaBoost prediction mod­

els based on a confusion matrix are employed. Accuracy refers to the percentage of cor­

rectness of outcomes among the test sets of the prediction results of a classifier. Sensi­

tivity refers to the true positive rate of prediction results. In contrast, specificity refers to 

the true negative rate of the prediction results. Moreover, random stratified 10-fold 

cross-validation is utilised to divide the data set into training and test sets in order to 

minimise the bias and variance associated with random sampling of training and test 

sets [67]. Nine folds are used for building the model, and the remaining fold for evalu­

ating the model. Besides, we demonstrate that random stratified 10-fold cross-

validation has the highest accuracy using Self-Organizing map and Naive Bayesian 

(NB) classifiers in the same data, training and test sets [187]. Therefore, the overall 

accuracy, sensitivity and specificity are defined using 10 individual experiments as 

shown in Equation 4.6. 
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CA = ̂ A r (4.6) 
k ,=i 

In this Equation 4.6, CA refers to the average of accuracy, sensitivity and specificity, k 

refers to the number of folds, and At is the accuracy, sensitivity and specificity measure 

of each fold. 

4.5 Experimental evaluations 

In order to evaluate the fact that applying pre-processing leads to increasing the per­

formance and stability of prediction models, experiments are conducted using 

MATLAB 7 release 14, GML AdaBoost MATLAB Toolbox [188] and WEKA version 

3.5.6. Moreover, parameters of Real, Gentle and Modest algorithms are set to three 

splitting leaves and levels. Finally, the results of the experiments are presented and dis­

cussed. 

4.5.1 Accuracy comparisons 

In order to evaluate the performance and stability of AdaBoost prediction models before 

and after applying pre-processing, the accuracy of prediction models is utilised. The 

results of this experiment are shown in Figures 4.3 and 4.4. 

Figure 4.3: Accuracy before pre-processing Figure 4.4: Accuracy after pre-processing 
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Figures 4.3 and 4.4 illustrate the accuracy of the prediction models generated from Real, 

Gentle and Modest AdaBoost algorithms using 200 iterations before and after the appli­

cation of pre-processing, respectively. The results of the experiment show that the ac­

curacy of Real and Gentle classifiers decreases rapidly, while the accuracy of Modest 

seems to increase from 0 up to 15 iterations, before gradually decreasing prior to pre­

processing. This may be due to the fact that Real and Gentle classifiers have an overfit-

ting problem which leads to a decrease in the accuracy of these classifiers. However, 

the stability of Real and Gentle classifiers slightly improves while Modest remains sta­

ble following pre-processing. This proves that the Modest classifier provides better 

prediction accuracy compared to Real and Gentle classifiers in this context. This may 

be due to the fact that Modest can handle well in small dimensions resulting in decreas­

ing the generalisation error. Moreover, this also proves that applying pre-processing 

can increase the accuracy and stability of prediction models. 

4.5.2 Sensitivity comparisons 

In order to investigate the performance and stability of classifiers in the positive class 

('Dead' class), sensitivity is used before and after applying pre-processing. The sensi­

tivity results of Real, Gentle and Modest classifiers after running the tests for 200 itera­

tions are displayed in Figures 4.5 and 4.6. 
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Figure 4.5: Sensitivity before pre-processing Figure 4.6: Sensitivity after pre-processing 

Figures 4.5 and 4.6 show the sensitivity of Real, Gentle and Modest classifiers using 5-

year breast cancer survivability data sets. The results of this experiment exhibit that the 

sensitivity of Real and Gentle classifiers hastily decreases from the 5th iteration until the 

200th iteration. On the other hand, the sensitivity of the Modest classifier slightly in­

creases from the start until the 10th iteration and then decreases leisurely until the 200th 

iteration before the application of pre-processing. However, following pre-processing, 

the sensitivity of Modest increases significantly. This may be due to the fact that the 

Modest concentrates on predicting in the majority class rather than the minority class. 

4.5.3 Specificity comparisons 

In order to investigate the performance and stability of the classifiers in the positive 

class ('Alive') before and after applying pre-processing, specificity is used. The 200 

iterations of the specificity of Real, Gentle and Modest classifiers using the 5-year 

breast cancer survivability data set are shown in Figures 4.7 and 4.8. 
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Figure 4.7: Specificity before pre-processing Figure 4.8: Specificity after pre-processing 

Figures 4.7 and 4.8 demonstrate the specificity of the Real, Gentle and Modest classifi­

ers. The experimental results show that Real and Gentle classifiers are better than Mod­

est at 10 iterations and then they decrease hastily until 200 iterations. On the other 

hand, Modest slightly improves from the beginning before pre-processing. However, 

after applying pre-processing, the specificity of the Real and Gentle classifiers rapidly 

improves and then slightly decreases while the specificity of Modest slightly improves 

from the beginning and then becomes stable. This may be due to the fact that the Mod­

est classifier is limited in classifying the instances in the minority class within an imbal­

anced data set. 

4.5.4 Comparisons of well-known classifiers 

In order to present the performance of AdaBoost classifiers and compare it to those of 

well-known classifiers including Bagging, C4.5, Support Vector Machine (SVM) and 

Random Forests, accuracy, sensitivity and specificity of classifiers are used. In this sec­

tion, Bagging is based on a fast decision tree learner (REPTree) while SVM, used in this 

section, is based on a C-Support Vector Classification type with a radial basis kernel. 

The results of this experiment are shown in Table 4.3. 
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Table 4.3: Accuracy, sensitivity and specificity of classifiers 

Before pre-processing After pre-processing 

Classifiers Accuracy Sensitivity Specificity Accuracy Sensitivity Specificity 

Real AdaBoost 
Gentle AdaBoost 
Modest AdaBoost 
Bagging 
C4.5 

SVM 
Random Forests 

(%) 

66.39 
66.74 
68.58 
67.67 
67.53 
61.37 
57.53 

(%) 

70.38 
69.99 
75.79 
69.08 
67.64 
62.77 
59.90 

(%) 

61.80 
63.05 
60.03 
66.18 
68.37 
60.08 
54.79 

(%) 

67.77 
67.56 
68.63 
67.12 
67.67 
68.22 
64.52 

(%) 

73.59 
73.41 
79.95 
66.95 
67.81 
67.12 
67.00 

(%) 

60.09 
60.85 
55.70 
67.81 
67.92 
70.44 
61.78 

Table 4.3 illustrates not only the average of accuracy, sensitivity and specificity of Real, 

Gentle and Modest classifiers using 200 iterations but also the average of accuracy, sen­

sitivity and specificity of Bagging, C4.5, S V M and R a n d o m Forests classifiers before 

and after pre-processing using stratified 10-fold cross-validation. Results show that the 

Modest classifier provides the highest sensitivity; on the other hand, it provides the 

lowest specificity after pre-processing. This m a y be due to the fact that it misleads and 

doesn't classify the correct classes in noisy data and imbalanced data. However, the 

accuracy of Modest not only increases after pre-processing but also provides the highest 

level of accuracy a m o n g six classifiers. This demonstrates that the Modest technique is 

superior to Real, Gentle, Bagging, C4.5, S V M and R a n d o m Forests techniques in build­

ing a 5-year breast cancer survivability prediction model from 5-year breast cancer sur­

vivability data at Srinagarind Hospital in Thailand. 

4.5.5 Discussion 

In this chapter, a &-means algorithm and R E L I E F were utilised to improve breast cancer 

survivability data quality. Subsequently, the Modest AdaBoost algorithm is employed 

to build a 5-year breast cancer survivability prediction model at Srinagarind Hospital in 

Thailand. Accuracy, sensitivity and specificity are utilised to measure the performance 
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and effectiveness of these prediction models. Consequently, several findings are dis­

cussed in relation to the performance and stability of Real, Gentle and Modest 

AdaBooost prediction models. 

Firstly, the accuracy of the prediction model generated from Modest is found to provide 

more accurate and stable results than the prediction model conducted from Real and 

Gentle. Similarly, results presented by Jinbo, Li and Wenhuang [164] showed that the 

Modest prediction model is superior to Gentle in customer risks prediction models. 

However, Qahwaji, Al-Omari, Colak and Ipson [24] demonstrated that models gener­

ated from Gentle are more accurate than Modest in weather forecasting data. 

Secondly, the accuracy of the AdaBoost models including Real, Gentle and Modest 

slightly improves after applying the &-means algorithm and RELIEF in pre-processing. 

This may be due to the fact that selecting the relevant attributes can lead to improving 

the performance of prediction models. In the same way, Borges and Nievola [189] 

demonstrated that using an attribute selection method in pre-processing leads to improv­

ing the accuracy of their prediction models. 

Thirdly, the stability of Real, Gentle and Modest prediction models improves after ap­

plying pre-processing. This may be due to the fact that reducing dimensions of in­

stances together with selecting the appropriate attributes can lead to improving the sta­

bility of AdaBoost models. Likewise, Kalousis, Prados and Hilario [171] applied at­

tribute selection before building their model leading to improving the stability of a lin­

ear SVM prediction model. 

Finally, we conclude that the proposed pre-processing framework not only improved the 

accuracy and sensitivity of models generated from Real, Gentle and Modest, but also 

improved the performance of models generated from C4.5, SVM and Random Forests. 



Chapter 4: Data Pre-processing via AdaBoost 79 

4.6 Chapter summary 

In this chapter, we successfully utilised pre-processing by combining £-means and 

RELIEF to improve data quality in order to enhance the accuracy and stability of the 5-

year breast cancer survivability prediction model using Modest AdaBoost algorithm. 

However, there are alternative ways to improve data quality such as outliers handling 

and re-sampling approaches. In order to find alternative ways to improve the data qual­

ity, the next chapter investigates outlier handling approaches due to the fact that outliers 

are one of the problems which affect the performance of prediction models [147] [153]. 



Chapter 5 

Identifying and Eliminating Outliers via 

C-Support Vector Classification Filtering 

In Chapter 4, a 5-year breast cancer survivability prediction model was successfully 

developed using pre-processing in data mining and AdaBoost Algorithms. Pre­

processing is used to transform a numerical attribute into discrete attributes using the k-

means algorithm, and selecting suitable attributes using RELIEF in order to enhance the 

performance and stability of these prediction models. 

In this chapter, the problem of identifying and eliminating outliers to improve the qual­

ity of data is addressed in order to enhance the performance and effectiveness of classi­

fiers. This work has been published in the following paper: 

• J. Thongkam, G. Xu, Y. Zhang and F Huang, Support vector machines for out­

lier detection in cancer survivability prediction, in Proceedings of the Interna­

tional Workshop on Health Data Management (IWHDM'08), pp. 99-109, April 

28, Shenyang, China, 2008. 

In addressing this problem, the C-Support Vector Classification Filtering (C-SVCF) ap­

proach is proposed to identify and eliminate outliers from a 5-year breast cancer surviv­

ability data set. In order to evaluate the capability and effectiveness of the proposed ap­

proach, accuracy and Area Under the receiver operating characteristic Curve (AUC) 

80 



Chapter 5: Identifying and Eliminating Outliers via C-Support Vector Classification Filtering 81_ 

of prediction models are used. Moreover, this proposed approach is compared, with 

AdaBoost Filtering (ABF), Bagging Filtering (BF), AdaBoost with Support Vector Ma­

chine Filtering (ABSVMF) and Bagging with Support Vector Machine Filtering 

(BSVMF). Following this, the experimental results are illustrated and discussed in or­

der to provide support for this proposed approach and the chapter summary is presented. 

5.1 Problems of outliers 

Outliers commonly refer to instances in a current data set that do not comply with gen­

eral behaviour of a model [53] [146] [147]. For example, in this context patients who 

have breast cancer in stage I and are less than 30 years of age should be categorised as 

'Alive'. However, these patients have been categorised as 'Dead' in the current data 

set, possibly due to having died of other causes. These outliers decrease the perform­

ance and effectiveness of the model [147] [154]. Consequently, several approaches 

have been introduced in order to detect outliers. These include statistical tests that as­

sume a distribution or probability model for the data and distance measures in which 

instances that are a substantial distance from any other cluster are considered as outliers. 

However, in relation to pattern recognition and instance-based learner fields, they utilise 

a learning algorithm to identify outliers in order to improve the performance of classifi­

ers [53] [25]. 

There are three main outlier handling approaches including robust, outlier filtering, and 

outlier correction (see Section 3.6.2). The robust approach is used to build a complex 

control mechanism in order to avoid overfitting in the training data and generalise well 

in the unseen data [154]. Unlike robust, the outlier filtering approach involves a learn­

ing algorithm to identify and eliminate misclassified instances (called outliers) from a 
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data set [25]. On the other hand, the outlier correction approach is built upon the as­

sumption that each attribute in the data set is correlated with others, and can be reliably 

predicted [150]. Unfortunately, outlier correction is usually more computationally ex­

pensive than robust and outlier filtering, and is unstable in correcting and cleaning un­

wanted instances [25]. Therefore, in this chapter the outlier filtering approach is se­

lected to identify and eliminate outliers to improve the quality of the breast cancer sur­

vivability data set. 

Recently, Support Vector Machine (SVM) has been emerging as a popular classification 

technique in machine learning [53]. This novel classification technique is based on neu­

ral networks technology using a statistical learning theory to classify the class attribute 

[111]. Moreover, the SVM family provides several types of classification techniques 

including C-Support Vector, nu-Support Vector and One-class Support Vector Classifi­

cations. However, C-Support Vector Classification (C-SVC) is the simplest and most 

powerful among the other SVM in binary class classification problems [53]. For in­

stance, Yin, Yin, Sun and Wu [190] intensively investigated C-SVC with a radial basis 

function to identify classification problems in handwritten Chinese characters. Their 

results showed that C-SVC with radial basis function had the highest accuracy in the 

predicting task. Although several research studies have used the Support Vector Ma­

chine technique for filtering e-mail spam and patterns recognition, few research studies 

have employed C-SVC to filter outliers in medical data. 

Since a patient's information, illnesses and treatments in medical databases are of inter­

est for developing prediction models, they commonly contain outliers which result in an 

overfitting problem and lead to the prediction model having high error rates [147]. This 

problem refers to a prediction model that performs the prediction well using the seen 
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training set, but performs poorly using the unseen test set [26]. This chapter proposed 

the C-Support Vector Classification Filtering (C-SVCF) approach to identify and elimi­

nate misclassified instances to improve the data quality in order to improve the per­

formance and effectiveness of the 5-year breast cancer survivability prediction model. 

The capability and effectiveness of the proposed approach is evaluated using the accu­

racy and AUC score of prediction models generated from several learning algorithms 

including C4.5, conjunctive rule, Naive Bayes, Nearest Neighbour classifier (NN-

classifier), Random Committee (RC), Random Forests (RF), and a Radial Basis Func­

tion Network (RBFNetwork). 

5.2 Outlier filtering approaches and framework 

In order to improve the quality of data in a data set, an overview of C-Support Vector 

Classification (C-SVC) and a C-Support Vector Classification Filter (C-SVCF) ap­

proach are given. Moreover, an outlier filtering framework used in this chapter is intro­

duced. 

5.2.1 C-support vector classification 

C-Support Vector Classification (C-SVC) [111] is a classification technique which be­

longs to the Support Vector Machine family, and is a new generation of learning algo­

rithms used in machine learning and pattern recognition [190]. It not only provides a 

better performance, but is also suited to classifying a binary classification problem. The 

C-SVC algorithm is reviewed in Algorithm 5.1 below. 
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Algorithm 5.1: C-support vector classification 

Input: 
S: a training set (xt,y,), /=1,2,...,«; *, e S" ; yt e {+1,-1}; 

Output: 
f(x): output space; 

(1) Find an optimal separating hyper-plane with the maximum margin with Equation 
5.1 below: 

minimising I. w
2 (5 1) 

Subject to : v, ((w Xj)+6) -1>= 0 
(2) Apply language multipliers (a) in Equation 5.2 as follows: 

f(x) = sign^l^^ (x, • x) + b) <5-2) 

Here, n represents the number of the training samples used to define the decision 
frontier vectors. In case of the vectors xt for (at) & 0 which refer to the separation 

region by the support vectors [191]; 
(3) Assume that an optimal separating hyper-plane does not exist. This algorithm solves 

the problem by inserting non-negative slack variables £ to reduce the optimisation 

problem which is given in Equation 5.3 following: 
1 m 

minimising :-1^1 +C£<f,. (5.3) 
2 ;=1 

Subject to : yt • ((W • xt) + b) > 1 - <f,/ = 1,..., n 

Here<£ refers to the slack variables, and C refers to a penalty parameter to be chosen 

by the user; and 
(4) Return J(x). 

Algorithm 5.1 shows processes of C-Support Vector Classification for finding an opti­

mal separating hyper-plane and returns the classified vectors. Several research studies 

have employed C-SVC to conduct the prediction models or classifiers. For example, 

Coussement and Poel [113] employed C-SVC to construct a customer behaviour predic­

tion model. Their results indicated that a model generated from C-SVC with a radial 

basis kernel function provided greater accuracy and AUC scores than a model generated 

from Logistic Regression using a marketing data set. On the other hand, Yi and Fuyong 

[39] performed C-SVC to select suitable attributes in breast cancer diagnosis data sets. 

Their results showed a significant improvement of accuracy in selected attributes. As 
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C-SVC is a powerful technique not only used to develop prediction models but also to 

select the most suitable attributes, this present study uses it to identify outliers in order 

to improve the performance of prediction models. 

5.2.2 C-support vector classification filtering approach 

The filtering approach basically refers to an approach that is used to improve data qual­

ity by filtering out insignificant outliers from a data set, since classification techniques 

have a poor result when the data set contains the specific value of outliers. This ap­

proach involves a learning algorithm for eliminating outliers from a whole data set, and 

then the prediction model is generated using the remaining instances to reduce the com­

plexity and increase the performance to the model [25] [26] [192]. Consequently, find­

ing a suitable learning algorithm for removing outliers is a challenging task. In this 

study, C-Support Vector Classification Filtering (C-SVCF) is proposed to identify out­

liers in a 5-year breast cancer survivability data set. The C-SVCF algorithm [148] is 

given in Algorithm 5.2. 

Algorithm 5.2: C-support vector classification filter 

Input: 
D: a training data set; 
N: number of instances; 

Output: 
F: a filtered data set; 
O: an Outlier data set; 

(1) Empty FandO; 
(2) Train (7) using C-SVC(Z>); 
(3) For i = 1 to N do 
(4) If D0) e T 

(5) Insert D^toF; 
(6) Else 
(7) Insert D(0to O; 
(8) End if 
(9) End for 
(10) Return F,0. 
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Algorithm 5.2 shows that the C-SVCF algorithm provides the function to identify and 

eliminate outliers from training data (D) and return a set of filtered data (F) and a set of 

outliers (O). In this way, the data set can allow the learning algorithm not only to build 

an accurate model from significant instances, but also provide a corrected interpretation 

for domain experts and users. 

5.2.3 Outlier filtering research framework 

The outlier filtering framework starts generally based on the original data set without 

outliers [26] [193] [194]. Then the different levels of outliers are added into the original 

and evaluated through learning algorithms to identify and remove misclassified in­

stances. Similarly, Verbaeten and Assche [26] have shown that the decision tree algo­

rithm is affected by outliers. Their experiment started with an outlier-free data set, fol­

lowed by adding the different levels of outliers in the data set, and evaluating effective­

ness using a decision tree. Their results demonstrated that the accuracy of decision tree 

decreased rapidly after increasing outliers. In contrast, our framework started from data 

with outliers, and reduced outliers by applying learning algorithms to identify and ran­

domly eliminate outliers. For example, an algorithm marks an instance as misclassified 

if it is classified wrongly, whereas this algorithm marks an instance as classified if it is 

classified correctly. Following this, the misclassified instances are randomly eliminated 

from the original data set by 5% each time until 20% of elimination is reached, to simu­

late the ability of the outlier filtering approach. This outlier filtering framework is illus­

trated in Figure 5.1. 
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Input data set 

i 
Apply Learning Algorithms 

I 

c Classified Data c Misclassified data 3 
Randomly eliminate data 

from 5, 10, 15 and 2 0 % 

r Remaining data 3 
C News data sets 

T 
Apply cross-validation to divide data sets 

I 
Build prediction models 

Evaluate prediction models 

C End ) 

Figure 5.1: Outlier filtering research framework 

Figure 5.1 shows the outlier elimination framework used to evaluate the capability and 

effectiveness of the outlier filtering approaches. This framework is a suitable for find­

ing an appropriate outlier filtering approach which results in increasing the performance 

of prediction models whilst eliminating the same number of outliers. 

5.3 Data sets 

In order to conduct the experiment, breast cancer survivability data were obtained at 

Srinagarind Hospital in Thailand. The data include patient information and the choices 

of treatments for patients diagnosed with breast cancer from 1990 to 2001. The data 

consist of 12 attributes which are presented in Table 5.1. 
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Table 5.1: Input attributes of 5-year breast cancer survivability data 

No. Attributes Types of attribute Attribute Values 
1 Age Number 
2 Marital status Category 3 
3 Occupation Category 27 
4 Basis of diagnosis Category 6 
5 Topography Category 9 
6 Morphology Category 14 
7 Extent Category 4 
8 Stage Category 4 
9 Received surgery Category 2 
10 Received radiation Category 2 
11 Received chemotherapy Category 2 
12 Survivability status (class attribute) Category 2 

Table 5.1 shows the input attributes including 'Age', 'Marital status', 'Occupation', 

'Basis of diagnosis', 'Topography', 'Morphology', 'Extent', 'Stage', 'Received sur­

gery', 'Received radiation', 'Received chemotherapy', and 'Survivability status'. In 

order to build the breast cancer survivability prediction models, uncompleted and dupli­

cated data are deleted. The class attribute is divided into 'Dead' and 'Alive' classes. 

The 'Dead' class refers to patients who died within the five years period prior to the first 

diagnosis, while the 'Alive' class refers to patients who were still alive for five years or 

more after the first diagnosis. In this way, data consist of 738 instances. The 'Dead' 

class is composed of 394 instances, and the 'Alive' class is composed of 342 patients. 

5.4 Validations 

In order to validate the capability and effectiveness of the proposed filtering outliers 

approach, both accuracy (see Section 2.2.3.1) and Area Under the receiver operating 

characteristic Curve (AUC) (see Section 2.2.3.3) of prediction models including C4.5, 

Conjunctive Rule, Naive Bayes, Nearest Neighbour classifier (NN-classifier), Random 

Committee, Random Forests and a Radial Basis Function Network (RBFNetwork), are 

used. Accuracy is used to present the percentage of correctness of outcome among the 
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test sets. On the other hand, AUC is used to evaluate the predictive ability of learning 

algorithms by calculating the area under the Receiver Operating Characteristic (ROC) 

curve. Moreover, stratified 10-fold cross-validation is used to divide the data set into a 

training set and a test set. The training set is used to generate the prediction model and 

the test set is used to evaluate the prediction model. 

5.5 Performance and effectiveness of classifiers 

In this section, WEKA version 3.5.6 [92] and LIBSVM [28] data mining environments 

are selected. The WEKA environment is a well-defined framework, and offers a variety 

of learning algorithms. Several numbers of experiments are conducted to compare the 

performance and effectiveness of our proposed approach. The default baseline learner 

used in these experiments is first presented. Then the number of identifying and elimi­

nating instances using our approaches (C-Support Vector Classification Filtering (C-

SVCF)) and other approaches including AdaBoost Filtering (ABF), Bagging Filtering 

(BF), AdaBoost with SVM Filtering (ABSVMF) and Bagging with SVM Filtering 

(BSVMF) are exhibited. Finally, the results of these experiments are presented and dis­

cussed. 

5.5.1 Default baseline learners 

In order to investigate the capability and performance of outlier filtering approaches, 

five algorithms are used. Firstly C-Support Vector Classification Filtering (C-SVCF)) 

uses C-Support Vector Classification (C-SVC) with a radial basis function as a base 

learner to solve a quadratic optimisation problem. Secondly, AdaBoost Filtering (ABF) 

employs AdaBoost with Decision Stump as a base learner to build a decision tree. 

Thirdly, Bagging Filtering (BF) utilises Bagging with a fast decision tree learner (REP-
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Tree) as a base learner to also build a decision tree. Fourthly, AdaBoost with SVM Fil­

tering (ABSVMF) exploits AdaBoost with C-SVC and a radial basis function as a base 

learner. Lastly, Bagging with SVM Filtering (BSVMF) makes use of Bagging with C-

SVC and a Radial Basis Function as a base learner. 

5.5.2 Outliers identification 

In order to identify outliers, the number of outliers from misclassified instances is used. 

In this section, the number of outliers using the C-Support Vector Classification Filter­

ing (C-SVCF) approach is compared with the number of outliers using AdaBoost Filter­

ing (ABF), Bagging Filtering (BF), AdaBoost with SVM Filtering (ABSVMF), and 

Bagging with SVM Filtering (BSVMF), respectively. The number of outliers is shown 

in Table 5.2 below. 

Table 5.2: Number of outliers in the data set 

Filtering 
Approaches 
C-SVCF 
ABF 
BF 
ABSVMF 
BSVMF 

Filtered 
'Dead' 
322 
316 
283 
338 
320 

'Alive' 
248 
185 
241 
292 
221 

Outliers 
'Dead' 
72 
78 
111 
56 
1A 

'Alive' 
94 
157 
101 
50 
121 

166 
235 
212 
106 
195 

Percentage 
of outliers 

22.55 
31.93 
28.80 
14.02 
26.49 

Table 5.2 exploits the number of outliers using C-SVCF, ABF, BF, A B S V M F , and 

BSVMF. The results of this experiment show that ABSVMF can identify outliers by 

14.02%, followed by C-SVCF (22.55%), B S V M F (26.49%), B F (28.80%), and A B F 

(31.93%), respectively. This indicates that the model generated from the filtered data 

using ABSVMF may build more knowledge than other models. However, in order to 

evaluate the capability and effectiveness of these outlier filtering approaches in this 

study, the accuracy and AUC scores of the prediction models generated from the filtered 

data at 5%, 10%, 15% and 20% are validated and compared. 
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5.5.3 Accuracy of classifiers 

In order to evaluate the capability and effectiveness of outlier filtering approaches in­

cluding C-SVCF, ABF, BF, ABSVMF and BSVMF, the average accuracy of seven 

classifiers including C4.5, Conjunctive Rule, Na'i've Bayes, Nearest Neighbour classifier 

(NN-classifier), Random Committee, Random Forests, and a Radial Basis Function 

Network (RBFNetwork), are used. The average accuracy of each classifier is calculated 

using 10-fold cross-validation. The experimental results are displayed in Tables 5.3, 

5.4, 5.5, 5.6 and 5.7. 

Table 5.3: Accuracy of classifiers using C-Support Classification Filtering 

Classifiers 

C4.5 
Conjunctive Rule 

Naive Bayes 

NN-Classifier 

Random Committee 

Random Forests 

R B F Network 

Average 

Accuracy of classifiers after 

0% 

68.07 

63.86 

68.21 

57.88 

59.51 

60.73 

67.12 

63.63 

5% 

69.81 

68.38 

70.82 

62.09 

63.09 

64.81 

69.96 

66.99 

10% 

72.66 

70.24 

74.77 

67.37 

68.88 

69.34 

73.41 

70.95 

removing 

15% 

77.96 

72.84 

77.16 

70.13 

72.84 

74.76 

77.32 

74.72 

outliers 

20% 

81.49 

76.23 

81.15 

82.00 

83.53 

83.53 

78.95 

80.98 

Accuracy 

Improvement 
(%) 
13.42 

12.37 

12.94 

24.12 

24.02 

22.80 

11.83 

17.36 

Table 5.4: Accuracy of classifiers using AdaBoost Filtering 

Classifiers 

C4.5 

Conjunctive Rule 

NaYve Bayes 

NN-classifiers 

Random Committee 

Random Forests 

R B F Network 

Average 

Accuracy of classifiers after 

0% 

68.07 

63.86 

68.21 

57.88 

59.51 

60.73 

67.12 

63.63 

5% 

72.68 

66.09 

72.39 

58.23 

60.66 

63.81 

72.10 

66.57 

10% 

76.13 

73.41 

75.23 

62.84 

65.41 

65.41 

74.32 

70.39 

removing 

15% 

80.35 

77.48 

79.55 

67.89 

69.33 

73.00 

77.80 

75.06 

outliers 

20% 

85.40 

82.00 

84.38 

73.34 

76.91 

78.10 

84.04 

80.60 

Accuracy 

improvement 
(%) 
17.33 

18.14 

16.17 

15.46 

17.40 

17.37 

16.92 

16.97 
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Table 5.5: Accuracy of classifiers using Bagging Filtering 

Classifiers 

C4.5 

Conjunctive Rule 

NaTve Bayes 

NN-classifiers 

Random Committee 

Random Forests 

R B F Network 

Average 

Accuracy of classifiers after 

0% 

68.07 

63.86 

68.21 

57.88 

59.51 

60.73 

67.12 

63.63 

5% 

72.25 

68.81 

71.67 

58.94 

60.23 

61.52 

70.67 

66.30 

10% 

75.08 

70.85 

74.92 

64.05 

67.07 

69.03 

74.62 

70.80 

removing 

15% 

80.51 

74.60 

78.12 

69.17 

72.04 

73.32 

77.00 

74.97 

outliers 

20% 

85.91 

77.76 

82.17 

77.08 

79.46 

82.00 

81.49 

80.84 

Accuracy 

improvement 
(%) 
17.84 

13.90 

13.96 

19.20 

19.95 

21.27 

14.37 

17.21 

Table 5.6: Accuracy of classifiers using AdaBoost with S V M Filtering 

Classifiers 
Accuracy of classifiers after removing outliers 

0% 5% 10% 15% 20% 

Accuracy 
improvement 

(%) 
C4.5 

Conjunctive Rule 

Naive Bayes 

NN-classifiers 

Random Committee 

Random Forests 

R B F Network 

68.07 

63.86 

68.21 

57.88 

59.51 

60.73 

67.12 

69.67 

66.67 

70.39 

59.66 

62.66 

62.95 

68.53 

69.64 

70.39 

73.11 

66.01 

69.03 

69.64 

72.36 

Average 63.63 65.79 70.03 

1.57 

6.53 

4.90 

8.13 

9.52 

8.91 

5.24 

6.40 

Table 5.7: Accuracy of classifiers using Bagging with S V M Filtering 

Classifiers 

C4.5 

Conjunctive Rule 

Naive Bayes 

NN-classifiers 

Random Committee 

Random Forests 

R B F Network 

Average 

Accuracy of classifiers after 

0% 

68.07 

63.86 

68.21 

57.88 

59.51 

60.73 

67.12 

63.63 

5% 

69.24 

64.23 

70.96 

59.08 

61.09 

61.23 

69.81 

65.09 

10% 

72.05 

70.24 

73.41 

61.78 

63.90 

67.98 

71.75 

68.73 

removing < 

15% 

76.04 

72.20 

76.04 

69.01 

71.41 

74.12 

75.88 

73.53 

outliers 

20% 

79.46 

75.21 

79.46 

74.36 

77.93 

78.27 

79.63 

77.76 

Accuracy 

improvement 
(%) 
11.39 

11.35 

11.25 

16.48 

18.42 

17.54 

12.51 

14.13 

Tables of 5.3, 5.4, 5.5, 5.6 and 5.7 show the accuracy of classifiers after applying C-

S V C F , A B F , BF, A B S V M F and B S V M F respectively, to identify and eliminate out-
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liers. The results of this experiment show that the accuracy of NN-classifier achieves 

better results than other classifiers after applying C-SVCF while the accuracy of Ran­

dom Forests improves more than other classifiers after applying ABF and BF. On the 

other hand, the accuracy of Random Committee improves more than other classifiers 

after applying ABSVF and BSVMF. This indicates that NN-classifier, Random Com­

mittee and Random Forests are sensitive to outliers. However, the average accuracy of 

classifiers improves up to 17.36%, 16.97%, 17.21%, 6.40% and 14.13% after applying 

C-SVCF, ABF, BF, ABSVMF and BSVMF, respectively. This proves that C-SVCF is 

capable of identifying and eliminating outliers from the data set in order to improve the 

accuracy of the prediction models. 

5.5.4 AUC of classifiers 

The Area Under the receiver operating characteristic Curve (AUC) is commonly used to 

evaluate the performance and effectiveness of prediction models (classifiers). In this 

context, it is employed to evaluate the capability of the proposed filtering approach, and 

compared with four outlier filtering approaches including AdaBoost Filtering (ABF), 

Bagging Filtering (BF), AdaBoost with Support Vector Machine Filtering (ABSVMF) 

and Bagging with Support Vector Machine Filtering (BSVMF), respectively. The over­

all AUC scores of seven classifiers are exhibited in Tables 5.8, 5.9, 5.10, 5.11 and 5.12. 
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Table 5.8: A U C scores of classifiers using C-Support Vector Classification Filtering 

Classifiers 

C4.5 

Conjunctive Rule 

Naive Bayes 

NN-classifiers 

Random Committee 

Random Forests 

R B F Network 

Average 

A U C scores of classifiers after 

0% 

69.67 

63.86 

68.21 

57.88 

59.51 

60.73 

67.12 

63.85 

5% 

72.60 

64.70 

77.30 

61.70 

65.80 

68.90 

76.10 

69.59 

10% 

74.90 

71.30 

80.70 

67.00 

70.40 

75.00 

78.80 

74.01 

removing 

15% 

79.90 

69.70 

82.90 

69.80 

76.70 

81.50 

82.50 

77.57 

outliers 

20% 

80.40 

72.90 

87.10 

81.60 

89.20 

90.80 

86.90 

84.13 

A U C scores 

improvement 
(%) 
10.73 

9.04 

18.89 

23.72 

29.69 

30.07 

19.78 

20.27 

Table 5.9: A U C scores of classifiers using AdaBoost Filtering 

Classifiers 

C4.5 

Conjunctive Rule 

Naive Bayes 

NN-classifiers 

Random Committee 

Random Forests 

R B F Network 

Average 

A U C scores of classifiers after 

0% 

69.67 

63.86 

68.21 

57.88 

59.51 

60.73 

67.12 

63.85 

5% 

73.50 

67.40 

77.90 

57.70 

60.60 

66.00 

76.90 

68.57 

10% 

75.80 

70.30 

80.20 

62.10 

65.60 

69.50 

78.80 

71.76 

removing 

15% 

79.80 

74.80 

83.80 

66.90 

71.40 

75.20 

81.80 

76.24 

outliers 

20% 

85.30 

80.50 

89.10 

72.20 

78.60 

82.80 

89.00 

82.50 

A U C scores 

improvement 
(%) 
15.63 

16.64 

20.89 

14.32 

19.09 

22.07 

21.88 

18.65 

Table 5.10: A U C scores of classifiers using Bagging Filtering 

Classifiers 

C4.5 

Conjunctive Rule 

Naive Bayes 

NN-classifiers 

Random Committee 

Random Forests 

R B F Network 

A U C scores of classifiers after 

0% 

69.67 

63.86 

68.21 

57.88 

59.51 

60.73 

67.12 

5% 

70.00 

69.50 

77.70 

58.60 

60.20 

66.20 

76.00 

10% 

76.30 

68.50 

80.90 

63.80 

69.50 

74.20 

80.10 

removing 

15% 

80.90 

72.60 

84.70 

68.80 

74.20 

78.60 

83.80 

outliers 

20% 

85.60 

73.90 

88.00 

76.90 

81.70 

86.90 

87.70 

A U C scores 

improvement 
(%) 
15.93 

10.04 

19.79 

19.02 

22.19 

26.17 

20.58 

Average 63.85 68.31 73.33 77.66 82.96 19.10 
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Table 5.11: A U C scores of classifiers using AdaBoost with S V M Filtering 

Classifiers 
A U C scores of classifiers after removing outliers 

0% 5% 10% 15% 20% 

A U C scores 
improvement 

C4.5 

Conjunctive Rule 

NaTve Bayes 

NN-classifiers 

Random Committee 

Random Forests 

RBF Network 

69.67 

63.86 

68.21 

57.88 

59.51 

60.73 

67.12 

70.70 

68.90 

76.90 

59.20 

64.10 

67.40 

75.10 

76.00 

68.60 

79.90 

65.70 

75.60 

75.90 

79.40 

6.33 

4.74 

11.69 

7.82 

16.09 

15.17 

12.28 

Average 63.85 68.90 74.44 10.59 

Table 5.12: A U C scores of classifiers using Bagging with S V M Filtering 

Classifiers 

C4.5 

Conjunctive Rule 

NaTve Bayes 

NN-classifiers 

Random Committee 

Random Forests 

RBF Network 

Average 

A U C scores of classifiers after 

0% 

69.67 

63.86 

68.21 

57.88 

59.51 

60.73 

67.12 

63.85 

5% 

70.20 

66.40 

77.30 

58.70 

62.50 

65.40 

75.40 

67.99 

10% 

72.80 

68.90 

79.60 

61.50 

65.60 

71.50 

78.50 

71.20 

removing 

15% 

75.30 

68.40 

82.30 

68.20 

75.20 

78.80 

80.10 

75.47 

outliers 

20% 

80.60 

72.20 

85.10 

73.70 

81.60 

85.00 

85.20 

80.49 

A U C scores 

improvement 
(%) 
10.93 

8.34 

16.89 

15.82 

22.09 

24.27 

18.08 

16.63 

Tables 5.8, 5.9, 5.10, 5.11 and 5.12 show the A U C scores of classifiers including C4.5, 

conjunctive rule, Naive Bayes, Nearest Neighbour classifier (NN-classifier), Random 

Committee, Random Forests, and a Radial Basis Function Network (RBFNetwork) after 

applying outlier filtering approaches including C-SVCF, ABF, BF, ABSVMF and 

BSVMF respectively, to identify and eliminate outliers. The experimental results show 

that Random Committee provides a higher AUC score than other classifiers after apply­

ing C-SVCF or ABSVMF while the AUC score of Random Forests improves more than 

other classifiers after applying ABF, BF and BSVMF. This indicates that Random 

Committee and Random Forests are sensitive to outliers. However, the average AUC 

scores of classifiers improves up to 20.27%, 18.65%, 19.10%, 10.59% and 16.63% after 
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applying C-SVCF, ABF, BF, ABSVMF and BSVMF, respectively. As a result, C-

SVCF is superior to ABF, BF, ABSVMF and BSVMF based on the elimination of 20% 

of outliers. 

5.5.5 Discussion of classifier results 

In medical databases, raw data contains outliers that do not follow the model behaviour 

[53]. Therefore, in this chapter a novel approach using C-Support Vector Classification 

Filtering (C-SVCF) is proposed and applied to a 5-year breast cancer survivability 

analysis. There are several findings of these results discussed below. 

Firstly, the C-SVCF algorithm is used to identify and eliminate outliers from the 5-year 

breast cancer survivability data set. Results show that removing outliers can improve 

the prediction results and this has been especially evidenced in the better result achieved 

by using C-SVC in comparison with ABF, BF, ABSVMF and BSVMF. Likewise, 

Khoshgoftaar, Seliya and Gao [195] showed that the performance of classifiers im­

proves after removing outliers from data sets. However, his results were based on a 

rule-based algorithm and a different level of attributes. 

Secondly, the average prediction accuracy is improved by 17.35% and the average AUC 

scores improved by 20.28% after removing 20% of outliers using C-SVC filtering. Al­

though these experimental results disagree with the experimental results of Brodley and 

Friedl [25], who demonstrated that removing 10% or less of outliers is insignificant in 

prediction results, in this context removing outliers from 5% to 10% significantly im­

proved the prediction results of classifiers. For example, the average accuracy of the 

prediction models has been improved by 6.76%, 7.17%, 6.40%, 5.10% and 7.32%, after 

removing 10% of outliers using AdaBoost, Bagging, AdaBoost with SVM, Bagging 

with SVM, and C-SVC, respectively. 
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Finally, C-SVCF provides a better accuracy and AUC score of predictions than that 

made by ABF, BF, ABSVMF and BSVMF. This may be due to the fact that C-SVCF is 

based on the C-Support Vector Classification technique which is suited to resolving the 

binary classification problems [39]. Unlike C-SVCF, AdaBoost filtering (ABF) is 

based on a Decision Stump while Bagging Filtering (BF) is based on a Fast decision 

tree learner (REPTree). Although ABSVMF and BSVMF also use C-SVC with a radial 

basis function as a base learner, the results of the identifying are affected by the weigh­

ing mechanism of AdaBoost and Bagging which can be misleading in separating the 

class labels. 

5.6 Chapter summary 

In this chapter, the C-SVCF algorithm has been proposed to identify and eliminate out­

liers in order to improve the quality of a 5-year breast cancer survivability data set. The 

experimental results showed that C-SVCF can generated a better data quality than that 

made by ABF, BF, ABSVM and BSVM based on the accuracy and AUC of seven clas­

sifiers including C4.5, Conjunctive Rule, NaTve Bayes, NN-classifier, Random Commit­

tee, Random Forests and RBFNetwork. Although using outlier filtering approach to 

eliminate misclassified instances from the full data set can increase the performance of 

classifiers, the bias may arise in the results. In the next chapter, an alternative approach 

to improving the data quality related to outliers and imbalanced data problems will be 

investigated. 



Chapter 6 

Improving Data Space via 

Combining Outlier Filtering and Over-Sampling 

In Chapter 5, the C-Support Vector Classification Filtering (C-SVCF) approach was 

proposed to improve the quality of 5-year breast cancer survivability data in order to 

build accurate and reliable prediction models. Accuracy and Area Under the receiver 

operating characteristic Curve (AUC) of well-known classifiers were used to evaluate 

the capability and effectiveness of the proposed approach. The experimental results in­

dicated that this approach is superior to AdaBoost, Bagging, AdaBoost with Support 

Vector Machine and Bagging with Support Vector Machine filtering approaches. 

In this chapter, problems of outliers filtering and imbalanced data to improve the quality 

of data are addressed in order to further improve the performance and effectiveness of 

classifiers. Work introduced in this chapter has been accepted for publication as fol­

lows: 

• J. Thongkam, G. Xu, Y. Zhang and F Huang, Toward breast cancer survivability 

prediction models through improving training space, Expert Systems with Ap­

plications, 2009. 

In addressing this problem, a combination of Outlier filtering and Over-Sampling 

(OOS) approaches is proposed to further improvements in breast cancer survivability 

data quality. In order to evaluate the capability and effectiveness of the proposed 

98 
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approach, not only accuracy and Area Under the receiver operating characteristic Curve 

(AUC) are used, but also sensitivity, specificity, and F-measure are employed. More­

over, the capability and effectiveness of the proposed approach is compared with outlier 

filtering and over-sampling approaches. The results of experiments are presented and 

discussed. The chapter then concludes with a summary. 

6.1 Overview and approaches 

In order to evaluate a prediction model in classification problems, a data set is com­

monly divided into training and test sets. The training set is used to build a prediction 

model while the test set is utilised to evaluate the model. However, most learning algo­

rithms rarely handle both outlier and imbalanced data problems which commonly occur 

in medical data sets [152] [196] [30]. 

Outlier refers to an instance which does not follow the common rules [146] [147]. This 

kind of data affects the performance of prediction models. There are three main outlier 

handing approaches including robust algorithm, outlier filtering and outlier correction. 

However, outlier filtering is the simplest approach and cost of computation is inexpen­

sive. 

Imbalanced data refers to one class in a data set which outnumbers instances in the 

other classes [22] [156]. This problem commonly occurs in many fields including 

medical credit card fraud detection and software defect prediction [157] [158]. Usually, 

a learning algorithm provides a poor performance when utilised in imbalanced data, 

thus resulting in bias towards the majority class [30]. In relation to imbalanced data 

problems, much research has used the re-sampling approach including under-sampling 

and over-sampling [156]. Under-sampling is used to decrease the size of the majority 
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class as the same size of the minority class, whereas over-sampling is used to increase 

the size of the minority class as the same size of the majority class. However, over-

sampling has been demonstrated to handle imbalanced data better than under-sampling 

[160] [157]. 

These problems are commonly handled by an outlier filtering approach [147] [55]. On 

the other hand, over-sampling and under-sampling are used to handle imbalanced data 

[197] [157]. Due to the limitations of learning algorithms, this chapter proposes a hy­

brid approach using combination of outlier filtering and over-sampling approaches to 

improve the quality of breast cancer survivability data sets in order to build an accurate 

breast cancer prediction models to yield better classification results. In order to present 

the background of the approaches, outlier filtering and over-sampling approaches are 

revealed, followed by the combined approach and the research framework which are 

introduced in order to understand the proposed approach. 

6.1.1 Outlier filtering 

An outlier filtering approach commonly utilises distance measures to detect outsider 

instances that are at a substantial distance from the others. In order to improve the per­

formance of classifiers, identifying and eliminating is a challenging task in pattern rec­

ognition and instance-based learners which generally employ ^-Nearest Neighbour (k-

NN) [25] [53]. However, Support Vector Machine (SVM) has also been used to filter 

out outliers to assist in improving the performance of classifiers. For instance, Moffitt, 

Phan, Hemby and Wang [198] successfully employed a support vector machine tech­

nique to filter out outliers from gene marker section data. Their results demonstrated 

that removing outliers resulted in an enhanced prediction model. Similarly, Marquez, 

Paredes and Garcia-Gabin [199] utilised SVM to improve the quality of images. Their 
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results indicated that after using S V M the visual quality of images was enhanced. 

However, few research studies have used SVM to identify outliers in the medical field. 

Therefore, this chapter utilises Support Vector Machine to filter out outliers, based on 

experimental results in chapter five. 

6.1.2 Over-sampling 

An over-sampling approach is commonly used in the problem of imbalanced data, due 

to the fact that it significantly improves the performance of classifiers [22] [156] [159]. 

This approach is a non-heuristic method used to balance the class distribution through 

the random replication of a minority class [156]. It is used to increase the training data 

size and enhance the performance of classifiers [161]. In this way, both the majority 

and minority classes are able to achieve a similar size, which has less effect on the per­

formance of the classifiers in relation to predicting the unseen data. 

Recently, the Synthetic Minority Over-sampling TEchnique (SMOTE) is commonly 

used to resize the imbalanced data. SMOTE uses a synthetic minority over-sampling 

technique to match the majority class by taking minority class instances and introducing 

synthetic instances [197]. For example, He, Han and Wang [157] employed SMOTE to 

ensemble classifiers trained on data sets. Their results indicated that SMOTE can en­

hance the C4.5 classifier performance. Similarly, Pelayo and Dick [161] employed 

SMOTE to resize the minority class to match the majority class. Their results high­

lighted that SMOTE improved the accuracy of four NASA benchmark models. How­

ever, producing synthetic instances using SMOTE did not seem to fit well, due to new 

instances that could lead to misinterpretation of patterns. Therefore, this chapter gener­

ally employs a simple over-sampling approach to compare with the proposed approach. 
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6.1.3 Combined approaches 

In medical databases, raw data normally contains outliers [53] and imbalanced data 

which affect the performance of prediction models (classifiers) [156] [20] [200]. In re­

lation to improving the quality of data which are contained in outliers and imbalanced 

data problems, much research has combined outlier filtering and re-sampling ap­

proaches in fraud detection data sets. However, a few researchers have applied this in 

relation to medical data. For instance, Padmaja, Dhulipalla, Bapi and Krishna [30] em­

ployed ^-Nearest Neighbour (&-NN) to eliminate outliers in a minority class, and ap­

plied over-sampling to increase the size of this minority class while applying under-

sampling to reduce the size of the majority class. In contrast, in this chapter the frame­

work starts with cleaned data sets (without duplicated and missing data). Then an out­

lier filtering approach using C-Support Vector Classification (C-SVC) with radial basis 

function to identify outliers from both classes is applied. Following this, an over-

sampling approach is utilised to resize the minority class to match the size of the major­

ity class. The framework for combining the Outlier filtering and Over-Sampling ap­

proaches (called OOS) [201] is illustrated in Figure 6.1. 
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Figure 6.1: Combined outlier filtering and over-sampling framework 

Figure 6.1 shows the OOS framework which is summarised in four main steps as fol­

lows: 

Step 1: the C-Support Vector Classification filtering (C-SVCF) approach is used to 

identify and eliminate outliers from both 'Dead' and 'Alive' classes in the 

original data sets; 

Step 2: the filtered data sets are divided into minority and majority classes; 

Step 3: the over-sampling approach is utilised to increase the size of the minority 

class to the same size as the majority class by using the ratio between major­

ity and minority classes; and 
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Step 4: the majority and minority classes are combined into a new data set which 

becomes a balanced data set. 

In this way, the quality of data would be improved and suited to building an accurate 

and reliable prediction model. 

6.2 Breast cancer survivability data sets 

In order to evaluate the performance and effectiveness of the proposed approach, the 

breast cancer survivability data and survival periods are expanded using data from 1985 

to 2006. The data contain 13 attributes and a class attribute from both patient informa­

tion and the treatment choice of patients diagnosed with breast cancer. The input attrib­

utes are presented in Table 6.1 below. 

Table 6.1: Input attributes 

No. 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 

Attributes 
Age 
Marital status 
Basis of diagnosis 
Topography 
Morphology 
Extent 
Stage 
Received surgery 
Received radiation 
Received chemotherapy 
Received hormonal therapy 
Received supportive therapy 
Received other therapy 
Survivability status (class attribute) 

Attribute Types 
Number 
Category 
Category 
Category 
Category 
Category 
Category 
Category 
Category 
Category 
Category 
Category 
Category 
Category 

Values 
-

3 
6 
9 
14 
4 
4 
2 
2 
2 
2 
2 
2 
2 

Table 6.1 shows 14 attributes used in this chapter. These attributes include 'Age', 

'Marital status', 'Basis of diagnosis', 'Morphology', 'Extent', 'Stage', 'Received sur­

gery', 'Received radiation', 'Received chemotherapy', 'Received hormonal therapy', 

'Received supportive therapy', 'Received other therapy' and 'Survivability status'. In 

order to obtain 1-, 2-, 3-, 4-, 5-, 6-, 7-, 8-, 9- and 10-year breast cancer survivability data 
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sets, 10 periods of patient's survival are applied. A s a result, each data set has unique 

numbers of instances, as displayed in Table 6.2. 

Table 6.2: The number of instances in original data sets 

Data Sets 

1-year 
2-year 
3-year 
4-year 
5-year 
6-year 
7-year 
8-year 
9-year 
10-year 

Years 

1985-2006 
1985-2005 
1985-2004 
1985-2003 
1985-2002 
1985-2001 
1985-2000 
1985-1999 
1985-1998 
1985-1997 

'Dead' 

351 
455 
485 
488 
466 
437 
351 
276 
248 
221 

'Alive' 

1128 
846 
654 
495 
392 
304 
198 
130 
103 
90 

Total 

1479 
1301 
1139 
983 
858 
741 
549 
406 
351 
311 

'Dead' 
(% Positive 

Class) 
23.73 
34.97 
42.58 
49.64 
54.31 
58.97 
63.93 
67.98 
70.66 
71.06 

'Alive' 
(%Negative 

Class) 
76.27 
65.03 
57.42 
50.36 
45.69 
41.03 
36.07 
32.02 
29.34 
28.94 

Table 6.2 shows the percentage of imbalanced data in each data set. Each data set in­

volves two classes including 'Dead' and 'Alive'. In the case of a 1-year breast cancer 

survivability data set obtained from 1958 to 2006, the 'Dead' class refers to patients 

who die within one year after the first diagnosis, while the 'Alive' class refers to pa­

tients who are still alive for one year or more after the first diagnosis. Similarly, the 

'Dead' class in 2-, 3-, 4-, 5-, 6-, 7-, 8-, 9- and 10-year breast cancer survivability data 

sets refer to patients who die within two, three, four, five, six, seven, eight, nine and 10 

years respectively, after the first diagnosis. Unlike the 'Dead' class, the 'Alive' class in 

2-, 3-, 4-, 5-, 6-, 7-, 8-, 9- and 10-year breast cancer survivability data sets refer to pa­

tients who are alive for two or more, three or more, four or more, five or more, six or 

more, seven or more, eight or more, nine or more and 10 years or more, respectively 

after the first diagnosis. Such data sets have imbalanced data problems which affect the 

performance of prediction models. This indicates a need to fully understand the data set 

before constructing prediction models. 
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6.3 Evaluation approaches 

In order to evaluate the Outlier filtering and Over-Sampling (OOS) approach, five 

evaluation methods including accuracy, sensitivity, specificity (see Section 2.2.3.1), 

Area Under the receiver operating characteristic Curve (AUC) (see Section 2.2.3.3) and 

F-measure (see Section 2.2.3.4) of prediction models are applied. Accuracy refers to 

the percentage of the correctness of outcomes among the test sets. Sensitivity refers to 

the true positive rate while specificity refers to the true negative rate. AUC uses the area 

under true positive and false positive rates to calculate the score in order to evaluate the 

predictive ability of learning algorithms while F-measure is an evaluation method based 

on recall and precision. The experiment procedures are performed using 10 iterations of 

the stratified 10-fold cross-validation to reduce the bias and variance associated with the 

classification results. 

6.4 Experimental results 

In order to evaluate the capability and effectiveness of a hybrid of the Outlier filtering 

and Over-Sampling (OOS) approaches, the WEKA experimenter version 3.5.6 [92] is 

selected. This is due to the fact that it provides a variety of learning algorithms used in 

data mining, pattern recognition, and machine learning. Four well-known algorithms 

including AdaBoost, Bagging, C4.5 and Support Vector Machine (SVM) are employed 

to present the capability and effectiveness of OOS approach. The best results are pre­

sented after repeating the simple over-sampling approach on the data sets many times 

until the insignificant difference in the results is reached. The default algorithm setting 

used in these experiments is first presented. Then the ratio of imbalanced data in major-
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ity and minority classes is discussed. Finally, the experimental results are presented and 

discussed. 

6.4.1 Default algorithm setting 

In order to perform these experiments, there are four defaults of algorithm setting in­

cluding: 

1) AdaBoost uses a Decision Stump as a base learner; 

2) Bagging utilises a fast decision tree learner as a base learner; 

3) C4.5 uses 0.25 confidence factor for pruning; and 

4) SVM uses the C-Support Vector Classifiers (C-SVC) type with a radial basis 

function. 

6.4.2 Imbalance data 

In order to define the imbalanced data in this section, the ratio between the majority 

class and the minority class is used. The numbers of remaining instance using an OOS 

approach are compared with outlier filtering and over-sampling. Results are exhibited 

in Table 6.3. 

Table 6.3: The number of instances using outlier filtering, over-sampling and OOS approaches 

Data 
Sets 

1-year 
2-year 
3-year 
4-year 
5-year 
6-year 
7-year 
8-year 
9-year 
10-year 

'Dead' 
351 
455 
485 
488 
466 
437 
351 
276 
248 
221 

TKOJ 

(MI) 

(MI| 

(MI) 

(MAI 

(MA) 

(MA) 

(MA) 

(MA) 

(MA) 

Original 

'Alive' 

1128 w*> 
846 <"*> 
654 <"*> 
495 <MA) 

392 <"•> 
304 <"" 
198 <"» 
130 <"" 
103 <"•> 
90 IMII 

Ratio 

(%) 
(MA/MI) 1 

321 
186 
135 
101 
119 
144 
177 
212 
241 
246 

'Dead' 

87 
159 
270 
349 
368 
378 
316 
265 
238 
212 

Outlier filtering 

(MI) 

(MI) 

(MI) 

(MI] 

(MA) 

(MA) 

(MA) 

(MA) 

(MA) 

IMA) 

'Alive' 

1093 
799 
544 
355 
250 
153 
77 
36 
24 
26 

(MA) 

(MA) 

IMA) 

(MA) 

(Ml) 

(Ml) 

IM1) 

[MI! 

(MI) 

(M0 

Ratio 

(%) 
(MA/MI) 

1256 
503 
201 
102 
147 
247 
410 
736 
992 
815 

Over-sampling 

'Dead' 

1126 
846 
653 
492 
466 
437 
351 
276 
248 
221 

'Alive' 

1128 
846 
654 
495 
466 
437 
350 
275 
248 
220 

Ratio 

(%) 
(MA/MI) 

1.00 
1.00 
1.00 
0.99 
1.00 
1.00 
1.00 
1.00 
1.00 
1.00 

'Dead' 

1092 
798 
542 
355 
368 
378 
316 
265 
238 
212 

OOS 

'Alive' 

1093 
799 
544 
355 
367 
377 
315 
264 
238 
211 

Ratio 

(%) 
(MA/MI) 

1.00 
1.00 
1.00 
1.00 
1.00 
1.00 
1.00 
1.00 
1.00 
1.00 

M A refers to the majority class and M I refers to the minority class 
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Table 6.3 shows the numbers of instances that incurred the imbalanced data problems. 

Results present that 4- and 5-year breast cancer survivability data sets are slightly more 

balanced than 1-, 2-, 3-, 6-, 7-, 8-, 9- and 10-year breast cancer survivability data sets. 

This problem of imbalanced data significantly increased after applying the outlier filter­

ing approach, especially in 1-, 7-, 8-, 9- and 10-year breast cancer survivability data 

sets. This may be due to the fact that more patients with breast cancer are alive than die 

after the first four years of the first diagnosis whereas there are more dead patients with 

breast cancer than live after the first five years of the first diagnosis. Although applying 

an over-sampling approach can handle the imbalance problem, it cannot reduce outliers. 

However, the OOS approach can reduce outliers as well as handle the imbalanced prob­

lem in data sets. 

6.4.3 Accuracy, sensitivity and specificity results 

The capability and effectiveness of the OOS approach are evaluated, using the average 

of accuracy, sensitivity and specificity of four classifiers including AdaBoost, Bagging, 

C4.5 and Support Vector Machine (SVM), and are compared with outlier filtering and 

over-sampling approaches. The results of this experiment are shown in Tables 6.4, 6.5, 

6.6 and 6.7, respectively. 
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Table 6.4: Accuracy, sensitivity and specificity of AdaBoost 

Data Sets 

1-year 
2-year 
3-year 
4-year 
5-year 
6-year 
7-year 
8-year 
9-year 
10-year 
Average 

Raw 
78.48 
69.70 
67.83 
66.27 
68.88 
69.41 
68.32 
68.97 
71.54 
71.64 
70.10 

Accuracy (%) 

Outlier 
96.07 
90.60 
86.99 
84.42 
87.77 
88.26 
93.69 
92.64 
97.64 
96.69 
91.48 

OS2 

68.74 
63.85 
67.38 
68.50 
66.75 
68.09 
63.72 
66.48 
67.13 
66.33 
66.70 

O O S 3 

93.00 
92.15 
88.24 
87.44 
87.25 
89.37 
92.55 
92.17 
95.67 
96.62 
91.45 

Raw 
25.67 
38.59 
48.57 
80.89 
82.92 
81.10 
82.23 
87.56 
92.46 
92.18 
71.22 

Sensitivity (%) 

Outlier 
72.90 
59.54 
76.11 
91.87 
95.84 
92.64 
98.19 
94.41 
99.45 
98.11 
87.91 

OS 
61.68 
69.87 
84.18 
68.99 
65.33 
78.20 
67.69 
67.00 
64.88 
68.18 
69.60 

OOS 
93.01 
93.65 
86.68 
91.54 
95.87 
90.32 
92.91 
85.30 
92.61 
95.56 
91.75 

Raw 
94.91 
86.43 
82.09 
51.85 
52.19 
52.61 
43.72 
29.54 
21.04 
21.22 
53.56 

Specificity (%) 

Outlier 
97.92 
96.78 
92.39 
77.12 
75.88 
77.42 
75.38 
80.00 
80.33 
85.33 
83.86 

OS 
75.78 
57.84 
50.61 
68.02 
68.19 
57.99 
59.74 
65.96 
69.38 
64.45 
63.80 

OOS 
93.00 
90.66 
89.80 
83.34 
78.61 
88.41 
92.19 
99.05 
98.74 
97.68 
91.15 

Table 6.5: Accuracy, sensitivity and specificity of Bagging 

Data Sets 

1-year 
2-year 
3-year 
4-year 
5-year 
6-year 
7-year 
8-year 
9-year 
10-year 
Average 

Raw 
77.45 
67.86 
65.64 
65.67 
67.04 
68.83 
66.63 
69.86 
70.89 
69.87 
68.97 

Accuracy (%) 

Outlier 
96.50 
94.24 
92.86 
90.74 
92.14 
92.08 
94.68 
93.81 
97.63 
95.46 
94.01 

OS 
76.85 
71.30 
71.75 
71.09 
70.31 
69.58 
71.17 
71.20 
74.09 
70.72 
71.81 

OOS 
98.01 
96.99 
95.48 
91.46 
94.39 
94.17 
96.15 
97.33 
99.14 
97.85 
96.10 

Raw 
26.38 
37.33 
54.35 
69.28 
74.31 
78.63 
80.54 
87.38 
89.03 
88.10 
68.53 

Sensitivity (%) 

Outlier 
72.86 
81.53 
91.04 
90.20 
93.97 
94.99 
96.68 
95.70 
98.69 
96.18 
91.18 

OS 
81.03 
74.87 
76.78 
74.87 
68.70 
69.23 
68.50 
67.33 
72.55 
66.09 
72.00 

OOS 
100.00 
98.93 
97.60 
92.31 
92.98 
92.33 
95.29 
94.69 
98.28 
96.23 
95.86 

Raw 
93.34 
84.28 
73.99 
62.09 
58.39 
54.75 
41.98 
32.69 
27.07 
25.11 
55.37 

Specificity (%) 

Outlier 
98.41 
96.77 
93.77 
91.27 
89.44 
84.89 
86.55 
79.67 
87.67 
90.33 
89.88 

OS 
72.68 
67.73 
66.73 
67.33 
71.91 
69.92 
73.86 
75.07 
75.66 
75.36 
71.63 

OOS 
96.02 
95.04 
93.36 
90.62 
95.80 
96.03 
97.02 
100.00 
100.00 
99.48 
96.34 

Table 6.6: Accuracy, sensitivity and specificity of C4.5 

Data Sets 

1-year 
2-year 
3-year 
4-year 
5-year 
6-year 
7-year 
8-year 
9-year 
10-year 
Average 

Raw 
78.38 
69.32 
67.26 
67.15 
68.64 
68.84 
67.58 
68.93 
71.68 
66.72 
69.45 

Accuracy (%) 

Outlier 
95.96 
94.13 
92.08 
90.19 
92.64 
93.17 
95.39 
95.21 
97.56 
96.17 
94.25 

OS 
75.95 
68.93 
72.04 
70.88 
70.36 
69.06 
67.96 
67.61 
73.61 
70.52 
70.69 

OOS 
98.53 
97.49 
95.17 
91.76 
94.12 
94.93 
97.67 
97.49 
99.37 
98.84 
96.54 

Raw 
25.61 
32.80 
61.47 
76.53 
78.32 
78.58 
78.52 
89.97 
92.82 
88.52 
70.31 

Sensitivity (%) 

Outlier 
62.00 
79.33 
88.19 
88.57 
93.48 
95.39 
97.49 
97.01 
98.61 
97.97 
89.80 

OS 
77.62 
73.80 
74.72 
78.69 
74.46 
73.25 
66.79 
63.54 
71.35 
67.46 
72.17 

OOS 
100.00 
99.00 
96.59 
90.99 
93.29 
94.02 
96.90 
94.99 
98.74 
97.97 
96.25 

Raw 
94.80 
88.96 
71.55 
57.89 
57.12 
54.85 
48.17 
24.31 
20.75 
13.22 
53.16 

Specificity (%) 

Outlier 
98.68 
97.08 
94.01 
91.78 
91.40 
87.68 
86.91 
81.67 
87.83 
81.83 
89.89 

OS 
74.29 
64.06 
69.36 
63.11 
66.26 
64.87 
69.14 
71.71 
75.86 
73.59 
69.23 

OOS 
97.05 
96.00 
93.75 
92.53 
94.96 
95.84 
98.44 
100.00 
100.00 
99.71 
96.83 

O S refers to Over-Sampling 

O O S refers to Outlier and Over-Sampling 
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Table 6.7: Accuracy, sensitivity and specificity of S V M 

Data Sets 

1-year 
2-year 
3-year 
4-year 
5-year 
6-year 
7-year 
8-year 
9-year 
10-year 
Average 

Raw 
77.16 
69.35 
66.06 
63.65 
64.84 
65.71 
64.43 
70.08 
72.23 
71.93 
68.54 

Accuracy (%) 
Outlier 
98.18 
96.46 
94.69 
93.87 
93.90 
95.29 
95.86 
97.41 
98.48 
96.90 
96.10 

OS 
73.89 
69.37 
68.85 
69.56 
68.80 
67.23 
66.32 
72.74 
73.26 
70.45 
70.05 

OOS 
99.76 
98.56 
96.93 
94.41 
97.46 
98.03 
98.64 
98.68 
99.56 
99.27 
98.13 

Raw 
16.67 
28.18 
48.77 
63.72 
73.77 
81.65 
86.10 
92.65 
94.68 
94.21 
68.04 

Sensitivity (%) 
Outlier 
79.46 
86.36 
89.67 
93.95 
96.31 
98.70 
99.40 
99.43 
100.00 
99.29 
94.26 

OS 
73.25 
71.39 
71.45 
68.92 
68.21 
71.65 
62.83 
72.30 
67.63 
66.70 
69.43 

OOS 
100.00 
99.95 
98.19 
94.37 
96.22 
97.30 
97.72 
97.34 
99.12 
98.53 
97.87 

Raw 
95.98 
91.49 
78.86 
63.58 
54.21 
42.79 
26.04 
22.15 
18.09 
17.22 
51.04 

Specificity (%) 
Outlier 
99.68 
98.47 
97.19 
93.78 
90.36 
86.86 
81.30 
82.33 
84.17 
78.67 
89.28 

O S 
74.53 
67.37 
66.24 
70.19 
69.38 
62.81 
69.83 
73.19 
78.90 
74.23 
70.67 

OOS 
99.51 
97.17 
95.68 
94.45 
98.69 
98.76 
99.56 
100.00 
100.00 
100.00 
98.38 

Tables 6.4, 6.5, 6.6 and 6.7 show the accuracy, sensitivity and specificity of AdaBoost, 

Bagging, C4.5 and SVM, respectively. Although the average accuracy of AdaBoost 

based on outlier filtering is slightly better than the average accuracy of AdaBoost based 

on OOS, the average of the sensitivity and specificity of AdaBoost using the OOS ap­

proach is much better than using the outlier filtering approach. Nonetheless, the prob­

lem of being low in sensitivity towards 1-, 2- and 3-year breast cancer survivability data 

sets remained in AdaBoost after applying the outlier filtering approach. Similarly, the 

specificity of 6-, 7-, 8- and 10-year survivability data sets is unable to achieve a high 

performance after applying the outlier filtering approach. Moreover, the sensitivity of a 

5-year survivability data set of all four classifiers using outlier filtering gives similar 

results to the OOS approach, and the specificity of a 5-year breast cancer survivability 

data set of all four classifiers using outlier filtering gives lower results than the OOS 

approach. This is may be due to the fact that basic AdaBoost concentrates too much on 

misclassified instances. This means that the AdaBoost model is much affected by im­

balanced data leading to an overfitting problem. 

Although using the over-sampling approach slightly improved the performance of the 

minority class, low overall performance remained in both sensitivity and specificity. 
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This means that using the over-sampling approach alone can only slightly improve the 

average of accuracy, sensitivity and specificity. This proves that the combination of the 

outlier filtering and over-sampling approach is suitable for improving the overall accu­

racy, sensitivity and specificity of classifiers in breast cancer survivability data sets. 

This proves that an OOS approach provides better quality data than outlier filtering and 

over-sampling approaches. 

6.4.4 A U C results 

In this section, Area Under the receiver operating characteristic Curve (AUC) of four 

classifiers including AdaBoost, Bagging, C4.5 and Support Vector Machine (SVM) is 

utilised to evaluate the capability and effectiveness of the proposed approach and com­

pare it with the outlier filtering and over-sampling approach. The AUC scores are 

shown in Tables 6.8, 6.9, 6.10 and 6.11, respectively. 

Table 6.8: AUC scores of AdaBoost 

Data Sets R a w Data Outlier filtering Over-sampling O O S 
1-year 
2-year 
3-year 
4-year 
5-year 
6-year 
7-year 
8-year 
9-year 
10-year 
Average 

75.13 
72.50 
73.22 
70.56 
72.41 
73.17 
68.68 
67.41 
68.15 
67.62 
70.89 

97.83 
96.03 
94.90 
92.96 
93.44 
93.36 
95.05 
96.33 
98.28 
98.15 
95.63 

75.15 
69.61 
72.12 
74.58 
73.49 
71.87 
70.44 
73.69 
73.55 
71.40 
72.59 

98.24 
96.89 
94.99 
94.17 
93.36 
93.44 
96.49 
96.46 
99.34 
98.98 
96.24 
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Table 6.9: A U C scores of Bagging 

Data Sets Raw Data Outlier filtering Over-sampling O O S 
1-year 
2-year 
3-year 
4-year 
5-year 
6-year 
7-year 
8-year 
9-year 
10-year 
Average 

72.80 
69.92 
72.59 
71.72 
71.62 
71.27 
68.06 
68.04 
67.61 
67.16 
70.08 

96.16 
96.82 
97.27 
95.86 
95.96 
95.21 
93.22 
98.16 
97.57 
97.36 
96.36 

84.53 
78.09 
79.44 
78.88 
77.29 
76.17 
77.57 
78.57 
82.08 
78.61 
79.12 

99.02 
98.60 
98.38 
96.31 
96.78 
97.61 
98.59 
99.21 
99.59 
99.37 
98.35 

Table 6.10: A U C scores of C4.5 

Data Sets Raw Data Outlier filtering Over-sampling O O S 
1-year 
2-year 
3-year 
4-year 
5-year 
6-year 
7-year 
8-year 
9-year 
10-year 
Average 

60.86 
69.52 
72.16 
71.10 
71.59 
70.68 
67.78 
67.17 
66.95 
55.32 
67.31 

84.80 
93.38 
93.41 
91.17 
93.04 
93.32 
90.53 
93.64 
94.77 
90.51 
91.86 

81.47 
73.36 
76.63 
76.14 
74.10 
71.63 
70.46 
71.94 
78.06 
75.34 
74.91 

98.62 
98.07 
96.24 
93.18 
94.24 
96.14 
97.51 
98.94 
99.67 
98.71 
97.13 

Table 6.11: A U C scores of S V M 

Data Sets Raw Data Outlier filtering Over-sampling O O S 
1-year 
2-year 
3-year 
4-year 
5-year 
6-year 
7-year 
8-year 
9-year 
10-year 
Average 

56.33 
59.84 
63.82 
63.65 
63.99 
62.22 
56.07 
57.40 
56.39 
55.72 
59.54 

89.57 
92.42 
93.43 
93.87 
93.33 
92.78 
90.35 
90.88 
92.08 
88.98 
91.77 

73.89 
69.38 
68.85 
69.55 
68.80 
67.23 
66.33 
72.74 
73.26 
70.46 
70.05 

99.76 
98.56 
96.94 
94.41 
97.45 
98.03 
98.64 
98.67 
99.56 
99.27 
98.13 

Tables 6.8, 6.9, 6.10 and 6.11 display the overall average of A U C scores of AdaBoost, 

Bagging, C4.5 and SVM in order to evaluate the capability and effectiveness of the pro­

posed approach (OOS). The results of this experiment show that the overall average of 
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A U C scores of AdaBoost, Bagging, C4.5 and S V M improves by up to 25.35%, 28.27%, 

29.22% and 38.59%, respectively after applying the OOS approach. Likewise, the 

overall average of AUC scores of AdaBoost, Bagging, C4.5 and SVM improves 

24.74%, 26.28%, 24.55% and 32.23%, using the outlier filtering approach. However, 

the overall average of AUC scores of AdaBoost, Bagging, C4.5 and SVM using the 

random over-sampling approach only somewhat improves at 1.7%, 9.04%, 7.6% and 

10.51%, respectively. This proves that AUC scores of classifiers improve more after 

applying the OOS approach than after applying outlier and over-sampling alone. 

6.4.5 F-measure results 

In order to measure the capability and effectiveness of the proposed approach, F-

measure of four classifiers including AdaBoost, Bagging, C4.5 and Support Vector Ma­

chine (SVM) is utilised. The F-measure results are illustrated in Tables 6.12, 6.13, 6.14 

and 6.15, respectively. 

Table 6.12: F-measure of AdaBoost 

Data Sets Raw Data Outlier filtering Over-sampling O O S 
1-year 
2-year 
3-year 
4-year 
5-year 
6-year 
7-year 
8-year 
9-year 
10-year 

35.78 
46.84 
55.68 
70.17 
74.30 
75.74 
76.73 
79.18 
82.06 
82.15 

73.01 
67.35 
79.04 
85.48 
90.34 
91.80 
96.17 
95.72 
98.71 
98.13 

66.27 
64.72 
71.93 
68.39 
66.10 
70.87 
64.99 
66.56 
66.05 
66.79 

92.99 
92.25 
87.99 
87.96 
88.32 
89.45 
92.57 
91.46 
95.44 
96.52 
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Table 6.13: F-measure of Bagging 

Data Sets 
1-year 
2-year 
3-year 
4-year 
5-year 
6-year 
7-year 
8-year 
9-year 
10-year 
Average 

Raw Data 
35.58 
44.66 
57.22 
66.62 
70.96 
74.78 
75.46 
79.67 
81.15 
80.49 
66.66 

Outlier filtering 
75.01 
82.26 
89.43 
90.60 
93.44 
94.44 
96.69 
96.43 
98.69 
97.38 
91.44 

Over-sampling 
77.74 
72.25 
73.08 
72.02 
69.75 
69.34 
70.27 
70.01 
73.54 
69.13 
71.71 

O O S 
98.06 
97.05 
95.58 
91.52 
94.31 
94.04 
96.10 
97.21 
99.12 
97.79 
96.08 

Table 6.14: F-measure of C4.5 

Data Sets Raw Data Outlier filtering Over-sampling O O S 
1-year 
2-year 
3-year 
4-year 
5-year 
6-year 
7-year 
8-year 
9-year 
10-year 
Average 

35.52 
42.39 
61.26 
69.77 
73.00 
74.81 
75.53 
79.56 
82.20 
78.76 
67.28 

68.80 
81.57 
88.03 
89.90 
93.78 
95.20 
97.13 
97.26 
98.65 
97.85 
90.82 

76.31 
70.28 
72.75 
72.83 
71.44 
70.21 
67.50 
66.05 
72.83 
69.46 
70.97 

98.55 
97.54 
95.24 
91.68 
94.07 
94.88 
97.64 
97.38 
99.35 
98.82 
96.52 

Table 6.15: F-measure of S V M 

Data Sets Raw Data Outlier filtering Over-sampling O O S 
1-year 
2-year 
3-year 
4-year 
5-year 
6-year 
7-year 
8-year 
9-year 
10-year 
Average 

25.55 
38.83 
54.83 
63.44 
69.44 
73.69 
75.52 
80.78 
82.77 
82.63 
64.75 

86.20 
88.92 
91.72 
93.82 
94.95 
96.77 
97.49 
98.55 
99.17 
98.28 
94.59 

73.68 
69.94 
69.57 
69.23 
68.58 
68.54 
64.98 
72.63 
71.42 
69.23 
69.78 

99.76 
98.59 
96.98 
94.39 
97.41 
98.01 
98.62 
98.63 
99.55 
99.24 
98.12 

Tables 6.12, 6.13, 6.14 and 6.15 show the F-measure of four classifiers including 

AdaBoost, Bagging, C4.5 and SVM. The experimental results present that the OOS ap­

proach improves the F-measure of AdaBoost, Bagging, C4.5 and SVM up to 3.92%, 
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4.64%, 5.7% and 3.53% respectively, when compared to the F-measure of AdaBoost, 

Bagging, C4.5 and SVM after applying the outlier filtering approach. Besides, the OOS 

approach improves the F-measure of AdaBoost, Bagging, C4.5 and SVM by up to 

24.23%, 24.37%, 25.55% and 28.34% respectively, when compared to the F-measure of 

AdaBoost, Bagging, C4.5 and SVM after applying the over-sampling approach. This 

proves that the proposed approach is suitable for improving the quality of breast cancer 

survivability data. 

6.4.6 Discussion of experimental results 

Breast cancer survivability prediction models are used to assist medical practitioners to 

enhance the provision of care in medical prognoses. In order to refine the performance 

of these models, a hybrid approach combining outlier filtering and over-sampling ap­

proaches was proposed to improve the quality of the data set. Accuracy, sensitivity, 

specificity, AUC scores and F-measure of four learning algorithms including AdaBoost, 

Bagging, C4.5 and Support Vector Machine (SVM) were used to evaluate the prediction 

models. As a result, three main findings from experimental results are discussed below. 

Firstly, outliers and imbalanced data are found to be a direct effect of the performance 

and effectiveness of classifiers. A possible explanation for this might be that the per­

formance of well-known classifiers is improved by eliminating a number of outliers 

from both the minority and majority classes, and by increasing the size of the minority 

class to the same size as the majority class. These findings are consistent with those of 

Padmaja, Dhulipalla, Bapi and Krishna [30] who found that the performance improve­

ment of classifiers occurs only after firstly eliminating outliers in a minority class, then 

increasing the size of the minority class, and lastly decreasing the size of the majority 

class of fraud detection databases. 



Chapter 6: Improving Data Space via Combining Outlier Filtering and Over-Sampling 116 

Secondly, the finding that AdaBoost is less affected by the problem of imbalance than 

in Bagging, C4.5 and SVM, is interesting. This finding may be evidenced by the im­

provement of accuracy after applying the outlier filtering and OOS approaches (see Ta­

ble 4), where the accuracy of AdaBoost decreases by 0.03% and the accuracy of Bag­

ging improves by 2.09%. Also, the accuracy of C4.5 improves by 2.29% and the accu­

racy of SVM improves by 2.03%, and the AUC score improves by 0.61%, 1.99%, 

5.27% and 6.36% in the cases of AdaBoost, Bagging, C4.5 and SVM using OOS and 

Outlier filtering approaches. This may be due to the fact that the AdaBoost algorithm 

applies direct weight to instances in order to generate a separation line [32], while C4.5 

and SVM use statistical calculations to separate the binary classes [111] [96], 

Finally, SVM is found to be more accurate than AdaBoost, Bagging and C4.5. This 

may be due to C-SVC (one type of SVM algorithms) being utilised to eliminate outliers 

from data sets. In addition, the OOS approach is suited to improving the quality of data 

sets in order to enhance the prediction results of classifiers. 

6.5 Chapter summary 

The combining of Outlier filtering and Over-Sampling (OOS) approaches has been pro­

posed to improve the data quality in order to develop accurate breast cancer survivabil­

ity models from real-world data sets. The experimental results explicitly pointed out 

that the OOS approach is able to decrease insignificant outliers, as well as significantly 

increase the performance of classifiers. Moreover, applying the combination of outlier 

filtering and over-sampling, the average of accuracy, sensitivity, specificity, AUC score 

and F-measure of SVM were improved by 29.83%, 29.83%, 47.34%, 38.59% and 

33.38%, respectively. In the next chapter, the combination of AdaBoost and Random 
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Forests used to develop breast cancer survivability prediction models will be investi­

gated in order to select the suitable classifiers. 



Chapter 7 

Breast Cancer Survivability Prediction Models 

In Chapter 6, the quality of data was improved using a combined outlier filtering and 

over-sampling (OOS) approach. In order to evaluate the capability and effectiveness of 

this approach, accuracy, sensitivity, specificity, Area Under the receiver operating char­

acteristic Curve (AUC) and F-measure of classifiers have been analysed. The OOS ap­

proach has been proven to be superior to both outlier filtering and over-sampling ap­

proaches. 

Developing accurate, stable and effective breast cancer survivability prediction models 

using data mining processes is a challenging task. Work introduced in this chapter has 

been published as follows: 

• J. Thongkam, G. Xu and Y. Zhang, AdaBoost algorithm with random forests for 

predicting breast cancer survivability, in Proceedings of the IEEE International Joint 

Conference on Neural Networks (IJCNN2008), pp. 1-8, Jun. 1-6, Hong Kong, 2008. 

In this chapter, a hybrid of AdaBoost and Random Forests is proposed to build breast 

cancer survivability prediction models. In order to understand the basic concept of al­

gorithms used in this present study, AdaBoost, Random Forests and the combining of 

AdaBoost and Random Forests algorithms are discussed. In order to evaluate this ap­

proach, this study is divided into two parts. Part-I involves the development of a 

118 
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5-year breast cancer survivability prediction model using only filtered data from 1990 to 

2001. In order to evaluate the performance and effectiveness of this model, accuracy, 

sensitivity and specificity are used and also compared with 9 classifiers. The experi­

mental results of Part-I are presented and discussed. Part-II contains the development 

of 3-, 5-, 8- and 10-year breast cancer survivability prediction models using filtered and 

balanced data from 1985 to 2006. In order to evaluate the performance and effective­

ness of the proposed approach, accuracy, AUC score, F-measure and Kappa statistics 

are utilised and compared with 19 classifiers. In order to show this, experimental re­

sults in Part-II are presented and discussed. Finally, the summary concludes the chap­

ter. 

7.1 Overview and motivation 

AdaBoost has become an attractive ensemble method in machine learning since it is low 

in error rates and performs well in low noise data sets [31] [32]. It is used to combine a 

weak learner to form a model with higher prediction outcomes [31] [202] [34] [203] 

[164], Although this weak learner is also called a weak classifier and a base learner, for 

the rest of this thesis the term weak learner will be used. Generally, AdaBoost is com­

bined with a Decision Stump as a weak learner [163] [204], Recently, several research 

studies have merged AdaBoost with other weak learners to improve the accuracy of 

classifiers. For example, Szarvas, Farkas and Kocsor [205] successfully applied the 

combination of AdaBoost with the C4.5 decision tree in a multilingual named entity 

recognition system. Their results displayed that AdaBoost with C4.5 achieved F-

measure up to 94.77%. Unlike Szarvas, Farkas and Kocsor; Sun, Wang and Wong 

[204] combined AdaBoost and associative classification using UCI Machine Learning 
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Repository databases. Their results indicated that this combined technique improved 

accuracy and reduced the construction time of the models. On the other hand, Li, Wang 

and Sung [34] combined AdaBoost with Support Vector Machine (SVM) to demon­

strate that the combination of AdaBoost and SVM has better generalisation error rates 

than both basic AdaBoost and SVM alone. Zhang and Ren [16] supported the study of 

Li, Wang and Sung [34] by combining AdaBoost with SVM to improve the accuracy of 

the SVM classifier. They presented that this combined method is better than original 

SVM using five data sets at UCI Machine Learning Repository databases. Therefore, 

finding a suitable weak learner is a challenging task for improving the classification re­

sult not only in machine learning and pattern recognition but also in data mining. 

This chapter proposes the combination of AdaBoost and Random Forests to build the 

breast cancer survivability prediction models due to the fact that it provides low error 

rates and few researchers have applied Random Forests as a weak learner in medical 

data sets. In order to evaluate the performance and effectiveness of this proposed 

method, several evaluation methods including accuracy, sensitivity and specificity, 

AUC, F-measure and Kappa statistics are exploited. 

7.2 Related and a hybrid method 

In order to build the breast cancer survivability prediction models, the theoretical back­

ground of AdaBoost, Random Forests and the proposed method are briefly described. 

7.2.1 Basic AdaBoost 

The AdaBoost algorithm is the most popular new, ensemble method for generating a 

better classifier [32] [180] [179]. It is flexible not only for combining with Decision 



Chapter 7: Breast Cancer Survivability Prediction Models 121 

Stump but also with other weak learners to improve the performance and effectiveness 

of the prediction models [180] [179] [206]. Moreover, it requires less input parameters 

and less knowledge of computing background in improving the accuracy of prediction 

models [180] [179]. In relation to AdaBoost, Gentle AdaBoost is one of the attractive 

algorithms which has a high performance in several data sets and is available for com­

bining with diverse classifiers [24] [92]. Therefore, in this chapter, Gentle AdaBoost 

[206] is utilised to build the prediction models. Gentle AdaBoost is displayed in Algo­

rithm 7.1 below. 

Algorithm 7.1: Gentle AdaBoost 

Input: 
S: Training set; 
K: Iterations number; 

Output: 
H(Xy. Final hypothesis; 

(1) Assign S sample (x,yi),..,(xn,yj);x. e x,y, e {-1,+1}; 

(2) Initialise the weights of £>i(0=l/", (/=1,...,«); 
(3) For £=1 to £ do 
(4) Call WeakLearn, providing it with the distribution Dk, 
(5) Get weak hypothesis hk:X->{-\,+l} with its error: et= j A ( 0 ; 

(6) Update distribution Dk: Dk+X (i) = A(Qe*P(-<**M*fa)); 

(7) End for 

( K 

(8) Output: H{x) = sign ^<*khk(x) \k=] 

In Algorithm 7.1 above, S refers to a training set consisting of (xhyi),...(xR,yn), where 

each Xi belongs to instance space Zand each label.y, is in the label set Y, which is equal 

to the set of {-1,+1}. It assigns the weight on the training example / on round k as Dt(i). 

The same weight is set at the starting point (Dk(i)=VN, i=\,...,N). The weight of the 

misclassified example from the weak learner (called weak hypothesis) then increases to 

concentrate on hard-to-classify instances in the training set of each round. In step (6), 

Zk is the normalisation constant (chosen so that Dk+\ is a distribution), while, ak is exer-
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cised to improve the generalising result and also solves the overfitting and noise sensi­

tive problems [183]. Therefore, <% is defined as Equation 7.1. 

where Prefers to the class probability estimate to construct the real value of akhk(x). 

Therefore, the final hypothesis H^) is a weighted majority vote of the K weak hypothe­

ses in which it is the weight assigned to /»*. In addition, AdaBoost does handle both the 

binary class and the numerical class for prediction purposes [179]. Several research 

studies have successfully applied the AdaBoost algorithm to solve classification prob­

lems in object detection, including face recognition, video sequences and signal proc­

essing systems. For instance, Renno, Makris and Jones [162] employed an basic 

AdaBoost algorithm to develop AdaBoost classifiers using visual surveillance data. 

Their results demonstrated that the AdaBoost algorithm was suitable to build accurate 

classifiers. Similarly, Ho and Tay [207] also utilised AdaBoost to distinguish the spa­

tially similar face and text in data sets. Unfortunately, their results showed that the ba­

sic AdaBoost lacked the performance of the model. This is due to the fact that they 

provided insufficient positive instances which resulted in a low hit rate (67.65% in fixed 

text and 13.89% in variable text). 

7.2.2 Random Forests 

Random Forests (RF) [208] is one of the most successful ensemble learning techniques 

in pattern recognition and machine learning [209] and is suited to imbalanced data clas­

sification problems [208]. It constructs a collection of individual decision tree classifi­

ers utilising the Classification And Regression Tree (CART) algorithm [101]. CART is 

a rule-based method that generates a binary tree through a binary recursive partitioning 
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process that splits a node based on the 'yes' and 'no' answer of the predictors. C A R T 

makes use of the Gini Index to measure the impurity of a data partition in a training set 

[53]. Although this Gini Index is used to maximise the difference of heterogeneity, the 

real world data sets present an overfitting problem that causes the CART classifier to 

provide a high error rate in unseen data sets. In order to avoid this problem, Random 

Forests applies a bagging mechanism to increase the creation of classifiers in high di­

mensional data to reduce the error rate [208] [209]. The parameters of Random Forests 

involve the number of b trees and a random vector (5j), using bootstrap samples gener­

ated independently from random vectors, but with the same distribution. The Random 

Forests algorithm is shown in Algorithm 7.2. 

Algorithm 7.2: Random Forests 

Input: 
S: Training set; 
/: Number of input instance; 
B: Number of generated trees in Random Forests; 

Output: 
E: Classifier; 

(1)F is empty; 
(2) For 6=1 to B do 
(3) Sb = Bootstrap Sample(S); 
(4) Cb = Build Random Tree Classifiers^,/); 
(5) M u ( g ; 
(6) end for 
(7) Return E. 

Many research studies have applied the Random Forests algorithm to construct a model. 

For instance, Kim, Lee and Park [210] extensively utilised this algorithm to build the 

lightweight Intrusion Detection Classifier. Their results showed that this classifier out­

performed Support Vector Machines (SVM) and Artificial Neural Networks (ANN). 

However, this classifier is weak in high noise data which could cause an overfitting 

problem and reduce the accuracy of models in a test set. It also suffers from the over­

growth problem as an un-pruned tree [209]. 
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7.2.3 Hybrid AdaBoost and Random Forests 

The hybrid AdaBoost and Random Forests (ABRF) is used to generate accurate and re­

liable prediction models [33] due to the fact that it provides a low error rate and less 

overfitting problems in less outliers in the data set [33] [211]. This hybrid method is 

shown in Algorithm 7.3. 

Algorithm 7.3: The hybrid AdaBoost and Random Forests 

Input: 
S: Training set; 
K: Iterations number; 
/: Number of input instances to be used at each of the tree; 
B: Number of generated trees in Random Forests; 

Output: 
HQC): Final hypothesis; 

(1) Assign N sample (x,yi),..,(x„y„);x. e x,y, e {-1,+1} 

(2) Initialise the weights of D\(i)=\/n, i=\,...,«) 
(3)Forifc=lto£do 
(4) Empty _ with the distribution Dk; 
(5) For 6=1 to B do 
(6) Sb = booststrapSample(iS); 
(7) Cb = BuildRandomTreeClassifiers^j/); 

(8) M u { Q ; 
(9) End for 

(10) Get weak hypothesis hk:X->{-1,+1} with its error: ek= ]T £>t(i); 
l=hk(X:)*yi 

(11) Update distribution Dk: D M Q ) = A(QexpH**tt**(**)); 
zk 

(12) End for 

(13) Output: H{x)= sigriYiiakhk(x) • 
V*=l y_ -

In the Algorithm 7.3 above, four input parameters need to be assigned: 1) S referring to 

training set (S=Xi(j=\,2,...,ri), labels v, e Y); 2) Kreferring to the iterations number; 3)/ 

referring to the number of input instances to be applied at each of the trees; and 4) B re­

ferring to the number of generated trees in Random Forests. It assigns the weight on the 

training example / on round k as Dk(i). The same weight is set at the starting point 

(Dk(i)=\IN, i=\,...yN). The weights of the misclassified instances from Random Forests 
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then increase to concentrate on hard-to-classify instances in the training set of each 

round. Therefore, the final hypothesis H{x) is a weighted majority vote of the K weak 

hypotheses in which it is the weight assigned to a collection of individual decision tree 

classifiers (hk). In this way, the model generated from this hybrid method is able to 

achieve higher performance. Although this hybrid is effective, few research studies 

have utilised it. For instance, Leshem and Ritov [33] exploited the AdaBoost algorithm 

and Random Forests algorithm as the base learning algorithms to predict traffic flow. 

Their results pointed out that this combination had a low error rate which is the basic 

measurement method used to investigate a weak learner and the strong points of algo­

rithms. Therefore, this method is proposed to build accurate and reliable breast cancer 

survivability models, due to the fact that it is an effective method and requires few input 

parameters. 

7.3 Part-I: Prediction models of 5-year breast cancer surviv­
ability on the outlier-filtered data set 

In order to build an accurate and reliable breast cancer survivability model, the 5-year 

breast cancer survivability data set is used. Accuracy sensitivity and specificity are em­

ployed in order to evaluate the proposed method. This section concludes with the ex­

perimental results and discussion. 

7.3.1 Data of 5-year breast cancer survivability 

In this section, the filtered 5-year breast cancer survivability data set from 1990-2001 is 

utilised. This data set consists of 12 attributes and 570 instances. Attributes are listed 

in Table 7.1 below. 
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Table 7.1: Input attributes of breast cancer data 

No. 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 

Attributes 
Age 
Marital status 
Occupation 
Basis of diagnosis 
Topography 
Morphology 
Extent 
Stage 
Received surgery therapy 
Received radiation 
Received chemotherapy 
Survivability status (class attribute) 

Types of attribute 
Number 
Category 
Category 
Category 
Category 
Category 
Category 
Category 
Category 
Category 
Category 
Category 

Attribute Values 
-

3 
26 
6 
9 
14 
4 
4 
2 
2 
2 
2 

Table 7.1 shows 12 attributes including 'Age', 'Marital status', 'Occupation', 'Basis of 

diagnosis', 'Topography', 'Morphology', 'Extent', 'Stage', 'Received surgery therapy', 

'Received radiation', 'Received chemotherapy' and 'Survivability status'. The 'Surviv­

ability status' (class attribute) is divided into two classes including 'Dead' and 'Alive'. 

The 'Dead' class refers to patients who died within five years after the first diagnosis, 

while the 'Alive' class refers to patients who are still alive for five years or more after 

the first diagnosis. This 'Dead' class is composed of 322 instances, while the 'Alive' 

class comprises 248 instances. 

7.3.2 Methods for evaluating classifiers 

In order to evaluate the proposed approach, accuracy, sensitivity and specificity (see 

Section 2.2.3.1) are employed. Accuracy refers to the percentage of correctness of out­

come among the test sets of prediction results of a classifier. Sensitivity refers to the 

true positive rate of prediction results, while, specificity refers to the true negative rate 

of prediction results. Both sensitivity and specificity are used for measuring the factors 

that affect the performance of classifiers in a binary classification problem. The evalua­

tion procedure is performed using a stratified 10-fold cross-validation to divide a 5-year 
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breast cancer survivability data set from Srinagarind Hospital in Thailand into training 

and test sets. The training set is used to build a model and the test set is used to evaluate 

the model. 

7.3.3 Results of classifiers 

In this section, the WEKA version 3.5.6 [92] explorer and knowledge flow are used to 

evaluate the performance and effectiveness of the proposed classifiers (ABRF), and 

compared with other classifiers. This is due to the fact that they provide a well defined 

framework and offer a variety of learning algorithms for the development of new data 

mining and machine learning algorithms. Default parameters used in these experiments 

are given first. Then the results of the experiments are presented and discussed. 

7.3.3.1 Default parameters 

In order to compare and establish the performance and effectiveness of prediction mod­

els, the default parameters of the algorithms are defined as follows: 

1) AdaBoost with Random Forests (ABRF) applies the unlimited depth of the trees, 

10 trees, 10 iterations, 100 weight thresholds and one random seed; 

2) AdaBoost uses Decision Stump as a based learner, 10 iterations, 100 weight 

thresholds and one random seed; 

3) A Alternative Decision Tree (ADTree) uses 10 iterations and an exhaustive 

search; 

4) Bagging uses a Fast decision tree as a weak learner, 100% size of each bag of 

the training set size, 10 iterations and one random seed; 

5) C4.5 uses 0.25 confidence factor for pruning, two numbers of instances per leaf, 

three amounts of data used for reduced-error pruning and one random seed; 



Chapter 7: Breast Cancer Survivability Prediction Models 128 

6) A Conjunctive Rule utilises three folds used for pruning, the rest for growing the 

rules, two minimum total weights of the instances in a rule, the number of ante­

cedents allowed in the rule and one random seed; 

7) NaTve Bayes does not apply the output additional information to the console, but 

applies a kernel estimator for numeric attributes to convert these numeric attrib­

utes into discrete attributes; 

8) Nearest-Neighbour classifier (NN-classifier) uses normalised Euclidean distance 

to find the training instance closest to the given test instance, and predicts the 

same class as training instances; 

9) Random Forests uses 10 trees and one random seed; 

10) Repeated Incremental Pruning to Produce Error Reduction (RIPPER) uses an er­

ror rate more than 0.5 for stopping criterion, three folds pruning and the rest for 

growing the rules, two minimum total weight of the instances in a rule, two 

numbers of optimisation runs and one random seed; and 

11) Support Vector Machine uses C-support vector classification, 40 cache size, 

three degrees of the kernel, 0.0010 tolerances of the termination criterion, radial 

basis kernel function and 0.1 for the loss function. 

7.3.3.2 Performance of classifiers 

In order to evaluate the performance and effectiveness of the hybrid AdaBoost and 

Random Forests (ABRF), accuracy, sensitivity and specificity are employed and com­

pared with 10 single classifiers including AdaBoost, ADTree, Bagging, C4.5, Conjunc­

tive Rules, Naive Bayes (NB), Nearest Neighbour classifier (NN-classifier), Random 

Forests (RF), Repeated Incremental Pruning to Produce Error Reduction (RIPPER) and 

Support Vector Machine (SVM). The experimental results tested in both training and 
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test sets are displayed in Table 7.2. 

Table 7.2: Performance of single classifier on the training and test sets 

Classifiers Training Set (%) Test Set (%) 
Accuracy Sensitivity Specificity Accuracy Sensitivity Specificity 

A B R F 
AdaBoost 
ADTree 
Bagging 
C4.5 
Conjunctive Rule 
Naive Bayes 
NN-classifier 
Random Forests 
RIPPER 
SVM 

100.00 
80.88 
85.09 
91.23 
92.46 
77.54 
84.04 
100.00 
99.65 
87.54 
99.82 

100.00 
78.55 
85.59 
92.24 
93.19 
74.74 
85.54 
100.00 
99.69 
91.15 
99.69 

100.00 
85.28 
84.39 
89.92 
91.50 
83.71 
82.04 
100.00 
99.60 
83.40 
100.00 

88.60 
80.35 
82.28 
83.86 
84.04 
77.54 
83.51 
83.86 
85.79 
85.79 
85.96 

89.30 
77.93 
83.59 
84.64 
87.38 
74.74 
84.97 
85.49 
86.63 
88.25 
86.45 

87.65 
85.05 
80.50 
82.77 
80.08 
83.71 
81.56 
81.71 
84.65 
82.75 
85.29 

Table 7.2 shows the accuracy, sensitivities and specificities of classifiers including 

ABRF, AdaBoost, ADTree, Bagging, C4.5, Conjunctive Rule, NaTve Bayes, NN-

classifier, Random Forests, RIPPER and SVM. The results of this experiment show 

that the accuracy of ABRF achieves 100% when utilising the training set and achieves 

88.60% when using the test set. Besides, the average accuracy, sensitivity and specific­

ity of ABRF increases 8.25%, 11.37% and 2.6% respectively, based on the basic 

AdaBoost using test sets. Likewise, the average accuracy, sensitivity and specificity of 

ABRF increases up to 2.81%, 2.67% and 3% respectively, based on Random Forests. 

This proves that ABRF provides a better approximation of the prediction than models 

made by basic AdaBoost and Random Forests. 

7.3.3.3 Performance of AdaBoost with weak learners 

In order to evaluate the performance and effectiveness of the hybrid AdaBoost and 

Random Forests model, accuracy, sensitivity and specificity are also employed and 

compared with eight AdaBoost and weak learners including ADTree, C4.5, Conjunctive 

Rule, Decision Stump, NaTve Bayes, NN-classifier, RIPPER and SVM. The default pa­

rameters (see Section 7.3.3.1) of each weak learner are used to generate models. The 
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experimental results provide an insight into the increasing iterations of AdaBoost from 

5 to 100 iterations. The results are shown in Figures 7.1, 7.2 and 7.3 below. 
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Figures 7.1, 7.2 and 7.3 show the accuracy, sensitivity and specificity of AdaBoost with 

weak learners. In relation to the accuracy of ensemble classifiers, it seems that the ac­

curacy of ensemble classifiers including ADTree, C4.5, Conjunctive Rule and Decision 

Stump, increases after 10 iterations of re-boost. In contrast, the accuracy of NaTve 

Bayes and NN-classifier decreases after five rounds. Although the sensitivity of en­

semble classifiers seems stable, the specificity of ensemble classifiers seems uncertain 

in the results. It might be related to the fact that AdaBoost concentrates on improving 

the majority class, which is the 'Dead' class in this case. However, the accuracy of 

these prediction models is mostly stable after running for 45 iterations. The results 

show that the average accuracy, sensitivity and specificity of ABRF prediction models 

increases up to 7.85%, 9.93% and 4.54% respectively, based on the basic AdaBoost in 

the same test set after running 100 times. This indicates that ABRF is not only superior 

to basic AdaBoost and Random Forests but is also superior to other ensemble classifiers 

including ADTree, C4.5, Conjunctive Rule, Decision Stump, Naive Bayes, NN-

classifier, RIPPER and SVM. 

7.3.3.4 Statistical analysis of multiple classifiers 

In order to investigate the stability of prediction models, statistics analysis, including 

the minimum, maximum, average and variance of the accuracy, sensitivity and specific­

ity of the proposed method is employed. The analysis results are illustrated in Tables 

7.3, 7.4 and 7.5. 
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Table 7.3: Statistics of accuracy of ensemble classifiers on test sets 

Classifiers 
A B R F 
ADTree 
C4.5 
Conjunctive Rule 
Decision Stump 
NaTve Bayes 
NN-classifier 
RIPPER 
SVM 

Minimum 
88.42 
81.05 
82.81 
77.37 
77.54 
81.75 
81.58 
84.21 
85.96 

Maximum 
89.30 
87.72 
88.07 
81.58 
81.75 
83.51 
83.68 
86.49 
88.42 

Average 
88.79 
86.07 
86.95 
80.94 
80.40 
81.98 
82.15 
85.74 
87.79 

Variance 
0.05 
4.34 
1.25 
1.61 
0.92 
0.25 
0.23 
0.15 
0.29 

Table 7.4: Statistics of sensitivity of ensemble classifiers on test sets 

Classifiers 
ABRF 
A D Tree 
C4.5 
Conjunctive Rule 
Decision Stump 
NaTve Bayes 
NN-classifier 
RIPPER 
SVM 

Minimum 
88.36 
83.23 
86.36 
74.55 
74.74 
84.71 
84.01 
86.19 
87.35 

Maximum 
90.37 
89.62 
89.66 
80.91 
81.87 
85.94 
85.23 
87.46 
89.02 

Average 
89.79 
88.02 
88.35 
79.85 
79.74 
84.87 
84.47 
86.38 
88.40 

Variance 
0.18 
3.67 
0.64 
4.08 
3.38 
0.13 
0.08 
0.20 
0.18 

Table 7.5: Statistics of specificity of ensemble classifiers on test sets 

Classifiers 
A B R F 
ADTree 
C4.5 
Conjunctive Rule 
Decision Stump 
NaTve Bayes 
NN-classifier 
RIPPER 
SVM 

Minimum 
86.99 
77.56 
78.63 
82.65 
80.18 
78.13 
78.49 
80.38 
84.15 

Maximum 
88.94 
85.89 
86.59 
85.33 
85.05 
81.56 
81.63 
85.29 
87.76 

Average 
87.48 
83.56 
85.15 
82.94 
81.69 
78.44 
79.19 
84.89 
86.98 

Variance 
0.22 
0.51 
2.80 
0.43 
2.15 
0.64 
0.60 
1.33 
0.65 

Tables 7.3, 7.4 and 7.5 show the minimum, maximum, average and variance of the ac­

curacy, sensitivity and specificity of the ensemble classifiers. The results show that 

ABRF increases 8.39% of the approximation of the prediction when compared to the 

basic AdaBoost in the same test set after running the test 100 times. Furthermore, the 

variance of accuracy and specificity of ABRF being the lowest indicates that ABRF is 
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keeping stable even after increasing the iteration. Therefore, the computation cost can 

be reduced by applying a few iterations. This proves that ABRF provides a lower error 

rate and variance than made by other ensemble classifiers including ADTree, C4.5, De­

cision Stump, Conjunctive Rule, NaTve Bayes, NN-classifier, RIPPER and SVM. 

7.3.3.5 Discussion of a 5-year breast cancer survivability prediction model 

A 5-year breast cancer survivability prediction model has been developed from Srina­

garind Hospital's cancer data sets from 1990 to 2001. These data have similar behav­

iour in survival proportions analysis (See detail in 3.7). The performance and effective­

ness of this model generated from the AdaBoost with Random Forests are presented in 

terms of accuracy, sensitivity and specificity. In order to point out the significance of 

the results, several findings are discussed. 

Firstly, ABRF provides more accuracy of prediction models than the models made by 

ADTree, Bagging, C4.5, Conjunctive Rule, NaTve Bayes, NN-classifier, RIPPER and 

SVM in both training and test sets. This may be due to the ability to select the impor­

tant instance of the AdaBoost algorithm to reduce the error rates [172] [188]. Similarly, 

Leshem and Ritov [33] demonstrated that ABRF is superior to AdaBoost with Decision 

Stump in terms of error rates by evaluating using both training and test sets. 

Secondly, the experimental results indicate that most hybrid classifiers including AD­

Tree, C4.5, Conjunctive Rule and Decision Stump improve their accuracy after 10 

rounds of re-boost. In contrast, NaTve Bayes and NN-classifier decrease their accuracy 

after 10 rounds. However, Leshem and Ritov's [33] work indicated that the error rates 

of AdaBoost with Random Forests decreased after 80 rounds in traffic flow data. 

Finally, the results of the present study agree with Bartlett and Traskin's [202] results 

that AdaBoost is only consistent when applying the suitable iterations. As a result, the 
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experiment results in Part-I concluded that the accuracy of AdaBoost is found to be sta­

ble after running the algorithm for 35 iterations. 

7.4 Part-II: Breast cancer survivability prediction models on 
outliers-filtered and balanced data sets 

Since breast cancer is the second most frequent cause of cancer incidence among 

women in Thailand [2], building 3-, 5-, 8- and 10-year breast cancer survivability pre­

diction models is helpful in increasing the provision of care by medical practitioners. In 

order to evaluate the performance and effectiveness of prediction models, four evalua­

tion methods including accuracy, Area Under the receiver operating characteristic 

Curve (AUC), F-measure and Kappa statistics are employed, followed by the experi­

mental results and discussion. 

7.4.1 Data sets of 3-, 5-, 8- and 10-year breast cancer survivability 

The breast cancer survivability data sets consist of 14 attributes obtained at Srinagarind 

Hospital in Thailand from 1985-2006. These attributes are listed in Table 7.6. 

Table 7.6: The list of attributes 

No. 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 

Attributes 
Age 
Marital status 
Basis of diagnosis 
Topography 
Morphology 
Extent 
Stage 
Received surgery 
Received radiation 
Received chemotherapy 
Received hormonal therapy 
Received supportive therapy 
Received other therapy 
Survivability status (class attribute) 

Attribute Types 
Number 
Category 
Category 
Category 
Category 
Category 
Category 
Category 
Category 
Category 
Category 
Category 
Category 
Category 
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Table 7.6 presents 14 attributes including 'Age', 'Marital status', 'Basis of diagnosis', 

'Morphology', 'Extent', 'Stage', 'Received surgery', 'Received radiation', 'Received 

chemotherapy', 'Received hormonal therapy', 'Received supportive therapy', 'Received 

other therapy' and 'Survivability status'. In order to build prediction models, 3-, 5-, 8-

and 10-year survival periods of patients surviving from breast cancer are used. After 

that the combination of Outlier filtering and Over-Sampling (OOS) are utilised to im­

prove the data quality. Hence, the number of instances corresponding to 3-, 5-, 8- and 

10-year breast cancer survivability are tabulated in Table 7.7. 

Table 7.7: The number of instances in data sets 

Data Sets 
3-year 
5-year 
8-year 
10-year 

Years 
1985-2004 
1985-2002 
1985-1999 
1985-1997 

'Dead' 
542 
368 
265 
212 

'Alive' 
544 
367 
264 
211 

Total 
1086 
735 
529 
423 

Table 7.7 displays the number of instances of 3-, 5-, 8- and 10-year breast cancer sur­

vivability data sets which involve two classes including 'Dead' ('0') and 'Alive' (T). 

For instance, 3-year breast cancer survivability data from 1985 to 2004 consist of 

'Dead' and 'Alive' classes. The 'Dead' class refers to patients who died within three 

years after the first diagnosis, while the 'Alive' class refers to patients who are still alive 

for three years or more after the first diagnosis. Similarly, the 'Dead' class in 5-, 8- and 

10-year breast cancer survivability data refers to patients who died within five, eight and 

10 years after the first diagnosis respectively, and the 'Alive' class refers to patients 

who are still alive for five or more, eight or more and 10 years or more after the first 

diagnosis. 
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7.4.2 P e r f o r m a n c e evaluation methods 

In order to evaluate the performance of prediction models, four evaluation methods in­

cluding accuracy, Area Under the receiver operating characteristic Curve (AUC), F-

measure, and Kappa statistics are utilised. Accuracy (see Section 2.2.3.1) of classifiers 

presents the basic performance as the percentage of correctness of outcome among the 

test sets. AUC (see Section 2.2.3.3) is an area under the ROC curve which is the rela­

tion between true positive and false negative rates [80]. F-measure (see Section 2.2.3.4) 

is used to measure the performance of prediction models based on recall and precision. 

Kappa statistics (see Section 2.2.3.5) are used to evaluate the intra-class correlation co­

efficients based on the individual members of the population [86] [88] [87]. These ex­

periments are performed using a stratified 10-fold cross-validation to divide 3-, 5-, 8-

and 10-year breast cancer survivability data sets into training and test sets. In addition, 

the statistic t-test [212] with 0.05 statistical significance improvement is used to illus­

trate the significant difference of the performance of prediction models generated from 

AdaBoost with Random Forests (ABRF) to the other classifiers using an asterisk (*). 

7.4.3 Experimental evaluation results 

WEKA version 3.5.6 [92] experimental is used to evaluate the performance and effec­

tiveness of prediction models using a combination of AdaBoost and Random technique. 

This combination technique is proposed to generate breast cancer survivability predic­

tion models prior to comparing it with 19 classifiers including: Bayes Network, NaTve 

Bayes; Logistic regression, Radial Basis Function Network (RBFNetwork), Sequential 

Minimal Optimisation (SMO), AdaBoost with Decision Stump, Bagging; Random 

Committee, Random Sub-Space, Alternative Decision Tree (ADTree), Best-First deci-
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sion tree (BFTree), C4.5, Naive Bayes Tree (NBTree), Random Forests, Fast decision 

tree (REPTree), Conjunctive Rule, Decision table, Repeated Incremental Pruning to 

Produce Error Reduction (RIPPER) and a PART decision list. Default parameters used 

in these experiments are given. Then results of these experiments are presented and dis­

cussed. 

7.4.3.1 Parameters setting 

In order to demonstrate the performance and effectiveness of the proposed approach, the 

default parameters of each algorithm are defined as follows: 

1) AdaBoost with Random Forests (ABRF) applies: the unlimited depth of the 

trees, 5 trees to be generated, 35 iterations, 100 weight thresholds and one ran­

dom seed. 

2) A Bayes Network uses: the simple estimator; and a k2 for search purposed. 

3) NaTve Bayes does not apply the output additional information to the console, but 

uses a kernel estimator for numeric attributes to convert into nominal ones. 

4) Logistic regression uses: a maximum number of iterations to perform; and the 

1.0E -8 of ridge value in the log-likelihood. 

5) Radial Basis Function Network (RBFNetwork) applies: one random seed to pass 

on to &-means; sets the maximum number of iterations for the logistic regression 

to perform to one into discrete class problems; sets the minimum standard devia­

tion for the clusters to -1; and sets the number of clusters for &-means to two to 

generate and set the Ridge value for the logistic or linear regression to 1.0E -8. 

6) Sequential Minimal Optimisation (SMO) utilises: one the complexity parameter 

C; 1.0E -12 for the epsilon to round off an error; normalised training data for fil-
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tering; Poly kernel function; cross-validation to generate training data; one ran­

dom seed; and 0.0010 for the tolerance parameter. 

7) AdaBoost uses: Decision Stump as a weak learner; 10 iterations, 100 weight 

thresholds; and one random seed. 

8) Bagging uses: a Fast decision tree (REPTree) as a weak learner; 100% size of 

each bag of the training set size; 10 iterations; and one random seed. 

9) A Random Committee uses: Random Tree as a weak learner; 10 iterations; and 

one random seed. 

10) Random Sub-Space uses: Fast decision tree (REPTree) as a weak learner; 10 it­

erations; one random seed; and 0.5% of the number of attributes in subspace. 

11) An Alternative Decision Tree (ADTree) uses 10 iterations and exhaustive 

search. 

12) A Best-First decision Tree (BFTree) uses: heuristic search for a binary split for 

nominal attributes; two minimal number of instances at the terminal nodes; five 

folds in internal cross-validation; post pruning to prune the tree; one random 

seed; a error rate as an error estimate; and the Gini Index for splitting criterion. 

13)C4.5 uses: 0.25 confidence factor for pruning; two numbers of instances per 

leaf; three amounts of data used for reduced-error pruning; and one random 

seed. 

14) A Naive Bayes Tree (NBTree) uses Naive Bayes classifiers to generate a deci­

sion tree at the first leaves. 

15) Random Forests uses 10 trees and one random seed. 

16) A fast decision tree (REPTree) uses: no restriction for the maximum depth tree; 

two minimum total weights of the instances in a leaf; 0.0010 minimum propor-
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tion of the variance on all the data using three folds of regression trees; and one 

random seed. 

17) A Conjunctive Rule uses: three folds for pruning; the rest for growing the rules; 

two minimum total weights of the instances in a rule; the number of antecedents 

allowed in the rule; and one random seed. 

18) A Decision table uses: leave one out data selection; accuracy to evaluate the per­

formance of attributes combinations; and best first search. 

19) Repeated Incremental Pruning to Produce Error Reduction (RIPPER) uses: 0.5 

error rates for stopping criterion; three folds pruning and the rest for growing the 

rules; two minimum total weights of the instances in a rule; two numbers of op­

timisation runs; and one random seed. 

20) A PART decision list uses: 0.25 confidence factor used for pruning; two mini­

mum numbers of instances per rule; three folds for pruning and the rest for 

growing the rules; and one random seed. 

7.4.3.2 Accuracy classifications 

In order to evaluate the performance and effectiveness of the prediction model, in this 

section the accuracy is utilised and compared with 19 classifiers. The results of this ex­

periment are presented in Table 7.8. 
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Table 7.8: Accuracy of classifiers 

Classifiers 
ABRF 

Random Forests 
BFTree 

3-year 
96.96 (±1.38) 

96.13 (±1.44) 

96.59 (±1.23) 
Random Committee 96.50 (±0.95) 
C4.5 
Bagging 

PART 
RIPPER 
REPTree 

NBTree 

Random Sub-Space 
ADTree 

Decision Table 

Bayes Network 
Logistic 

AdaBoost 
RBFNetwork 

SMO 
Naive Bayes 

Conjunctive Rule 

95.58 (±1.48) 

95.76 (±1.80) 
94.76 (±2.02) 
94.02 (±1.75)* 

94.10 (±2.10)* 
94.11 (±1.64)* 

93.83 (±2.65)* 
90.42 (±3.97)* 

89.32 (±2.31)* 

89.32 (±3.37) * 
85.09 (±3.60) * 

88.67 (±2.90)* 

87.20 (±3.61) * 
84.62 (±2.79) * 
82.14 (±3.25) * 

76.98 (±4.31)* 

5-year 
96.60(±2.14) 

96.60 (±2.32) 
95.11 (±2.31) 
95.52 (±3.12) 

94.01 (±2.81)* 
94.69 (±2.25) * 
93.19 (±2.50)* 

93.60 (±3.39) 
93.47 (±4.02) 

93.33 (±2.51)* 

92.52 (±3.06) * 
89.39 (±2.37) * 
88.70 (±2.23) * 

88.57(±3.28) * 
89.39(±4.72) * 

87.20 (±3.67) * 
87.88(±3.28) * 
87.34(±4.22) * 

87.89(±2.91) * 
82.99 (±3.06) * 

8-year 
98.29(±1.90) 

98.48 (±1.97) 
97.35 (±2.05) 
98.29 (±1.90) 

97.16 (±2.05) 
96.97 (±2.23) 
97.91 (±2.10) 

98.11 (±1.55) 
96.97 (±2.99) 
95.84 (±2.49) 

96.22 (±4.45) 
96.97 (±1.84) 

98.86 (±1.83) 
97.3 5 (±1.84) 

95.28(±3.36) 

92.24 (±3.96) * 
92.24(±4.36) * 
93.19(±3.82) * 

91.30(±3.83) * 
85.99 (±7.67) * 

10-year 
98.35(±1.60) 

98.35 (±1.60) 
99.53 (±0.99) 

98.12 (±1.86) 
99.06 (±1.22) 
97.88 (±2.05) 

99.30 (±1.13) 
98.58 (±1.66) 

97.88 (±2.05) 
97.64 (±1.93) 

95.51 (±4.67) 
99.53 (±0.99) 

99.30 (±1.57) 

97.88(±2.05) 
96.23(±3.15) 
95.51 (±4.11) 

93.18(±4.94) * 

93.16(±4.20) * 
91.04 (±4.64) * 

79.94 (±8.63) * 

Average 

97.55 
97.39 

97.15 
97.11 

96.45 
96.33 
96.29 
96.08 

95.61 
95.23 

94.52 
94.08 
94.05 

93.28 
91.50 
90.91 

90.13 

89.58 
88.09 
81.48 

i 

4> 
4/ 
4/ 
4> 
4-
4/ 
4/ 
4* 
4/ 
4/ 
4< 
4> 
4/ 
4/ 
4-
4/ 
4-
4/ 
4* 

Table 7.8 provides the accuracy of 20 classifiers using 3-, 5-, 8- and 10-year breast can­

cer survivability data sets. The experimental results show that the accuracy of ABRF 

classifier achieves 96.96%, 96.60%, 98.29% and 98.35% based on 3-, 5-, 8- and 10-year 

of breast cancer survivability prediction models, respectively. It is found that the accu­

racy of the proposed classifier (ABRF) is significantly different from the accuracy of 13 

classifiers in 3-year breast cancer survivability prediction models while the accuracy of 

ABRF is significantly different from the accuracy of 14 classifiers in 5-year breast can­

cer survivability prediction models. Although the accuracy of ABRF is only signifi­

cantly different from the accuracy of five classifiers, its accuracy is better than the accu­

racy of 10 classifiers in 8-year breast cancer survivability prediction models. Even 

though the accuracy of ABRF classifier is only significantly different from the accuracy 

of four classifiers, the accuracy of ABRF classifier is better than the accuracy of eight 

classifiers in 10-year breast cancer survivability prediction models. This may be due to 

the fact that the number of instances in 8- and 10-year data sets is too small. However, 
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average accuracy of A B R F achieves 97.55% and provides better average accuracy than 

19 classifiers. This indicates that the ABRF classifier is superior to the other 19 classi­

fiers. 

7.4.3.3 Area under the receiver operating characteristic curve Classifications 

In order to evaluate the performance and effectiveness of prediction models, Area Un­

der the receiver operating characteristic Curve (AUC) is used. The experimental results 

are displayed in Table 7.9. 

Table 7.9: A U C scores of classifiers 

Classifiers 
ABRF 
Random Committee 
Random Forests 
Bagging 
NBTree 
Random Sub-Space 
ADTree 
BFTree 
PART 
C4.5 
Decision Table 
REPTree 
RIPPER 
Bayes Network 
AdaBoost 
Naive Bayes 
RBFNetwork 
Logistic 
SMO 
Conjunctive Rule 

3-year 
99.59(±0.00) 
99.34(±0.01) 
99.44(±0.01) 
98.37(±0.01) * 
97.62(±0.01) * 
97.38(±0.02) * 
96.88(±0.02) * 
97.39(±0.01) * 
96.52(±0.02) * 
96.84(±0.01) * 
94.22(±0.03) * 
96.73(±0.01) * 
94.87(±0.02) * 
94.76(±0.01) * 
95.40(±0.01) * 
93.88(±0.02) * 
94.25(±0.02) * 
92.18(±0.02) * 
84.63 (±0.03) * 
76.98(±0.04) * 

5-year 
99.09(±0.01) 
98.84(±0.01) 
98.65(±0.01) 
96.21 (±0.03) * 
97.39(±0.01) * 
96.38(±0.03) 
96.43 (±0.02) * 
96.15 (±0.02) * 
95.98(±0.03) * 
94.43(±0.03) * 
94.72(±0.03) * 
94.36(±0.03) * 
94.54(±0.04) * 
93.05(±0.03) * 
93.15(±0.02) * 
92.62(±0.03) * 
93.32(±0.04) * 
92.34(±0.05) * 
87.32(±0.04) * 
82.97(±0.03) * 

8-year 
99.81 (±0.01) 
99.81 (±0.01) 
99.81 (±0.01) 
99.24(±0.01) 
98.63 (±0.02) 
99.30(±0.01) 
99.07(±0.01) 
97.93 (±0.02) 
98.04(±0.03) 
98.27(±0.02) 
99.41 (±0.01) 
97.42(±0.03) 
98.57(±0.02) 
99.04(±0.01) 
96.35(±0.02) * 
95.8(±0.03) * 
95.18(±0.02) * 
95.99(±0.03) * 
93.20(±0.04) * 
86.02(±0.08) * 

10-year 
100.00(±0.00) 
100.00(±0.00) 
100.00(±0.00) 
99.30(±0.01) 
99.49(±0.01) 
99.86(±0.00) 
99.47(±0.01) 
99.52(±0.01) 
99.42(±0.01) 
98.77(±0.02) 
99.23 (±0.02) 
98.57(±0.02) 
99.00(±0.01) 
99.20(±0.01) 
98.97(±0.02) * 
97.49(±0.03) * 
96.53(±0.04) * 
96.15(±0.03) * 
93.20(±0.04) * 
79.87(±0.09) * 

Average 
99.62 
99.50 
99.48 
98.28 
98.28 
98.23 
97.96 
97.75 
97.49 
97.08 
96.90 
96.77 
96.75 
96.51 
95.97 
94.95 
94.82 
94.17 
89.59 
81.46 

4> 
4> 
4> 
4/ 
si/ 

4> 
4-
4/ 
4/ 
4/ 
4/ 
4> 
4/ 
4/ 
4/ 
4/ 
4/ 
4> 
4/ 

Table 7.9 illustrates the A U C scores of 20 classifiers using 3-, 5-, 8- and 10-year breast 

cancer survivability data sets. The experimental results present that the A U C scores of 

ABRF classifier achieve 99.59%, 99.09%, 99.81% and 100% based on 3-, 5-, 8- and 10-

year of breast cancer survivability prediction models, respectively. It is found that the 

AUC scores of the proposed classifier (ABRF) are significantly different from the AUC 

scores of 17 classifiers based on 3- and 5-year breast cancer survivability prediction 

models while the AUC scores of ABRF are significantly different from the AUC scores 
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of six classifiers based on 8- and 10-year breast cancer survivability prediction models. 

Besides, the AUC scores of ABRF are significantly better than the AUC score of basic 

AdaBoost on 3-, 5-, 8- and 10-year breast cancer survivability data sets and also better 

than other classifiers on the average. This shows that the ABRF classifier provides bet­

ter AUC scores than those that made by the other 19 classifiers. 

7.4.3.4 F-measure classifications 

In order to evaluate a trade-off between precision and recall of prediction models, F-

measure is employed. The results of this experiment are shown in Table 7.10. 

Table 7.10: F-measure of classifiers 

Classifiers 
ABRF 
Random Forests 
BFTree 
Random Committee 
C4.5 
Bagging 
PART 
RIPPER 
REPTree 
NBTree 
Random Sub-Space 
ADTree 
Decision Table 
Bayes Network 
Logistic 
AdaBoost 
RBFNetwork 
SMO 
Naive Bayes 
Conjunctive Rule 

3-year 
97.02(±0.01) 
96.22(±0.01) 
96.62(±0.01) 
96.55(±0.01) 
95.64(±0.01) 
95.85(±0.02) 
94.73 (±0.02) 
94.22(±0.02) * 
94.24(±0.02) * 
94.20(±0.02) * 
94.04(±0.03) * 
90.41 (±0.04) * 
89.77(±0.02) * 
89.51 (±0.03) * 
85.60(±0.03) * 
88.38(±0.03) * 
87.47(±0.04) * 
85.36(±0.03) * 
81.10(±0.04) * 
78.48(±0.04) * 

5-year 
96.52(±0.02) 
96.50(±0.02) 
95.00(±0.02) 
95.43 (±0.03) 
93.92(±0.03) * 
94.62(±0.02) * 
93.12(±0.03) * 
93.38(±0.04) 
93.39(±0.04) 
93.41 (±0.02) * 
92.63(±0.03) * 
89.74(±0.02) * 
88.64(±0.02) * 
89.18(±0.03) * 
89.62(±0.05) * 
88.29(±0.03) * 
88.44(±0.03) * 
88.08(±0.04) * 
88.66(±0.03) * 
85.05(±0.03) * 

8-year 
98.24(±0.02) 
98.44(±0.02) 
97.25 (±0.02) 
98.23 (±0.02) 
97.05(±0.02) 
96.84(±0.02) 
97.84(±0.02) 
98.06(±0.02) 
96.88(±0.03) 
95.61 (±0.03) 
95.91 (±0.05) 
96.86(±0.02) 
98.83 (±0.02) 
97.26(±0.02) 
94.97(±0.04) 
91.48(±0.05) * 
91.78(±0.05) * 
92.54(±0.04) * 
90.34(±0.05) * 
85.67(±0.08) * 

10-year 
98.30(±0.02) 
98.30(±0.02) 
99.51(±0.01) 
98.06(±0.02) 
99.04(±0.01) 
97.82(±0.02) 
99.28(±0.01) 
98.54(±0.02) 
97.84(±0.02) 
97.55(±0.02) 
95.10(±0.05) 
99.51(±0.01) 
99.28(±0.02) 
97.82(±0.02) 
96.02(±0.03) 
95.25(±0.05) * 
92.76(±0.05) * 
92.51 (±0.05) * 
90.29(±0.05) * 
77.31 (±0.13) * 

Average 
97.52 
97.37 
97.10 
97.07 
96.41 
96.28 
96.24 
96.05 
95.59 
95.19 
94.42 
94.13 
94.13 
93.44 
91.55 
90.85 
90.11 
89.62 
87.60 
81.63 

i 

4> 
4/ 
4/ 
4̂  
4/ 
4> 
4/ 
4< 
4-
4/ 
4-
4-
4< 
4* 
4/ 
4-
4< 
4-
4> 

Table 7.10 displays the F-measure of 20 classifiers using 3-, 5-, 8- and 10-year breast 

cancer survivability data sets. The experimental results illustrate that the F-measure of 

ABRF classifier achieves 97.02%, 96.52%, 98.24% and 98.30%, based on 3-, 5-, 8- and 

10-year of breast cancer survivability prediction models, respectively. It is demon­

strated that the F-measure of ABRF classifier is significantly different from the F-

measure of 14 classifiers in both 3- and 5-year breast cancer survivability prediction 
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models while the F-measure of A B R F classifier is significantly different from the F-

measure of five classifiers in both 8- and 10-year breast cancer survivability prediction 

models. Moreover, the F-measure of ABRF classifier is better than the F-measure of 12 

and seven classifiers based on 8- and 10-year breast cancer survivability prediction 

models, respectively. Furthermore, the average of the F-measure of ABRF classifier 

achieves 97.52% and is better than the average of the F-measure of 19 classifiers. This 

demonstrates that the prediction models generated from the hybrid AdaBoost and Ran­

dom Forests technique are better than ones made by the other techniques. 

7.4.3.5 Kappa statistics classifications 

In this section, Kappa statistics are used to evaluate the performance of prediction mod­

els using 3-, 5-, 8- and 10-year breast cancer survivability data sets. The experimental 

results are presented in Table 7.11. 

Table 7.11: Kappa statistics of classifiers 

Classifiers 

ABRF 
Random Forests 
BFTree 
Random Committee 
C4.5 
Bagging 
PART 
RIPPER 
REPTree 
NBTree 
Random Sub-Space 
ADTree 
Decision Table 
Bayes Network 
Logistic 
AdaBoost Ml 
RBFNetwork 
SMO 
NaTve Bayes 
Conjunctive Rule 

3-year 

93.92(±0.03) 
92.26(±0.03) 
93.19(±0.02) 
93.00(±0.02) 
91.17(±0.03) 
91.52(±0.04) 
89.51 (±0.04) 
88.03(±0.03) * 
88.21 (±0.04) * 
88.21 (±0.03) * 
87.66(±0.05) * 
80.84(±0.08) * 
78.63 (±0.05) * 
78.64(±0.07) * 
70.17(±0.07) * 
77.34(±0.06) * 
74.40(±0.07) * 
69.25 (±0.06) * 
64.26(±0.06) * 
53.94(±0.09) * 

5-year 

93.21 (±0.04) 
93.21 (±0.05) 
90.21 (±0.05) 
91.03 (±0.06) 
88.02(±0.06) * 
89.39(±0.05) * 
86.38(±0.05) * 
87.20(±0.07) 
86.95 (±0.08) 
86.67(±0.05) * 
85.04(±0.06) * 
78.77(±0.05) * 
77.41 (±0.04) * 
77.13 (±0.07) * 
78.79(±0.09) * 
74.39(±0.07) * 
75.74(±0.07) * 
74.67(±0.08) * 
75.77(±0.06) * 
65.96(±0.06) * 

8-year 

96.58(±0.04) 
96.96(±0.04) 
94.70(±0.04) 
96.58(±0.04) 
94.32(±0.04) 
93.94(±0.04) 
95.83(±0.04) 
96.21 (±0.03) 
93.94(±0.06) 
91.68(±0.05) * 
92.45(±0.09) 
93.94(±0.04) 
97.72(±0.04) 
94.70(±0.04) 
90.56(±0.07) 
84.47(±0.08) * 
84.48(±0.09) * 
86.37(±0.08) * 
82.59(±0.08) * 
72.00(±0.15) * 

10-year 

96.70(±0.03) 
96.70(±0.03) 
99.06(±0.02) 
96.24(±0.04) 
98.12(±0.02) 
95.77(±0.04) 
98.59(±0.02) 
97.16(±0.03) 
95.77(±0.04) 
95.27(±0.04) * 
91.04(±0.09) 
99.06(±0.02) 
98.61 (±0.03) 
95.77(±0.04) 
92.48(±0.06) 
91.02(±0.08) * 
86.38(±0.10) * 
86.34(±0.08) * 
82.09(±0.09) * 
59.79(±0.17) * 

Average 

95.10 
94.78 
94.29 
94.21 
92.91 
92.66 
92.58 
92.15 
91.22 
90.46 
89.05 
88.15 
88.09 
86.56 
83.00 
81.81 
80.25 
79.16 
76.18 
62.92 

4/ 
4/ 
4-
4/ 
4-
4-
4> 
4/ 
4/ 
4/ 
4/ 
4/ 
4/ 
4* 
4-
4-
4/ 
4/ 
4> 
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Table 7.11 illustrates the Kappa statistics of 20 classifiers using 3-, 5-, 8- and 10-year 

breast cancer survivability data sets. The experimental results show that the Kappa sta­

tistics of the ABRF classifier achieve 93.92%, 93.21%, 96.58% and 96.70% in 3-, 5-, 8-

and 10-year of breast cancer survivability prediction models, respectively. Besides, the 

Kappa statistics of the ABRF classifier are significantly different from 13 classifiers us­

ing a 3-year breast cancer survivability data set while significantly different from 15 

classifiers using a 5-year breast cancer survivability data set. Although the Kappa sta­

tistics of the ABRF classifier are significantly different from six classifiers, it is better 

than 10 and six classifiers, using 8- and 10-year breast cancer survivability data sets. 

Therefore, using the ABRF can increase the Kappa statistics of basic AdaBoost up to 

16.58%, 18.82%, 12.11% and 5.68% using 3-, 5-, 8- and 10-year breast cancer surviv­

ability data sets. This indicates that the hybrid AdaBoost with Random Forests are bet­

ter than basic AdaBoost based on Kappa statistics. 

7.4.3.6 Discussion of classification results 

Survival analysis in the field of medical prognosis mainly uses various applications and 

methods from historical data for predicting the survival of particular patients suffering 

from diseases over particular time periods [129]. Nonetheless, period analysis is a new 

method of survival analysis used to monitor survival rates and provide up-to-date esti­

mations of long-term survival [4] [129]. This method is commonly utilised to build a 5-

year breast cancer survivability prediction model [4] [136], possibly due to the fact that 

few problems affect classifier performance. However, in this section, not only a 5-year 

breast cancer prediction model but also 3-, 8- and 10-year breast cancer prediction mod­

els are built using AdaBoost with Random Forests (ABRF). Moreover, accuracy, AUC, 
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Fmeasure and Kappa statistics are employed to evaluate these prediction models. 

There are several possible explanations for these impressive results. 

Firstly, ABRF is found to significantly improve the performance of basic AdaBoost 

among 3-, 5-, 8- and 10-year breast cancer prediction models. This may be due to the 

fact that ABRF can generate several trees to select the best trees, but basic AdaBoost 

uses the decision stump to generate the separation line which can mislead into classify­

ing wrongly. These results are congruous with those of Leshem and Ritov [33], who 

found that AdaBoost with Random Forests is better than basic AdaBoost based on error 

rates. 

Secondly, the ABRF classifier is significantly better than most classifiers using 3- and 

5-year breast cancer survivability data sets. This may be due to the fact that the ABRF 

classifier is less sensitive to outlier and imbalanced data than the other classifiers espe­

cially NaTve Bayes which is sensitive to outliers and imbalanced data [147]. 

Thirdly, in relation to cancer survivability prediction models, a 5-year breast cancer sur­

vivability prediction model using our approach (OOS) achieved 94.01% accuracy when 

generated from C4.5 whereas Jonsdottir et al. [20] attained 80.00% of the accuracy us­

ing C4.5. On the other hand, Delen and Patil [65] accomplished 90.00% accuracy of 

prostate cancer survivability prediction model utilizing the CART technique. 

Lastly, Random Forests alone is found to achieve similar results using a 5-year breast 

cancer survivability data set. This may be due to the fact that this data set contains less 

outliers and balanced data that reduce the overfitting problem in most of the classifiers. 

However, ABRF provides the accuracy of 3-, 5-, 8- and 10-year breast cancer prediction 

model up to 96.96%, 96.60%, 98.29% and 98.35%. On the other hand, Delen, Walker 

and Kadam [4] provided 93.6% of the accuracy of a 5-year breast cancer survivability 
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prediction model using C5 in S E E R databases, whereas Jonsdottir et al. [20] presented 

that the accuracy of three classifiers, including NaTve Bayes, C4.5 and a PART decision 

list, was up to 80% using a 5-year breast cancer outcomes data set. Therefore, the pro­

posed approach used in this thesis is suitable to build the accurate and reliable predic­

tion models. 

7.5 Chapter summary 

In this chapter, a combination of the AdaBoost and Random Forests (ABRF) algorithms 

has been proposed for constructing breast cancer survivability prediction models. The 

development of breast cancer survivability prediction models consisted of two sections. 

Firstly, a 5-year breast cancer survivability prediction model was developed and the ca­

pability and effectiveness of the proposed models was evaluated using accuracy, sensi­

tivity and specificity. The experimental results in the first part indicated that the ABRF 

model achieved 88.60% accuracy and reduces the overfitting in Random Forests. 

Moreover, it outperforms several single and combined classifiers. 

Secondly, 3-, 5-, 8- and 10-year breast cancer survivability prediction models were de­

veloped and the capability and effectiveness of these models was evaluated using accu­

racy, AUC scores, F-measure and Kappa statistics. The performance and effectiveness 

of the proposed method using, accuracy, AUC, F-measure and Kappa statistics have 

been illustrated. The results showed that the proposed method improved the accuracy 

up to 96.96%, 96.60%, 98.29% and 98.35% while the AUC scores were improved up to 

99.59%, 99.09%, 99.81% and 100%. As a result, it seems that AdaBoost with Random 

Forests demonstrated promising results when compared to basic AdaBoost. These pre­

diction models are used to predict the class label of the new cases to enhance the deci-
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sion-making systems. In the next chapter the interpretation of breast cancer survivabil­

ity prediction models will be provided in the form of decision trees and decision rules, 

which are the most widely used and easy to understand models. 



Chapter 8 

Breast Cancer Survivability Outcomes 

In Chapter 7, the hybrid algorithm of AdaBoost and Random Forests was proposed to 

develop accurate breast cancer survivability prediction models. The performance and 

effectiveness of these prediction models were evaluated using five measurement criteria 

including accuracy, sensitivity, specificity, Area Under the receiver operating 

characteristic Curve (AUC), F-measure and Kappa statistics. Results showed that the 

combined AdaBoost and Random Forests algorithm was superior to other classifiers. 

In this chapter, C4.5 and C4.5rules are used to discover the knowledge from 3-, 5-, 8-

and 10-year breast cancer survivability data sets. C4.5 is used to present decision trees 

with error rates while C4.5rules is used to exhibit decision rules with the accuracy of 

each decision rule. The chapter is organised as follows: Section 8.1 reviews decision 

trees and decision rules and also provides a brief overview of C4.5 and C4.5rules meth­

ods; Section 8.2 presents the data sets used in this chapter; Sections 8.3 and 8.4 illus­

trate and interpret 3-, 5-, 8- and 10-year breast cancer survivability decision trees and 

rules; Section 8.5 discusses the results of decision trees and rules; and finally, a sum­

mary chapter is presented in Section 8.6. 

8.1 Overview and techniques 

The interpretation of the models is an important step in data mining in order to enhance 

user ability and understanding of the models. Such methods, including decision tree 

148 
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and decision rule, are commonly used to build the models which are easy to interpret 

[81]. 

Decision Tree refers to a tree structure for classifying instances in classification prob­

lems [53]. This method provides the most promising results and is easy to use. For this 

reason, this method has been used to build the prediction model and present the tree 

structure. One of the most widely used decision trees is C4.5. For example, Bellaachia 

and Guven [19] utilised C4.5 to build a 5-year breast cancer survivability prediction 

model from SEER databases. Their results presented that the accuracy of C4.5 decision 

tree was superior to Neural Networks and NaTve Bayes. 

Decision Rule refers to a set of 'If- Then' rules for presenting information and knowl­

edge in databases and interpreting the models [64] [53]. This can be made more com­

prehensible by reducing the number of conditions in the original rules [114]. In relation 

to the medical field, common rules are usually decided by practitioners and recorded as 

linguistic knowledge [115]. However, as decision rules generated from a decision rule 

algorithm are easily understood [44] [50], they are used to combine with previous prac­

titioner knowledge to expand the knowledge-base for more accurate decision making. 

C4.5rules is a well-known and effective method used to generate decision rules. For 

instance, Zhou and Jiang [98] successfully applied C4.5rules to produce rules from a 

data set that was generated using an Artificial Neural Network. Similarly, Nettleton, 

Calderon-Benavides and Baeza-Yates [213] also successfully employed C4.5rules to 

identify document profiles which relate to theoretical user behaviour and documents 

(URL). 

In this chapter, well-known C4.5 and C4.5rules are used to build 3-, 5-, 8- and 10-year 

breast cancer survivability decision trees and decision rules due to the fact that they 
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provide good prediction results and are easy to interpret. 

8.1.1 C4.5 decision tree 

C4.5 [96] (see Section 2.3.1) is a classic decision tree algorithm in machine learning. It 

is used to build a tree structure for classifying a training set related to a class attribute 

consisting of nodes and leaves [53] [97] [98]. Nodes represent rules which categorise 

data according to attributes and leaves represent the condition in each rule. It also pro­

vides the resubstitution error rate in each leaf. This error rate is the relationship be­

tween the number of the incorrect cases (E) and training cases covered by the leaf (N). 

The resubstitution error rate is shown in Equation 8.1. 

Resubstitution error rate = E/N (8.1) 

In this way, the C4.5 decision tree model is easy to interpret from a tree structure [98] 

[99], provides a short computation time for building a model [98] [99] [100] and pre­

sents the resubstitution error rate in helping users for their decision making. 

8.1.2 C4.5rules decision rule 

C4.5rules [96] is a method used to generate decision rules from the C4.5 decision tree. 

The objective of C4.5rules is to identify specific higher precision rules [213]. Six main 

steps of C4.5rules include: 1) train a C4.5 decision tree directly from a data set; 2) con­

vert every path from the root to a leaf; 3) remove each initial rule antecedent for distin­

guishing a specific class from other classes; 4) combine rules into rule sets; 5) sort rule 

sets into an ascending order of false positive error rates; and 6) create a default rule to 

deal with instances that are not covered by any of the generated rules. Although the 

generalisation ability of C4.5rules is better than the C4.5 decision tree in some data sets 
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[96], C4.5rules has limitations in providing a good global precision of rules model 

[213]. 

8.2 Breast cancer survivability data sets 

Breast cancer survivability data were obtained from breast cancer databases at Srina­

garind Hospital in Thailand from 1985-2004. The input attributes are exhibited in Table 

8.1. 

Table 8.1: Input attributes 

No. 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 

Attributes 
Age (age) 
Marital status (status) 
Basis of diagnosis (basic) 
Topography (top) 
Morphology (mor) 
Extent (ext) 
Stage (stage) 
Received surgery (surg) 
Received radiation (radi) 
Received chemotherapy (chem) 
Received hormonal therapy (horm) 
Received supportive therapy (supt) 
Received other therapy (other) 
Survivability (Class) 

Attribute types 
Number 
Category 
Category 
Category 
Category 
Category 
Category 
Category 
Category 
Category 
Category 
Category 
Category 
Category 

Table 8.1 displays input attributes which consist of a number, 12 categories and a class 

attribute. In order to build prediction models, four data sets include 3-, 5-, 8- and 10-

year survival periods of patients surviving from breast cancer. The number of instances 

is tabulated in Table 8.2. 

Table 8.2: Instances within data sets 

Data Sets 

3-year 
5-year 
8-year 
10-year 

Years 

1985-2004 
1985-2002 
1985-1999 
1985-1997 

'Dead' 
542 
368 
265 
212 

Instances 

'Alive' 
544 
367 
264 
211 

Total 
1086 
735 
529 
423 
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Table 8.2 shows the number of instances of 3-, 5-, 8- and 10-year breast cancer surviv­

ability data sets which involve two classes including 'Dead' and 'Alive'. The 'Dead' 

class refers to patients who died within three years following diagnosis, while the 

'Alive' class refers to patients who have survived for three years or more post diagnosis. 

Similarly, the 'Dead' class in 5-, 8- and 10-year breast cancer survivability data sets re­

fers to patients who died within five, eight and 10 years, respectively after the first di­

agnosis and the 'Alive' class refers to patients who have survived for five or more, eight 

or more and 10 years or more, from the first diagnosis. These data sets have few out­

liers and the data are balanced in order to yield high prediction results. 

8.3 Breast cancer survivability decision tree models 

In order to interpret 3-, 5-, 8- and 10-year breast cancer survivability decision tree mod­

els, C4.5 is utilised. Each decision tree contains nodes, leaves, predicted class and re­

substitution error rates. In this way, the 3-, 5-, 8- and 10-year breast cancer survivabil­

ity decision trees are presented with a resubstitution error rate in section 8.3.1, 8.3.2, 

8.3.3 and 8.3.4, respectively. 

8.3.1 Decision tree for predicting 3-year breast cancer survivability 

In order to interpret the 3-year breast cancer survivability model, a decision tree is gen­

erated using C4.5 as shown in Figure 8.1. 
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ext = 1:1 (1.0/0.8) 
ext = 2: 1 (43.0/1.4) 
ext = 3: 

supt = 2: 1 (278.0/7.4) 
supt = 1: 
mor = 8000: 1 (0.0) 
mor = 8001: 1(0.0) 
mor = 8010: 0 (5.0/1.2) 
mor = 8020: 1 (0.0) 
mor = 8041: 1(0.0) 
mor = 8070: 1 (0.0) 
mor = 8140: 1(0.0) 
mor = 8260: 1 (0.0) 
mor = 8480: 1 (0.0) 
mor = 8500: 1 (7.0/1.3) 
mor = 8501: 1(0.0) 
mor = 8510: 1(0.0) 
mor = 8520: 1 (0.0) 
mor = 8522: 1 (0.0) 
mor = 8523: 1(0.0) 
mor = 8530: 1 (0.0) 
mor = 8541: 1(0.0) 
mor = 8800: 1 (0.0) 
mor = 9020: 1 (0.0) 

ext = 4: 
age <= 45: 
mor = 8000: 0 (18.0/2.5) 
mor = 8001: 1(0.0) 
mor = 8010: 1(0.0) 
mor = 8020: 1 (0.0) 
mor = 8041: 1(0.0) 
mor = 8070: 1 (0.0) 
mor = 8140: 1 (4.0/1.2) 
mor = 8260: 1 (0.0) 
mor = 8480: 1(2.0/1.0) 
mor = 8500: 1(84.0/1.4) 
mor = 8501: 1(2.0/1.0) 
mor = 8510: 1(0.0) 
mor = 8520: 1 (0.0) 
mor = 8522: 1(1.0/0.8) 
mor =8523: 1(0.0) 
mor = 8530: 0(3.0/1.1) 
mor = 8541: 1(1.0/0.8) 
mor =8800: 1(0.0) 
mor = 9020: 0(3.0/1.1) 

age > 45 : 
age <= 55 : 
top = 500: 0(3.0/1.1) 
top = 501: 0(0.0) 
top = 503: 0(0.0) 
top = 504: 1(5.0/1.2) 
top = 505: 1(1.0/0.8) 
top = 508: 0 (0.0) 
top = 502: 
| age<=51: 1(2.0/1.0) 
| age > 51 : 0(2.0/1.0) 
top = 509: 
I mor = 8000: 0(12.0/1.3) 
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| | | mor = 8001:0(0.0) 
| | | mor = 8010:0(0.0) 
| | | mor = 8020: 0 (0.0) 
| j | mor = 8041:0(0.0) 
| | | mor = 8070: 0 (0.0) 
| | | mor = 8140: 0(6.0/1.2) 
j | j mor = 8260: 0 (0.0) 
| j j mor = 8480: 0 (0.0) 
j | | mor = 8501:0(0.0) 
| | | mor = 8510: 1(2.0/1.0) 
| | | mor = 8520: 1(2.0/1.0) 
| | | mor = 8522: 0 (0.0) 
j | | mor = 8523:0(0.0) 
| j j mor = 8530:0(1.0/0.8) 
| | | mor = 8541: 1(1.0/0.8) 
| | | mor = 8800: 0 (0.0) 
j | | mor = 9020: 0 (0.0) 
| | j mor = 8500: 

| | | | | age <= 54:0(120.0/3.8) 
| | I I age > 54: 

M i l l radi = 1:0 (6.0/1.2) 
| | | | | | radi = 2: 1(5.0/1.2) 
| j age > 55 : 
| | | mor = 8001: 1(0.0) 
| | | mor = 8010:0(1.0/0.8) 
| | | mor = 8020: 1 (0.0) 
| | | mor = 8041: 1(0.0) 
| | | mor = 8070: 1(0.0) 
| | | mor = 8140: 1(0.0) 
| | mor = 8260: 1 (0.0) 
| | | mor = 8480: 1(1.0/0.8) 
| | | mor = 8500: 1(58.0/3.8) 
| | | mor = 8501: 1(1.0/0.8) 
| | | mor = 8510: 1(0.0) 
| | | mor = 8520: 1 (0.0) 
| | mor = 8522: 1 (0.0) 

| | | mor = 8523: 1(0.0) 
| | | mor = 8530:0(6.0/1.2) 
| | | mor = 8541: 1(1.0/0.8) 
| | | mor = 8800:0(2.0/1.0) 

| mor = 9020: 1 (0.0) 
| j mor = 8000: 

| | | | radi= 1:0 (8.0/1.3) 
| | | | radi = 2: 1(3.0/1.1) 
ext = 5: 
| top = 500: 0 (0.0) 
| top = 501: 1 (1.0/0.8) 
| top = 502: 1(1.0/0.8) 
| top = 503: 0(0.0) 
| top = 504: 1 (9.0/4.5) 
j top = 505: 0 (2.0/1.0) 
| top = 508: 0 (0.0) 
| top = 509: 
| | age > 43: 0(272.0/16.2) 
j j age <= 43 : 
j j | mor = 8000: 0 (40.0/2.6) 
| | | mor = 8001:0(0.0) 
| | | mor = 8010:0(1.0/0.8) 
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mor = 8020: 0 (0.0) 
mor = 8041: 0(0.0) 
mor = 8070: 0 (0.0) 
mor = 8140: 0(6.0/2.3) 
mor = 8260: 0 (0.0) 
mor = 8480: 0 (0.0) 
mor = 8501: 0(0.0) 
mor = 8510: 0(0.0) 
mor = 8520: 0 (0.0) 
mor = 8522: 0 (0.0) 
mor = 8523: 0(0.0) 
mor = 8530: 0 (0.0) 
mor = 8541: 0(0.0) 
mor = 8800: 0 (0.0) 
mor = 9020: 0(5.0/1.2) 
mor = 8500: 
| age > 40: 1(11.0/1.3) 
| age <= 40 : 
| | age > 36 : 0 (26.0/2.6) 
j | age<=36: 
| | | chem=l: 1(8.0/1.3) 
| | | chem = 2: 0(3.0/1.1) 

Figure 8.1: Decision tree model for predicting 3-year breast cancer survivability 

Figure 8.1 illustrates the 3-year breast cancer survivability decision tree used to predict 

a class label. This decision tree model starts with the extent of breast cancer as the root 

and moving through it until a leaf is found. There are five conditions referring to the 

extent of the breast cancer (see Appendix A.6) including: 1) in situ refers to '1'; 2) lo­

calised refers to '2'; 3) direct extension refers to '3'; 4) regional lymph nodes refers to 

'4'; and 5) distant metastases refers to '5'. The examples of interpreting the decision 

tree above are presented as follows. 

1) If the extent of breast cancer of a patient is an in situ ('ext' = '1'), then this pa­

tient is predicted to survive for three years or more after the first diagnosis with 

1.0/0.8 error rates. Moreover, if a patient has a localised ('ext' = '2'), then this 

patient is predicted to survive for three years or more after the first diagnosis 

with 4.3/1.4 error rates. 
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2) If a patient with direct extension of breast cancer ('ext' = '3'), receives a suppor­

tive therapy ('supt' = '1') and the morphology is an epithelial tumour ('mor' = 

'8010'), then this patient is predicted to live less than three years after the first 

diagnosis with 5.0/1/2 resubstitution error rates. Whereas if morphology is infil­

trating duct carcinoma in the third condition ('mor' = '8500'), then this patient is 

predicted to live for three years or more after the first diagnosis with 7.0/1/3 re­

substitution error rates. 

3) If a patient has the regional lymph nodes ('ext' = '4'), and the age of the patient 

at the first diagnosis is 45 years or younger ('age' <= 45) and morphology is 

equal to neoplasm ('mor' = '8000'), then this patient is predicted to live less 

than three years after the first diagnosis with 18/2.5 resubstitution error rates. 

Whereas if morphology is equal to Adenocarcinoma ('mor' = '8140'), then this 

patient is predicted to live for three years or more after the first diagnosis with 

4.0/1.2 resubstitution error rates. 

4) If a patient has distant metastases ('ext' = '5') and central portion of breast ('top' 

= '501') at the first diagnosis, then this patient is predicted to live for three years 

or longer after the first diagnosis with 1.0/8.0 resubstitution error rates. But if a 

patient has distant metastases ('ext' = '5') and lower-outer quadrant of b ('top' = 

'505') at the first diagnosis, then this patient is predicted to die less than three 

years after the first diagnosis with 2.0/1.0 resubstitution error rates. 

As a result, in the case of a patient who is predicted to live for less than three years fol­

lowing the first diagnosis with low resubstitution error rates, medical practitioners 

should pay more attention to such a patient to improve the situation and evaluate deci­

sions for further treatment. 
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8.3.2 Decision tree for predicting 5-year breast cancer survivability 

The 5-year breast cancer survivability decision tree is created using a C4.5 algorithm. 

This decision tree is displayed in Figure 8.2. 

ext = 2: 1 (37.0/3.8) 
ext = 3: 1 (268.0/16.2) 
ext = 4: 
age > 44 : 0 (148.0/7.3) 
age <= 44: 
surg = 2: 0(3.0/1.1) 
surg= 1: 
mor = 8001: 1(0.0) 
mor = 8010: 1(0.0) 
mor = 8041: 1(0.0) 
mor = 8070: 1 (0.0) 
mor = 8140: 1 (5.0/2.3) 
mor = 8480: 1(1.0/0.8) 
mor = 8501: 1(0.0) 
mor = 8510: 0(1.0/0.8) 
mor = 8520: 1 (0.0) 
mor = 8530: 0(1.0/0.8) 
mor = 8541: 1(0.0) 
mor = 8800: 1 (0.0) 
mor = 9020: 0(1.0/0.8) 
mor = 8000: 
| age <= 34: 1(3.0/1.1) 
| age > 34: 0(7.0/1.3) 
mor = 8500: 
| age<=35: 1(15.0/1.3) 
| age > 35 : 

mor = 8480: 0(1.0/0.8) 
mor = 8501: 0(0.0) 
mor = 8510: 0(2.0/1.0) 
mor = 8520: 0 (0.0) 
mor = 8530: 0 (0.0) 

age > 40: 1(24.0/3.7) 
age <= 40: 
top = 500: 0 (0.0) 
top = 501: 0(0.0) 
top = 502: 1(2.0/1.0) 
top = 503: 0(0.0) 
top = 504: 1(6.0/1.2) 
top = 505: 0 (0.0) 
top = 506: 0 (0.0) 
top = 508: 0(1.0/0.8) 
top = 509: 0(19.0/1.3) 

ext = 5: 
top = 500: 0 (0.0) 
top = 501: 0(0.0) 
top = 502: 0 (0.0) 
top = 503: 0(0.0) 
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top = 504: 1 (6.0/1.2) 
top = 505: 0 (1.0/0.8) 
top = 506: 0 (0.0) 
top = 508: 0 (0.0) 
top = 509: 
| mor = 8001: 0(1.0/0.8) 
j mor = 8041: 0(0.0) 
| mor = 8070: 0 (0.0) 
| mor = 8140: 0(13.0/1.3) 
| mor = 8541: 0(0.0) 
| mor =8800: 0(0.0) 
| mor = 9020: 0(2.0/1.0) 
| mor = 8000: 
| | age > 33: 0(45.0/1.4) 
j j age <= 33 : 
| | | radi= 1:0 (3.0/1.1) 
| | | radi = 2: 1(3.0/1.1) 
| mor = 8010: 
| | radi= 1:0 (3.0/1.1) 
j j radi = 2: 
| | | age<=52: 1(8.0/1.3) 
| j j a g o 52: 0(2.0/1.0) 
| mor = 8500: 
| | age <= 66: 0(97.0/1.4) 
| | age > 66 : 
| | | age <= 74: 0(4.0/1.2) 
| | | age > 74: 1(2.0/1.0) 

Figure 8.2: Decision tree model for predicting 5-year breast cancer survivability 

Figure 8.2 illustrates a 5-year breast cancer survivability decision tree generated from 

the C4.5 algorithm using data from 1985 to 2002. The main root of this decision tree is 

also the extent of breast cancer including: localised ('2'), direct extension ('3'), regional 

lymph nodes ('4') and distant metastases ('5'). The interpretation of a 5-year breast 

cancer survivability decision tree is shown below. 

1) If a patient has localised extent ('ext' = '2') at the first diagnosis then this patient 

is predicted to live for five years or longer after the first diagnosis with 37.0/3.8 

resubstitution error rates. Similarly, if a patient has direct extension ('ext' = '3') 

then this patient is also predicted to live for five years or more after the first di­

agnosis with 268/16.2 resubstitution error rates. 

2) If a patient has regional lymph nodes ('ext' = '4') and is older than 44 years 

('age' > 44) at the first diagnosis, then this patient is predicted to live less than 
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five years after the first diagnosis with 148.0/7.3 resubstitution error rates. Simi­

larly, if a patient has the regional lymph nodes ('ext' = '4'), is aged 44 years or 

younger ('age' <= 44), at the first diagnosis and did not receive surgery treat­

ment ('surg' = '2'), then this patient is predicted to live less than five years fol­

lowing the first diagnosis with 3.0/1.1 resubstitution error rates. On the other 

hand, if a patient has regional lymph nodes ('ext' = '4'), is aged 44 years or 

younger ('age' <= 44), received a surgery treatment ('surg' = '1') and had ade­

nocarcinoma ('mor' = '8140'), then this patient is predicted to live for five years 

or longer after the first diagnosis with 5.0/2.3 resubstitution error rates. 

3) If a patient has distant metastases ('ext' = '5') and upper-outer quadrant of b 

('top' = '504') at the first diagnosis, then this patient is predicted to live for five 

years or more after the first diagnosis with 6.0/1.2 resubstitution error rates. On 

the other hand, if a patient has distant metastases ('ext' = '5') and lower-outer 

quadrant of b ('top' = '505'), then this patient is predicted to live less than five 

years after the first diagnosis with 1.0/.8 resubstitution error rates. 

These decisions are different from the 3-year breast cancer survivability decision tree 

due to the fact that they are independent of each other. 

8.3.3 Decision tree for predicting 8-year breast cancer survivability 

The 8-year breast cancer survivability decision tree is produced from a C4.5 algorithm. 

The decision tree is presented in Figure 8.3 below. 
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stage = 3: 0 (107.0/1.4) 
stage = 4: 0(114.0/1.4) 
stage = 1: 
| age <= 57 : 1 (32.0/1.4) 
j age > 57 : 0 (2.0/1.0) 
stage = 2: 
| age <= 47 : 
| | mor = 8000: 0(1.0/0.8) 
| | mor = 8001: 0(1.0/0.8) 
| j mor = 8010: 1(0.0) 
j j mor = 8070: 0(1.0/0.8) 
| | mor = 8140: 1 (8.0/2.4) 
| | mor = 8200: 1 (0.0) 
| | mor = 8480: 1 (0.0) 
| j mor =8501: 1(0.0) 
| j mor = 8510: 0(1.0/0.8) 
j j mor = 8541: 1(0.0) 
| | mor = 8800: 1(7.0/1.3) 
| | mor = 8500: 
| | | age > 40: 1(157.0/1.4) 
j | | age <= 40 : 
M M age > 36: 0(6.0/1.2) 
| | | | age <= 36: 
| | | | | age > 32 : 1 (36.0/2.6) 
j j j j j age <= 32: 

I N I basis = 1 : 1(0.0) 
| j j | | j basis = 2: 1 (0.0) 
| j j | | | basis = 3: 1(0.0) 
| j j | | | basis = 5: 1(10.0/1.3) 

I I I basis = 6: 1 (0.0) 
| | | | | | basis = 7: 
I | I I | | I status =1:1 (5.0/1.2) 
| | | | | | | status = 2:0(4.0/1.2) 
I I I I I I I status = 3: 1 (0.0) 
| age > 47 : 
| | surg= 1:0 (26.0/1.3) 
| surg = 2: 1(11.0/1.3) 

Figure 8.3: Decision tree model for predicting 8-year breast cancer survivability 

Figure 8.3 illustrates the 8-year breast cancer survivability decision tree generated from 

the C4.5 algorithm using data from 1985 to 1999. The main root of this decision tree is 

the stage of breast cancer including: 1) Stage I; 2) Stage II; 3) Stage III; and 4) Stage 

IV. The examples of the interpretation of the 8-year breast cancer survivability decision 

tree are displayed below. 
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1) If a patient has breast cancer in stage III ('stage' = '3') at the first diagnosis, this 

patient is predicted to live less than eight years with 107.0/1.4 resubstitution er­

ror rates. Likewise, if a patient has breast cancer in stages IV ('stage' = '4') at 

the first diagnosis, this patient is predicted to live less than eight years with 

114.0/1.4 resubstitution error rates. 

2) If a patient has breast cancer in stage I ('stage' = '1') and is aged 57 years or 

younger ('age' <= '57') at the first diagnosis, then this patient is predicted to live 

for eight years or more after the first diagnosis with 32.0/1.4 resubstitution error 

rates. On the other hand, if a patient has breast cancer in stage I ('stage' = '1') 

and is older than 57 ('age' > '57') at the first diagnosis, this patient is predicted 

to live less than eight years after the first diagnosis with 2.0/1.0 resubstitution er­

ror rates. 

3) If a patient has breast cancer in stage II ('stage' = '2'), is aged 47 years or 

younger ('age' <= 47) and had adenocarcinoma ('mor' = '8140') at the first di­

agnosis, then this patient is predicted to live for eight years or more after the first 

diagnosis with 8.0/2.4 resubstitution error rates. However, if a patient has breast 

cancer in stage II ('stage' = '2'), is older than 47 years ('age' > 47) at the first 

diagnosis and received a surgery treatment ('surg' = ' 1'), then this patient is pre­

dicted to live less than eight years after the first diagnosis with 26.0/1.3 resubsti­

tution error rates. However, if she has not received surgery treatment ('surg' = 

'2') then this patient is predicted to live for eight years or more after the first di­

agnosis with 11.0/1.3 resubstitution error rates. This means that patients aged 47 

years and over are more suited to receiving other treatments as opposed to sur­

gery. 
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8.3.4 Decision tree for predicting 10-year breast cancer survivability 

The 10-year breast cancer survivability decision tree is conducted from a C4.5 algo­

rithm. The decision tree is shown in Figure 8.4. 

stage = 3: 0 (86.0/1.4) 
stage = 4: 0 (93.0/1.4) 
stage = 1: 
| age <= 46 : 1 (37.0/1.4) 
| age > 46 : 0 (3.0/1.1) 
stage = 2: 
| age <= 46 : 
| | age > 33 : 1 (162.0/2.6) 
I | age <= 33 : 
| | | basis =1:1 (0.0) 
j | | basis = 2: 1 (0.0) 
j j j basis = 3:1 (0.0) 
| | | basis = 5: 1(8.0/1.3) 
| | | basis = 7: 0 (6.0/1.2) 
| age > 46 : 
| | age <= 73: 0(23.0/1.3) 
| | age > 73: 1(5.0/1.2) 
Figure 8.4: Decision tree model for predicting 10-year breast cancer survivability 

Figure 8.4 shows the 10-year breast cancer survivability decision tree model generated 

from the C4.5 algorithm using data from 1985 to 1997. The main root of this decision 

tree is the stage of breast cancer including Stage I, Stage II, Stage III and Stage IV. The 

interpretation of the 10-year breast cancer survivability decision tree is presented below. 

1) If a patient is diagnosed with stage III ('stage' = '3') of breast cancer at the first 

diagnosis then this patient is predicted to live less than 10 years after the first di­

agnosis with 86.0/1.4 resubstitution error rates. Similarly, if a patient is diag­

nosed with stage IV ('stage' = '4') of breast cancer at the first diagnosis then this 

patient is predicted to live less than 10 years after the first diagnosis with 

93.0/1.4 resubstitution error rates. 

2) If a patient is diagnosed with breast cancer at stage I ('stage' = '1') and is 46 

years old or younger ('age' <= '46') at the first diagnosis then this patient is pre­

dicted to live for 10 years or more after the first diagnosis with 37.0/1.4 resubsti-
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tution error rates. O n the other hand, if a patient is diagnosed with breast cancer 

in stage I ('stage' = '1') and is older than 46 ('age' > '46') at the first diagnosis, 

then this patient is predicted to live less than 10 years after the first diagnosis 

with 3.0/1.1 resubstitution error rates. 

3) If a patient has a breast cancer in stage II ('stage' = '2'), is aged more than 33 

and less than or equal to 46 years ('age' > '33' and 'age' <= '46') at the first di­

agnosis, then this patient is predicted to live for 10 years or more after the first 

diagnosis with 162.0/2.6 resubstitution error rates. However, if a patient is 33 

years or younger ('age' <= 33) and is histology of primary ('basis' = '7') at the 

first diagnosis, then this patient is predicted to live less than 10 years after the 

first diagnosis with 6.0/1.2 resubstitution error rates. 

As a result, the extent of breast cancer is the main factor for patients who survive more 

than three and five years after the first diagnosis while the stage of breast cancer is the 

main factor for patients who survive more than eight and 10 years after the first diagno­

sis. This demonstrates that C4.5 not only provides factors of breast cancer but also pre­

sents resubstitution error rates for the medical practitioners to rely on for their prognosis 

and decisions. 

8.4 Breast cancer survivability decision rules 

In order to exhibit 3-, 5-, 8- and 10-year breast cancer survivability rules, the C4.5rules 

technique is employed to build decision rules. These rules can combine with previous 

practitioner knowledge to expand the knowledge-base for more accurate decision mak­

ing. 
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8.4.1 Decision rules to predict 3-year breast cancer survivability data 

The C4.5rules technique is used to generate 3-year breast cancer survivability decision 

rules up to 27 rules. Each rule comprises a rule number, conditions, the prediction class 

and the accuracy of the decision rule showed in Table 8.3. 

Table 8.3: Rules for predicting 3-year breast cancer survivability 

Rule No. 

Rule 1: 

Rule 2: 

Rule 3: 

Rule 4: 

Rule 5: 

Rule 6: 

Rule 7: 

Rule 8: 

Rule 9: 

Rule 10: 

Rule 11: 

Rule 12: 

Rule 13: 

Rule 14: 

Rule 15: 

Rule 16: 

Rule 17: 
Rule 18: 

Rule 19: 

Rule 20: 

Rule 21: 

Rule 22: 

Rule 23: 

Rule 24: 

Rule 25: 

Rule 26: 

Rule 27: 

1 
ext = 2 

mor = 8010 

mor = 8500 
ext = 3 

mor = 8500 
mor = 8530 

age<=51 

mor = 8000 

age <= 54 

top = 509 

radi = 2 

mor = 8510 

mor = 8520 

top = 509 
mor = 8000 

radi = 2 

age <= 67 
age > 69 

top = 504 

top = 509 

chem = 1 

top = 509 

age > 36 

age > 40 

top = 509 

status = 2 

age > 55 

2 

ext = 3 
supt = 2 

ext = 4 

top = 502 

ext = 4 

top = 509 

mor = 8500 

age > 54 

age <= 55 

stage = 4 

Radi = 1 
ext = 4 

mor = 8500 
mor = 8500 

mor =8500 

mor = 8000 

age <= 36 

ext = 5 

ext = 5 

mor = 8500 

mor = 9020 

ext = 5 

age <= 59 

Conditions 

3 

age <= 45 

age > 45 

age <= 55 

mor = 8500 

radi = 1 

mor = 8500 

age > 45 

age > 55 
ext = 4 

ext = 5 

mor = 8500 

chem = 2 

top = 509 

age <= 43 

top = 509 

mor = 8500 

4 5 6 

stage = 3 age > 45 

age > 45 age <= 55 stage = 3 

stage = 3 

age <= 55 

age > 55 

age <= 40 

age > 43 

Classes 

1 
0 
1 
1 
1 
0 
1 
0 
0 
0 
1 
1 
1 
0 
0 
1 
1 
1 
1 
0 
1 
0 
0 
1 
0 
0 
1 

Accuracy 
(%) 

96.8 
82.3 

99.4 
97.4 

98.4 

89.1 

70.7 
91.5 

97.8 

98.4 

96.3 

70.0 

82.0 

97.5 
96.3 

93.1 
96.9 
93.0 

94.5 

98.0 

98.2 

96.3 
93.4 

98.0 

84.1 

94.1 

94.1 

Table 8.3 shows the rules of 3-year breast cancer survivability generated from 

C4.5rules. The interpretation of the top five 3-year breast cancer survivability decision 

rules including rule numbers 3, 10, 5, 21 and 24 are presented respectively. 

Rule 3: if a patient is diagnosed with an infiltrating duct carcinoma ('mor' ='8500') and 

a direct extension ('ext' = '3') at the first diagnosis then this patient is predicted 

to survive for three years or more after the first diagnosis with 99.40% accuracy. 
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Rule 10: if a patient is diagnosed with breast cancer, N O S ('top' = '509'), infiltrating 

duct carcinoma ('mor' = '8500'), receives radiation ('radi' = '1'), is aged more 

than 45 and less than or equal to 55 years ('age' > 45 and 'age' <= 55), and is at 

stage III ('stage' = '3') at the first diagnosis, then this patient is predicted to live 

less than three years after the first diagnosis with 98.40% accuracy. 

Rule 5: if a patient is diagnosed with infiltrating duct carcinoma ('mor' = '8500'), re­

gional lymph nodes ('ext' = '4') and is aged 45 years or younger ('age' <= 45) 

at the first diagnosis, then this patient is predicted to survive for three years or 

more after the first diagnosis with 98.40% accuracy. 

Rule 21: if a patient receives chemotherapy ('chem' = 1), is aged 36 years or younger 

('age' <= 36) and has infiltrating duct carcinoma ('mor' = '8500') at the first di­

agnosis, then this patient is predicted to survive for three years or more after the 

first diagnosis with 98.20% accuracy. 

Rule 24: if a patient is aged more than 40 and younger than or equal to 43 years old 

('age' > 40 and 'age' <= 43) at the first diagnosis and has an infiltrating duct 

carcinoma ('mor' = '8500'), then this patient is predicted to survive for three 

years or longer after the first diagnosis with 98.00% accuracy. 

In summary, a patient who has breast cancer, NOS, infiltrating duct carcinoma, has re­

ceived radio therapy, is aged between 45 and 55 years and is at stage III at first diagno­

sis, is predicted to live less than three years after the first diagnosis with 98.4% accu­

racy. This rule could help medical practitioners in the field of prognosis to become 

aware of the therapy that they have given to the patient, with respect to the age of the 

patient at the first diagnosis in order to improve quality of care. 
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8.4.2 Decision rules to predict 5-year breast cancer survivability data 

The decision rules for predicting 5-year breast cancer survivability are produced using a 

C4.5rules technique. The 5-year breast cancer survivability decision rules consist of 19 

rules with six maximum conditions. The decisions are exhibited in Table 8.4. 

Table 8.4: Rules for predicting 5-year breast cancer survivability 

Rule No. 

Rule 1: 

Rule 2: 
Rule 3: 

Rule 4: 
Rule 5: 

Rule 6: 

Rule 7: 

Rule 8: 

Rule 9: 
Rule 10: 

Rule 11: 
Rule 12: 

Rule 13: 
Rule 14: 

Rule 15: 
Rule 16: 

Rule 17: 
Rule 18: 

Rule 19: 

1 
ext = 2 

ext = 3 
mor = 8541 

age > 34 
age <= 35 

top = 504 

top = 509 

top = 509 

mor = 9020 

ext = 4 

age > 44 
age > 75 

radi = 2 
top = 504 

top = 509 
radi = 2 

age <= 52 

age > 52 

age <= 74 

2 

mor = 8000 
mor = 8500 
age <= 40 

ext = 4 

ext = 4 

surg = 2 

age <= 75 
radi = 1 

ext = 4 

ext = 5 

ext = 5 
age <= 33 

mor = 8010 
top = 509 

top = 509 

Conditions 

3 

ext = 4 

age > 35 

age > 40 

ext = 4 

age > 44 

radi = 1 
mor = 8000 

radi = 2 
ext = 5 

mor = 8500 

4 

age<= 

age<= 

ext = f 

= 40 

= 44 

5 

mor = 

mor = 

6 

= 8500 
= 8500 surg = 1 

Classes 

1 
1 
0 
0 
1 
1 
0 
1 
0 
0 
0 
1 
0 
1 
0 
1 
1 
0 
0 

Accuracy (%) 

89.8 

94.0 
70.7 
86.5 
91.2 

87.1 
93.3 

93.0 

63.0 

91.7 

97.3 
63.0 

96.5 
79.4 

98.2 
84.1 
84.1 

93.7 

98.6 

Table 8.4 shows 5-year breast cancer survivability decision rules generated from 

C4.5rules. The interpretation of the top five rules including rule numbers 19, 15, 11, 13 

and 2 are displayed below, respectively; 

Rule 19: if a patient is aged 74 years or younger ('age' <= 74), has breast, NOS ('top' = 

'509'), an infiltrating duct carcinoma ('mor' = '8500') and a distant metastases 

('ext' = '5') at the first diagnosis, then this patient is predicted to live less than 

five years after the first diagnosis with 98.60% accuracy. 
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Rule 15: if a patient has topography at breast, N O S ('top' = '509'), distant metastases 

('ext' = '5') and receives radiation ('radi' = '1') at the first diagnosis, then this 

patient is predicted to live less then five years after the first diagnosis with 

98.20% accuracy. 

Rule 11: if a patient is aged more than 44 and younger than or equal to 75 (age > 44 and 

age <= 75) and has the regional lymph nodes ('ext' = '4') at the first diagnosis, 

then this patient is predicted to live less than five years after the first diagnosis 

with 97.30% accuracy. 

Rule 13: if a patient does not receive radiation ('radi' = '2'), has regional lymph nodes 

(ext = 4) and is older than 44 years ('age' > 44) at the first diagnosis, then this 

patient is predicted to live less than five years after the first diagnosis with 

96.50% accuracy. 

Rule 2: if a patient had a direct extension ('ext' = '3') at the first diagnosis then this pa­

tient is predicted to live for five years or more after the first diagnosis with 

94.00% accuracy. 

As a result, if a patient had a direct extension then this patient is predicted to live for 

five years or more yet if a patient has the regional lymph nodes, they need more support 

from medical practitioners to improve the chance of survival for more than five years. 

8.4.3 Decision rules to predict 8-year breast cancer survivability data 

In this section, nine decision rules with three maximum number conditions of 8-year 

breast cancer survivability are generated using the C4.5rules technique. The 8-year 

breast cancer survivability decision rules are displayed in Table 8.5. 
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Table 8.5: Rules for predicting 8-year breast cancer survivability 

Rule No. 

Rule 1: 
Rule 2: 
Rule 3: 

Rule 4: 

Rule 5: 
Rule 6: 
Rule 7: 

Rule 8: 

Rule 9: 

1 
age <= 57 
mor = 8000 
age <= 47 
status = 2 

age > 36 
surg = 1 
stage = 2 

stage = 3 
stage = 4 

Conditions 

2 
stage = 1 
age <= 47 

top = 509 

basis = 7 

age <= 40 
age > 47 
surg = 2 

3 

stage = 2 

age <= 32 

mor = 8500 

Classes 

1 
0 
1 
0 
0 
0 
1 
0 
0 

Accuracy (%) 

95.8 
88.2 
92.2 

91.2 

95.0 
98.9 
88.2 

98.7 

98.8 

Table 8.5 shows the 8-year breast cancer survivability rules generated from C4.5rules. 

Results of the top five rules involve rule numbers 6, 9, 8, 1 and 5, respectively. These 

rules are interpreted as follows: 

Rule 6: if a patient receives surgery ('surg' = ' 1') and is older than 47 years ('age' > 47) 

at the first diagnosis then this patient is predicted to live less than eight years af­

ter the first diagnosis with 98.90% accuracy; 

Rule 9: if a patient is diagnosed with breast cancer at stage IV ('stage' = '4') at the first 

diagnosis then this patient is predicted to live less than eight years after the first 

diagnosis with 98.80% accuracy; 

Rule 8: if a patient is diagnosed with breast cancer at stage III ('stage' = '3') at the first 

time then this patient is predicted to live less than eight years after the first diag­

nosis with 98.70% accuracy; 

Rule 1: if a patient is aged 57 years and younger ('age' <= 57) and has breast cancer at 

stage I ('stage' = '1') at the first diagnosis then this patient is predicted to live 

for eight years or more after the first diagnosis with 95.80% accuracy; and 

Rule 5: if a patient is aged more than 36 and younger than or equal to 40 years (age > 36 

and age <= 40) and has an infiltrating duct carcinoma ('mor' = '8500') at the 
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first diagnosis then this patient is predicted to live less than eight years after the 

first diagnosis with 95.00% accuracy. 

As a result, 8-year breast cancer survivability rules are uncomplicated due to the fact 

that they have a common rule which depends on the stage of breast cancer. If a patient 

was in stages III and IIII at the first diagnosis then this patient is predicted to die within 

eight years after the first diagnosis. 

8.4.4 Decision rules to predict 10-year breast cancer survivability data 

The 10-year breast cancer survivability rules generated from C4.5rules include seven in 

all with two maximum conditions. The rules are illustrated in Table 8.6. 

Table 8.6: Rules for predicting 10-year breast cancer survivability 

Rule No. 

Rule 1: 
Rule 2: 
Rule 3: 

Rule 4: 

Rule 5: 

Rule 6: 

Rule 7: 

1 
age<= 
age<= 
basis = 

basis = 

age> 

stage: 

stage: 

= 46 
= 46 

-1 

= 3 

46 

= 3 
= 4 

Conditions 

2 
stage = 
stage = 

age<= 

age<= 

= 1 
= 2 
33 

^73 

Classes 

1 
1 
0 

0 

0 

0 

0 

Accuracy (%) 

96.3 
94.6 
90.6 
75.8 

98.9 
98.4 

98.5 

Table 8.6 shows 10-year breast cancer survivability rules generated from a C4.5rules 

technique. Results of the top five rules including rule numbers 5, 7, 6, 1 and 2 are in­

terpreted, respectively. 

Rule 5: if a patient is aged more than 46 and younger than or equal to 73 years old 

('age' > 46 and 'age' <= 73) at first diagnosis, then this patient is predicted to 

live less than 10 years after the first diagnosis with 98.90% accuracy. 

Rule 7: if a patient has breast cancer at stage IV ('stage' = '4') at the first diagnosis then 

this patient is predicted to live less than 10 years after the first diagnosis with 

98.50% accuracy. 



Chapter 8: Breast Cancer Survivability Outcomes 170 

Rule 6: if a patient has breast cancer at stage III ('stage' = '3') at the first diagnosis then 

this patient is also predicted to live less than 10 years after the first diagnosis 

with 98.40% accuracy. 

Rule 1: if a patient is aged 46 years or younger ('age' <= 46) and has breast cancer in 

stage I ('stage' = '1') at the first diagnosis, then this patient is predicted to live 

for 10 years or longer with 96.3% accuracy. 

Rule 2: if a patient is aged 46 years or younger ('age' <= 46) and has breast cancer in 

stage II ('stage' = '2') at the first diagnosis, then this patient is predicted to live 

for 10 years or more after the first diagnosis with 94.6% accuracy. 

As a result, if a patient was diagnosed with stages III and IV at the first diagnosis, this 

patient is predicted to die less than 10 years after the first diagnosis. However, the pre­

diction of a patient's survival not only depends on the stage of breast cancer but also on 

other factors which are beyond the scope of this thesis. 

8.5 Discussion of decision trees and rules 

Medical data mining is widely used to extract useful patterns and reliable models in the 

medical field [53]. As a result, these models can be exploited to assist medical practi­

tioners to make accurate decisions and improve health services [136]. Decision tree and 

decision rule are the most easily understood by medical practitioners [68] [53]. This 

chapter adopts C4.5 and C4.5rules to generate the decision tree and decision rule. The 

C4.5 technique generates the decision tree which provides the resubstitution error rate to 

assist the medical practitioners in their decision making. Likewise, Yao et al. [99] em­

ployed C4.5 to construct a decision tree model for predicting the in-patient length of 

stay. Their results showed that this model can be understood and accepted better by 
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managers and also in assisting health care organisations to arrange and make full use of 

hospital data. Similarly, Jonsdottir et al. [20] demonstrated that C4.5 classifier is more 

accurate in predicting the doctor's risk assessment than the actual outcome from the 

Med-DS data set. Unlike C4.5 decision tree, C4.5rules generates fewer rules, which 

reduces the complexity of the decision and it also can be easily updated to the previous 

rules in the decision-making system. Moreover, Minowa [14] demonstrated that 

C4.5rules is linguistic information which people can easily comprehend and use. 

8.6 Chapter summary 

In this chapter, C4.5 and C4.5rules were used to build the decision tree and decision 

rules which are easy to interpret. The interpretation of the decision tree and rules were 

also presented to gain better understanding of the decisions in predicting the unseen 

class for assisting medical practitioners to increase their decision-making processes. 

The next chapter provides the conclusion of this thesis, and recommends directions for 

further study. 



Chapter 9 

Conclusions and Future Work 

In this thesis suitable breast cancer survivability models have been derived from data in 

Thailand to assist medical practitioners with accurate and reliable prediction results. 

The three major research aims including improved performance, stability and effective­

ness of breast cancer survivability prediction models using suitable data mining proc­

esses have been achieved. As a result, several approaches including attribute selection, 

C-support vector classification outlier filtering, over-sampling and hybrid AdaBoost 

Random Forests, were proposed. The performance, stability and effectiveness of breast 

cancer survivability prediction models were evaluated using accuracy, sensitivity, speci­

ficity, AUC score, F-measure and Kappa statistics. The purpose of this final chapter is 

to summarise the findings and discuss implications for future research directions. 

9.1 Summary of results 

In order to develop accurate, stable and effective breast cancer survivability prediction 

models, this dissertation focused on four aspects. The first of these concerns problems 

with breast cancer survivability data obtained from Srinagarind Hospital databases in 

Thailand. The second includes the development of approaches in pre-processing to im­

prove data quality in order to enhance the performance, stability and effectiveness of 

172 
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prediction models. The third involves the combination of the new AdaBoost with Ran­

dom Forests algorithms to develop superior breast cancer survivability prediction mod­

els, and finally breast cancer survivability decision trees and rules have been generated. 

The results are summarised into four aspects as follows: 

1) An understanding of the behaviour of attributes in breast cancer databases in 

Thailand which affect the performance of prediction models was investigated. 

Common problems of medical data including missing data, outliers and imbal­

anced data, are presented in Chapter 3. 

2) Three approaches to improving data quality from Srinagarind Hospital in Thai­

land were developed and introduced in Chapters 4, 5 and 6, respectively. 

Firstly, the &-means algorithm was used to transform numeric attribute (age) into 

a discrete attribute, while RELIEF was utilised to select the suitable attributes. 

After applying both &-means and RELIEF to improve quality of the data set, 

AdaBoost algorithms were exploited to build 5-year breast cancer survivability 

prediction models. The capability and effectiveness of this approach were 

evaluated using accuracy, sensitivity and specificity of prediction models. Re­

sults showed that this approach not only improves the performance of prediction 

models, but also stabilises them. 

Secondly, C-Support Vector Classification Filtering (C-SVCF) was developed to 

identify and eliminate outliers from misclassified instances in order to improve 

the quality of a 5-year breast cancer survivability data set. The capability and 

effectiveness of this approach were evaluated using accuracy and Area Under 

the receiver operating characteristic Curve (AUC) scores. The experimental re-
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suits demonstrated that C-SVCF is superior to AdaBoost filtering, Bagging and 

SVM ensembles. 

Lastly, a combination of Outlier filtering and Over-Sampling (OOS) was utilised 

to improve the quality of 1-, 2-, 3-, 4-, 5-, 6-, 7-, 8-, 9- and 10-year breast cancer 

survivability data sets. The capability and effectiveness of this approach were 

evaluated using accuracy, sensitivity, specificity, AUC scores and F-measure. 

Results illustrated that OOS outperforms C-SVCF and over-sampling. 

3) The development of 3-, 5-, 8- and 10-year breast cancer survivability prediction 

models using a hybrid algorithm, AdaBoost and Random Forests (ABRF), was 

proposed in Chapter 7. Performance and effectiveness of these prediction mod­

els were evaluated using accuracy, sensitivity, specificity, AUC scores, F-

measure and Kappa statistics. Results exhibited that these combined prediction 

models are superior to several classifiers such as C4.5, basic AdaBoost and Ran­

dom Forests. 

4) C4.5 and C4.5rules were employed to extract knowledge into decision trees and 

derive the rules from 3-, 5-, 8- and 10-year breast cancer survivability data sets. 

These decision rules are used to reinforce with previous practitioner knowledge 

in order to enhance the decision making in Chapter 8. 

9.2 Limitations of the current study 

The limitation of the study can be divided into three main issues. Firstly, the current 

thesis was not specifically designed to evaluate CPU time to build the learning process 

in the large data sets. This may be due to the limitation of the data size. Secondly, the 
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finding might not be transferable to other medical data sets. Lastly, the combination of 

AdaBoost and Random Forests is unable to provide the final tree structures and rules. 

9.3 Future research 

The burgeoning growth of medical databases and the increasingly huge amount of data 

to be processed has created massive challenges to medical professionals in Thailand. 

Appling the outlier filtering approach to the whole data set may introduce the biased 

problem to the results. Moreover, the combination of AdaBoost and Random Forests 

used to develop prediction models is time consuming. This is because the AdaBoost 

algorithm needs to apply several iterations to gain better instances and the Random For­

ests method needs to produce many trees to achieve high performance. Therefore, fu­

ture research will need to investigate the improvement of the training time in the com­

bination of AdaBoost and Random Forests while retaining the same performance and 

effectiveness and using these approaches in the rare event detection. Moreover, such 

research could develop a method to interpret the combination of AdaBoost and Random 

Forests prediction models. 
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Appendices 

Details of attributes in Table 3.1 are shown in the following appendices. 

Appendix A.1: Marital status 

No. Value Description 
1 1 Single 
2 2 Married 
3 3 Non 
4 9 Unknown 

Appendix A.2: Occupation 

No. 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 

Value 
0 
100 
106 
108 
110 
111 
112 
201 
205 
207 
208 
209 
210 
217 
302 
303 
401 
402 
403 
502 
503 
505 
606 
719 
818 
901 
902 
907 
909 
910 
911 
993 
996 

Description (translated from the Thai description) 
Other 
Dressmaker 
Doctor 
Dentist 
Lecturer 
Teacher 
Nurse 
Officer 
Police 
Officer 
Elderly with pension 
Temporary Employee 
Permanent Employee 
Elderly with lumsum 
Officer in a government corporation 
Operator in a government corporation 
Business Owner 
Officer in a private company 
Worker 
General Framer 
Grain farmer 
Grain and truck farmer 
Seller 
Hairdresser 
Building Worker 
Priest 
officer in a government sector 
Elderly 
Student 
University Student 
House wife 
Unemployed 
General worker 
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Appendix A.3: Basis of diagnosis 

No. Value Description 
1 
2 
3 
4 
5 
6 
7 

1 History & Physical exam. 
2 Endoscopy & Radiology 
3 Surgery & Autopsy (no histol.) 
4 Specific Biochem/lmmuno tests 
5 Cytology or Hematology 
6 Histology of Metastasis 
_7 Histology of Primary 

Appendix A.4: Topography 

No. Value Description 
1 
2 
3 
4 
5 
6 
7 
8 
9 

500 
501 
502 
503 
504 
505 
506 
508 
509 

C50.0 Nipple 
C50.1 Central portion of breast 
C50.2 Upper-inner quadrant of b 
C50.3 Lower-inner quadrant of b 
C50.4 Upper-outer quadrant of b 
C50.5 Lower-outer quadrant of b 
C50.6 Axillary tail of breast 
C50.8 Overl. lesion of breast 
C50.9 Breast, N O S 

Appendix A.5: Morphology 

No. Value Description 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 

8000 
8001 
8010 
8012 
8020 
8021 
8033 
8041 
8050 
8070 
8140 
8141 
8200 
8260 
8310 
8480 
8481 
8490 
8500 
8501 
8510 
8512 
8513 
8520 
8521 
8522 

Neoplasm 
Tumour cells 
Epithelial tumour 
Large cell carcinoma, O S 
Carcinoma, differentiated, O S 
Carcinoma, anaplastic, N O S 
Pseudosarcomatous carcinoma 
Small cell carcinoma, N O S 
Papillary carcinoma, N O S 
Squamous cell carcinoma, N O S 
Adenocarcinoma, N O S 
Scirrhous adenocarcinoma 
Adenoid cystic carcinoma, N O S 
Papillary adenocarcinoma, N O S 
Clear cell adenocarcinoma, N O S 
Mucinous adenocarcinoma 
Mucin-producing adenocarcinoma 
Signet ring cell carcinoma 
Infiltrating duct carcinoma 
Comedocarcinoma, N O S 
Medullary carcinoma, N O S 
Medullary care, with lymph, stroma 
Atypical medullary carcinoma 
Lobular carcinoma,NOS 
Infiltrating ductular carcinoma 
Infiltrating duct and lobular carcinoma 



Appendices 197 

Appendix A.5: Morphology (con't) 

No. Value Description 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 

8523 
8530 
8540 
8541 
8543 
8800 
8900 
8930 
9020 
9120 

9591 

Infiltrating duct mixed with other types 
Inflammatory carcinoma 
Paget's disease, mammary 
P. dis. & infil. duct carc.,breast 
Paget's disease and intraduct. ca. of br 
Soft tissue tumour 
Rhabdomyosarcoma, N O S 
Endometrial stromal sarcoma 
phyllodes tumour 
Hemangiosarcoma 
Lmphoma,non-Hodgkin's> N O S 

Appendix A.6: Extent 

No. Value Description 
1 
2 
3 
4 
5 
6 
7 

1 
2 
3 
4 
5 
8 
9 

In situ 

Localized 
Direct extension 
Regional lymph nodes 

Distant metastases 
Not applicable 
Not known 

Appendix A.7: Stage 

No. Value Description 
1 
2 
3 
4 
5 
7 

0 
1 
2 
3 
4 
9 

Stage 0 
Stage I, A 

Stage II, B 
Stage III, C 

Stage IV, D 
Unknown 

Appendix A.8: Received treatments including surgery, radiation, chemotherapy, hormonal 
therapy, immunotherapy, other therapy and supportive therapy. 

No. Value Description 
1 
2 
3 

1 
2 
9 

Received treatment 

Do not Received treatment 
Unknown 
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