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Natural ecosystems and primary production industries are threatened by invasive plant species, and allelopathy
is one of the attributes that may assist in the invasion process. We studied the allelopathic potentiality of
Chrysanthemoides monilifera subsp. monilifera (boneseed), one of the seven priority weeds identified for the
development of predictive modeling in the world. A series of bioassays compared dose–response to aqueous
extracts of boneseed as well as the impact of leachate on model (Lactuca sativa) and associated species (Isotoma
axillaris and Acacia mearnsii) with particular reference to biometric, physiological and biochemical parameters.
We found total phenolics in the order of leaf N root N stem N infested soil N outside soil. Acetone extracted
more phenolics than other solvents, and air-dried double-centrifuged dominates over oven-dried single-
centrifuged processing methods. Generally, aqueous extracts of boneseed organs showed ranked inhibition sim-
ilar to phenolic content on germination indices and biometric parameters of both model and associated species,
although, the hypocotyl length and weight response were varied. Dose response studies showed a strong corre-
lation of aqueous extract concentration with both hypocotyl and radical length of I. axillaris even at low concen-
trations providing evidence of the allelopathic potential of boneseed. I. axillariswas the most susceptible species
showing LC50 of 0.46%, 0.89% and 0.86% in response to leaf, stem and root extract respectively. Water uptake and
carbohydrate metabolism of L. sativa seeds were gradually decreased with increasing extract concentrations.
Hydrogen peroxide was increased with increasing extract concentration along with acceleration of electrolytic
leakage and lipid peroxidation in L. sativa seedlings, providing evidence of cellular fragmentation suggesting a
mechanism of allelopathic impact through excessive reactive oxygen species (ROS) production. Overall, leaf
extracts showed more phytotoxicity when compared with other organs of boneseed. These findings help to
explain the mechanism of invasion by boneseed and emphasize the importance of mitigating the effects of
allelopathy by boneseed to protect native and crop species.

© 2014 SAAB. Published by Elsevier B.V. All rights reserved.
1. Introduction

Invasion of exotic species is one of the most important global
scale problems experienced by natural ecosystems. More than 40% of
the species on the list of threatened and endangered species in the
world are listed due to the impact of invasive species on their habitat
(Wilcove et al., 1998). Invasive speciesmay pose a threat to the economy
of a nation (Pimentel et al., 2005). Introduction of non-native species
may occur either through accidental introduction or purposeful import
for human utility. Success of invasion is controlled by the characteristics
of the invaded habitat (Sakai et al., 2001) and biological attributes
of the invader including allelopathy (Adkins and Sowerby, 1996),
loroacetic acid; TBA, thiobarbi-
alondialdehyde.
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fitness homeostasis (Matthew, 1971), seed number, size and weight
(Rejmánek and Richardson, 1996), animal dispersal (Binggeli, 1996),
geographical range (Forcella and Wood, 1984), alternative mode of re-
production (Groves et al., 1995), competitive ability (Noble and Slatyer,
1980), and phenotypic plasticity (Dorken and Barrett, 2004).

The novelweapon hypothesis suggests that ‘allelopathy’ is one of the
powerful mechanisms that permits plants to invade and establish in
new ecosystems and ultimately determines the structure and composi-
tion of the invaded plant community (Bais et al., 2003; Callaway and
Ridenour, 2004; Hierro and Callaway, 2003). Plants that negatively
affect other plants through the production of secondary metabolites
are considered allelopathic. In an ecosystem it is difficult to distinguish
the impact of allelochemicals from more easily quantifiable resource
competition, however, a number of studies have demonstrated the
potential for allelopathic impact (Bais et al., 2003; Lawrence et al.,
1991; Nilsson, 1994; Ridenour and Callaway, 2001).

Australia's natural environment and primary production industries
are threatened by invasive species as they displace native species,
degrade land, and reduce farm and forest productivity (Department of
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Environment, 2013). Boneseed, a weed of national significance in
Australia and listed on the National Pest Plant Accord in New Zealand,
was introduced to Australia from South Africa as an ornamental garden
plant in themid-nineteenth century, with naturalized examples first re-
corded in Sydney in 1852 and Melbourne in 1858 (Brougham et al.,
2006). This perennial shrub of 1–3mheight is one of the two subspecies
(subsp. monilifera and rotundata) of Chrysanthemoides monilifera found
in Australia. Both subspecies were planted extensively to stabilize
coastal sand dunes and control erosion, particularly from the 1940s to
the 1960s, with subsp. monilifera more commonly planted in Victoria
(Burgman et al., 1998). Boneseed was proclaimed a noxious weed in
Victoria in 1969 (Parsons, 1973), and soon after, the Australian Institute
of Agricultural Science (AIAS) suggested that boneseed could potentially
be “the most important weed on public land in southern Victoria”
(Australian Institute of Agricultural Science, 1976) because of its prodi-
gious potential for spread and regeneration, absence of natural enemies,
competitive capacity, fire hazard and economic and environmental im-
pacts (Parsons, 1973; Rudman, 2001; Thorp and Lynch, 2000; Weiss
et al., 1998). Collectively, the two sub-species of C. monilifera threaten
about 200 indigenous species in Australia (Department of Environment
Conservation, 2006) including significant rare species such as Pterostylis
truncate in Victoria. It was predicted that more than 15% of Australia
could be invaded by these two subspecies in the near future (Weiss
et al., 2008). Boneseed infestations have also occurred in South Africa,
California, Sicily, St Helena and Southern France (Weiss et al., 1998).
Globally, C. monilifera has been identified as one of the seven priority
weeds for the development of predictive modeling (Underwood et al.,
2006). There has been research on boneseed management and control
(Brougham et al., 2006; Lane and Shaw, 1978), however, themechanism
of boneseed invasion has never been directly investigated, in spite of
the severe threat boneseed poses to native species regeneration
(McAlpine et al., 2009). Such research is important to determine the im-
pact of the invasive species on biodiversity, to predict rates of invasion,
and to devise control and restoration processes (Dorning and Cipollini,
2006). Several studies on allelopathic potential of C. monilifera
subsp. rotundata (bitou bush) lead the suspicion of the presence of
allelochemicals in boneseed as a weapon of invasion (Ens et al., 2009b;
Lindsay and French, 2004). Thus, there is a need to demonstrate the
allelopathic potential of boneseed as a mechanism in the invasion
processes.

Plant–plant negative interactions through the release of
allelochemicals in themode of volatilization (Halligan, 1975), root exu-
dation (Uddin et al., 2014a; Yu et al., 2003), decomposition of residues
in soil (Bonanomi et al., 2005; Uddin et al., in press), and leaching
(Amoo et al., 2008) are well established. Most of the allelopathic re-
search into the mechanism of the invasion process are based on germi-
nation and growth impact studies (Dorning and Cipollini, 2006; Javaid
et al., 2006). A number of phytotoxicity studies had been conducted
using solvents (methanol, acetone, ethanol) rather than water as an
extraction method (Hill et al., 2007; Yamane et al., 1992). The findings
of these studies are ecologically questionable as water is the only
medium that mimics what would happen in nature. Phenolic content
and phytotoxicity of the extracts may vary with extraction solvents
(Ens et al., 2009b; Jefferson and Pennacchio, 2003). Additionally, allelo-
pathic impact studies using oven dried samples extract (Morgan and
Overholt, 2005; Omezzine et al., 2011) are ecologically unrealistic as
the properties of the samples including phenolics may be changed
with temperature (Janas et al., 2000; Ju and Howard, 2003). This
study includes the influences of extraction media and drying methods
in conjunction with centrifuging mechanisms on phenolic content of
boneseed, and air dried samples with water extraction was used for
bioassay. The physiological responses of plants to allelochemicals are
particularly complex since resource competition, allelopathy, nutrient
immobilization and microbial influence operate in parallel (Bhowmik,
2003; del Moral, 1997). There is clear evidence that allelochemicals
can affect germination, growth, physiology and even genetic factors of
neighboring plants (Bais et al., 2003). Secondary metabolites affect cel-
lular processes of target species leading a measurable changes in elec-
trolyte leakage (Galindo et al., 1999), lipid peroxidation (Batish et al.,
2006) cell division (Anaya and Pelayo-Benavides, 1997) and stomata
opening-closure (Barkosky et al., 2000). Affecting electrolyte leakage,
and lipid peroxidation of target species through excessive ROS produc-
tion, a mode of allelopathic action suggested by Weir et al. (2004) is
rarely considered in allelopathic studies. Seed imbibition, the first
phase of seed germination, is an important step in germination as no
seeds germinate until water uptakes by seeds reach a critical level.
With some exception (Chon et al., 2004), the impact of allelochemicals
on seed imbibition, leading to a delay or decreasing rates of seed
germination, is rarely addressed in allelopathic studies. Another
important factor affecting seed germination, seed reserve mobilization
(carbohydrate), is also hardly ever studied, or where investigated it is
generally over long timescales (once after few days), while in reality
there might be significant effects in hours (Uddin et al., 2013). Criticism
has also been raised about some bioassay experiments using high con-
centrations of aqueous extracts in allelopathic studies, as the impact
of osmotic potential may be conflated in such studies (Anderson and
Loucks, 1966), although dose–response studies remain one of the
most effectiveways to study phytotoxic potential of allelopathic species
(Sunmonu and Van Staden, 2014).

The current study aimed to investigate allelopathy in boneseed by
integrating ecological, physiological, and biochemical approaches
based on the hypothesis: “boneseed is allelochemically invasive”.

2. Methods

2.1. Field Sampling and seed collection

You Yangs Regional Park, Victoria (37° 59′ 44″ S, 144° 24′ 39″ E) was
selected as the study area as it is the home, since 1940, of one of the
Australia's densest boneseed populations (Roberts, 2008). In September
2012, boneseed plants, and soil samples from the rhizosphere and
adjacent boneseed unoccupied areas were collected, sealed in plastic
bags and immediately transported to the laboratory. The plant
samples were separated into leaves, stems, and roots after cleaning to
remove extraneous organic matter and soil. All organs were chopped
into 1–2 cm pieces, separately. The samples (plant, soil and litter)
were dried either in air or oven (40 °C), as necessary, to constant
weights. Dried samples were ground in a grinder, passed through a
0.5 mm mesh sieve and stored in sealed plastic vials until chemical
analyses and experiments were conducted. Fresh boneseed leaves
were collected, sealed in plastic bags and transferred to the laboratory
in refrigerated boxes to preserve freshness for specific leaf leachate
impact experiments. Seeds of Lactuca sativa and Acacia mearnsii were
purchased from Bunnings Warehouse Australia and Seed World
Australia, respectively, and seeds of other associated species Isotoma
axillaris were collected from the wild.

2.2. Determination of phenolics concentration

We integrated different mechanisms in extraction of total phenolics
from boneseed organs, e.g., drying (air and oven dried), extracting sol-
vents (acetone, methanol, ethanol and water) and centrifuging (single
and double centrifuged). Total phenolic concentrations were measured
using the Folin–Ciocalteu assay (Singleton and Rossi, 1965) with slight
modifications using gallic acid as the standard (Bärlocher and Graça,
2005). Approximately 100 mg of sieved powder of leaves, stems,
roots, infested rhizosphere soil and boneseed unoccupied soil was
transferred to Eppendorf tubes. To powdered materials, 5 mL of 70%
acetone was added, and the samples were incubated at 4 °C for 1 h to
extract phenolics. The extracted materials were centrifuged at 4 °C for
15 min at 15,000 rpm (Beckman Avanti 30 High Speed Compact
Centrifuge 364105, Beckman Coulter Inc., USA), after which 0.5 mL
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supernatantwasmixedwith distilledwater (dH2O) to 1mL. 5mL of “2%
Na2CO3 in 0.1 N NaOH”was added andmixed. After 5min, 0.5 mL of the
Folin–Ciocalteu reagent was added, mixed and incubated at room tem-
perature for 2 h. Finally, absorbance was measured at 760 nm in
a spectrophotometer (Libra S12, manufactured by Biochrom Ltd.,
England) and phenolic concentrations were determined based on a
standard curve of gallic acid. A similar procedure was repeated for
measuring total phenolics in water, methanol and ethanol extracts for
different drying and centrifuging methods.
2.3. Bioassay with aqueous extract of boneseed

To prepare 5% (w/v) aqueous extracts, 50 g of dry powder of
boneseed organs was mixed in 1 L dH2O and agitated for 24 h on an or-
bital shaker (Orbital Mixer EOM5, Ratek Instruments Pty. Ltd, Australia)
at room temperature. The extract was centrifuged at 3000 rpm
(Econospin 120010, Sorvall Instruments, Germany) for 15–20 min,
and the supernatant was passed through a 0.22 μm filter before storage
at −80 °C. Aqueous extracts of 0.155, 0.31, 0.62, 1.25 and 2.5% (w/v)
were prepared for bioassay experiments. To control for possible extra-
neous effects, pH (Pocket digital pHmeter, 99559, Dick-smith electron-
ics, Australia), chloride concentration (Shimadzu Ion Chromatograph,
Kyoto, Japan) and electrical conductivity (EC) (TPS Digital conductivity
meter, 2100, TPS Pty Ltd., Australia) of all extracts were measured and
pH was neutralized using 1 N NaOH solution (Fu and Viraraghavan,
2002). Osmotic potential was calculated following the equation pro-
posed by McIntyre (1980).

All seeds were surface sterilized with 1.5% (v/v) sodium hypochlo-
rite for 1 min before washing in dH2O (Jefferson and Pennacchio,
2003). Twenty five seeds of L. sativa (model species), and I. axillaris
(associated species) and 10 seeds of A. mearnsii (associated species)
were placed in 90 mm Petri dish lined with two Whatman no. 1 filter
paper moistened with 5 mL of different concentrations of aqueous
extracts (0.155% to 5% for I. axillaris, and 1.25% to 5% for L. sativa and
A. mearnsii) of each organ. Distilled water was used as a control (0%).
Five replicates were maintained for model species and 4 replicates
were maintained for associated species in a completely randomized
design (CRD) for each treatment. The Petri dishes were sealed with
parafilm and incubated in a growth chamber (Westinghouse, Electrolux
home products, Australia) at 25 °C/15 °C (day/night) temperature for
A. mearnsii and 30 °C/20 °C (day/night) temperature for I. axillaris
while for L. sativa constant 25 °C temperature was maintained. The as-
sociated species were grown with a 12 h photoperiod, whereas, model
species was grown in darkness. The number of germinated seedlings
(radicle protrudes by ≥1 mm) in all petri dishes were counted daily
until cumulative germination leveled off (7, 15 and 17 days for
L. sativa, I. axillaris and A. mearnsii respectively). Germination indices
e.g., total germination (TG), speed of germination (SpG), speed of accu-
mulated germination (SpAG) and coefficient of the rate of germination
(CRG) were calculated along with biometric parameters including
hypocotyl and radicle length and weight (Chiapusio et al., 1997;
Jefferson and Pennacchio, 2003). The lethal concentration (LC50) was
calculated from TG.
2.4. Bioassay with boneseed leachate

Leaf leachate of 2.5% (dry equivalent) was extracted by submerging
fresh leaf of boneseed, equivalent to the 25 g dry leaf, in 1 L dH2O for
24 h at room temperature. The leachate was membrane filtered and
preserved at −80 °C. Bioassays were conducted as described for the
aqueous extract samples (Section 2.3) but were limited to L. sativa and
I. axillaris seeds and preceded for 7 days for L. sativa and 15 days for
I. axillaris after which all the above mentioned parameters (Section 2.3)
were measured.
2.5. Seed imbibition

L. sativa, a model test species was used for the evaluation of the
physiological and biochemical impact of aqueous extracts (1.25, 2.5
and 5%) of boneseed organs. Effects of extracts on seed imbibition
were measured soaking 100 mg seeds in either aqueous extracts of
various concentrations of each organ or dH2O for control. Treatments
were arranged in a complete randomized design in triplicate in a
growth chamber (Westinghouse, Electrolux home products, Australia)
at 25 °C in darkness. The seed imbibition (%) was determined from
the weight differences at 0, 4, 8 and 24 h.

2.6. Seed reserve mobilization

Total non-structural carbohydrate (TNC), a measurement of seed
reserve mobilization was measured using the phenol sulphuric acid
method (Kabeya and Sakai, 2005) with slight modification. Briefly,
seeds (~6 mg) after 0, 4, 8 and 24 h imbibition were collected and
placed in 50 mL Schott bottles filled with 40 mL of 0.4 N H2SO4 acid
and refluxed for 1 h in a boilingwater bath. The hot solutionwasfiltered
throughWhatman No. 42 filter paper and diluted to volume with dH2O
after cooling. 2 mL extraction was transferred to test tube and 0.05 mL
phenol (80%) and 5mLH2SO4 (95%)were added andmixed thoroughly.
After 10 min, the test tubes were placed in a 30 °C water bath for
15min. Finally, the carbohydrate content of the filtrate was determined
spectrophotometrically at 485 nm using glucose solution as a calibra-
tion standard.

2.7. Oxidative stress evaluation

A dose response bioassay experiment on L. sativa was conducted
using 1.25, 2.5, and 5% aqueous extracts of leaf, stem and root to evalu-
ate the impact on ROS production, and consequently, on electrolyte
leakage and lipid peroxidation. Three replicates were arranged in a
CRD and harvested after 7 days.

2.7.1. Hydrogen peroxide
Hydrogen peroxide (H2O2), a member of ROSwasmeasured follow-

ing the method of Velikova et al. (2000) to investigate whether the
aqueous extracts produced excessive ROS. Briefly, 100 mg plantlets
was homogenized with 5mL 0.1% trichloroacetic acid (TCA) and centri-
fuged at 12,000 rpm for 15 min. From the centrifuged material, 0.5 mL
supernatant was transferred to test tube to which 0.5 mL 10 mM
phosphate buffer (pH 7.0) and 1 mL 1 M potassium iodide were
added. The absorbance was read at 390 nm and H2O2 concentrations
were determined based on extinction coefficient of 0.28 μM−1 cm−1.

2.7.2. Electrolyte leakage
To measure electrolyte leakage, seedlings with equal weights

(~100 mg) for both control and treatment were placed in 15 mL dH2O
at room temperature in darkness. ECwasmeasured after 2 h incubation,
followed by as second EC measurement after 20 min boiling in a water
bath. Results were expressed as a percentage of total leakage (Bogatek
et al., 2006).

2.7.3. Lipid peroxidation
Lipid peroxidation was measured in terms of malondialdehyde

(MDA) content as it is used as an index of lipid peroxidation, and
expressed as nmol g−1 fresh weight (Jambunathan, 2010). Plantlets of
200 mg was homogenized with 4 mL of 0.1% TCA, and centrifuged at
15,000 rpm for 15 min. 1 mL of supernatant was transferred to a test
tube to which 2 mL each of 20% TCA, and 0.5% thiobarbituric acid
(TBA) were added and heated at 95 °C in a fume hood followed by
water cooling. The absorbance was read at 532 nm and 600 nm using
a spectrophotometer and lipid peroxidation was calculated using an
extinction coefficient of 155 mM−1 cm−1.



Table 1
ANOVA output (F — ratios) displaying the effects of various organs of boneseed (O),
extraction media (M), drying condition (D) and centrifuging condition (C) on total
phenolics concentration.

Parameters Total phenolic concentration Sig.
(p value)

O F2, 96 = 7135.2*** .000
M F3, 96 = 2024.9*** .000
D F1, 96 = 3094.45*** .000
C F1, 96 = 1605.6*** .000
O × M F6, 96 = 90.84*** .000
O × D F2, 96 = 169.77*** .000
O × C F2, 96 = 63.77*** .000
M × D F3, 96 = 9.02*** .000
M × C F3, 96 = 125.68*** .000
D × C F1, 96 = 0.268 .606
O × M × D F6, 96 = 44.95*** .000
O × M × C F6, 96 = 21.79*** .000
O × D × C F2, 96 = 6.18** .003
M × D × C F3, 96 = 8.27*** .000
O × M × D × C F6, 96 = 7.61*** .000

***Strongly significant (p b 0.001). **Significant (p ≥ 0.001 to b 0.01). *Poorly significant
(p = 0.01 to ≤ 0.05), and blank means non-significant.
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2.8. Data analysis

Statistical analysis was conducted using IBM SPSS 21.0. All data are
presented as mean ± standard error (SE). Significant differences
between the means were determined at a 5% level of probability
(p ≤ 0.05) using independent T-test, one-way ANOVA followed by
post hoc Dunnett's test or two-way ANOVA followed by LSD based on
the structure of data set. Linear regression was adopted to express the
relationship between extract concentration and hypocotyl/radical
length of germinated species.

3. Results

3.1. Phenolics and physicochemical properties in boneseed extract

High concentrations of total phenolics were found in boneseed
organs but little in soil. The highest concentrations of phenolics were
measured from air dried, double centrifuged, acetone extracts of leaf
(96.86 mg/g), followed by root (74.39 mg/g) and stem (52.15 mg/g)
respectively. Leaf leachate, boneseed infested soil and outside
(boneseed unoccupied) soil contained total phenolics of 9.43, 3.04 and
0.03 mg/g, respectively. Acetone extracts contained 53, 52 and 41%
more phenolics compared with water, methanol and ethanol respec-
tively (Fig. 1). On average, air dried sample extracts contained 30%
more phenolics than the oven dried samples, and double centrifuged
processingmethod extracted 21%more phenolics comparedwith single
centrifuged (Fig. 1). pH (before adjustment), EC, osmotic potential and
chloride values for different concentrations (0.155 to 5%) of all extracts
and leaf leachate were 4.8 to 6.48, 0.06 to 3.22 ms cm−1, −0.02 to
−1.16 bar and 26–1013 ppm, respectively. ANOVA test indicated signif-
icant individual and interactive effects of boneseed organs, extracting
media and drying and centrifuging mechanisms on total phenolic
concentrations with the exception of the interactive effect of drying
and centrifuging methods which was not significant (Table 1).

3.2. Impact of aqueous extracts on germination of model and associated
species

There was a severe impact of extracts on I. axillaris even at very low
concentrations, with inhibition of TG by 100% in 5% concentration of all
extracts (Table 2). Additionally, TG of I. axillaris was inhibited by 0.155,
0.31, 0.62, 1.25 and 2.5% extracts of leaf (6.0, 41.7, 58.3, 90.5, 97.7%,
respectively), stem (3.6, 16.7, 34.5, 65.5, 86.9%, respectively) and root
(4.8, 33.3, 27.4, 77.4, 92.9%, respectively). SpG was inhibited by 18.6,
67.4, 77.5, 95.6, 99.2% (leaf extracts), 8.7, 42.8, 51.0, 73.0, 92.1% (stem
extracts), and 10.9, 52.1, 45.5, 85.1, 96.9% (root extracts) respectively,
along with inhibition of other germination parameters (Table 2). Leaf
extracts of 0.15 to 2.5% showed 5–54%, 15–39% and 7–8%, and 18–91%,
67
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Fig. 1. Total phenolic concentration in boneseed leaf, stem and root extracted using
different solvents, drying and centrifuging mechanisms.
0–15% and 0–2% more inhibition to hypocotyl and radical length of
I. axillaris compared with control, stem and root extracts, respectively,
with a similar impact onhypocotyl and radicalweight (Fig. 2). Boneseed
organ and extract concentrations had strongly significant impacts (p b

0.001) both individually and interactively on germination indices and
biometric parameters of I. axillaris (Table 3). Inhibition was found for
all measured parameters with the exception of hypocotyl length and
weightwith stem extract (0.155, 0.31 and 0.62%) that perversely caused
stimulation. Regression analyses showed that concentration of aqueous
extracts had a strong correlation with hypocotyl and radical length of
I. axillaris (R2 ranges from 0.97 to 0.72) (Fig. 3). I. axillaris was the
most susceptible among the tested species with an LC50 of 0.46%,
0.89% and 0.86% in response to leaf, stem and root extracts, respectively.
Similar to I. axillaris, all parameters were significantly affected in the
bioassay of A. mearnsii with the exception of a non-significant interac-
tive effect on CRG (Tables 2 & 3 and Fig. 4). Despite the observed inhibi-
tion to all parameters for all doses of leaf extract, 1.25% stem extract
stimulated TG, 2.5% stem extract stimulated hypocotyl and radical
length and radical weight, and 1.25% root extract stimulated SpG,
SpAG, CRG, hypocotyl length, and hypocotyl and radical weight
(Table 2 and Fig. 4).

The individual and interactive impact of boneseed organs and ex-
tract concentrations on germination indices and biometric parameters
of model species, L. sativa was significant with the exception of non-
significant interactive and individual (boneseed organs) impact on TG
(Table 3). 1.25% and 2.5% leaf extracts showed no inhibition of TG, but
it was inhibited by 5% leaf extract by 12, 7.6 and 4.3% respectively
when compared with control, stem extracts and root extracts
(Table 2). SpG was inhibited by 3.1, 10.1, 69.5% (1.25% leaf extract),
2.0, 8.2, 66.6% (2.5% leaf extract), and 1.2, 5.9, 63.7% (5% leaf extract)
when compared to control, stem extract and root extract, respectively,
along with similar impacts on SpAG and CRG (Table 2). 5% leaf extract
inhibited hypocotyl length by 30.0, 20.5 and 11% compared with con-
trol, stem extract and root extract, although 1.25 and 2.5% leaf extracts
showed stimulatory effects by 44.5 and 41.4%, and 13.8 and 35.2% com-
pared with control and root extracts (Fig. 5). However, they inhibited
hypocotyl length by 8.2 and 23.2% respectively compared with 1.25
and 2.5% stem extracts. Leaf extracts showed stronger inhibition to
radical length compared with control and other extracts. 1.25, 2.5 and
5% leaf extracts inhibited radical length by 79.8, 81.8, 86.3%, and 58.7,
23.3, 14.1%, and 53, 26.8, 4.8% compared with control, stem extracts
and root extracts (Fig. 5).



Table 2
Impact of boneseed aqueous extracts (dose response) on germination indices of model and associated species. Data presented as average ± SE.

Treatment L. sativa I. axillaris A. mearnsii

TG SpG SpAG CRG TG SpG SpAG CRG TG SpG SpAG CRG

Control 100 ± 0.00 24.8 ± 0.12 64.42 ± 0.24 24.96 ± 0.03 84 ± 2.83 2.98 ± 0.09 16.58 ± 0.45 9.51 ± 0.03 97.5 ± 2.5 1.18 ± 0.07 6.92 ± 0.51 8.22 ± 0.10

Leaf Extract
0.155% — — — — 79 ± 3 2.55 ± 0.10 13.49 ± 0.53 9.21 ± 0.03 — — — —

0.31% — — — — 49 ± 3.42 1.26 ± 0.08 5.40 ± 0.39 8.54 ± 0.09 — — — —

0.62% — — — — 35 ± 1.91 0.89 ± 0.06 3.72 ± 0.34 8.47 ± 0.07 — — — —

1.25% 99.2 ± 0.80 24 ± 0.12 62.7 ± 0.30 24.82 ± 0.06 8 ± 1.63 0.19 ± 0.04 0.73 ± 0.20 8.14 ± 0.08 80 ± 4.08 0.88 ± 0.06 4.84 ± 0.36 8.04 ± 0.09
2.5% 98.4 ± 0.98 22.28 ± 0.24 58.55 ± 0.62 24.37 ± 0.07 2 ± 1.15 0.04 ± 0.03 0.14 ± 0.08 7.56 ± 0.25 67.5 ± 2.50 0.67 ± 0.04 3.49 ± 0.29 7.75 ± 0.08
5% 88 ± 2.83 7.6 ± 0.29 23.82 ± 0.84 19.97 ± 0.06 0 – – – 50 ± 4.08 0.48 ± 0.03 2.36 ± 0.18 7.70 ± 0.11

Stem extract
0.155% — — — — 81 ± 1.91 2.78 ± 0.06 15.13 ± 0.31 9.40 ± 0.02 — — — —

0.31% — — — — 70 ± 2.58 1.99 ± 0.07 9.48 ± 0.31 8.84 ± 0.04 — — — —

0.62% — — — — 55 ± 1.91 1.63 ± 0.06 8.12 ± 0.34 8.95 ± 0.03 — — — —

1.25% 100 ± 00 24.5 ± 0.18 63.8 ± 0.79 24.89 ± 0.04 29 ± 1.91 0.88 ± 0.08 4.48 ± 0.50 9.02 ± 0.08 100 ± 0.00 1.18 ± 0.03 6.77 ± 0.27 8.22 ± 0.06
2.5% 99.2 ± 0.80 24.27 ± 0.25 63.20 ± 0.59 24.88 ± 0.04 11 ± 1.91 0.29 ± 0.05 1.31 ± 0.26 8.60 ± 0.18 92.5 ± 2.50 0.98 ± 0.02 5.36 ± 0.14 7.96 ± 0.04
5% 95.2 ± 1.5 22.65 ± 0.37 59.24 ± 0.88 24.71 ± 0.10 0 – – – 77.5 ± 2.50 0.82 ± 0.01 4.48 ± 0.11 7.96 ± 0.08

Root extract
0.155% — — — — 80 ± 2.83 2.73 ± 0.09 14.78 ± 0.47 9.40 ± 0.01 — — — —

0.31% — — — — 56 ± 1.63 1.63 ± 0.05 7.95 ± 0.30 8.89 ± 0.03 — — — —

0.62% — — — — 61 ± 1.91 1.81 ± 0.08 9.04 ± 0.48 8.94 ± 0.04 — — — —

1.25% 99.2 ± 0.8 24.3 ± 0.2 63.3 ± 0.48 24.9 ± 0.05 19 ± 1.91 0.53 ± 0.06 2.47 ± 0.30 8.76 ± 0.11 95 ± 2.89 1.22 ± 0.06 7.19 ± 0.47 8.40 ± 0.06
2.5% 98.4 ± 0.98 23.67 ± 0.32 61.63 ± 0.84 24.75 ± 0.07 6 ± 1.15 0.14 ± 0.03 0.52 ± 0.15 8.04 ± 0.15 80 ± 4.08 0.90 ± 0.08 5.04 ± 0.50 8.09 ± 0.10
5% 92 ± 2.53 20.85 ± 0.41 54.74 ± 1.05 24.4 ± 0.11 0 – – – 67.5 ± 2.50 0.69 ± 0.02 3.65 ± 0.15 7.82 ± 0.04

— Not investigated. – No germination occurred.
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Fig. 2. Effect of different concentrations of boneseed leaf (white), stem (light ash) and root
(deep ash) extracts on hypocotyl (upward) and radical (downward) length (plain) and
weight (dotted) on I. axillaris. Data presented as the percentage of control.
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3.3. Impact of leachate on germination of test species

Impact of leaf leachate onmodel and associated species was negligi-
ble compared with similar dose of aqueous extract derived from
boneseed leaves (Table 2 and Fig. 6). Inhibition of TG, SpG, SpAG, CRG,
hypocotyl length, hypocotyl weight, radical length and radical weight
of L. sativa and I. axillaris by leachate was 2, 7, 6, 2, 6, 19, 15 and 29%,
and 67, 57, 51, 15, 72, 71, 24 and 34% reduced (% of control) when com-
pared to impact of 2.5% aqueous extract respectively (Table 2 and Fig. 6).
Table 3
ANOVA output (F — ratios) displaying the effects of various organs of boneseed (O) and
extract concentration (C) on germination of I. axillaris, A. mearnsii and L. sativa.

Species Parameter O C O × C

I. axillaris TG F2, 54 = 44.86*** F5, 54 = 588.33*** F10, 54 = 7.88***
SpG F2, 54 = 63.97*** F5, 54 = 791.38*** F10, 54 = 8.78***
SpAG F2, 54 = 74*** F5, 54 = 868.72*** F10, 54 = 9.75***
CRG F2, 54 = 104.03*** F5, 54 = 130.88*** F10, 54 = 46.35***
HL F2, 54 = 286.41*** F5, 54 = 284.62*** F10, 54 = 18.17***
HW F2, 54 = 94.15*** F5, 54 = 90.49*** F10, 54 = 6.89***
RL F2, 54 = 223.48*** F5, 54 = 4898*** F10, 54 = 38.64***
RW F2, 54 = 24.56*** F5, 54 = 736.53*** F10, 54 = 5.81***

A.mearnsi-
i

TG F2, 36 = 39.37*** F3, 36 = 72.55*** F6, 36 = 4.84**
SpG F2, 36 = 24.61*** F3, 36 = 60.93*** F6, 36 = 3.27*
SpAG F2, 36 = 19.43*** F3, 36 = 54.04*** F6, 36 = 2.75*
CRG F2, 36 = 6.78** F3, 36 = 17.51*** F6, 36 = 1.50
HL F2, 36 = 40.67*** F3, 36 = 123.78*** F6, 36 = 12.68***
HW F2, 36 = 32.15*** F3, 36 = 105.69*** F6, 36 = 4.75**
RL F2, 36 = 61.71*** F3, 36 = 699.57*** F6, 36 = 35.84***
RW F2, 36 = 115.38*** F3, 36 = 407.92*** F6, 36 = 63.10***

L. sativa TG F2, 48 = 2.84 F3, 48 = 26.21*** F6, 48 = 14.31
SpG F2, 48 = 365.53*** F3, 48 = 639.35*** F6, 48 = 252.04***
SpAG F2, 48 = 315.37*** F3, 48 = 573.37*** F6, 48 = 219.31***
CRG F2, 48 = 540.21*** F3, 48 = 617.92*** F6, 48 = 408.56***
HL F2, 48 = 211.19*** F3, 48 = 720.15*** F6, 48 = 76.97***
HW F2, 48 = 105.6*** F3, 48 = 342.6*** F6, 48 = 29.67***
RL F2, 48 = 73.36*** F3, 48 = 3506*** F6, 48 = 38.28***
RW F2, 48 = 11.04*** F3, 48 = 1335*** F6, 48 = 6.75***

*** strongly significant, ** significant, * poorly significant, and blankmeans non-significant.
HL = hypocotyl length, RL = radical length, HW = hypocotyl weight, RW = radical
weight.
Independent T-test (2-tailed) showed that the mean differences of
control and treatment were significant for all parameters of both
model and associated species (p b 0.001) while the germination indices
of L. sativawere not significantly affected.
3.4. Effect on seed imbibition

The water uptake by L. sativa seeds was decreased with increasing
concentration of aqueous extracts, with the greatest impact caused by
leaf extracts. Initial seed imbibition was identical for both extracts and
control, however, at 4, 8 and 24 h incubation in leaf extracts of 1.25 to
5% water uptake was reduced by 3.9–10.4%, 3.9–10.3%, 8.0–22.0%
(compared to control), 1.5–1.4%, 2.1–1.3%, 2.9–4.1% (compared to
stem extracts) and 0.3–1.2%, 1.3–1.7%, 1.4–5.6% (compared to root
extracts), respectively (Fig. 7). The greatest differences in water uptake
(%) compared to previousmeasurements were observed at 4 h with 65,
62, 60 and 58% for control, 1.25, 2.5 and 5% of all extracts respectively.
The water uptake rates were gradually reduced after 4 h. Finally, after
24 h L. sativa seeds gained 95% of the fresh weight for control, while
5% leaf extract gained 74%. The effects of boneseed organs, extract
concentrations and time on water uptake of L. sativa were strongly
Fig. 4. Effect of different concentrations of boneseed leaf (white), stem (light ash) and root
(deep ash) extracts on hypocotyl (upward) and radical (downward) length (plain) and
weight (dotted) on A. mearnsii. Data presented as the percentage of control.

image of Fig.�3


Table 4
ANNOVAoutput (F— ratios) displaying the effects of various organs of boneseed (O), extract concentrations (C) and time (T) on (a) seed imbibition and total non-structural carbohydrate
content, and (b) H2O2, electrolyte leakage and lipid peroxidation of L. sativa.

4a

Parameter O C T O × C O × T C × T O × C × T

SI F2, 96 = 23.85*** F3, 96 = 726.16*** F3, 96 = 84,498*** F6, 96 = 3.62** F6, 96 = 7.29*** F9, 96 = 164.97*** F18, 96 = 1.46
TNC F2, 96 = 35.47*** F3, 96 = 796.92*** F3, 96 = 3764.3*** F6, 96 = 13.75*** F6, 96 = 6.38*** F9, 96 = 175.68*** F18, 96 = 1.8*

4b

Parameter O C O × C

H2O2 F2, 24 = 153.6*** F3, 24 = 289.62*** F6, 24 = 17.87***
EL F2, 24 = 74.82*** F3, 24 = 632.25*** F6, 24 = 13.82***
LPO F2, 24 = 90.87*** F3, 24 = 98.66*** F6, 24 = 11.3***

*** strongly significant, ** significant, * poorly significant, and blank means non-significant.
SI = seed imbibition, TNC = total non-structural carbohydrate, EL = electrolyte leakage, LPO = lipid peroxidation.
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significant with the exception of non-significant interactive effect of all
components (Table 4a).
3.5. Effect on seed reserve mobilization

TNCmetabolism in L. sativa seeds exposed to dH2Owere 13, 28.3 and
36.8% at hours 4, 8 and 24 respectively compared with initial (0 h)
(Fig. 8). The TNC metabolism was decreased incrementally with in-
creasing extract concentrations. The rate of TNC metabolism for 1.25
to 5% leaf extracts was 9.5–2.1%, 21.2–5.4% and 31.0–11.2% respectively
at hours 4, 8 and 24. The usage of TNC for stem extracts was 5.1–1.3%,
7–2.3% and 7.6–2.4% more than the leaf extracts respectively, while
root extracts showed impacts in between leaf and stem extracts.
Highest differences in TNC metabolism (%) occurred during 4 to 8 h
for control and 1.25% extracts (all organs), while it occurred during
8 to 24 h for 2.5 and 5% of all organs extracts. ANOVA test showed all
individual and interactive significant effects of organs, extract concen-
trations and time on carbohydrate metabolisms (Table 4a).
Fig. 5. Effect of different concentrations of boneseed leaf (white), stem (light ash) and root
(deep ash) extracts on hypocotyl (upward) and radical (downward) length (plain) and
weight (dotted) on L. sativa. Data presented as the percentage of control.
3.6. Oxidative stress evaluation

All extracts produced increased H2O2 levels in L. sativa seedlings
compared with control, and consequently, the electrolyte leakage and
lipid peroxidation were also increased, concomitantly with increasing
extract concentrations (Fig. 9). H2O2 concentrations in L. sativa seed-
lings were increased by 294, 171 and 152% when treated with 1.25%
leaf extract compared to the control and the same concentrations of
stem and root extracts, respectively (Fig. 9). These values were 350,
167 and 158% for 2.5% leaf extract and 403, 157 and 152% for 5% leaf ex-
tracts, respectively. 1.25% to 5% leaf extracts stimulated electrolyte leak-
age by 213–299%, 112–130% and 113–129% when compared to the
control, stem extracts and root extracts, respectively. Similar compari-
sons showed 159–236, 152–149 and 148–147% stimulation for lipid
peroxidation, respectively (Fig. 9). The effects on all three parameters
by different concentrations of leaf, stem and root extracts were found
to be highly significant (p b 0.001) both for individual and interactive
impacts (Table 4b).
4. Discussion

Our study demonstrated that boneseed aqueous extracts and leach-
ate negatively affected germination indices, biometric, physiological
and biochemical parameters of both a model species and two native
species. The impact of boneseed aqueous extracts on I. axillaris, even
at very low concentrations suggests that allelopathy is likely involved
in the invasion processes of boneseed. However, the high level of os-
motic potential observed in more concentrated extracts might contrib-
ute to the phytotoxic impact (Anderson and Loucks, 1966; Robinson
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et al., 2006). The evidence of high concentration of total phenolics
in boneseed in the order of leaf N root N stem N leachate N infested soil
N outside soil when compared to other allelopathic species (Rashid
et al., 2010; Uddin et al., 2012) indicates the potential of boneseed alle-
lopathy. With the exception of an earlier study that partially addressed
this issue (Xu and Chang, 2007), our investigation into the impact of
drying and centrifuging methods in conjunction with the use of differ-
ent extraction solvents on total phenolic concentration are novel in alle-
lopathy research. Acetone extracts were found to contain more
phenolics than ethanol, methanol and water extracts, in agreement
with the study of Ens et al. (2009b). This methodological approach of
extracting phenolics might contribute in identifying individual pheno-
lics through high performance liquid chromatography (HPLC), essential
for ecological, herbicidal and medicinal perspectives of allelopathic
research.

Leachate exhibited less effect compared with aqueous extract, and
overall, leaf extract impacted more than the other organ's extracts on
both model and associated species similar to the findings for other alle-
lopathic species (Dorning and Cipollini, 2006; Uddin et al., 2012). Al-
though the current study didn't specifically identify active components
in boneseed tissue, the identification of several allelochemicals in bitou
bush and infested soils gives some notion of allelochemicals being active
components in boneseed (Ens et al., 2009a). Speed of germination has
been generally considered as the key indicator among germination
indices in allelopathic studies (Chiapusio et al., 1997). In this study, the
SpG, particularly for L. sativa, was significantly affected even though
other indices had negligible change compared with control. Dorning
and Cipollini (2006) found that number of seed germinations decrease
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with increasing extract concentrations, similar to the results of our
dose response study. We found stronger impact on both radical length
and weight compared with hypocotyl for all model and associated spe-
cies which is similar to the other allelopathic studies (Kobayashi et al.,
2008). Aqueous extracts of some doses exhibited stimulatory effects on
hypocotyls, which is not completely unexpected as allelochemicals at
low concentrations have been found to be stimulatory in other reports
(Chon and Kim, 2002; Tefera, 2002). Our findings suggested species-
specific and varied seed size impacts of aqueous extracts which are
similar to the literature (Al-Khatib et al., 1997; Ens et al., 2009b).

The decreasing water uptake by L. sativa seeds with increasing
concentration of aqueous extracts might suggest the impact of
boneseed allelopathy on seed imbibition, the leading factor in delaying
or decreasing germination of test plants. This is in agreement to reports
in the literature (Chon et al., 2004) that suggested the inhibition of
water uptake by allelopathic species. The delay and decrease in water
uptake observed in the L. sativa seeds in response to aqueous extracts
of boneseed, may significantly impact metabolism and initiation of ger-
mination (Bewley, 1997). We found that TNC metabolism at all of the
investigated time points was reduced with increasing concentration of
extracts, with more impact shown by leaf, in agreement with other
studies (Singh et al., 2009). In stressed condition like drought, salinity,
nutrient and oxygen scarcity and presence of toxins, seed carbohydrate
metabolism is decreased that may adversely affect cellular respiration
and germination processes (Fritz and Braun, 2006) threatening the
plant species growing favorably in that area (Guglielminetti et al.,
1995).

In favorable conditions, ROS production in plant species is optimal
that drastically increases during stressed condition and create oxidative
stress. Hydrogen peroxide as a potential species of ROS enhances elec-
trolyte leakage and lipid peroxidation, damages macromolecules like
protein, nucleic acids, etc., and has been identified as a mechanism of
action of allelochemicals (Batish et al., 2006; Weir et al., 2004). In our
findings, boneseed aqueous extracts led to increasing H2O2 and resulted
electrolyte leakage and lipid peroxidation that correlates with the
phenolic content of the organs (leaf N root N stem) and germination im-
pacts that clearly suggest themechanism of allelopathic impact through
excessive ROS production. However, investigating the impacts of
boneseed volatile matters on test species physiology is imperative as
the volatiles contribute significantly in the plants’ invasion processes
(Halligan, 1976). Experiments with lower concentrations of aqueous
extracts to observe the impact on physiology could dissect out the
allelopathic impacts from other extraneous effects, particularly
osmotic potential that has been identified in our earlier study (Uddin
et al., 2013). ROS may also influence the mobilization of seed reserve
(Gomes and Garcia, 2013), a novel finding that supports our study of
the increase in ROS and TNC with increasing extract concentrations.
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The study suggests that allelopathy might be involved in invasion
processes of boneseed, as impacted on other plants (Callaway and
Aschehoug, 2000; Inderjit and Dakshini, 1994) along with other mech-
anisms suggested for boneseed propagation like high seed production,
post-fire regeneration capacity, absence of natural enemies and com-
petitive capacity (Parsons, 1973; Rudman, 2001; Thorp and Lynch,
2000; Weiss et al., 1998). These combined impacts have led to predic-
tions that boneseed and bitou bush may invade more than 15% of
Australia in the near future (Weiss et al., 2008). These findings comple-
ment the study conducted by Ens et al. (2009b) who suggested the
community composition changing due to the allelopathy of bitou
bush. Although our findings indicate allelopathic potential of boneseed,
field evidence is imperative to demonstrate allelopathic impact more
authentically as edaphic and environmental factors work together in
influencing allelopathic effect (Inderjit and Duke, 2003). We started
with this work to assess whether allelopathy in boneseed may be one
of the important mechanisms in its invasion processes, however, a de-
tailed study on volatile impact, root exudation, litter decomposition,
etc. might be imperative along with identification of individual
allelochemicals in boneseed to advance the study on allelopathy as
one of its invasion mechanisms.

This preliminary study helps to explain the boneseed allelopathy,
one of the potential invasion mechanisms and emphasize the impor-
tance of mitigating the effects of allelopathy by boneseed to protect
native species and crop species.
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