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Duchenne Muscular Dystrophy (DMD) is a fatal neuromuscular disease that is characterised by
dystrophin-deficiency and chronic Ca2+-induced skeletal muscle wasting, which currently has no cure.
DMD was once considered predominantly as a metabolic disease due to the myriad of metabolic insuffi-
ciencies evident in the musculature, however this aspect of the disease has been extensively ignored
since the discovery of dystrophin. The collective historical and contemporary literature documenting
these metabolic nuances has culminated in a series of studies that importantly demonstrate that meta-
bolic dysfunction exists independent of dystrophin expression and a mild disease phenotype can be
expressed even in the complete absence of dystrophin expression. Targeting and supporting metabolic
pathways with anaplerotic and other energy-enhancing supplements has also shown therapeutic value.
We explore the hypothesis that DMD is characterised by a systemic mitochondrial impairment that is
central to disease aetiology rather than a secondary pathophysiological consequence of dystrophin-
deficiency.

� 2015 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction

Duchenne Muscular Dystrophy (DMD) is the most prevalent
muscular dystrophy afflicting �1 in 3500–5000 live born males
[1,2]. Regarded as a debilitating and fatal skeletal muscle disease,
it is characterised by muscular weakness, exercise intolerance
and progressive deterioration of skeletal muscle. Sufferers are
generally confined to a wheelchair by 12 years of age with
cardiorespiratory failure ultimately ensuing by the third decade
of life [3,4]. 100 years after DMD was first described [5], the cause
was identified as a gene mutation on the short arm of the
X-chromosome [6]. The product of this mutation is the ablation
of dystrophin, a 427 kDa rod-shaped [7] protein usually associated
with the sarcolemma of muscle fibres via a complex of glycopro-
teins. The presence of dystrophin and associated glycoproteins
provides integrity and rigidity to the fibre, however dystrophin-
deficiency and the secondary reduction of these glycoproteins [8]
renders the fibres more susceptible to damage as they become
structurally unstable and exceedingly porous to the extracellular
environment. As a result, excessive calcium (Ca2+) influx, poor
Ca2+ handling, activation of proteases/lipases and mitochondrial
Ca2+ overload precede muscle degeneration. Over time, and as
regeneration fails, fatty and connective tissue replacement culmi-
nates in non-functional muscle tissue.

In a bid to cure this progressive and fatal muscle wasting, the
majority of research since 1987 has focused on genetically manip-
ulating the disease by reintroducing the dystrophin gene (or a
miniature version) back into the genome [9–11] and pharmacolog-
ical intervention [12,13]. While some success has been observed
with exon skipping and termination codon read-through trials
(as reviewed in [14]), many complications of genetic therapy,
including immunological reaction to delivery vectors, affordability
and suitability [15] have been reported. As yet, there is no cure.
Currently, corticosteroid treatment is used to delay muscular
weakness and prolong function but has reported side effects
including cardiomyopathy, weight gain, cataracts, hypertension,
cushingoid features and osteoporosis [16].
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Prior to the discovery of dystrophin (and by several research
groups afterwards), DMD was considered to be a disease of meta-
bolic origin, with a strong body of literature demonstrating defi-
ciency of key metabolic systems and regulators, including the
mitochondria. As mitochondria constitute the ubiquitous adeno-
sine triphosphate (ATP)-producing machinery of the cell and con-
sequently play a crucial role in signalling cell death, their
dysfunction seemingly induces a myriad of physiological events
that underscore, or at least exacerbate, dystrophinopathy. Deficits
encompassing the cytosolic enzymes of glycolysis [17–21] and the
purine nucleotide cycle (PNC) [22,23], and the mitochondrial
enzymes of the Tricarboxylic Acid (TCA) cycle [21,24] and Electron
Transport Chain (ETC) [25–27] have been consistently reported in
DMD sufferers, female carriers and animal models of the disease.
Severely reduced ATP content [28–32] is the downstream conse-
quence of these deficits and has been observed in skeletal muscle
from both DMD patients and animal models. Dysregulation of cel-
lular energy homeostasis has a variety of consequences for muscle
including (1) impaired contractile apparatus function leading to
reduced strength, ambulatory capacity and exercise tolerance; (2)
impaired intracellular Ca2+ buffering leading to loss of homeostasis
and Ca2+-induced degeneration; (3) reduced protein synthesis; and
(4) reduced satellite cell activation, replication, migration and dif-
ferentiation leading to a markedly decreased capacity for regener-
ation of damaged muscle fibres. The mitochondria are also
explicitly involved in maintaining, and are strongly regulated by,
cytosolic Ca2+ concentration ([Ca2+]). Heightened mitochondrial
[Ca2+] increases ATP synthesis until overload induces permeability
transition, collapses the mitochondrial membrane potential and
signals apoptotic cellular death pathways. Thus an important
question that could be asked is: What comes first, the chicken
(Ca2+-induced pathophysiology) or the egg (mitochondrial
dysfunction)? That impaired metabolism has been observed in
mdx myoblasts independent of dystrophin-deficiency (dystrophin
is not phenotypically expressed until myoblastic fusion into myo-
tubes) [33], indeed suggests an intrinsic metabolic deficiency.
Metabolic impairment is also evident in a variety of tissues and
cells from DMD patients and animal models that express a differ-
ent dystrophin isoform – these include liver [34,35], heart
[36,37] and brain [38–42]. Collectively, the literature strongly
suggests that DMD is characterised by a systemic metabolic
impairment, which is central to the aetiology of the disease and
not secondary to the pathophysiology as currently accepted.

In 1992, and following 30 years of clinical research, Bonsett and
Rudman [43] published a timely article in Medical Hypotheses that
offered compelling evidence to highlight that DMD is predomi-
nantly underscored by metabolic impairment at the mitochondrial
level, and that this can be anaplerotically ‘‘corrected” using high
dose adenylosuccinic acid (ASA) treatment. Since this publication,
and despite mounting literature indicating the same perturbations
in animal models of DMD, metabolic therapy – with the exception
of dietary creatine monohydrate supplementation – is still not a
mainstay of DMD treatment. We suggest that re-defining DMD as
a metabolic myopathy and strategically treating it as such, could
improve patient outcomes and quality of life.

Hypothesis

Our hypothesis challenges the currently accepted pathophysio-
logical paradigm describing DMD aetiology, which pinpoints
dystrophin-deficiency-induced Ca2+ homeostasis de-regulation as
the primary defect. We hypothesise that DMD is primarily a mito-
chondrial myopathy, in which the inability to generate sufficient
quantities of ATP to fuel Ca2+ buffering from myofibres, induces
the pathophysiological cascade of events leading to muscle wast-
ing and fatty and connective tissue infiltration.
Arguments to support the hypothesis

A plethora of metabolic deficiencies in dystrophin-deficient muscle

The earliest literature of Meryon [44] and Duchenne [45] – who
are renowned for reporting the first cases of DMD and the collective
pathological manifestations of the disease, respectively – described
the gross anatomical observations of DMD skeletal muscle fibres. A
prominent feature of these fibreswas intrafibral lipid accumulation.
In whole fibre preparations, lipids are present extensively within
the sarcoplasm and attached to the sarcolemma, and leach into
the extracellular fluid from damaged fibres (Fig. 1A) [46,47]. This
feature has also been reported in histological preparations using
fat-specific stains [48,49]. Intracellular lipid droplets are a normal
feature of healthy skeletal muscle, albeit in lesser abundance, in
which they are located proximal to the sarcoplasmic reticulum
and mitochondria to act as energy reservoirs [50]. As skeletal mus-
cle has a high affinity for fatty acid oxidation as ATP demand
increases, these reservoirs act as important regulators of cellular
energy homeostasis during metabolic stress. The early work of
Charles Bonsett’s laboratory on cultured human myocytes
highlights an equivalent propensity for healthy and DMD cells to
produce intracellular lipid droplets when supplementedwith nutri-
ent dense 20% foetal bovine serum (FBS) superfluous to cellular
nutrient demand i.e. when nutrients are supplied and uptaken in
excess of cellular requirements, intrafibral lipid accumulation is a
natural consequence [46]. While reducing the FBS concentration
induced concurrent reductions in lipid accumulation in the healthy
myocytes until lipid accumulation was absent, DMDmyocytes con-
tinued to produce lipid droplets irrespective of serum concentration
[46] highlighting a reduced capacity formetabolism that culminates
in enhanced production of lipids at the cellular level (Fig. 1B). [24].
Intramyofibral lipid accumulation is also characteristic of obese,
type 2 diabetic patients and aged skeletalmuscle [51–55] indicating
comparable metabolic dysfunction amongst these disease states. In
a subsequent study, the same group provided evidence indicating
this phenomenon was due to isocitrate dehydrogenase (IDH) dys-
function/deficiency as the addition of isocitrate to DMD cells
induced significant lipid formation [24].

In dystrophin-deficient skeletal muscle from human DMD
patients and animal models, however, metabolic dysfunction is
not limited to IDH, but is widespread across multiple metabolic
pathways [56] and culminates in resting ATP levels that are at least
50% of healthy control levels [28–32]. In intensely exercised,
healthy skeletal muscle, physiological fatigue mechanisms ensure
that ATP demand does not exceed production capacity – a �40%
drop in resting ATP levels appears to be the critical maintenance
threshold such to trigger these mechanisms and reduce demand
on the metabolic system (as reviewed in [57]). Thus, compared
to healthy skeletal muscle, resting dystrophin-deficient muscle
consistently maintains sub-threshold ATP levels which are likely
incompatible with long-term cell survival. Taken in context of
Bonsett’s research, it is not that dystrophin-deficient muscle has
a lesser requirement for ATP synthesis, in fact the exact opposite
it true. Intrafibral lipid production and accumulation even in the
presence of minute nutrient provision seems ostensibly linked to
an intrinsic metabolic defect that limits the conversion of nutrients
into cellular energy (ATP).

A plethora of isolated deficits in the cellular energy system have
been reported in dystrophin-deficient skeletal muscle from human
patients and animal models, which would both individually and
collectively contribute to this failure of energy homeostasis (sum-
marised in Table 1). Due to the strong and multifaceted allosteric
regulation of metabolism by associated up- and down-stream
products and reactants, one broken link in the metabolic chain
would induce deleterious consequences at multiple levels



Fig. 1. Accumulation of intramyofibral lipids is a feature of dystrophin-deficient skeletal muscle and a hypothetical consequence of mitochondrial dysfunction. Lipid droplets
are evident in the sarcoplasm, the sarcolemma and leaching into the extracellular fluid of isolated dystrophin deficient myofibres (Photographs courtesy of Bonsett [182];
reproduced with the permission of C.C. Thomas Publisher Ltd). In a hypothetical model to explain this phenomenon (B), nutrients are typically oxidised by the mitochondria
to synthesise ATP in healthy skeletal muscle (left) with minimal directed to intracellular lipid production. In dystrophic muscle (right), the capacity to utilise nutrients for ATP
synthesis is significantly impaired which coincides with an increased propensity to produce intracellular lipid (adapted from Bonsett, unpublished). We hypothesise that this
feature is a consequence of mitochondrial dysfunction that is independent of the absence of dystrophin protein.

Table 1
Summary of the metabolic deficits in the metabolic pathways of dystrophic skeletal muscle.

Defect description DMD model References

Macronutrient uptake and
availability

Normal glucose uptake but ; glucose content Human DMD and mdx mouse [183–185]
; GLUT4 mRNA and protein expression in aged diaphragm mdx mouse [75]
; Gluconeogenic precursors (alanine and glutamine) Human DMD [183,185,186]
" Fructose content Human DMD [187]

Glycolysis ; Glucose-6-phosphate Human DMD [19]
; Phosphofructokinase activity, ; sensitivity to allosteric
regulation

Human DMD and mdx mouse [18–20,78,79]

; Aldolase Human DMD [17,19,188]
; Pyruvate kinase activity Human DMD [20,189]
; Lactate dehydrogenase Human DMD [18,19,103]
; Lactate production and acidification Human DMD and mdx mouse [31,183,190]

Glyocgen storage and utilisation " Glycogen content Human DMD and mdx mouse [121,124,191]
; Phosphorylase activity Human DMD and mdx mouse [17–20,99,101,190–195]
; Phosphoglucomutase activity Human DMD and mdx mouse [20,102]

Fat oxidation ; Palmitate oxidation Human DMD patients and
carriers

[95,196,197]

; Palmitoylcarnitine and malate oxidation Human DMD [95,183,198–202]
; Total carnitine Human DMD [95,183,199–202]
; Fatty acid transport into mitochondria Human DMD [202]

Creatine phosphagen system ; PCr concentration Human DMD and mdx mouse [28,84,85,87,183,203–
205]

; Cr concentration Human DMD and mdx mouse [28,183,184,205,206]
; TCr Human DMD and mdx mouse [28,207,208]
; PCr/Pi Human DMD [85,203,209]
; PCr/ATP Human DMD [85,117,203]
" Urinary Cr excretion (due to ; turnover) Human DMD [210]

Purine nucleotide cycle ; IMP concentration Human DMD [86]
; Adenylate kinase content and activity mdx mouse [23]
" Uric acid excretion Human DMD [86,211,212]
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spanning the entire metabolic system – thus pinpointing the pre-
cise defect becomes difficult. Indeed, the only established physical
link between the dystrophin protein and the metabolic pathways is
via neuronal nitric oxide synthase (nNOS). Dystrophin-deficiency
results in the secondary loss of nNOS [61]. In skeletal muscle, nNOS
generates NO which is a key intracellular signalling molecule with
strong metabolic regulatory capacity that has effects on contrac-
tion, blood flow, glucose uptake andmetabolism [62,63]. In healthy
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muscles, nNOS localises to the subsarcolemma bound to the dys-
trophin protein complex (DPC), and more specifically, the syn-
trophins. The absence of dystrophin disrupts the formation of the
DPC [8] and affects nNOS localisation [58,59]. As nNOS exists
unbound in the cytosol of mdx mouse (genetically homologous
murine model of DMD) skeletal muscle and subsequently becomes
a substrate for the calpain proteases, a 25-fold decrease in nNOS
activity [59–61] and content is observed [62–65]. In the skeletal
muscle of DMD patients, nNOS is absent in the pellet fraction of
biopsy samples (confirmed by both enzyme assay and Western
blot) [58,59]. Additionally, nNOS mRNA in both human DMD [66]
and mdx [59,67] skeletal muscle is reduced, and as a consequence,
endogenous NO production is significantly decreased [68–70].
nNOS-generated NO appears to play a key role in facilitating glu-
cose uptake by stimulating glucose transporter 4 (GLUT4) translo-
cation at rest [71] and during contraction [72]. Despite the
reduction of nNOS in mdx skeletal muscle, basal (resting) glucose
uptake has been shown to be equivalent to control muscle
[21,73,74] with GLUT4 expression also normal in young animals
[75,76]. However, GLUT4 expression (and its mRNA) decreases in
the diaphragm of oldermdxmice [75], which is important clinically
as the diaphragm is the only mdx muscle to undergo progressive
degenerative wasting throughout the lifespan as per the human
disease [77]. Decreased mRNA expression in the older mdx mice
suggests that disease progression may affect protein expression
of GLUT4 and therefore the ability to bring glucose into muscle
fibres sufficient to maintain energy production. nNOS also exerts
strong regulatory capacity over the key rate-limiting glycolytic
enzyme, phosphofructokinase (PFK) in a non-NO-mediated man-
ner [78]. In both DMD andmdxmuscle samples, reduced PFK activ-
ity is observed [18–20,78,79] and this seems ostensibly linked to
the significant down-regulation of both glycogen and glucose
metabolism in dystrophin-deficient muscle (summarised in
Table 1) [56,80]. In healthy muscle, PFK co-localises at the sar-
colemma alongside nNOS and is inhibited by high concentrations
of ATP and activated by ADP and other by-products of ATP hydrol-
ysis (as reviewed in [81]). As ATP concentration is diminished in
dystrophic muscle, PFK activity should, logically, be increased to
promote ATP synthesis and energy balance. However, altered allos-
teric regulation of PFK has been observed in mdx muscle [78] sug-
gesting that PFK fails to respond appropriately to normal stimuli.
Despite the soluble and cytoskeleton-bound PFK enzymes being
distributed normally, the sensitivity of PFK to its allosteric regula-
tors is reduced [79]. This indicates a functional change in PFK prop-
erties and/or its modulation, which significantly reduces its
activity and likely contributes to the overall metabolic deficit in
dystrophic muscle. Reintroduction of nNOS into mdx skeletal mus-
cle has shown some benefit in improving glucose and glycogen
metabolism (in addition to reducing membrane degradation and
muscle inflammation) [78,82], such to improve exercise tolerance
which was attributed to the positive allosteric effect nNOS exhib-
ited on PFK [78].

While the secondary loss of nNOS abundance and function
goes toward accounting for the widespread depression of
glycolytic and glycogenolytic function observed in dystrophin-
deficient muscle, its effect on downstream oxidative ATP produc-
tion is unclear and yet to be characterised. While glycolytic
perturbations would plausibly induce secondary reductions in
mitochondrial metabolism as a direct result of reduced pyruvate
flux through the system, the subsequent activation of stress-
responsive metabotropic transcription factors should theoretically
activate fat oxidation and stimulate mitochondrial biogenesis to
restore ATP production as a compensatory mechanism. This
would alleviate pressure on the creatine phosphagen and purine
nucleotide salvage pathways. However, as summarized in Table 1,
this is not the case in dystrophin-deficient muscle, and as such,
all signs seemingly point toward the mitochondria as the key site
of metabolic anomaly.

All signs point to the mitochondria
The fundamental role of the mitochondria is ATP synthesis, thus

they are the major cellular regulators of energy homeostasis. More
recently mitochondria have emerged as playing an important role
in the regulation of initiating apoptotic cell death. Mitochondria
are adept at sensing and responding to intracellular changes in
energy balance to maintain homeostasis, but once the metabolic
insult exceeds regulatory capacity, mitochondrial dysfunction
ensues. Prolonged mitochondrial stress can initiate apoptosis when
dissipation of the mitochondrial membrane potential, release of
cytochrome c and/or caspases and opening of the mitochondrial
transition pore occurs (as reviewed in [83]).

Functional abnormalities in dystrophic mitochondria. Mitochondrial
dysfunction in dystrophic skeletal muscle is well documented
and a key contributor to the reductions (up to 50%) in resting
ATP content [27–32,79,84–89], with decreased ATP content in
the brain of DMD patients also evident [39]. Impaired handling
of substrates including pyruvate [21,25–27,33,90–95], malate
[25–27,91–93] and glutamate [26,27,94] (with glutamate content
increased in mdx diaphragm [96]) have been consistently reported
to produce lower oxidation rates compared to healthy controls,
even in combination with other substrates. Addition of succinate,
on the other hand, has been shown to either restore
[21,25,97,98] or at least partially restore oxidation rates to control
levels [26,27,91,92]. This is a widely reported feature of
dystrophin-deficient muscle metabolism and as published by us
recently, indicates that the metabolic deficit may be located at
complex I of the ETC [27]. Alternatively, as it appears that some
enzymes of the TCA function abnormally – including succinic
CoA synthetase, aconitase, malate dehydrogenase and IDH
[99–103] – which would result in decreased production of reduc-
ing equivalents at the TCA level, the ability of succinate to restore
oxidative phosphorylation may lie in its ability to bypass a defec-
tive TCA system and stimulate complex II of the ETC directly.

Various enzymes of the TCA cycle (in addition to complex V of the
ETC) are regulated by increases in intramitochondrial [Ca2+].
Pyruvate dehydrogenase (PDH) (indirectly activated by
Ca2+-activated phosphatase), a-ketoglutarate dehydrogenase and
IDH (at higher concentrations) are all allosterically activated as
mitochondrial matrix [Ca2+] rises (as reviewed in [104]). This nor-
mally results in the anaplerotic expansion of TCA-generated reduc-
ing equivalents and a greater chemiosmotic drive for, and faster
speed of, ATP production at complex V. These enzymes should theo-
retically be stimulated in dystrophic muscle (as free intracellular Ca2+

is considerably higher at rest and during contraction [105–109]) to
increase Ca2+ buffering and remove the pathological stimulus.
However, normal stimulation of these enzymes by increased [Ca2+]
appears to be absent in dystrophic muscle as evidenced by decreased
IDH activity [100]. If IDH fails to activate in response to the extremely
high [Ca2+] observed in DMD, it may be that other Ca2+-sensitive
enzymes are not responding appropriately either. The consequence
of this is insufficient ATP production and Ca2+ buffering capacity
leading to amplification of the pathological stimulus (i.e. [Ca2+]).
As it has been recently demonstrated thatmdxmitochondria hyper-
sensitively respond to a Ca2+ load to prematurely open the perme-
ability transition pore (channel that initiates mitochondrial death)
[110], we suggest that the inability of dystrophic mitochondria to
respond to an overwhelming Ca2+ stimulus by ramping up ATP pro-
duction, favours premature induction of pro-apoptotic pathways
such that cell death is the only viable outcome (Fig. 2).

Reduced oxidation rates of the substrates that channel through
the TCA cycle appears to culminate at the ETC. In saponin-skinned



Fig. 2. Challenging the accepted paradigm of DMD aetiology: the potential for metabolic therapy to anaplerotically ‘‘correct” dystrophin-deficiency-mediated pathology. In
the accepted aetiology of DMD (blue box), the pathophysiology (purple box) and clinical outcomes (orange box) are the result of dystrophin- and DAP-complex-deficiency-
mediated Ca2+ influx and homeostatis deregulation. Mitochondrial dysfunction is a secondary consequence of cellular Ca2+ overload. In our hypothesised aetiology of DMD
(green box), inherent mitochondrial dysfunction is the precursor to dystrophic pathophysiology and not a secondary consequence of dystrophin-deficiency as currently
accepted. Inherent mitochondrial dysfunction would limit the ATP production required to buffer Ca2+ frommyofibres and organelles and maintain regenerative capacity, thus
driving the clinical phenotype. The application of metabolic therapy (MT) (green circles) would target the impaired Ca2+ homeostasis, increased mitochondrial Ca2+ load and
mitochondrial dysfunction to effectively buffer the Ca2+ influx induced by dystrophin/DAP-deficiency and prevent the subsequent pathophysiology. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)
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mdx skeletal muscle fibres, the maximal rate of respiration, as
stimulated by the addition of ADP, was nearly 50% lower regardless
of the substrate used [26]. Similarly, isolated dystrophic mitochon-
dria function at �60% of maximal respiration control rates [26,88],
while a biopsy from a DMD patient revealed similar respiratory
deficits [26]. Additionally, reduced ADP-stimulated
[91–93,97,111,112] and basal respiration has been reported
[33,111–114], with further reductions observed as the disease pro-
gresses [94]. The ability of mitochondria to aptly respond to the
increased [Ca2+] and requirements of dystrophic muscle appears
to be further impaired as the spare respiratory reserve, which indi-
cates the ability for the ETC to increase ATP production in response
to metabolic challenge, is reduced by �60% [111]. Such a deficit
can be accounted for by reduced activities of the ETC enzymes. In
mdx fibres of the quadriceps, the activities of rotenone-sensitive
NADH:cytochrome c reductase, succinate:cytochrome c reductase
and cytochrome c oxidase were found to be 50% of that in normal
fibres [26], with a 20–35% reduction in the activities of complexes
I, II and IV in mdx fibres of the tibialis anterior. Moreover, in both
the fast-twitch extensor digitorum longus and slow-twitch soleus
of the mdx mouse, NADH activity is reduced [115], with mdx myo-
blasts expressing a decreased complex III and V content [33]. There
is also a significant decrease in the expression of genes encoding
the subunits of complexes I, II, III and IV in DMD muscle [99]. Ulti-
mately, the maximal ATP synthesis rate is reduced by up to 75% in
mitochondria isolated from dystrophic skeletal muscle [27,88].
Similar respiratory dysfunction is observed in the brain of the
mdx mouse. Decreased activity of complexes I and IV is observed
throughout various sections of the brain [42] indicating that
despite not being strongly involved in the pathological progression
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of the disease, the brain still manifests similar metabolic deficits as
per the skeletal musculature.

In addition to the content and activity of isolated complexes of
the mitochondrial respiratory chain, functional measures of mito-
chondrial performance are challenged in dystrophin-deficient
skeletal muscle. Dystrophic mitochondria exhibit reduced respira-
tory control, ADP/oxygen (O) and P/O ratios [25,88,90,92,94,97,98
,113,116], all of which indicate that dystrophic mitochondria are
not as tightly coupled as healthy mitochondria, thus reducing the
phosphorylation potential [117] as evidenced by the 40% reduction
in ATP produced per O2 molecule consumed [88]. Uncoupling
refers to any process that impacts upon the P/O ratio and subse-
quently depletes the potential energy. This includes loss of protons
due to inefficient proton pumping by the ETC complexes, leak of
electrons from the respiratory chain and activity of uncoupling
proteins – all of which dissipate the mitochondrial membrane
potential. While uncoupling is thought to provide protective
effects as it can buffer reactive oxygen species (ROS) produced by
electron leak from the respiratory chain, prolonged uncoupling
can lead to severe mitochondrial impairment and death [118].

The NAD/NADH ratio is an important regulator of metabolism
[119]. NAD is a cofactor at multiple sites of the TCA cycle and in
glycolysis, where it is reduced to NADH and oxidised at complexes
I, III and IV of the ETC. This generates the mitochondrial membrane
potential which is the driving force for ATP production. Therefore,
maintaining the NAD/NADH ratio is imperative, albeit seemingly
difficult in dystrophic muscle due to the decreased total intramito-
chondrial NAD pool [91]. Moreover, as the NADH produced at the
glycolytic level is dependent upon the malate-aspartate and
glycerol-3-phosphate shuttles to enter the mitochondria, and these
rely on glutamate oxidation (which is notably decreased in
dystrophic muscle [26,27,94]), glycolysis-generated NADH may
be largely prevented from contributing to respiration. Together,
this indicates that the NAD/NADH ratio is unable to suitably mod-
ulate metabolic function due to other confounding factors that
impair the maintenance of the NAD and NADH pool at the mito-
chondrial level.

Structural abnormalities in dystrophic mitochondria. Proper mito-
chondrial structure and locale is also important to function and
is compromised in dystrophin-deficient states. Mitochondria exist
in two distinct pools – located beneath the sarcolemma (subsar-
colemmal) and at the I band and intermyofibrillar space of the
contractile apparatus (intermyofibrillar) [120]. Subsarcolemmal
mitochondria account for 10–15% of the mitochondrial pool and
supply ATP for Ca2+ handling, ion transport, membrane function
and the peripheral nuclei, while also assisting with glucose home-
ostasis and lipid utilisation [120]. In contrast, intermyofibrillar
mitochondria constitute up to 90% of the mitochondrial pool and
provide ATP for contraction. Intermyofibrillar mitochondria differ
from subsarcolemmal mitochondria in that they maintain a higher
respiratory rate via increased mitochondrial enzyme activity [120].
Despite their differences, both pools of mitochondria share a net-
working system that allows them to translocate to areas of
increased metabolic demand. Thus, mitochondria are extremely
responsive to changes in isolated regions of the intracellular
environment.

In mdx skeletal muscle, a decrease in mitochondrial mass has
been reported [114,115]. This is partnered with a decrease in the
density of subsarcolemmal mitochondria and the accrual of
intermyofibrillar mitochondria around necrotic and regenerating
fibres with no change in overall mitochondrial number [88]. This
suggests that either the subsarcolemmal mitochondria are translo-
cating to support the intermyofibrillar mitochondrial pool or
require the presence of dystrophin for scaffolding to remain at
their proper location. Decreased density would be detrimental as
the subsarcolemmal mitochondria play a role in Ca2+ handling
and lipid metabolism, which may partially explain the inability
to appropriately handle the stress applied by Ca2+ and the deficits
observed in b-oxidation. Moreover, in human DMD biopsies, an
increased population of dense and dilated mitochondria have been
observed [121–123] along with changes in cristae shape and den-
sity [49]. Swollen mitochondria are also evident in mdx mouse
skeletal muscle [110,124,125] along with morphologically abnor-
mal cristae structure [110]. While morphological changes of the
mitochondria are generally characteristic of fibres undergoing
degeneration and necrosis, it appears this swollen morphology
may exist outside of an environment conducive to swelling [27].
Isolated mdx mitochondria bathed in a Ca2+-free environment are
more swollen than mitochondria isolated from healthy animals
[27]. While this could be a residual effect of an extreme
pre-isolation in vivo Ca2+ environment, it may also be an inherent
feature of the disease as alterations in mitochondrial architecture,
morphology and localisation are apparent in female DMD carriers
that express dystrophin and do not manifest dystrophinopathy
[126]. If so, this inherent swollen morphology would affect mito-
chondrial functionality, as changes in cristae shape have recently
been shown to alter ETC supercomplex assembly [127] which
would deleteriously impact upon their function. Together, this
decrease in mitochondrial mass and inherent swollen morphology
strongly suggest that metabolic impairments in DMD are an inher-
ent feature of the genotype, and this is exacerbated – but not
caused by – the persistent elevation of Ca2+.

Dystrophic muscle does not respond normally to master energy signals
In healthy skeletal muscle, ATP depletion induced by metabolic,

nutritional and/or environmental stressors (including intense exer-
cise and hypoglycaemia) stimulates ATP-producing pathways to
restore energy homeostasis [128]. One important regulator of this
switch from ATP-consuming (anabolic) to ATP-producing
(catabolic) pathways is adenosine monophosphate-activated pro-
tein kinase (AMPK), a major sensor of cellular energy status.
Induced by rises in the AMP/ATP ratio, AMPK stimulates glucose
uptake, glycolysis, fatty acid oxidation [128,129] and various TCA
cycle and ETC enzymes [130], while also modulating expression
of a suite of genes – including PGC-1a – that increase mitochon-
drial biogenesis. Thus, AMPK activation favours the oxidative fibre
phenotype, which is highly beneficial for dystrophic muscle as this
fibre type is less affected by the disease [131] and therefore may
offer protection from damage. In addition, AMPK appears to play
a significant role in muscle remodelling as it stimulates autophagy.
Autophagy is a catabolic pathway that breaks down cellular com-
ponents when they are in excess or damaged, or, to provide fuel
sources in times of metabolic challenge [132]. Therefore, AMPK is
a positive stimulator of metabolism, controlling the supply of fuel
to various metabolic pathways and initiating remodelling to
improve muscle structure and function. Considering that AMPK
positively modulates metabolism, stimulates targeted remodelling
of muscle to improve oxidative capacity and is activated by ATP
depletion, AMPK activation should, theoretically, be enhanced in
dystrophic skeletal muscle. Indeed, Pauly et al. [110] demonstrate
a higher basal AMPK activation in mdx diaphragm, highlighting
that metabolic stress-induced signalling pathways are
appropriately activated in dystrophic muscle. When the
AMPK-activator metabolite 50-aminoimidazole-4-carboxamide-1-
b-D-ribofuranoside (AICAR) was given to mdx myotubes in vitro
and to 6 week old mdx mice via daily intraperitoneal injection,
AMPK activation was further enhanced compared to untreated
conditions. In themdxmice in particular, AICAR treatment had sev-
eral beneficial effects including increased activation of autophagic
signalling proteins, maximal force production and time to perme-
ability transition pore opening in response to Ca2+ challenge
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[110]. Most noteworthy however, was that despite AICAR inducing
a �50% increase in activated AMPK, only minimal increases were
observed in acetyl CoA carboxylase phosphorylation (the down-
stream target of AMPK activity) and this failed to induce any
changes in oxidative metabolism including activity of citrate syn-
thase, cytochrome oxidase and mitochondrial O2 consumption.
This data importantly highlights that while dystrophin-deficient
muscle can ably detect metabolic stress, the downstream response
of the metabolic systems to AMPK phosphorylation fails to
improve ATP synthesis to abate this stress.

The plasticity of the skeletal musculature in response to isolated
and chronic exposure to metabolic stress is afforded via the induc-
tion of a slow-type oxidative phenotype. In a study that compared
global gene expression responses between skeletal muscle from
metabolically-challenged endurance-trained individuals who had
been previously sedentary, and DMD patients, �90 genes were
shown to be modulated identically [56]. This data highlights that
strong metabolic challenge is a feature of dystrophinopathy and
that it invokes similar responses as per chronic endurance exercise.
However, while the expression of genes regulating oxidative phos-
phorylation was increased following endurance training as
expected, they were differentially down regulated in muscle from
DMD patients [56]. These included genes of carbohydrate, glycogen
and mitochondrial metabolism [56]. Thus, while DMD muscle
adapts on a genetic level to metabolic stress as per endurance
trained athletes, this stress seems not to induce the regular adap-
tations at the mitochondrial level to enhance the ATP production
capacity of the skeletal musculature. It has been well established
in the literature that inducing type I oxidative fibre type transfor-
mations pharmacologically and genetically affords therapeutic
value to dystrophin-deficient skeletal muscle by reducing the rate
of disease progression [133–136], as type II fibres are preferentially
affected [131,137], which can be promoted by the activation of
AMPK [115,132,138–140] and its downstream targets
[114,141–143]. However, it has recently been suggested that the
beneficial effects of a slow type I phenotype is functionally related
to enhanced utrophin A expression – in dystrophin/utrophin dou-
ble knock-out mice AICAR administration afforded no benefit – in
comparison, therapeutic benefit was observed in mdx mice [140].
Thus whether AMPK activation can suitably induce benefits at
the mitochondrial level to buffer metabolic demand remains
unclear.

Another important role of AMPK is regulation of the targeted
removal of dysfunctional organelles/structures via autophagy. It
has been observed thatmdx diaphragm is laden with dysfunctional
mitochondria characterised by morphological abnormalities and
an increased propensity to open the permeability transition pore
[110]. The removal of dysfunctional mitochondria is strongly regu-
lated in healthy skeletal muscle [144], albeit background mitopha-
gic activity is typically low due to the relatively low ratio of
unhealthy/healthy mitochondria. However, in dystrophic skeletal
muscle, there is reduced propensity for sufficient and/or functional
mitophagy leading to the accumulation of defective mitochondria,
particularly in the subsarcolemmal pool [145]. Ineffective autopha-
gic signalling induction has been demonstrated in mdx [145] and
human DMD [110,145] skeletal muscle with AMPK activation
seemingly central to the problem. Both AICAR- [110] and low pro-
tein diet-induced AMPK activation demonstrably increases the
activity of pro-autophagic pathways and ameliorates the dys-
trophic condition [110], indicating that improving the clearance
of dysfunctional mitochondria is beneficial. Thus while Pauly
et al. [110] have demonstrated enhanced endogenous AMPK sig-
nalling in dystrophin-deficient skeletal muscle, it appears insuffi-
cient to match the extent of mitochondrial pathology evident in
DMD without therapeutic support.
Revisiting the dystrophin-ATP connection: is a mitochondrial disease
at the heart of DMD?

Several hypothetical review and original research papers have
both historically and more recently proposed that the lack of dys-
trophin protein may not be the primary cause of the progressive
and fatal degeneration observed in DMD, but rather a
co-morbidity [33,43,146,147]. We have described a plethora of
mitochondrial defects (in addition to many others of substrate fee-
der pathways that are allosterically regulated by the functional
capacity of the mitochondria) that are also commonly observed
in mitochondrial diseases and in senescence. Indeed, DMD shares
common metabolic and mitopathological features with various
mitochondrial diseases and with aged skeletal muscle, including
often comparable symptomology. In addition a more recent study
has shown that mitochondrial dysfunction exists in ‘‘pre”
dystrophin-deficient myoblasts prior to the ‘‘typical” cascade of
events that are commonly believed to cause the progressive mus-
cle degeneration and wasting evident in DMD [33]. Collectively,
this literature importantly suggests a mitochondrial aetiology of
DMD.

Because skeletal muscle accounts for �40–50% of body weight
and �30% of oxygen consumption at rest, it is an important
regulator of overall metabolism. As such, mitochondrial deficits
manifest vastly in the skeletal musculature and myopathy is thus
characteristic of many mitochondrial diseases. Mitochondrial dis-
ease can arise from mutations in the maternally inherited mito-
chondrial DNA (mtDNA), and less commonly in the nuclear DNA.
mtDNA resides in the matrix and encodes for the hydrogen pump-
ing regions of the respiratory chain complexes, highlighting its
integral role in the regulation of metabolism [148]. However due
to its proximity to the respiratory chain, mtDNA is extremely
vulnerable to mutation, most commonly by ROS produced by the
respiratory complexes [149,150]. Initially, this has minimal effect
on mitochondrial function, until the number of mutant mtDNA
outnumbers wild-type mtDNA. As mutant mtDNA accumulates,
the bioenergetical capacity of the cell diminishes. Various diseases
result from mtDNA mutations and manifest themselves as multi-
systemic diseases. These mitochondrial diseases share common
features with DMD including mental impairment, skeletal muscle
weakness, cardiomyopathy and multisystem metabolic dysfunc-
tion [148,151]. Reduced activities of complex I, III, IV and V of
the ETC, increased ROS production and decreased ATP synthesis
are common nuances of mitochondrial diseases and DMD [151].
The fact that dystrophin is encoded and expressed normally in
these diseases, but that they share clinical features with dys-
trophinopathy indicates the potential for a common disease origin
that is not linked to dystrophin-deficiency.

As the majority of ETC complexes (excluding complex II) are
partially encoded by mtDNA and reports exist that describe mito-
chondrial dysfunction in DMD carriers that express dystrophin
normally, maternal mtDNA inheritance would be a likely theoreti-
cal origin of such a mitochondrial mutation. Female carriers of the
dystrophin gene mutation on one of their X chromosomes com-
monly express normal levels of dystrophin (albeit sporadic
dystrophin-deficient fibres have been reported [152]). As such,
they do not manifest DMD. However, despite lacking phenotypic
pathology, deficits in mitochondrial responses to exercise have
been reported. Carriers are unable to perform muscle work at the
same level as controls and their Pi/PCr ratio is higher for corre-
sponding work levels [153,154]. This supports an inability of the
mitochondria to sufficiently replenish the Cr/PCr system during
activity. Post-exercise recovery of the PCr/inorganic phosphate
(Pi) ratio is also much slower in carriers [153], demonstrating that
mitochondrial insufficiency is also apparent at rest. Additionally,
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sharp increases in serum CK activity are observed following exer-
cise in carriers but are absent in healthy exercised individuals
[155,156]. Notably, the co-occurrence of a mtDNA mutation in a
family with extensive history of DMD has also been observed
[157], which adds further credence to the ideation of mtDNAmuta-
tion underscoring DMD pathology.

If not inherited, another likely origin of mtDNA mutation is via
the rapidly progressive accumulation of ROS-induced mutations
that are not too dissimilar to those that underscore senescence
as described in the popular mtDNA accumulation theory of aging
(reviewed in [158]). Aging muscle shares many symptomatic char-
acteristics of dystrophic muscle including fatigability, muscular
weakness and atrophy, and mitochondrial dysfunction. In aging
muscle, it appears that accumulation of mutant mtDNA leads to
mitochondria characterised by decreased oxidative capacity,
increased oxidative stress and decreased ATP synthesis [148,159]
which impairs muscular function and viability. Of note, a charac-
teristic feature of senescent mitochondria is a reduction in spare
respiratory capacity [160] which renders mitochondria unable to
adapt to increased energy demand, thus promoting fatigue, exer-
cise intolerance and progressive muscle wasting (sarcopenia)
which are all clinical features of DMD. Indeed, both aged and dys-
trophic muscles display deregulation of the same genes involved in
metabolism [161] which highlights once more the possibility of
mtDNA mutation involvement in DMD.

Perhaps one of the more compelling pieces of evidence that
mitochondrial dysfunction is an inherent feature of DMD is a
recent finding by Onopiuk and colleagues [33]. Using myoblasts
from control and mdx mice, it was observed that mdx myoblasts
exhibit changes to several mitochondrial functional parameters
including decreased basal oxygen consumption, increased mito-
chondrial membrane potential and ROS production (�70% higher)
and decreased complex III and V content [33]. Remarkably, these
metabolic changes are observed at a time when dystrophin is yet
to be expressed in myoblasts [162]. In both control and mdx myo-
blasts, dystrophin expression was negligible, despite an mRNA
transcript evident in control myoblasts [33]. Myoblasts express a
different metabolic phenotype to myotubes including a greater
dependence on glycolysis [62]. Lactate production via glycolysis
pacifies �60% of energy demand (due to its conversion to pyruvate
via LDH) [62] and mdx myoblasts demonstrably produce more lac-
tate [33] indicating heavy reliance on glycolytic flux. This appears
to be pertinent to mdx myoblasts as the basal rate of respiration
following the addition of glucose and pyruvate was depressed
compared to controls [33], suggesting that further oxidation of
intermediates in the mitochondria is impaired. The authors con-
cluded that the metabolic dysfunction in mdx myoblasts is inde-
pendent of dystrophin-deficiency as deficits were observed in
mdx myoblasts prior to the time of dystrophin expression.

There are now also several case studies in the literature docu-
menting either dual mtDNA and nuclear dystrophin gene muta-
tions in family pedigrees [157] or dystrophin gene abnormalities
with pseudometabolic presentation but dystrophin protein expres-
sion [163,164]. A case study by Wong and colleagues [157]
describes the presentation of an adolescent male with a strong
family history of DMD but who does not express the genotype him-
self, with complicated seizure disorder, congenital heart disease
and developmental delay. Suspected mitochondrial respiratory
chain disorder was confirmed in which low levels of heteroplasmic
A3243G mutation was detected in the mtDNA. The diagnosis of
MELAS disorder was made following respiratory enzyme analysis
that revealed significantly elevated complex IV activity without
gross mitochondrial cytopathy (albeit some mitochondria
displayed altered cristae structure and were morphometrically
abnormal). The patient carried low mutant loads in all tissues anal-
ysed – 6%, 8%, 12%, 17% and 9% for blood, hair follicle, buccal
mucosa, skeletal muscle and skin fibroblast cultures, respectively.
The mutation appeared to have occurred de novo as it was not
detected in the maternal mtDNA from blood, hair follicle or buccal
mucosa cells, albeit this could not be confirmed given the relatively
low mutant load found in the patient. Similar cases of mtDNA
mutation in the background of other, more severe nuclear gene
mutations (such as cystic fibrosis and spinal muscular atrophy)
have been reported by the same group [165,166] highlighting the
propensity for dual mitochondrial and nuclear gene mutations –
perhaps as a result of modifier gene induction – that are difficult
to diagnose due to broad and often competing symptomologies.

The pseudometabolic presentation of DMD due to missense
mutations in the dystrophin gene has also been documented.
Romero and colleagues [163] report three male adolescents pre-
senting with exercise-induced myalgia, muscle stiffness, and myo-
globinuria following strenuous exercise – all symptoms of
metabolic diseases including glycogen storage disorder, fatty acid
oxidation disorder and mitochondrial cytopathy. All patients were
found to have a hemizygous T-to-C mutation in exon 15 of the
DMD gene resulting in an amino acid substitution of leucine to pro-
line at codon 575. Immunohistochemcial staining of dystrophin
and other proteins of the DPC was normal as was western blot
analysis for dystrophin quantity and size. A further two reports
of the same missense mutation inducing recurrent rhabdomyolysis
has been reported [167]. These case studies highlight symptoms
characteristic of metabolic disease that are seemingly induced by
dystrophin gene point mutations but which are not phenotypically
associated with dystrophin protein expression abnormalities.

Most recently, several studies by the same group have docu-
mented the clinical history of canine models of muscular dystro-
phy [168–170] and dystrophin-deficient human DMD patients
[171] that express a mild disease phenotype and in some instances,
a normal lifespan, despite the absence of dystrophin. Zucconi et al.
[168] and Zatz et al. [169] describe the clinical history of a golden
retriever muscular dystrophy dog and its offspring, who display
absent dystrophin production, unremarkable utrophin regulation,
hallmark histopathological features of skeletal musculature and
extreme elevations in serum CK levels as per phenotypically nor-
mal severely-affected dogs, but are seemingly able to buffer this
to maintain muscle mass, ambulation and a normal life span. A
similar canine colony has been reported in the Labrador retriever
muscular dystrophy model [170] which also displays the absence
of dystrophin – albeit the precise mutation on the dystrophin gene
was not elucidated in this study – and are asymptomatic. This pro-
tection seems related to the maintenance of strong regenerative
potential throughout the lifespan, albeit the precise mechanism
through which muscle function is maintained despite the absence
of dystrophin requires further investigation and characterisation.
Finally, in human DMD patients, Zatz et al. [171] have reported
half-brothers with comparable, minimal (near absent) levels of
dystrophin expression, elevated serum CK levels and pathological
histological parameters, but who express widely variable pheno-
typic progression of DMD. While one brother has progressed
through a normal disease course with onset of symptoms at
3 years, diagnosis at 7 years and loss of ambulation at 9 years,
the older brother shows mild signs of muscle weakness and phys-
ical dysfunction with mild calf hypertrophy, but maintains normal
ambulatory capacity at 16 years of age. The same paper describes a
third case of an unrelated male 16 year old adolescent who dis-
played normal phenotypic DMD at age 7 years when diagnosis
was made, but whom now displays only mild weakness and calf
hypertrophy and is fully ambulatory. Other isolated case studies
exist documenting the complete absence of dystrophin expression
but a mild DMD phenotype [172,173]. While modifier gene regula-
tion likely accounts for such phenotypic differences, it is possible
that in these rare cases of DMD, mitochondrial dysfunction is
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spared or anomalies are corrected such that ATP demand is met to
overcome the pathophysiological insult induced by dystrophin-
deficiency – indeed, metabolism and cellular redox status are
highly regulated by transcriptional modification and the induction
of nuclear factors. At the very least, these cases highlight that the
loss of dystrophin expression is not the sole contributor to the
pathological deterioration of skeletal muscle in DMD, and while
indeed promoting sarcolemmal leakiness and significant damage,
dystrophin-deficiency can be effectively buffered by adaptive
mechanisms in some instances.
Treating DMD as a metabolic disease

Bonsett & Rudman’s seminal study illustrating the critical role
of ATP depletion in dystrophinopathy and the vast potential for
anaplerotic correction [43] was to be one of several papers docu-
menting the beneficial effects of targeted metabolic therapy on
the pathophysiological and clinical course of DMD. ASA is a pro-
duct/reactant of the purine nucleotide cycle that has the dual func-
tion of producing fumarate to stimulate the TCA cycle and ADP
resynthesis via purine nucleotide salvage pathway reactions, to
ultimately increase mitochondrial ATP production and reduce the
loss of purines from the muscle (into the blood stream) as xanthine
and hypoxanthine. Comprising a 10 year clinical trial, ASA treat-
ment induced vast improvements in Cr retention within, and histo-
logical features and the regenerative capacity of, dystrophic
muscle, which was accompanied by improved energy levels, sta-
mina and strength [43]. In cultured DMD cells, the addition of
ASA was effective at removing the overwhelming presence of
intracellular lipid droplets [24], thus apparently rectifying the
metabolic dysfunction either at the allosteric or metabotropic tran-
scriptional level. Notably, cessation of ASA therapy diminished the
positive benefits observed during treatment of DMD patients [43],
highlighting that ongoing support of the mitochondria is pivotal to
mitigating disease progression. Similar clinically beneficial effects
have been observed for allopurinol [30,86,174–177] – which inhi-
bits xanthine oxidase activity via its active metabolite oxypurinol,
and therefore seems to reduce the flux of xanthine from skeletal
muscle during metabolic stress – and Cr [178–181] – which
increases the total PCr pool and therefore the phosphorylation
potential of skeletal muscle. Notably for allopurinol, the age at
which supplementation begins is crucial for induction of beneficial
effects, and as with ASA, clinical improvements diminish upon
caessation of therapy [176]. These studies importantly highlight
the potential for the clinical use of metabolic therapies and the
necessity for further investigation into the ways in which such
therapies can be enhanced to improve the phenotypic progression
of DMD and the quality of life of patients.
Conclusions

Although the collective literature over the past 50 years has
carefully documented the plethora of metabolic abnormalities con-
sistently observed in DMD patients, genetic carriers and genotypi-
cally identical animal models of the disease, the significance of this
data has been largely ignored. As a cure for DMD remains currently
elusive, every effort must be made to consider all possibilities for
improved characterisation and treatment of the disease. We
hypothesise an aetiological nuance at the mitochondrial level that
manifests in multiple deficiencies of various metabolic pathways
to culminate in severe ATP insufficiency and clinical manifestation
of the disease. Of course, it cannot be denied that changes induced
by dystrophin-deficiency, including disruption of the DPC and
failed Ca2+ homeostasis, play a role in the severe and progressive
muscle wasting characteristic of DMD. However, if mitochondrial
defects do underlie DMD aetiology, then re-defining DMD as a
metabolic myopathy and strategically targeting research funding,
and treating it clinically as such, could improve patient outcomes
and enhance quality of life.
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