Australian Water Recycling Centre of Excellence



# Demonstration of robust water recycling: Monitoring the levels of trace organic chemicals (TrOCs)

A report of a study funded by the Australian Water Recycling Centre of Excellence

Graeme Allinson, Mayumi Allinson, Kiwao Kadokami, Fujio Shiraishi, Daisuke Nakajima, Jinhua Zhang, Adrian Knight, Stephen Gray, Peter Scales, July 2015



# Demonstration of robust water recycling: Monitoring the levels of trace organic chemicals (TrOCs)

## **Project Leader**

A/Prof Graeme Allinson RMIT University GPO Box 2476 Melbourne, Victoria 3001 AUSTRALIA Telephone: +61 3 9925 3561

## **Partners**

University of Melbourne University of Kitakyushu National Institute for Environmental Studies, Japan Australian Antarctic Division Veolia AECOM TasWater

Contact: A/Prof Graeme Allinson graeme.allinson@rmit.edu.au

## About the Australian Water Recycling Centre of Excellence

The mission of the Australian Water Recycling Centre of Excellence is to enhance management and use of water recycling through industry partnerships, build capacity and capability within the recycled water industry, and promote water recycling as a socially, environmentally and economically sustainable option for future water security.

The Australian Government has provided \$20 million to the Centre through its National Urban Water and Desalination Plan to support applied research and development projects which meet water recycling challenges for Australia's irrigation, urban development, food processing, heavy industry and water utility sectors. This funding has levered an additional \$40 million investment from more than 80 private and public organisations, in Australia and overseas.

ISBN 978-1-922202-56-7

#### Citation:

Allinson G., Allinson M., Kadokami K., Shiraishi S., Nakajima D., Zhang J., Knight A., Gray S. and Scales P. (2015). *Demonstration of robust water recycling: Monitoring the levels of trace organic chemicals (TrOCs)*, Australian Water Recycling Centre of Excellence, Brisbane, Australia.

#### © Australian Water Recycling Centre of Excellence

This work is copyright. Apart from any use permitted under the Copyright Act 1968, no part of it may be reproduced by any purpose without the written permission from the publisher. Requests and inquiries concerning reproduction right should be directed to the publisher.

#### Date of publication: July 2015

#### Publisher:

Australian Water Recycling Centre of Excellence Level 5, 200 Creek St, Brisbane, Queensland 4000 www.australianwaterrecycling.com.au

This report was funded by the Australian Water Recycling Centre of Excellence, through the Australian Government's National Urban Water and Desalination Plan.

#### **Disclaimer**

Use of information contained in this report is at the user's risk. While every effort has been made to ensure the accuracy of that information, the Australian Water Recycling Centre of Excellence does not make any claim, express or implied, regarding it.

## **Executive Summary**

The overall aim of the 'Demonstration of robust water recycling' project is to trial a recycling system capable of producing potable water that requires minimal operator involvement (making it suitable for small and/or remote communities) and a non-toxic by-product wastewater (that can be discharged to the environment with minimal impact). The specific objectives for the TrOCs monitoring team were to:

- 1. Obtain background water quality information from Self's Point WWTP (to provide background information for demonstration plant operators)
- 2. Verify that the demonstration plant is operating effectively by screening feed, barriers' and outlet waters for a wide range of TrOCs using multi-residue mass spectrometric techniques.
- 3. Verify that the demonstration plant is operating effectively by screening feed, brine (RO) concentrate and product water for TrOCs of the same mode of biological action ("hormonal activity") using recombinant receptor-reporter gene bioassays.
- 4. Verify that the demonstration plant is operating effectively by screening feed, barriers' and outlet waters for nitrosamines.
- 5. Assess whether the water recycling process produces a brine concentrate fit for disposal in the Antarctic marine environment, and a recyclable product water through comparison of TrOC detection data with regulatory guidelines and ecotoxicology data.

In this study we used two chromatographic-mass spectrometric multi-residue methods to screen TrOCs in feed, environmental discharge (a brine concentrate), and product water. We were able to unambiguously detect almost 80 chemicals in the feed water, but only 20 chemicals in the product water and only 16 chemicals in the environmental discharge (brine concentrate). In that context, we conclude that **most TrOCs were removed from the feed water by the treatment train**.

No residue in the product water exceeded its listed Australian Guidelines for Water Recycling (Augmentation of Drinking Water Supplies) (NRMMC, EPHC, NHMRC 2008) level and all residues were at least four orders of magnitude lower in concentration than the draft drinking water guideline levels (DWGs) calculated by this study. Consequently, we conclude that drinking the TrOCs observed at the concentrations observed in this study would be unlikely cause adverse effects on people.

No residue in the brine concentrate waste stream exceeded an ANZECC & ARMCANZ (2000) water quality guideline trigger value for marine waters, or our calculated guideline levels using research quotient and toxicity unit methods of assessment. Consequently, we conclude that releases of the TrOCs observed at the concentrations observed in this study would be unlikely cause adverse effects on populations of aquatic organisms in the receiving environment

Sample toxicity was measured using a photobacterium toxicity test. Collected samples of the brine concentrate were only weakly or non-toxic, suggesting that it would have little impact on aquatic organisms and was fit for disposal to the marine environment.

The recombinant receptor-reporter gene bioassay data obtained suggests that there are estrogenic chemicals in the feedwater (human estrogen receptor (hER) activity up to  $\sim 13$  ng/L estradiol equivalents (EEQ); medaka estrogen receptor (medER) activity, up to  $\sim 23$  ng/L EEQ), but that these chemicals are being removed by the treatment train with little or no estrogenic activity observed in product water or brine concentrate.

There are chemicals that stimulate the aryl hydrocarbon (AhR) receptor in the feedwater (AhR up to  $\sim 380 \text{ ng/L} \beta$ -naphthoflavone EQ), but that these chemicals are mostly being removed by the treatment train, with little AhR activity observed in product water or brine concentrate.

The constitutive and rostane receptor (CAR) receptor data is consistent with that reported for the ER and AhR assays, i.e. that there are chemicals that stimulate the CAR receptor in the feedwater (CAR up to ~ 3.4  $\mu$ g/L p-tert-octylphenol EQ), but that these chemicals are mostly removed by the treatment train.

The TrOCs team conducted six rounds of sampling for N-nitrosamines. A small amount of NDMA (< 10 ng/L on average) entered the plant in the feed water. The concentration of NDMA then increased post-ozone, and remained relatively constant at ~ 45 ng/L until the RO concentrate, but was not observed post-RO in the environmental discharge water (the brine concentrate) or in the product water. In that context, we conclude that the final product water quality met the ADWG for NDMA (<100 ng/L), and that **NDMA releases at the concentrations observed in this study would be unlikely cause adverse effects on populations of aquatic organisms** in the receiving marine environment.

## TABLE OF CONTENTS

|   | Executive Summary                                                          |    | iii |
|---|----------------------------------------------------------------------------|----|-----|
|   | Glossary of Terms                                                          |    | vi  |
|   | Acknowledgements                                                           |    | ix  |
| 1 | Introduction                                                               | 1  |     |
|   | 1.1 Scope of Works                                                         |    | 1   |
|   | 1.2 Aims and Objectives                                                    |    | 1   |
|   | 1.3 Sub-project Outcome                                                    |    | 2   |
| 2 | Summary of Methods                                                         | 3  |     |
|   | 2.1 Sampling and analysis                                                  |    | 3   |
|   | 2.2 Methods for describing limits of reporting (LOR)                       |    | 4   |
|   | 2.3 Toxicity assessment                                                    |    | 6   |
| 3 | Results to Discussion                                                      | 12 |     |
|   | 3.1 Status of works                                                        |    | 12  |
|   | 3.2 Multi-residue data                                                     |    | 12  |
|   | 3.3 Bioassay data                                                          |    | 27  |
|   | 3.4 Nitrosamines                                                           |    | 30  |
| 4 | Conclusions and Recommendations                                            | 33 |     |
| 5 | References                                                                 | 35 |     |
|   | Appendices                                                                 |    |     |
| А | Micro-contaminant assessment                                               |    | 37  |
| В | Yeast based recombinant receptor-reporter gene bioassays (yeast bioassays) |    | 69  |
| С | Health guideline values                                                    |    | 73  |

## **Glossary of Terms**

| Abiotic      | Non-living factors of the environment, including light, temperature, inorganic soil particles and rocks, water, and atmospheric gases                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |  |
|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| ADWG         | Australian Drinking Water Guidelines                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |  |
| Agrochemical | For the purpose of this report an agrochemical includes any substance or organism used to:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |  |  |
|              | • Destroy, stupefy, repel, inhibit the feeding of, or prevent pests on plants or other things;                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |  |
|              | <ul> <li>Destroy a plant or to modify its physiology;</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |  |  |
|              | <ul> <li>Modify the effect of another agricultural chemical product; or</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |  |
|              | <ul> <li>Attract a pest for the purpose of destroying it.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |  |
|              | This encompasses all herbicides, insecticides and fungicides. Dairy cleansers<br>for on-farm use, crop markers, insect repellents for use on humans,<br>swimming pool disinfectants, algaecides, rodenticides, antifouling paints,<br>timber preservatives, some pest traps and barriers using chemical<br>attractants, and household and home garden products for pest and weed<br>control are also encompassed by the above definition. Fertilisers are not<br>considered an agrochemical for the purposes of this report unless they<br>modify the physiology of a plant. |  |  |  |  |  |  |
| Agonist      | A chemical which initiates a physiological response when combined with a receptor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |  |
| AGWR         | Australian Guidelines for Water Recycling                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |  |
| AhR          | Aryl hydrocarbon receptor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |  |
| Androgen     | Generic term for any natural or synthetic compound, but usually a steroid<br>hormone, that stimulates or controls the development and maintenance of<br>masculine characteristics in vertebrates by binding to androgen receptors.<br>This includes the activity of the accessory male sex organs and development<br>of male secondary sex characteristics. Androgens are also the precursor of all<br>estrogens, the female sex hormones. The primary and most well-known<br>androgen is testosterone                                                                       |  |  |  |  |  |  |
| AIQS-DB      | Automated Identification and Quantification System - database                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |  |
| ANZECC       | Australia and New Zealand Environment and Conservation Council.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |  |
| Aquatic life | The biological life (e.g. algae, fish, frogs etc.) in or on fresh, marine or estuarine waters (surface or ground waters).                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |  |
| ARMCANZ      | Agriculture and Resource Management Council of Australia and New Zealand                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |  |
| Bioassay     | A test that exposes living organisms to several levels of a substance that is under investigation, and evaluates the organisms' responses                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |  |
| CAR          | Constitutive androstane receptor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |  |  |

| Contaminant                           | A chemical that is present in the environment as a consequence of<br>anthropogenic activity. A material described as a 'contaminant' is one that is<br>either not naturally present in the environment being examined, or is present<br>in unnatural concentrations. However, in being described as a contaminant,<br>no judgement is being made about whether or not the material is having an<br>adverse effect on the environment, or organisms therein – the material is<br>simply present in the environment.                      |
|---------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| DBP                                   | Disinfection by-product                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Drinking water                        | Water suitable for human consumption without deleterious health risk.<br>Synonymous with 'potable water,' but the preferred term since it is better<br>understood by the community at large                                                                                                                                                                                                                                                                                                                                             |
| Endocrine<br>disrupting<br>chemicals  | <ul> <li>Exogenous agents that interfere with the production, release, transport, metabolism, binding, action, or elimination of the natural hormones in the body (of a human and/or wildlife species) responsible for the maintenance of homeostasis and the regulation of developmental processes. Also defined as:</li> <li>Exogenous substance or mixture that alters function(s) of the endocrine system and consequently causes adverse health effects in an intact organism, or in its progeny, or (sub)-populations.</li> </ul> |
| Environmental<br>hazard               | Anything with the potential to cause injury, illness and damage to both living<br>and non-living things within the environment. A danger posed to the<br>environment, whether imminent or otherwise, resulting from any activities,<br>practices, the location, storage or handling of any substance having toxic,<br>corrosive, flammable, explosive, infectious or otherwise dangerous<br>characteristics (adopted from the Environment Protection Act 1970 (Vic),<br>Section 4).                                                     |
| Environmental<br>impact:              | Any impact on plants, animals or the environment caused by human activities<br>is an environmental impact. Impacts may be reversible or irreversible, minor<br>or major, affect a whole ecological community or only a few individuals.                                                                                                                                                                                                                                                                                                 |
| Environmental<br>impact<br>assessment | Environmental impact assessment (EIA), also called ecological risk<br>assessment (ERA), is the practice of measuring or estimating the nature and<br>likelihood of effects of an action (e.g. the application of pest control products<br>or practices) on one or more environmental parameters.                                                                                                                                                                                                                                        |
| Estradiol                             | Also oestradiol, or $17\beta$ -estradiol, this is the major sex hormone in female vertebrates, although it is also produced by males. Estradiol represents the major estrogen in humans. Estradiol has not only a critical impact on reproductive and sexual functioning, but also affects other organs including bone structure                                                                                                                                                                                                        |
| Estriol                               | Also oestriol, is one of the three main estrogens produced by humans,<br>although this steroid hormone is only produced in significant amounts during<br>pregnancy (as it is made by the placenta).                                                                                                                                                                                                                                                                                                                                     |
| Estrogen                              | Generic term for any natural or synthetic compound, but usually a steroid<br>hormone, that stimulates or controls the development and maintenance of<br>masculine characteristics in vertebrates by binding to estrogen receptors.                                                                                                                                                                                                                                                                                                      |

|                            | This includes the activity of the accessory female sex organs and<br>development of female secondary sex characteristics. The primary and most<br>well-known androgen is estradiol                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Estrone                    | Also oestrone, is an estrogenic steroid hormone derived from<br>androstenedione secreted by the ovary. The least prevalent of the three<br>major steroid estrogens (estradiol being most prevalent), estrone is relevant<br>to health and disease due to its conversion to estrone sulfate, a long-lived<br>derivative that acts as a pool of estrone which can be converted as needed to<br>the more active estradiol. Estrone enters a wastewater treatment system<br>either directly from excretion of humans (in the free form or as glucuronide<br>or sulfate conjugates) or from the oxidation of $17\beta$ -estradiol in the treatment<br>plant itself. |
| GC-MS                      | Gas chromatography – mass spectrometry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Guideline                  | Numerical concentration limit or narrative statement to support and maintain designated water use                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Guideline<br>trigger value | These are the concentrations (or loads) of the key performance indicators<br>measured, below which there exists a low risk that adverse biological<br>(ecological) effects will occur. They indicate a risk of impact if exceeded and<br>should 'trigger' some action, either further specific investigations or<br>implementation of management/remedial actions.                                                                                                                                                                                                                                                                                             |
| hER                        | Human estrogen receptor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| In vivo                    | (Biological) process occurring or made to occur within a living organism or natural setting.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| In vitro                   | (Biological) process made to occur in a laboratory vessel or other controlled experimental environment rather than within a living organism or natural setting                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| LC-MS                      | Liquid chromatography - mass spectrometry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| LC-MS/MS                   | Liquid chromatography - tandem mass spectrometry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| LC-TOF-MS                  | Liquid chromatography - time of flight mass spectrometry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| LOR                        | Limit of Reporting; the smallest concentration or amount of a substance that<br>can be reported as present with a specified degree of certainty by an<br>analytical procedure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| ND                         | Not detected                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| РАН                        | Polynuclear aromatic hydrocarbon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| PB test                    | Photobacterium test. A baseline bioluminescence inhibition toxicity test<br>using the photobacterium <i>Vibrio fischeri</i> adapted for a 96-well plate. Toxicity<br>is correlated to the amount of luminescence emitted by the bacteria. In this<br>study, toxicity is reported as an ICR50 value, which is effectively how much<br>the sample would have had to be diluted to inhibit luminescence in 50% of<br>the photobacteria. In short, the lower the ICR50 reported, the higher the                                                                                                                                                                    |

|                    | toxicity of the sample (and vice versa, i.e. the higher the ICR50, the lower the toxicity).                                                                                       |
|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| РСВ                | Polychlorinated biphenyl                                                                                                                                                          |
| Pesticide          | See 'agrochemical.'                                                                                                                                                               |
| Potable water      | Water suitable for human consumption without deleterious health risks                                                                                                             |
| PPCPs              | Pharmaceutical and personal care products                                                                                                                                         |
| Recycled water     | Water recycled from the effluent of sewage treatment plants (synonymous with reclaimed water)                                                                                     |
| Reclaimed<br>water | Water which, as a result of treatment of waste, is suitable for a direct<br>beneficial use or a controlled use that would not otherwise occur<br>(synonymous with recycled water) |
| Teratogenicity     | The potential of a chemical to cause structural malformations or defects in offspring; the production of structural malformations or defects in offspring.                        |
| TrOC               | Trace organic chemical                                                                                                                                                            |
| Toxicant           | A chemical that can produce adverse health effects                                                                                                                                |
| TU                 | Toxicity unit                                                                                                                                                                     |
| Yeast bioassay     | High-throughput cell-based in vitro toxicity testing method developed to target levels of chemical toxicity pathways.                                                             |
| WWTP               | Wastewater treatment plant                                                                                                                                                        |

## Acknowledgements

This work was supported by the Australian Water Recycling Centre of Excellence, with additional funding from the Australian Antarctic Division (Department of the Environment), and support from RMIT University, University of Melbourne, Victoria University, Veolia and TasWater.

The Authors would also like to thank Michael Packer (AAD) and Kathy Northcott (Veolia) for their help with this program, particularly their insights into the operation of the AWTP and other WWTPs.

## **1** Introduction

The Australian Antarctic Division (AAD) operates Australia's Davis Station in the Antarctic. In 2005, Davis station's wastewater treatment plant failed, and since then untreated, macerated effluent has been discharged to the ocean. Although disposal of the station's effluent by this method meets the minimum requirements specified by international agreements, an environmental impact assessment has identified that there is a clear a need for enhanced sewage treatment

The AAD and has decided to install a new advanced water treatment plant (AWTP) in conjunction with a secondary waste water plant to ensure discharges to the environment meet world's best practice. The AWTP will also have the potential to augment water supply to the station. The process requirements of the AWTP are small (~20 kL/day) and although the inputs to the plant are source defined, without the dilution achieved in large scale water treatment plants, there is potential for spikes in chemical contaminants.

The AWTP was designed and built by Victoria University, the University of Melbourne, the Australian Antarctic Division, Veolia Water and AECOM, and supported by the Australian Water Recycling Centre of Excellence. The plant was operated at a waste water treatment plant (WWTP) in Tasmania (Selfs Point) and underwent testing over twelve months. The feed water (secondary effluent) is treated through a multi-barrier process involving ozonation, ceramic microfiltration, biologically activated carbon filtration, reverse osmosis, ultraviolet disinfection and chlorination. The outputs of the plant are a brine concentrate from the reverse osmosis barrier and water suitable for recycle.

The overall aim of the 'Demonstration of robust water recycling' project is to trial a recycling system capable of producing recyclable water that requires minimal operator involvement (making it suitable for small and/or remote communities) and a non-toxic by-product wastewater (that can be discharged to the environment with minimal impact).

#### 1.1 Scope of works

The scope of the TrOCs monitoring team was limited to the analysis of field-collected water samples on a monthly basis, with additional desk-top examination of the data to assess the environmental and human health risks of trace organic chemicals observed in the brine concentrate and product water, respectively.

### 1.2 Aims and Objectives

The broad aim of the TrOCs monitoring was to demonstrate that the water recycling process produces a saline effluent fit for disposal to the aquatic environment, and a product water fit for recycling. In that context, specific objectives for the TrOCs monitoring team were to:

- 1. Obtain background water quality information from the Selfs Point WWTP (to provide background information for demonstration plant operators)
- 2. Verify that the demonstration plant is operating effectively by screening feed, barriers' and outlet waters for a wide range of TrOCs using multi-residue mass spectrometric techniques.
- 3. Verify that the demonstration plant is operating effectively by screening feed, RO concentrate and outlet waters for TrOCs of the same mode of biological action ("hormonal activity") using recombinant receptor-reporter gene bioassays.
- 4. Verify that the demonstration plant is operating effectively by screening feed, barriers' and outlet waters for nitrosamines.

5. Assess whether the water recycling process produces a brine concentrate fit for disposal in the Antarctic marine environment, and a recyclable product water through comparison of TrOC detection data with regulatory guidelines and ecotoxicology data.

#### 1.3 Sub-project outcome

By June 2015, the 'Robust Recycling' team, Australian Antarctic Division, Australian Water Recycling Centre of Excellence and project partners will have information on the extent of residues of TrOCs in the plant Feed Water, environmental discharge (brine concentrate) and final Product (recycled) water, as well as after selected barriers within the plant, with which to assess overall and barrier performance in removing TrOCs, and potential risks to the environment and human heath.

## 2 Summary of methods

## 2.1 Sampling and analysis



Figure 2.1 Summary of sampling locations at AWTP

Unfiltered water samples were collected from up to 8 locations in the AWTP (Figure 2.1) and sent stored on ice to the project's laboratory in the School of Chemistry at the University of Melbourne. Within 24-48 hours, water samples were split into four exact volumes for the different sample process procedures: 1 L each for GC-MS analysis and yeast bioassay, 0.5 L for nitrosamine analysis, 0.2 L for LC-MS analysis with addition of appropriate buffers and/or internal standards or other reagents. All samples were extracted by solid phase extraction (SPE) methods using appropriate sorbent media for each method: Empore™ SPE disks (SDB-XC for GC and C18FF for bioassay), coconut charcoal cartridges (nitrosamines), and SepPak PS-2 and AC-2 SPE cartridges for LC-MS. The samples were refrigerated at the SPE extract stage until analysis. For full details of sample extraction, see Appendix A

Professor Kadokami (University of Kitakyushu (UKK)) has innovative gas chromatography – and liquid chromatography mass spectrometry (GC-MS and LC-MS/MS) systems that together can screen samples for more than 1200 TrOCs (Kadokami et al. 2005; Kong et al. 2015). These multi-residue methods were used to screen for organic pollutants that would not be otherwise possible to measure. Full analytical method details are provided in Appendix A

NDMA concentrations were determined by UNSW Water Research Centre using the method described in McDonald et al. (2012). This method separates the desired analytes from the sample mixture using solid phase extraction (SPE), with determination using gas chromatography (GC) - tandem mass spectrometry (MS-MS) with electron ionization (EI). The target chemicals were N-nitrosodimethylamine (NDMA), N-

nitrosomethyethylamine (NMEA), N-nitrosodiethylamine NDEA), N-nitrosodipropylamine (NDPA), Nnitrosodi-n-butylamine (NDBuA), N-nitrosodiphenylamine (NDPhA), N-nitrosopyrrolidine (NPyr), Nnitrosopiperidine (NPip), and N-nitrosomorpholine (NMorph).

Managing the effects of large numbers of contaminants ultimately requires information on sample toxicity and receptor activity. In that context, measurement of toxicity on sample extract was conducted using the PB test method of Shiraishi et al. (1999), with data reported as the ICR50, which is a measure of how much the sample has to be concentrated to inhibit luminescence in 50% of the photobacteria. Full toxicity test method details are provided in Appendix B

Measurement of estrogenic and xenobiotic activity was undertaken with a yeast two-hybrid recombinant receptor-reporter gene bioassay system in accordance with the method of Shiraishi et al. (2000) using yeast cells (*Saccharomyces cerevisiae* Y190) into which the human estrogen receptor ER $\alpha$  or the estrogen receptor from Japanese medaka (*Oryzias latipes*) or human constitutive adrostane receptor CAR had been inserted (hER $\alpha$ , medER $\alpha$  and CAR, respectively; Nishikawa et al. 1999). Measurement of AhR activity was undertaken in accordance with the method of Kamata et al. (2009) using yeast cells (YCM3) carrying the response element for the AhR complex, XRE5 (Miller 1999).

Positive controls were used with all assays: hER $\alpha$  and medER $\alpha$  assays, 17 $\beta$ -estradiol (Wako Pure Chemical Industries Ltd, Osaka, Japan); CAR, p-tert-octylphenol (OP; Wako Pure Chemical Industries Ltd, Osaka, Japan); AhR,  $\beta$ -naphthoflavone ( $\beta$ NF; Wako Pure Chemical Industries Ltd, Osaka, Japan). A solvent (vehicle) control (DMSO, Nacalai Tesque Inc., Kyoto, Japan) was used in all cases. The agonist activities of the A/D and MeOH florisil fractions of the sample extracts were measured; data is reported as the sum of the activity observed in all two fractions. The bioassay method's limits of reporting (LOR) for the hER $\alpha$  and medER $\alpha$  systems were 0.1 and 0.3 ng/L 17 $\beta$ -estradiol equivalents (EEQ), respectively; for the CAR assay, 7 ng/L OPEQ; and for the AhR bioassays, 2 ng/L  $\beta$ NFEQ. Full toxicity test method details are provided in Appendix B

### 2.2 Methods for describing limits of reporting (LOR)

#### 2.2.1 GC-MS and LC-MS AIQS-DB data:

The AIQS-DB method identifies and quantifies chemical substances by using a combination of retention times, mass spectra, and internal standard calibration curves registered in the database. In order to obtain accurate results, a GC–MS has to be adjusted to designated conditions that are almost the same as the instrumental conditions when the database was constructed. The results obtained from performance check standards (Naginata criteria sample mix 3: Hayashi Pure Chemical, Osaka, Japan) were evaluated against three criteria (Kadokami et al. 2004, 2005): spectrum validity, inertness of column and inlet liner, and stability of response. When the results for the performance check standards satisfy the criteria, the difference between the predicted and actual retention times is less than 3 s, and chemical concentrations obtained (excluding some highly polar compounds which are difficult to measure by GC), are comparable to those obtained by conventional internal standard methods (Kadokami et al. 2005; Miyazaki et al. 2011).

The GC-MS and LC-MS AIQS-DB methods were validated using a performance-based approach that included analysis of procedural blanks, duplicate samples, and certified reference materials (NIST 1941a and NMIJ CRM7302-a (Marine Sediment for Heavy Metals; National Metrology Institute of Japan, Tsukuba, Japan)). In addition, recoveries of 41 surrogates (a range of substances covering the broad range of physico-chemical properties of the targeted chemicals) spiked into the samples were examined to ascertain whether each analysis was correct or not.

#### 2.2.2 Bioassay data:

Measurement of receptor activity was undertaken with a yeast-based bioassay system using yeast cells (*Saccharomyces cerevisiae* Y190) in accordance with the method of Shiraishi et al. 2000 (described in English in Allinson et al. 2008). Agonist activity was recorded as the EC×10 (defined as the concentration of test solution producing a chemiluminescent signal 10 times that of the blank (negative) control). Positive controls were run alongside test samples, with the bioassay LOR determined as the EC×10 for the positive controls.

#### 2.2.3 NDMA data:

NDMA concentrations were determined by UNSW Water Research Centre using the method described in McDonald et al. (2012). This method separates the desired analytes from the sample mixture using solid phase extraction (SPE), with determination using gas chromatography (GC) - tandem mass spectrometry (MS-MS) with electron ionization (EI). The use of direct isotope analogues for isotope dilution analysis of all analytes ensures accurate quantification, accounting for analytical variabilities that may occur during sample processing, extraction and instrumental analysis. The LORs reported by the determining laboratory were determined according to Method 1030 C from Eaton et al. (2005).

#### 2.2.4 Data analysis:

Only detects are presented in the report. The aim of our report is to present the number of observations of TrOCS in water samples from our surveys of the AWTP samples in 2014-15. In that context, we are interested in positive detects, and any exceedances of regulatory or ecotoxicological benchmarks. For that reason we have truncated the data, and for the most part report and discuss only positive detects.

Extraction of water samples using SPE cartridges or disks generally involves the conditioning and washing of the cartridges with small volumes deionised water and solvents prior to, and post-loading of the samples on to the cartridge. This provides an avenue for sample contamination in the extracting laboratory. Laboratory blanks are used to provide an understanding of the potential level of laboratory contamination. These are samples of deionised water of the same volume as the extracted samples that are subjected to the sample preparation steps as the real samples. Thereafter, blank subtraction of the data can be performed to remove the potentially confounding effect of laboratory contaminants from the data. However, blank subtraction will naturally result in under-estimation of analyte concentrations in test samples (because the volume of water used for the laboratory blanks is two orders of magnitude higher than that used during sample preparation), so determination of target analytes in the blanks significantly overestimates the level of laboratory contamination cf. the test SPE extraction. Consequently, in those few occasions where chemicals were observed in laboratory blanks, the blank subtraction value was set at 10% of the maximum observed concentration in the blank.

Lack of chemical detected above LOR does not mean there is none of the chemical in a sample. Nor does "ND" (not detected). Obviously, if one uses a numerical value as a surrogate for "ND," the more "ND" there are for any particular chemical, the lower the average, median, and minimum values would be. So, what value to use when no chemical is detected in a sample? That depends on what one is going to do with the data.

Over the years, researchers have used a range of intuitive practices to select a value for an analyte when the response is below formal LORs. Some analyst chemists use 0, other analysts use the instrumental LOD, others use the formal method LOR itself, others split the difference and use half of the LOR, or some percentage between 0 and the LOR. Finally, some analytical chemists regard almost all values below LOR as indeterminate and report as "ND" or "<LOR" and leave the value missing (UNLESS there is a statistical need to provide a value, i.e. to allow for robust temporal and spatial comparisons).

Where statistical comparisons required all data to have a numerical value, then <LOR values were set at 0.5LOR. When calculating toxicity units (TUs), any 'trace' levels were set at 0.5LOR, and non-detects were set at "0" as per the methods followed.

#### 2.3 Toxicity assessment

#### 2.3.1 Environmental risk assessment

The project addressed its objective to determine *whether the water recycling process produces a brine concentrate fit for disposal in the Antarctic marine environment*, through comparison of TrOC detection data with regulatory guidelines and ecotoxicology data. For all samples with TrOC detections above the limits of reporting (LOR), concentrations were compared with the ANZECC and ARMCANZ (2000) water quality guidelines trigger values for water discharged to receiving marine aquatic environments. For TrOCs without guideline levels, thereafter the potential risk from the observed water concentrations was assessed using risk quotients (RQs) and TUs methods.

The risk quotient (RQ) method is a deterministic method in which a risk ratio is generated, expressed as a measured environmental concentration (MEC) divided by a no-effect concentration (NEC). The RQ is calculated using:

$$RQ = MEC/NEC$$
(1)

An RQ of more than 1 is considered problematic for the receiving aquatic environment.

In this study, we applied the method used by the WHO (2002) in their hyper-conservative analysis of long-term chemical exposure effects of NDMA for aquatic plants and animals. In this case, we used our median and maximum measured concentrations as estimated exposure values (EEV) to generate general case ( $RQ_{median}$ ) and the worse case ( $RQ_{max}$ ) scenarios using equation (2). The estimated no-effects value (ENEV), was calculated by dividing a critical toxicity value (CTV; an acute ecotoxicology value obtained from the literature), by an application factor (usually 100).

$$RQ = EEV/ENEV$$
(2)

Again, only an RQ of more than 1 is considered problematic for the receiving aquatic environment. Short term EC50 (lethal/effect) data for fish, aquatic invertebrates, aquatic plants and algae was first sourced from US EPA (2015), then from ECHA (2015) and Kegley et al. (2011), or failing those sources, by searching the internet for information.

The TU concept compares the detected concentration of chemical with the respective toxicity of the substance. We calculated the TU for each chemical in each water sample according to Liess and Von Der Ohe (2005):

$$Log TU = log (Cp / Toxp)$$
(3)

where TU is the toxic unit of the chemical (presented as the logarithm); Cp is the concentration of chemical observed in the sample; and Toxp is a measure of the toxicity value of the chemical. The potential effect on aquatic organisms of individual chemicals was assessed for all chemicals detected in water samples by calculating log<sub>10</sub>TU<sub>f</sub> using the maximum observed concentration and short-term (acute) ecotoxicological data for fish, aquatic invertebrates, aquatic plants and algae sourced first from US EPA (2015), then from ECHA (2015) and Kegley et al. (2011), or failing those sources, by searching the

internet for information. Liess and Von Der Ohe (2005) reported a significant change in community structure between  $\log_{10}$ TU(D. magna) < -4 and >-3, and so a  $\log_{10}$ TU of -3 or higher is considered to pose some risk to assessed organisms.

## 2.3.2 The relevance of the *in vitro* bioassay (bioanalytical methods) data to drinking water guidelines

In the recombinant receptor-reporter gene bioassays used in this study, whole cells were exposed to mixtures of interest and monitored for specific responses. For a chemically-induced impact to occur, a chemical has to interact with a receptor at the molecular level. Organisms, however, have defense and detoxification mechanisms that can prevent molecules reaching the receptors, and it is only when those defense mechanisms are overcome that observable receptor activity occurs. This means that *in vitro* effects are likely to occur and be observable at significantly lower doses than *in vivo* effects (Figure 2.2); it also means that a chemical can be toxic *in vitro* but not *in vivo* (enHealth 2012).





The other important limitation to these *in vitro* assays that needs to be made very clear is that there is no incorporation of toxicokinetics. Toxicokinetics include absorption, distribution, metabolism and excretion (ADME), all of which can significantly affect the ability of a substance to reach a receptor (enHealth 2012).

*In vitro* assays were developed for screening purposes and there is still much debate about their ability to predict whole organism effects and so regulatory agencies have generally been wary of using *in vitro* bioassay data to predict human health effects. Because of their limitations, the enHealth (2012) committee suggest that *in vitro* bioassays should not be used as a measure of effect, but confirmed they are well suited to monitoring water quality (exposure assessment), as they are significantly faster and cheaper than *in vivo* exposures and are amenable to high throughput screening.

#### Information Box 1: In Vitro Assays

The molecular mechanism of the *in vitro* tests used in this study can be described using the mode of action of estrogen action. In that case, the effects of endogenous and/or xenoestrogens are mediated by the estrogen receptor (ER). Inactive ERs exist in large complexes associated with heat shock proteins. When a compound binds to the ER, the heat shock proteins dissociate, and a conformational change activates the receptor and causes dimerisation. The resulting homodimer complex (HDC) shows high affinity for EREs (estrogen response elements) in the regulatory region of estrogen-inducible genes in the nucleus. After binding to the ERE, the HDC recruits transcription factors to the target gene promoter, leading to gene activation and transcription, and subsequent translation of RNA into the proteins that ultimately stimulate the observed responses.



The **Yeast Two-Hybrid Assay** that is used in this project is based on genetically engineered yeast cells into which specific DNA sequences called estrogen response elements (ERE) have been added and linked to a reporter gene. Essentially, the assay works by quantifying the ability of a chemical to stimulate ER-dependent transcriptional activity. In this assay, reporter gene expression is the result of a cascade of molecular events following receptor activation, considered to provide a more integral indication of the estrogenic activity of a compound than competitive ligand binding or cell proliferation assays. Specifically, the **Yeast Two-Hybrid Assay** is based on the ligand-dependent interaction of two proteins, a hormone receptor and a coactivator, and hormonal activity is detected by  $\beta$ -galactosidase activity.

Two expression plasmids, pGBT9-HRLBD and pGAAD424-TIF-2 are introduced into yeast cells, which carry a  $\beta$ -galactosidase reporter gene. Because the yeast strain harbours a GAL4 binding site upstream of a *lacZ* reporter gene, GAL4DBD-ER binds to the regulatory region of the *lacZ* gene. If GAL4DBD-ER interacts with GAL4AD-coactivator, GAL4AD recruits the basal

transcriptional machinery to the promoter region of the *lacZ* gene, resulting in production of  $\beta$ galactosidase. Therefore, the  $\beta$ -galactosidase activity corresponds to the strength of interaction between ER and coactivator. The protein-protein interaction between ER and coactivator are strictly dependent on the presence of 17 $\beta$ -estradiol



#### Adapted from:

- 1. WHO/IPCS (2002). Global assessment of the state-of-the-science of endocrine disrupters. Edited by: Damstra T, Barlow S, Bergman A, Kavlock R, Van Der Kraak G. World Health Organisation / International Program on Chemical Safety.
- 2. Kinnberg K (2003). Evaluation of in vitro assays for determination of estrogenic activity in the environment (No. 43). Danish Environmental Protection Agency, Danish Ministry of the Environment.
- 3. Nishikawa J, Saito K, Goto J, Dakeyama F, Matsuo M, Nishihara T (1999). New screening methods for chemicals with hormonal activities using interaction of nuclear hormone receptor with coactivator. Toxicology and Applied Pharmacology 154:76-83.
- 4. Nishihara T, Nishikawa J, Kanayama T, Dakeyama F, Saito K, Imagawa M, Takatori S, Kitagawa Y, Shinjiro H, Utsumi H (2000). Estrogenic activities of 517 chemicals by yeast two-hybrid assay. Journal of Health Science 46:282-298.
- 5. Shiraishi F, Shiraishi H, Nishikawa J, Nishihara T, Morita M (2000). Development of a Simple Operational Estrogenicity Assay System using the Yeast Two-Hybrid System. Journal of Environmental Chemistry 10:57-64.

Testing with in vitro bioassays has some advantages over analytical techniques, such as the relatively low capital equipment needs and staff operating costs, the possibility of high-throughput methods, the possibility of identifying mixture effects, and their preference over in vivo tests due to lower ethical permissions requirements (Sjerps et al. 2012; enHealth 2012). However, factors that are hindering the use of *in vitro* bioassays in regulatory frameworks include:

- 1. The costly and time-consuming formal validation procedures.
- 2. The need for a battery of *in vitro* tests to realistically replace one *in vivo* test
- 3. The need for proven relevance of the use of *in vitro* bioassays for drinking water

In the above context, the recombinant receptor-reporter gene assays were used only to measure the activation of a receptor, and to allow for quantification of 'hormonal' activity without having to know the precise chemical make up of the sample. In that context, **the assay data** provides a measure of the efficiency of TrOCs removal in the AWTP, but **are but not used for comparison with regulatory guidelines for environmental or drinking water quality**.

#### 2.3.3 Human toxicity assessment of product water

Organic chemicals are usually present in Australian drinking water in very low concentrations because, for the most part, our drinking water comes from protected or otherwise very little contaminated catchments. In our case, our 'catchment' is a WWTP, and our drinking water source the WWTP effluent, so a wide range of chemicals could be present in the AWTP product water were it not working properly. Some chemicals will still get through, generally at low sub-µg/L concentrations. So what might the effect of drinking these chemicals day after day be?

The project addressed its objective *to determine whether the water recycling process produces a recyclable product water* through comparison of TrOC detection data with regulatory guidelines and toxicology data. A drinking water guideline value is the concentration that does not result in any significant risk to the health of the consumer over a lifetime of consumption and is consistent with water of good quality (NHMRC & NRMMC 2011; NRMMC, EPHC & NHMRC 2008). As a first step in the risk assessment process, for all product water samples with TrOC detections above the limits of reporting (LOR), concentrations were compared with water quality guidelines, e.g. the ADWG (NHMRC & NRMMC 2011) or AGWR (NRMMC, EPHC & NHMRC 2008) for potable and recycled water. Where a guideline value did not exist, a draft drinking water guideline (Draft DWG) was calculated.

The ADWG and AGWR guideline values are generally based on the highest dose that causes no adverse effects in long-term experiments on laboratory animals (NOEL or NOAEL levels), and it was this process that was followed for those chemicals that did not have a current drinking water guideline. The draft DWG was calculated using the following formula:

In using equation (4), it is necessary to make some assumptions.

1. Experiments on laboratory animals provide toxicological data on the effects of exposure to chemical agents. Ideally, these are long-term studies involving ingestion of the compound dissolved in water or present in food, and the guideline value is based on the highest dose that

causes no adverse effects (NOAEL) in long-term experiments on laboratory animals. Where there was no published NOEL or NOAEL (which was the case for about two thirds of the chemicals observed in the product water), then short-tem (acute) toxicity data the LD50<sub>rat</sub> was used, with additional safety factors.

- 2. The average human weight is 70 kg
- 3. The proportion of chemical ingested through water is set at 10%
- 4. The amount of water consumed is 2L per adult human per day
- 5. Safety factors can be used to address the uncertainty inherent in extrapolating from animal studies to human populations (NHMRC & NRMMC 2011). Where an NOEL was available, the safety factor applied was 100 (to account for variations between rats and humans, because rats may be less sensitive than humans, and in many cases human sensitivity is unknown). Where there was no long-term information, and acute toxicity study data was used, a safety factor of 1000 was applied

### 3 Results and Discussion

#### 3.1 Status of works

Water samples have been collected as 'grab' or spot samples by project staff from up to eight locations in the demonstration plant. Samples were directly collected in glass amber bottles, stored on ice, and then at 4°C until processed at University of Melbourne by Mayumi Allinson and then either analysed in-house or despatched to partner laboratories for analysis. Twelve rounds of sampling were undertaken between March 2014 and April 2015, and while not all TrOCs monitoring team testing was undertaken on all samples on every occasion (see Table 3.1), all of the data is available for this report.

| Sample round      | N  | GC-MS-DB | LC-MS-DB | Bioassay | nitrosamines |
|-------------------|----|----------|----------|----------|--------------|
| R1 (26 Mar 2014)  | 12 | Reported |          | Reported |              |
| R2 (7 May 2014)   | 10 | Reported | Reported | Reported |              |
| R3 (6 Aug 2014)   | 13 | Reported | Reported | Reported |              |
| R4 (20 Aug 2014)  | 19 | Reported | Reported |          |              |
| R5 (29 Aug 2014)  | 24 | Reported | Reported | Reported | Reported     |
| R6 (29 Sep 2014)  | 28 | Reported | Reported | Reported | Reported     |
| R7 (25 Nov 2014)  | 25 | Reported | Reported | Reported | Reported     |
| R8 (16 Dec 2014)  | 22 | Reported | Reported | Reported | Reported     |
| R9 (20 Jan 2015)  | 23 | Reported | Reported | Reported | Reported     |
| R10 (17 Feb 2015) | 23 | Reported |          | Reported | Reported     |
| R11 (17 Mar 2015) | 14 | Reported |          | Reported |              |
| R12 (14 Apr 2015) | 14 | Reported |          | Reported |              |

Table 3.1 Summary of sampling activity and status of samples in analytical process

N, number of samples; In train, samples have entered analytical process, i.e. sample preparation, extraction and elution, chemical analysis; data available, final data checking underway prior to write up by team; reported, data incorporated into project reporting

Feed water only tested; , three barriers tested (Feed water, RO concentrate, Plant outlet); , eight barriers tested (Feed water, Post ozone, Post MF, Post BAC, RO concentrate, Post RO, Post UV, Plant outlet)

The project addressed its first objective (*to obtain background water quality information from the chosen validation WWTP*) by collecting samples in March, May and August 2014 (R1-3, respectively), and subjecting them to multi-residue and bioassay screening. Collection, processing and analysis of the samples provided an ideal opportunity to refine project methods. Unless otherwise stated, the data collected in R1-3 was of sufficient quality that it has been included in analysis of subsequent sampling rounds.

#### 3.2 Multi-residue data

We addressed the project's second objective (*to verify that the demonstration plant is operating effectively by screening feed, barriers' and outlet waters for a wide range of TrOCs*) using multi-residue mass spectrometric techniques in house and through collaboration with Professor Kiwao Kadokami (University of Kitakyushu, Japan)

There are more than 300 target TrOCs in the Australian Drinking Water Guidelines (ADWG; NHMRC & NRMMC 2011) and/or Australian Guidelines for Water Recycling (AGWR; NRMMC, EPHC &

NHMRC 2008) for potable and recycled water. The 344 chemicals in these two sets of guidelines have a wide range of structures, physico-chemical characteristics and toxicities. To measure 344 TrOCs usually means the use of many analytical methods, with the concomitant financial implications associated with conducting multiple quantitative tests. Such analytical programs will be problematic for small and/or remote facilities where both the analytical cost per unit of water produced becomes prohibitive and the deployment of expertise to site is also costly (relative to large facilities). Options to overcome these real and perceived barriers to chemical measurement include measuring a reduced number of chemicals and/or to use new rapid screening methods.

The selection of a representative subset of chemicals to monitor from the many TrOCs known to be present in wastewaters is a difficult task. It is known that the number and type of wastewaterderived chemicals is related to the type of treatment process operating in a WWTP, its 'catchment' or sources of water, and the physico-chemical properties and biodegradability of chemicals. One option is to simply adopt a set of indicators chemicals that has been used and approved by regulatory authorities elsewhere. In that context, reduced lists of wastewater-derived chemicals that might be useful in the assessment of indirect/direct-potable-reuse systems include:

- In the USA, Drewes et al. (2008) list of 64 'indicator,' or 'surrogate' chemicals (Table A2).
- In Western Australia, Water Corporation's set of 12 organic chemicals termed recycled water quality indicators' to represent a much larger group of chemical hazards (Table A3; Water Corporation 2013)

The relevance of Drewes et al. (2008) or Water Corporation (2013) or any other list of surrogate chemicals for our purposes is debateable, in part because of the limited overlap between such lists and the more than 300 chemicals in the ADWG and AGWR documents. For instance, only 29 of the 64 compounds in Drewes et al. (2008) list are on both the ADWG and AGWR lists. The overlap between the Water Corporation (2013) list and the chemicals in the ADWG and AGRW documents is similarly low, with only 2 of the 12 chemicals on both lists. Furthermore, using a list of surrogates may not reduce analytical costs as much as one might expect. For instance, Drewes et al.'s (2008) list still requires significant resources since analysis of the 64 chemicals requires sixteen separate methods, while at least 7 methods are required to determine the twelve chemicals on the Water Corporation (2013) list, with many complex sample preparation and analytical methods (Table A2, A3).

The project team considered the published indicator lists, but in the end determined that it was <u>not</u> the purpose of the monitoring program to provide the AAD with a recommended list of indicator chemicals for the future operation of the AWTP at Davis Station. The determination was made because it *is* known that the number and type of wastewater-derived chemicals is related to the type of treatment process operating in a WWTP and its source water. In that context, the AWTP's feed water during the trials at Selfs Point will be very different to the feed delivered from the secondary treatment plant upstream of the AWTP when it is installed and operated at Davis Station. Therefore, determination of an indicator list must be based on the number and type of chemicals found at Davis Station and the relative risk of their being observed in the feed to the AWTP.

The project team also determined that it was not the purpose of the monitoring program to recommend to the AAD how to measure TrOCs in any operational performance assurance program when the AWTP is at Davis Station. Once the AAD has determined which surrogate (performance) TrOCs it wishes to monitor, and the method it wishes to use (i.e. spot vs. passive vs on-line sampling) then the number and type of analytical screens can be determined.

The considerations of the previous two paragraphs notwithstanding, the ADWG and AGWR guidelines and Drewes et al. (2008) or Water Corporation (2013) lists of surrogates are well-known to regulators in Australia and so it's perhaps not unreasonable to compare the numberof TrOCs screened by the multi-residue methods with these lists. In that context, approximately half of the TrOCs in the ADWG and AGWR guidelines (~100 and 80 chemicals, respectively), approximately half the TrOCs in Water Corporation (2013) list, and approximately one quarter of the TrOCs in Drewes et al. (2008) list are in one of (or both of) the two multi-residue screens used by this project, suggesting that even though we chose not to screen for either of these latter two pre-selected list of indicator chemicals, the multi-residue methods still provided a representative indicator subset of chemicals found in WWTP effluent.

When considering the number and type of TrOCs to monitor, the project team was limited only by the need *to verify that the demonstration plant was operating effectively*. In essence, we needed to ensure our screening covered the widest possible range of physico-chemical characteristics found in TrOCs in WWTP effluent. For this study, key physico-chemical parameters of interest are molecular weight, water solubility (as expressed by a chemical's octanol-water partition coefficient logKow or logP), and affinity for organic carbon (as expressed by a chemical's organic carbon partition coefficient logKoc). Molecular weight is a reasonable proxy for molecular size, which affects membrane and RO removal performance; Kow and Koc affect a molecule's solubility, and in turn their removal by barriers such as BAC.



Figure 3.1 Summary of molecular weight distribution of screened chemicals
, arithmetic mean; dividing line within data boxes, data median; upper and lower boundaries of boxes, 75th and 25th percentile of data; error bars represent the range.

Approximately two-thirds of the TroCs investigated in this study were screened using Kadokami et al.'s (2005) GC-MS-AIQS-DB method. This method can screen samples for 940 semi-volatile TrOCs, including numerous halogenated and non-halogenated hydrocarbons; polycyclic aromatic hydrocarbons (PAHs); polychlorinated biphenyl compounds (PCBs); a range of pharmaceutical and personal care products (PPCPs); and agricultural compounds (see Table A4). We also used an LC-TOF-MS method that can screen samples for 265 non-volatile and polar chemicals, including 180 agricultural compounds and 70 pharmaceuticals (antibiotics, antidepressants, beta blockers, analgesics, etc.; see Table A5). In that context, the two chromatographic methods screened for chemicals in the range 89 – 916 amu (Figure 3.1), logKow in the range -4.2 – 18.3 and logKoc in the range 0.0 – 7.5 (Figure 3.2). These ranges are better than Water Corporation (2013) or Drewes et al. (2008) lists, further suggesting the multi-residue methods covered a representative set of chemicals found in WWTP effluent.





♦, arithmetic mean; dividing line within data boxes, data median; upper and lower boundaries of boxes, 75th and 25th percentile of data; error bars represent the range.

We were able to unambiguously detect almost 80 chemicals in the feed water (Table 3.2) using the multi-residue methods, of which 40% were detected on more than one occasion, including disinfection by-products (1), pesticides (7), non-steroidal pharmaceuticals (1), antibiotics (7), disinfection by-products (1), pesticides (7), antibiotics (8), other pharmaceuticals (18), antioxidants (2), fatty acid methyl esters (5), fire retardants (3), fragrances (3), sterols/stanols (11), and other miscellaneous organic chemicals (20). Of those chemicals that were observed in more than 80% of samples, some were natural compounds, such as coprostanol and stigmasterol, but the majority were antibiotics and PPCPs, including chemicals such as carbamazepine, sulfamethoxazole and triclosan.

Of the 18 chemicals in the Drewes et al. (2008) list that are in one of (or both of) the two multiresidue screens used in this study, 13 (72%) were observed on one or more occasion in the feed water; of the 5 chemicals in the Water Corporation (2015) list that are in one of (or both of) the two multi-residue screens used in this study, 1 (20%) was observed on one or more occasion in the feed water. This again suggests the multi-residue methods used in this study covered a representative set of chemicals found in WWTP effluent.

Only twenty (20) chemicals were observed in the product water (Table 3.3), all at sub-µg/L levels. In that context, the GC-MS-DB and LC-MS-DB data suggests **most chemicals are being removed from the feed water by the treatment train** (see Figure 3.3). Only one chemical was observed in more than 50% of product water samples (2-pheonoxy ethanol), indeed almost half of the chemicals were observed only once. Half the chemicals observed in the feedwater were close to their respective LORs, and all chemicals observed on more than one occasion were of the same order of magnitude as their LOR. The 20 chemicals observed in the product water included other pharmaceuticals (2), antioxidants (1), fatty acid methyl esters (2), fire retardants (2), fragrances (5), sterols/stanols (2) and other miscellaneous organic chemicals (6). There are no ADWG guideline values for any of the chemicals we detected in the product water, and of the nine chemicals that have AGWR guideline values, **no residue exceeded its listed AGWR level** (see Table 3.3). Moreover, all residues were at least four orders of magnitude lower in concentration than the draft DWGs calculated by this study. Taking these assessments together, we can conclude that **at the concentrations observed in this study, the TroCs observed in the product water would be unlikely cause adverse effects** were this water to be recycled into a potable water supply.

One final way to assess whether the AWTP was working efficiently was to analyse the number and type of chemicals observed in brine (or RO) concentrate. Only sixteen (16) chemicals were observed in the brine concentrate (Table 3.4), all bar two of which were at sub- $\mu$ g/L levels. In that context, the GC-MS-DB and LC-MS-DB data again suggests most chemicals are being removed from the feed water by the treatment train (see Figure 3.3). The 16 chemicals observed in the brine (or RO) concentrate included other pharmaceuticals (5), antioxidants (1), fatty acid methyl esters (2), fire retardants (1), fragrances (3), and other miscellaneous organic chemicals (4). In part, this stream represents the brine stream that will be discharged to the environment. As such it is most relevant to compare chemical residues in the discharge water with the ANZECC & ARMCANZ (2000) water quality guidelines for protection of 95% marine organisms. In that context, there are only thirteen (13) chemicals with a marine water quality trigger values (see Table 3.5); nine of these chemicals were in this study's screening regime, but none were observed in the brine concentrate. However, by again using the World Health Organisation's hyper-sensitive approach to assessing the risks of chemicals to aquatic organisms, we can a say that our objective with this testing was achieved because we find that the RQs were well below 1 (Table 3.6). Moreover, the log<sub>10</sub>TUs for fish and invertebrates were well below -3 (Table 3.7; with the exception of metformin, log<sub>10</sub>TU -2.9). Taking these assessments together, we can conclude that that releases at the concentrations observed in this study would be unlikely cause adverse effects on populations of aquatic organisms in the receiving environment.

| Chemical                      | n  | FOD | Average | Median | Min  | Max  | DI* | WCI* |
|-------------------------------|----|-----|---------|--------|------|------|-----|------|
|                               |    |     | (µg/L)  |        |      |      |     |      |
| 2-(Methylthio)-benzothiazole  | 14 | 100 | 0.28    | 0.26   | 0.14 | 0.53 |     |      |
| Candesartan                   | 7  | 100 | 0.10    | 0.11   | 0.06 | 0.12 |     |      |
| Carbamazepine                 | 14 | 100 | 1.03    | 0.83   | 0.42 | 2.81 | Ο   | D    |
| Cholesterol                   | 14 | 100 | 1.54    | 1.70   | 0.02 | 3.02 |     |      |
| Coprostanol                   | 14 | 100 | 2.43    | 2.01   | 0.67 | 4.21 |     |      |
| Coprostanone                  | 14 | 100 | 0.39    | 0.30   | 0.12 | 0.71 |     |      |
| Cotinine                      | 7  | 100 | 0.18    | 0.07   | 0.04 | 0.54 |     |      |
| Diethyltoluamide              | 14 | 100 | 0.15    | 0.11   | 0.02 | 0.50 | Ο   |      |
| Diltiazem                     | 7  | 100 | 0.14    | 0.15   | 0.09 | 0.17 |     |      |
| Diuron                        | 7  | 100 | 0.11    | 0.11   | 0.03 | 0.17 |     |      |
| Lidocaine                     | 7  | 100 | 0.18    | 0.18   | 0.13 | 0.25 |     |      |
| Roxithromycin                 | 7  | 100 | 0.22    | 0.20   | 0.13 | 0.38 |     |      |
| Sotalol                       | 7  | 100 | 1.59    | 0.52   | 0.31 | 5.00 |     |      |
| Sulfamethoxazole              | 7  | 100 | 0.95    | 0.55   | 0.08 | 3.09 | Ο   |      |
| Sulfapyridine                 | 7  | 100 | 0.57    | 0.53   | 0.46 | 0.75 |     |      |
| Trimethoprim                  | 7  | 100 | 0.17    | 0.16   | 0.09 | 0.24 |     |      |
| Epicoprostanol                | 13 | 93  | 0.76    | 0.71   | 0.28 | 1.47 |     |      |
| Ergosterol                    | 13 | 93  | 1.01    | 0.72   | 0.20 | 2.29 |     |      |
| Thiabendazole                 | 6  | 86  | 0.04    | 0.04   | 0.03 | 0.04 |     |      |
| Cholestanol                   | 11 | 79  | 0.68    | 0.57   | 0.15 | 1.36 |     |      |
| Tris(2-chloroethyl) phosphate | 11 | 79  | 0.31    | 0.31   | 0.22 | 0.42 | Ο   |      |
| 1,4-Dichlorobenzene           | 10 | 71  | 0.08    | 0.08   | 0.04 | 0.13 |     |      |
| 4-tert-Octylphenol            | 10 | 71  | 0.05    | 0.04   | 0.02 | 0.09 |     |      |
| Azithromycin                  | 5  | 71  | 0.09    | 0.09   | 0.05 | 0.14 |     |      |

Table 3.2 Summary of chemicals detected in AWTP feed water using the GC- and/or LC-MS multi-residue methods

Table 3.2 (continued)

| Chemical                              | n  | FOD | Average | Median | Min  | Max  | DI* | WCI* |
|---------------------------------------|----|-----|---------|--------|------|------|-----|------|
| beta-Sitosterol                       | 10 | 71  | 0.84    | 0.58   | 0.18 | 2.35 |     |      |
| Clarithromycin                        | 5  | 71  | 0.13    | 0.14   | 0.06 | 0.18 |     |      |
| Erythromycin                          | 5  | 71  | 0.23    | 0.22   | 0.21 | 0.28 | Ο   |      |
| Griseofulvin                          | 5  | 71  | 0.08    | 0.07   | 0.03 | 0.15 |     |      |
| Metformin                             | 5  | 71  | 0.69    | 0.13   | 0.06 | 1.98 |     |      |
| Propranolol                           | 5  | 71  | 0.07    | 0.07   | 0.06 | 0.07 | Ο   |      |
| Tributyl phosphate                    | 10 | 71  | 0.11    | 0.11   | 0.04 | 0.23 |     |      |
| Triclosan                             | 10 | 71  | 0.10    | 0.08   | 0.06 | 0.21 | Ο   |      |
| Tris(1,3-dichloro-2-propyl) phosphate | 10 | 71  | 0.14    | 0.13   | 0.10 | 0.22 | Ο   |      |
| Campesterol                           | 9  | 64  | 0.29    | 0.19   | 0.08 | 0.75 |     |      |
| Stigmasterol                          | 9  | 64  | 0.88    | 0.42   | 0.13 | 2.86 |     |      |
| Atenolol                              | 4  | 57  | 3.95    | 2.90   | 0.76 | 9.25 | Ο   |      |
| 24-Ethyl coprostanol                  | 8  | 57  | 0.41    | 0.30   | 0.12 | 1.25 |     |      |
| Metoprolol                            | 3  | 43  | 0.26    |        | 0.21 | 0.32 |     |      |
| Simazine                              | 3  | 43  | 0.04    |        | 0.04 | 0.05 |     |      |
| Stigmastanol                          | 6  | 43  | 0.10    | 0.11   | 0.03 | 0.20 |     |      |
| 2-Methoxyphenol                       | 5  | 36  | 0.05    | 0.04   | 0.02 | 0.08 |     |      |
| 4-Methyl-2,6-di-t-butylphenol (BHT)   | 5  | 36  | 0.13    | 0.13   | 0.09 | 0.18 |     |      |
| 2(3H)-Benzothiazolone                 | 5  | 36  | 0.21    | 0.15   | 0.03 | 0.61 |     |      |
| 3,4-Dichloroaniline                   | 4  | 29  | 0.10    | 0.08   | 0.07 | 0.17 |     |      |
| Amitriptyline                         | 2  | 29  | 0.05    |        | 0.04 | 0.06 |     |      |
| Bis(2-ethylhexyl)phthalate (DEHP)     | 4  | 29  | 0.53    | 0.19   | 0.19 | 1.56 |     |      |
| Dibenzyl ether                        | 4  | 29  | 0.11    | 0.11   | 0.07 | 0.12 |     |      |
| Dipyridamole                          | 2  | 29  | 0.06    |        | 0.06 | 0.06 |     |      |
| Disopyramide                          | 2  | 29  | 0.02    |        | 0.01 | 0.02 |     |      |

Table 3.2 (continued)

| Chemical                     | n | FOD | Average | Median | Min  | Max  | DI* | WCI* |
|------------------------------|---|-----|---------|--------|------|------|-----|------|
| e-Caprolactam                | 4 | 29  | 0.13    | 0.13   | 0.10 | 0.17 |     |      |
| 2,6-Dichlorophenol           | 3 | 21  | 0.04    |        | 0.01 | 0.07 |     |      |
| Benzyl alcohol               | 3 | 21  | 0.23    |        | 0.06 | 0.36 |     |      |
| Dimethyl phthalate           | 3 | 21  | 0.21    |        | 0.06 | 0.29 |     |      |
| Ethanol, 2-phenoxy-          | 3 | 21  | 0.21    |        | 0.16 | 0.24 |     |      |
| Ibuprofen                    | 3 | 21  | 0.21    |        | 0.15 | 0.32 | ۵   |      |
| 1,2-Dichlorobenzene          | 2 | 14  | 0.13    |        | 0.01 | 0.25 |     |      |
| 4-Nonylphenol                | 2 | 14  | 0.29    |        | 0.22 | 0.36 | ۵   |      |
| 2,4,5-Trichlorophenol        | 2 | 14  | 0.04    |        | 0.03 | 0.05 |     |      |
| 2,5-Dichlorophenol           | 2 | 14  | 0.03    |        | 0.03 | 0.03 |     |      |
| Caffeine                     | 2 | 14  | 0.08    |        | 0.02 | 0.13 | ۵   |      |
| L-Menthol                    | 2 | 14  | 0.02    |        | 0.02 | 0.03 |     |      |
| Methyl myristate             | 2 | 14  | 0.05    |        | 0.04 | 0.07 |     |      |
| Dicyclohexylamine            | 1 | 14  | 0.55    |        |      |      |     |      |
| 2-tert-Butyl-4-methoxyphenol | 1 | 7   | 0.28    |        |      |      |     |      |
| 2,6-Dinitrotoluene           | 1 | 7   | 0.80    |        |      |      |     |      |
| 3-&4-Methylphenol            | 1 | 7   | 0.02    |        |      |      |     |      |
| alpha-Terpineol              | 1 | 7   | 0.12    |        |      |      |     |      |
| Bifenthrin                   | 1 | 7   | 0.47    |        |      |      |     |      |
| Elaidic acid methyl ester    | 1 | 7   | 0.06    |        |      |      |     |      |
| Methyl decanoate             | 1 | 7   | 0.03    |        |      |      |     |      |
| Methyl dodecanoate           | 1 | 7   | 0.05    |        |      |      |     |      |
| Methyl palmitate             | 1 | 7   | 0.01    |        |      |      |     |      |
| Methyl palmitoleate          | 1 | 7   | 0.12    |        |      |      |     |      |
| Phenylethyl alcohol          | 1 | 7   | 0.04    |        |      |      |     |      |

#### Table 3.2 (continued)

| Chemical                   | n | FOD | Average | Median | Min | Max | DI* | WCI* |
|----------------------------|---|-----|---------|--------|-----|-----|-----|------|
| Piperonyl butoxide         | 1 | 7   | 0.03    |        |     |     |     |      |
| Simetryn                   | 1 | 7   | 0.07    |        |     |     |     |      |
| Thymol                     | 1 | 7   | 0.03    |        |     |     |     |      |
| trans-Decahydronaphthalene | 1 | 7   | 0.02    |        |     |     |     |      |

| Name                                    | n | FOD | Average | Median | Min  | Max  | AGWR | Draft DWG |
|-----------------------------------------|---|-----|---------|--------|------|------|------|-----------|
|                                         |   |     |         | (µg/L) |      |      |      | (µg/L)    |
| Ethanol, 2-phenoxy-                     | 6 | 67  | 0.28    | 0.20   | 0.01 | 0.89 |      | 4400      |
| (9Z)-9-Tetradecenoic acid, methyl ester | 3 | 33  | 0.04    |        | 0.01 | 0.08 |      | 10500     |
| Benzyl alcohol                          | 3 | 33  | 0.34    |        | 0.07 | 0.85 |      | 18000     |
| 1-Nonanol                               | 3 | 33  | 0.01    |        | 0.01 | 0.01 |      | 12400     |
| 4-Methyl-2,6-di-t-butylphenol (BHT)     | 2 | 22  | 0.04    |        | 0.03 | 0.06 |      | 3000      |
| 4-Nonylphenol                           | 2 | 22  | 0.04    |        | 0.03 | 0.05 | 500  |           |
| Dimethylterephthalate                   | 2 | 22  | 0.04    |        | 0.01 | 0.06 | 2    |           |
| Octanol                                 | 2 | 22  | 0.03    |        | 0.03 | 0.04 |      | 17500     |
| Tributyl phosphate                      | 2 | 22  | 0.03    |        | 0.03 | 0.04 | 0.5  |           |
| Tris(2-chloroethyl) phosphate           | 2 | 22  | 0.08    |        | 0.03 | 0.14 | 1    |           |
| Diethyltoluamide                        | 2 | 22  | 0.02    |        | 0.01 | 0.02 | 2500 |           |
| 4-tert-Octylphenol                      | 1 | 11  | 0.01    |        |      |      | 59   |           |
| Bisphenol A                             | 1 | 11  | 0.03    |        |      |      | 200  |           |
| 2,4,6-Tribromophenol                    | 1 | 11  | 0.27    |        |      |      |      | 10500     |
| Dimethyl phthalate                      | 1 | 11  | 0.01    |        |      |      | 29   |           |
| Methyl myristate                        | 1 | 11  | 0.03    |        |      |      |      | 10500     |
| alpha-Terpineol                         | 1 | 11  | 0.02    |        |      |      |      | 500       |
| Cholesterol                             | 1 | 11  | 0.05    |        |      |      | 7    |           |
| Coprostanone                            | 1 | 11  | 0.01    |        |      |      |      | n.d.      |
| L-Menthol                               | 1 | 11  | 0.01    |        |      |      |      | 11500     |

**Table 3.3** Summary of chemicals detected in AWTP product water samples

n, number of detections; FOD, frequency of detection; text in <u>blue</u> chemicals detected by GC-MS, in <u>orange</u> by LC-MS; AGWR, Australian Guidelines for Water recycling (NRMMC, EPHC, NHMRC 2008); Draft DWG, drinking water guideline calculated in this study n.d., no data.



Figure 3.3 Summary of chemical detects through the AWTP treatment train

| Name                                    | n | FOD | Average | Median | Min   | Max   |
|-----------------------------------------|---|-----|---------|--------|-------|-------|
|                                         |   |     | (µg/L)  |        |       |       |
| Metformin                               | 5 | 83  | 0.54    | 0.18   | 0.15  | 1.39  |
| Dimethyl phthalate                      | 5 | 56  | 0.038   | 0.037  | 0.007 | 0.063 |
| Benzyl alcohol                          | 4 | 44  | 0.616   | 0.215  | 0.026 | 2.008 |
| Bisphenol A                             | 3 | 33  | 0.022   | 0.022  | 0.015 | 0.028 |
| 1-Nonanol                               | 3 | 33  | 0.014   | 0.015  | 0.010 | 0.016 |
| Ethanol, 2-phenoxy-                     | 3 | 33  | 0.251   | 0.222  | 0.212 | 0.320 |
| Octanol                                 | 2 | 22  | 0.018   |        | 0.006 | 0.030 |
| Tributyl phosphate                      | 2 | 22  | 0.034   |        | 0.017 | 0.050 |
| Tris(2-chloroethyl) phosphate           | 2 | 22  | 0.024   |        | 0.012 | 0.036 |
| 3-&4-Methylphenol                       | 1 | 11  | 0.259   |        |       |       |
| 4-Methyl-2,6-di-t-butylphenol (BHT)     | 1 | 11  | 0.018   |        |       |       |
| 4-tert-Octylphenol                      | 1 | 11  | 0.011   |        |       |       |
| Dimethylterephthalate                   | 1 | 11  | 0.010   |        |       |       |
| (9Z)-9-Tetradecenoic acid, methyl ester | 1 | 11  | 0.033   |        |       |       |
| L-Menthol                               | 1 | 11  | 0.009   |        |       |       |
| Diethyltoluamide                        | 1 | 11  | 0.004   |        |       |       |

**Table 3.4** Summary of chemicals detected in AWTP brine concentrate (RO conc) samples

n, number of detections; FOD, frequency of detection; text in blue chemicals detected by GC-MS, in orange by LC-MS

| Chemical                                       | vater            | In               | Detected?         |                    |     |      |        |  |  |  |  |
|------------------------------------------------|------------------|------------------|-------------------|--------------------|-----|------|--------|--|--|--|--|
|                                                |                  |                  | screens<br>?      |                    | Max |      |        |  |  |  |  |
|                                                | Lev              | el of protect    | cies)             |                    |     | conc |        |  |  |  |  |
|                                                | 99%              | 95%              | 90%               | 80%                | Y/N | Y/N  | (µg/L) |  |  |  |  |
|                                                |                  | Chlorinat        | ed alkanes        |                    |     |      |        |  |  |  |  |
| 1,1,2-trichloroethane                          | 140              | 1900             | 5800 <sup>1</sup> | 18000 <sup>1</sup> | Ν   | -    | -      |  |  |  |  |
| Anilines                                       |                  |                  |                   |                    |     |      |        |  |  |  |  |
| 3,4-dichloroaniline                            | 85               | 150              | 190               | 260                | Y   | Ν    | -      |  |  |  |  |
| Aromatic and PAHs                              |                  |                  |                   |                    |     |      |        |  |  |  |  |
| Benzene                                        | 500 <sup>1</sup> | 700 <sup>1</sup> | 900 <sup>1</sup>  | 1300 <sup>1</sup>  | Ν   | -    | -      |  |  |  |  |
| Naphthalene                                    | 50 <sup>1</sup>  | 70 <sup>1</sup>  | 90 <sup>1</sup>   | 120 <sup>1</sup>   | Y   | Ν    | -      |  |  |  |  |
| Chlorbenzenes and chloronaphthalenes           |                  |                  |                   |                    |     |      |        |  |  |  |  |
| 1,2,4-trichlorobenzene <sup>2</sup>            | 20               | 80               | 140               | 240                | Y   | Ν    | -      |  |  |  |  |
| Phenols and xylenols                           |                  |                  |                   |                    |     |      |        |  |  |  |  |
| Phenol                                         | 270              | 400              | 520               | 720                | Y   | Ν    | -      |  |  |  |  |
| Pentachlorophenol <sup>4</sup> , <sup>2</sup>  | 11               | 22               | 33                | 55 <sup>3</sup>    | Y   | Ν    | -      |  |  |  |  |
| Miscellaneous chemicals                        |                  |                  |                   |                    |     |      |        |  |  |  |  |
| Poly(acrylonitrile-co-<br>butadiene-costyrene) | 200              | 250              | 280               | 340                | Ν   | -    | -      |  |  |  |  |
| Corexit 9527                                   | 230              | 1100             | 2200              | 4400 <sup>3</sup>  | Ν   | -    | -      |  |  |  |  |
|                                                | 01               | ganochlori       | ne insecticid     | les                |     |      |        |  |  |  |  |
| Endosulfan <sup>1</sup>                        | 0.005            | 0.01             | 0.02              | 0.05 <sup>3</sup>  | Y   | Ν    | -      |  |  |  |  |
| Endrin <sup>1</sup>                            | 0.004            | 0.008            | 0.01              | 0.02               | Y   | Ν    | -      |  |  |  |  |
|                                                | Org              | anophospho       | orus insectio     | tides              |     |      |        |  |  |  |  |
| Chlorpyrifos <sup>1</sup>                      | 0.0005           | 0.009            | 0.04 <sup>3</sup> | 0.3 <sup>3</sup>   | Y   | Ν    |        |  |  |  |  |
| Temephos <sup>1</sup>                          | 0.0004           | 0.05             | 0.4               | 3.6 <sup>3</sup>   | Y   | Ν    | -      |  |  |  |  |

**Table 3.5** Trigger values for TrOCs in marine waters at alternative ANZECC levels of protection (adapted from ANZECC & ARMCANZ 2000).

**Notes**: classifications as per ANZECC Water Quality Guidelines (ANZECC & ARMCANZ 2000):

o Most trigger values listed are Moderate reliability figures, derived from acute LC50 data.

- 1. Figure may not protect key test species from chronic toxicity.
- 2. Chemicals for which possible bioaccumulation and secondary poisoning effects should be considered.
- 3. Figure may not protect key test species from acute toxicity (and chronic).
- 4. Tainting or flavour impairment of fish flesh may possibly occur at concentrations below the trigger value

| Chemical                                | MEC    |       | Short term ecotoxicological effect value |                                       |                    | Selected | Risk   | RQmed * | RQmax |
|-----------------------------------------|--------|-------|------------------------------------------|---------------------------------------|--------------------|----------|--------|---------|-------|
|                                         | Median | Max   | Fish <sup>b</sup>                        | Aquatic<br>invertebrates <sup>b</sup> | Algae <sup>b</sup> | CTV      | factor |         |       |
|                                         | (μg/L) |       |                                          | (µg/L)                                |                    |          |        |         |       |
| (9Z)-9-Tetradecenoic acid, methyl ester |        | 0.03  | 389400                                   | -                                     | -                  | 389400   | 100    |         | 8E-06 |
| 1-Nonanol                               |        | 0.02  | 18000                                    | 25000                                 | -                  | 18000    | 100    |         | 9E-05 |
| 3-&4-Methylphenol                       |        | 0.26  | 3360                                     | 5000                                  | -                  | 3360     | 100    |         | 8E-03 |
| 4-Methyl-2,6-di-t-butylphenol (BHT)     |        | 0.02  | 57000                                    | 17000                                 | 400                | 400      | 50     |         | 2E-03 |
| 4-tert-Octylphenol                      |        | 0.01  | 110                                      |                                       |                    | 110      | 100    |         | 1E-02 |
| Benzyl alcohol                          | 0.22   | 2.01  | 15000                                    | -                                     | -                  | 15000    | 100    | 1E-03   | 1E-02 |
| Bisphenol A                             | 0.02   | 0.03  | 9400                                     | 226                                   | -                  | 226      | 100    | 1E-02   | 1E-02 |
| Diethyltoluamide                        |        | 0.00  | 71250                                    | 100000                                | -                  | 71250    | 100    |         | 6E-06 |
| Dimethyl phthalate                      | 0.04   | 0.06  | 58000                                    | -                                     | -                  | 58000    | 100    | 6E-05   | 1E-04 |
| Dimethylterephthalate                   |        | 0.01  | 9600                                     | 30400                                 | 32300              | 9600     | 100    |         | 1E-04 |
| Ethanol, 2-phenoxy-                     |        | 0.320 | 344000                                   |                                       |                    | 344000   | 100    |         | 9E-05 |
| L-Menthol                               |        | 0.01  | 13200                                    | 25000                                 | 20000              | 13200    | 100    |         | 7E-05 |
| Metformin                               | 0.18   | 1.39  | 1000                                     | -                                     | -                  | 1000     | 100    | 2E-02   | 1E-01 |
| Octanol                                 |        | 0.03  | 75000                                    | 93000                                 | -                  | 75000    | 100    |         | 4E-05 |
| Tributyl phosphate                      |        | 0.050 | 4200                                     |                                       | 1100               | 4200     | 100    |         | 1E-03 |
| Tris(2-chloroethyl) phosphate           |        | 0.01  | 190000                                   | -                                     | -                  | 190000   | 100    |         | 6E-06 |
| NDMA                                    | 0.05   | 0.09  | 940000                                   | 300000                                | -                  | 300000   | 100    | 2E-05   | 3E-05 |
| NDEA                                    | 0.03   | 0.05  | 775000                                   | 230000                                | -                  | 230000   | 100    | 1E-05   | 2E-05 |

Table 3.6 Summary of information used to calculate RQ, and calculated RQs for each chemical observed in the brine (RO) concentrate

\* Calculated only for chemical with more than 4 reported residues; MEC, measured environmental concentration

RQ >1 indicates a concentration of significance.
| _                                       | MEC  | Short ter         | hort term (acute) ecotoxicological effect value |                                |                    |      |      |      |       |
|-----------------------------------------|------|-------------------|-------------------------------------------------|--------------------------------|--------------------|------|------|------|-------|
| Chemical                                | Max  | Fish <sup>b</sup> | Aquatic<br>invertebrates <sup>b</sup>           | Aquatic<br>plants <sup>b</sup> | Algae <sup>b</sup> | TUf  | TUzp | TUpl | TUalg |
|                                         |      |                   | (µg/L                                           | .)                             |                    |      |      |      |       |
| (9Z)-9-Tetradecenoic acid, methyl ester | 0.03 | 389400            | -                                               | -                              | -                  | -7.1 |      | -    |       |
| 1-Nonanol                               | 0.02 | 18000             | 25000                                           | -                              | -                  | -6.1 | -6.2 | -    |       |
| 3-&4-Methylphenol                       | 0.26 | 3360              | 5000                                            | -                              | -                  | -4.1 | -4.3 | -    |       |
| 4-Methyl-2,6-di-t-butylphenol (BHT)     | 0.02 | 57000             | 17000                                           | -                              | 400                | -6.5 | -6.0 | -    | -4.4  |
| 4-tert-Octylphenol                      | 0.01 | 110               |                                                 |                                |                    | -4.0 |      |      |       |
| Benzyl alcohol                          | 2.01 | 15000             | -                                               | -                              | -                  | -3.9 |      | -    |       |
| Bisphenol A                             | 0.03 | 9400              | 226                                             | -                              | -                  | -5.5 | -3.9 | -    |       |
| Diethyltoluamide                        | 0.00 | 71250             | 100000                                          | -                              | -                  | -7.2 | -7.4 | -    |       |
| Dimethyl phthalate                      | 0.06 | 58000             | -                                               | -                              | -                  | -6.0 |      | -    |       |
| Dimethylterephthalate                   | 0.01 | 9600              | 30400                                           | -                              | 32300              | -6.0 | -6.5 | -    | -6.5  |
| Ethanol, 2-phenoxy-                     | 0.32 | 344000            |                                                 |                                |                    | -6.0 |      |      |       |
| L-Menthol                               | 0.01 | 13200             | 25000                                           | -                              | 20000              | -6.2 | -6.5 | -    | -6.4  |
| Metformin                               | 1.39 | 1000              | -                                               | -                              | -                  | -2.9 |      | -    |       |
| Octanol                                 | 0.03 | 75000             | 93000                                           | -                              | -                  | -6.4 | -6.5 | -    |       |
| Tributyl phosphate                      | 0.05 | 4200              |                                                 |                                | 1100               | -4.9 |      |      | -4.3  |
| Tris(2-chloroethyl) phosphate           | 0.01 | 190000            | -                                               | -                              | -                  | -7.2 |      | -    |       |
| NDMA                                    | 0.09 | 940000            | 300000                                          | -                              | -                  | -7.0 | -6.5 | -    |       |
| NDEA                                    | 0.05 | 775000            | 230000                                          | -                              | -                  | -7.2 | -6.6 | -    |       |

**Table 3.7** Summary of information used to calculate TU, and calculated TUs for each trophic level for chemicals observed in brine (RO) concentrate

TU >-3 indicates a concentration of signifcance

## 3.3 Bioassay data

The project addressed it's third objective (to verify that the demonstration plant is operating effectively by screening feed, RO concentrate and outlet waters for TrOCs of the same mode of biological action ("hormonal activity")) using recombinant receptor-reporter gene bioassays in house and through collaboration with Dr Daisuke Nakajima and Dr Fujio Shiraishi (National Institute for Environmental Studies (NIES), Tsukuba, Japan).

Sample toxicity was measured using a modified photobacterium test. With this photobacterium test system, the lower the ICR50 reported for the disk extracts, the higher the toxicity of the waters sampled by the disk, with samples considered highly toxic to the photobacterium at an ICR50 < 100, and non-toxic at an ICR50 > 400. In this context, in R1, R2 and R3 only the feed water was tested, whereas the feed water, product water and R0 concentrate was tested in R5-R9. For the purposes of this summary report, unless otherwise mentioned, only the data from R5 – R12 will be discussed.



Figure 3.4 Summary of general toxicity (as measured using P.B. test) Note: the lower the ICR50, the higher the toxicity.

For R5-R9, most of the samples were considered to be only weakly or non- toxic (Figure 3.4), although some of the samples of feed water and RO concentrate were weakly toxic. The product water was non toxic. The lack of toxicity of the brine concentrate samples suggests that were this water to be discharged to the marine environment, it would be unlikely to cause an adverse effect on aquatic organisms.

Many in vitro assays have been developed to screen for chemicals of similar modes of action in natural waters (Escher et al. 2014), including the recombinant receptor-reporter gene assays such as the yeast two-hybrid bioassays used in this study. Recombinant receptor-reporter gene assays, such as the yeast two-hybrid bioassays used in this study, measure the activation of a receptor, and allow for quantification of 'hormonal' activity without having to know the precise chemical make up of the sample. In that context, the bioassays were used as a measure of the performance of the AWTP only, not for comparison with regulatory guidelines.

In R1-R3, very little estrogenic activity was observed in the feed water. Given the data reported by Allinson et al (2010) this was considered unusual. The results of the positive controls run at the same time as the samples suggest the bioassays were performing to expectation, and thus capable of measuring low ng/L levels of hormonal activity. At that time, the samples were tested as a 'whole sample extract' and subsequent fractionation of samples by NIES staff suggested that there were anti-estrogenic chemicals in the samples, and that these anti-estrogenic chemicals were 'masking' the estrogenic activity. Consequently, for R5 – R12 the initial sample extracts were subjected to a florisil fractionation process.





♦, arithmetic mean; dividing line within data boxes, data median; upper and lower boundaries of boxes,
75th and 25th percentile of data; error bars represent the range.

The data (all fractions pooled) obtained for R5 –R12 suggests that there are estrogenic chemicals in the feedwater (hER up to  $\sim$  13 ng/L EEQ; medER, up to  $\sim$  23 ng/L EEQ; Figure 3.5), but that these chemicals are being removed by the treatment train with no ER activity observed in product water or RO concentrate.

The majority of known AhR ligands are coplanar aromatic dioxin-like compounds. For instance, Hilscherová et al. (2000) reported that the three potential classes of compounds with dioxin-like properties that can bind to the AhR were (1) planar hydrophobic aromatic compounds (such as planar congeners of PCBs and PCDD/PCDFs, polychlorinated naphthalenes (PCNs), and several high molecular weight PAHs); (2) poly- and mixed halogenated and alkylated analogues of class (1) compounds (chlorinated xanthenes and xanthones, and polychlorinated diphenyl toluenes, anisols, anthracenes, fluorenes); and (3) a wide range of non-planar, non-aromatic, lipophilic compounds that are transient inducers and weak AhR ligands (includes natural compounds like indoles, heterocyclic amines, and some pesticides and drugs). Most, if not all, of these chemicals might be expected to be adequately sampled by the Empore<sup>™</sup> C18FF disk used in this study.

The data obtained for R5 – R12 suggests that there are chemicals that stimulate the AhR receptor in the feedwater (AhR up to ~ 380 ng/L  $\beta$ -NF EQ; Figure 3.6), but that these chemicals are mostly being removed by the treatment train, with little AhR activity observed in product water or RO concentrate.





◆, arithmetic mean; dividing line within data boxes, data median; upper and lower boundaries of boxes, 75th and 25th percentile of data; error bars represent the range.

The CAR assay responds to a very wide range of xenobiotic chemicals, including chemicals that stimulate the ER and AhR receptors. The CAR data is consistent with that reported for the ER and AhR assays, i.e. that there are chemicals that stimulate the CAR receptor in the feedwater (CAR up to  $\sim 3.4 \,\mu$ g/L OPEQ; Figure 3.7), but that these chemicals are mostly removed by the treatment train.



Figure 3.7 Summary of CAR assay data (R5-R12)

•, arithmetic mean; dividing line within data boxes, data median; upper and lower boundaries of boxes, 75th and 25th percentile of data; error bars represent the range.

## 3.4 Nitrosamines

The project addressed its fourth objective (*to verify that the demonstration plant is operating effectively by screening feed, barriers' and outlet waters for nitrosamines*) through collaboration with Associate Professor Stuart Khan, UNSW.

N-nitrosamines are TrOCs of rapidly growing health and regulatory concern in drinking water and reclaimed effluent. The formation of N-nitrosamines, especially N-nitrosodimethyl-amine (NDMA), in treated wastewater and environmental waters has been known since 1970's, but the recognition of these chemicals as disinfection by-products is relatively recent. N-nitrosamines can be formed during chloramination, chlorination, ozonation, combination of chlorine and ultraviolet, or advanced oxidation process of drinking waters and wastewaters (NHMRC & NRMMC 2011).



Figure 3.8 Summary of NDMA data for sampling rounds R5 – R10.

•, arithmetic mean; dividing line within data boxes, data median; upper and lower boundaries of boxes, 75th and 25th percentile of data; error bars represent the range of reported data (concentrations). LOR, limit of reporting (3 ng/L)

N-nitrosamines were among the highest ranked emerging disinfection by-products in a recent prioritization process for future public health regulation. The World Health Organization Guidelines for Drinking Water Quality have recently included a guideline for NDMA of 100 ng/L. Consistent with this, recent Australian Drinking Water Guidelines (ADWG) have also included a health-based guideline value of 100 ng/L for NDMA (NHMRC & NRMMC 2011), whilst the Australian Guidelines for Water Recycling (Augmentation of Drinking Water Supplies) (AGWR; NRMMC, EPHC, NHMRC 2008) has a guideline level of 10 ng/L (will be reviewed in the next revision of the guidelines). It is against the ADWG and AGWR guideline values that our product water data is assessed.

The project conducted six rounds of sampling for N-nitrosamines in influent, post-barriers and discharge water samples (Table 3.1). An analysis of the data suggests that a small amount of NDMA (< 10 ng/L on average) enters the plant in the feed water (Figure 3.8). The concentration of NDMA then increases post-ozone to~ 45 ng/L, but is not observed in the brine concentrate or in the product water.

The other most consistently observed N-nitrosoamine was NDEA, which was observed in the feed water and all barrier samples (maximum concentration 54 ng/L in RO concentrate), including in the product water at up to 10 ng/L. N-nitrosomorpholine was also observed in the feed water and all barrier samples until the RO concentrate (maximum concentration 53 ng/L in RO concentrate), but not observed in the product water.

We can say that our objective with this testing was achieved, because the **final product water quality meets the ADWG and AGWR levels for NDMA**, specifically because all product water concentrations were well below their respective 100 and 10 ng/L limits.

There is no ANZECC & ARCMANZ (2000) marine water quality guideline value for NDMA. However, by using the World Health Organisation's hyper-sensitive approach to assessing the risks of NDMA to aquatic organisms, we can again say that our objective with this testing was achieved because we find that the RQs for the measured nitrosamines are well below 1 (Table 3.6). Moreover, the log<sub>10</sub>TUs for fish and invertebrates for the measured nitrosamines are well below -3 (Table 3.7). Taking these assessments together, we can conclude that **NDMA releases at the concentrations observed in this study would be unlikely cause adverse effects** on populations of aquatic organisms in the receiving environment.

# 4 Conclusions and Recommendations

In this study we used two chromatographic-mass spectrometric multi-residue methods to screen TrOCs in feed, environmental discharge (a brine concentrate), and product water. We were able to unambiguously detect almost 80 chemicals in the feed water, but only 20 chemicals in the product water and only 16 chemicals in the environmental discharge (brine concentrate). In that context, we conclude that:

- Most of the TroCs were removed from the feed water by the treatment train.
- No residue in the product water exceeded its listed Australian Guidelines for Water Recycling (Augmentation of Drinking Water Supplies) (NRMMC, EPHC, NHMRC 2008) level.
- No residue in the brine concentrate waste stream exceeded an ANZECC & ARMCANZ (2000) water quality guideline trigger value for marine waters,

Consequently, we conclude **that releases of the TrOCs observed at the concentrations observed in this study would be unlikely cause adverse effects** on populations of aquatic organisms in the receiving environment or people drinking the product water.

Sample toxicity and receptor activity measurements of the brine concentrate and product water also suggests that most of the toxic and bioactive TrOCs were being removed by the treatment train.

A small amount of NDMA entered the plant in the feed water, with an additional small amount created by the AWTP itself, but no NDMA was observed post-RO in the environmental discharge water (the brine concentrate) or in the product water. The TrOCs team conducted six rounds of sampling for NDMA through collaboration with a reputable university laboratory, and so this observation is considered to be a real effect. However, experts on reverse osmosis both within and outside the project team consider the complete removal of NDMA by the RO system to be a very unusual observation. Consequently, the first major recommendation from the project team is to:

• Undertake further testing for NDMA across the AWTP's barriers and in the environmental discharge and product water. Screening should be at least monthly for up to 12 months. Because NDMA levels are very low, samples should be analysed simultaneously by two laboratories recognised for their ability to measure ng/L levels of NDMA. Aggregating the data obtained from two laboratories should assure the industry that any lack of NDMA post-RO is a real effect, perhaps leading to new insights for the removal of NDMA from potable and otherwise recycled water.

The objective of the 'Demonstration of Robust Recycling' project is to demonstrate a robust, low chemical use water recycling process that produces a saline effluent fit for disposal in remote locations with minimal operator involvement. One issue with operation of treatment plants in remote areas is that of the logistical difficulties associated with transport of water samples to distant laboratories for analysis. Grab (or spot) samples are commonly used to characterise chemical residues in water samples. The advantage is that the matrix itself is analysed and concentrations can be easily related to toxicity values for assessing exceedances of regulatory

threshold values (TVs) as well as for probabilistic risk assessment. The disadvantage of grab samples is that they may miss a residue peak if they are taken too infrequently. In that context, the second major recommendation from this project team is:

• To trial time integrative passive sampling as a means for cost-effective monitoring of chemical concentrations in feed, environmental discharge and product waters.

Passive sampling devices allow measurement of an average, pseudo-bioavailable concentration over a long period of time (typically in the order of several weeks). In principle, passive samplers can be calibrated so that the time-weighted average concentrations of TrOCs can be determined after the sampler has been exposed in the field. Moreover, many passive samplers are small enough to be sent to and from a treatment facility by post. These attributes may facilitate the abilities of remote communities to ensure adequate removal of TrOCs from an AWTP.

Once the AWTP is commissioned at Davis Station the AAD may need to provide reassurance of adequate TrOCs removal. In that context, the project team recommends that **a determination** of an indicator list be based on the number and type of chemicals found at Davis Station and the relative risk of their being observed in the feed to the AWTP. Once the AAD has determined which surrogate (performance) TrOCs it wishes to monitor, and the method it wishes to use (i.e. spot vs. passive vs. on-line sampling) then the number and type of analytical screens can be determined.

## **5** References

- APVMA (2014). PUBCRIS Public Chemical Registration Information System. Sourced from the Australian Pesticides and Veterinary Medicines Authority at <u>https://portal.apvma.gov.au/pubcris</u>
- Drewes JE, Sedlak D, Snyder S, Dickenson E (2008). Development of indicators and surrogates for chemical contaminant removal during wastewater treatment and reclamation. WateReuse Foundation, Alexandria, VA.
- Eaton AD, Clesceri LS, Rice EW, Greenberg AE (Eds.) (2005). Standard methods for the analysis of water and wastewater. American Public Health Association, Washington DC, USA.
- enHealth (2012). The role of toxicity testing in identifying toxic substances: A framework for identification of suspected toxic compounds in water. Department of Health and Ageing, Canberra.
- Kadokami K, Tanada K, Taneda K, Nakagawa K (2004). Development of a novel database for simultaneous determination of hazardrous chemicals. Bunseki Kagaku 53(6): 581–588.
- Kadokami K, Tanada K, Taneda K, Nakagawa K (2005). Novel gas chromatography–mass spectrometry database for automatic identification and quantification of micropollutants. J Chromatogr A 1089: 219–226.
- Kong L, Kadokami K, Wang S, Duong HT, Chau HTC (2015). Monitoring of 1300 organic micropollutants in surface waters from Tianjin, North China. Chemosphere 122: 125–130.
- McDonald JA, Harden NB, Nghiem LD, Khan SJ (2012). Analysis of N-nitrosamines in water by isotope dilution gas chromatography–electron ionisation tandem mass spectrometry. Talanta 99: 146–154.
- Miyazaki T, Kadakami K, Sonoda Y, Jinya D, Yamagami T, Toubou K, Ogawa H (2011). Reproducibility of measurement results by automated identification and quantification system with database for GC/MS. Bunseki Kagaku 60, 543–556. NCBI (2014).
- PubChem database. National Center for Biotechnology Information, U.S. National Library of Medicine, Bethesd, a MD, USA. Available at: <u>https://pubchem.ncbi.nlm.nih.gov</u>
- NICNAS (2014). National Industrial Chemicals Notification and Assessment Scheme. Available at: http://www.nicnas.gov.au/regulation-and-compliance/aics/aics-search-page
- NHMRC & NRMMC (2011). Australian Drinking Water Guidelines Paper 6 National Water Quality Management Strategy. National Health and Medical Research Council, National Resource Management Ministerial Council, Commonwealth of Australia, Canberra.
- NRMMC, EPHC, NHMRC 2008. Australian guidelines for water recycling: managing health and environmental risks (Phase 2): Augmentation of drinking water supplies. National Resource Management Ministerial Council, Environment Protection and Hertigae Council, National Health and Medical Research Council, Commonwealth of Australia, Canberra.
- Sjerps R, Baken K, van der Burg B, Kienle C, Schriks M (2012). Position paper how bioassay derived data can be appleid for water quality assessment. Available at: www.demeau-fp7.eu
- TGA (2014). Therapeutical Goods Adminsitration Australian Register of Therapeutic Goods Available at: https://www.ebs.tga.gov.au
- University of Hertfordshire (2014). The Pesticide Properties DataBase (PPDB) developed by the Agriculture & Environment Research Unit (AERU), University of Hertfordshire, 2006-2014. Available at:http://sitem.herts.ac.uk/aeru/iupac/index.htm

Appendices

# **Appendix A: Micro-contaminant assessment**

### Background

Recycling of water for recreational and potable use is a key issue in securing water supply and providing community resilience to variable water supply and climatic events. The pathogen status of recycled water is a key regulatory issue. It dominates the design, technology choice and operational practice of recycled water facilities. However, as well as pathogens such as bacteria, virus, helminths and protozoa, municipal wastewaters may contain a large number of chemicals. More than 100,000 chemicals are registered at EINECS (European inventory of existing chemical substances) and around 30,000 to 70,000 chemicals are used daily (European Commission, 2011).

Traditionally, wastewater treatment facilities are designed to reduce environmental nutrients such as nitrogen, phosphorus and readily assimilated carbon rich chemicals to levels that, upon discharge to receiving waters, ensure no detrimental eutrophication effects in the environment. However, there are some chemicals that are directly toxic to organisms living in receiving waters, while others may elicit more subtle effects, including genotoxic or endocrine disrupting (EDCs) outcomes. Managing the effects of such contaminants ultimately requires information on both effluent toxicity and chemical concentrations. Equally, both of these issues are important to community re-use of waste water, particularly direct or indirect recycle to potable. The Australian Drinking Water Guidelines (ADWG; NHMRC & NRMMC 2011) and Australian Guidelines for Water Recycling (AGWR; NRMMC, EPHC & NHMRC 2008) provide an overview of the maximum recommended concentration of a range of chemicals (344 in total) that fall into a variety of categories including disinfection by-products [DBP's; 18 chemicals], pesticides [160 chemicals], pharmaceuticals and personal care products (PPCP's; 82 chemicals], industrial chemicals [41 chemicals or classes of chemicals], antioxidants [5 chemicals], chelating agents [4 chemicals], flame retardants [4 chemicals], fragrances [7 chemicals], plasticizers [4 chemicals], surfactants [3 chemicals], sterols [3 chemicals], phytochemicals [1 chemical], and hormones [12 chemicals]. Some chemicals are prescribed in both the ADWG and AGWR and the maximum recommended levels often differ.

The design of the Advanced Water Treatment Plant (AWTP) for Davis Station, whilst primarily focussed on pathogen removal, specifically considered the removal of micro-contaminants in its design. Micro-contaminant reduction in both the product water and in the wastewater discharged is of interest. In particular, a ceramic membrane with active ozone followed by biological activated carbon was chosen specifically prior to reverse osmosis, UV and chlorine treatments to avoid the use of chloramine for membrane protection, produce disinfection by-products that are predominately highly charged and easily removed by reverse osmosis and break down of organic compounds. The barrier configuration chosen for the AWTP is unique and although the role of barriers such as ozonation and reverse osmosis have been studied in detail in isolation, the expected combined micro-contaminant removal effect of the AWTP configuration was unknown and needed to be tested.

The wide structural variety of organic chemicals found in wastewaters has historically meant many analytical methods have had to be used to cover the large number of known chemicals, with the concomitant financial implications associated with conducting multiple quantitative tests. This is an

issue even for large recycling facilities, where the expense of operating or outsourcing the operation of the necessary analytical equipment are combined with a wide range of site sampling, sample stabilization and sample transport protocols. Such analytical programs become even more problematic for small and/or remote facilities where both the analytical cost per unit of water produced becomes prohibitive and the deployment of expertise to site is also costly (relative to large facilities). Indeed, in the case of the AWTP, there are times of the year where deployment of expertise to site is impossible. Bearing these factors in mind, it is evident, that the cost of regular (i.e. weekly or monthly) measurement of all chemicals listed in the ADWG or AGWR would preclude the recycling to potable of water from small and remote facilities.

Preliminary screening of samples using rapid assessment tools that allow sample batching and simple sampling and stabilization protocols is an increasingly attractive prospect for waterways managers and is considered as essential to this project. Rapid screening does not preclude the innovative use of more traditional chemical analytical techniques, such as gas chromatography-mass spectrometry (GC-MS). For instance, Kadokami et al. (2005) developed a new method combining a mass-structure database with GC-MS to create a system (Automated Identification and Quantification System: AIQS-DB) that can screen samples for 940 semi-volatile trace organic chemicals (TrOCs), including numerous halogenated and non-halogenated hydrocarbons; polycyclic aromatic hydrocarbons (PAHs); polychlorinated biphenyl compounds (PCBs); a range of pharmaceutical and personal care products (PPCPs); and agricultural compounds (see Table A3). Regular additions to the database means the number of TrOCs will grow considerably and there is a good opportunity to show significant overlap with the ADWG and AGWR lists into the future. Importantly, the analytical technique involves a single sample preparation and analytical step. Kadokami and his team have also developed a multi-residue method for liquid chromatography linked to time of flight mass spectroscopy (LC-TOF-MS) analysis that can screen samples for 265 nonvolatile compounds, including 180 agricultural compounds and 70 pharmaceuticals (antibiotics, antidepressants, beta blockers, analgesics, etc.). The complete range of chemicals analysed in this screen is provided in Table A4.

The AIQS-DB method identifies and quantifies chemical substances by using a combination of retention times, mass spectra, and internal standard calibration curves registered in the database. In order to obtain accurate results, a GC-MS and LC-TOF-MS has to be adjusted to designated conditions that closely match the instrumental conditions when the database was constructed. For GC-MS analysis, the results obtained from performance check standards are evaluated against three criteria (Kadokami et al. 2004; 2005): spectrum validity, inertness of column and inlet liner, and stability of response. When the results for performance check standards satisfy the criteria, the difference between the predicted and actual retention times is less than 3 s, and chemical concentrations obtained are comparable to those obtained by conventional internal standard methods (Kadokami et al. 2005; 2009). The method detection limits (MDL) for most of the target substances from the GC-MS, as estimated from concentration ratio and the instrument detection limit (IDL), are from 0.01 to 0.1  $\mu$ g/L

The LC-MS AIQS-DB method has been newly developed with Time-of-Flight-mass spectrometry. High resolution, high sensitivity, and new TOF-MS methodology has made a multi-screen of non-volatile TrOCs possible. By utilising 125 model compounds with a new solid-phase extraction method, the method detection limits of 70% of model compounds is in the range 2.5-5 ng/L.

Not all of the chemicals listed in the AIQS screen database are relevant to the screening of wastewater. A typical example for 120 compounds is shown in Table A1. The table also summarises the occurrence of these chemicals in WWTP effluents in Victoria (39 sites; Allinson, unpublished data) and candidate chemicals for indicators of treatment performance (from Drewes et al. 2008). It is interesting to note that of the 120 compounds listed, 62 have been detected in the screen of WWTPs in Victoria, 28 are listed as indicator compounds by Drewes et al. (2008) but, as noted earlier, there is only an overlap of 15 compounds between those detected in WWTP effluents and the indicator compounds of Drewes et al. (2008).

The 64 indicator compounds recommended by Drewes et al. (2008) are shown in Table A2, cross-referenced to the presence in the AIQS-DB method (GC-MS and/or LC-TOF-MS).

The 12 indicator compounds recommended by Water Corporation (2013) are shown in Table A3, cross-referenced to the presence in the AIQS-DB method (GC-MS and/or LC-TOF-MS).

In this study we used two chromatographic-mass spectrometric multi-residue methods to screen for ~1250 TrOCs in the AWTP feed, post-barrier and product water (see Tables A4 and A5). Approximately half of the TrOCs in the ADWG and AGWR guidelines (~100 and 80 chemicals, respectively), approximately half the TrOCs in Water Corporation (2013) list, and approximately one quarter of the TrOCs in Drewes et al. (2008) list are in one of (or both of) the two multi-residue screens, suggesting that even though we chose not to screen for a pre-selected list of indicator chemicals, the multi-residue methods still provided a representative indicator subset of chemicals found in WWTP effluent.

| Category                        | Compounds                           | <sup>1</sup> MDL<br>(μg/L) | <sup>2</sup> Occurrence in<br>VIC WWTP<br>effluent | <sup>3</sup> Indicator<br>Candidates<br>in WRRF<br>Report |
|---------------------------------|-------------------------------------|----------------------------|----------------------------------------------------|-----------------------------------------------------------|
| Ph-analgesic                    | Acetylsalicylic acid (Aspirin)      | 0.01                       | no                                                 | yes                                                       |
| Ph-antiepileptic                | Carbamazepine                       | 0.01                       | yes                                                | yes                                                       |
| Ph-antifungal                   | Crotamiton                          | 0.01                       | yes                                                | no                                                        |
| Ph-insecticide                  | Diethyltoluamide (DEET)             | 0.01                       | yes                                                | yes                                                       |
| Ph-analgesic                    | Ethenzamide                         | 0.01                       | no                                                 | no                                                        |
| Ph-anti-inflammatory            | Fenoprofen                          | 0.01                       | no                                                 | yes                                                       |
| Ph-analgesic                    | Ibuprofen                           | 0.01                       | no                                                 | yes                                                       |
| Ph-topical-analgesic            | L-Menthol                           | 0.01                       | no                                                 | no                                                        |
| Ph-anti-inflammatory            | Mefenamic acid                      | 0.01                       | no                                                 | yes                                                       |
| Ph-anti-histamine               | Methapyrilene                       | 0.01                       | no                                                 | no                                                        |
| Ph-anti-inflammatory            | Naproxen                            | 0.01                       | no                                                 | yes                                                       |
| Ph-analgesic                    | Phenacetin                          | 0.01                       | no                                                 | no                                                        |
| Ph-analgesic                    | Propyphenazone                      | 0.01                       | no                                                 | yes                                                       |
| Ph-topical                      | Squalane                            | 0.025                      | ves                                                | no                                                        |
| Ph-antiseptic                   | Thymol                              | 0.01                       | ves                                                | no                                                        |
| Ph-antibacterial                | Triclosan                           | 0.01                       | no                                                 | ves                                                       |
| stimulant                       | Caffeine                            | 0.01                       | ves                                                | ves                                                       |
| stimulant                       | Nicotine                            | 0.01                       | no                                                 | no                                                        |
| cosmetics/fragrance             | Acetophenone                        | 0.01                       | no                                                 | no                                                        |
| cosmetics/fragrance             | 1-Nonanol                           | 0.01                       | no                                                 | no                                                        |
| cosmetics/fragrance olvent      | Octanol                             | 0.01                       | no                                                 | no                                                        |
| cosmetics/fuel additive/solvent | 2-Methyl-2 4-pentandiol             | 0.01                       | no                                                 | no                                                        |
| cosmetics/fuel                  | Benzyl alcohol                      | 0.01                       | no                                                 | no                                                        |
| fragrance                       | Dinhenyl ether                      | 0.025                      | no                                                 | no                                                        |
| fragrance                       | 2-Hentanol                          | 0.025                      | no                                                 | no                                                        |
| fragrance                       | Butanoic acid butyl ester           | 0.01                       | no                                                 | no                                                        |
| fragrance                       | Phenylethyl alcohol                 | 0.01                       | no                                                 | no                                                        |
| fragrance/solvent               | Anthraquinone                       | 0.01                       | no                                                 | no                                                        |
| nagrance/solvent                | Isosafrole                          | 0.025                      | no                                                 | no                                                        |
| perfumes (solvent               |                                     | 0.01                       | no                                                 | no                                                        |
| perfumes/solvent                |                                     | 0.025                      | 110                                                | 110                                                       |
| surfactant                      | 4-n-Octylphenol                     | 0.01                       | no                                                 | yes                                                       |
| surfactant                      | 4-tert-Octyphenol                   | 0.01                       | yes                                                | yes                                                       |
| surfactant                      | 4-II-Reptylphenol                   | 0.01                       | yes                                                | 10                                                        |
| surfactant                      | 3-&4-Methylphenol                   | 0.02                       | yes                                                | no                                                        |
| surfactant                      | Prienor                             | 0.01                       | yes                                                | yes                                                       |
|                                 | Nonyiphenoi<br>Bishanal A           | 0.01                       | yes                                                | yes                                                       |
|                                 | 1 1 1 Trichlara 2 mathul 2 propagal | 0.01                       | yes                                                | yes                                                       |
|                                 | 1,1,1-Themoro-2-methyl-2-propanol   | 0.01                       | no                                                 | no                                                        |
|                                 | 2-Ethyl-1-nexanol                   | 0.01                       | no                                                 | no                                                        |
|                                 | Bis(2-ethylnexyl)sebacate           | 0.01                       | no                                                 | no                                                        |
| plasticizer                     | Bis(2-ethylnexyl)phthalate (DEHP)   | 0.01                       | yes                                                | yes                                                       |
| plasticizer                     | Butyl benzyl phthalate              | 0.01                       | yes                                                | no                                                        |
| plasticizer                     | וט-n-butyl phthalate                | 0.01                       | yes                                                | no                                                        |
| plasticizer                     | וט-n-octyl phthalate                | 0.01                       | no                                                 | no                                                        |
| plasticizer                     | DI(2-ethylhexyl)adipate             | 0.01                       | no                                                 | no                                                        |
| plasticizer                     | Dicyclohexyl phthalate              | 0.01                       | yes                                                | no                                                        |
| plasticizer                     | Diethyl phthalate                   | 0.01                       | yes                                                | no                                                        |

 Table A1. GC-MS AIQS Chemical List - Relevant to Wastewater 1. MDL: Method Detection Limit; 2. Allinson, 2012

 survey, unpublished data; 3. WRRF Report (Drewes, et al. 2008). ref. Table 8.1; 4. NDMA is under consideration for entry.

| Category        | Compounds                                            | <sup>1</sup> MDL<br>(μg/L) | <sup>2</sup> Occurrence in<br>VIC WWTP | <sup>3</sup> Indicator<br>Candidates |
|-----------------|------------------------------------------------------|----------------------------|----------------------------------------|--------------------------------------|
|                 |                                                      |                            | endent                                 | Report                               |
| plasticizer     | Diisobutyl phthalate                                 | 0.025                      | ves                                    | no                                   |
| plasticizer     | Dimethyl phthalate                                   | 0.01                       | yes                                    | no                                   |
| plasticizer     | Dipentyl phthalate                                   | 0.01                       | no                                     | no                                   |
| plasticizer     | Dipropyl phthalate                                   | 0.01                       | no                                     | no                                   |
| flame retardant | 1,2,5,6,9,10-Hexabromocyclododecane                  | 0.01                       | no                                     | no                                   |
| flame retardant | 2,2',4,4',5,5'-Hexabromobiphenyl (BB-153)            | 0.01                       | no                                     | no                                   |
| flame retardant | 2,2',5,5'-Tetrabromobiphenyl (BB-52)                 | 0.01                       | no                                     | no                                   |
| flame retardant | 2,2'-Dibromobiphenyl (BB-4)                          | 0.01                       | no                                     | no                                   |
| flame retardant | 2,2',4,4',5,5'-Hexabromodiphenyl ether (BDE-<br>153) | 0.01                       | no                                     | no                                   |
| flame retardant | 2,2',4,4'-Tetrabromodiphenyl ether (BDE-47)          | 0.01                       | no                                     | no                                   |
| flame retardant | 2,4-Dibromodiphenyl ether (BDE-7)                    | 0.01                       | no                                     | no                                   |
| flame retardant | Tributyl phosphate                                   | 0.01                       | yes                                    | no                                   |
| flame retardant | Tris(1,3-dichloro-2-propyl) phosphate (TDCPP)        | 0.025                      | no                                     | yes                                  |
| flame retardant | Tris(2-chloroethyl) phosphate (TCEP)                 | 0.01                       | yes                                    | yes                                  |
| flame retardant | Tris(2-chloroethyl)phosphite                         | 0.01                       | no                                     | no                                   |
| flame retardant | Tricresyl phosphate                                  | 0.025                      | no                                     | no                                   |
| flame retardant | Tris(2-ethylhexyl) phosphate (TEHP)                  | 0.025                      | no                                     | yes                                  |
| flame retardant | 1,2,5,6,9,10-Hexabromocyclododecane                  | 0.01                       | no                                     | no                                   |
| flame retardant | 2,2',4,4',5,5'-Hexabromobiphenyl (BB-153)            | 0.01                       | no                                     | no                                   |
| flame retardant | 2,2',5,5'-Tetrabromobiphenyl (BB-52)                 | 0.01                       | no                                     | no                                   |
| flame retardant | 2,2'-Dibromobiphenyl (BB-4)                          | 0.01                       | no                                     | no                                   |
| flame retardant | 2,2',4,4',5,5'-Hexabromodiphenyl ether (BDE-<br>153) | 0.01                       | no                                     | no                                   |
| flame retardant | 2,2',4,4'-Tetrabromodiphenyl ether (BDE-47)          | 0.01                       | no                                     | no                                   |
| DBPs            | 1,4-Dichlorobenzene                                  | 0.01                       | no                                     | yes                                  |
| DBPs            | N-Nitrosodiethylamine (NDEA)                         | 0.01                       | no                                     | no                                   |
| DBPs            | <sup>4</sup> N-Nitrosodimethylamine (NDMA)           | -                          | -                                      | yes                                  |
| insecticide     | 3-Hydroxycarbofuran                                  | 0.01                       | yes                                    | no                                   |
| insecticide     | Allethrin                                            | 0.01                       | yes                                    | no                                   |
| insecticide     | Bendiocarb                                           | 0.01                       | yes                                    | no                                   |
| insecticide     | Carbaryl                                             | 0.01                       | yes                                    | no                                   |
| insecticide     | Ethiofencarb                                         | 0.01                       | yes                                    | no                                   |
| insecticide     | Fenobucarb                                           | 0.01                       | yes                                    | no                                   |
| insecticide     | Methidathion                                         | 0.01                       | yes                                    | no                                   |
| insecticide     | Omethoate                                            | 0.01                       | yes                                    | no                                   |
| insecticide     | p,p'-DDD                                             | 0.01                       | yes                                    | no                                   |
| insecticide     | Piperonyl butoxide                                   | 0.01                       | yes                                    | no                                   |
| insecticide     | Propoxur                                             | 0.01                       | yes                                    | no                                   |
| insecticide     | Thiocyclam                                           | 0.01                       | yes                                    | no                                   |
| insecticide     | Trichlorfon                                          | 0.01                       | yes                                    | no                                   |
| herbicide       | Atrazine                                             | 0.01                       | yes                                    | yes                                  |
| herbicide       | Benfuresate                                          | 0.01                       | yes                                    | no                                   |
| herbicide       | Benoxacor                                            | 0.01                       | yes                                    | no                                   |
| herbicide       | Bensulide                                            | 0.01                       | yes                                    | no                                   |
| herbicide       | Cinmethylin                                          | 0.01                       | yes                                    | no                                   |
| herbicide       | Dichlobenil                                          | 0.01                       | yes                                    | no                                   |
| herbicide       | Hexazinone                                           | 0.01                       | yes                                    | no                                   |
| herbicide       | Methyl dymron                                        | 0.01                       | yes                                    | no                                   |

| Category      | Compounds                              | <sup>1</sup> MDL<br>(μg/L) | <sup>2</sup> Occurrence<br>in VIC WWTP<br>effluent | <sup>3</sup> Indicator<br>Candidates<br>in WRRF |
|---------------|----------------------------------------|----------------------------|----------------------------------------------------|-------------------------------------------------|
| herbicide     | Metolachlor                            | 0.01                       | yes                                                | yes                                             |
| herbicide     | Pebulate                               | 0.01                       | yes                                                | no                                              |
| herbicide     | Propham                                | 0.01                       | yes                                                | no                                              |
| herbicide     | Simazine                               | 0.01                       | yes                                                | yes                                             |
| herbicide     | Terbcarb                               | 0.01                       | yes                                                | no                                              |
| herbicide     | Terbutryn                              | 0.01                       | yes                                                | yes                                             |
| fungicide     | 2-Phenylphenol (OPP)                   | 0.01                       | yes                                                | no                                              |
| fungicide     | Chloroneb                              | 0.01                       | yes                                                | no                                              |
| fungicide     | Oxadixyl                               | 0.01                       | yes                                                | no                                              |
| fungicide     | Simeconazole                           | 0.01                       | yes                                                | no                                              |
| fungicide     | Spiroxamine                            | 0.01                       | yes                                                | no                                              |
| fungicide     | Thiabendazole                          | 0.01                       | yes                                                | no                                              |
| tyre leachate | 1,3-Dicyclohexylurea                   | 0.01                       | no                                                 | no                                              |
| tyre leachate | 2-(Methylthio)-benzothiazol            | 0.025                      | yes                                                | yes                                             |
| tyre leachate | 2-Acetyl-5-methylthiophene             | 0.01                       | no                                                 | no                                              |
| tyre leachate | 2-Cyclohexen-1-one                     | 0.01                       | no                                                 | no                                              |
| tyre leachate | 2-Mercaptobenzothiazole                | 0.01                       | no                                                 | yes                                             |
| tyre leachate | 2-Methoxyphenol                        | 0.025                      | no                                                 | no                                              |
| tyre leachate | 2-Methylbenzothiazole                  | 0.025                      | no                                                 | no                                              |
| tyre leachate | 2(3H)-Benzothiazolone                  | 0.01                       | yes                                                | no                                              |
| tyre leachate | Acetamide, N-(2-phenylethyl)-          | 0.01                       | yes                                                | no                                              |
| tyre leachate | Acetamide, N-phenyl-                   | 0.01                       | no                                                 | no                                              |
| tyre leachate | Benzaldehyde, 4-hydroxy-3,5-dimethoxy- | 0.01                       | no                                                 | no                                              |
| tyre leachate | Benzamide, N-phenyl-                   | 0.01                       | no                                                 | no                                              |
| tyre leachate | Benzothiazole                          | 0.01                       | yes                                                | yes                                             |
| tyre leachate | Cyclohexanamine, N-cyclohexyl-         | 0.01                       | no                                                 | no                                              |
| tyre leachate | Cyclohexanol                           | 0.01                       | no                                                 | no                                              |
| tyre leachate | Ethanol, 2-phenoxy-                    | 0.01                       | yes                                                | no                                              |
| tyre leachate | Formamide, N-cyclohexyl-               | 0.01                       | no                                                 | no                                              |
| tyre leachate | Phenol, 2,6-dimethoxy-                 | 0.01                       | no                                                 | no                                              |
| tyre leachate | Phenol, 4-(phenylamino)-               | 0.01                       | yes                                                | no                                              |
| tyre leachate | Phthalimide                            | 0.01                       | no                                                 | no                                              |
| tyre leachate | Urea, N,N-diethyl-                     | 0.01                       | no                                                 | no                                              |

| Indicator Compound                                        | logK <sub>ow</sub> | GC             | LC       | AIQS  | Category | Sub-category       |
|-----------------------------------------------------------|--------------------|----------------|----------|-------|----------|--------------------|
| Chloroform                                                | 1.97               | GC (unknown)   |          |       | DBP      |                    |
| NDMA                                                      | -0.64              | GC-MS/MS       |          |       | DBP      |                    |
| TDCPP (Tris[1,3-dichloro-2-                               | 1.79               | GC-MS, GC-     | LC-MS/MS | GC-MS | HHC      | flame retardant    |
| propyl]phosphate)                                         |                    | MS/MS          |          |       |          |                    |
| Dichlorprop                                               | 3.43               | GC-MS          |          |       | HHC      | herbicide          |
| Mecoprop                                                  | 3.13               | GC-MS          |          |       | HHC      | herbicide          |
| Estriol (E3)                                              | 2.94               | GC-MS/MS       | LC-MS/MS |       | hormone  |                    |
| Estrone (E1)                                              | 3.69               | GC-MS/MS       | LC-MS/MS |       | hormone  |                    |
| Acetaminophen                                             | 0.34               |                | LC-MS/MS | LC-MS | pharm    | analgesic          |
| Diclofenac                                                | 3.28               |                | LC-MS/MS |       | pharm    | analgesic          |
| Hydrocodone                                               | 2.00               |                | LC-MS/MS |       | pharm    | analgesic          |
| Ibuprofen                                                 | 3.97               | GC-MS          | LC-MS/MS | GC-MS | pharm    | analgesic          |
| Ketoprofen                                                | 3.12               | GC-MS          |          | LC-MS | pharm    | analgesic          |
| Naproxen                                                  | 3.18               | GC-MS          | LC-MS/MS | GC-MS | pharm    | analgesic          |
| Salicylic acid                                            | 2.26               | GC-MS          |          |       | pharm    | analgesic          |
| Dilantin                                                  | 2.47               |                | LC-MS/MS |       | pharm    | anticonvulsant     |
| Meprobamate                                               | 0.70               |                | LC-MS/MS |       | pharm    | antianxiety        |
| Ciprofloxacin                                             | 1.31               |                |          |       | pharm    | antibiotic         |
| Erythromycin-H2O                                          | 2.83               |                | LC-MS/MS | LC-MS | pharm    | antibiotic         |
| Ofloxacin                                                 | 1.49               |                |          |       | pharm    | antibiotic         |
| Sulfamethoxazole                                          | 0.89               |                | LC-MS/MS | LC-MS | pharm    | antibiotic         |
| Trimethoprim                                              | 0.79               |                | LC-MS/MS |       | pharm    | antibiotic         |
| Fluoxetine                                                | 4.35               |                | LC-MS/MS | LC-MS | pharm    | antidepressant     |
| Norfluoxetine                                             |                    |                | LC-MS/MS |       | pharm    | antidepressant     |
| Carbamazepine                                             | 2.67               | GC-MS          | LC-MS/MS | GC-MS | pharm    | antiepileptic      |
| Primidone                                                 | -0.84              | GC-MS          |          |       | pharm    | antiepileptic      |
| Atenolol                                                  | 0.56               | GC-MS          |          | LC-MS | pharm    | beta blocker       |
| Metoprolol                                                | 1.79               | GC-MS/MS       |          | LC-MS | pharm    | beta blocker       |
| Propranolol                                               | 3.10               | GC-MS/MS       |          | LC-MS | pharm    | beta blocker       |
| lopromide                                                 | -3.24              |                | LC-MS/MS |       | pharm    | iodinated X-ray    |
| •                                                         |                    |                |          |       | •        | ,<br>media         |
| Gemfibrozil                                               | 4.39               | GC-MS          | LC-MS/MS |       | pharm    | lipid regulator    |
| Atorvastatin                                              | 6.36               |                | LC-MS/MS |       | pharm    | lowers cholesterol |
| Atorvastatin (o-hydroxy)                                  |                    |                | LC-MS/MS |       | pharm    | lowers cholesterol |
| Atorvastatin (p-hydroxy)                                  |                    |                | LC-MS/MS |       | pharm    | lowers cholesterol |
| Simvastatin hydroxy acid                                  | 4.68               |                | LC-MS/MS |       | pharm    | lowers cholesterol |
| Phenylphenol (o-)                                         | 2.94               |                |          |       | PPCP     | antimicrobial      |
| Triclocarban                                              | 5.74               |                |          |       | РРСР     | antimicrobial      |
| Triclosan                                                 | 5.80               | GC-MS/MS       | LC-MS/MS | GC-MS | PPCP     | antimicrobial      |
| Isobutylparaben                                           | 3.28               |                |          |       | PPCP     | antimicrobial      |
| Propylparaben                                             | 2.93               |                |          |       | PPCP     | antimicrobial      |
| Butylated hydroxyanisole (BHA)                            | 3.50               |                |          |       | РРСР     | antioxidant        |
| EDTA                                                      | -0.43              | GC-NPD,        |          |       | РРСР     | complexing metal   |
| TCEP (Tris[2-chloroehtyl]                                 | 0.48               | GC-MS, GC-     | LC-MS/MS | GC-MS | РРСР     | flame retardant    |
| phosphate)<br>TCPP (Tris[2-chloroisopropyl]<br>phosphate) | 1.52               | MS/MS<br>GC/MS |          |       | РРСР     | flame retardant    |

Table A2. The 64 TRoCs suggested by Drewes, et al. (2008) as indicator chemicals

DBP: disinfection byproduct; HHC: household chemical; pharm: pharmaceutical; PPCP: pharmaceutical and personal care products

| Indicator Compound                          | logKow | GC                  | LC       | AIQS  | Category | Sub-category              |
|---------------------------------------------|--------|---------------------|----------|-------|----------|---------------------------|
| Acetyl cedrene                              | 5.17   | GC-MS               |          |       | РРСР     | fragrance                 |
| Benzyl acetate                              | 1.93   | GC-MS               |          |       | PPCP     | fragrance                 |
| Benzyl salicylate                           | 4.00   | GC-MS               |          |       | PPCP     | fragrance                 |
| Bucinal (p-t-)                              | 4.07   | GC-MS               |          |       | РРСР     | fragrance                 |
| Galaxolide (HHCB)                           | 5.95   | GC-MS               |          |       | РРСР     | fragrance                 |
| Hexyl salicylate                            | 5.06   | GC-MS               |          |       | РРСР     | fragrance                 |
| Hexylcinnamaldehyde                         | 5.33   | GC-MS               |          |       | РРСР     | fragrance                 |
| sobornyl acetate                            | 3.60   | GC-MS               |          |       | РРСР     | fragrance                 |
| Methyl dihydrojasmonate                     | 2.50   |                     |          |       | РРСР     | fragrance                 |
| Methyl ionine (g-)                          | 4.41   | GC-MS               |          |       | РРСР     | fragrance                 |
| Methyl salicylate                           | 2.23   | GC-MS               |          |       | РРСР     | fragrance                 |
| Musk ketone                                 | 3.86   | GC-MS               |          |       | РРСР     | fragrance                 |
| Musk xylene                                 | 3.83   | GC-MS               |          |       | РРСР     | fragrance                 |
| DTNE                                        | 5.29   | GC-MS               |          |       | РРСР     | fragrance                 |
| Terpineol                                   | 3.33   | GC-MS               |          |       | РРСР     | fragrance                 |
| Fonalide (AHTN)                             | 6.37   | GC-MS               |          |       | РРСР     | fragrance                 |
| Caffeine                                    | -0.07  | GC-MS, GC-<br>MS/MS | LC/MS-MS | GC-MS | РРСР     | stimulant                 |
| Bisphenol A                                 | 3.32   | GC-MS, GC-<br>MS/MS |          | GC-MS | РРСР     | plasticizer               |
| Vonylphenol                                 | 5.71   | GC-MS               |          | GC-MS | РРСР     | surfactant                |
| ndolebutyric acid (3-<br>ndolebutyric acid) | 2.30   |                     |          |       | РРСР     | plant growth<br>regulator |
| DEET                                        | 1.96   | GC-MS/MS            | LC-MS/MS | GC-MS | РРСР     | insecticide               |

45

| RWQI                          | logKow | Guideline | Chemical Group                 | Method                                  |                      |
|-------------------------------|--------|-----------|--------------------------------|-----------------------------------------|----------------------|
|                               |        | Value     |                                | Water Corporation (2013)                | This project         |
|                               |        | ng/L      |                                |                                         |                      |
| Estrone                       | 3.7    | 30        | Hormones                       | SPE-LC-MS/MS                            |                      |
| N-nitrosodimethylamine (NDMA) | -0.6   | 100       | DBP                            | SPE-GC-MS isotope dilution              | GC-MS/MS             |
| Octachlorodibenzo-p-dioxin    | 8.4    | 9000      | TrOC                           | HRGC-HRMS                               |                      |
| Trifluralin                   | 5.3    | 50000     | Pesticides                     | SPE-GC-MS                               | AIQS GC-MS           |
|                               |        |           |                                |                                         |                      |
|                               |        | ug/L      |                                |                                         |                      |
| 1,4-Dioxane                   | -0.3   | 50        | Organic chemicals, surfactants | SPE (headspace)-GC-MS                   |                      |
| 1,4-dichlorobenzene           | 3.4    | 40        | Organic chemicals, VOCs        | SPE-GC-MS                               | AIQS GC-MS           |
| 2,4,6-trichlorophenol         | 3.6    | 20        | Phenols                        | SPE-GC-MS                               | AIQS GC-MS           |
| Carbamazepine                 | 2.7    | 100       | РРСР                           | SPE-LC-MS/MS (4 methods)                | AIQS GC-MS and LC-MS |
| Chloroform                    | 1.8    | 200       | DBP                            | Purge & trap GC-MS                      |                      |
| Diclofenac                    | 4.1    | 1.8       | РРСР                           | SPE-LC-MS/MS (4 methods)                |                      |
| EDTA                          | -0.4   | 250       | Organic chemicals              | LLE and derivatization GC-MS, SRM-CE/MS |                      |
| Fluorene                      | 4.2    | 140       | Organic chemicals, PAHs        | SPE-GC-MS                               | AIQS GC-MS           |

Table A3. The 12 TrOCs suggested by Water Corporation (2013) indicator chemicals

 Table A4: Summary of the names, sources and uses of the 940 chemicals in the GC-MS-database method

| Chemical                                         | Use/Origin                                  | Source                     |
|--------------------------------------------------|---------------------------------------------|----------------------------|
| 1-Acetoxy-2-methoxyethane                        | solvent                                     | industry                   |
| 1-Chloronaphthalene                              | PCN                                         | industry                   |
| 1-Methylnaphthalene                              | РАН                                         | industry                   |
| 1-Methylphenanthrene                             | РАН                                         | industry                   |
| 1-Naphthol                                       | intermediate for dyes                       | industry                   |
| 1-Naphthylamine                                  | reagent                                     | business/household         |
| 1-Nitronaphthalene                               | РАН                                         | industry                   |
| 1-Nitropyrene                                    | PAH                                         | industry                   |
| 1-Nonanol                                        | cosmetics/fragrance                         | business/household/traffic |
| 1-Phenylnaphthalene                              | РАН                                         | industry                   |
| 1,1,1-i richioro-2-metnyi-2-propanoi             | plasticizer                                 | business/nousenoid         |
| 1,2-Dibromo-3-chioropropane                      | intermediate in organic synthesis           | industry                   |
| 1,2-Dicilioroberizerie                           |                                             | industry                   |
| 1,2-Dimetrymaphtnalene                           | in organic synthesis/as solvent             | industry                   |
| 1 2 3-Trichloronanhthalene                       | PCN                                         | industry                   |
| 1 2 3-Trimethovyhenzene                          | other                                       | industry                   |
| 1 2 3 4 5 6 7-Hentachloronanhthalene             | PCN                                         | industry                   |
| 1,2,3,4,5,6,8-Heptachloronaphthalene             | PCN                                         | industry                   |
| 1.2.3.4.5.8-Hexachloronaphthalene                | PCN                                         | industry                   |
| 1.2.3.4.6.7-Hexachloronaphthalene                | PCN                                         | industry                   |
| 1,2,3,5-Tetrachloronaphthalene                   | PCN                                         | industry                   |
| 1,2,3,5,7-Pentachloronaphthalene                 | PCN                                         | industry                   |
| 1,2,3,5,7,8-Hexachloronaphthalene                | PCN                                         | industry                   |
| 1,2,3,5,8-&1,2,3,6,8-Pentachloronaphthalene      | PCN                                         | industry                   |
| 1,2,4-Trichlorobenzene                           | in organic synthesis/ as solvent            | industry                   |
| 1,2,4,5-Tetrabromobenzene                        | other                                       | industry                   |
| 1,2,4,5-Tetrachlorobenzene                       | intermediate in organic synthesis           | industry                   |
| 1,2,4,5,6-Pentachloronaphthalene                 | PCN                                         | industry                   |
| 1,2,4,5,6,8-&1,2,4,5,7,8-Hexachloronaphthalene   | PCN                                         | industry                   |
| 1,2,4,5,8-Pentachloronaphthalene                 | PCN                                         | industry                   |
| 1,2,4,6,8-Pentachloronaphthalene                 | PCN                                         | industry                   |
| 1,2,4,7,8-Pentachloronaphthalene                 | PCN                                         | industry                   |
| 1,2,5,6,9,10-Hexabromocyclododecane              | fire retardant                              | business/household         |
| 1,2,5,7-&1,2,4,6-&1,2,4,7-Tetrachloronaphthalene | PCN                                         | industry                   |
| 1,2,5,8-&1,2,6,8-Tetrachloronaphthalene          | PCN                                         | industry                   |
| 1,3-Dichloro-2-propanol                          | Solvent                                     | industry                   |
| 1,3-Dichlorobenzene                              | Solvent/ In organic synthesis               | industry                   |
| 1,3-Dicyclollexylulea                            |                                             | industry                   |
| 1,3-Dinitrohenzene                               | intermediate in organic synthesis           | industry                   |
| 1 3 5-Trichlorobenzene                           | in organic synthesis/ solvent               | industry                   |
| 1.3.5-Trinitrobenzene                            | vulcanization/reagent                       | husiness/household         |
| 1.3.7-&1.4.6-Trichloronaphthalene                | PCN                                         | industry                   |
| 1.4-&1.6-Dichloronaphthalene                     | PCN                                         | industry                   |
| 1,4-&2,3-Dimethylnaphthalene                     | РАН                                         | industry                   |
| 1,4-Benzenediol                                  | developing fluid                            | business/household         |
| 1,4-Dichlorobenzene                              | insecticidal fumigant                       | business/household         |
| 1,4-Dinitrobenzene                               | intermediate in organic synthesis           | industry                   |
| 1,4,5-Trichloronaphthalene                       | PCN                                         | industry                   |
| 1,4,5,8-Tetrachloronaphthalene                   | PCN                                         | industry                   |
| 1,4,6,7-Tetrachloronaphthalene                   | PCN                                         | industry                   |
| 1,5-Dichloronaphthalene                          | PCN                                         | industry                   |
| 1,8-Dimethylnaphthalene                          | РАН                                         | industry                   |
| 2-(Methylthio)-benzothiazol                      | leaching from tire                          | business/household         |
| 2-Acetyl-5-methylthiophene                       | leaching from tire                          | business/household         |
| 2-Acetylaminofluorene                            | reagent                                     | business/household         |
| 2-Amino-4,6-dinitrotoluene                       | explosive                                   | industry                   |
| 2-Amino-b-nitrotoluene                           | otner                                       | industry                   |
| 2-Anisiaine<br>2 Promo 4 6 dichlorooniling       | intermediate for dyes                       | industry                   |
| 2-biomo-4,b-aichioroaniline                      | reagent                                     | pusiness/nousen0ia         |
|                                                  | ourer                                       | industry                   |
| 2-Baloxyellianoi<br>2-Chloro-6-methylphenol      | other                                       | industry                   |
| 2-Chloroaniline                                  | intermediate for dves                       | industry                   |
| 2-Chloronaphthalene                              | PCN                                         | industry                   |
| 2-Chlorophenol                                   | by-product of chlorination/ intermediate in | industry                   |
|                                                  | organic synthesis                           | ···· •                     |

Chemical 2-Cyclohexen-1-one 2-Ethyl-1-hexanol 2-Heptanol 2-Hydroxy-4-methoxy-4'-methyl-benzophenone 2-IsopropyInaphthalene 2-Mercaptobenzothiazole 2-Methoxyphenol 2-Methyl-2,4-pentandiol 2-Methyl-4,6-dinitrophenol 2-Methylaniline 2-Methylbenzothiazole 2-Methylnaphthalene 2-Methylphenanthrene 2-Methylphenol 2-Naphthol 2-Naphthylamine 2-Nitroaniline 2-Nitroanisole 2-Nitronaphthalene 2-Nitrophenol 2-Nitrotoluene 2-Phenylnaphthalene 2-Phenylphenol (OPP) 2-sec-Butylphenol 2-tert-Butyl-4-methoxyphenol 2-tert-Butylphenol 2,2'-Dibromobiphenyl (BB-4) 2,2',4,4'-Tetrabromodiphenyl ether (BDE-47) 2,2',4,4',5,5'-Hexabromobiphenyl (BB-153) 2,2',4,4',5,5'-Hexabromodiphenyl ether (BDE-153) 2,2',5,5'-Tetrabromobiphenyl (BB-52) 2.3-&3.4-Dimethylaniline 2,3-Benzofluorene 2,3-Dichloroaniline 2,3-Dichloronitrobenzene 2,3-Dichlorophenol 2,3,4-Trichlorophenol 2,3,4,5,6-Pentachloro-p-terphenyl 2,3,4,6-Tetrachlorophenol 2,3,5-Trichlorophenol 2,3,5,6-&2,3,4,5-Tetrachlorophenol 2,3,5,6-Tetrachloro-p-terphenyl 2,3,6-Trichlorophenol 2,3,6,7-&1,2,4,8-Tetrachloronaphthalene 2,4-&2,5-Dichloro-p-terphenyl 2,4-Diamino-6-nitrotoluene 2,4-Dibromodiphenyl ether (BDE-7) 2.4-Dichloroaniline 2,4-Dichloronitrobenzene 2.4-Dichlorophenol 2,4-Dimethylphenol 2,4-Dinitroaniline 2,4-Dinitrophenol 2.4-Dinitrotoluene 2,4,4',6-Tetrachloro-p-terphenyl 2,4,5-Trichlorophenol 2,4,6-Tri-tert-butylphenol 2,4,6-Tribromoaniline 2,4,6-Tribromophenol 2,4,6-Trichloro-p-terphenyl 2,4,6-Trichloroaniline 2,4,6-Trichlorophenol 2,4,6-Trinitrotoluene 2,5-Dichloro-o-terphenyl 2,5-Dichloronitrobenzene

Use/Origin leaching from tire plasticizer fragrance other PAH leaching from tire leaching from tire cosmetics/fuel additive/solvent intermediate for dyes/pesticide/ intermediate for dyes leaching from tire PAH PAH disinfectant intermediate in organic synthesis reagent intermediate in organic synthesis intermediate in organic synthesis PAH intermediate in organic synthesis/exhaust gas of automobile intermediate in organic synthesis PAH fungicide intermediate in organic synthesis antioxidant intermediate in organic synthesis fire retardant fire retardant fire retardant fire retardant fire retardant intermediate in organic synthesis PAH reagent intermediate in organic synthesis reagent intermediate for pesticides/ preservative other fungicide intermediate for pesticides/ preservative other other intermediates in the synthesis of dyes, pigments, and phenolic resins PCN other explosive fire retardant reagent/intermediate in organic synthesis intermediate in organic synthesis reagent, by-product of chlorination intermediate in organic synthesis intermediate for dyes intermediate in organic synthesis intermediate in organic synthesis other intermediate for pesticides / preservative other reagent intermediate for resin other reagent/intermediate in organic synthesis by-product of chlorination/intermediate for pesticides explosive other intermediate in organic synthesis

Source business/household business/household/traffic business/household industry industry business/household/traffic business/household business/household industry industry business/household/traffic industry industry business/household industry business/household industry industry industry Industry industry industry agriculture industry business/household industry business/household business/household business/household business/household business/household industry industry business/household industry business/household industry industry agriculture industry industry industry industry industry industry industry business/household business/household industry business/household industry industry industry industry industry industry industry business/household industry industry business/household industry industry industry industry

| Chemical                                |
|-----------------------------------------|
| 2,5-Dichlorophenol                      |
| 2,5-Dimethylaniline                     |
| 2,6-&1,7-Dichloronaphthalene            |
| 2,6-Di-t-butyl-4-ethylphenol            |
| 2,6-Di-tert-butyl-4-benzoquinone        |
| 2,6-Diamino-4-nitrotoluene              |
| 2,6-Diaminotoluene                      |
| 2,6-Dibromo-4-chloroaniline             |
| 2,6-Dichloro-4-nitroaniline             |
| 2,6-Dichlorobenzamid                    |
| 2,6-Dichlorophenol                      |
|                                         |
| 2,6-Diisopropylnaphthalene              |
| 2,6-Dimethylaniline                     |
| 2,6-Dimethylnaphthalene                 |
| 2,6-Dimethylphenol                      |
| 2,6-Dinitrotoluene                      |
| 2(3H)-Benzothiazolone                   |
| 3- & 4-tert-Butylphenol                 |
| 3-&4-Chlorophenol                       |
|                                         |
| 3-&4-Methylphenol                       |
| 3-&4-Nitroanisole                       |
| 3-Anisidine                             |
| 3-Bromochlorobenzene                    |
| 3-Chloronitrobenzene                    |
| 3-Hexanol, 4-ethyl-                     |
| 3-Hydroxycarbofuran 1                   |
| 3-Hydroxycarbofuran 2                   |
| 3-Methoxy-1-butyl acetate               |
| 3-Methylcholanthrene                    |
| 3-Methylphenanthrene                    |
| 3-Methylpyridine                        |
| 3-Nitroaniline                          |
| 3-Nitrofluoranthene                     |
| 3-Nitrophenanthrene                     |
| 3-Nitrotoluene                          |
| 3-Toluidine                             |
| 3,3'-Dichlorobenzidine                  |
| 3,4-Dichloroaniline                     |
| 3,4-Dichlorophenol                      |
| 3,4,5-Trichlorophenol                   |
| 2 E di tart Butul 4 hydrowybanzaldahyda |
| 2.5 Dichlorophonol                      |
| 3.5-Dimethylaniline                     |
| 2.5 Dimethylahanal                      |
| 3.6-Dimethylphenanthrene                |
| 4-Amino-2-nitrotoluene                  |
| 4-Amino-2 6-dinitrotoluene              |
| 4-Amino 2,0 dimit otolucite             |
| 4-Anisidine                             |
| 4-Bromo-2.6-dichloroaniline             |
| 4-Bromophenol                           |
| 4-Bromophenylphenyl ether               |
| 4-Chloro-2-nitroaniline                 |
| 4-Chloro-3-methylphenol                 |
| 4-Chloro-o-terphenyl                    |
| 4-Chloro-p-terphenyl                    |
| 4-Chloroaniline                         |
| 4-Chloronitrobenzene                    |
| 4-Chlorophenylphenyl ether              |
| 4-Cymene                                |
| 4-Dimethylaminoazobenzene               |
| 4-Methyl-2,6-di-t-butylphenol           |
| 4-Methyl-3-nitrophenol                  |
| 4-n-Butylphenol                         |
| 4-n-Heptylphenol                        |

Use/Origin intermediate for pesticides intermediates in the synthesis of dyes PCN antioxidant antioxidant explosive intermediate in organic synthesis reagent intermediate in organic synthesis herbicide by-product of chlorination/intermediate for trichlorophenol PAH intermediate in organic synthesis PAH intermediate for resin intermediate in organic synthesis leaching from tire antioxidant by-product of chlorination/ intermediate in organic synthesis disinfectant intermediate in organic synthesis other other intermediate in organic synthesis other insecticide insecticide intermediate for resin/solvent PAH PAH intermediate in organic synthesis /sorbent intermediate in organic synthesis PAH PAH intermediate in organic synthesis intermediate for dyes intermediate for dyes intermediate for dyes and pesticides intermediate in organic synthesis intermediates in the synthesis of dyes, pigments, and phenolic resins antioxidant/leaching from tire reagent intermediate for dyes intermediate in organic synthesis PAH other explosive reagent intermediate for dyes reagent natural product reagent intermediate in organic synthesis fungicide, paint other other intermediate for dyes and pesticides intermediate in organic synthesis dielectric fluid solvent reagent antioxidant other intermediate for liquid crystal **PPCPs** 

Source industry industry industry business/household business/household industry industry business/household industry agriculture industry industry industry industry industry industry business/household business/household/traffic industry business/household industry industry industry industry industry agriculture agriculture industry business/household business/household industry industry industry industry industry business/household industry business/household other business/household industry agriculture industry industry industry industry industry industry business/household business/household industry industry business/household/traffic

| Chemical                                       | Use/Origin                                         | Source                     |
|------------------------------------------------|----------------------------------------------------|----------------------------|
| 4-n-Hexylphenol                                | intermediate in organic synthesis                  | industry                   |
| 4-n-Nonylphenol                                | co-stabilizer                                      | industry                   |
| 4-n-Octylphenol                                | nonionic detergent metabolite                      | business/household         |
| 4-n-Pentylphenol                               | dves tuff intermediates/ rubber chemicals/         | business/household         |
|                                                | surfactants                                        |                            |
| 4-Nitroaniline                                 | intermediate in organic synthesis                  | industry                   |
| 4 Nitrophononthrono                            |                                                    | industry                   |
| 4-Nitrophenal                                  | ran<br>intermediate in organic cunthesis/fungicide | industry                   |
|                                                | intermediate in organic synthesis/ rungicide       | industry<br>tadasta        |
| 4-Nitrotoluene                                 | intermediate in organic synthesis                  | industry                   |
| 4-Phenylphenol                                 | intermediate in organic synthesis                  | industry                   |
| 4-sec-Butylphenol                              | other                                              | business/household         |
| 4-tert-Octylphenol                             | nonionic detergent metabolite                      | business/household         |
| 4,4'-Methylene-bis(2-chloroaniline)            | intermediate for resin                             | industry                   |
| 4,5-Methylene-phenanthrene                     | PAH                                                | industry                   |
| 5-Bromoindole                                  | other                                              | industry                   |
| 5-Chloro-2-methyl aniline                      | intermediate for dyes                              | industry                   |
| 5-Nitro-o-toluidine                            | intermediate for dyes                              | industry                   |
| 6-Benzylaminopurine                            | other pesticide                                    | agriculture                |
| 6-Nitrochrysene                                | PAH                                                | industry                   |
| 7-Nitrobenz(q)anthracene                       | РАН                                                | industry                   |
| 7 12-Dimethylbenz(a)anthracene                 | РАН                                                | industry                   |
| 9-Methylphenanthrene                           | ΡΔΗ                                                | industry                   |
| 9-Nitroanthracene                              | РАН                                                | industry                   |
| 0 Nitrophononthrono                            |                                                    | industry                   |
| 9-Nitrophenanthrene                            |                                                    |                            |
|                                                | Insecticide                                        | agriculture                |
| Acenaphthene                                   | PAH                                                | industry                   |
| Acenaphthylene                                 | РАН                                                | industry                   |
| Acephate                                       | insecticide                                        | agriculture                |
| Acetamide, N-(2-phenylethyl)-                  | leaching from tire                                 | business/household         |
| Acetamide, N-phenyl-                           | leaching from tire                                 | business/household         |
| Acetamiprid                                    | insecticide                                        | agriculture                |
| Acetochlor                                     | herbicide                                          | agriculture                |
| Acetophenone                                   | cosmetics/fragrance                                | business/household/traffic |
| Acrinathrin                                    | other pesticide                                    | agriculture                |
| Alachlor                                       | herbicide                                          | agriculture                |
| Aldoxycarb (deg)                               | insecticide                                        | agriculture                |
| Aldrin                                         | insecticide                                        | agriculture                |
| Allethrin 1                                    | insecticide                                        | agriculture                |
| Allethrin 2 & Bioallethrin 1                   | insecticide                                        | agriculture                |
| Allidochlor                                    | herbicide                                          | agriculture                |
| alpha-Terpineol                                | perfumes/solvent                                   | business/household         |
| Ametryn                                        | herbicide                                          | agriculture                |
| Amino-chlornitrofen                            | herhicide                                          | agriculture                |
| Amitraz                                        | other nesticide                                    | agriculture                |
| Amitraz<br>Amitraz (deg)                       | other pesticide                                    | agriculture                |
| Anilino                                        | intermediate in organic synthesis/leaching         | Industry                   |
| Amme                                           | from two                                           | mustry                     |
| Anilofos                                       | herhicide                                          | agriculture                |
| Anthracana                                     |                                                    | inductry                   |
| Anthracene                                     |                                                    | industry                   |
| Anuli dyullolle<br>Arashidia asid mathul astar | nagiance/suivent                                   | business/household         |
| Arachidic acid methyl ester                    | fatty acid methy ester                             | business/nousenoid         |
| Arachidonic acid methyl ester                  | fatty acid methy ester                             | business/household         |
| Aspirin                                        | PPCPs                                              | business/household         |
| Atrazine                                       | herbicide                                          | agriculture                |
| Azaconazole                                    | fungicide                                          | agriculture                |
| Azamethiphos                                   | insecticide                                        | agriculture                |
| Azinphos-ethyl                                 | insecticide                                        | agriculture                |
| Azinphos-methyl                                | insecticide                                        | agriculture                |
| Azoxystrobin                                   | fungicide                                          | agriculture                |
| b-HCH                                          | insecticide                                        | agriculture                |
| Behenic acid methyl ester                      | fatty acid methy ester                             | business/household         |
| Benalaxyl                                      | fungicide                                          | agriculture                |
| Bendiocarb                                     | insecticide                                        | agriculture                |
| Benfluralin                                    | herbicide                                          | agriculture                |
| Benfuresate                                    | herbicide                                          | agriculture                |
| Benoxacor                                      | herbicide                                          | agriculture                |
| Bensulide                                      | herbicide                                          | agriculture                |
| Bentazone                                      | herbicide                                          | agriculture                |

| Table A4 (continued)                   |                                          |                    |
|----------------------------------------|------------------------------------------|--------------------|
| Chemical                               | Use/Origin                               | Source             |
| Benzaldehyde, 4-hydroxy-3,5-dimethoxy- | leaching from tire                       | business/household |
| Benzamide, N-phenyl-                   | leaching from tire                       | business/household |
| Benzanthrone                           | intermediate in organic synthesis        | industry           |
| Benzidine                              | intermediate for dves                    | industry           |
| Benzo(a)anthracene                     | РАН                                      | industry           |
| Benzo(a)pyrene                         | ран                                      | industry           |
| Benzo(a)phenenthrono                   |                                          | industry           |
|                                        |                                          | industry           |
| Benzo(e)pyrene                         |                                          | industry           |
| Benzo(ghi)perylene                     | PAH                                      | industry           |
| Benzo( <i>j&amp;b</i> )fluoranthene    | РАН                                      | industry           |
| Benzo(k)fluoranthene                   | РАН                                      | industry           |
| Benzothiazole                          | leaching from tire                       | business/household |
| Benzyl alcohol                         | cosmetics/fuel additive/solvent/leaching | business/household |
|                                        | from tire                                |                    |
| Benzyl chloride                        | intermediate in organic synthesis        | industry           |
| beta-Sitosterol                        | phytosterol                              |                    |
| Bifenazate                             | insecticide                              | agriculture        |
| Bifonoy                                | horbicido                                | agriculturo        |
| Difentorin                             | incontinide                              | agriculture        |
| Bienunin                               | insecticide                              | agriculture        |
| Bioresmethrin                          | Insecticide                              | agriculture        |
| Biphenyl                               | intermediate in organic synthesis        | industry           |
| Bis(2-chloroethoxy)methane             | intermediate in organic synthesis        | industry           |
| Bis(2-ethylhexyl) sebacate             | plasticizer                              | business/household |
| Bis(2-ethylhexyl)phthalate             | plasticizer                              | business/household |
| Bisphenol A                            | intermediate for resin/antioxidant       | business/household |
| Bitertanol                             | fungicide                                | agriculture        |
| Bromacil                               | herhicide                                | agriculture        |
| Bromobutide                            | herbicide                                | agriculture        |
| Bromophas                              | insectiside                              | agriculture        |
| Bromoprios                             | ath an a set iside                       | agriculture        |
| Bromopropylate                         | other pesticide                          | agriculture        |
| Bromuconazole-1                        | fungicide                                | agriculture        |
| Bromuconazole-2                        | fungicide                                | agriculture        |
| Bupirimate                             | fungicide                                | agriculture        |
| Buprofezin                             | insecticide                              | agriculture        |
| Butachlor                              | herbicide                                | agriculture        |
| Butafenacil                            | herbicide                                | agriculture        |
| Butamifos                              | herbicide                                | agriculture        |
| Butanoic acid, butyl ester             | fragrance                                | business/household |
| Butyl benzyl obtalate                  | nlasticizer                              | husiness/household |
| Butylato                               | horhicida                                | agriculturo        |
| Caducator                              | insectiside                              | agriculture        |
| Cadusalos                              | Insecticide                              | agriculture        |
| Carenstrole                            | nerbicide                                | agriculture        |
| Caffeine                               | PPCPs                                    | business/household |
| Campesterol                            | phytosterol                              |                    |
| Captafol                               | fungicide                                | agriculture        |
| Captan                                 | fungicide                                | agriculture        |
| Carbamazepine                          | PPCPs                                    | business/household |
| Carbaryl                               | insecticide                              | agriculture        |
| Carbazole                              | intermediate in organic synthesis        | industry           |
| Carbetamide                            | herbicide                                | agriculture        |
| Carbofuran                             | insecticide                              | agriculture        |
| Carbonhenothion                        | insecticide                              | agriculture        |
| Carboyin                               | fungicido                                | agriculture        |
|                                        |                                          | agriculture        |
| Carrentrazone-etnyi                    |                                          | agriculture        |
| Chinomethionat                         | fungicide                                | agriculture        |
| Chlorethoxytos                         | insecticide                              | agriculture        |
| Chlorfenapyr                           | insecticide                              | agriculture        |
| Chlorfenson                            | insecticide                              | agriculture        |
| Chlorfenvinphos E                      | insecticide                              | agriculture        |
| Chlorfenvinphos Z                      | insecticide                              | agriculture        |
| Chloridazon                            | herbicide                                | agriculture        |
| Chlorimuron-ethyl                      | herbicide                                | agriculture        |
| Chlormenhos                            | insecticide                              | agriculture        |
| Chlornitrofen (CNP)                    | harhicida                                | agriculture        |
| Chlorohon-iloto                        | ner plute                                | agriculture        |
| Chloropenzilate                        | omer pesticide                           | agriculture        |
| Chioroneb                              | tungicide                                | agriculture        |
| Chlorothalonil (TPN)                   | tungicide                                | agriculture        |
| Chlorpropham                           | herbicide                                | agriculture        |

| Chemical                                           | Use/Origin                        | Source                      |
|----------------------------------------------------|-----------------------------------|-----------------------------|
| Chlorpropylate                                     | insecticide                       | agriculture                 |
| Chlorpyrifos                                       | insecticide                       | agriculture                 |
| Chlorpyrifos-methyl                                | insecticide                       | agriculture                 |
| Chlorthal-dimethyl                                 | herbicide                         | agriculture                 |
| Cholestane                                         | animal sterol                     |                             |
| Cholestanol                                        | animal sterol                     |                             |
| Cholesterol                                        | animal sterol                     |                             |
| Chrysene & Triphenylene                            | РАН                               | industry                    |
| Cinmethylin                                        | herbicide                         | agriculture                 |
| cis-10-Heptadecenoic acid methyl ester             | fatty acid methy ester            | business/household          |
| cis 11 14 Eicosadionoic acid methyl ester          | fatty acid methy ester            | business/household          |
| cis-11,14-Licosadienoic acid methyl ester          | fatty acid methy ester            | husiness/household          |
| cis-13.16-Docosadienoic acid methyl ester          | fatty acid methy ester            | business/household          |
| cis-4.7.10.13.16.19-Docosahexaenoic acid methyl    | fatty acid methy ester            | business/household          |
| ester                                              |                                   | ···· <b>,</b> ···· <b>,</b> |
| cis-5,8,11,14,17-Eicosapentaenoic acid, methyl     | fatty acid methy ester            | business/household          |
| ester                                              |                                   |                             |
| cis-8,11,14-Eicosatrienoic acid methyl ester       | fatty acid methy ester            | business/household          |
| cis-Chlordane                                      | insecticide                       | agriculture                 |
| cis-Nonachlor                                      | insecticide                       | agriculture                 |
| Clofentezine                                       | other pesticide                   | agriculture                 |
| Clomazone                                          | herbicide                         | agriculture                 |
| Clomeprop                                          | herbicide                         | agriculture                 |
| Coprostanol                                        | facal sterol                      |                             |
| Coprostanone                                       | animal sterol                     |                             |
| Coumaphos                                          | insecticide                       | agriculture                 |
| Crimiaine                                          | Insecticide                       | agriculture                 |
| Crotalilitoli                                      | PPCPS<br>barbicida                | agriculturo                 |
| Cyanofennhos                                       | insecticide                       | agriculture                 |
| Cyanonhos CYAP                                     | insecticide                       | agriculture                 |
| Cycloate                                           | herbicide                         | agriculture                 |
| Cyclohexanamine. N-cyclohexyl-                     | leaching from tire                | business/household          |
| Cyclohexanol                                       | leaching from tire                | business/household          |
| ,<br>Cyclopentanone, 2-methyl-                     | fragrance/synthetic intermediate  | industry                    |
| Cyflufenamid                                       | fungicide                         | agriculture                 |
| Cyfluthrin 1                                       | insecticide                       | agriculture                 |
| Cyfluthrin 2                                       | insecticide                       | agriculture                 |
| Cyfluthrin 3                                       | insecticide                       | agriculture                 |
| Cyfluthrin 4                                       | insecticide                       | agriculture                 |
| Cyhalofop Butyl                                    | herbicide                         | agriculture                 |
| Cyhalothrin 1                                      | insecticide                       | agriculture                 |
| Cyhalothrin 2                                      | Insecticide                       | agriculture                 |
| Cypermethrin 1                                     | Insecticide                       | agriculture                 |
| Cypermethrin 2                                     | insecticide                       | agriculture                 |
| Cypermethrin 4                                     | insecticide                       | agriculture                 |
|                                                    | fungicide                         | agriculture                 |
| Cyprodinil                                         | fungicide                         | agriculture                 |
| Cyromazine                                         | insecticide                       | agriculture                 |
| d-HCH                                              | insecticide                       | agriculture                 |
| DCIP (Bis(2-chloroisopropyl)ether)                 | insecticide                       | agriculture                 |
| DDVP                                               | insecticide                       | agriculture                 |
| Deltamethrin                                       | insecticide                       | agriculture                 |
| Demeton-S-methyl                                   | insecticide                       | agriculture                 |
| Demeton-S-methylsulphon                            | insecticide                       | agriculture                 |
| Desmedipham                                        | herbicide                         | agriculture                 |
| Di-n-butyl phthalate                               | plasticizer                       | business/household          |
| DI-n-octyl phthalate                               | plasticizer                       | business/household          |
| Di(2-ethylhexyl)adipate                            | plasticizer                       | business/household          |
|                                                    | Insecticide                       | agriculture                 |
|                                                    | insecucide                        | agriculture                 |
| Diazilioli 0x011<br>Dihenzo( <i>a</i> h)anthracene |                                   | agriculture                 |
| Dibenzofuran                                       | intermediate in organic synthesis | industry                    |
| Dibenzothiophene                                   | petroleum                         | business/household          |
| Dibenzylether                                      | solvent                           | industry                    |

| Chemical                                 | Use/Origin                           | Source             |
|------------------------------------------|--------------------------------------|--------------------|
| Dibutylamine                             | intermediate in organic synthesis    | industry           |
| Dichlobenil                              | herbicide                            | agriculture        |
| Dichlofenthion, ECP                      | insecticide                          | agriculture        |
| Dichlofluanid                            | fungicide                            | agriculture        |
| Dichlofluanid metabolite                 | fungicide                            | agriculture        |
| Dichlone                                 | fungicide                            | agriculture        |
| Diclobutrazol                            | fungicide                            | agriculture        |
| Diclocymet 1                             | fungicide                            | agriculture        |
| Diclocymet 2                             | fungicide                            | agriculture        |
| Diclofop-methyl                          | herbicide                            | agriculture        |
| Diclomezine                              | fungicide                            | agriculture        |
| Dicloran                                 | fungicide                            | agriculture        |
| Diclosulam                               | herhicide                            | agriculture        |
| Dicofol                                  | other nesticide                      | agriculture        |
| Dicofol-deg                              | other pesticide                      | agriculture        |
| Dicrotophos                              | insocticido                          | agriculturo        |
| Dicrotophos<br>Diguele houring antholoto | nisecticide                          | agriculture        |
| Dicyclonexyl philialate                  |                                      | business/nousenoid |
|                                          | Intermediate for resin               | Industry           |
| Dieldrin                                 | insecticide                          | agriculture        |
| Diethofencarb                            | fungicide                            | agriculture        |
| Diethyl phthalate                        | plasticizer                          | business/household |
| Diethyl-p-nitrophenyl phosphate          | insecticide, metabolite of parathion | agriculture        |
| Diethyltoluamide                         | PPCPs                                | business/household |
| Difenoconazole 1                         | fungicide                            | agriculture        |
| Difenoconazole 2                         | fungicide                            | agriculture        |
| Difenzoquat metilsulfate                 | herbicide                            | agriculture        |
| Diflufenican                             | herbicide                            | agriculture        |
| Diisobutyl phthalate                     | plasticizer                          | business/household |
| Dimepiperate                             | herbicide                            | agriculture        |
| Dimethametryn                            | herbicide                            | agriculture        |
| Dimethenamid                             | herbicide                            | agriculture        |
| Dimethipin                               | herbicide                            | agriculture        |
| Dimethoate                               | insecticide                          | agriculture        |
| Dimethomorph E                           | fungicide                            | agriculture        |
| Dimethomorph 7                           | fungicide                            | agriculture        |
| Dimethyl nhthalate                       | nlasticizer                          | husiness/household |
| Dimethylterentthalate                    | intermediate for resin               | industry           |
| Dimetrykereprinalate                     | insecticide                          | agriculturo        |
| Dimetylvinphos 1                         | insecticide                          | agriculture        |
| Diniegnazala                             | funcicida                            | agriculture        |
| Diriconazole                             | insesticide                          | agriculture        |
|                                          | insecticide                          | agriculture        |
| Diofenolan 1                             | insecticide                          | agriculture        |
| Diofenolan 2                             | insecticide                          | agriculture        |
| Dioxabenzofos(Salithion)                 | insecticide                          | agriculture        |
| Dipentyl phthalate                       | plasticizer                          | business/household |
| Diphenamid                               | herbicide                            | agriculture        |
| Diphenyl ether                           | fragrance                            | business/household |
| Diphenylamine                            | intermediate in organic synthesis    | industry           |
| Diphenyldisulfide                        | other                                | industry           |
| Diphenylmethane                          | РАН                                  | industry           |
| Dipropyl phthalate                       | plasticizer                          | business/household |
| Disulfoton                               | insecticide                          | agriculture        |
| Ditalimfos                               | fungicide                            | agriculture        |
| Dithiopyr                                | herbicide                            | agriculture        |
| e-Caprolactam                            | intermediate for fiber               | industry           |
| Edifenphos                               | fungicide                            | agriculture        |
| Elaidic acid methyl ester                | fatty acid methy ester               | business/household |
| Endosulfan I                             | insecticide                          | agriculture        |
| Endosulfan II                            | insecticide                          | agriculture        |
| Endosulfan sulfate                       | insecticide                          | agriculture        |
| Endrin                                   | insecticide                          | agriculturo        |
| Enulin<br>Fodein aldahuda                |                                      | agriculture        |
| Endrin aldenydê<br>Fadda latara          | insecticide                          | agriculture        |
| Enarin Ketone                            | insecticide                          | agriculture        |
| Epicoprostanol                           | tacal sterol                         |                    |
| EPN                                      | insecticide                          | agriculture        |
| EPN oxon                                 | insecticide                          | agriculture        |
| EPTC                                     | herbicide                            | agriculture        |
| Ergosterol                               | phytosterol                          |                    |

| Chemical                 | Use/Origin                                   | Source             |
|--------------------------|----------------------------------------------|--------------------|
| Erucic acid methyl ester | fatty acid methy ester                       | business/household |
| Esfenvalerate 1          | insecticide                                  | agriculture        |
| Esfenvalerate 2          | insecticide                                  | agriculture        |
| Esprocarb                | herbicide                                    | agriculture        |
| Ethalfluralin            | herbicide                                    | agriculture        |
| Ethanol, 2-phenoxy-      | leaching from tire/ solvent/ intermediate in | business/household |
|                          | organic synthesis                            |                    |
| Ethenzamide              | PPCPs                                        | business/household |
| Ethiofencarb             | insecticide                                  | agriculture        |
| Ethion                   | insecticide                                  | agriculture        |
| Ethofumesate             | herbicide                                    | agriculture        |
| Ethoprophos              | insecticide                                  | agriculture        |
| Ethoxyauin               | fungicide                                    | agriculture        |
| Ethychlozate             | other pesticide                              | agriculture        |
| Ethyl methanesulfonate   | reagent                                      | business/household |
| Ethylcarbamate           | reagent                                      | business/household |
| Etobenzanid              | herbicide                                    | agriculture        |
| Etofenprox               | insecticide                                  | agriculture        |
| Etoxazole                | other pesticide                              | agriculture        |
| Etoxazole metabolite     | insecticide                                  | agriculture        |
| Etridiazole (Echlomezol) | fungicide                                    | agriculture        |
| Etrimfos                 | insecticide                                  | agriculture        |
| Famoxadone               | fungicide                                    | agriculture        |
| Famphur                  | insecticide                                  | agriculture        |
| Fenamidone               | fungicide                                    | agriculture        |
| Fenamiphos               | other pesticide                              | agriculture        |
| Fenarimol                | fungicide                                    | agriculture        |
| Fenbuconazole            | fungicide                                    | agriculture        |
| Fenbuconazole lactone A  | fungicide                                    | agriculture        |
| Fenbuconazole lactone B  | fungicide                                    | agriculture        |
| Fenchlorphos             | insecticide                                  | agriculture        |
| Fenitrothion (MEP)       | insecticide                                  | agriculture        |
| Fenitrothion oxon        | insecticide                                  | agriculture        |
| Fenobucarb               | insecticide                                  | agriculture        |
| Fenoprofen               | PPCPs                                        | business/household |
| Fenothiocarb             | other pesticide                              | agriculture        |
| Fenoxanil                | fungicide                                    | agriculture        |
| Fenoxaprop-ethyl         | herbicide                                    | agriculture        |
| Fenoxycarb               | insecticide                                  | agriculture        |
| Fenpropathrin            | other pesticide                              | agriculture        |
| Fenpropimorph            | fungicide                                    | agriculture        |
| Fensulfothion            | other pesticide                              | agriculture        |
| Fenthion                 | insecticide                                  | agriculture        |
| Fenvalerate 1            | insecticide                                  | agriculture        |
| Fenvalerate 2            | insecticide                                  | agriculture        |
| Ferimzone                | fungicide                                    | agriculture        |
| Fipronil                 | insecticide                                  | agriculture        |
| Flamprop-methyl          | herbicide                                    | agriculture        |
| Fluacrypyrim             | other pesticide                              | agriculture        |
| Fluazinam                | fungicide                                    | agriculture        |
| Flucythrinate 1          | insecticide                                  | agriculture        |
| Flucythrinate 2          | insecticide                                  | agriculture        |
| Fludioxonil              | fungicide                                    | agriculture        |
| Flufenoxuron dec2        | insecticide                                  | agriculture        |
| Flufenoxuron dec3        | insecticide                                  | agriculture        |
| Flumiclorac-pentyl       | herbicide                                    | agriculture        |
| Flumioxazin              | herbicide                                    | agriculture        |
| Fluoranthene             | РАН                                          | industry           |
| Fluorene                 | РАН                                          | industry           |
| Fluquinconazole          | fungicide                                    | agriculture        |
| Fluridone                | herbicide                                    | agriculture        |
| Flusilazole              | tungicide                                    | agriculture        |
| Flusilazole metabolite   | tungicide                                    | agriculture        |
| Flusultamide             | tungicide                                    | agriculture        |
| Fluthiacet-methyl        | nerpicide                                    | agriculture        |
| Flutolanii               | rungicide                                    | agriculture        |
| FIUTIATO                 | Tungicide                                    | agriculture        |

Chemical Fluvalinate 1 Fluvalinate 2 Folpet Fonofos Formamide, N-cyclohexyl-Fosthiazate 1 Fosthiazate 2 Fthalide Furametpyr Furametpyr metabolite Furilazole g-HCH gamma-Linolenic acid methyl ester Halfenprox Heneicosanoic acid methyl ester Heptachlor Heptachlor epoxide (B) Hexachlorobenzene Hexachlorobenzene Hexachlorobutadiene Hexachlorocyclopentadiene Hexachloroethane Hexachloropropylene Hexaconazole Hexazinone Hexythiazox Hymexazol Ibuprofen Imazalil Imazamethabenz-methyl Imibenconazole Indanofan Indeno(1,2,3-cd)pyrene Indoxacarb Iprobenfos (IBP) Iprodione Iprodione metabolite Isazofos Isocarbophos Isofenphos Isofenphos oxon Isophorone Isoprocarb Isopropalin Isoprothiolane Isosafrole Isoxadifen-ethyl Isoxathion Isoxathion oxon Kresoxim methyl L-Menthol Lenacil Leptophos Lignoceric acid, methyl ester Linoleic acid methyl ester Linolelaidic acid methyl ester Linolenic acid methyl ester Longifolene *m*-Aminophenol *m*-Phenylenediamine *m*-Terphenyl Malathion MCPA-thioethyl (Phenothiol) MCPB-ethyl Mecarbam Mefenacet

Use/Origin insecticide insecticide fungicide insecticide leaching from tire other pesticide other pesticide fungicide fungicide fungicide herbicide insecticide fatty acid methy ester other pesticide fatty acid methy ester insecticide insecticide fungicide by-product solvent intermediate in organic synthesis intermediate in organic synthesis solvent fungicide herbicide other pesticide fungicide **PPCPs** fungicide herbicide fungicide herbicide PAH insecticide fungicide fungicide fungicide insecticide insecticide insecticide insecticide solvent/paint insecticide herbicide fungicide perfumes herbicide insecticide insecticide fungicide PPCPs herbicide insecticide fatty acid methy ester fatty acid methy ester fatty acid methy ester fatty acid methy ester other intermediate for dyes intermediate for dyes storage and transfer agents/ intermediate for resin insecticide herbicide herbicide insecticide herbicide

Source agriculture agriculture agriculture agriculture business/household agriculture agriculture agriculture agriculture agriculture agriculture agriculture business/household agriculture business/household agriculture agriculture agriculture industry industry industry industry industry agriculture agriculture agriculture agriculture business/household agriculture agriculture agriculture agriculture industry agriculture agriculture agriculture agriculture agriculture agriculture agriculture agriculture industry agriculture agriculture agriculture business/household agriculture agriculture agriculture agriculture business/household agriculture agriculture business/household business/household business/household business/household industry industry industry industry agriculture agriculture agriculture agriculture agriculture

| Chemical                | Use/Origin             | Source             |
|-------------------------|------------------------|--------------------|
| Mefenamic Acid          | PPCPs                  | business/household |
| Mefenoxam (Metalaxyl-M) | fungicide              | agriculture        |
| Mefenpyr-diethyl        | herbicide              | agriculture        |
| Mepanipyrim             | fungicide              | agriculture        |
| Mepronil                | fungicide              | agriculture        |
| Metalaxyl               | fungicide              | agriculture        |
| Methacrifos             | insecticide            | agriculture        |
| Methamidophos           | insecticide            | agriculture        |
| Methapyrilene           | PPCPs                  | business/household |
| Methidathion            | insecticide            | agriculture        |
| Methiocarb              | insecticide            | agriculture        |
| Methomyl oxime          | other pesticide        | agriculture        |
| Methoprene              | insecticide            | agriculture        |
| Methoxychlor            | insecticide            | agriculture        |
| Methyl decanoate        | fatty acid methy ester | business/household |
| Methyl dodecanoate      | fatty acid methy ester | business/household |
| Methyl dymron           | herbicide              | agriculture        |
| Methyl heptadecanoate   | fatty acid methy ester | business/household |
| Methyl hexanoate        | fatty acid methy ester | business/household |
| Methyl myristate        | fatty acid methy ester | business/household |
| Methyl octanoate        | fatty acid methy ester | business/household |
| Methyl palmitate        | fatty acid methy ester | business/household |
| Methyl palmitoleate     | fatty acid methy ester | business/household |
| Methyl parathion        | insecticide            | agriculture        |
| Methyl pentadecanoate   | fatty acid methy ester | business/household |
| Methyl tridecanoate     | fatty acid methy ester | business/household |
| Methyl undecanoate      | fatty acid methy ester | business/household |
| Metolachlor             | herbicide              | agriculture        |
| Metominostrobin E       | fungicide              | agriculture        |
| Metominostrobin Z       | fungicide              | agriculture        |
| Metribuzin              | herbicide              | agriculture        |
| Metribuzin DA           | herbicide              | agriculture        |
| Metribuzin DADK         | herbicide              | agriculture        |
| Metribuzin DK           | herbicide              | agriculture        |
| Mevinphos 1             | insecticide            | agriculture        |
| Mevinphos 2             | insecticide            | agriculture        |
| Molinate                | herbicide              | agriculture        |
| Monocrotophos           | insecticide            | agriculture        |
| Myclobutanil            | fungicide              | agriculture        |
| n-Butylacrylate         | intermediate for resin | industry           |
| n-C10H22                | petroleum              | business/household |
| n-C11H24                | petroleum/plant        | business/household |
| n-C12H26                | petroleum              | business/household |
| n-C13H28                | petroleum/plant        | business/household |
| n-C14H30                | petroleum              | business/household |
| n-C15H32                | petroleum/plant        | business/household |
| n-C16H34                | petroleum              | business/household |
| n-C17H36                | petroleum/plant        | business/household |
| n-C18H38                | petroleum              | business/household |
| n-C19H40                | petroleum/plant        | husiness/household |
| n-C20H42                | petroleum              | business/household |
| n-C21H44                | petroleum/plant        | business/household |
| n-C22H46                | petroleum              | husiness/household |
| n-C23H48                | petroleum/plant        | husiness/household |
| n-C24H50                | petroleum              | husiness/household |
| n-C25H52                | petroleum/plant        | business/household |
| n-C26H54                | petroleum              | business/household |
| n-C27H56                | petroleum/plant        | business/household |
| n-C28H58                | netroleum              | husiness/household |
| n-C29H60                | petroleum/nlant        | husiness/household |
| n-C30H62                | petroleum              | business/household |
| n-C31H64                | petroleum/nlant        | husiness/household |
| n-C32H66                | netroleum              | husiness/household |
| n_C33H68                | petroleum/nlant        | husiness/household |
| n-C9H20                 | petroleum/plant        | husiness/household |
| N-Ethylaniline          | intermediate for dves  | industry           |
| n Luiyianinine          | interneulate for uyes  | madoti y           |

Chemical N-Ethylmorpholine N-Methylaniline N-Nitroquinoline-N-oxide N-Nitroso-di-n-butylamine N-Nitrosodiethylamine N-Nitrosomorpholine N-Nitrosopiperidine N-Nitrosopyrrolidine N-Phenyl-1-naphthylamine N-Phenyl-2-naphthylamine N,N-Dimethylaniline Naled Naphthalene Napropamide Naproxen Nereistoxin oxalate deg. Nervonic acid methyl ester Nicotine Nicotinonitrile Nitralin Nitrobenzene Nitrofen (NIP) Nitrothal-isopropyl Nonylphenol Norflurazon Novaluron-deg o-Terphenyl o,p'-DDD o,p'-DDE o,p'-DDT Octachloronaphthalene Octanol Oleic acid methyl ester Omethoate Oryzalin Oxabetrinil Oxadiazon Oxadixyl Oxpoconazole-formyl Oxpoconazole-fumalate Oxychlordane Oxyfluorfen p-Phenylenediamine p-Terphenyl p,p'-DDD p,p'-DDE p,p'-DDT Paclobutrazol Parathion PCB #1 PCB #101 PCB #104 PCB #105 PCB #110 PCB #114 PCB #118 PCB #119 PCB #123 PCB #126 PCB #128 PCB #138&158 PCB #149 PCB #15 PCB #151 PCB #153&168 PCB #155

Use/Origin solvent intermediate in organic synthesis reagent reagent Gasoline & lubricant additive; antioxidant; stabilizer in plastics solvent/intermediate in organic synthesis reagent reagent antioxidant antioxidant intermediate for dyes insecticide PAH fungicide PPCPs insecticide fatty acid methy ester **PPCPs** intermediate for pesticides herbicide intermediate in organic synthesis herbicide fungicide nonionic detergent metabolite herbicide insecticide storage and transfer agents/intermediate for resin insecticide insecticide insecticide PCN cosmetics/fragrance/solvent fatty acid methy ester insecticide herbicide herbicide herbicide fungicide fungicide fungicide insecticide herbicide intermediate for dyes/developing fluid storage and transfer agents insecticide insecticide insecticide other pesticide insecticide PCB РСВ PCB PCB PCB PCB

industry industry business/household business/household business/household industry business/household business/household business/household business/household industry agriculture industry agriculture business/household agriculture business/household business/household industry agriculture industry agriculture agriculture business/household agriculture agriculture industry agriculture agriculture agriculture industry business/household business/household agriculture agriculture agriculture agriculture agriculture agriculture agriculture agriculture agriculture industry industry agriculture agriculture agriculture agriculture agriculture industry industry

Source

| Chemical                             | Use/Origin                        | Source              |
|--------------------------------------|-----------------------------------|---------------------|
|                                      | Dop                               | Source              |
| PCB #155                             | PCB                               | Industry            |
| PCB #157                             | PCB                               | Industry            |
| PCB #167                             | РСВ                               | industry            |
| PCB #169                             | PCB                               | industry            |
| PCB #170                             | РСВ                               | industry            |
| PCB #171                             | PCB                               | industry            |
| PCB #177                             | PCB                               | industry            |
| PCB #178                             | PCB                               | industry            |
| PCB #18                              | PCB                               | industry            |
| PCB #180                             | PCB                               | industry            |
| PCB #183                             | PCB                               | industry            |
| PCB #187                             | PCB                               | industry            |
| PCB #188                             | PCB                               | industry            |
| PCB #189                             | PCB                               | industry            |
| PCB #19                              | РСВ                               | industry            |
| PCB #191                             | PCB                               | industry            |
| PCB #194                             | PCB                               | industry            |
| PCB #199                             | PCB                               | industry            |
| PCB #201                             | PCB                               | industry            |
| PCB #201                             | PCB                               | industry            |
| PCB #202                             | PCB                               | industry            |
| PCB #205                             | PCB                               | Industry            |
| PCB #206                             | PCB                               | industry            |
| PCB #208                             | РСВ                               | industry            |
| PCB #209                             | PCB                               | industry            |
| PCB #22                              | PCB                               | industry            |
| PCB #28                              | PCB                               | industry            |
| PCB #3                               | PCB                               | industry            |
| PCB #33                              | PCB                               | industry            |
| PCB #37                              | PCB                               | industry            |
| PCB #4&10                            | PCB                               | industry            |
| PCB #44                              | PCB                               | industry            |
| PCB #49                              | PCB                               | industry            |
| PCB #52                              | PCB                               | industry            |
| PCB #54                              | PCB                               | industry            |
| PCB #70                              | PCB                               | industry            |
|                                      |                                   | industry            |
|                                      | PCB                               | industry            |
| PCB #77                              | PCB                               | industry            |
| PCB #8                               | PCB                               | industry            |
| PCB #81                              | РСВ                               | industry            |
| PCB #87                              | PCB                               | industry            |
| PCB #95                              | PCB                               | industry            |
| PCB #99                              | PCB                               | industry            |
| Pebulate                             | herbicide                         | agriculture         |
| Penconazole                          | fungicide                         | agriculture         |
| Pencycron                            | fungicide                         | agriculture         |
| Pendimethalin                        | herbicide                         | agriculture         |
| Pentachlorobenzene                   | by-product                        | industry            |
| Pentachloroethane                    | other                             | industry            |
| Pentachloronitrobenzene (Quintozene) | fungicide                         | agriculture         |
| Pentachlorophenol                    | herbicide                         | agriculture         |
| Pentamethylbenzene                   | other                             | industry            |
| Pentoxazone                          | herbicide                         | agriculture         |
| Permethrin 1                         | insecticide                       | agriculture         |
| Permethrin 2                         | insecticide                       | agriculture         |
| Bondono                              |                                   | inductor            |
| Perpendin                            |                                   | husinoss /household |
| Phenathrone                          |                                   | inductor            |
| FileIdittillelle<br>Dhanasina        | r All<br>athar                    | industry            |
| Priendzine<br>Dia a se di da se da s |                                   |                     |
| Prienmeaipnam aeg.                   |                                   | agriculture         |
| Phenol                               | aisintectant                      | pusiness/household  |
| Phenol, 2,6-dimethoxy-               | leaching from tire                | business/household  |
| Phenol, 4-(phenylamino)-             | leaching from tire                | business/household  |
| Phenothiazine                        | intermediate in organic synthesis | industry            |
| Phenothrin 1                         | insecticide                       | agriculture         |
| Phenothrin 2                         | insecticide                       | agriculture         |
| Phenoxathiin                         | other                             | industry            |
| Phenoxazine                          | other                             | industry            |
| Phenthoate                           | insecticide                       | agriculture         |

| Chemical                                        |
|-------------------------------------------------|
| Phenylethyl alcohol                             |
| Phorate                                         |
| Phosalone                                       |
| Phosmet                                         |
| Phosphamidon                                    |
| Phthalimide                                     |
| Picolinafen                                     |
| Piperonyl butoxide                              |
| Piperophos                                      |
| Pirimicarb                                      |
| Pirimiphos-methyl                               |
| Pretilachlor                                    |
| Probenazole                                     |
| Prochloraz                                      |
| Procymidone                                     |
| Profenofos                                      |
| Prohydrojasmon                                  |
| Prometryn                                       |
| Propachlor                                      |
| Propamocarb                                     |
| Propanil                                        |
| Propanoic acid, 2-methyl-, 2-methylpropyl ester |
| Propaphos                                       |
| Propargite 1                                    |
| Propargite 2                                    |
| Propazine                                       |
| Propetamphos                                    |
| Propham                                         |
| Propiconazole 1                                 |
| Propiconazole 2                                 |
| Propoxur                                        |
| Propyphenazone                                  |
| Propyzamide                                     |
| Prothiofos                                      |
| Pyraclofos                                      |
| Pyraclostrobin                                  |
| Pyraflufen ethyl                                |
| Pyrazophos                                      |
| Pyrazoxyfen                                     |
| Pyrene                                          |
| Pyrethrin 1                                     |
| Pyrethrin 2                                     |
| Pyrethrin 3                                     |
| Pyrethrin 4                                     |
| Pyributicarb                                    |
| Pyridaben                                       |
| Pyridaphenthion                                 |
| Pyridate                                        |
| Pyrifenox E                                     |
| Pyrifenox Z                                     |
| Pyrimethanil                                    |
| Pyrimidifen                                     |
| Pyriminobac-methyl E                            |
| Pyriminobac-methyl Z                            |
| Pyriproxyfen                                    |
| Pyroquilon                                      |
| Quinalphos                                      |
| Quinoclamine                                    |
| Quinoline                                       |
| Quinoline, 2,7-dimethyl-                        |
| Quinoxyfen                                      |
| Quizalofop-ethyl                                |
| Safrole                                         |
|                                                 |
| Silafluofen                                     |
| Simazine                                        |
| Simeconazole                                    |
|                                                 |

Simetryn

Use/Origin fragrance/leaching from tire insecticide insecticide insecticide insecticide leaching from tire herbicide insecticide herbicide insecticide insecticide herbicide other pesticide fungicide fungicide insecticide other pesticide herbicide herbicide fungicide herbicide flavouring insecticide other pesticide other pesticide herbicide insecticide herbicide fungicide fungicide insecticide **PPCPs** herbicide insecticide insecticide fungicide herbicide fungicide herbicide PAH insecticide insecticide insecticide insecticide herbicide insecticide insecticide herbicide fungicide fungicide fungicide other pesticide herbicide herbicide insecticide fungicide insecticide herbicide intermediate in organic synthesis other fungicide herbicide intermediate in organic synthesis/preservative insecticide herbicide fungicide herbicide

Source business/household agriculture agriculture agriculture agriculture business/household agriculture business/household agriculture agriculture agriculture agriculture agriculture agriculture agriculture agriculture agriculture business/household agriculture agriculture agriculture agriculture agriculture agriculture agriculture industry agriculture industry industry agriculture agriculture industry agriculture agriculture agriculture agriculture

Chemical Spirodiclofen Spiroxamine 1 Spiroxamine 2 Squalane Stearic acid methyl ester Stigmasterol Sulfentrazone Sulfotep Sulprofos Swep TCMTB Tebuconazole Tebufenpyrad Tebupirimfos Tecloftalam Tecnazene Tefluthrin Temephos Terbacil Terbcarb (MBPMC) Terbufos Terbutryn Tetrachlorvinphos Tetraconazole Tetradifon Tetramethrin-1 Tetramethrin-2 Tetryl Thenylchlor Thiabendazole Thiamethoxam deg. Thifluzamide Thiobencarb Thiocyclam Thiometon Thymol Tolclofos-methyl Tolfenpyrad Tolylfluanid Tolylfluanid metabolite Tralomethrin-deg trans-Chlordane trans-Decahydronaphthalene trans-Nonachlor Tri-allate Triadimefon Triadimenol 1 Triadimenol 2 Triazophos Tribenuron-methyl Tribufos Tributyl phosphate Trichlamid Trichlorfon Triclopyr Triclosan Tricosanoic acid methyl ester Tricresyl phosphate Tricyclazole Tridemorph Trifloxystrobin Triflumizole Trifluralin Trimethyl phosphate Triphenylmethane Tris(1,3-dichloro-2-propyl) phosphate Tris(2-chloroethyl) phosphate Tris(2-chloroethyl)phosphite

Use/Origin other pesticide fungicide fungicide PPCPs fatty acid methy ester phytosterol herbicide insecticide insecticide herbicide fungicide fungicide other pesticide insecticide other pesticide fungicide insecticide insecticide herbicide herbicide insecticide herbicide insecticide fungicide other pesticide insecticide insecticide explosive herbicide fungicide insecticide fungicide herbicide insecticide insecticide **PPCPs** fungicide insecticide fungicide fungicide insecticide insecticide solvent insecticide herbicide fungicide fungicide fungicide insecticide herbicide other pesticide fire retardant fungicide insecticide herbicide **PPCPs** fatty acid methyl ester fire retardant/plasticizer fungicide fungicide fungicide fungicide herbicide solvent intermediate for dyes fire retardant fire retardant fire retardant

Source agriculture agriculture agriculture business/household business/household agriculture industry agriculture agriculture agriculture agriculture agriculture agriculture agriculture business/household agriculture agriculture agriculture agriculture agriculture agriculture industry agriculture agriculture agriculture agriculture agriculture agriculture agriculture agriculture business/household agriculture agriculture agriculture business/household business/household business/household agriculture agriculture agriculture agriculture agriculture industry industry business/household business/household business/household

| Chemical                     | Use/Origin                 | Source             |
|------------------------------|----------------------------|--------------------|
| Tris(2-ethylhexyl) phosphate | fire retardant/plasticizer | business/household |
| Tris(4-chlorophenyl)methane  | other                      | industry           |
| Tris(4-chlorophenyl)methanol | other                      | industry           |
| Uniconazole P                | other pesticide            | agriculture        |
| Urea, N,N-diethyl-           | leaching from tire         | business/household |
| Vinclozolin                  | fungicide                  | agriculture        |
| XMC                          | insecticide                | agriculture        |
| Xylylcarb                    | insecticide                | agriculture        |
| Zoxamide                     | fungicide                  | agriculture        |

Table A5 Summary of the 265 chemicals in the LC-TOF-MS-database method

| Compounds                              | CAS RN               | Туре       |
|----------------------------------------|----------------------|------------|
| 4,4'-Oxybis-benzenamine                | 101-80-4             | Industrial |
| 4,4'-methylenebis(N,N-dimethylaniline) | 101-61-1             | Industrial |
| 3,3-dimethoxybenzidine                 | 119-90-4             | Industrial |
| 4,4'-Diaminodiphenyl-methane           | 101-77-9             | Industrial |
| Triphenylphosphate                     | 115-86-6             | Industrial |
| 2-(Di-n-butylamino)ethanol             | 102-81-8             | Industrial |
| Pymetrozin                             | 123312-89-0          | Pesticides |
| Avermectin B1a                         | 65195-55-3           | Pesticides |
| Azoxystrobin                           | 131860-33-8          | Pesticides |
| Boscalid                               | 188425-85-6          | Pesticides |
| Carbendazim                            | 10605-21-7           | Pesticides |
| Carpropamid                            | 104030-54-8          | Pesticides |
| Cyazofamid                             | 120116-88-3          | Pesticides |
| Cyflufenamid                           | 180409-60-3          | Pesticides |
| Cyprodinil                             | 121552-61-2          | Pesticides |
| Dimethirimol                           | 5221-53-4            | Pesticides |
| Dimethomorph(E)                        | 110488-70-5 (isomer) | Pesticides |
| Dimethomorph(Z)                        | 110488-70-5 (isomer) | Pesticides |
| Epoxiconazole                          | 106325-08-0          | Pesticides |
| Ethoxyquin                             | 91-53-2              | Pesticides |
| Fenamidone                             | 161326-34-7          | Pesticides |
| Fenarimol                              | 60168-88-9           | Pesticides |
| Fenhexamid                             | 126833-17-8          | Pesticides |
| Ferimzone(E)                           | 89269-64-7 (isomer)  | Pesticides |
| Ferimzone(Z)                           | 89269-64-7 (isomer)  | Pesticides |
| Furametpyr                             | 123572-88-3          | Pesticides |
| Hexaconazole                           | 79983-71-4           | Pesticides |
| Imazalil                               | 35554-44-0           | Pesticides |
| Iprodione                              | 36734-19-7           | Pesticides |
| Iprovalicarb                           | 140923-17-7          | Pesticides |
| Mepanipyrim                            | 110235-47-7          | Pesticides |
| Mepanipyrim_metabolite                 |                      | Pesticides |
| Oxycarboxin                            | 5259-88-1            | Pesticides |
| Pencycuron                             | 66063-05-6           | Pesticides |
| Prochloraz                             | 67747-09-5           | Pesticides |
| Propamocarb                            | 24579-73-5           | Pesticides |
| Pyraclostrobin                         | 175013-18-0          | Pesticides |
| Simeconazole                           | 149508-90-7          | Pesticides |
| Thiabendazole                          | 148-79-8             | Pesticides |
| Tricyclazole                           | 41814-78-2           | Pesticides |
| Triflumizole                           | 68694-11-1           | Pesticides |
| Triflumizole_metabolite                |                      | Pesticides |
| Triticonazole                          | 131983-72-7          | Pesticides |
| Adenochrome semicarbazone              | 8050-86-0            | Pesticides |
| Alachlor                               | 15972-60-8           | Pesticides |
| Compounds                  | CAS RN                | Туре       |
|----------------------------|-----------------------|------------|
| Anilofos                   | 64249-01-0            | Pesticides |
| Asulam                     | 3337-71-1             | Pesticides |
| Azimsulfuron               | 120162-55-2           | Pesticides |
| Bensulfuron-methyl         | 83055-99-6            | Pesticides |
| Bensulide                  | 741-58-2              | Pesticides |
| Benzobicyclon              | 156963-66-5           | Pesticides |
| Benzobicyclon metabolite   |                       | Pesticides |
| Benzofenap                 | 82692-44-2            | Pesticides |
| Butafenacil                | 134605-64-4           | Pesticides |
| Cafenstrole                | 125306-83-4           | Pesticides |
| Chloridazon                | 1698-60-8             | Pesticides |
| Chlorimuron-ethyl          | 90982-32-4            | Pesticides |
| Chloroxuron                | 1982-47-4             | Pesticides |
| Chlorsulfuron              | 64902-72-3            | Pesticides |
| Cinosulfuron               | 94593-91-6            | Pesticides |
| Clodinafop                 | 114420-56-3           | Pesticides |
| Clofencet                  | 129025-54-3           | Pesticides |
| Clomeprop                  | 84496-56-0            | Pesticides |
| Cloquintocet-mexyl         | 99607-70-2            | Pesticides |
| Cumyluron                  | 99485-76-4            | Pesticides |
| Cyclosulfamuron            | 136849-15-5           | Pesticides |
| Diclosulam                 | 145701-21-9           | Pesticides |
| Diuron                     | 330-54-1              | Pesticides |
| Dymron                     | 42609-52-9            | Pesticides |
| Esprocarb                  | 85785-20-2            | Pesticides |
| Ethametsulfuron-methyl     | 97780-06-8            | Pesticides |
| Ethoxysulfuron             | 126801-58-9           | Pesticides |
| Fenoxaprop-ethyl           | 66441-23-4 (racemate) | Pesticides |
| Fentrazamide               | 158237-07-1           | Pesticides |
| Flazasulfuron              | 104040-78-0           | Pesticides |
| Florasulam                 | 145701-23-1           | Pesticides |
| Fluazifop                  | 69335-91-7            | Pesticides |
| Flufenacet                 | 142459-58-3           | Pesticides |
| Flumetsulam                | 98967-40-9            | Pesticides |
| Fluridone                  | 59756-60-4            | Pesticides |
| Fomesafen                  | 72178-02-0            | Pesticides |
| Foramsulfuron              | 173159-57-4           | Pesticides |
| Halosulfuron-methyl        | 100784-20-1           | Pesticides |
| Imazaquin                  | 81335-37-7            | Pesticides |
| Indanofan                  | 133220-30-1           | Pesticides |
| lodosulfuron-methyl-sodium | 144550-36-7           | Pesticides |
| Isouron                    | 55861-78-4            | Pesticides |
| Isoxaflutole               | 141112-29-0           | Pesticides |
| Lactofen                   | 77501-63-4            | Pesticides |
| Linuron                    | 330-55-2              | Pesticides |

| Compounds                 | CAS RN      | Туре       |
|---------------------------|-------------|------------|
| Methabenzthiazuron        | 18691-97-9  | Pesticides |
| Metosulam                 | 139528-85-1 | Pesticides |
| Metsulfuron-methyl        | 74223-64-6  | Pesticides |
| Monolinuron               | 1746-81-2   | Pesticides |
| Naproanilide              | 52570-16-8  | Pesticides |
| Naptalam                  | 132-66-1    | Pesticides |
| Oryzalin                  | 19044-88-3  | Pesticides |
| Oxaziclomefone            | 153197-14-9 | Pesticides |
| Penoxsulam                | 219714-96-2 | Pesticides |
| Propaquizafop             | 111479-05-1 | Pesticides |
| Propoxycarbazone-sodium   | 181274-15-7 | Pesticides |
| Pyrazolynate (Pyrazolate) | 58011-68-0  | Pesticides |
| Pyrazosulfuron-ethyl      | 93697-74-6  | Pesticides |
| Pyriftalid                | 135186-78-6 | Pesticides |
| pyriminobac-methyl(E)     | 147411-69-6 | Pesticides |
| Quizalofop-ethyl          | 76578-14-8  | Pesticides |
| Sethoxydim                | 74051-80-2  | Pesticides |
| Siduron                   | 1982-49-6   | Pesticides |
| Sulfentrazone             | 122836-35-5 | Pesticides |
| Sulfosulfuron             | 141776-32-1 | Pesticides |
| Tebuthiuron               | 34014-18-1  | Pesticides |
| Tepraloxydim              | 149979-41-9 | Pesticides |
| Thifensulfuron-methyl     | 79277-27-3  | Pesticides |
| Tralkoxydim 1             | 87820-88-0  | Pesticides |
| Tralkoxydim 2             |             | Pesticides |
| Triasulfuron              | 82097-50-5  | Pesticides |
| Tribenuron methyl         | 101200-48-0 | Pesticides |
| Tribenuron-methyl         | 101200-48-0 | Pesticides |
| Trifloxysulfuron-sodium   | 199119-58-9 | Pesticides |
| 2,3,5-Trimethacarb        | 12407-86-2  | Pesticides |
| Acephate                  | 30560-19-1  | Pesticides |
| Acephate                  | 30560-19-1  | Pesticides |
| Acetamiprid               | 135410-20-7 | Pesticides |
| Aldicarb                  | 116-06-3    | Pesticides |
| Aldicarb sulfone          | 1646-88-4   | Pesticides |
| Aramite                   | 140-57-8    | Pesticides |
| Azamethiphos              | 35575-96-3  | Pesticides |
| Azinphos-methyl           | 86-50-0     | Pesticides |
| Bendiocarb                | 22781-23-3  | Pesticides |
| Benfuracarb               | 82560-54-1  | Pesticides |
| Butocarboxim              | 34681-10-2  | Pesticides |
| Butocarboxim sulfoxide    | 34681-24-8  | Pesticides |
| Carbaryl                  | 63-25-2     | Pesticides |
| Carbofuran                | 1563-66-2   | Pesticides |
| Carbosulfan               | 55285-14-8  | Pesticides |

| Compounds                | CAS RN      | Туре       |
|--------------------------|-------------|------------|
| Chlorfluazuron           | 71422-67-8  | Pesticides |
| Chromafenozide           | 143807-66-3 | Pesticides |
| Clofentezine             | 74115-24-5  | Pesticides |
| Clothianidin             | 210880-92-5 | Pesticides |
| Cycloprothrin            | 63935-38-6  | Pesticides |
| Diflubenzuron            | 35367-38-5  | Pesticides |
| Dioxacarb                | 6988-21-2   | Pesticides |
| Ethiofencarb             | 29973-13-5  | Pesticides |
| Fenobucarb               | 3766-81-2   | Pesticides |
| Fenoxycarb               | 79127-80-3  | Pesticides |
| Fenpyroximate            | 111812-58-9 | Pesticides |
| Fenthion oxon sulfone    | 14086-35-2  | Pesticides |
| Fenthion oxon sulfoxide  | 6552-13-2   | Pesticides |
| Fenthion sulfone         | 3761-42-0   | Pesticides |
| Fenthion sulfoxide       | 3761-41-9   | Pesticides |
| Fipronil                 | 120068-37-3 | Pesticides |
| Furathiocarb             | 65907-30-4  | Pesticides |
| Hexythiazox              | 78587-05-0  | Pesticides |
| Imidacloprid             | 138261-41-3 | Pesticides |
| Indoxacarb               | 144171-61-9 | Pesticides |
| Isoprocarb               | 2631-40-5   | Pesticides |
| Methamidophos            | 10265-92-6  | Pesticides |
| Methiocarb               | 2032-65-7   | Pesticides |
| Methomyl                 | 16752-77-5  | Pesticides |
| Methoxyfenozide          | 161050-58-4 | Pesticides |
| Metolcarb                | 1129-41-5   | Pesticides |
| Monocrotophos            | 6923-22-4   | Pesticides |
| Nitenpyram               | 120738-89-8 | Pesticides |
| Oxamyl                   | 23135-22-0  | Pesticides |
| Phoxim                   | 14816-18-3  | Pesticides |
| Pirimicarb               | 23103-98-2  | Pesticides |
| Promecarb                | 2631-37-0   | Pesticides |
| Propoxur                 | 114-26-1    | Pesticides |
| Spinosad A               | 131929-60-7 | Pesticides |
| Tebufenozide             | 112410-23-8 | Pesticides |
| Terbucarb                | 1918-11-2   | Pesticides |
| Tetrachlorvinphos        | 22248-79-9  | Pesticides |
| Thiabendazole metabolite | 948-71-0    | Pesticides |
| Thiacloprid              | 111988-49-9 | Pesticides |
| Thiamethoxam             | 135719-23-4 | Pesticides |
| Thiodicarb               | 59669-26-0  | Pesticides |
| Thiofanox-sulfone        | 39184-59-3  | Pesticides |
| Thiofanox-sulfoxide      | 39184-27-5  | Pesticides |
| Triflumuron              | 64628-44-0  | Pesticides |
| Vamidothion              | 2275-23-2   | Pesticides |

| Compounds          | CAS RN      | Туре            |
|--------------------|-------------|-----------------|
| XMC                | 2655-14-3   | Pesticides      |
| xylylcarb          | 2425-10-7   | Pesticides      |
| Imibenconazole     | 86598-92-7  | Pesticides      |
| Thidiazuron        | 51707-55-2  | Pesticides      |
| Forchlorfenuron    | 68157-60-8  | Pesticides      |
| Scopolamine        | 51-34-3     | Pharmaceuticals |
| Atenolol           | 29122-68-7  | Pharmaceuticals |
| Salbutamol         | 18559-94-9  | Pharmaceuticals |
| Clenbuterol        | 37148-27-9  | Pharmaceuticals |
| Propranolol        | 525-66-6    | Pharmaceuticals |
| Acetaminophen      | 103-90-2    | Pharmaceuticals |
| Ethenzamide        | 938-73-8    | Pharmaceuticals |
| Phenacetin         | 62-44-2     | Pharmaceuticals |
| Testosterone       | 58-22-0     | Pharmaceuticals |
| Lidocaine          | 137-58-6    | Pharmaceuticals |
| Metoprolol         | 37350-58-6  | Pharmaceuticals |
| Sotalol            | 3930-20-9   | Pharmaceuticals |
| Losartan           | 114798-26-4 | Pharmaceuticals |
| Salinomycin        | 53003-10-4  | Pharmaceuticals |
| Sulfanilamide      | 63-74-1     | Pharmaceuticals |
| Cefotaxime         | 63527-52-6  | Pharmaceuticals |
| Roxithromycin      | 80214-83-1  | Pharmaceuticals |
| Sulfamerazine      | 127-79-7    | Pharmaceuticals |
| Thiamphenicol      | 15318-45-3  | Pharmaceuticals |
| Tylosin            | 1401-69-0   | Pharmaceuticals |
| Ampicillin         | 69-53-4     | Pharmaceuticals |
| Azithromycin       | 83905-01-5  | Pharmaceuticals |
| Erythromycin       | 114-07-8    | Pharmaceuticals |
| Lincomycin         | 154-21-2    | Pharmaceuticals |
| Clarithromycin     | 81103-11-9  | Pharmaceuticals |
| Sulfamethizole     | 144-82-1    | Pharmaceuticals |
| Sulfamethoxazole   | 723-46-6    | Pharmaceuticals |
| Sulfamonomethoxine | 1220-83-3   | Pharmaceuticals |
| Sulfadimethoxine   | 122-11-2    | Pharmaceuticals |
| Sulfadiazine       | 68-35-9     | Pharmaceuticals |
| Dexamethasone      | 50-02-2     | Pharmaceuticals |
| Prednisolone       | 50-24-8     | Pharmaceuticals |
| Antipyrine         | 60-80-0     | Pharmaceuticals |
| PropyphenazoLe     | 479-92-5    | Pharmaceuticals |
| Ketoprofen         | 22071-15-4  | Pharmaceuticals |
| Ranitidine         | 66357-35-5  | Pharmaceuticals |
| Promethazine       | 60-87-7     | Pharmaceuticals |
| Disopyramide       | 3737-09-5   | Pharmaceuticals |
| Verapamil          | 52-53-9     | Pharmaceuticals |
| Griseofulvin       | 126-07-8    | Pharmaceuticals |

| Compounds                    | CAS RN     | Туре            |
|------------------------------|------------|-----------------|
| Fluvoxamine                  | 54739-18-3 | Pharmaceuticals |
| Paroxetine                   | 61869-08-7 | Pharmaceuticals |
| Fluoxetine                   | 54910-89-3 | Pharmaceuticals |
| Sulpiride                    | 15676-16-1 | Pharmaceuticals |
| Metoclopramide               | 364-62-5   | Pharmaceuticals |
| Haloperidol                  | 52-86-8    | Pharmaceuticals |
| Diphenidol                   | 972-02-1   | Pharmaceuticals |
| Chlorpromazine               | 50-53-3    | Pharmaceuticals |
| Epinastine                   | 80012-43-7 | Pharmaceuticals |
| Chlorpheniramine maleate     | 113-92-8   | Pharmaceuticals |
| Diltiazem                    | 42399-41-7 | Pharmaceuticals |
| Carazolol                    | 57775-29-8 | Pharmaceuticals |
| Fenofibrate                  | 49562-28-9 | Pharmaceuticals |
| Ifosfamide                   | 3778-73-2  | Pharmaceuticals |
| Cyclophosphamide             | 50-18-0    | Pharmaceuticals |
| Mepirizole                   | 18694-40-1 | Pharmaceuticals |
| Etodolac                     | 41340-25-4 | Pharmaceuticals |
| Dextromethorphan             | 125-71-3   | Pharmaceuticals |
| Pirenzepine                  | 28797-61-7 | Pharmaceuticals |
| Terbutaline                  | 23031-25-6 | Pharmaceuticals |
| Theophylline                 | 58-55-9    | Pharmaceuticals |
| 2-Quinoxalinecarboxylic acid | 879-65-2   | Pharmaceuticals |
| Cefalexin                    | 15686-71-2 | Pharmaceuticals |
| Acetohexamide                | 968-81-0   | Pharmaceuticals |
| Dicyclohexylamine            | 101-83-7   | Pharmaceuticals |
| Cimetidine                   | 51481-61-9 | Pharmaceuticals |
| Metformin                    | 657-24-9   | Pharmaceuticals |
| Tolbutamide                  | 64-77-7    | Pharmaceuticals |
| Cotinine                     | 486-56-6   | Pharmaceuticals |
| Ormetoprim                   | 6981-18-6  | Pharmaceuticals |
| Oleandomycin                 | 3922-90-5  | Pharmaceuticals |
| Spiramycin                   | 8025-81-8  | Pharmaceuticals |
| Tolperisone                  | 728-88-1   | Pharmaceuticals |
| Ifenpridil                   | 23210-56-2 | Pharmaceuticals |
| Amitriptyline                | 50-48-6    | Pharmaceuticals |
| Pentoxifylline               | 6493-05-6  | Pharmaceuticals |
| Dipyridamole                 | 58-32-2    | Pharmaceuticals |
| Sulfapyridine                | 144-83-2   | Pharmaceuticals |
| Cefuroxime                   | 55268-75-2 | Pharmaceuticals |

#### **Experimental Methods**

#### Sample preparation for GC-MS multiscreen

A glass fibre filter (GMF 150 47 mm; Whatman) was placed on top of an SPE disk (Empore SDB-XC 47 mm; 3M) and this extraction system conditioned with 10mL of dichloromethane, 10mL of acetone, 10mL of methanol followed by 20mL of deionised (MilliQ) water. Grab water samples (1 L) were adjusted to acidic pH with phosphate buffer (1 mol/L KH<sub>2</sub>PO<sub>4</sub>-KOH pH7) and loaded onto the filter/extraction disks at the rate of <100mL/min followed by rinse with 20mL of MilliQ water. The glass fibre disks and SPE disks were then dried on a hot plate (35°). Thereafter, the disks were soaked in 5mL of acetone for one minute, and the solvent eluted through the disks. This soaking/elution process was then repeated with another 5 mL aliquot of acetone, before being repeated with 5mL of dichloromethane. The eluants were combined, and the mixture evaporated to <1 mL under a stream of nitrogen, after which 10mL of hexane was added, the mixture dehydrated using sodium sulfate, and the eluent mixture concentrated to less than 1mL. Prior to GC-MS analysis a mixture of internal standards solutions (4-Chlorotoluene-d4, 1,4-Dichlorobenzene-d4, Naphtalene-d8, Acenaphthene-d10, Phenanthrene-d10, Fluoranthene-d10, Chrysene-d12, and Perylene-d12) were added to the sample (100 $\mu$ L of 10  $\mu$ g/L, 1 $\mu$ g each) and sample was made up to 1mL with hexane.

#### Sample preparation for LC-TOF-MS multiscreen

A water sample (200 mL) was pH adjusted with 1mL of phosphate buffer (1M, pH7.0) then filtered through a GF/C glass fiber filter. A combined SPE cartridges (Sep Pak PS-2 and AC-2; Waters) was preconditioned with dichloromethane (5 mL), methanol (5 mL) and Milli-Q water (10 mL). The filtered water sample was then passed through the cartridges at a flow rate of 10 mL/min, after which the cartridge was rinsed with 10 mL of Milli-Q water. After that, the cartridges were dried by nitrogen for 40 min to remove water and finally the desired analytes were eluted with 5 mL of methanol and 3 mL of DCM. The glass fiber filter was extracted twice with methanol (3 mL each) by immersing the filters in methanol in a plastic tube, and using sonication (Ultra sonic cleaner USK-3R); the solutions were then added to the previously eluted samples. The sample mixture was evaporated under nitrogen to a final volume of  $60 \,\mu$ L, and then spiked with 40  $\mu$ L of 5  $\mu$ g/L internal standard (mixture of methomyl-d<sub>3</sub>, pirimicarb-d<sub>6</sub>, imazalil-d<sub>5</sub>). The concentrates (100% methanol solution) were filtered through a syringe filter into a glass vial (1mL of deactivated glass). The plastic tubes were then rinsed with 400  $\mu$ L of Milli-Q water and the water was passed through the same syringe filter into the same glass vial (0.5mL of a final volume, resulting in a 20% methanol solution). Finally, the vials were placed in an auto-sampler and measured by LC-TOF-MS.

#### Measurement

Total ion current chromatograms obtained by, for instance, a GC-MS-Scan were treated with an identification and quantification system with a GC–MS database (AIQS-DB) (Kadokami et al., 2005), that determined the concentrations of the 940 semi-volatile organic compounds (Appendix Table A4). SIM mode was also applied for selected compound screening. LC-TOF-MS database (AIQS-DB) was also developed that determined the concentration of the 300 non-volatile organic compounds (Appendix Table A5).

#### **GC-MS** specification

GC-MS: Shimadzu GCMS-QP 2010 Plus

Column: J&W DB-5 ms (5% phenyl-95% methylsilicone) fused silica capillary column, 30 m X 0.25 mm i.d., 0.25 mm film

Temperature: Column: temperature programmed: 2 min at 40°C, 8°C/min to 310°C, 5 min at 310°C;

Injector: 250°C; Transfer line: 300°C; Ion source: 200°C

Injection method: splitless, 1 min for purge-off time

Carrier gas: He

Linear velocity: 40 cm/s, constant flow mode

Ionization method: EI

Tuning method: target tuning for US EPA method 625

Measurement method: SIM/Scan

Scan range: 45 amu to 600 amu

Scan rate: 0.3 s/scan

### **LC-TOF-MS** specification

#### LC: Agilent 1200

Column: GL Science ODS-4 2.1×150mm (3 $\mu$ m) Mobile Phase: A 5mmol CH<sub>3</sub>COONH<sub>4</sub> in H<sub>2</sub>O; B 5mmol CH<sub>3</sub>COONH<sub>4</sub> in CH<sub>3</sub>OH Gradient Profile: A95:B5 (0min) - A5:B95 (30min-50min) Column Temperature: 40 °C Flow Rate: 0.3 mL/min

#### MS: Agilent 6220 MSD

Ionization: ESI-Positive Fragmentor Voltage: 100 V VCap Voltage: 3500 V Drying gas flow: 10L/min at 325 °C Measurement mode: Scan Scan range (m/z): 50-1000

# Appendix B: Yeast based recombinant receptor-reporter gene bioassays (yeast bioassays)

Urban municipal wastewaters may contain a large number of organic chemicals. More than 100,000 chemicals are registered at EINECS (European inventory of existing chemical substances) and around 30,000 to 70,000 chemicals are used daily (European Commission, 2011). Some of these chemicals, when discharged to receiving waters, may prove directly toxic to organisms living therein, while others may elicit more subtle effects, including eliciting genotoxic or endocrine disrupting effects (EDCs). Managing the effects of such contaminants ultimately requires information on effluent toxicity and chemical concentrations. Yeast bioassays are high-throughput cell-based *in vitro* toxicity testing methods that were developed to target some levels of the toxicity pathway. Recent improvements of sample preparation methods and more sensitive bioassay endpoints have enabled evaluation of high quality water such as purified recycled water and drinking water. A battery of yeast bioassays covers a range of mode of actions and recipients (human and fish) to be tested. In conjunction with baseline toxicity tests (bioluminescence inhibition test with photobacteria *Vibrio fischeri*), yeast bioassays provide a comprehensive picture of the biologically-active chemicals present in a sample, indicative of specified endpoints relevant for human and / or environmental health.

| Nuclear receptor                             | Function                                                                                              | Target mode of action                                            | Inducing chemicals              |
|----------------------------------------------|-------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|---------------------------------|
| hER                                          | _                                                                                                     |                                                                  | Natural estrogens,              |
| (human estrogen                              | Endocrine system                                                                                      | Estrogenicity                                                    | estrogen mimicking              |
| medER                                        |                                                                                                       |                                                                  | Natural estrogens,              |
| (medaka estrogen<br>receptor)                | Endocrine system                                                                                      | Estrogenicity                                                    | estrogen mimicking<br>chemicals |
| AhR<br>(aryl hydrocarbon<br>receptor)        | Induction of cytochrome<br>P450 (CYP1A1)                                                              | Dioxin-like activity,<br>Aryl hydrocarbon<br>receptor activation | PAHs, Dioxins                   |
| CAR<br>(constitutive androstane<br>receptor) | Protective role against<br>toxicity induced by bile<br>acid, regulation of<br>physiological functions | Xenobiotic detection                                             | Various pharmaceuticals         |

Table B1: The function of nuclear receptors utilized in yeast bioassays

Testing the removal of all micro-contaminants/micro-pollutants is not practical or realistic, although the concentration of individual contaminants is expected to be very low. Bioassays are proven to be more sensitive than chemical analysis in evaluating the removal of organic micro-pollutants by reverse osmosis or other advanced treatment technologies by showing the observed mixed toxicity of chemicals that could fall below the quantification limit of chemical analysis (Cao et al 2009; Escher et al. 2009, 2011; Leusch et al. 2014a, 2014b; Macova et al. 2010, 2011; Stalater et al. 2011; Tang et al. 2014). Many cell based *in vitro* bioassays are available. A comprehensive test battery should include general cytotoxicity tests such as photobacteria toxicity test, estrogen receptor assays, and xenobitotic induction testing. The battery of yeast bioassays for this project included:

• Estrogen receptors (hER, medER): receptor mediated effects = estrogenic effects (endocrine disruption)

• Aryl hydrocarbon receptor (AhR) and Constitutive androstane receptor (CAR): Induction of xenobiotic metabolism pathways

Estrogenicity was tested by hER and medER yeast bioassays transduced with the ligand binding domains of nuclear receptors and co-activators for detecting and measuring the activity of chemicals; detection of xenobiotics was tested by AhR and CAR yeast bioassays. While the induction of xenobiotic metabolism may not lead to cytotoxicity, it is an indicator of the presence of chemical pollutants. Assays were conducted on feed, product and discharge water from the AWTP according to the monitoring program.

#### **Experimental**

#### Sample preparation for bioassays

A water sample (1L) was pH adjusted with 10mL of acetic acid methanol solution (1:9:90 acetic acid : water : methanol). A glass fibre filter (GMF 150 47 mm; Whatman) was placed on top of an SPE disk (Empore SDB-XC 47 mm; 3M) and this extraction system conditioned with 10mL of methanol followed by 20mL of deionised (MilliQ) water. Water samples (1 L) were loaded onto the filter/extraction disks and washed with 20mL of MilliQ water. The glass fibre disks and SPE disks were then dried on a hot plate (35°). Thereafter, the glass fibre disks were sonicated in 6 mL of methanol for five minute (repeat this), and the solvent was collected and combined the centrifuged (at 3000 rpm for 20 min.) residue from filters. The combined methoanl was used to elute Empore disks. The eluants evaporated to dryness under a stream of nitrogen. Dried samples were reconstituted with 1 mL of 10% acetone / dichloromethane mix (A/D mix) then vortex and ultrasonic for 5 min. (repeat this), then loaded thison to Florisil (FL) cartridge (Varian Bond Elut-FL, 500 mg, 3mL; CA, USA) conditioned with 2 mL of A/D mix (eluent was collected). The tube contained sample was washed with 1mL of A/D mix and loaded onto the FL cartridge while eluent was collected, another 2 mL of A/D mix was added (total 4 mL of eluent was collected - FL-A/D fraction). Methanol fraction was collected after loading 1 mL x 2 + 3 mL methanol (total 4mL) by washing the tube by vortex (FL-Me fraction). Both fractions were evaporated under nitrogen stream.

#### Photobacteria (PB) toxicity test

Dried samples were reconstituted with 100  $\mu$ L of DMSO then 20  $\mu$ L of sample was combined with 480  $\mu$ L T medium (T med; peptone, 0.4 g; glycerol 3.5 g; NaCl 20 g; MgSO<sub>4</sub>·7H<sub>2</sub>O, 29 g; KCl, 0.9 g; K<sub>2</sub>HPO<sub>4</sub>, 0.1 g; 1M MOPS buffer solution, 4.5 mL) and was then ready for toxicity testing after vortex. Photobacterium cells cultured in a mixture of marine broth and T med was diluted with modified T med (m-T med; glucose instead of glycerol). Microplate (96 wells) was prepared by adding m-T med (60  $\mu$ L) to all wells by an auto-dispensing system (Nichiryo NSP-7000 Multi-channel Auto Sampling System, Nichiryo Co., Tokyo, Japan). Five samples and one control were run on each plate, with aliquots of each sample (60  $\mu$ L), added to two, neighbouring wells of the 1st row of the plate. An aliquot was removed from each row to next row except for the last row to dilute 2-fold. Thereafter, bacterium solution (60  $\mu$ L) was added to all wells, the plate shaken (30s). Bioluminescence intensity was measured by a microplate luminometor. The ICR50 values are reported according to a concentration ratio (C.R.), which is effectively how much the sample would have had to be diluted to inhibit luminescence in 50% of the photobacteria. In short, the lower the ICR50 reported, the higher the toxicity of the sample (and *vice versa*, i.e. the higher the ICR50, the lower the toxicity).

#### Measurement of estrogenicity with hER and medER yeast bioassay

Recombinant yeast cells were cultured (30<sup>D</sup>C, overnight) in a modified SD (Sabouraud Dextrose) (MSD) medium (0.88% glucose lacking tryptophan and leucine). The yeast solution cell density was measured (595 nm) and adjusted to around 0.18 readings for constant cell density by diluting with MSD medium. Microplate (96 wells) was prepared by adding MSD solution (60  $\mu$ L) to all wells by an auto-dispensing system (Nichiryo NSP-7000 Multi-channel Auto Sampling System, Nichiryo Co., Tokyo, Japan). Six samples were run on each plate, with aliquots of each sample (60  $\mu$ L), added to two, neighbouring wells of the 1st row of the plate. An aliquot was removed from each row to next row except for the last row to dilute 2-fold. Thereafter, yeast solution (60  $\mu$ L) was added to all wells, the plate shaken (30s) and then incubated (30°C, 4 h). Enzymatic digestion was conducted by adding 50  $\mu$ L of mixture of Lysis solution (zymolyase 100T / Z buffer) into each well by the auto-dispenser. Then the plate was incubated (37°C, 1 h) after vortex (40s). After incubation, 80 µL of GS substrate solution (Galacton-Star substrate with reaction buffer diluent; Applied Biosystems) for inducing chemiluminescence was then added to each well, and the plate incubated (30°C, 10 min). The chemiluminescence produced by released  $\beta$ -galactosidase was measured with a microplate luminometer (Luminescencer-JNR AB-2100, ATTO Bioinstruments, Tokyo, Japan). Agonist activity was recorded as the EC x 10 (defined as the concentration of test solution producing a chemiluminescent signal 10 times that of the blank (negative) control). Positive control is 17βestradiol in both hER and medER assays.

#### Measurement of xenobiotic induction with AhR and CAR yeast bioassay

Recombinant AhR yeast cells were cultured (30°C, overnight) in a modified SD (Sabouraud Dextrose) (MSD) medium (lacking tryptophan). CAR yeast cells were cultured as hER and medER method. The AhR yeast solution was centrifuged (2000 rpm, 20 min) and replaced media to MSD (1.5% galactose + leucine) for AhR assay. The yeast solution cell density was measured (595 nm) and adjusted to around 0.18 readings for constant cell density by diluting with MSD medium. Microplate (96 wells) was prepared by adding MSD solution (60  $\mu$ L) to all wells by an auto-dispensing system (Nichiryo NSP-7000 Multi-channel Auto Sampling System, Nichiryo Co., Tokyo, Japan). Six samples were run on each plate, with aliquots of each sample (60 µL), added to two, neighbouring wells of the 1st row of the plate. An aliquot was removed from each row to next row except for the last row to dilute 2fold. Thereafter, yeast solution (60 µL) was added to all wells, the plate shaken (30s) and then incubated (30°C, 4 h). Enzymatic digestion was conducted by adding 50  $\mu$ L of mixture of Lysis solution (zymolyase 100T / Z buffer) into each well by an auto-dispenser. Then the plate was incubated (37°C, 1 h) after vortex (40s). After incubation, 80 µL of GS substrate solution (Galacton-Star substrate with reaction buffer diluent; Applied Biosystems) for inducing chemiluminescence was then added to each well, and the plate incubated (30°C, 10 min). The chemiluminescence produced by released  $\beta$ -galactosidase measured with a microplate luminometer (Luminescencer-JNR AB-2100, ATTO Bioinstruments, Tokyo, Japan). Agonist activity was recorded as the EC x 10 (defined as the concentration of test solution producing a chemiluminescent signal 10 times that of the blank (negative) control). Positive controls were  $\beta$ -naphthoflavone in AhR and p-tert-octylphenol in CAR assays.

#### References

- Allinson M, Nakajima D, Kamata R, Shiraishi F, Goto S, Salzman SA, Allinson G (2012). A pilot survey of 39 Victorian WWTP effluents using a high speed luminescent *umu* test in conjunction with a novel GC-MS-database technique for automatic identification of micropollutants. *Water Sci. Technol.* 66(4): 768-774.
- Cao N, Yang M, Zhang Y, Hu J, Ike M, Hirotusuji J, Matsui H, Inoue D, Sei K (2009). Evaluation of wastewater reclamation technologies based on in vitro and in vivo bioassays. Sci. Toal Environ. 407: 1588-1597.
- Drewes JE, Sedlak D, Snyder S, Dickenson E (2008). Development of indicators and surrogates for chemical contaminant removal during wastewater treatment and reclamation. WaterReuse Foundation Report 03-014-01.
- Escher BI, Bramaz N, Ort C (2009). JEM Spotlight: Monitoring the treatment efficiency of a full scale ozonation on a sewage treatment plant with a mode-of-action based test batteiry. J. Environ. Monit. 11: 1836-1846.
- Escher BI, Lawrence M, Macova M, Muller JF, Poussade Y, Robillot C, Roux A, Gernajak W (2011). Evaluation of contaminant removal of reverse osmosis and advanced oxidation in full-scale operation by combining passive sampling with chemical analysis and bioanalytical tools. Environ. Sci. Technol. 45: 5387-5394.
- European Commission (2014). European inventory of existing chemical substances (EINECS), ECHA, http://esis.jrc.ec.europa.eu/index.php?PGM=ein.
- Kadokami K, Tanada K, Taneda K, Nakagawa K (2004). Development of a novel database for simultaneous determination of hazardrous chemicals. Bunseki Kagaku 53: 581-588 (in Japanese).
- Kadokami K, Tanada K, Taneda K, Nakagawa K (2005). Novel gas chromatography–mass spectrometry database for automatic identification and quantification of Micropollutants. J Chromatogr A 1089(1-2): 219-226.
- Kadokami K, Jinya D, Iwamura T (2009). Survey on 882 organic micro-pollutants in rivers throughout Japan by automated identification and quantification system with a gas chromatography mass spectrometry database. Kankyo Kagaku 19(3): 351-360 (in Japanese).
- Kadokami K, Pan S, Hanh DH, Li X, Miyazaki T (2012). Development of comprehensive analytical method for semi-volatile organic compounds in sediments by using automated identification and quantification system with GC–MS database. Anal. Sci. 28: 1183–1189.
- Leusch FDL, Kahn SJ, Gagnon MM, Quayle P, Trinh T, Coleman H, Rawson C, Champan H, Blair P, Nice H, Reitsema T (2014a). Assessment of wastewater and recycled water quality: comparison of lines of evidence from in vitro, in vivo and chemical analyses. Water Res. 50: 420-431.
- Leusch FDL, Khan SJ, Laingam S, Prochazka E, Trinh E, Froscio S, Chapman H, Humpage A (2014b). Assessment of the application of bioanalytical tools as surrogate measure of chemical contaminants in recycled water. Water Res. 49: 300-315.
- Macova M, Escher BI, Reungoat J, Carwell S, Lee Chue K, Keller J, Mueller JF (2010). Monitoring the biological activity of micropollutants during advanced wastewater treatment with ozonation and activated carbon filtration. Water Res. 44: 477-492.
- Macova M, Toze S, Hodgers L, Muller JF, Bartkow M, Escher BI (2011). Bioanalytical tools for the evaluation of organic micropollutants during sewage treatment, water recycling and drinking water generation. Water Res. 45: 4238-4247.
- Stalter D, Magdeburg A, Wagner M, Oehlmann J (2011). Ozonation and activated carbon treatment of sewage effluents: Removal of endocrine activity and cytotoxicity. Water Res. 45: 1015-1024.
- Tang JYM, Busetti F, Charrois JWA, Escher BI (2014). Which chemicals drive biological effects in wastewater and recycled water? Water Res. 60: 289-299.

Appendix C Health guideline values Table C1: Health Guideline Values from ADWG (Australian Drinking Water Guidelines) and AGWR (Australian Guidelines for Water Recycling) and AIQS GC-MS/LC-TOF-MS method of detection limits  $(\mu g/L)$ 

| Chemical Names                         | ADWG     | AGWR | AIQS GC/LC<br>MDL |
|----------------------------------------|----------|------|-------------------|
| Disinfection By-Products               |          |      |                   |
| 2-chlorophenol                         | 300      |      | 0.01              |
| 2,4-Dichlorophenol                     | 200      | 200  | 0.01              |
| 2,4,6-Trichlorophenol                  | 20       | 20   | 0.01              |
| 2,6-Dichlorophenol                     |          |      | 0.01              |
| Bromoacetic acid                       |          | 10   |                   |
| Bromochloroacetonitrile                |          | 0.35 |                   |
| Bromodichloromethane                   |          | 0.7  |                   |
| Bromoform                              |          | 6    |                   |
| Chlorinated furanones (MX)             |          | 100  |                   |
| Chloroacetic acid                      | 150      |      |                   |
| Chloroform                             |          | 200  |                   |
| Dibromochloromethane                   |          | 100  |                   |
| Dichloroacetic acid                    | 100      | 100  |                   |
| Dichloroacetonitrile                   |          | 2    |                   |
| N-nitrosodiethylamine (NDEA)           | <b>.</b> | 0.01 | 0.01              |
| N-nitrosodimethylamine (NDMA)          | 0.1      | 0.01 |                   |
| I richloroacetic acid                  | 100      | 100  |                   |
| I rihalomethanes (thMs) (total)        | 250      |      |                   |
| Pesticides                             | 400      |      |                   |
| 1,3-Dicnioropropene                    | 100      | 1000 | 0.01              |
|                                        | 500      | 1000 | 0.01              |
| 2,2-DPA                                | 500      | 20   |                   |
| 2,4-D (2,4-Dichlorophenoxyacelic acid) | 30       | 30   |                   |
| 2,4,0-1<br>4 Nitrophonol               | 100      | 20   | 0.01              |
|                                        |          | 30   | 0.01              |
| 4,4 - DDE (44DDE, p, p - DDE)          | 0        | 20   | 0.01              |
| Acephate                               | 8        |      | 0.01              |
| Alachlor (Lasso)                       | 0        |      | 0.05              |
| Aldicarb                               | Λ        |      | 0.01              |
| Aldrin & Dieldrin (combined)           | -<br>0 3 |      | 0.01              |
| Ametryn                                | 70       |      | 0.01              |
| Amitraz                                | 9        |      | 0.01              |
| Amitrole                               | 0.9      |      | 0.01              |
| Asulam                                 | 70       |      | 0.01              |
| Atrazine                               | 20       | 40   | 0.01              |
| Azinphos-methyl                        | 30       | 3    | 0.01              |
| Benomyl                                | 90       | -    |                   |
| Bentazone                              | 400      |      | 0.01              |
| Bioresmethrin                          | 100      |      | 0.01              |
| Bromacil                               | 400      |      | 0.01              |
| Bromophos-ethyl                        | 10       | 10   |                   |
| Bromoxynil                             | 10       |      |                   |
| Captan                                 | 400      |      | 0.01              |
| Carbaryl                               | 30       |      | 0.01              |
| Carbendazim                            | 90       | 100  | 0.01              |
| Carbofuran                             | 10       |      | 0.01              |
| Carbophenothion                        | 0.5      |      |                   |
| Carboxin                               | 300      |      | 0.01              |

| [[Carboxymethy]imino bis(ethylenenitrilo)]     5       Chlorantraniliprole     6000       Carfentrazone-ethyl     100     0.01       Chlorfenvinphos     2     1       Chlorfenvinphos     2     0.01       Chlorfonvinphos     2     0.01       Chlorstenvinphos     0     0.01       Chlorstenvinphos     200     0.1       Chlorstenvintion     200     0.5     0.01       Chlorstenvintion     200     0.5     0.01       Cypratid     200     0.5     0.01       Cypratinino     4     3     0.01       Dietamethrin     40     0.01     0       Dichlorprop / Dichlorprop-P     100     0.01     0       Dichlorprop / Dichlorprop-P     100     0.01     0       Dichlorprop     5     1     0     0                                                                             | Chemical Names                              | ADWG     | AGWR | AIQS GC/LC<br>MDL |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|----------|------|-------------------|
| Chlorantraniliprole     6000       Carfentrazone-ethyl     100     0.01       Chlordane     2     1       Chlordanohi     50     0.01       Chlordnabohi     50     0.01       Chlorothalonil     50     0.01       Chlorothalonil     200     0.1       Cypermethrin     200     0.01       Cypermethrin     40     0.01       Dicanba     100     0.01       Dicantoa     100     0.01       Dichoroprop / Dichlorprop-P                                                              | [(Carboxymethyl)imino bis(ethylenenitrilo)] |          | 5    |                   |
| Carfentrazone-ethyl     100     0.01       Chlordene     2     1       Chlorden     2     0.01       Chlorden     50     0.01       Chlordson     10     0.01       Chlorosuron     10     0.01       Chlorsuffuron     200     0.1       Clopryrifosmethyl     10     0.01       Chlorsuffuron     200     0.5     0.01       Cyprodini     90     0.01     0       Cyprodini     90     0.01     0       Cyprodini     90     0.01     0       Demeton-S     0.15     0.01     0       Diazinon     4     3     0.01     0       Dichorporp / Dichlorprop-P     100     10     0     10       Dichorporp / Dichlorprop-P     100     10     10     10       Dichorporp / Dichlorprop-P     100     10     10     10       Dichorporp / Dichlorprop-P     100     0     10     10       Dichorons     5     1                                                                                                                                  | Chlorantraniliprole                         | 6000     |      |                   |
| Chlordane     2     1       Chlordenionih     50     0.01       Chlorothalonih     50     0.01       Chlorothalonih     50     0.01       Chlorothalonih     10     0.01       Chlorothalonih     200     0.1       Chlorothalonih     200     0.1       Chlorothalonih     200     0.1       Chlorothalonih     2000     0.1       Chlorothalonih     2000     0.1       Chlorothalonih     200     0.1       Chlorothalonih     200     0.1       Chlorothalonih     200     0.1       Chlorothalonih     90     0.01       Cypermethrin     200     0.1       Deltamethrin     40     0.01       Dientons     0.15     0.01       Dichloroprop / Dichlorprop-P     100     0.01       Dichloropros     5     1       Dichloropros     5     1       Direntoze     7     50     0.01       Dichloropros     5     1     0                                                                                                                     | Carfentrazone-ethyl                         | 100      |      | 0.01              |
| Chlordenvinphos     2     0.01       Chlorosuron     10     0.01       Chlorosuron     10     0.01       Chlorosuron     10     0.01       Chlorosuffuron     200     0.1       Chlorosuffuron     200     0.1       Chlorosuffuron     200     0.1       Cypurgatid     2000     0.01       Cypurgatid     200     0.5     0.01       Cypurgatid     90     0.01     0     0.01       Cypurgatid     90     0.01     0     0.01       Detamethrin     40     0.01     0     0       Diazinon     4     3     0.01     0       Dichloroprop / Dichlorprop-P     100     0     0     1       Dichloroprop / Dichlorprop-P     100     0     0     1       Dichloroprop / Dichlorprop-P     100     0     0     1       Dichloroprop     7     50     0.01     0     1       Dichloroprop     7     50     0.01 <td< td=""><td>Chlordane</td><td>2</td><td>1</td><td></td></td<>                                                                  | Chlordane                                   | 2        | 1    |                   |
| Chlorothalonil     50     0.01       Chloroyuron     10     0.01       Chloroyrifos     10     0.01       Chloroyrifos-methyl     10     0.01       Chloroyrifos     200     0.1       Chorosufturon     200     0.1       Copyralid     2000     0.5       Cypturbin     Beta-cyfluthrin     50     0.01       Cypermethrin     40     0.01     0       Dettamethrin     40     0.01     0       Dettamethrin     100     0     0       Dicarino     4     3     0.01       Dichoroprop / Dicholoprop-P     100     0     0       Dicholopor / Dicholoprop-P     100     0     0       Dicholopor / Dicholoprop / Dicholoprop-P     100     0     0       Dicholopor / Dicholoprop / Dicholoprop     100     0     0       Dicholopor / Dicholoprop     100     0     0     0       Dicholopor / Dicholoprop     100     0     0     0       Dicholoporogo     0                                                                               | Chlorfenvinphos                             | 2        |      | 0.01              |
| Chloroxuron     10     0.01       Chloroyrifos-methyl     10     0.01       Chloroyrifos-methyl     200     0.1       Chloroyrifos-methyl     200     0.1       Chloroyrifos-methyl     200     0.1       Clopyralid     200     0.5     0.01       Cyprodinil     90     0.01     0       Cyprodinil     90     0.01     0       Dettamethrin     40     0.01     0       Dettamethrin     40     0.01     0       Dicarinon     4     3     0.01       Dichoroprop / Dichlorprop-P     100     10     10       Dichorovs     5     1     10     10     10       Dichorovs     5     1     001     10     10     <                                                                                                                                                     | Chlorothalonil                              | 50       |      | 0.01              |
| Chiorpyrifos     10     10     0.01       Chiorpyrifosmethyl     10     0.01       Chorsulluron     200     0.1       Clopyralid     2000     0.5     0.01       Cypturbin, Beta-cyfluthrin     50     0.01     0.7       Cypermethrin     200     0.5     0.01       Cypermethrin     40     0.01     0       Dettamethrin     40     0.01     0       Detamethrin     40     0.01     0       Dicamba     100     0     0     0       Dichloroprop / Dichlorprop-P     100     0     0     0       Dichlorops     5     1     0     0     0       Dichlorops     5     1     0     0     0     0       Dichlorops     7     50     0.01     0     0     0     0     0       Dichlorops     7     50     0.01     0     0     0     0     0     0     0     0     0     0                                                                                                                                                                      | Chloroxuron                                 | 10       |      | 0.01              |
| Chiory/rifes-methyl     10     0.01       Chiorsulfuron     200     0.1       Clopyraid     2000     0.1       Cyfuthrin, Beta-cyfluthrin     50     0.01       Cypermethrin     200     0.5     0.01       Cypermethrin     90     0.01     0.01       Dettamethrin     40     0.01     0.01       Demeton-S     0.15     0.01       Dizanon     4     3     0.01       Dichobenil     100     10     10       Dicholoroprop / Dicholorprop-P     100     10     10       Dicholoroxos     5     1     0.01       Dicholoroxos     5     0.01     10       Difenzoquat     100     1     10       Difenzoquat     100     0.01     1       Diguat     7     50     0.01       Disulfoton     4     0.01     1       Diuron     20     30     0.01       Endosulfan     20     0.01     1       Endosulfa                                                                                                                                       | Chlorpyrifos                                | 10       | 10   | 0.01              |
| Chiosuffuron     200     0.1       Clopyralid     2000     0.5     0.01       Cyprotinin, Beta-cyfluthrin     200     0.5     0.01       Cyprodinil     90     0.01     0.01       Cyprodinil     90     0.01     0.01       Demeton-S     0.15     0.01       Diazinon     4     3     0.01       Dichoroprop / Dichlorprop-P     100     0.01     0.01       Dichoroprop     7     50     0.01       Dimethoate     7     50     0.01       Disulfoton     4     0.01     0.02       EDB     1     1 <td>Chlorpyrifos-methyl</td> <td></td> <td>10</td> <td>0.01</td> | Chlorpyrifos-methyl                         |          | 10   | 0.01              |
| Clopyralid     2000       Cyfluthrin, Beta-cyfluthrin     50     0.01       Cypermethrin     200     0.5     0.01       Cypermethrin     90     0.01     0       Deltamethrin     40     0.01     0       Demeton-S     0.15     0     0       Diazinon     4     3     0.01       Dichobenil     10     0     0       Dichobenil     10     0     0       Dichoroprop / Dichorprop-P     100     0     0       Dichoryos     5     1     0     0       Dichoryos     5     0.01     0     0       Difenzoquat     100     0     0     0       Difenzoquat     7     50     0.01     0       Diquat     7     0     0     0     0       Diuron     20     30     0.01     0     0       Didosulfan sulfate     30     0.01     0     0     0       Efforcyalerate     30 </td <td>Chlorsulfuron</td> <td>200</td> <td></td> <td>0.1</td>                                                                                                        | Chlorsulfuron                               | 200      |      | 0.1               |
| Cyfluthrin, Beta-cyfluthrin     50     0.01       Cyprodini     90     0.01       Dettamethrin     40     0.01       Dettamethrin     40     0.01       Dettamethrin     40     0.01       Demeton-S     0.15     0       Diazinon     4     3     0.01       Dichoroprop / Dichlorprop-P     100     0     0       Dichloroprop / Dichlorprop-P     100     0     0       Dichoroprop / Dichlorprop-P     100     0     0       Dichoroprop / Dichlorprop-P     100     0     0       Dictofol     4     0.01     0     0       Dictofol     4     0.01     0     0     0       Difubenzuron     7     50     0.01     0     0     0       Diquat     7     50     0.01     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0                                                                                                                                                      | Clopyralid                                  | 2000     |      |                   |
| Cýpermethrin     200     0.5     0.01       Cypordinil     90     0.01       Dettamethrin     40     0.01       Demeton-S     0.15       Diazinon     4     3     0.01       Dicamba     100     0     0.01       Dichloroprop / Dichlorprop-P     100     0     0.01       Dichloroxos     5     1     0.01       Dicofol     4     0.01     0.01       Dictoroxos     5     1     0.01       Dictoroxos     5     0.01     0.01       Difenzoquat     100     0.01     0.01       Dimethoate     7     50     0.01       Diphenamid     300     0.01     0.01       Diquat     7     50     0.01       Endosulfan     20     30     0.01       Endosulfan     20     30     0.01       Endosulfan     100     0.025     0.01       Eferox     30     0.01     0.01       Ethoprophos (Moca                                                                                                                                                    | Cyfluthrin, Beta-cyfluthrin                 | 50       |      | 0.01              |
| Cyprodinil     90     0.01       Dettamethrin     40     0.01       Demeton-S     0.15       Diazinon     4     3     0.01       Dicamba     100     0     0       Dichlobenil     10     0     0       Dichloprop / Dichlorprop-P     100     0     0       Dichoprop / Dichlorprop-P     100     0     0       Dichoprethyl     5     1     0       Dicofol     4     0.01     0       Dimethoate     7     50     0.01       Dipenamid     300     0.01     0       Diguat     7     0     0       Disulfoton     4     0.01     0       Disulfoton     4     0.01     0       Disulfoton     4     3     0.01       EDB     1     0     0     0       Endosulfan sulfate     30     0.01     0     0       Endosulfan sulfate     30     0.01     0     0     0 <td>Cypermethrin</td> <td>200</td> <td>0.5</td> <td>0.01</td>                                                                                                               | Cypermethrin                                | 200      | 0.5  | 0.01              |
| Delatamethrin     40     0.01       Demeton-S     0.15       Diazinon     4     3     0.01       Dicamba     100     0     0       Dichlorprop / Dichlorprop-P     100     0     0       Dichlororsop / Dichlorprop-P     100     0     0       Dichororsop / Dichlorprop-P     100     0     0       Dicofol     4     0     0     0       Difubenzuron     7     50     0.01     0       Diphenamid     300     0.01     0     0     0       Disulfoton     4     0.01     0     0     0     0       Disulfoton     4     30     0.01     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0                                                                                                                                             | Cvprodinil                                  | 90       |      | 0.01              |
| Demeton-S     0.15       Diazinon     4     3     0.01       Dicamba     100     00     00       Dichlobenil     10     00     00       Dichlororop / Dichlorprop-P     100     00     001       Diclofop-methyl     5     1     00       Didepartment     7     0.01     001       Didepartment     7     0.01     001       Dimethoate     7     50     0.01       Diquat     7     00     001       Diuron     20     30     0.01       Endosulfan     20     0.01     001       Endosulfan     20     0.01     001       Endosulfan     30     0.01     0.01       Endosulfan     100     0.025     0.01       Ethion     4     3     0.01       Ethorophos (Mocap)     1     1     0.01       Ethion     7     0.5     0.01       Fenamiphos     0.5     0.01     0.01  <                                                                                                                                                                  | Deltamethrin                                | 40       |      | 0.01              |
| Diazinon     4     3     0.01       Dicamba     100     100     100       Dichlobenil     10     100     100       Dichloroprop / Dichlorprop-P     100     100     100       Dichloryos     5     1     100     100       Dicofol     4     100     100     100     100       Difenzoquat     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100                                                                                                                                              | Demeton-S                                   |          | 0.15 |                   |
| Dicamba     100     Intervention       Dichloroprop / Dichlorprop-P     100     Dichloroprop       Dichlorovos     5     1       Dicofol     4     Difenzoquat       Dimenzoquat     100     Difenzoquat       Difenzoquat     100     Difenzoquat       Difubenzuron     70     Dimethoate       Diquat     7     50     0.01       Diquat     7     0.01     Diquat       Diuron     20     30     0.01       Diuron     20     0.01     EPB       Endosulfan     20     0.01     EPTC       Bidosulfan     100     0.01     Esfenvalerate     30     0.01       Ethion     4     3     0.01     Esfenvalerate     0.01     Esfenvalerate     0.01       Ethion     4     3     0.01     Esfenvalerate     0.01     Esfenvalerate     0.01       Fenamiphos     0.5     0.01     Esfenvalerate     0.01     Esfenvalerate     0.01       Fenamiphos     0.                                                                                    | Diazinon                                    | 4        | 3    | 0.01              |
| Dichlobenil     10       Dichloroprop / Dichlorprop-P     100       Dichloros     5     1       Dichop-methyl     5     0.01       Dicofol     4     0       Diffubenzuron     70     0       Dimethoate     7     50     0.01       Diguat     7     0     0.01       Diguat     7     0.01     0.01       Diguat     7     0.01     0.01       Disulfoton     4     0.01     0.01       Disulfoton     20     30     0.01       EDB     1     1     0     1       Endosulfan sulfate     30     0.01     0.01       Efforwalerate     30     0.01     0.01       Efforyalerate     30     0.01     0.01       Efforsalerate     30     0.01     0.01       Efforyalerate     30     0.01     0.01       Efforyalerate     30     0.01     0.01       Efforyalerate     30     0.01     0.0                                                                                                                                                    | Dicamba                                     | 100      | -    |                   |
| Dickloroprop / Dichlorprop-P     100       Dichlorvos     5     1       Diclofop-methyl     5     0.01       Dicofol     4     0       Difenzoquat     100     0       Diffubenzuron     70     0       Dimethoate     7     50     0.01       Diphenamid     300     0.01     0       Diquat     7     0     0.01       Diguat     7     0.01     0.01       Diuron     20     30     0.01       Endosulfan     20     0.01     0.01       Endosulfan     20     0.01     0.01       Endosulfan     30     0.01     0.01       Endosulfan     30     0.01     0.01       Endosulfane     30     0.01     0.01       Endosulfane     100     0.01     0.025       Endosulfane     30     0.01     0.025       Ethion     4     3     0.01       Ethoprophos (Mocap)     1     1     0.01 <td>Dichlobenil</td> <td>10</td> <td></td> <td></td>                                                                                                   | Dichlobenil                                 | 10       |      |                   |
| Dicklorvos     5     1       Dickofop-methyl     5     0.01       Dicofol     4     00       Difenzoquat     100     01       Difubenzuron     70     0       Dimethoate     7     50     0.01       Diphenamid     300     0.01     01       Diquat     7     0     0       Diuron     20     30     0.01       Diuron     20     30     0.01       EDB     1     0     1       Endosulfan sulfate     30     0.01     0.01       Ethoprophos (Mocap)     1     1     0.01       Ethoprophos (Mocap)     1     1     0.01       Ethoprophos (Mocap)     10     0.01     0.01       Fenarimol     7     0.5     0.01       Fenorprop     <                                                                                                                                                | Dichloroprop / Dichlorprop-P                | 100      |      |                   |
| Dickoop-methyl     5     0.01       Dicofol     4       Difenzoquat     100       Diffubenzuron     70       Dimethoate     7     50     0.01       Diphenamid     300     0.01       Diquat     7     0     0       Disulfoton     4     0.01     0       Divoron     20     30     0.01       Disulfoton     4     0.01     0       Disulfoton     20     30     0.01       Endosulfan     20     0.01     0       Endosulfan     20     0.01     0       Endosulfan     20     0.01     0       Endosulfan     20     0.01     0       Endosulfan     100     0.01     0       Ethion     4     3     0.01     0       Ethion     4     3     0.01     0       Ethion     7     0.5     0.01     0       Fenarinol     7     0.5     0.01     0 <td>Dichlorvos</td> <td>5</td> <td>1</td> <td></td>                                                                                                                                          | Dichlorvos                                  | 5        | 1    |                   |
| Disologi methys     4     0.01       Difenzoquat     100     00       Diffubenzuron     70     0       Dimethoate     7     50     0.01       Diphenamid     300     0.01       Diquat     7     0     0       Diguenamid     300     0.01     0       Diguenamid     4     0.01     0       Diguenamid     4     0.01     0       Divor     20     30     0.01       Endosulfan     20     0.01     0       Endosulfan     20     0.01     0       Endosulfan     20     0.01     0       Endosulfan     30     0.01     0       Endosulfan     300     0.01     0       Effectore     300     0.01     0       Estenvalerate     30     0.01     0       Ethoprophos (Mocap)     1     1     0.01       Etridiazole     100     0.01     0       Fenamiphos     0.5                                                                                                                                                                           | Diclofop-methyl                             | 5        |      | 0.01              |
| Difenzoquat     100       Diflubenzuron     70       Dimethoate     7     50     0.01       Diphenamid     300     0.01       Diquat     7     0       Disulfoton     4     0.01       Disulfoton     4     0.01       Disulfoton     20     30     0.01       EDB     1     1     1       Endosulfan     20     0.01     1       Endosulfan sulfate     30     0.01     1       Endosulfan sulfate     300     0.01     1       EpTC     300     0.01     1     1     0.01       Esfenvalerate     30     0.01     1     1     0.01       Ethion     4     3     0.01     1     1     0.01       Ethion     4     3     0.01     1     1     0.01       Ethion     7     0.5     0.01     1     1     0.01       Fenamiphos     0.5     0.01     1     1 <td>Dicofol</td> <td>4</td> <td></td> <td>0.01</td>                                                                                                                                   | Dicofol                                     | 4        |      | 0.01              |
| Diffuberation     TO       Diffuberation     7     50     0.01       Diphenamid     300     0.01       Diguat     7     0       Disulfoton     4     0.01       Divor     20     30     0.01       Disulfoton     4     0.01     0.01       Divor     20     30     0.01       Endosulfan     20     0.01     0.01       Endosulfan sulfate     30     0.01     0.01       Endosulfan sulfate     300     0.01     0.01       Endosulfan sulfate     30     0.01     0.01       Endosulfan sulfate     30     0.01     0.01       Endosulfan sulfate     1     0.01     0.01       Ethoprophos (Mocap)     1     1     0.01       Ethoprophos (Mocap)     10     0.01     0.01                                                                                                         | Difenzoquat                                 | 100      |      |                   |
| Dimethoate     7     50     0.01       Diphenamid     300     0.01       Diguat     7     0.01       Disulfoton     4     0.01       Divron     20     30     0.01       EDB     1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Diflubenzuron                               | 70       |      |                   |
| Diphenamid     30     0.01       Diguat     7     0.01       Disulfoton     4     0.01       Disulfoton     20     30     0.01       Disulfoton     20     30     0.01       EDB     1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Dimethoate                                  | 7        | 50   | 0.01              |
| Diquat     7     001       Diguit     7     0.01       Disulfoton     4     0.01       Divron     20     30     0.01       EDB     1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Diphenamid                                  | 300      | 00   | 0.01              |
| Disulfaton     4     0.01       Disulfaton     20     30     0.01       EDB     1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Diquat                                      | 7        |      | 0.01              |
| Diuron     20     30     0.01       EDB     1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Disulfoton                                  | ,<br>Д   |      | 0.01              |
| Bitson   10   00   0.01     Endosulfan   20   0.01     Endosulfan sulfate   30   0.01     Endosulfan sulfate   30   0.01     Endosulfan sulfate   30   0.01     Endothal   100   EPTC     EPTC   300   0.01     Ethion   4   3   0.01     Ethoprophos (Mocap)   1   1   0.01     Ethion   4   3   0.01     Ethoprophos (Mocap)   1   1   0.01     Ethoprophos (Mocap)   10   0.025   0.01     Fenamiphos   0.5   0.01   0.01     Fenatimol   7   0.5   0.01     Fenatimol   7   0.5   0.01     Fenatimol   7   0.5   0.01     Fenatimol   7   0.5   0.01     Fipronil   0.7   0.01                                                                                                                                                                                                                                         | Diuron                                      | 20       | 30   | 0.01              |
| Endosulfan     20     0.01       Endosulfan sulfate     30     0.01       Endosulfan sulfate     30     0.01       Endosulfan sulfate     100     EPTC       EPTC     300     0.01       Esfenvalerate     30     0.01       Ethion     4     3     0.01       Ethoprophos (Mocap)     1     1     0.01       Etridiazole     100     0.0255     Fenamiphos     0.01       Fenarimol     40     0.01     Fenarimol     0.01       Fensulfothion     7     0.01     Fenarimol     0.01       Fenoprop     10     0.01     Fenoprop     0.01       Fenoprop     10     0.01     Fenoprop     0.01       Fenoprop     10     0.01     Fipronil     0.01     Fipronil     0.01       Fipronil     0.7     0.01     Filuproponate     9     Formothion     50     Fosamine     30     Glyphosate     1000     Haloxyfop     Haloxyfop     Haloxyfop     Haloxyfop     Hal                                                                            | EDB                                         | 1        | 00   | 0.01              |
| Endosultan     20     0.01       Endosulfan sulfate     30     0.01       Endosulfan sulfate     100        EPTC     300     0.01       Esfenvalerate     30     0.01       Ethion     4     3     0.01       Ethion     0.5     0.01     0.025       Fenamiphos     0.5     0.01     0.01       Fenarimol     40     0.01     0.01       Fensulfothion     7     0.5     0.01       Fensulfothion     7     0.5     0.01       Fensulfothion     70     0.01     1       Fluometuron     70     1     1       Fluometuron     50     50     50 <td>Endosulfan</td> <td>20</td> <td></td> <td>0.01</td>                                                                                                                             | Endosulfan                                  | 20       |      | 0.01              |
| Endotinal     100     00       EPTC     300     0.01       Esfenvalerate     30     0.01       Ethion     4     3     0.01       Ethion     0.5     0.01     0.025       Fenamiphos     0.5     0.01     0.01       Fenitrothion     7     0.01     0.01       Fenoprop     10     0.01     0.01       Fensulfothion     10     0.01     0.01       Fenvalerate     60     0.01     0.01       Fipronil     0.7     0.01     0.01       Fluproponate     9     0.01     1       Fluometuron     50     0     0       Fosamine     30                                                                                                                                                                                                | Endosulfan sulfate                          | 20       | 30   | 0.01              |
| EPTC     300     0.01       Esfenvalerate     30     0.01       Ethion     4     3     0.01       Ethor oppons (Mocap)     1     1     0.01       Ethor oppons (Mocap)     1     1     0.01       Etridiazole     100     0.025     0.01       Fenamiphos     0.5     0.01     0.025       Fenamiphos     0.5     0.01     0.01       Fenarimol     40     0.01     0.01       Fenarimol     7     0.01     0.01       Fenoprop     10     0.01     0.01       Fenoprop     10     0.01     0.01       Fensulfothion     7     0.5     0.01       Fensulfothion     7     0.5     0.01       Fensulfothion     7     0.5     0.01       Fensulfothion     7     0.5     0.01       Filipronil     0.7     0.01     1       Fluometuron     70     1     1       Formothion     50     50     50<                                                                                                                                                | Endothal                                    | 100      | 00   | 0.01              |
| Esfenvalerate   30   0.01     Esfenvalerate   30   0.01     Ethion   4   3   0.01     Ethion   4   3   0.01     Ethion   1   1   0.01     Ethoprophos (Mocap)   1   1   0.01     Etridiazole   100   0.025   0.01     Fenamiphos   0.5   0.01   0.01     Fenarimol   40   0.01   0.01     Fenarimol   7   0.01   0.01     Fenoprop   10   0.01   0.01     Fensulfothion   7   0.5   0.01     Fensulfothion   7   0.5   0.01     Fenvalerate   60   0.01   0.1     Fipronil   0.7   0.01   1     Fluometuron   70   1   1     Fluometuron   50   50   50     Fosamine   30   30   1     Glyphosate   10000   1   1     Hatoxhor   0.3   0.01   1                                                                                                                                                                                                                                                                                                 | EPTC.                                       | 300      |      | 0.01              |
| Ethion     4     3     0.01       Ethion     1     1     0.01       Ethoprophos (Mocap)     1     1     0.01       Ethionory     1     1     0.01       Ethionory     1     1     0.01       Ethionory     100     0.025       Fenamiphos     0.5     0.01       Fenarimol     40     0.01       Fenarimol     7     0.01       Fenarimol     7     0.01       Fensulfothion     7     0.01       Fensulfothion     10     0.01       Fensulfothion     7     0.5     0.01       Fensulfothion     7     0.5     0.01       Fensulfothion     7     0.5     0.01       Fensulfothion     7     0.5     0.01       Filipronil     0.7     0.01     0.01       Flumprop-methyl     4     0.01     0.01       Fluometuron     70     1     1       Formothion     50     1     1                                                                                                                                                                   | Estenvalerate                               | 30       |      | 0.01              |
| Ethon   1   1   0.01     Ethoprophos (Mocap)   1   1   0.01     Etridiazole   100   0.025     Fenamiphos   0.5   0.01     Fenarimol   40   0.01     Fenitrothion   7   0.01     Fenerimol   10   0.01     Fenerimol   7   0.01     Fenerimol   0.01   0.01     Fenerimol   0.01   0.01     Fenerimol   0.01   0.01     Fenerimol   7   0.5   0.01     Fenerimol   7   0.5   0.01     Fenerimol   7   0.5   0.01     Fenerimol   7   0.5   0.01     Fenerimol   70   0.01   1     Fluometuron   70   1   1     Fluometuron   50   50   1     Formothion   50   50   1     Fosamine   30   30   1     Glyphosate   1000   1   1     Hentachlor   0.3   0.01   1                                                                                                                                                                                                                                                                                   | Ethion                                      | 4        | З    | 0.01              |
| Etridiazole   100   0.01     Etridiazole   100   0.025     Fenamiphos   0.5   0.01     Fenarimol   40   0.01     Fenitrothion   7   0.01     Fenitrothion   7   0.01     Fenitrothion   7   0.01     Fensulfothion   10   0.01     Fensulfothion   10   0.01     Fensulfothion   10   0.01     Fensulfothion   7   0.5   0.01     Fensulfothion   7   0.5   0.01     Fenvalerate   60   0.01   1     Fipronil   0.7   0.01   1     Fluproponate   9   9   1     Formothion   50   50   50     Fosamine   30   30   0.01     Haloxyfop   1   1   1                                                                                                                                                                                                                                                                                                                                                                                               | Ethoprophos (Mocan)                         | 1        | 1    | 0.01              |
| Fenamiphos     0.5     0.01       Fenamiphos     0.5     0.01       Fenarimol     40     0.01       Fenitrothion     7     0.01       Fenoprop     10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Etridiazole                                 | 100      | ·    | 0.025             |
| Fenarimol   40   0.01     Fenarimol   7   0.01     Fenitrothion   7   0.01     Fenoprop   10   0.01     Fensulfothion   10   0.01     Fensulfothion   7   0.5   0.01     Fensulfothion   7   0.5   0.01     Fensulfothion   7   0.5   0.01     Fenvalerate   60   0.01   0.01     Fipronil   0.7   0.01   0.01     Fluometuron   70   0.01   1     Fluproponate   9   9   50   50     Fosamine   30   30   0.01     Glyphosate   1000   1   1     Heptachlor   0.3   0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Fenaminhos                                  | 0.5      |      | 0.020             |
| Fenitrothion   7   0.01     Fenoprop   10   0.01     Fensulfothion   10   0.01     Fensulfothion   10   0.01     Fenthion   7   0.5   0.01     Fenthion   7   0.01   0.01     Fipronil   0.7   0.01   0.01     Flumprop-methyl   4   0.01   0.01     Fluproponate   9   9   1     Formothion   50   50   50     Fosamine   30   0.00   1     Heptachlor   0.3   0.01   1                                                                                                                                                                                                                                                                                                                                                                                                                  | Fenarimol                                   | 40       |      | 0.01              |
| Fenoprop10Fenoprop10Fensulfothion100.01Fenthion70.50.01Fenvalerate600.70.01Fipronil0.7Flamprop-methyl4Fluometuron70Fluproponate9Formothion50Fosamine30Glyphosate1000Haloxyfop1Heptachlor0.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Fenitrothion                                | 7        |      | 0.01              |
| Fensulfothion100.01Fensulfothion70.50.01Fenthion70.50.01Fenvalerate600.01Fipronil0.70.01Flamprop-methyl40.01Fluometuron70Fluproponate9Formothion50Fosamine30Glyphosate1000Haloxyfop1Heptachlor0.30.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Fenonron                                    | 10       |      | 0.01              |
| Fentalion   7   0.5   0.01     Fenthion   7   0.5   0.01     Fenvalerate   60   0.01   0.7   0.01     Fipronil   0.7   0.01   0.01   0.7   0.01     Flamprop-methyl   4   0.01   0.01   0.01   0.01     Fluometuron   70   70   70   70   1   1000   1   1000   1   1000   1   1000   1   1000   1   1000   1   1000   1   1000   1   1000   1   1000   1   1000   1   1000   1   1000   1   1000   1   1000   1   1000   1   1000   1   1000   1   1000   1   1000   1   1000   1   1000   1   1000   1   1000   1   1000   1   1000   1   1000   1   1000   1   1000   1   1000   1   1000   1   1000   1   1000   1   1000   1   1000   1                                                                                                                                                                                                                                                                                                    | Fensulfothion                               | 10       |      | 0.01              |
| Fenvalerate600.01Fipronil0.70.01Flamprop-methyl40.01Fluometuron70Fluproponate9Formothion50Fosamine30Glyphosate1000Haloxyfop1Heptachlor0.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Fenthion                                    | 7        | 0.5  | 0.01              |
| Fipronil000.01Fipronil0.70.01Flamprop-methyl40.01Fluometuron70Fluproponate9Formothion50Fosamine30Glyphosate1000Haloxyfop1Heptachlor0.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Fenvalerate                                 | 60       | 0.0  | 0.01              |
| Flamprop-methyl0.70.01Flamprop-methyl40.01Fluometuron70Fluproponate9Formothion50Fosamine30Glyphosate1000Haloxyfop1Heptachlor0.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Finronil                                    | 0.7      |      | 0.01              |
| Fluometuron70Fluproponate9Formothion50Fosamine30Glyphosate1000Haloxyfop1Heptachlor0.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Flampron-methyl                             | 0.7<br>A |      | 0.01              |
| Fluproponate9Formothion50Fosamine30Glyphosate1000Haloxyfop1Heptachlor0.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Fluometuron                                 | 70       |      | 0.01              |
| Formothion50Fosamine30Glyphosate1000Haloxyfop1Heptachlor0.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Fluproponate                                | a .      |      |                   |
| Formulation30Fosamine30Glyphosate1000Haloxyfop1Heptachlor0.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Formothion                                  | 50       |      |                   |
| Glyphosate1000Haloxyfop1Heptachlor0.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Fosamina                                    | 30       |      |                   |
| Haloxyfop 1<br>Heptachlor 0.3 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Clyphosata                                  | 1000     |      |                   |
| Hentachlor 0.3 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Halovyfon                                   | 1000     |      |                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Heptachlor                                  | 03       |      | 0.01              |

| Chemical Names                      | ADWG       | AGWR | AIQS GC/LC<br>MDL |
|-------------------------------------|------------|------|-------------------|
| Hexaflurate                         | 30         |      |                   |
| Hexazinone                          | 400        |      | 0.01              |
| Imazapyr                            | 9000       |      |                   |
| Iprodione                           | 100        |      | 0.01              |
| Lindane (g-HCH)                     | 10         | 20   | 0.01              |
| Malathion                           |            | 900  | 0.01              |
| Mancozeb                            | 9          |      |                   |
| MCPA                                | 40         |      |                   |
| Metaldehyde                         | 20         |      |                   |
| Metham                              | 1          |      |                   |
| Methidathion                        | 6          |      | 0.01              |
| Methiocarb                          | 7          |      | 0.01              |
| Methomyl                            | 20         |      | 0.01              |
| Methoxychlor                        | 300        |      | 0.01              |
| Methyl bromide                      | 1          |      |                   |
| Metiram                             | 9          |      |                   |
| Metolachlor                         | 300        | 300  | 0.01              |
| Metribuzin                          | 70         |      | 0.01              |
| Metsulfuron-methyl                  | 40         |      | 0.1               |
| Mevinphos                           | 5          |      | 0.01              |
| Molinate                            | 4          |      | 0.01              |
| Monocrotophos                       | 2          |      | 0.01              |
| N.N-diethvltoluamide (DEET)         |            | 2500 | 0.01              |
| Napropamide                         | 400        |      | 0.01              |
| Nicarbazin                          | 1000       |      |                   |
| Nitralin                            | 500        |      | 0.25              |
| Norflurazon                         | 50         |      | 0.01              |
| Omethoate                           | 1          |      | 0.01              |
| Orvzalin                            | 400        |      | 0.01              |
| Oxamvl                              | 7          |      | 0.01              |
| Paraguat                            | 20         |      |                   |
| Parathion                           | 20         | 10   | 0.01              |
| Parathion-methyl (methyl parathion) | 0.7        | 100  | 0.01              |
| Pebulate                            | 30         | 100  | 0.01              |
| Pendimethalin                       | 400        |      | 0.01              |
| Pentachlorophenol (PCP)             | 10         | 10   | 0.01              |
| Permethrin                          | 200        | 10   | 0.01              |
| Picloram                            | 300        |      | 0.01              |
| Piperonyl butoxide                  | 600        |      | 0.01              |
| Pirimicarb                          | 7          |      | 0.01              |
| Pirimiphos methyl                   | 90         |      | 0.01              |
| Pirimiphos-ethyl                    | 0.5        |      | 0.01              |
| Polihexanide                        | 700        |      |                   |
| Profenofos                          | 0.3        |      | 0.01              |
| Propachlor                          | 70         |      | 0.01              |
| Propanil                            | 700        |      | 0.01              |
| Proparaite                          | 7          |      | 0.01              |
| Pronazine                           | 50         |      | 0.01              |
| Proniconazole                       | 100        |      | 0.01              |
| Pronyzamida                         | 70         |      | 0.01              |
| Pyrasulfotolo                       | 10         |      | 0.01              |
| r yrasullulule<br>Dyrazonhos        | 40<br>20   |      | 0.01              |
| r yrazuprius<br>Dyroveulam          | 20<br>4000 |      | 0.01              |
| FyloxSulam                          | 4000       |      |                   |

| Chemical Names                      | ADWG | AGWR  | AIQS GC/LC<br>MDL |
|-------------------------------------|------|-------|-------------------|
| Quintozene                          | 30   |       |                   |
| Simazine                            | 20   | 20    | 0.01              |
| Spirotetramat                       | 200  |       |                   |
| Sulprofos                           | 10   |       | 0.1               |
| Temephos                            | 400  |       | 0.01              |
| Terbacil                            | 200  |       | 0.01              |
| Terbufos                            | 0.9  |       | 0.01              |
| Terbuthylazine                      | 10   |       |                   |
| Terbutryn                           | 400  |       | 0.01              |
| Tetrachlorvinphos                   | 100  |       | 0.01              |
| Thiobencarb                         | 40   |       | 0.01              |
| Thiometon                           | 4    |       | 0.01              |
| Thiophanate                         | 5    | 5     |                   |
| Thiram                              | 7    |       |                   |
| Toltrazuril                         | 4    |       |                   |
| Triadimefon                         | 990  |       | 0.01              |
| Trichlorfon                         | 7    |       | 0.01              |
| Triclopyr                           | 20   |       | 0.01              |
| Trifluralin                         | 90   | 50    | 0.01              |
| Vernolate                           | 40   |       |                   |
| α-BHC (α-HCH)                       |      | 20    | 0.01              |
| β-BHC (b-HCH)                       |      | 20    | 0.01              |
| PPCPs                               |      |       |                   |
| 1,7-Dimethylxanthine (Paraxanthine) | 0.7  | 0.01  |                   |
| 2,5-Dihydroxybenzoic acid           |      | 7     |                   |
| 5-Methyl-1H-benzotriazole           |      | 0.007 | 0.01              |
| Acetophenone                        |      | 400   | 0.01              |
| Alprazolam                          |      | 0.25  | 0.01              |
| Amoxycillin                         |      | 1.5   |                   |
| Anhydroerythromycin A               |      | 17.5  |                   |
| Antipyrine (phenazone)              |      | 1000  | 0.01              |
| Aspirin (Acetylsalicylic acid)      |      | 29    | 0.01              |
| Atorvastatin                        |      | 5     | 0.01              |
| Azithromycin                        |      | 3.9   | 0.01              |
| Betaxolol                           |      | 10    | 0.01              |
| Bezafibrate                         |      | 300   | 0.01              |
| Bisoprolol                          |      | 0.63  | 0.01              |
| Caffeine                            |      | 0.35  | 0.01              |
| Carazolol                           |      | 0.35  | 0.01              |
| Carbamazepine                       |      | 100   | 0.01              |
| Cefaclor                            |      | 250   |                   |
| Cephalexin                          |      | 35    | 0.05              |
| Chloroamphenicol                    |      | 175   |                   |
| Chlorophene                         |      | 0.35  |                   |
| Chlorotetracycline                  |      | 105   |                   |
| Cimetidine                          |      | 200   | 0.01              |
| Ciproflaxin                         |      | 250   |                   |
| Clarithromycin                      |      | 250   | 0.01              |
| Clenbuterol                         |      | 15    |                   |
| Clindamycin                         |      | 300   |                   |
| Clotibric acid                      |      | 750   |                   |
| Codeine                             |      | 50    |                   |
| Cotinine                            |      | 10    | 0.01              |
| Cyclophosphamide                    |      | 3.5   | 0.01              |

| Chemical Names                     | ADWG       | AGWR | AIQS GC/LC<br>MDL |
|------------------------------------|------------|------|-------------------|
| Dehydronifedipine                  |            | 20   |                   |
| Demeclocycline                     |            | 300  |                   |
| Diatrizoate Sodium                 |            | 350  |                   |
| Diatrizoic acid                    |            | 350  |                   |
| Diclofenac                         |            | 1.8  |                   |
| Diltiazem                          |            | 60   | 0.01              |
| Dipyrone (vet)                     |            | 525  |                   |
| Doxycycline                        |            | 10.5 |                   |
| Enalaprilat                        |            | 1.3  |                   |
| Enrofloxacin                       |            | 22   | 0.25              |
| Frythromycin                       |            | 17.5 | 0.01              |
| Fenoprofen                         |            | 450  | 0.01              |
| Fluovetine (Prozac)                |            | 10   | 0.01              |
| Comfibrozil                        |            | 600  | 0.01              |
| Gennibiozii                        |            | 400  | 0.01              |
| ibupioien                          |            | 400  | 0.01              |
|                                    |            | 25   |                   |
| IONEXOI                            |            | /20  |                   |
| lopamidol                          |            | 400  |                   |
| lopromide                          |            | 750  |                   |
| Isophosphamide                     |            | 3.5  |                   |
| Ketoprofen                         |            | 3.5  | 0.01              |
| Metformin (1,1- Dimethylbiguanide) |            | 250  | 0.01              |
| Metoprolol                         |            | 25   | 0.01              |
| Monensin                           |            | 35   |                   |
| Nadolol                            |            | 20   |                   |
| Naladixic acid                     |            | 1000 |                   |
| Naproxen                           |            | 220  | 0.05              |
| Norflaxin                          |            | 400  |                   |
| Paracetamol (acetaminophen)        |            | 175  | 0.025             |
| Penicillin G                       |            | 1.5  | 0.025             |
| Penicillin V                       |            | 1.5  | 0.020             |
| Phenol                             |            | 150  | 0.01              |
| Propranolol                        |            | 40   | 0.01              |
| Propratioio                        |            | 40   | 0.01              |
| Solbutarral                        |            | 100  | 0.01              |
|                                    |            | 3    | 0.1               |
|                                    |            | 105  |                   |
| Sulfamethazine                     |            | 35   | 0.04              |
| Sulfamethizole                     |            | 35   | 0.01              |
| Sulfamethoxazole                   |            | 35   | 0.025             |
| Sulfamethoxine                     |            | 35   |                   |
| Sulfasalazine                      |            | 500  |                   |
| Temazepam                          |            | 5    |                   |
| Terbutaline                        |            | 4.5  |                   |
| Terramycin (oxytetracycline)       |            | 105  |                   |
| Tetracycline (TCLN)                |            | 105  |                   |
| Timolol                            |            | 10   |                   |
| Tolfenamic acid (vet)              |            | 17.5 |                   |
| Triclosan                          |            | 0.35 | 0.01              |
| Trimethoprim                       |            | 70   | 0.01              |
| Tylosin                            |            | 1050 | 0.1               |
| Valium (Diazenam)                  |            | 25   | 0.1               |
| Inductrial                         |            | 2.0  |                   |
| 1 1 Dichloroothono                 | 20         | 20   |                   |
| 1, I-Dichlorobonzonc               | 3U<br>1E00 | 30   | 0.04              |
| ,∠-∪icniorobenzene                 | 1500       |      | 0.01              |

| 12-Dichloroethane     3       12-Dichloroethane     60       1.4-Dichlorobenzene     60       1.4-Dichlorobenzene     40     0.000016       2.3.3.4.4'-Tetrachlorobiphenyl (PCB105)     0.000016     0.01       2.3.3.4.4'-5-Hexachlorobiphenyl     0.000016     0.01       2.3.3.4.4'-5-Hexachlorobiphenyl     0.000016     0.01       2.3.4.4'-5'-Hexachlorobiphenyl     0.000016     0.01       2.4.5.3'.4.5'-Hexachlorobiphenyl     0.000016     0.01       2.7-Dichlorodibenzo-p-dioxin (DCDD)     0.000016     0.01       4.5.3'.4'.5'-Hexachlorobiphenyl     0.000016     0.01       4.5.3'.4'.5'-Hexachlorobiphenyl     0.000016     0.01       4.5.3'.4'.5'-Hexachlorobiphenyl     0.000016     0.01       4.5.3'.5'-Hexachlorobiphenyl     0.000016     0.01       4-Churophenol     0.35     4     4       4-Cumylphenol     0.2     0.01     Benzene     1       Benzene     1     0.2     0.01     Benzene     20       Dichloromethane     0.01     0.01     D.01     Benzencialenee                                                                                         | Chemical Names                            | ADWG     | AGWR     | AIQS GC/LC<br>MDL |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|----------|----------|-------------------|
| 1,2-Dichloroethene   60     1,4-Dichlorobenzene   40   0.01     2,3;4,4'-Fertachlorobiphenyl (PCB77)   0.000016   0.01     2,3;3,4,4'-Fentachlorobiphenyl   0.000016   0.01     2,3;3,4,4'-Fentachlorobiphenyl   0.000016   0.01     2,3;3,4,5'-Hexachlorobiphenyl   0.000016   0.01     2,4;5,3;4',5'-Hexachlorobiphenyl   0.000016   0.01     2,7-Dichlorodibenzo-p-dioxin (DCDD)   0.000016   0.01     4,4'-Churophenol   0.35   4     4-Churophenol   0.35   4.4'     4-Churophenol   0.32   0.01     Benzene   1   0.00   0.01     Benzene   1   0.2   0.01     Benzene   1   0.2   0.01     Benzene   300   2   0.01     Dichloromethane   40   4   4     Ethylenezene   300   2   0.01     Dichloromethane (methylene chloride)   4   4   4     Ethylenezene   300   2   0.01     Napithalene   70   0.01   0.0001   0.000016 <td>1,2-Dichloroethane</td> <td>3</td> <td></td> <td></td>                                                                                                                                                                                            | 1,2-Dichloroethane                        | 3        |          |                   |
| 1.4-Dichlorobenzene   40   0.01     3.3', 4.4'-Tetrachlorobiphenyl (PCB77)   0.000016   0.01     2.3, 3', 4.4'-Tetrachlorobiphenyl (PCB105)   0.000016   0.01     2.3', 4.4'-Pentachlorobiphenyl (PCB118)   0.000016   0.01     2.3', 4.4'-S-Hexachlorobiphenyl   0.000016   0.01     2.3', 4.4', 5'-Hexachlorobiphenyl   0.000016   0.01     2.3', 4.4', 5'-Hexachlorobiphenyl   0.000016   0.01     2.3', 4.4', 5'-Hexachlorobiphenyl   0.000016   0.01     2.4's, 3', 5'-Hexachlorobiphenyl   0.000016   0.01     2.4's, 3', 5'-Hexachlorobiphenyl   0.000016   0.01     2.7'-Dichlorodiphenol   0.01   0.01     4-Cumylphenol   0.35   4     4-Cumylphenol   0.2   0.01     A-Methylphenol (p- cresol)   600   0.01     Antracene   1   1     Benzene   1   2   0.01     Benzene   300   2   0.01     Dichloromethane (methylene chloride)   4   4   4     Ethylenediamine tetraacetic acid (EDTA)   2.50   0.01     Nonobutyltin (MBT)                                                                                                                                                | 1,2-Dichloroethene                        | 60       |          |                   |
| 3.3'.4.4'-Tetrachlorobiphenyl (PCB77)   0.000016   0.01     2.3.3'.4.4'.5-Hexachlorobiphenyl (PCB105)   0.000016   0.01     2.3.3'.4.4'.5-Pentachlorobiphenyl (PCB118)   0.000016   0.01     2.3.3'.4.4'.5-Pentachlorobiphenyl (PCB118)   0.000016   0.01     2.4.5.3'.4'.5'-Hexachlorobiphenyl (PCB10)   0.000016   0.01     2.4.5.3'.4'.5'-Hexachlorobiphenyl (PCB10)   0.000016   0.01     2.4.5.3'.4'.5'-Hexachlorobiphenyl (PCB10)   0.000016   0.01     4.7-Diorobiphenol (PC cresol)   0.000016   0.01     4-Churophenol (PC cresol)   600   0.01     Anthracene   1   0.2   0.01     Benzene   1   0.2   0.01     Bromochloromethane   40   40   40     Dichoromethane (methylene chloride)   4   4   4     Ethyleneziene   300   2   0.01   0.01     Naphthalene   70   0.01   0.01   0.01     Nextorobubatidiene   0.7   0.01   0.01   0.01     Naphthalene   70   0.01   0.01   0.01     Naphthalene   50                                                                                                                                                                       | 1,4-Dichlorobenzene                       | 40       |          | 0.01              |
| 2.3.3'.4.4'-Pentachlorobiphenyl   0.000016   0.01     2.3.3'.4.4'.5-Hexachlorobiphenyl   0.000016   0.01     2.4.4'.5-Hexachlorobiphenyl   0.000016   0.01     2.4.5.3'.4'.5-Hexachlorobiphenyl   0.000016   0.01     2.4.5.3'.4'.5-Hexachlorobiphenyl   0.000016   0.01     2.7-Dichlorobitenzo-p-dioxin (DCDD)   0.000016   0.01     4-Cumylphenol   10   -     4-Cumylphenol   0.35   -     4-Methylphenol (p- cresol)   600   Anthracene     4-Methylphenol (p- cresol)   600   0.01     Benzene   1   0.01   0.01     Benzene   1   0.01   0.01     Benzene   300   2   0.01     Benzene   300   2   0.01     Benzene   0.7   0.01   0.01     Wonobutyltin (MBT)   0.7   0.01   0.01     N-nitrosomorpholine (MMOR)   0.001   0.001   0.001     Naphthalene   70   0.01   0.01   0.01     Pyrene (vinylbenzene)   30   1   1   1 <t< td=""><td>3,3',4,4'-Tetrachlorobiphenyl (PCB77)</td><td></td><td>0.000016</td><td>0.01</td></t<>                                                                                                                                                 | 3,3',4,4'-Tetrachlorobiphenyl (PCB77)     |          | 0.000016 | 0.01              |
| 2,3; 4,4',5-Hexachlorobiphenyl (PCB118)   0.000016   0.01     2,4,5,3',4,5'-Hexachlorobiphenyl (PCB118)   0.000016   0.01     2,7-Dichlorodibenzo-p-dioxin (DCDD)   0.000016   0.01     2,7-Si,4',5'-Hexachlorobiphenyl   0.000016   0.01     2,7-Dichlorodibenzo-p-dioxin (DCDD)   0.000016   0.01     4-Chiorophenol   10   0.35     4-Chiorophenol   0.32   0.01     4-Cumylphenol (p- cresol)   600   0.01     Anthracene   1   0.2   0.01     Benzena   1   0.2   0.01     Benzene   1   0.2   0.01     Benzene   1   0.2   0.01     Benzene   300   2   0.01     Dichloromethane (methylene chloride)   4   4   4     Ethylbenzene   300   2   0.01     Monobutyltin (MBT)   0.7   0.01   0.000016     Menanthrene   70   0.01   0.000016     Phenathrene   150   0.01   0.01     Pyrene (vinylbenzene)   30   1   1     Tributylt                                                                                                                                                                                                                                                   | 2,3,3',4,4'-Pentachlorobiphenyl (PCB105)  | 0.000016 | 0.01     |                   |
| 2,3',4,4'.5-Pentachlorobiphenyl   0.000016   0.01     2,4,5,3',4',5'-Hexachlorobiphenyl   0.000016   0.01     2,7-Dichlorodibenzo-p-dioxin (DCDD)   0.000016   0.01     4-Chlorophenol   10   4     4-Cunylphenol   0.335   4     4-Methylphenol (p- cresol)   600   0.01     Anthracene   150   0.01     Benzene   1   0.2   0.01     Benzo(a)pyrene   0.01   0.01   0.01     Benzyl chloride   0.2   0.01   Benzyl chloride   0.2   0.01     Benzyl chloride   0.2   0.01   0.01   0.01   0.01   0.01     Benzyl chloride   300   2   Dichloromethane   40   4   4   Ethylbenzene   300   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1 <t< td=""><td>2,3,3',4,4',5-Hexachlorobiphenyl</td><td>0.000016</td><td>0.01</td><td></td></t<>                                                                                                                                                                                                                                                      | 2,3,3',4,4',5-Hexachlorobiphenyl          | 0.000016 | 0.01     |                   |
| 2,4,5,3',4',5'-Hexachlorobiphenyl   0.000016   0.000016     2,7-Dichlorodibenzo-p-dioxin (DCDD)   0.000016   0.01     4-Chorophenol   10   4-Chrylphenol (p- cresol)   600     A-Methylphenol (p- cresol)   600   0.01   0.01     Antracene   150   0.01   0.01     Benzene   1   0.22   0.01     Berzene   300   0.2   0.01     Bromochloromethane   40   4     Chlorobenzene   300   2   0.01     Dichtylthin (DBT)   2   0.01   0.01     Dichtoromethane (methylene chloride)   4   4   4     Ethylenediamine tetraacetic acid (EDTA)   250   4   4     Hexachlorobutadiene   0.7   0.01   0.01   0.01     Napithalene   70   0.01   0.000016   0   0     Pyrene   150   0.01   1   0.01   0   0     Styrene (vinylbenzo-p-dioxin (OCDD)   0.000016   0   0   0   0   0   0   0   0   0   0   0 <td< td=""><td>2,3',4,4',5-Pentachlorobiphenyl (PCB118)</td><td>0.000016</td><td>0.01</td><td></td></td<>                                                                                                                                                                               | 2,3',4,4',5-Pentachlorobiphenyl (PCB118)  | 0.000016 | 0.01     |                   |
| 2,7-Dichlorodibenzo-p-dioxin (DCDD)   0.000016   0.01     3,4,5,3',4',5'-Hexachlorobiphenyl   0.000016   0.01     4-Chlorophenol   0.35     4-Methylphenol (p- cresol)   600     Anthracene   150   0.01     Benzene   1   0.22   0.01     Benzo(a)pyrene   0.01   0.01   0.01     Benzo(a)pyrene   0.01   0.01   0.01     Benzo(a)pyrene   300   2   0.01     Benzo(a)pyrene   300   2   0.01     Benzy (phoride   0.2   0.01   0.01     Benzy (phoride   0.02   0.01   0.01     Benzy (phoride   0.00   2   0.01     Benzy (phoride   300   2   0.01     Benzy (phoride   0.7   0.01   0.01     Monobutyltin (MBT)   0.7   0.01   0.00016     Phenanthrene   150   0.01   0.01     Phoreanthrene   150   0.01   0.01     Styrene (vinylbenzene)   30   150   0.01     Stylene   600   1                                                                                                                                                                                                                                                                                                  | 2,4,5,3',4',5'-Hexachlorobiphenyl         | 0.000016 | 0.01     |                   |
| 3,4,5,3,4,5'-Hexachlorobiphenyl   0.000016   0.01     4-Chlorophenol   10     4-Cumylphenol   0.35     4-Methylphenol (p- cresol)   600     Anthracene   150   0.01     Benzone   1   0.2   0.01     Benzo(a)pyrene   0.01   0.01   0.01     Benzo(a)pyrene   0.01   0.01   0.01     Benzo(a)pyrene   300   0   0     Dibutyltin (DBT)   2   0   0     Beracene   300   2   0     Dicholoromethane (methylene chloride)   4   4   4     Ethylenediamine tetraacetic acid (EDTA)   250   0.01   0.001     Monobutyltin (MBT)   0.7   0.01   0.01   0.0001     Monobutyltin (MBT)   0.001   0.00016   0.01   0.000016     Phenanthrene   150   0.01   0.000016   0   0.01     Pyrene   30   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1 <td< td=""><td>2,7-Dichlorodibenzo-p-dioxin (DCDD)</td><td></td><td>0.000016</td><td></td></td<>                                                                                                                                                                                                                                   | 2,7-Dichlorodibenzo-p-dioxin (DCDD)       |          | 0.000016 |                   |
| 4-Chlorophenol   10     4-Cumylphenol (p- cresol)   600     Anthracene   150   0.01     Benzene   1   0.22   0.01     Benzol (a)pyrene   0.01   0.01   0.01     Benzol (a)pyrene   0.01   0.01   0.01     Bromochloromethane   40   0.2   0.01     Chlorobenzene   300   2   0.01   0.01     Dibulythin (DBT)   2   0.01   0.01   0.01     Monobutythin (MBT)   0.7   0.01   0.01     Monobutythin (MBT)   0.7   0.01   0.001     Naphthalene   70   0.01   0.001     Naphthalene   70   0.01   0.001     Phenanthrene   150   0.01   0.001     Pyrene   150   0.01   0.001     Styrene (vinylbenzene)   30   150   0.01     Styrene (vinylbenzene)   30   150   0.01     Styrene (vinylbenzene)   30   150   0.01     Styrene (vinylbenzene)   30   1   1     Tributyl                                                                                                                                                                                                                                                                                                                    | 3,4,5,3',4',5'-Hexachlorobiphenyl         | 0.000016 | 0.01     |                   |
| 4-Cumylphenol   0.35     4-Methylphenol (p- cresol)   600     Anthracene   150   0.01     Benzo(a)pyrene   0.01   0.01   0.01     Benzo(a)pyrene   0.01   0.01   0.01     Benzo(horide   0.2   0.01     Bromochloromethane   40   40     Chlorobenzene   300   2     Dichloromethane (methylene chloride)   4   4     Ethylenediamine tetraacetic acid (EDTA)   250                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4-Chlorophenol                            |          | 10       |                   |
| 4-Methylphenol (p- cresol)   600     Anthracene   150   0.01     Benzene   1   150   0.01     Benzo(a)pyrene   0.01   0.01   0.01   0.01     Bromochloromethane   40   0   0   0   0.01   0.01   0.01     Bromochloromethane   300   2   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4-Cumylphenol                             |          | 0.35     |                   |
| Anthracene   150   0.01     Benzene   1   1     Benzo(a)pyrene   0.01   0.01   0.01     Benzyl chloride   0.2   0.01     Bromochloromethane   40   1     Chlorobenzene   300   2     Dichloromethane (methylene chloride)   4   4     Ethylenzene   300   2     Ethylenzene   0.7   0.01     Monobutyttin (MBT)   0.7   0.01     Naphthalene   70   0.01     Naphthalene   70   0.01     Naphthalene   70   0.01     Octachlorodibenzo-p-dioxin (OCDD)   0.000016     Phenanthrene   150   0.01     Phenanthrene   50   0.01     Styrene (vinylbenzene)   30   1     Tributyttin (TBT)   1   1     Tributyttin oxide   1   1     Tributyttin oxide   1   1     Tributyttin oxide   1   0.025     Outene   600   2     Butylated hydroxyanisole   18000   0.025 <tr< td=""><td>4-Methylphenol (p- cresol)</td><td></td><td>600</td><td></td></tr<>                                                                                                                                                                                                                                          | 4-Methylphenol (p- cresol)                |          | 600      |                   |
| Benzene     1       Benzo(a)pyrene     0.01     0.01     0.01       Benzy (chloride     0.2     0.01       Bromochloromethane     40     40       Chlorobenzene     300     2       Dichloromethane (methylene chloride)     4     4       Ethylenzene     300     2       Hexachlorobutadiene     0.7     0.01       Monobutyltin (MBT)     0.7     0.01       Naphthalene     70     0.01       Octachlorodibenzo-p-dioxin (OCDD)     0.000016     0.001       Phenanthrene     150     0.01       Pyrene     150     0.01       Styrene (vinylbenzene)     30     1       Tributyltin (TBT)     1     1       Tributyltin (TBT)     1     1       Tributyltin oxide     1     1       Tributyltin (TBT)     1     1       Tributyltin (TBT)     1     1       Tributyltin (TBT)     1     1       Tributyltin oxide     1     1       2.6-Di-tert-butyl-phenol                                                                                                                                                                                                                          | Anthracene                                |          | 150      | 0.01              |
| Benzo(a)pyrene     0.01     0.01     0.01       Benzyl chloride     0.2     0.01       Bromochloromethane     40       Chlorobenzene     300     2       Dichloromethane (methylene chloride)     4     4       Ethylbenzene     300     2       Dichloromethane (methylene chloride)     4     4       Ethylbenzene     300     2       Hexachlorobutatiene     0.7     0.01       Monobutyttin (MBT)     0.7     0.01       Naphthalene     70     0.01       Octachlorodibenzo-p-dioxin (OCDD)     0.000016     0.000       Phenanthrene     150     0.01       Pyrene     150     0.01       Styrene (vinylbenzene)     30     1       Tributyttin (TBT)     1     1       Tributyttin oxide     1     1       Tributyttin (chloride     0.3     Xylene       600     Antioxidants     2     0.025       2,6-Di-tert-butyl-1,4-benzoquinone     0.014     0.025     0.025       2,6-Di-tert-butylphenol </td <td>Benzene</td> <td>1</td> <td></td> <td></td>                                                                                                                           | Benzene                                   | 1        |          |                   |
| Benzyl chloride     0.2     0.01       Bromochloromethane     40     40       Chlorobenzene     300     2       Dibutyltin (DBT)     2     0.1       Dichloromethane (methylene chloride)     4     4       Ethylenediamine tetraacetic acid (EDTA)     250     0.7       Hexachlorobutadiene     0.7     0.01       Monobutyltin (MBT)     0.7     Nonobutyltin (MBT)       N-nitrosomorpholine (NMOR)     0.001     0.000016       Phenanthrene     70     0.01       Octachlorodibenzo-p-dioxin (OCDD)     0.000016     0.000016       Phenanthrene     150     0.01       Pyrene     300     1     1       Tributyltin (TBT)     1     1     1       Tributyltin oxide     1     0.025     0.025       2,6-Di-tert-butyl-1,4-benzoquinone     0.014     0.025     0.025  2                                                                                                                                                                               | Benzo(a)pyrene                            | 0.01     | 0.01     | 0.01              |
| Bromochloromethane40Chlorobenzene300Dibutyltin (DBT)2Dichloromethane (methylene chloride)44Ethylbenzene300Ethylenediamine tetraacetic acid (EDTA)250Hexachlorobutadiene0.70.01Monobutyltin (MBT)0.7N-nitrosomorpholine (NMOR)0.0001Napthalene700.01Octachlorodibenzo-p-dioxin (OCDD)0.000016Phenanthrene1500.01Pyrene1500.01Styrene (vinylbenzene)30Tetrachloroethene50Toluene800Tributyltin (TBT)1Tributyltin (TBT)1Tributyltin (TBT)1Tributyltin (TBT)1Styrene600Antioxidants22,6-Di-tert-butyl-1,4-benzoquinone0.0140.025Jutylated hydroxynisole18000Butylated hydroxyntoluene (2,6-Di-tert-10000.025Butylated hydroxyntoluene (2,6-Di-te                                               | Benzyl chloride                           |          | 0.2      | 0.01              |
| Chlorobenzene300Dibutyttin (DBT)2Dichloromethane (methylene chloride)44Ethylbenzene300Ethylbenzene300Ethylbenzene300Ethylbenzene300Ethylbenzene300Ethylbenzene0.70.01Monobutyttin (MBT)0.7N-nitrosomorpholine (NMOR)0.001Naphthalene700.01Octachlorodibenzo-p-dioxin (OCDD)0.000016Phenanthrene1500.01Phthalic anhydride7000Pyrene1500.01Styrene (vinylbenzene)30Tetrachloroethene50Toluene800Tributyttin (TBT)1Tributyttin (TBT)1Trichlorobenzenes (total)30Vinyl chloride0.3Xylene600Antioxidants22,6-Di-tert-butyl-1,4-benzoquinone0.0140.0250.0252,6-Di-tert-butylphenol2Butylated hydroxynaisole18000Butylated hydroxynaisole18000Butylated hydroxynaisole200Propylenedinitrilotetraacetic acid (EDTA)200Propylenedinitrilotetraacetic acid (PDTA)0.7Fyrol FR 2 (tri(dichlorisopropyl)10.025Flame retardants0.50.01                                                                                                                                                                                                                                                                   | Bromochloromethane                        |          | 40       |                   |
| Dibutytin (DBT)     2       Dichloromethane (methylene chloride)     4     4       Ethylenediamine tetraacetic acid (EDTA)     250       Hexachlorobutadiene     0.7     0.01       Monobutytin (MBT)     0.7     0.01       N-nitrosomorpholine (NMOR)     0.0001     Naphthalene     70     0.01       Octachlorodibenzo-p-dioxin (OCDD)     0.000016     Phenanthrene     150     0.01       Phthalic anhydride     7000     0.01     Pyrene     0.01     0.000016       Phenanthrene     150     0.01     0.01     0.000016     0.01     0.01     0.01     0.01     0.01     0.01     0.01     0.01     0.01     0.01     0.01     0.01     0.01     0.01     0.01     0.01     0.01     0.01     0.01     0.01     0.01     0.01     0.01     0.01     0.01     0.01     0.01     0.01     0.01     0.01     0.01     0.01     0.01     0.01     0.01     0.01     0.01     0.01     0.01     0.01     0.01     0.01     0.01<                                                                                                                                                        | Chlorobenzene                             | 300      |          |                   |
| Dichloromethane (methylene chloride)     4     4       Ethylenzene     300       Ethylenediamine tetraacetic acid (EDTA)     250       Hexachlorobutadiene     0.7       Monobutyltin (MBT)     0.7       N-nitrosomorpholine (NMOR)     0.001       Naphthalene     70     0.01       Octachlorodibenzo-p-dioxin (OCDD)     0.000016       Phenanthrene     150     0.01       Phenanthrene     150     0.01       Pyrene     150     0.01       Styrene (vinylbenzene)     30     1       Tributyltin (TBT)     1     1       Tributyltin oxide     1     1       Tributyltin oxide     1     1       Tributyltin oxide     1     1       Tributyltin oxide     1     2       Q-6-Di-tert-butyl-1,4-benzoquinone     0.014     0.025     0.025       Q-6-Di-tert-butylphenol     2     2     2     0.025       Butylated hydroxytoluene (2,6-Di-tert-     1000     0.025     0.025     0.025       Butylated hydroxytoluene (2,6-Di-tert-                                                                                                                                                | Dibutyltin (DBT)                          |          | 2        |                   |
| Ethylbenzene     300       Ethylbenediamine tetraacetic acid (EDTA)     250       Hexachlorobutadiene     0.7     0.01       Monobutyltin (MBT)     0.7       N-nitrosomorpholine (NMOR)     0.001       Naphthalene     70     0.01       Octachlorodibenzo-p-dioxin (OCDD)     0.000016     Phenanthrene       Phenanthrene     150     0.01       Pyrene     150     0.01       Styrene (vinylbenzene)     30     Tetrachloroethene     50       Toluene     800     1     Tributyltin (TBT)     1       Tributyltin (TBT)     1     1     Tributyltin oxide     1       Tributyltin oxide     1     1     1     1       Tributyltin oxide     1     0.025     0.025     2,6-Di-tert-butyl-1,4-benzoquinone     2     0.025       2,6-Di-tert-butylphenol     2                                                                                                                                                                         | Dichloromethane (methylene chloride)      | 4        | 4        |                   |
| Ethylenediamine tetraacetic acid (EDTA)   250     Hexachlorobutadiene   0.7   0.01     Monobutyltin (MBT)   0.7     N-nitrosomorpholine (NMOR)   0.001     Naphthalene   70   0.01     Octachlorodibenzo-p-dioxin (OCDD)   0.000016     Phenanthrene   150   0.01     Pyrene   150   0.01     Styrene (vinylbenzene)   30   1     Tetrachloroethene   50   1     Tributyltin (TBT)   1   1     Tributyltin oxide   1   1     Tributyltin oxide   1   1     Tributyltin oxide   1   1     Trichorobenzenes (total)   30   30     Vinyl chloride   0.3   3     Z/6-Di-tert-butyl-1,4-benzoquinone   0.014   0.025   0.025     Sutylated hydroxyanisole   18000   1   1     Butylated hydroxyanisole   18000   0.025   0.025     Butylated hydroxytoluene (2,6-Di-tert-   1000   0.025   0.025     Butylated hydroxytoluene (2,6-Di-tert-   1000   0.025   0.025                                                                                                                                                                                                                              | Ethylbenzene                              | 300      |          |                   |
| Hexachlorobutadiene     0.7     0.01       Monobutyltin (MBT)     0.7     0.01       N-nitrosomorpholine (NMOR)     0.001     0.001       Naphthalene     70     0.01       Octachlorodibenzo-p-dioxin (OCDD)     0.000016     0.000016       Phenanthrene     150     0.01       Pyrene     150     0.01       Styrene (vinylbenzene)     30     1       Tetrachloroethene     50     0.01       Toluene     800     1     1       Tributyltin (TBT)     1     1     1       Tributyltin oxide     1     1     1       Tributyltin oxide     1     30     1       Vinyl chloride     0.3     3     Xylene     600       Antioxidants     2     0.025     0.025     2       Butylated hydroxyanisole     18000     0.025     0.025       Butylated hydroxytoluene (2,6-Di-tert-1000)     0.025     0.025     0.025       Butylated hydroxytoluene (2,6-Di-tert-1000)     0.025     0.025     0.025     0.025 <td>Ethylenediamine tetraacetic acid (EDTA)</td> <td>250</td> <td></td> <td></td>                                                                                             | Ethylenediamine tetraacetic acid (EDTA)   | 250      |          |                   |
| Monobutyttin (MBT)     0.7       N-nitrosomorpholine (NMOR)     0.001       Naphthalene     70     0.01       Octachlorodibenzo-p-dioxin (OCDD)     0.000016     Phenanthrene       Phenanthrene     150     0.01       Phthalic anhydride     7000     Pyrene       Styrene (vinylbenzene)     30     150     0.01       Styrene (vinylbenzene)     30     Tetrachloroethene     50       Toluene     800     1     Tributyltin (TBT)     1       Tributyltin oxide     1     1     Trichlorobenzenes (total)     30       Vinyl chloride     0.3     Xylene     600     Antioxidants       2,6-Di-tert-butyl-1,4-benzoquinone     0.014     0.025     0.025       2,6-Di-tert-butyl-1,4-benzoquinone     2     0.014     0.025       Butylated hydroxyanisole     18000     0.025     0.025       Butylated hydroxytoluene (2,6-Di-tert-     1000     0.025     0.025       Butylated hydroxytoluene (2,6-Di-tert-     1000     0.025     0.025       Butylated hydroxytoluene (2,6-Di-tert-     1000 <td>Hexachlorobutadiene</td> <td>0.7</td> <td></td> <td>0.01</td>                  | Hexachlorobutadiene                       | 0.7      |          | 0.01              |
| N-ntrosomorpholine (NMOR)   0.001     Naphthalene   70   0.01     Naphthalene   70   0.01     Octachlorodibenzo-p-dioxin (OCDD)   0.000016   0.000016     Phenanthrene   150   0.01     Phenanthrene   150   0.01     Physical analysis   30   7000     Pyrene   30   1     Tetrachloroethene   50   0.01     Tributyltin (TBT)   1   1     Tributyltin oxide   1   1     Tributyltin oxide   1   1     Tributyltin oxide   1   1     Tributyltin oxide   0.3   30     Vinyl chloride   0.3   30     Vinyl chloride   0.3   30     Vinyl chloride   0.3   30     Vinyl chloride   0.3   200     Antioxidants   2   0.025     2,6-Di-tert-butyl-1,4-benzoquinone   2.014   0.025     Butylated hydroxyanisole   18000   0.025     Butylated hydroxyanisole   200   0.025     Butylated hydroxytoluene (2,6-Di-tert-                                                                                                                                                                                                                                                                         | MonobutyItin (MBT)                        |          | 0.7      |                   |
| Naphthalene     70     0.01       Octachlorodibenzo-p-dioxin (OCDD)     0.000016     0.000016       Phenanthrene     150     0.01       Phenanthrene     150     0.01       Phthalic anhydride     7000     0.01       Pyrene     150     0.01       Styrene (vinylbenzene)     30     1       Tetrachloroethene     50     0.01       Tributyltin (TBT)     1     1       Tributyltin oxide     1     1       Tributyltin oxide     1     1       Trichlorobenzenes (total)     30     30       Vinyl chloride     0.3     Xylene     600       Antioxidants     2     2     0.025       2,6-Di-tert-butyl-1,4-benzoquinone     0.014     0.025     0.025       Butylated hydroxyanisole     18000     18000     0.025       Butylated hydroxytoluene (2,6-Di-tert-     1000     0.025     0.025       Butylated hydroxytoluene (2,6-Di-tert-     1000     0.025     0.025       Butylated hydroxytoluene (2,6-Di-tert-     1000     0.025 <td>N-nitrosomorpholine (NMOR)</td> <td></td> <td>0.001</td> <td></td>                                                                         | N-nitrosomorpholine (NMOR)                |          | 0.001    |                   |
| Octachlorodibenzo-p-dioxin (OCDD)0.000016Phenanthrene1500.01Phthalic anhydride7000Pyrene1500.01Styrene (vinylbenzene)30Tetrachloroethene50Toluene800Tributyltin (TBT)1Tributyltin oxide1Trichlorobenzenes (total)30Vinyl chloride0.3Xylene600Antioxidants2,6-Di-tert-butyl-1,4-benzoquinone0.0140.00250.025Butylated hydroxyanisole18000Butylated hydroxytoluene (2,6-Di-tert-1000Butylated hydroxytoluene (2,6-Di-tert-0.025Butylated hydroxytoluene (2,6-Di-tert-1000Butylated hydroxytoluene (2,6-Di-tert-1000Butylerediaminetetraacetic acid (EDTA)250Nitrilotriacetic acid (NTA)200Propylenedinitrilotetraacetic acid (PDTA)0.7Fyrol FR 2 (tri(dichlorisopropyl)10.025Flame retardantsTitylutyl phosphate0.5Tributyl phosphate0.50.01 | Naphthalene                               |          | 70       | 0.01              |
| Phenanthrene1500.01Phthalic anhydride7000Pyrene1500.01Styrene (vinylbenzene)30Tetrachloroethene50Toluene800Tributyltin (TBT)1Tributyltin oxide1Trichlorobenzenes (total)30Vinyl chloride0.3Xylene600Antioxidants2,6-Di-tert-butyl-1,4-benzoquinone0.0140.0250.0252,6-Di-tert-butyl-1,4-benzoquinone0.0140.0250.025Butylated hydroxyanisole18000Butylated hydroxyanisole18000Butylated hydroxytoluene (2,6-Di-tert-1000Butylated hydroxytoluene (2,6-Di-tert-1000Butylerediaminetetraacetic acid (EDTA)250Nitrilotriacetic acid (NTA)200Propylenedinitrilotetraacetic acid (PDTA)0.7Fyrol FR 2 (tri(dichlorisopropyl)10.025Flame retardants7000.01Tributyl phosphate0.50.01                                                                                                           | Octachlorodibenzo-p-dioxin (OCDD)         |          | 0.000016 | 0.04              |
| Printalic annydride 7000<br>Pyrene (vinylbenzene) 30<br>Tetrachloroethene 50<br>Toluene 800<br>Tributyltin (TBT) 1<br>Tributyltin oxide 1<br>Trichlorobenzenes (total) 30<br>Vinyl chloride 0.3<br>Xylene 600<br>Antioxidants<br>2,6-Di-tert-butyl-1,4-benzoquinone 0.014 0.025 0.025<br>2,6-Di-tert-butylphenol 2<br>Butylated hydroxyanisole 18000<br>Butylated hydroxyanisole 18000<br>Butylated hydroxytoluene (2,6-Di-tert-1000 0.025<br>Butylated hydroxytoluene (2,6-Di-tert-1000 0.025<br>Butylated hydroxytoluene (2,6-Di-tert-200 0.025<br>Butylated hydroxytoluene (2,6-Di-tert-200 0.025<br>Butyl-p-Cresol) (BHT)<br>Chelating agents<br>Ethylenediaminetetraacetic acid (EDTA) 250<br>Nitrilotriacetic acid (NTA) 200<br>Propylenedinitrilotetraacetic acid (PDTA) 0.7<br>Fyrol FR 2 (tri(dichlorisopropyl) 1 0.025<br>Flame retardants<br>Tributyl phosphate 0.5 0.01                                                                                                                                                                                                        | Phenanthrene                              |          | 150      | 0.01              |
| Pyrene1500.01Styrene (vinylbenzene)30Tetrachloroethene50Toluene800Tributyltin (TBT)1Tributyltin oxide1Trichlorobenzenes (total)30Vinyl chloride0.3Xylene600Antioxidants2,6-Di-tert-butyl-1,4-benzoquinone0.0140.0250.0252,6-Di-tert-butylphenol2Butylated hydroxyanisole18000Butylated hydroxytoluene (2,6-Di-tert-10000.0250.025Butylated hydroxytoluene (2,6-Di-tert-1000Dittrilotriacetic acid (EDTA)250Nitrilotriacetic acid (NTA)200Propylenedinitrilotetraacetic acid (PDTA)0.7Fyrol FR 2 (tri(dichlorisopropyl)10.025Flame retardants1Tributyl phosphate0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Phthalic annydride                        |          | 7000     | 0.04              |
| Styrene (vinylbenzene)30Tetrachloroethene50Toluene800Tributyltin (TBT)1Tributyltin oxide1Tributyltin oxide1Trichlorobenzenes (total)30Vinyl chloride0.3Xylene600Antioxidants2,6-Di-tert-butyl-1,4-benzoquinone0.0142,6-Di-tert-butylphenol2Butylated hydroxyanisole18000Butylated hydroxyanisole18000Butylated hydroxytoluene (2,6-Di-tert-1000Doubletragents200Ethylenediaminetetraacetic acid (EDTA)250Nitrilotriacetic acid (NTA)200Propylenedinitrilotetraacetic acid (PDTA)0.7Fyrol FR 2 (tri(dichlorisopropyl))10.025Flame retardants0.50.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Pyrene                                    | 20       | 150      | 0.01              |
| Tetrachloroethene50Toluene800Tributyltin (TBT)1Tributyltin oxide1Trichlorobenzenes (total)30Vinyl chloride0.3Xylene600Antioxidants2,6-Di-tert-butyl-1,4-benzoquinone0.0142,6-Di-tert-butylphenol2Butylated hydroxyanisole18000Butylated hydroxyanisole18000Butylated hydroxytoluene (2,6-Di-tert-1000Butylated hydroxytoluene (2,6-Di-tert-1000Butyl-p-Cresol) (BHT)200Chelating agents200Ethylenediaminetetraacetic acid (EDTA)200Propylenedinitrilotetraacetic acid (PDTA)0.7Fyrol FR 2 (tri(dichlorisopropyl)10.025Flame retardants7Tributyl phosphate0.50.01                                                                                                                                                                                                                     | Styrene (vinyibenzene)                    | 30       |          |                   |
| Toildene800Tributyltin (TBT)1Tributyltin oxide1Trichlorobenzenes (total)30Vinyl chloride0.3Xylene600Antioxidants2,6-Di-tert-butyl-1,4-benzoquinone0.0142,6-Di-tert-butylphenol2Butylated hydroxyanisole18000Butylated hydroxytoluene (2,6-Di-tert-1000Butylated hydroxytoluene (2,6-Di-tert-0.025Butylated hydroxytoluene (2,6-Di-tert-1000Butylated hydroxytoluene (2,6-Di-tert-1000Butyl-p-Cresol) (BHT)200Chelating agents200Ethylenediaminetetraacetic acid (EDTA)250Nitrilotriacetic acid (NTA)200Propylenedinitrilotetraacetic acid (PDTA)0.7Fyrol FR 2 (tri(dichlorisopropyl)10.025Flame retardants0.50.01                                                                                                                                                                                                              |                                           | 50       |          |                   |
| Tributyltin (TBT)1Tributyltin oxide1Trichlorobenzenes (total)30Vinyl chloride0.3Xylene600Antioxidants2,6-Di-tert-butyl-1,4-benzoquinone0.0142,6-Di-tert-butylphenol2Butylated hydroxyanisole18000Butylated hydroxyanisole18000Butylated hydroxytoluene (2,6-Di-tert-1000Butylated hydroxytoluene (2,6-Di-tert-1000Butyl-p-Cresol) (BHT)200Chelating agents200Ethylenediaminetetraacetic acid (EDTA)250Nitrilotriacetic acid (NTA)200Propylenedinitrilotetraacetic acid (PDTA)0.7Fyrol FR 2 (tri(dichlorisopropyl)10.025Flame retardants0.50.01                                                                                                                                                                                                                                       | I Oluene<br>Tributultin (TDT)             | 800      | 4        |                   |
| Trichlorobenzenes (total)30Vinyl chloride0.3Xylene600Antioxidants2,6-Di-tert-butyl-1,4-benzoquinone0.0142,6-Di-tert-butylphenol2Butylated hydroxyanisole18000Butylated hydroxytoluene (2,6-Di-tert-1000Butylated hydroxytoluene (2,6-Di-tert-0.025Butyl-p-Cresol) (BHT)0.025Chelating agentsEthylenediaminetetraacetic acid (EDTA)250Nitrilotriacetic acid (NTA)200Propylenedinitrilotetraacetic acid (PDTA)0.7Fyrol FR 2 (tri(dichlorisopropyl)10.025Flame retardants0.50.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Tributyliin (TDT)                         | 1        | I        |                   |
| Vinul chloride30Vinyl chloride0.3Xylene600Antioxidants2,6-Di-tert-butyl-1,4-benzoquinone0.0142,6-Di-tert-butylphenol2Butylated hydroxyanisole18000Butylated hydroxyanisole18000Butylated hydroxytoluene (2,6-Di-tert-1000Butyl-p-Cresol) (BHT)0.025Chelating agentsEthylenediaminetetraacetic acid (EDTA)250Nitrilotriacetic acid (NTA)200Propylenedinitrilotetraacetic acid (PDTA)0.7Fyrol FR 2 (tri(dichlorisopropyl)10.025Flame retardants0.50.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Trichlerobenzones (total)                 | 20       |          |                   |
| Viny choice0.3Xylene600Antioxidants2,6-Di-tert-butyl-1,4-benzoquinone0.0142,6-Di-tert-butylphenol2Butylated hydroxyanisole18000Butylated hydroxytoluene (2,6-Di-tert-1000Butyl-p-Cresol) (BHT)0.025Chelating agentsEthylenediaminetetraacetic acid (EDTA)250Nitrilotriacetic acid (NTA)200Propylenedinitrilotetraacetic acid (PDTA)0.7Fyrol FR 2 (tri(dichlorisopropyl)10.025Flame retardants0.50.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Vinyl chloride                            | 03       |          |                   |
| Antioxidants0002,6-Di-tert-butyl-1,4-benzoquinone0.0140.0250.0252,6-Di-tert-butylphenol220Butylated hydroxyanisole1800000Butylated hydroxytoluene (2,6-Di-tert-<br>Butyl-p-Cresol) (BHT)10000.025Chelating agentsEthylenediaminetetraacetic acid (EDTA)250Nitrilotriacetic acid (NTA)200200Propylenedinitrilotetraacetic acid (PDTA)0.7Fyrol FR 2 (tri(dichlorisopropyl)10.025Flame retardants0.50.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Yulono                                    | 600      |          |                   |
| Antioxitants2,6-Di-tert-butyl-1,4-benzoquinone0.0140.0250.0252,6-Di-tert-butylphenol2Butylated hydroxyanisole18000Butylated hydroxytoluene (2,6-Di-tert-<br>Butyl-p-Cresol) (BHT)0.0025Chelating agentsEthylenediaminetetraacetic acid (EDTA)250Nitrilotriacetic acid (NTA)200Propylenedinitrilotetraacetic acid (PDTA)0.7Fyrol FR 2 (tri(dichlorisopropyl))10.025Flame retardantsTributyl phosphate0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Antiovidants                              | 000      |          |                   |
| 2,6 Dirtert butyl 1,4 benzoquinolic22,6-Di-tert-butylphenol2Butylated hydroxyanisole18000Butylated hydroxytoluene (2,6-Di-tert-<br>Butyl-p-Cresol) (BHT)0.025Chelating agents250Ethylenediaminetetraacetic acid (EDTA)250Nitrilotriacetic acid (NTA)200Propylenedinitrilotetraacetic acid (PDTA)0.7Fyrol FR 2 (tri(dichlorisopropyl))10.025Flame retardants0.5Tributyl phosphate0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2 6-Di-tert-butyl-1 4-benzoquinone        | 0.014    | 0.025    | 0.025             |
| Butylated hydroxyanisole18000Butylated hydroxytoluene (2,6-Di-tert-<br>Butyl-p-Cresol) (BHT)10000.025Chelating agents250Ethylenediaminetetraacetic acid (EDTA)250Nitrilotriacetic acid (NTA)200Propylenedinitrilotetraacetic acid (PDTA)0.7Fyrol FR 2 (tri(dichlorisopropyl)10.025Flame retardants0.50.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2 6-Di-tert-butylphenol                   | 2        | 0.020    | 0.020             |
| Butylated hydroxytoluene (2,6-Di-tert-<br>Butyl-p-Cresol) (BHT)10000.025Chelating agents250Ethylenediaminetetraacetic acid (EDTA)250Nitrilotriacetic acid (NTA)200Propylenedinitrilotetraacetic acid (PDTA)0.7Fyrol FR 2 (tri(dichlorisopropyl)110.025Flame retardants0.5Tributyl phosphate0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Butylated hydroxyanisole                  | 18000    |          |                   |
| Butylated hydroxyteride (2,0 b) teht   1000   0.020     Butyl-p-Cresol) (BHT)   Chelating agents     Ethylenediaminetetraacetic acid (EDTA)   250     Nitrilotriacetic acid (NTA)   200     Propylenedinitrilotetraacetic acid (PDTA)   0.7     Fyrol FR 2 (tri(dichlorisopropyl)   1   0.025     Flame retardants   0.5   0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Butylated hydroxytoluene (2.6-Di-tert-    | 10000    |          | 0.025             |
| Chelating agentsEthylenediaminetetraacetic acid (EDTA)250Nitrilotriacetic acid (NTA)200Propylenedinitrilotetraacetic acid (PDTA)0.7Fyrol FR 2 (tri(dichlorisopropyl)10.025Flame retardants0.50.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Butyl-n-Cresol) (BHT)                     | 1000     |          | 0.020             |
| Ethylenediaminetetraacetic acid (EDTA)250Nitrilotriacetic acid (NTA)200Propylenedinitrilotetraacetic acid (PDTA)0.7Fyrol FR 2 (tri(dichlorisopropyl)10.025Flame retardantsTributyl phosphate0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Chelating agents                          |          |          |                   |
| Nitrilotriacetic acid (NTA)200Propylenedinitrilotetraacetic acid (PDTA)0.7Fyrol FR 2 (tri(dichlorisopropyl)10.025Flame retardantsTributyl phosphate0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Ethylenediaminetetraacetic acid (EDTA)    | 250      |          |                   |
| Propylenedinitrilotetraacetic acid (PDTA) 0.7<br>Fyrol FR 2 (tri(dichlorisopropyl) 1 0.025<br><i>Flame retardants</i><br>Tributyl phosphate 0.5 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Nitrilotriacetic acid (NTA)               | 200      | 200      |                   |
| Fyrol FR 2 (tri(dichlorisopropyl) 1 0.025<br><i>Flame retardants</i><br>Tributyl phosphate 0.5 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Propylenedinitrilotetraacetic acid (PDTA) | 07       | 200      |                   |
| Flame retardants                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Evrol FR 2 (tri(dichlorisopropyl)         | 1        | 0.025    |                   |
| Tributyl phosphate 0.5 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Flame retardants                          |          | 0.020    |                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Tributyl phosphate                        |          | 0.5      | 0.01              |

| Chemical Names                                   | ADWG | AGWR   | AIQS GC/LC<br>MDL |
|--------------------------------------------------|------|--------|-------------------|
| Triphenyl phosphate                              |      | 1      |                   |
| Tris(2-chloroethyl)phosphate (TCEP)              |      | 1      | 0.01              |
| Tri(butyl cellosolve) phosphate (ethanol,2-      | 50   |        |                   |
| Fragrance                                        |      |        |                   |
| 2,4,6-Trinitro-1,3-dimethyl-5-tert-butylbenzene  | 350  |        |                   |
| 4-Acetyl-6-t-butyl-1,1-dimethylindan             | (    |        |                   |
| 6-Acetyl-1,1,2,4,4,7-hexamethyltetraline         | 4    | 40000  |                   |
|                                                  |      | 18000  |                   |
| Musk ketone                                      |      | 350    |                   |
| MUSK tibetene                                    |      | 0.35   |                   |
| Pentametnyi-4,6- dinitroindane                   |      | 0.35   |                   |
| Plasticizers<br>Biophonel A                      |      | 200    | 0.01              |
| Disprienoi A<br>Di a butul abthalata             |      | 200    | 0.01              |
| Di-n-bulyi phinalale<br>Di/2 othylboxyl) adjacto |      | 30     | 0.01              |
| Di(2-ethylnexyl) adipate                         | 10   |        | 0.01              |
| Surfactants                                      | 10   |        | 0.01              |
| Junacianis<br>A-Nonvinhenol (AND)                |      | 500    | 0.01              |
| 4-Nonyphenol (4NP)                               |      | 59     | 0.01              |
| Nitrilotriacetic acid                            | 200  | 55     | 0.01              |
| Sterols                                          | 200  |        |                   |
| Cholesterol                                      |      | 7      | 0.1               |
| Coprostanol                                      |      | 07     | 0.01              |
| Stigmastanol                                     |      | 1000   | 0.1               |
| Phytochemical                                    |      |        | ••••              |
| Coumarin                                         |      | 0.5    |                   |
| Hormones                                         |      |        |                   |
| Androsterone                                     |      | 14     |                   |
| Testosterone                                     |      | 7      |                   |
| 17α-estradiol                                    |      | 0.175  |                   |
| 17α-ethinyl estradiol                            |      | 0.0015 |                   |
| 17β-estradiol                                    |      | 0.175  |                   |
| Equilenin                                        |      | 0.03   |                   |
| Equilin                                          |      | 0.03   |                   |
| Estriol                                          |      | 0.03   |                   |
| Estrone                                          |      | 0.03   |                   |
| Mestranol                                        |      | 0.0025 |                   |
| Norethindrone                                    |      | 0.25   |                   |
| Progesterone                                     |      | 105    |                   |

