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Multi-Input Multi-Output Active Magnetic Bearing

Systems
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Peng Shi, Fellow, IEEE, and Akhtar Kalam, Senior Member, IEEE

Abstract—This paper studies the system identification and
robust control of a multi-input multi-output (MIMO) active
magnetic bearing (AMB) system. The AMB system under study
is open-loop unstable, and the presence of right-half plane zeros
and the rotor flexible modes bring additional degrees of difficulty
to the control design of such a system. Firstly, a closed-loop
system identification is performed by using frequency-domain
response data of the system. Genetic Algorithm-based Weighted
Least Squares method is employed to obtain the best frequency-
weighted model of the system. As the cross-coupling channels
have negligible gains in the low-frequency region, it is assumed
that the system can be diagonalized. This allows the analysis of
the system as a family of low-order single-input single-output
(SISO) subsystems. On the other hand, the effects caused by the
coupling channels become more significant at higher frequencies.
Therefore, a similar method is used to obtain a high-order MIMO
model of the system by including the cross-coupling effects.
Next, SISO H∞ controllers and lead-lag type compensators are
designed on the basis of the SISO models of the systems. To
strive for a better performance, MIMO H2 and H∞ optimal
controllers are synthesized on the basis of the MIMO model
of the system. Extensive experimental studies are conducted on
the performance of the designed SISO and MIMO controllers in
real-time by taking into consideration both constant disturbances
while the rotor is stationary, as well as sinusoidal disturbances
caused by the centrifugal forces and the rotor mass-imbalance
while the rotor is in rotation. Unlike the recently published works,
it is shown that the accurate modeling of the system being
controlled is the key to successful design of high-performance
stable controllers that not only guarantee the internal stability
of the system-controller interconnection, but also no further
modifications are required before the real-time implementation
of the designed controllers.

Index Terms—Active Magnetic Bearing Systems, Frequency-
domain System Identification, Genetic Algorithm, Robust Con-
trol, H2 Control, H∞ Control

I. INTRODUCTION

In recent years, active magnetic bearing systems (AMBs)
have attracted the attention of researchers as suitable replace-
ments for conventional mechanical and hydrostatic bearings.
AMBs can provide contactless suspension of the rotor by
attractive forces produced by electromagnets. AMBs have
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numerous advantages over their mechanical and hydrostatic
counterparts. The primary advantage of AMBs is their ex-
tremely low frictional properties that allow efficient operations
at high speeds [1]. AMBs can be utilized in many industrial
applications where fast and precise operations are desired, such
as linear induction motors, turbo-molecular vacuum pumps,
artificial hearts, and gas-turbine engines [2]–[4]. In [5], a
novel motor with a magnetically levitated rotor is designed,
and its dynamic characteristics are simulated. The proposed
motor is shown to have successfully achieved five degrees-
of-freedom active control. The work in [6] studies the active
surge control of a centrifugal compressor, where thrust active
magnetic bearings (AMB) are employed. The results demon-
strate the potential application of AMB-based compressor
surge controllers. In [7], an AMB is applied as an actuator to
guarantee chatter-free cutting operations in high-speed milling
processes. A µ-synthesis approach is proposed for the robust
stabilization of the fast milling process while minimizing the
control efforts. Reference [8] investigates the application of
active radial magnetic bearings for agile satellite systems. As
a result, the control current and the associated power losses
are considerably reduced. With the growing interest in the
applications of fast and precise AMBs, there is a demand
for developing advanced controllers that ensure robust perfor-
mance of such systems in the presence of unmodeled dynamics
and unknown external disturbances [9]–[12]. Although several
works can be found on the analytical modeling and simulation
of robust controllers on AMBs [13]–[16], system identification
and real-time robust control of AMBs is a relatively recent
development [17]–[26]. However, the results presented in the
recent works have many shortcomings to consider this problem
as solved. This gives reasonable motivations to address the
current gaps between the theory and the challenges involved
in real-time application of robust controllers on AMB systems.
In the sequel, some of the shortcomings in the recent works
are discussed in more details.

The work in [18] reports a single-input single-output (SISO)
modeling and real-time implementation of H∞ controller of
an AMB system. An SISO controller is designed on the basis
of the second-order model of the electromagnets. While low-
bandwidth and hence low-performance controllers can always
be designed on the basis of a low-order model of the system
for stabilization purposes, the effects of the rotor resonant
(flexible) modes, dynamic mass-imbalance, and centrifugal
forces in high speeds could lead to system instability. In order
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to improve the performance of the system, it is necessary to
find an accurate model of the system that captures the high-
frequency dynamics precisely. The difficulties that may arise
when a high-order model is used to design a robust controller
can be seen in the recently published works. For instance,
the frequency-domain results presented in [19] clearly show
that the synthesized controllers fail to reject the effects caused
by the high-frequency resonant (flexible) modes of the rotor.
It is dangerous to implement such non-robust controllers on
the system, as it could lead to system instability. To alleviate
the problem, the work in [20] suggests to manually add
additional notch filters to the controllers to ensure that the
resonant modes of the rotor are not excited. However, this
may unnecessarily increase the order of the controllers. More
recently, the MIMO identification and H∞ control synthesis
of AMBs are investigated in [21], [22]. Firstly, a high-order
MIMO model of the system, including the cross-couplings
between all inputs and outputs is obtained from the frequency-
domain response data of the system. Next, the identified model
is used to synthesize the MIMO H∞ controllers. Interestingly,
all the synthesized controllers are found to be unstable and
impossible to implement on the actual system. The fact
that the synthesized unstable controllers fail to stabilize the
system implies that the identified model may not represent the
characteristics of the actual system being controlled. However,
the authors proceed to implement the unstable controllers by
first stabilizing the system using the low-performance stable
controllers that are synthesized on the basis of a low-order
model of the system, and gradually switching to the unstable
controllers (in a time-span of five seconds). The successful
switching between the controllers depends highly on the slow
transition between the stable and unstable controllers. It should
also be noted that the order of the MIMO H∞ controllers are
usually very high, and the presented Youla parameterization
of the switching controllers further increases the order of the
final controllers. This approach is not only impractical in the
industrial applications, but also it is challenging to implement
such excessively high-order controllers in real-time.

Synthesizing unstable H∞ controllers that are not imple-
mentable on the system directly is not a trivial issue, and
it may occur in the control synthesis of systems other than
AMBs. The authors in [21], [22] claim that synthesizing
unstable controllers is not a surprise, as the H∞ synthesis
algorithms tend to cancel the right-half plane (RHP) complex-
conjugate zeros in the model of AMBs with RHP poles
in the controller. To the best of our knowledge, there are
several examples that the synthesized controllers include RHP
poles, because the system model does not possess the parity
interlacing property (PIP) [27], [28]. It is important to note
that the PIP condition only applies to the poles and zeros
on the real axis. Therefore, regardless of the location of the
complex-conjugate poles and zeros in the model, as long
as the PIP conditions are satisfied (which is the case for
AMBs), there should exist stable controllers that guarantee the
internal stability of the plant-controller interconnection, and
no switching controllers are required. It is also emphasized in
[27] that unstable controllers should only be used in special
circumstances where stabilization with stable controllers is

infeasible, and should be avoided at all cost.
This paper investigates both SISO and MIMO modeling and

robust control of an AMB laboratory experimental system. It
is shown that the proper modeling of the system will result in
stable high-performance controllers that can be implemented
on the system directly and safely, without any additional
modification or switching between the controllers. It should
be further noted that the main aim of this paper is to obtain
linear (SISO and MIMO) models of the AMB system and
design high-performance linear (SISO and MIMO) controllers
on the basis of the identified models. This allows us to make
a fair comparison between the performance of the designed
SISO and MIMO linear controllers and the analog on-board
controllers. Moreover, the results can be compared with the
recent works on the robust control of AMB systems. If
nonlinear controllers were to be designed, nonlinear model of
the system could be obtained and this was beyond the scope of
this paper [29], [30]. The remaining of this paper is organized
as follows. In Section II, frequency response data of the system
are collected for the closed-loop system identification. The
SISO and MIMO models of the system are obtained by em-
ploying the proposed Genetic Algorithm-based Weighted Least
Squares (GA-WLS) algorithm. The advantage of obtaining
the SISO models is studied in Section III, where low-order
SISO H∞ optimal controllers and conventional lead-lag type
compensators can be designed on the basis of the identified
SISO models, and their performance can be compared with
the analog on-board controllers. In order to strive for a better
performance, MIMO H2 and H∞ optimal controllers are
designed on the basis of the identified MIMO model of the
system in Section IV. Comprehensive experimental studies are
conducted in Section V on the performance of the designed
SISO and MIMO controllers in real-time while the rotor is
stationary in the presence of constant disturbances, as well as
while the rotor is in rotation at several speeds.

II. AMB SYSTEM DESCRIPTION AND MODEL
IDENTIFICATION

The laboratory experimental AMB system is shown in Fig.
1. The system includes a rotor shaft, four pairs of horseshoe
electromagnets (two pairs at each end), an air turbine driven
by compressed air, four hall-effect sensors, four linear current-
amplifiers, and four analog on-board controllers. The rotor is
levitated with magnetic forces provided by the electromagnets,
and the rotational speed of the rotor shaft can reach up to
10000 rpm. The rotor shaft has four degrees of freedom
(4DOF) which are labeled as channels Y1 − Y4 in Fig. 1.
Channels Y1 and Y2 correspond to the horizontal and vertical
displacements of the rotor at one end. Whereas, channels Y3
and Y4 correspond to the horizontal and vertical displacements
of the rotor at the other end of the system, respectively. A
digital signal processing card (DS1104) [31] is used for the
data acquisition and real-time implementation of the control
algorithms.

AMBs are inherently open-loop unstable and hence closed-
loop system identification must be performed instead of more
common open-loop identification techniques [32], [33]. Fig. 2
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(a)

(b)

Fig. 1. Active magnetic bearing (AMB) system.

Fig. 2. Closed-loop system identification.

shows the block diagram of the setup that is used to collect
the required data for the system identification stage. The data
are taken while the rotor is stationary and stabilized with the
four analog on-board controllers under the assumption that no
disturbance is acting on the system.

A control-relevant system identification procedure on the
AMB system is described here. Assuming that the closed-
loop system is stable, and it is not subject to any external
disturbances, the relationship between the plant outputs Y =
[Y1, Y2, Y3, Y4]

T , the probing signals R = [R1, R2, R3, R4]
T ,

and the measurement noise N = [N1, N2, N3, N4]
T is given

in (1) (see Fig. 2).

Y (s) =
(
I +G(s)K(s)

)−1
G(s)R(s)

+
(
I +G(s)K(s)

)−1
G(s)K(s)N(s) (1)

Similarly, the relationship between the control signals U =
[U1, U2, U3, U4]

T , the probing signals R = [R1, R2, R3, R4]
T ,

and the measurement noise N = [N1, N2, N3, N4]
T can be

obtained as in (2).

U(s) =
(
I +K(s)G(s)

)−1
R(s)

−
(
I +K(s)G(s)

)−1
K(s)N(s) (2)

Since the probing signals R and the measurement noise
(with zero mean) N are uncorrelated, the transfer functions
between the system outputs Y and the probing signals R can
be obtained as in (3). For matrices of appropriate dimensions,
(3) should follow the push-through rule:

TY R(s) ≈
(
I+G(s)K(s)

)−1
G(s) = G(s)

(
I+K(s)G(s)

)−1
(3)

Similarly, the transfer functions between the control signals
U and the probing signals R can be simplified as in (4):

TUR(s) ≈
(
I +K(s)G(s)

)−1
(4)

By using (3) and (4), the open-loop unstable SISO transfer
functions of the system can be estimated from the closed-loop
system identification as:

G(s) = TY R(s)TUR(s)
−1 (5)

Chirp signals are employed as the probing signals to the
system for the purpose of collecting frequency response data.
The initial frequency, target time, and the frequency at the
target time of the chirp signals are chosen in such a way that
the frequency does not increase too fast, so that the system
has enough time to attain its steady-state response. In order
not to overly excite the resonant frequencies, several sets of
measurements have to be taken, each one within a certain
range of frequency and amplitude. The MIMO measurements
are taken by sending chirp signals to the input channels R
and collecting the control signals U and the system output
responses Y . The time-domain response of the system is
collected using the dSPACE ControlDesk software and then
exported to MATLAB for Discrete Fourier Transform (DFT)
analysis. The obtained frequency-domain response (magni-
tude) of the system is shown in Fig. 3. The diagonal terms
in Fig. 3 represent the frequency response between the input
and output of the same channel. The off-diagonal terms, on
the other hand, represent the cross-coupling effects between
different channels. It can be seen from Fig. 3 that the gain
contribution of the off-diagonal terms is small in the low-
frequency region, i.e., a DC gain of about −20 dB or less.
Therefore, if low-order (low-complexity) controllers are to be
designed for the system, the MIMO system can be treated as
four SISO subsystems, and the model of each subsystem can
be obtained individually.

The SISO models of the system can be represented as linear
time-invariant transfer functions of the form:

G(s) =
N(s)

D(s)
(6)
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Fig. 3. Frequency-domain response data of the MIMO AMB system.

where,

N(s) =
[
n0 + n1(s) + n2(s)

2 + ...+ nk(s)
k
]
, ∀s = jω

D(s) =
[
1 + d1(s) + d2(s)

2 + ...+ dl(s)
l
]
, ∀s = jω

In order to have a proper system, the order of the numerator
(k) has to be less than or equal to the order of the denominator
(l). From the DFT analysis of the input and output signals
of the system at all experimental frequencies (ω1, ω2, . . . ,
ωN ), a non-parametric model of the system can be obtained
as Ĝ(jω). The operator ˆ is used because there are always
unavoidable errors in the measurement. Since it is assumed
that Ĝ(jω) = N(jω)/D(jω), we have:

D(jω)Ĝ(jω) = N(jω) (7)

The unknown coefficients (n0, n1, . . . , nk), and
(d1, d2, . . . , dl) can be evaluated by minimizing the
sum of squared of moduli of the errors between the frequency
response of the fitted transfer function N(s)/D(s) and the
collected frequency response data Ĝ(jω) [34]:

J =
N∑
i=1

e∗i ei (8)

where, ei = D(jωi)Ĝ(jωi) − N(jωi), and ∗ denotes
complex-conjugate transpose. The term ei can be expressed
as:

ei =
[
1 + d1(jωi) + · · ·+ dl(jωi)

l
]
Ĝ(jω)

−
[
n0 + n1(jωi) + · · ·+ nk(jωi)

k
]

(9)

or alternatively:

ei = Ĝ(jωi)−
[
− (jωi)Ĝ(jωi), . . . ,−(jωi)

lĜ(jωi),

1, jωi, . . . , (jωi)
k
]
θ (10)

where θ = [d1, d2, . . . , dl, n0, n1, . . . , nk]
T is a vector of un-

known parameters. The cost function J can now be expressed
as:

J =

N∑
i=1

e∗i ei = (Y −Xθ)∗(Y −Xθ) (11)

where,

θ =

[
d1, d2, . . . , dl, n0, n1, . . . , nk

]T
Y =

[
Ĝ(jω1), Ĝ(jω2), . . . , Ĝ(jωN )

]T

X =

 −jω1Ĝ(jω1) · · · −(jω1)
lĜ(jω1) 1 jω1 · · · (jω1)

k

...
...

−jωN Ĝ(jωN ) · · · −(jωN )lĜ(jωN ) 1 jωN · · · (jωN )k


The cost function J as a function of θ can be minimized by

differentiating J with respect to each unknown parameter in
θ and setting the result to zero. The value of θ that minimizes
J can be obtained as:

θ =
(
X∗X

)−1(
X∗Y

)
(12)

In a standard least-squares problem, it is assumed that the
collected response data are of equal quality and hence have
a constant noise variance. However, if this assumption does
not hold, the quality of the fitted model can be influenced
by poor quality data. To improve the model at certain ranges
of frequencies, one can use weighted least-squares where the
frequency weighting is used to emphasize the frequencies
of interest. The weighted least-squares minimizes the sum
squared of the weighted error:

J =
N∑
i=0

wie
∗
i ei (13)

The weights wi determine how much each response value
influences the final parameter estimates. Note that the weights
wi are positive definite and they are given as the diagonal
elements of the weight matrix W:

W =


w1 0 . . . 0
0 w2 . . . 0
...

...
. . .

...
0 0 . . . wN

 (14)

The unique solution to the weighted least-squares problem
is in the form of (15):

θ =
(
X∗WX

)−1(
X∗WY

)
(15)

For the AMBs under study, the two flexible (resonant)
modes of the rotor need to be modeled accurately, as they
are within the bandwidth of the system. The problem with
most of the available methods is that the algorithm finds an
accurate model of the system in the low-frequency region, but
fails to model the resonant modes. We aim to find a model
of the system that is as simple as possible, and yet capable
of capturing all the important characteristics of the plant.
To overcome this problem, Genetic Algorithm (GA) [35]–
[38] is employed to find the required frequency weightings
(fictitious noise components) automatically, and perform an
iterative re-weighted least squares algorithm. In this approach,
GA generates a random vector of wi > 0 to be the diagonal
elements of the weight matrix W. Then, GA alters the weights
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Fig. 4. Convergence of GA.

Fig. 5. A snapshot of GA optimization.

by changing the range and scaling factors in the vector wi. The
WLS is solved on the basis of the updated weight matrix, and
the iteration continues until the minimum difference between
the frequency response of the model and the experimental data
and a predefined value is achieved (or the maximum number
of iterations is reached). In order to scale up the errors around
the two resonant modes, six variables are defined. These
parameters are mainly the lower and upper frequency ranges
of interest ([ω1−start, ω1−end], and [ω2−start, ω2−end]), and
their corresponding scaling factors (α and β) as shown in
(16). The optimum value of (α and β) are to be found by the
GA to heavily penalize the fitting error in a particular range
of frequencies where the modeling accuracy is important.

wi =
[
1, ..., 1, αω1−start, ..., αω1−end, 1, ..., 1,

βω2−start, ..., βω2−end, 1, ..., 1
]

(16)

Figs. 4 and 5 show the convergence of GA and the effect
of the frequency weighting on the explicit solution of the
least-squares problem and hence on the frequency response
of the modeled transfer function. It should be noted that the
optimization process is only illustrated for the first channel,
and relatively similar results are obtained for the other three
channels.

It is important to note that the desired order of the model
has to be assigned before the optimization process is initiated.
Since the total order of four is required to model the two
flexible (resonant) modes of the rotor, it can be deduced

that models with order less than five will fail to accurately
model the behavior of the actual system. Therefore, a sixth-
order model is chosen to ensure the accurate modeling of the
system at the frequency ranges of interest. The obtained SISO
models of all four channels using the proposed methods are
compared with two common methods, namely, the prediction
error method (PEM) , and the numerical subspace state-space
(N4SID) identification method in Fig. 6. The results show
the effectiveness of the proposed method in the identification
of systems that include both slow and fast dynamics. The
resulting transfer functions of all four channels are presented
in (17)-(20).

G1(s) =
−0.0054872(s+1.72×104)(s−2075)

(s+374.4)(s−310.2)

× (s2+4240s+2.127×107)(s2+3305s+1.637×108)
(s2+0.96s+2.344×107)(s2+0.37s+1.668×108) (17)

G2(s) =
−0.0205(s+5699)(s−1588)

(s+433.4)(s−233.4)

× (s2+4168s+2.127×107)(s2+3140s+1.631×108)
(s2+0.27s+2.307×107)(s2+0.3s+1.673×108) (18)

G3(s) =
−0.01993(s+5178)(s−2135)

(s+628.1)(s−215.5)

× (s2+4083s+2.329×107)(s2+5183s+1.631×108)
(s2+0.31s+2.399×107)(s2+0.35s+1.673×108) (19)

G4(s) =
−0.04793(s+3912)(s−1189)

(s+388.4)(s−246.7)

× (s2+4022.66s+1.947×107)(s2+3743s+1.631×108)
(s2+0.529s+2.3×107)(s2+0.726s+1.65×108) (20)

The described approach for the SISO modeling of the
system can be extended to estimate the MIMO model of the
system (including the cross-coupling effects in Fig. 3), if a
high-order MIMO controller is to be designed on the basis of
the MIMO model of the system. Suppose that the model is
represented in the state-space form (assuming that the feed-
through term D is zero):

ẋ(t) = Ax(t) +Bu(t), x ∈ Rn, u ∈ Rk

y = Cx(t), y ∈ Rm (21)

It is assumed that the system has k inputs, m outputs, and
n states. A transfer function representation of the system can
be obtained as:

G(s) = C(sI −A)−1B, ∀s = jω (22)

Similar to the SISO case, the vector of unknown parame-
ters θ = [vec(A)T , vec(B)T , vec(C)T ] can be estimated by
minimizing the weighted sum of the squared errors between
the frequency response of the state-space model G(s) and the
experimental data at all experimental points Ĝ(jω):

J =
N∑
i=1

wi||Ĝ(jωi)−G(jωi)||2 (23)

Again, GA is utilized to obtain the best weighting vector
that minimizes the cost function J over the unknown pa-
rameter vector θ. Note that a higher-order model is required
to successfully describe the dynamics of the MIMO system
including the cross-couplings. After some trials, an eighteenth-
order state-space model of the system is found to have a fair
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(a) channel 1 (b) channel 2

(c) channel 3 (d) channel 4

Fig. 6. Bode (magnitude) diagrams of the identified SISO models of the system using the presented algorithm, PEM, and N4SID.

Fig. 7. The identified MIMO model of the system and the experimental
frequency response data.

representation of the actual system dynamics. The frequency
response of the MIMO model is shown in Fig. 7, and it is
compared with the collected frequency-domain signals. The
state-space representation of the obtained eighteenth-order
MIMO model of the system is given in the Appendix, and it is
used for the synthesis of the MIMO H2 and H∞ controllers.

III. SISO CONTROLLERS DESIGN

This section is devoted to the synthesis of controllers that
are designed on the basis of the identified SISO models
of the system. First, four SISO H∞ optimal controllers are
synthesized on the basis of the SISO models, and some useful
remarks are given for the design of the weighting functions

required in the H∞ synthesis procedure. To demonstrate the
advantages of the H∞ synthesis algorithms over the classical
design methods, four lead-lag type compensators are also
designed on the basis of the identified SISO models.

A. Mixed-Sensitivity H∞ Controller Design

In a standard mixed-sensitivity H∞ control problem, three
weighting functions can be designed to shape the closed-loop
behavior of the system (see Fig. 8). A weighting function
WP (s) is designed to bound the closed-loop sensitivity func-
tion (S(s) = (I + G(s)K(s))−1) to improve the steady-
state error of the system, and ensure the rejection of low-
frequency disturbances. Another weighting function WT (s)
bounds the closed-loop complementary sensitivity function
(T (s) = G(s)K(s)(I + G(s)K(s))−1) to ensure the system
robustness against model uncertainties and high-frequency
measurement noise. Finally, WU (s) can be optionally designed
to penalize the control signal to prevent the actuators satura-
tion.

The requirements can be absorbed into a stacked H∞
optimization problem, and the feedback system can be re-
arranged as a linear fractional transformation (LFT). The
weighting functions (WP (s), WT (s), and WU (s)) can be
easily combined with the system and represented as a gener-
alized (augmented) plant P (s) [39]. The closed-loop transfer
function between the generalized plant and the controller can
be found as:

T := Fl(P,K) = P11 + P12K(I − P22K)−1P21 (24)



IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY , VOL. (), NO. (), () () 7

Fig. 8. Mixed S/T/KS sensitivity problem.

In (24), Fl(P,K) is the lower linear fractional transforma-
tion (LFT) of P with respect to K. Also, P11 = [0, 0, WP I]

T ,
P12 = [WUI, WTG, WPG]

T , P21 = −I , and P22 = −G.
The H∞ mixed-sensitivity optimization problem is to find
a controller K(s) which robustly stabilizes the system, and
minimizes the H∞-norm of the closed-loop transfer function
of the augmented plant P (s).

min
Kstabilizing

∥∥∥Fl(P,K)
∥∥∥
∞

(25)

where,

‖Fl(P,K)‖∞ =

∥∥∥∥∥∥∥
WPS

WUKS

WTT

∥∥∥∥∥∥∥
∞

(26)

In recent years, H∞ algorithms have become well-known
methods to synthesize model-based controllers that satisfy
a number of constraints and performance requirements ex-
pressed in the form of weights on the closed-loop sensitivity
and complementary sensitivity functions. However, the suc-
cessful design of these weights in H∞ control problems is a
non-trivial task primarily based on engineering intuition. As
the AMB system under study is unstable and non-minimum
phase, the successful design of weighting functions required
in the synthesis of H∞ controllers may become a challenging
task. The presence of the flexible (resonant) modes of the
rotor brings an additional degree of difficulty to the design of
these weighting functions. In the sequel, some useful remarks
concerning the design of H∞ controllers for unstable non-
minimum phase systems are given which could help in the
design of the weighting functions.

Remark 1: Although it is desirable that |S(jω)| � 1,
∀jω and |T (jω)| � 1, ∀jω, it is important to note that
the presence of unstable poles/zeroes increases the peak of
sensitivity functions. It implies that the peak values of S(s)
and T (s) exceed one, and this is unavoidable. For a system
with RHP-zero (s = z) and RHP-pole (s = p), the sensitivity
peaks can be evaluated as in (27) [40].∥∥S∥∥∞ > c,

∥∥T∥∥∞ > c, c =
|z + p|
|z − p|

(27)

Remark 2: In the presence of RHP-pole (s = p), a high
gain controller is required to stabilize the open-loop unstable
system. However, it is impossible to employ large loop gain in
the frequency range close to the location of RHP-zero (s = z)

Fig. 9. Singular values of S(s), T (s), 1/WP (s), and 1/WT (s) of channel
1.

while maintaining stability. It implies that for a system with
RHP poles and zeros, a closed-loop bandwidth of 2p < ωc < z
is expected.

Remark 3: The peak values of the sensitivity functions
(MP and MT ) are very closely related to the gain and phase
margins and hence the following conditions are very useful
for the performance analysis of the system [40], [41]:

GM ≥ MP

MP − 1
, PM ≥ 2 arcsin(

1

2MP
)(rad) (28)

GM ≥ MT

MT − 1
, PM ≥ 2 arcsin(

1

2MT
)(rad) (29)

Following the given remarks, first-order performance
weighting functions (WP (s)) are designed to be the upper
bounds on the closed-loop sensitivity functions. In (30), the in-
tegral action is replaced by a small number to avoid the numer-
ical issues, and a closed-loop bandwidth of (0.3333× 500) is
desired. Furthermore, second-order (WT (s)) weighting func-
tions are chosen as the upper bounds on the complementary
sensitivity functions. Note that choosing a second order WT (s)
ensures the complete removal of the resonant frequencies at
higher frequencies. Due to the page limitation, the designed
weighting functions for the first channel are given in (30),
and the resulting closed-loop sensitivity and complementary
sensitivity functions (S(s) and T (s)) are depicted in Fig. 9.
However, similar weighting functions are designed for all four
channels. Finally, the obtained continuous-time controllers for
all four channels are given in (31)-(34). Since the models
satisfy the PIP condition, the synthesized controllers are found
to be stable and hence can be implemented on the system
safely and reliably.

WP (s) =
0.3333(s+ 500)

(s+ 0.00333)
, WT (s) =

104(s+ 1500)2

(s+ 3× 105)2
(30)

K1∞ =
7986.2(s+ 3× 105)2(s+ 374.4)

(s+ 4.822× 105)(s+ 1.717× 104)(s+ 0.003333)

(s+77.94)(s2+0.96s+2.344×107)
(s2+5087s+2.191×107)(s2+6429s+2.328×107)
(s2 + 0.37s+ 1.668× 108)

(s2 + 5297s+ 1.637× 108)
(31)
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K2∞ =
923.21(s+ 3× 105)2(s+ 433.4)

(s+ 4.822× 105)(s+ 1.717× 104)(s+ 0.003333)

(s+71.86)(s2+0.27s+2.307×107)
(s2+5755s+2.002×107)(s2+5755s+2.002×107)
(s2 + 0.37s+ 1.673× 108)

(s2 + 5139s+ 1.631× 108)
(32)

K3∞ =
718.62(s+ 3× 105)2(s+ 628.1)

(s+ 1.739× 105)(s+ 5125)(s+ 0.003333)

(s+91.89)(s2+0.031s+2.344×107)
(s2+6464s+2.443×107)(s2+4983s+2.136×107)
(s2 + 0.037s+ 1.668× 108)

(s2 + 5139s+ 1.637× 108)
(33)

K4∞ =
1321(s+ 388.4)(s+ 50.52)

(s+ 6.884× 105)(s+ 3892)(s+ 0.003333)

(s2+6.4×105s+1.024×1011)(s2+0.0529s+2.3×107)
(s2+4977s+1.99×107)(s2+5473s+2.134×107)

(s2 + 0.0726s+ 1.65× 108)

(s2 + 4743s+ 1.661× 108)
(34)

B. Lead-Lag Type Compensator Design

In order to design SISO controllers using the classical
methods, two notch filters need to be designed (for each
channel) first to ensure that the resonant modes are not excited.
The following structure is used for the notch filters:

N(s) =
s2 + ζbωns+ ω2

n

s2 + bωns+ ω2
n

(35)

In (35), ωn is the notch frequency, ζ is the damping ratio,
and b is the bandwidth of the notch filter. After designing
the required notch filters, a reduced-order SISO model can be
obtained by removing the poles and zeros corresponding to the
resonant modes from the model while keeping their DC gains
in the reduced-order model. Next, a compensator can be de-
signed on the basis of the reduced-order model of the system.
PID controllers are very common in the industry. However,
the presence of pure integrators can lead to integral windup
problems. Therefore, a lead-lag compensator is preferred here
and it can be designed on the basis of the reduced-order model:

Klead−lag = KleadKlag
(s+ a)

(s+ γa)

(s+ βb)

(s+ b)
, with β, γ > 1

(36)
Finally, a second order low-pass filter is added to the

compensator to increase the high-frequency roll-off rate, so
that gain desensitization is secured in the high-frequency
regions. For a fair comparison between the classically designed
lead-lag compensators and the SISO H∞ controllers, similar
time- and frequency-domain requirements are used for the
design of the lead-lag compensators. The final SISO lead-lag
type compensators for all four channels are given in (37)-(40).

Klead−lag(1) =
1.0994× 1010(s+ 379.5)(s+ 120)

(s+ 2.5× 104)2(s+ 3795)(s+ 32.85)

(s2+0.2449s+2.344×107)(s2+0.1194s+1.668×108)
(s2+5421s+2.344×107)(s2+3775s+1.668×108)

(37)

Klead−lag(2) =
7.9158× 109(s+ 406.7)(s+ 120)

(s+ 2.5× 104)2(s+ 2927)(s+ 32.85)

(s2+0.0708s+2.307×107)(s2+0.107s+1.673×108)
(s2+4955s+2.307×107)(s2+3384s+1.673×108)

(38)

Klead−lag(3) =
8.7532× 109(s+ 459.8)(s+ 132.2)

(s+ 2.5× 104)2(s+ 3310)(s+ 21.06)

(s2+4.165×10−6s+2.344×107)(s2+5.214×10−7s+1.668×108)
(s2+4220s+2.344×107)(s2+5214s+1.668×108)

(39)

Klead−lag(4) =
6.6619× 109(s+ 308.2)(s+ 116.9)

(s+ 2.5× 104)2(s+ 3346)(s+ 19.63)

(s2+2.85×10−4s+2.3×107)(s2+8.927×10−7s+1.65×108)
(s2+6466s+2.3×107)(s2+8927s+1.65×108)

(40)

IV. MIMO H2 AND H∞ CONTROLLERS

In order to investigate the effects of the cross-coupling
channels on the overall performance of the system, MIMO H2

and H∞ optimal controllers are synthesized on the basis of
the high-order MIMO model (given in the Appendix). Again,
similar weighting functions are employed for the synthesis
of the MIMO controllers (similar to (30)). This ensures that
the conditions of all SISO and MIMO controllers are similar
and hence the comparison between the performance of these
controllers is fair, i.e.:

WP(s) = diag
{
WP (s),WP (s),WP (s),WP (s)

}
,

WT(s) = diag
{
WT (s),WT (s),WT (s),WT (s)

}
The MIMO diagonal weighting matrices (WP(s), WU(s),

and WT(s)) are augmented with the MIMO model of the
system, and the mixed-sensitivity H2 and H∞ optimization
procedures are performed on the generalized plant, respec-
tively. Note also that the standard mixed-sensitivity H2 loop-
shaping problem is to find a stabilizing controller K that
minimizes the H2 norm of the closed-loop system as in (41)
[40], [42].

min
Kstabilizing

∥∥∥∥∥∥∥
WPS

WUKS

WTT

∥∥∥∥∥∥∥
2

(41)

Fig. 10 shows the frequency response plot of the re-
sulting closed-loop sensitivity and complementary sensitivity
functions (S(s) and T (s)) using the MIMO H2 and H∞
controllers. Since similar weighting functions are used for the
synthesis of the H2 and H∞ controllers, similar performances
are expected from the two controllers. However, the real-time
experiments reveal some interesting results in the next section.

V. EXPERIMENTAL VALIDATION

To evaluate the performance of the SISO and MIMO
controllers experimentally, the designed continuous-time con-
trollers are discretized using the Bilinear transformation with a
sampling frequency of 20kHz. The discrete-time controllers
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Fig. 10. Singular values of the closed-loop sensitivity functions S(s) and
the complementary sensitivity functions T (s) using the MIMO H2 and H∞
optimal controllers

are implemented in real-time using an ADC/DAC converter
and the dSPACE DS1104 digital signal processing board. In
the first part of the experiment, the performance of the de-
signed controllers is evaluated while the rotor is stationary and
in the presence of constant disturbances. In order to investigate
the disturbance rejection properties of the controllers, four
unit-step disturbances are introduced to the system. The first
disturbance is added to the channel 1 at approximately one
second, followed by the second disturbance to the channel 2
after two seconds. The other two disturbances are introduced to
the channels 3 and 4 after three and four seconds, respectively.
For a fair comparison, the performance of the SISO and MIMO
controllers are compared separately. The results from the SISO
controllers, namely, the SISO H∞ controllers, the lead-lag
type compensators, and the analog on-board controllers are
depicted in Figs. 11 and 12. Note that the analog on-board
controllers are in the form of lead compensators with first-
order low-pass filters and with the transfer functions of:

Kon−board controllers(1−4) =
1.7218× 105(s+ 1128)

(s+ 3030)(s+ 4.545× 104)
(42)

It is clear from the results in Fig. 11 that the SISO H∞ con-
trollers certainly outperform the analog on-board controllers.
On the other hand, a relatively similar performance can be
achieved by the carefully designed lead-lag type compensators.
However, the controller design based on the classical methods
could become cumbersome if the order of the system being
controlled is high. In contrast to the classical methods, the
H∞ synthesis procedure include the required components
(compensators, notch filters, and the high-frequency low-pass
filters) automatically if the weighting functions are chosen
properly.

The performance of the MIMO H2 and H∞ optimal con-
trollers are also depicted in Figs. 13 and 14. Similar behavior
in terms of transient- and steady-state response can be seen
from the two controllers in Fig. 13. However, from the control
signals in Fig. 14, it can be deduced that the high-frequency
measurement noises are much better attenuated by the H2

controllers compare to the H∞ controllers.
The AMB system under study consists of an internal air

turbine attached to one end of the rotor that allows the

Fig. 11. Step responses of all four channels using the SISO controllers in the
presence of disturbances.

Fig. 12. Control signals of all four channels using the SISO controllers in
the presence of disturbances on all four channels.

Fig. 13. Step responses of all four channels using the MIMO controllers in
the presence of disturbances.

Fig. 14. Control signals of all four channels using the MIMO controllers in
the presence of disturbances.
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(a) air pressure of 20 psi (b) air pressure of 30 psi

(c) air pressure of 40 psi (d) air pressure of 50 psi

(e) air pressure of 60 psi (f) air pressure of 80 psi

(g) air pressure of 100 psi

Fig. 15. Trajectory of the geometrical center of the rotor (at both ends) using the SISO and MIMO controllers.

spinning of the rotor up to 10000 rpm. In order to evaluate
the performance of the SISO and MIMO controllers while
the rotor is in rotation, the air pressure supplied by the air
compressor is increased gradually, and the displacement of the

geometrical center of the rotor at both ends of the rotor are
captured. The displacements of the rotor at all four channels
are depicted in Fig. 15. As the rotational speed of the rotor
increases, it can be seen that the overall performance of the
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Fig. 16. Rotational speed of the rotor using the SISO and MIMO controllers.

MIMO H∞ controller remain significantly better than all other
controllers. Furthermore, unlike the stationary case, the MIMO
H2 controller shows a very poor performance compared to
the MIMO H∞ controller at high rotational speeds. Finally,
the SISO H∞ controllers show a convincing performance
compared to the lead-lag-type compensators and the analog
on-board controllers.

More interestingly, the rotor achieves different steady-state
rotational speeds using the designed controllers while constant
air pressure (100 psi) is supplied to the system. The transient
speed responses of the system using the designed controllers
are depicted in Fig. 16. The highest steady-state speed is
achieved by using the MIMO H∞ controller. This is because
the effects caused by the rotor mass-imbalance and centrifugal
forces are better rejected by the MIMO H∞ controller, allow-
ing the rotor to obtain higher rotational speeds compared to the
other controllers. As it is expected, the system achieves very
low steady-state speed by the MIMO H2 controller due to
the poor performance of the H2 controllers at high rotational
speeds. Furthermore, the SISO H∞ controllers show better
performance amongst the other SISO controllers. Last but not
least, it can be deduced from the results that the high-order
H∞ controllers show better performance compared to the low-
order H∞ controllers. However, the price to pay is to im-
plement excessively high-order controllers that demand more
powerful hardware for a successful real-time implementation.

VI. CONCLUSION

This paper dealt with the modeling and high-performance
controller design of an active magnetic bearing system. First,
GA-WLS algorithm was presented to obtain the best SISO
and MIMO models of the system. Next, SISO and MIMO
controllers were designed on the basis of the identified models
of the system. The designed controllers were discretized and
implemented on the AMB system for real-time experimental
analysis. The performance of the designed controllers was
examined while the rotor was stationary, as well as while it
was operating at several rotational speeds. All the designed
controllers showed much superior performances compared
to the analog on-board controllers. Moreover, it was shown
that the performance of the MIMO H2 controller was not

satisfactory at high speeds where the modeling uncertainties
were more significant. Although the performance of the system
was further improved by using the MIMO H∞ controller over
the SISO H∞ controllers, but the price to pay was to imple-
ment excessively high-order controller that demanded more
powerful hardware. Furthermore, it was shown that the proper
modeling of the system would lead to the design of several
high-performance stable controllers that could successfully be
implemented on the system without any further modifications.

APPENDIX

A. The eighteenth-order MIMO model of the AMB system

A = diag

{(
−0.0359 12900
−12900−0.0359

)
,

(
−0.55 4826
−4826−0.55

)
,(

−0.69 4835
−4835−0.69

)
,

(
−152 335.8
−335.8−152.9

)
,(

−120.9 341.8
−341.8−120.9

)
,

(
−111.8 228.2
−228.2−111.8

)
,(

−70.51 212.4
−212.4−70.51

)
, 191.4, 243.4, 272.4, 284.5

}

B =



−0.0243 0.0176 −0.0235 −0.0193
0.0453 −0.0672 0.0486 0.0839
0.5450 0.0348 −0.5991 0.0686
−1.4730 0.2672 1.7560 0.3069
−0.1713 −1.4250 0.2059 −1.7710
0.0820 −0.7334 −0.0522 −0.8909
−5.2730 4.2650 −4.8140 −3.4230
−1.7190 −3.8070 3.0520 9.5530
−5.1950 2.4130 −8.4050 −3.1360
−1.4100 1.6070 1.4170 −3.6310
−2.0850 −1.2980 −0.3873 4.2370
−2.0320 5.3700 −1.7270 5.5080
7.4800 −0.7283 −5.0160 −1.0070
1.1000 0.9193 1.7110 1.5220
8.7810 −21.0600 0.5281 33.6300

−44.7700−16.0000−53.4300 1.0640
−50.9400 −8.0200 65.9800 13.8900
34.1700 −55.9100−50.3000−44.6800



CT =



−7.2300 −2.1590 −1.5950 6.9340
−5.5360 16.7600 −18.1900−20.8700
−10.4100 0.5644 16.4900 1.6760
−5.5310 1.7130 3.7640 1.2470
−1.2190 −6.6440 1.9040 −1.9720
0.7982 11.4200 −1.7800 14.4700
−1.3220 −15.4500 0.3159 9.0980
6.2330 9.8390 4.5670 −3.8710
12.8700 16.3700 9.2420 −3.2940
8.9640 −0.9097 3.0000 1.0810
3.3940 1.7800 1.0590 −15.4300
−3.4690 −17.5500 3.2230 −10.5200
−8.5000 −1.9170 10.1500 −1.3500
4.0930 −2.0230 −8.2030 −2.2680
0.6677 −2.5790 0.3406 3.1050
−2.1520 −0.2261 −1.9370 0.4813
−1.1260 −1.9160 1.4620 −0.5211
0.6849 −1.9850 0.2637 −1.0290
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