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ABSTRACT 

As queries grow increasingly complex and large data sets are becoming prevalent, 
database sizes grow dramatically particularly in Decision Support Systems (DSS) , and On
Line Analytic Processing Systems ( OIAP) which have recently emerged as important 
database applications. In these systems, performance is a critical issue and speeding up the 
system has always been an objective but the processing power of individual processors 
can only handle a small fraction of current applications. As a result, parallel processing is 
exploited to improve database systems performance. In the thesis we focus on relational 
database systems and study skew characteristics and their effects on parallel query 
processing. 

A unique problem of parallelism is load imbalance that occurs when the processors have 
different workloads resulted from data partitioning. The main cause of load imbalance is 
the problem of data skew that takes place when the appearance of some attribute values is 
more frequent than others in the raw input relation. The study of skewness can be 
classified into empirical skew handling and theoretical skew prediction. The latter has 
been largely neglected in comparison with the former. This thesis establishes a systematic 
skew foundation which we believe provides for the first time an in depth theoretical 
investigation of skewness in parallel database systems. It consists of a skew taxonomy 
which furnishes a fundamental framework for studying the skew problem, and skew 
prediction models which are able to reinforce and unify the different elements of the skew 
taxonomy. Skew prediction of range partitioning is quantitatively described. A complete 
skew prediction model of hash partitioning is also provided to predict the load and 
operation skew, where the degree of data skew is represented by the Uniform Distribution , 
Zipf Distribution, and Normal Distribution families . The relationship between the various 
kinds of skewness is expressed in a closed form. The mean, maximum, and minimum load 
skew as well as the standard deviation of the mean load and their distribution functions 
are provided. The skew models are evaluated by both a detailed simulation study and an 
experimental implementation on a parallel client-server system, and the results exhibit 
close agreement with the predicted values. In addition, an analysis of the relationship 
among data skew, load skew, and operation skew of hash partitioning is provided, and the 
applications of the skew models are indicated. 

Another unique problem in parallel relational query processing is concerned with resource 
allocation, and in the thesis we focus on the resources and processors, in a shared-nothing 
environment. Processor allocation deals with efficient allocating processors to operations 
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in such a way that the query execution time is minimised. The problem of data skew has 
been recognised as one of the main obstacles in preventing maximum speedup in parallel 
query execution. Although techniques of skew handling have received considerable 
attention in recent years, most of them are devoted to solving or avoiding data skew for 
single binary relational operation such as join (intra-operation level only) . Here, we study 
the effect of data skew on the parallel execution of queries (intra-query and inter-query 
levels) that may involve a number of queries requiring multiple operations. Since 
allocating a large number of processors to a single relational operation does not always 
improve the overall execution time significantly in the presence of data skew, our 
approach is to identify the skewed operations and group them with other operations in 
each execution phase, so that the performance degradation caused by the skewness is kept 
to a minimal level. Both unary and binary operations cost models are provided with the 
data skew factor modelled by the Zipf Distribution. Three processor allocation strategies 
are presented and their performances are evaluated and compared. 

Parallelising aggregate functions often involves queries of more than one relation, so that 
performance improvement can be achieved in both the intra-operation and inter-operation 
parallelism level. Carrying out join before aggregation is the conventional way for 
processing aggregate functions in uniprocessor systems, and parallel processing of 
aggregate functions has received little attention. In this thesis, the effects of the sequence 
of aggregation and join operations are identified in a parallel processing environment. 
Three parallel methods of processing aggregate functions for general queries are presented 
which differ in their selection of partitioning attribute; JPM partitions on join attribute, 
APM fragments on group-by attribute, and HPM adaptively partitions on both join and 
group-by attribute with a logical hybrid architecture. Their cost models are provided 
which incorporate the effect of data skew. 

Depending on the size of the search space, processor allocation can be divided into phase
based approach and non phase-based approach. A formal classification of the two 
approaches is presented and the concepts of the optimal degree of parallelism for each 
operation and query are introduced. A complete query execution model is developed by 
incorporating the effects of skew and parallel processing overheads; the optimal time for 
each operation and query and the time equalisation principle are presented. To provide 
efficient query processing, three intra-query algorithms are developed; one is a phase
based approach, one is non-phase-based approach, and the other is a hybrid method. The 
hybrid method guarantees to provide a global optimal solution with a sufficient number of 
processors and a local phase optimisation is performed when the number of processors is 
insufficient. Furthermore, we present a new inter-query processor allocation algorithm 
aiming at enhancing the performance of multiple dependent queries by making use of 
activity analysis , resource scheduling, resource leveling, and decompression techniques. 
A comprehensive performance study on processor allocation algorithms for both intra
query and inter-query parallelism levels is conducted. In simulation at the intra-query 
level, five algorithms are implemented and a large number of queries are selected from 
five different query groups varying the number of joins and relation cardinality; at the 
inter-query level , three algorithms and two types of query dependency logic are 
implemented. The results are able to confirm that the new algorithms are superior to the 
existing methods. 
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Introduction 

CHAPTER 1 

INTRODUCTION 

1.1 Statement of the Problem 
1.2 Summary of Main Results 
1. 3 Outline of the Thesis 

1.1 Statement of the Problem 

Parallelism has been proved to be effective in improving system performance in relational 

databases. The push comes from both application and technology. From the application 

points of view, queries are growing large and complex; large data sets are common, and 

more importantly, many relational operations are naturally independent. From the 

technology points of view, processors are achieving rapid improvement while the 

hardware, software and communication network are continually being enhanced. 

Therefore, the inexpensive processors may be connected to form a network in order to 

share the huge workload of incoming queries. As a result, we have a parallel database 

system where a high performance and high availability database server running on a 

multiple processors architecture is available at a low price [DeWi92a, Moha94, Vald93, 

Pira90, Hasa95]. 

Due to the increasing complexity in database applications such as scientific computing or 

engineering and decision support systems, load balancing over multiple processors is 

Page 1 



Introduction 

playing an important role in such systems. Ideally, load balancing is done by evenly 

distributing the load into the available processors, and thus if it is perfectly done, the 

system throughput will improve by a factor equal to the number of parallel processors. 

However, this is hard to achieve because of extra overheads induced by adding processors, 

and more importantly the presence of skew [Laks90, Walt91, Hua91, Kell91, DeWi92b, 

Wolf93a, Wolf93b] which resulted from workload partitioning. In real databases, certain 

values (normally, non-primary key values) for a given attribute occur more frequently than 

others. The above non-uniformity distribution of tuples and key values gives rise to skew. 

In the presence of skew, an unbiased partitioning strategy (range partitioning or hash 

partitioning) will result in load imbalance. This worsens the response time of the 

algorithms since other processors have to wait for the heavily loaded processor(s) to 

complete. In extreme cases, one processor is doing all the work, while other processors 

are waiting idle with wasted CPU cycles. Hence, the system performance is even worse 

than that of uniprocessor because of communication overheads or network contentions 

associated with initiating and terminating a query on multiple processors. 

In uniprocessor database systems, query processing has been an active research area for 

sometime since multiple queries with multiple operations introduce a number of 

optimisation options [Ioan95, Ioan91, Cope88, Jark84, Kim82J; in parallel database 

systems, the situation on query processing has been further complicated by multiple 

processors [Hasa95, Hasa94, Hong92, Hong93]. The unique problem in a parallel system 

is resource allocation because there are resources privately owned by each processing 

unit. Public resources do not have problem on allocation, but they do give rise to 

contention problem. There are three basic system architectures for parallel databases, 

namely, shared everything, shared nothing, and shared disk systems. In this thesis, a 

shared nothing architecture is adopted for query processing because of its scalability and 

cost efficiency. In such a system, resources such as processor, memory, and disk are all 

distributed over the network. When queries come in, how to allocate resources efficiently 

and effectively in particular in the presence of data skew so that the query can be finished 

in less time, is a crucial problem. 

1.2 Summary of Main Results 

This thesis concentrates on skewness and the work can be summarised in two parts; skew 

characteristics and skew effects on query processing (see Figure 1.1). To achieve the 

Page 2 



Introduction 

objective on load balancing, avoiding skew and allocating resource 1 must be carried out 

carefully. With the task of skew avoidance, all existing works are concerned with practical 

skew handling algorithms. In this thesis, we investigate the skew characteristics and 

establish a skew foundation formed by a skew taxonomy and a complete skew model. 

With the task of processor allocation in query processing, we focus on the situation in the 

presence of data skew. Several processor allocation algorithms are developed to achieve 

global optimised query execution time and to minimise the skew effect. Parallel 

processing methods of aggregate functions are also developed. 
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Figure 1.1: Thesis Overview 

To sum up, the contributions of this thesis are as follows: 

1 In this thesis, we only consider one kind of resource, i.e. processor. 
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• Provides for the first time a theoretical study of skewness in parallel 

database systems in depth; a conceptual framework of skew is presented and 

a skew taxonomy is developed with three kinds of skewness, namely, data 

skew, load skew, and operation skew identified; load skew is further 

distinguished into 110 load skew, operation load skew, and result load skew; 

all skewness are quantitatively analysed and their expressions are provided; 

performance bounds on best and worst case behaviour are also presented. 

• Provides a skew prediction model based on range partitioning. 

• Provides a systematic skew foundation analytical model of hash 

partitioning based on extreme value distribution properties; the relationship 

between data skew and load skew is expressed in a closed form; the mean, 

maximum, minimum load skew as well as the standard deviation of the mean 

load and their distribution functions are provided. 

• Applies the skew foundation analytical model of hash partitioning to 

study the degree of data skew represented by the Zipf Distribution and 

Normal Distribution families; provides an analysis of the relationship among 

data skew, load skew, and operation skew. 

• Using skew taxonomy and analysis, provides a unified framework for 

studying the skew problem in load balancing, i.e. it establishes a relationship 

among the different elements of the skew taxonomy; allowing different skew 

handling algorithms to be compared, and also provides a theoretical 

background of the entire load balancing problem. 

• Investigates the parallel processing of aggregate functions which is 

increasingly important in data warehousing and mining for decision support 

applications, and studies the important issues associated with it such as 

selection of partition attribute, sequence of aggregation and join operation. 

• Develops parallel methods for the processing aggregate functions for 

general queries; their cost models are presented, and the performance of these 
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methods are studied. 

• Develops a new processor allocation algorithm aiming at minimising 

the skew effect exploiting not only inter-operator parallelism but also intra

operator parallelism; quantifies the Skew Principle whereby allocating a large 

number of processors to a single operation does not improve its execution 

time. 

• Provides a complete parallel query execution model incorporating the 

parallel processing overheads and the load imbalance in massive parallel 

systems; the concepts of optimal degree of parallelism and optimal time for 

operations, and time equalisation are introduced; the optimal query time and 

processor bounds are presented. 

• Develops new intra-query processor allocation algorithms: phase

based, non phase-based, and the hybrid methods; the hybrid method 

guarantees to provide a global optimal solution with a large number of 

processors, and provides a local phase optimal solution where the number of 

processors is insufficient. 

• Develops a new inter-query processor allocation algorithm aiming at 

enhancing the performance of multiple dependent queries by making use of 

activity analysis, resource scheduling, resource leveling, and decompression 

techniques. 

• Presents a comprehensive performance study of processor allocation 

algorithms in both intra-query and inter-query parallelism levels. In the 

simulation at intra-query level, five algorithms are implemented; in the 

simulation at inter-query level, three algorithms and two kinds of queries 

dependency logic are implemented. 

• Implements the parallel relational database processing and the skew 

models on a parallel client-server shared everything system; the server is a 

DEC Alpha 2100 system and the operating system is Digital UNIX with Sl\1P 

and processor affinity; the test database is generated using the synthetic 
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methods and is stored in RAID; the inter-processor communication is 

implemented as the piped data channel by the writer and reader process; to 

achieve mutual exclusion, spin locks of master-slave style are selected and 

implemented as the multiple processor concurrency control mechanism. 

1.3 Outline of the Thesis 

Figure 1.1 shows an overview on thesis which can be grouped into two areas, skew 

characteristics, and skew effects on parallel relational query processing. The rest of this 

thesis is organised as follows. 

Chapter 2 presents a survey on background information and topics which include parallel 

relational database, parallel vs. distributed DBMS, pyramid of parallel database 

processing, data partitioning, data processing, and parallel performance modelling. 

Chapter 3 presents the skew taxonomy and analysis, and it also discusses performance 

degradation caused by skew. Chapters 4 and 5 provide the skew model. Using range 

partitioning, the prediction on the degree of load imbalance is provided in Chapter 4. 

Then, the chapter introduces the foundation model of hash partitioning and an urn model 

description. Chapter 5 describes the extension model of hash partitioning and it also 

presents an analysis on data skew, load skew, and operation skew. Finally, we conclude 

the skew modelling with a discussion of its usage. 

Chapter 6 describes the system architecture for parallel query processing, the parallel 

query execution model, and processor allocation method to reduce skew effect. Chapter 7 

introduces issues on the parallel processing of aggregate functions and presents three 

parallel methods followed by a sensitivity analysis. Chapter 8 introduces a complete 

model of parallelism with parallel processing overheads, communication delay, and 

optimal degree of parallelism. It presents three intra-query processor allocation algorithms 

together with query examples. Furthermore, the inter-query processing issues are 

discussed and a new decompression algorithm is presented for handling multiple 

dependent queries. 

Chapter 9 implements five intra-query and three inter-query processor allocation 

algorithms using simulation. The simulation model is described first, followed by the 
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experimental results, and the chapter is concluded with a discussion on processor 

allocation. Chapter 10 describes the implementation on a shared memory parallel system, 

DEC Alpha 2100, and the associated results. 

Chapter 11 contains the thesis conclusions where a summary of the thesis and its 

contributions are provided. 
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CHAPTER2 

BACKGROUND AND RELATIONSHIP WITH 

OTHER WORK 

2. 1 Parallel Relational Database 
2.1 .1 Motivation 
2.1 . 2 Relational databases 
2.1.3 Forms of parallelism 
2.1.4 Parallel database system architecture 
2.1.5 Parallel vs. Distributed DBMS 

2. 2 Pyramid of Parallel Relational Query Processing 
2.3 Data Partitioning and Data Skew 

2.3.1 Data partitioning methods 
2. 3. 2 Data skew and load balancing 

2.4 Data Processing and Skew Handling 
2.4.1 Skew handling 
2.4.2 Parallel join 
2.4.3 Parallel query processing 

2.5 Parallel Performance Modelling 
2.5.1 Parallel computation model 
2.5 .2 Parallel join and load balancing 
2.5.3 Skewed distributions 

2.6 Summary 

2.1 Parallel Relational Databases 

In this Chapter, we describe the thesis background in Sections 2.1 and 2. 2, and then we 

review the related work in Sections 2.3, 2.4, and 2.5. The mechanisms described in the 

Page 8 



Background and Relationship with Other Work 

thesis are intended to work in an environment where a high performance and high 

availability relational database server is available at a low price with a multiple processors 

architecture, i.e. parallel relational database systems [Vald93]. The main focus is on the 

skewness and we shall emphasise skew characteristics and skew effects throughout this 

thesis. In the first part of this Chapter, we discuss why parallelism is chosen to improve the 

performance of relational database, and then present the relationship between parallel and 

distributed database systems. To clarify parallel relational query processing, we introduce a 

database processing pyramid in Section 2.2 which shows the boundary and the position of 

the thesis in the overall picture of parallel relational query processing. 

There are two main categories associated with the related work on parallel relational query 

processing: data partitioning and data processing. As we are also interested in the analytical 

modelling for skew prediction, a separate section on performance modelling is also 

presented and reviews the theoretical treatment of parallelism in the literature. 

2.1.1 Motivation 

The parallel wave of computing has emerged since not only the applications are getting 

complex as in Decision Support Systems, Image Database Systems and Multi-media 

applications, but also both the processors and the network technology have improved 

dramatically. Parallelism has been used in both the hardware and the software levels 

[Lewi92, Alma94, Casa96, DeWi92a, Vald93, Kuma94]. The former development is more 

mature than that of the latter, and in the software level parallelisation may be applied to 

either data or programs. It is generally considered that the parallelisation of data offers 

much greater scope for concurrent operation than the parallelisation of control, since for a 

large data file, the degree of parallelism through horizontal table fragmentation can be 

orders of magnitude higher than that for control parallelisation. In addition, the codes for 

control parallelisation can be significantly more complex than the corresponding serial 

codes [Thin93]. Due to the relative ease and benefits of data parallelisation, database 

systems have become important targets for parallel processing. In addition, the demand for 

increasingly complex and flexible queries contributes to the adoption of high-performance 

platforms for database processing. 
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2.1.2 Relational Databases 

The most commercialised and widely accepted database up to now is the relational database 

where data is stored in tables containing rows and columns. The relationship between these 

tables is implicitly defined via the relationship between the common attributes in both 

tables. A common way to construct the relationship between tables is to use the primary key 

of one table as a foreign key of another table. Only when we want to assess the data in 

multiple tables according to the query, we use SQL to create the relationship between tables 

and establish the navigation of the database for that relationship. [Codd70, Codd90] 

discussed a set of relational rules for a database to be considered as truly relational. 

Although there are a number of relational database products such as DB2 and SQL/DS 

from IBM, PDQ from Honeywell, INGRES from Relational Technology, dBASE from 

Ashton-Tate (now owned by Borland), R:BASE from MicroRIM, INFORMIX from 

Relational Database Systems, ORACLE from ORACLE running on different hardware 

platforms, none of the existing relational databases meets all of Codd' s criteria. 

Being the most widely used database, relational database has its strengths. It offers data 

independence so that modifying relational tables does not require changing application 

programs and the addition of new data to the data model rarely demands restructuring of the 

tables; it offers simplicity and flexibility since the relational database is easy to describe 

and both users and designers are familiar with the concept of tables; it offers constraints 

specification so that business rules can be interpreted into constraints and implemented into 

the system, e.g. entity integrity and referential integrity; it is equipped with 4GL, i.e. SQL 

so that database navigation is hidden from the programmers and the details of the access 

paths are taken care of by the SQL optimiser; it has a solid mathematical foundation 

because the concept of relation is borrowed from mathematics and some of the mathematical 

optimisation theories may be applied in the query optimiser to improve performance2 

[Date95 , Elma94, Codd90]. 

Relational database is set-oriented and relational operators are independent, and thus data 

may be partitioned over multiple processors and processed in parallel. Ideally, the 

partitioning could be done in such a way that the workloads of the processors are balanced, 

2 That is also the reason why relational query optimisation has been an active research area for 
decades. 
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i.e., the processors are allocated equal sized data fragments, in which case the speed-up of 

query execution can be made to be approximately linearly proportional to the number of 

processors. 

2.1.3 Forms of Parallelism 

The parallelisation of a single query processing can be conducted at intra-operation level, 

inter-operation level or a way that combines both. The intra-operation parallelism attempts 

to, one at a time, distribute the load of each single relational operation involved in the query 

onto all processors and thus perform the operation in parallel; by comparison, the inter

operation parallelism aims at parallelising the operations of the query and allocating them 

to different processors for execution [DeWi92]. In addition, an important issue is how to 

schedule the multiple queries in processor allocation with each of the queries consisting of 

multiple relational operations. The result of exploiting parallelism in this upper level is 

inter-query parallelism. 

2.1.4 Parallel Database System Architecture 

Memory, disk and processor are the three most important resources in parallel database 

systems and thus the way in which they interact critically affects parallel processing. Up to 

now, the architecture can be classified into four categories, shared nothing, shared 

everything, shared disk and the hybrid approach. 

Figure 2.1 shows three common architectures of parallel systems. In a shared nothing 

system (SN), none of the three resources is shared among the processing elements. Each 

processor has its own dedicated disk and private memory, and processors communicate 

through an interconnection network. Examples of this architecture are Volcano [Grae90] , 

Gamma [DeWi90], Bubba [Bora90] , EDS ESPRIT project: EDBS, TANDEM: NONSTOP 

SQL (Englert, 1989), Teradata DBC/1012 (Teradata 83 , 85) [Page92] . In a shared 

everything system (SE) , all disks and memory are public properties and shared by all 

candidate processors. The stored data are equally accessible from all tightly-coupled 

processors. Examples of this architecture are DB2 or ORACLE ported on classical 

multiprocessor mainframes (e.g. IBM), and ORACLE, INGRES or SYBASE on UNIX 

based multiprocessor (e.g. ENCORE). In a shared disk system (SD) , each processor can 
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directly access any disks, but each processor has its own private memory (data sharing). 

Examples of this architecture are ORACLE on NCUBE, ORACLE on VAX CLUS1ER, 

and IMSNS data sharing product. 

Interconnection 
Network 

Shared Nothing 

0 -- processor 

Interconnection 
Network 

Shared Disk 

E=:J -- disk 

Interconnection 
Network 

Shared Everythillg 

D -- memory 

Figure 2.1: Shared Nothing, Shared Disk, and Shared Everything Architectures 

A hybrid architecture can be a mixture of the above mentioned architecture types. One of 

the Hybrid architectures used in the Super Database Computer (SDC) under development at 

University of Tokyo is hybrid of tightly coupled multiprocessor (SE) and the message

passing architecture (SN) [Kits90, Kits92]. The SDC consists of several processing 

modules connected to each other through the message-passing interconnection network. In 

order to realise on the fly processing of the data stream from disk, each processing module 

itself is designed as a tightly coupled multiprocessor system which has considerable 

computational power. Another hybrid architecture is to have several SE systems as nodes 

of a SD system. The disks may be shared logically and distributed physically or they may 

be physically shared [Berg93, Rahm93, Hua90]. 

To summarise the fundamental features of the above architectures in parallel database 

systems, SE provides the low communication overheads and less load imbalance effect, SD 

supports good load balancing, SN takes the advantage of cheap hardware and provides the 

excellent scalability. SD is a compromise between SN and SE, and the hybrid architecture is 

another compromise among SN, SE, and SD. 
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2.1.5 Parallel vs Distributed DBMS 

A database management system (DBMS) is a software package developed to access, 

manipulate, and manage the data in a database efficiently. A distributed database is a 

collection of multiple, logically interrelated databases distributed over networks [Ozsu91]. 

A parallel computer is a distributed system consisting of a number of nodes connected by a 

high speed network within a cabinet and each node comprises several components such as 

processor, memory and disk. The difference between a loosely coupled parallel system and 

a distributed system is conceptually small, but there are still a number of identifying 

characteristics. 

The communication time in two systems are different. In distributed systems, it may involve 

a wide area network so that the time of data transmission becomes a dominant factor of the 

total time. In comparison, parallel systems mainly use local area networks where the ratio 

of data communication time to processing time is low. 

There are only a small number of processors in a distributed system and the database is 

fragmented or replicated over the sites. The heterogeneity of both the software and 

hardware are obvious among the sites, e.g. one site may use ORACLE on UNIX and the 

other site uses DB2 on VMS. In contrast, parallel system mainly consists of homogeneous 

processors and there is one operating system. 

There is always a host coordinating the parallel processing such as starting and terminating 

processes in parallel systems. Therefore, the query always comes to the host first and then 

data is partitioned and sent to different processors for processing. Results will be 

consolidated at the host before they are presented to the user. In contrast, every site in 

distributed systems is a stand alone system and hence the system reliability, availability and 

transparency are ensured. 

The difference between the two systems also lies in the software support and transparency. 

Most of the parallel systems have their own parallel programming languages, so that they 

can provide better processor utilisation and a complete network transparency. 

Transparency is one of the utmost important issues in distributed systems since one of the 

fundamental requirements of distributed systems is that the distribution of data across sites 
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is not visible to the external users. There are several forms of transparency in distributed 

systems such as network transparency, fragmentation transparency, replication transparency 

and data transparency. 

The current trend is that both parallel and distributed DBMS have started to become the 

dominant database technology in data intensive applications. These two systems combine 

and integrate together so that the parallel processing technique can be easily implemented in 

any distributed systems to improve performance. Taking an example of a distributed system 

of workstations3
, where application programs are running on the workstations and database 

systems are managed by the dedicated computers, i.e. the former introduces the concept of 

application servers and the latter results in database servers. When the query comes in, a 

certain number of processors in the system are activated to process it in parallel. 

2.2 Pyramid of Parallel Relational Query Processing 

Relational database processing on parallel systems can be carried out in several steps, 

namely, data placement, data loading, data processing, and data consolidation (see Figure 

2.2). At the bottom of the pyramid is the data placement where database is fragmented and 

stored at each site possibly with replication. Both logical and physical design issues are 

considered so that the index files are established, local and global directory information are 

written for each site, and relations are fragmented and replicated over sites . This step may 

be treated as off-line operation. 

When the query comes in, the processing starts with the data loading. At this step, query is 

examined and the relevant data are extracted through the directory files . The relevant 

relations may be loaded into memory at each site if they are on secondary storage and thus 

the main cost is due to data transmission. Data processing then takes place. Data is 

partitioned over multiple processors and local processing starts with the relation fragments . 

Here, the cost consists of local processing and data transmission among processors. 

Finally, each worker processor will send its processing result to the host where the data will 

be consolidated before presenting to the external user. The cost involves a simple unifying 

operation and data transmission. 

3 This is one of the most popular network connections nowadays and the client-server technology 
may be used in such an environment. 
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Database 
Implementation 

This Thesis 

Database 
Design 

Data 
Consolidation 

Data Processing 

Data Loading 

Incoming Query 

Data Placement 

Data Partitionin 

Figure 2.2: Pyramid of Parallel Relational Query Processing 

A confusion may arise between data partitioning and relation declustering. The aim of data 

partitioning is to distribute tuples to multiple processors as evenly as possible so that linear 

performance speed-up can be achieved. It is an on-line operation and happens after 

receiving the query. The objective of relation declustering is to store the entire database over 

different sites and thus to increase the resource limitation at the host and to upgrade the 

performance by providing higher availability. This thesis only considers database 

implementation and we shall concentrate on the data processing of the pyramid. 

2.3 Data Partitioning and Data Skew 

We review the related work on data partitioning in this Section and data processing in next 

Section. In addition, we survey the recent parallel performance modelling work in Section 

2.5. 

Page 15 



Background and Relationship with Other Work 

2.3.1 Data Partitioning Methods 

There are three common data partitioning methods, namely Round-Robin, Range 

Partitioning, and Hashing in parallel relational database and a detailed comparison of them 

is provided in Chapter 4. Round-Robin partitions the tuples of one relation in a round robin 

fashion; Range Partitioning distributes tuples to processors according to ranges (boundary 

values) specified by users; Hashing transfers tuples to various processors by employing a 

hash function that determines the tuple's destination [DeWi92a]. A mixture of the three 

common methods of partitioning, Hybrid-Range partitioning, is proposed in [Ghan90]. The 

algorithm sorts the relation, and divides the relation into fragments based on the processing 

capability of the system and the resource requirements of the queries that access the relation 

instead of the number of processors. The fragments are distributed in a round-robin fashion 

among the processors. The Hybrid-Range method is implemented on the Gamma database 

machine [Ghan90]. 

A multiple dimensional partitioning strategy (MAGIC) is proposed in [Ghan94]. The 

strategy declusters the relation according to several attributes to localise the execution of a 

greater variety of queries with selection operation. The Grid file is employed and both range 

and exact match selection can be dealt with. Another multiple dimensional strategy is 

developed by Copeland [Cope88] where relations are partitioned equally based on balanced 

heat (the access frequency of an object over some period of time) rather than size (the 

number of bytes in the object). 

2.3.2 Data Skew and Load Balancing 

a. Data Skew 

Traditionally, parallelisation of relational operations has been investigated using the 

uniformity assumption [Chri83] which is originally employed to model the distribution of 

values of a single attribute in its domain. Based on the assumption, the occurrence of each 

attribute follows the uniform probability distribution. However, in most circumstances, it is 

highly likely that some attribute values appear more often than others, and the non

unifonnity of the attribute values is the primary cause of data skew [Laks90]. In [Lync88] a 

series of selectivity estimation methods for coping with highly skewed data such as Zipf 
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distributions found in the textual or bibliographic databases are proposed. A new selectivity 

estimator is introduced and the costs of incorrect estimation are quantified. 

In [Walt91], some issues of the problem of data skew are classified, and the data skew 

effects are identified. Furthermore, it discovered four kinds of partition skew, tuple 

placement skew, selectivity skew, redistribution skew, and join product skew. Tuple 

placement skew is caused by the initial distribution of tuples since the attribute value skew 

may result in different numbers of tuples over processors. Selectivity skew happens when 

the selectivity factors among processors after partitioning are different, and redistribution 

skew takes place whenever redistribution is involved to prepare the actual join and a 

different number of tuples is received by each processor. Finally, the join selectivity on each 

processor may differ, leading to various number of output tuples which is referred as join 

product skew. The experimental result shows that scheduling hash join algorithm effectively 

handles redistribution skew and increasing redistribution skew degrades the performance of 

hybrid hash join algorithm significantly. A more formal and general approach can be found 

in [Liu95] where a complete skew taxonomy for intra-operation parallelism is introduced 

and parallel database performance issues are identified. The detailed taxonomy and analysis 

will be discussed in Chapter 3. 

b. Load Balancing 

With multiple processors and multiple relational operations constrained by the data flow, 

ideally, all processors finish at almost the same time with a minimal execution time and this 

shall be referred as the load balancing. To some extent, load balancing in parallel database 

is always a critical issue and it is affected by both the application and the architecture. The 

load balancing can be easily achieved and efficiently handled by the run-time system with a 

SE architecture, and the cache memories may be introduced to provide fast access to the 

most frequently used data and code. In contrast, SD architecture can also provide good load 

balancing because the bottleneck nodes are easily removed by data replication. However, 

load balancing is complex and hard to achieve for SN architecture since the nodes are 

loosely coupled and the communication overheads dominate the main cost. [Hua95 , Yu92, 

Lu90, Yu86] 
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2.4 Data Processing and Skew Handling 

2.4.1 Skew Handling 

The study of the skewness may be classified into empirical skew handling and theoretical 

skew prediction as shown in Figure 2.3. The former has attracted the attention of many 

researchers , and a number of skew handling algorithms have been proposed while the latter 

has been neglected. We shall introduce skew prediction in Chapters 4 and 5, and here we 

shall concentrate on skew handling which can further be classified into skew estimation and 

skew management. Skew estimation attempts to identify the existence of the skew among 

parallel processors and, if exist, estimate the extent of the skew. In other words, it is the 

process on collecting statistics, e.g. from data dictionary. The available information may be 

none, partial or complete. Based on this knowledge, the skew management then attempts to 

avoid or resolve skewed load distribution with two approaches , static and dynamic methods. 

The former aims at declustering the relation table evenly over parallel processors before 

operation processing begins, and once one fragment is allocated to one processor no 

migration is performed, so that the fragment remains there until the execution completes. 

The latter either allocates workload dynamically during operation execution or reallocates 

the workload from the busy processor to others with inter-processor communication 

[DeWi90, DeWi92b, Grae93 , Hua91 , Kits90, Lu92, Omie91 , Schn89, Wolf93a, Wolf93b] . 

Chapter 4 & 5 

Skew Prediction (Skew Modelling) 

Skew Estimation 
Section 2.4.1 -- a 

Skew Handling 

Skew Management 

------- ------St at i c Approach Dynamic Approach 

Section 2.4.1 -- b Section 2.4 .1 -- c (Collection of Statistics) 

Nolnfo4 StaticAq / 

Some Information Scheduling Phase Task Stealing 
Reallocation 

Perfect Information Bucket Spreading Adaptive Method 

Figure 2.3: The Study of Skew 
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a. Skew Estimation 

Within skew handling, most works have been done concerning skew management and only a 

relatively small number of works are related to skew estimation [Chri83 , Seli79, Sesh92, 

Sun93]. Statistical methods and probability theory play an important role in skew 

estimation. Statistical methods can be classified into parametric and nonparametric methods 

depending on how much is known about the shape of the distribution. If there are only a few 

unknown parameters with a known basic distribution, the methods involved are referred as 

parametric methods. On the other hand, in many cases an experimenter does not know the 

form of the basic distribution and needs statistical techniques which are applicable 

regardless of the form of the density [Mura88]. These methods are known as nonparametric 

methods. The collected information may be stored in the data dictionary, but the critical 

issues are how much information should be stored, how often information should be 

updated, and how information of data dictionary is placed in the system, i.e. replication and 

fragmentation. 

An important statistical method is sampling which has been widely used in query size 

estimation [Sesh92, Lipt90, Mann88]. In a parallel database system, it is not practical to 

conduct measurement based on the entire input population (all tuples , relations , and 

queries). Therefore, we can employ sampling by which some on-line and useful information 

can be collected. Moreover, sampling has the advantage that it is more accurate than pure 

probability and parametric methods which are entirely based on their assumptions. 

However, sampling introduces the following issues. 

• Cost; generally, the cost of the sampling is high. 

• Sample size; how many samples should we take for a certain skew level 

and confidence level. It goes without saying that there will be always a trade

off between sample size and cost. 

• The way of taking samples ; random sampling means every element in the 

population has the same probability being selected. Therefore, all elements 

(tuples) must be put in one storage (disk or memory) before sampling process. 

One commonly used alternative in multiprocessor systems is dividing the 

whole population into n subpopulations where n is the number of processors. 
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Then, sampling is carried out in each sub-population for each processor. The 

trade-off is losing precision. 

• Skew in sampling; again, load balance has to be dealt with because of the 

skew in sampling. Ideally, the sampling workload is partitioned equally over 

the processors. However, this is hard to achieve because of the randomness of 

the sampling. [Sesh92] provides an analytical model which specifies the 

probability of the maximum of the number of sampling units chosen at each 

site. According to their predictions, having 1000 sites and taking 10000 

samples, the maximum and minimum number of samples that would be 

chosen by the sites are 22 and 1 respectively (Page 332, [Sesh92]). In other 

words, one processor will be loaded as 22 times heavily as other processors. 

b. Static Skew Management Approach 

The characteristic of this approach is that there exist no inter processor communication and 

no process migration during execution. 

Static Adaptive Method 

An adaptive skew handling method is developed by [De Wi92b] and the idea behind the 

method is to employ multiple algorithms to deal with different degrees of skew. Selecting 

algorithms in the method fully depends on the result of the sampling process carried out at 

the beginning of the processing. To make the sampling feasible, sufficient, and not too 

expensive, stratified sampling and page-level extent map sampling are used. Hence, 

sampling process employed in the method not only intends to choose the appropriate 

algorithm among the five alternatives but also determines the splitting vectors for the 

individual algorithm except hybrid hash join. The five algorithms implemented in the 

method are Hybrid Hash (HH), Simple Range Partitioning (SRP), Weighted Range 

Partitioning (WRP), Virtual Processor Partitioning -- Round Robin (VPPRR) , and Virtual 

Processor Partitioning -- Processor Scheduling (VPPPS). Among them, HH copes with no 

skew or lower skew cases; SRP and WRP deal with redistribution skew; VPPRR and VPPPS 

are employed to avoid join product skew. Both single skew and join product skew 

experiments have been carried out, and the method has been implemented on the Gamma 

Parallel database machine. The test data (relations) are generated with a number of integer 

attributes, each with various amounts of "Scalar Skew". However, sampling process has its 
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drawbacks as we discussed in Skew Estimation section. Furthermore, multiple algorithms in 

one approach may introduce more complexity both to the systems operating and to the 

systems maintaining. On top of this, how to handle joins in which the operand relations are 

of greatly different size is a difficult task. 

Scheduling Phase 

To avoid the skewness, an extra scheduling phase may be introduced in the conventional 

parallel algorithms. A new parallel sort-merge join algorithm is developed in [Wolf93a] and 

the scheduling phase is inserted after the conventional sort phase. The purpose of the 

scheduling phase is to identify the largest skewed fragment and allocate more processors. 

The new algorithm includes two classical optimisation algorithms. The Longest Processing 

Time first (LPT) algorithm is always employed first to distribute the tasks to processors 

whereas Galia and Mediddo (GM) algorithm is involved only if the result of LPT is 

unsatisfactory. An analytical model of the algorithm is also presented, and it illustrates that 

the algorithm provides good load balancing in the high skew case. 

In [Wolf93b], a parallel hash join algorithm for managing data skew is developed which 

introduces the scheduling phase after the hash phase to balance the load for the join phase. 

The scheduling phase comprises two steps. First, a minimal number of additional tasks are 

created; then LPT algorithm is employed iteratively. The main activities in each iteration are 

splitting out the largest type 2 pair and running LPT to evaluate the result. Experimentation 

is carried out together with several existing parallel hash join methods and the results show 

that the algorithm works well with highly skewed data. Another contribution of the work is 

introducing the idea of hierarchical hashing. 

Bucket Spreading 

[Kits90] proposes a bucket spreading parallel hash join algorithm which can be treated as 

an alternative hash join method of the earlier bucket converging strategy together with 

introducing the problem of data skew. In bucket converging strategy, a relation is 

partitioned into a large number of buckets greater than the number of processors. After 

partitioning the operand relations , redistribution takes place to ensure the load balance 

among processors. The initial repartitioning is highly likely to result in partition skew, and 

as an alternative a bucket spreading algorithm is developed. The new algorithm differs in 

the initial redistribution where each bucket is horizontally partitioned over processors. A 
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sophisticated network, Omega network, is used to redistribute buckets to processors. The 

algorithm is demonstrated with parallel GRACE hash join method and implemented on the 

Super Database Computer with hybrid parallel architecture, high-functional interconnection 

network (Omega), high speed hardware sorter, and the separation of data and control 

passes. A simulation model is also set up to evaluate the performance of the strategy and the 

results show the improved performance in the presence of data skew (modelled by the Zipf 

distribution) compared to the bucket converging strategy. 

To avoid the use of special hardware, [Omie91] designed a load balancing hash join 

algorithm and is implemented on a shared everything multiprocessor system. The algorithm 

is based on the bucket spreading method and an extra first-fit decreasing heuristic is 

employed to allocate buckets to processors in order to minimise the number of redistribution 

steps. An analytical model of the cost of the algorithm is developed and experimental results 

show the improved performance when compared with the basic parallel join methods in the 

presence of data skew. 

In [Hua91], three skew management algorithms for parallel hash join, tuple interleaving 

parallel hash join, adaptive load balancing parallel hash join and extended adaptive load 

balancing parallel hash join are presented. The first algorithm is a variation of the bucket 

spreading algorithm with software control at each processing node (PN) instead of special 

hardware. The only difference is in the first phase -- Split phase. During the split phase, 

relations are partitioned to processors and then grouped into buckets at each processor. 

Next, buckets are spread over processors. The algorithm introduces unnecessary 

communication overhead and computation overhead when the skew condition is mild due to 

their load balancing process. To avoid the massive data redistribution especially in the case 

of mild skew, the second algorithm is developed with a more selective redistribution. A 

bucket partition tuning phase is inserted after the initial split phase with two stages: bucket 

retaining stage which employs best-fit strategy to retain buckets for each processor, and 

bucket relocating stage which has a coordinator to gather information of each processor size 

and size of the excess buckets. Then, best-fit decreasing strategy is employed again to 

allocate excess buckets to the under-utilised processors. The third algorithm is designed for 

the case of high skew by deferring the tuple transfer until the partition tuning phase, and 

thus may be treated as an extension of the second algorithm. In addition, it avoids disk 

overflow by storing each sub-bucket in the local disks and has less problem on network 

traffic. A performance model is developed with cost function and sensitivity analysis is 
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carried out varying the degree of skew, communication bandwidth, and I/O bandwidth. 

c. Dynamic Skew Management Approach 

Unlike static skew handling, dynamic skew handling attempts to either allocate workload 

dynamically during operation execution or reallocate the workload from the busy processor 

to others. 

Task Stealing 

[Lu92] proposes a dynamic load balancing algorithm to minimise the response time based 

on task-oriented database query on a multiprocessor system with shared-disk architecture. 

There are three phases in the algorithm, task generation, task acquisition and execution, and 

task stealing. In the first phase, a set of tasks are generated from the original query. The 

optimal number of tasks generated is related to the memory size of each processor and the 

data size that an operation works on. A directory with a sub-bucket is created to store the 

disk identifier and page identifier. In the second phase, a free processor acquires a task if it 

is available, and then has the address of all pages in the task through linking directories. The 

task is executed, and when each page is read the global information is updated accordingly. 

This process continues until all tasks are allocated. In the third phase, an idle processor 

chooses a donor (one of any running processors) and determines the amount of data to be 

transferred in such a way that donor and receiver get equal workload (half load for each 

processor). This process continues until the minimum completion time is achieved. A brief 

simulation is carried out but more work is required for the general queries. The performance 

gain is in a wide range of 5 % to 90% depending on the data skew comparing with the basic 

parallel hash-based join methods. 

The issues of parallel join on shared virtual memory (SVM) are studied in [Shat93] and two 

variants of an algorithm for parallel join are proposed with SVM. The idea behind the 

algorithm is load sharing which is the same as the task stealing of [Lu92]. A detailed 

simulation study is presented and the result shows that using SVM can improve the join 

performance in the presence of data skew in a SN system. When the data skew is absent, the 

performance of the algorithm is identically to that of parallel hybrid hash join algorithm. 

Page 23 



Background and Relationship with Other Work 

Adaptive Method with Threshold Function 

In [Kell91], an adaptive method is developed by modifying the conventional hash phase of 

the parallel hash join and introducing skew detection and workload redistribution. Skew is 

detected at run time by observing the frequencies of the join attribute values and setting a 

threshold function. If the skew reaches a certain limit set in the threshold function, the load 

in that processor will be repartitioned among the available processors. To facilitate the 

algorithm, local cache is provided to store the global profile of the load distribution across 

all processors. If the large workload of one processor has been detected by the threshold 

function, then all other coming traffic will be directed away. To fragment and redistribute 

the highly imbalanced load, three methods are adopted, Symmetric Fragment and Replicate 

to split the skewed workload, Decentralised and Approximate Fragmentation Scheme to 

determine the number of fragments and minimise the communication overhead, and 

Adaptive Resizing of Fragments to fine-tune the load distribution by dynamically resizing. 

The algorithm is implemented in message passing environment with single user mode and 

relations are partitioned horizontally. Both partitions of operand in each processor are 

assumed in the main memory, and no indexes are used in join. A simplified analysis has 

been carried out and the results show some improvement over ten or fewer processors. 

Increasing the number of processors, i.e. more than ten, the response time is reduced and 

almost linear speed-up is obtained in the single skew case. However, it is hard to measure 

the speed-up for the case of double skew, which requires partial replication of the input 

tuples. 

Reallocation 

[Dewa94] develops a dynamic load balancing algorithm to balance the computations of 

parallel hash join over heterogeneous processors in the presence of data skew and external 

loads. The algorithm has two stages, initial and batch processing stages. In the initial stage, 

the number of buckets and the maximum batch size are decided with the exchanging of 

information between processing sites and coordinator processor. In the batch processing 

stage, the batches of buckets are processed until the join is fully completed. A rescheduling 

phase is inserted in the batch processing stage when one processing (the fastest) site finishes 

its work. The objective of the rescheduling phase is to reallocate unprocessed buckets from 

the current batch at each site over all the sites so as to minimise the overall execution time 

for the current batch by using the Weighted Longest Processing Time First algorithm. As a 

result, the buckets are shuffled among the processing sites and execution continues. This 
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process lasts until the operation is fully completed. Cost models and predictive dynamic 

load balancing protocols to detect imbalance are also developed. The algorithm is 

implemented on a prototype of the system under various load distributions and degrees of 

data skew, and the results show that the algorithm presents better performance when the 

processing sites are heterogeneous. 

d. Summary 

The static skew management method approaches the problem by detecting input data 

distribution before executing or implementing the algorithms. This approach is more 

accurate and feasible in conducting simple operations such as binary join. The method will 

become complex with an increasing number of processors and multiple queries requiring 

multiple operations in each query. Generally, the static skew management method will be 

employed for every input original relation and every intermediate result relation. Surely, 

most of the existing static partitioning methods are unable to estimate precisely the 

intermediate coefficients growth since it relies on a large number of parameters. Taking into 

account only a small number of these parameters to characterise the inputs, leads to too 

large and often unrealistic upper bounds on the results. 

The dynamic skew handling approaches the problem at run time by waiting for the skew 

occurrence and eliminating the skew. It does not need preprocessing and relies on no 

distribution assumptions. However, the performance gain of this approach is highly 

variable. In other words, it is not ensured that the method will improve the system 

throughput to a satisfactory level. Therefore, a few systems will take the risk of employing 

unreliable performance enhancing algorithms by adding in more complexity and cost into 

the existing system. 

All methods have their limitations, assumptions, and usually targeted at specific situations. 

To sum up, most of the existing skew management algorithms cannot deal with situations in 

which there is no intrinsic data skew, and in general no consideration is given to determine 

the stochastic nature of skew behaviour which is the main focus of this thesis. It is felt that 

skew estimation should be emphasised along with skew management, so that the workload 

of the system as a whole can be properly balanced and the system performance can be 

effectively optimised. 
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2.4.2 Parallel Join 

[Schn89] analyses and compares four parallel join algorithms, simple hash join algorithm 

(looping algorithm), sort-merge join algorithm, GRACE hash join and hybrid hash join 

algorithm. The issues discussed include the tuple distribution policies, the existence of bit 

vector filters, the sizes of main-memory for joining, and skewness. The experimental 

relations are extracted from the standard Wisconsin Benchmark running on the Gamma 

database machine. The results show that hybrid hash join is superior in particular in no 

skew case at all degrees of memory availability. In addition, it is found that the hash-based 

join algorithms are sensitive to redistribution skew in the building relation but relatively 

insensitive to redistribution skew in the probing relation. However, the double skew case 

was not considered in the paper. 

The comparisons in [Schn89] did not take into account the join inputs, and a more general 

survey is provided in [Grae94]. The performance evaluation of sort-merge join and hybrid 

hash join is extended with the following issues, effectiveness and skew, graceful adaptation 

to memory re-allocation, read-ahead and write-behind, disk arrays, and disk caches. 

Moreover, the experimentation is focused on very large inputs (inputs are larger than the 

memory size multiplexed with a relatively small fan-in or fan-out). The results show that 

hybrid hash join outperforms sort-merge join in most of the cases with only two exceptions. 

• the joining (merge) attributes from multiple indexes are already in the order 

of data values or in the order of hash values. 

• the output of the query must be sorted on a join key and the cost of sorting 

output is more than the cost of sorting two join inputs. 

2.4.3 Parallel Query Processing 

Parallelism can be classified into partitioned and pipelined parallelism. Partitioned 

parallelism divides the workload into fragments, and executes each fragment on one or a 

group of processors or several fragments on one processor according to the number of 

available processors. In other words, it is horizontal parallelism that aims at improving 

performance by increasing the degree of concurrent worker processors. As such, the 
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processors are most likely dealing with the same operation but different ranges of data. In 

contrast, the pipelined parallelism treats the operations processing into several steps and the 

output of the first step is fed to the input of the second step. Hence, it is vertical parallelism 

that speeds up operations by introducing the concept of functional processors. As a result, 

different processors are dealing with different operations but the same range of data. For 

example, with a sort-merge join operation, there are scanning processors, sorting 

processors, and merging processor by using pipelined parallelism. Partitioned parallelism is 

more versatile than pipelined parallelism as it may be used for any operator, but the 

pipelined parallelism can only be used between two operators connected by a pipeline edge. 

In addition, skewness is also a more interesting problem in partitioned parallelism since this 

kind of parallelism has more control of the data and it also has a greater impact on 

performance. As such, hereafter in the thesis, parallelism means partitioned parallelism. 

a. Query Tree Representation 

The execution of a single query can be denoted by a query execution tree and three different 

formats are used to construct the tree of operators as shown in Figure 2.4. Each tree node 

represents one relational operation and the tree shows the procedural choices such as the 

order in which the operators are evaluated. The left-deep tree and right-deep tree are also 

referred as the linear tree. In [Sche90], it is observed that the linear tree offers two extreme 

options of restricted-formatted query trees, and the bushy tree has no restrictions placed on 

their construction. However, it is harder to synchronise the activity of join operators within 

an arbitrarily complex bushy tree. 

(a) ((R1 *R2)*R3) (b) (R1*(R2*R3)) (c) ((R1 *R2)*(R3*R4)) 

(a) Left-Deep Tree (b) Right-Deep Tree (c) Bushy Tree 

Figure 2.4: Query Tree Representation 
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b. Query Processing 

Query processing may be carried out in two phases as in Figure 2.5. Phase one is query 

decomposition where a high level language such as SQL is translated into low level 

language such as relational algebra. The second phase is query optimisation where 

alternative execution plans are generated and the optimal or near optimal plan is selected 

based on the cost model. In multiprocessor systems, the formulation of a parallel query plan 

deals with not only the execution sequence and the processing methods of the operations 

required in the plan, but also processor allocation which enables parallel processing of the 

operations so as to minimise query response time [Hong92, Gang92, Chek95]. Parallel 

multiple query processing may be performed at three levels, intra-operation, inter

operation, and inter-query [DeWi92a, Vald93, Moha94]. 

Inter_ Query 
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Figure 2.5: Parallel Query Processing 

c. Query Optimisation 

Figure 2.5 shows that query optimisation is concerned with issues on execution space, cost 

model, search algorithm, and resource allocation. Execution space is the entire search scope; 

cost model is the criteria to evaluate the alternative algorithms; search algorithm is the 

algorithm used to look for solution by searching the execution space; resource allocation 

Page 28 



Background and Relationship with Other Work 

provides policies on sharing and distributing resources among relational operations. 

Intra-query Level 

[Gang92] offers a framework on query optimisation for parallel execution and addresses the 

problems in designing execution space, cost model, and search algorithm. They discovered 

that the response time metric violates a fundamental assumption in dynamic programming 

and the optimisation has to extend to multiple dimensions. [Sriv93] claims that a good query 

optimiser must take the design of a resource schedular into account in creating an apparent 

circular dependency in a SN system, and the circular dependency may be removed by an 

exhaustive algorithm. The issues of using the inherent parallelism in a hypercube 

multiprocessor to optimise large join queries are studied in [Lin94]. They propose an 

algorithm to evaluate a large parallel join plan and present three heuristics for generating an 

initial solution followed by the iterative local improvement. 

[Hong93] proposes a two-phase optimisation strategy to reduce the search space and is 

capable of coping with run-time parameters such as available buffer size and number of free 

processors. During the first phase, the sequential query execution plan is examined and 

optimised with fixed parameters at compile time. In the second phase, the optimal sequential 

plan from the first phase is optimised again with multiple processors and updated 

parameters at run time. [Hua95] introduces the cost of load balancing as a new factor for 

query optimisation, and based on this factor three new optimisers are implemented on a 

simulation model validated by a multiprocessor system. The paper also observes that the 

Load Balancing Optimisation with the Symmetric Fragment and Replicate Feature scheme 

is immune from bucket skews and its performance follows a flat curve for all skewed 

conditions. Moreover, the new algorithms consistently provide good performance despite 

varying system parameters. 

The inter-operator parallelism is studied in [Chen92] and the focus of the paper consists of 

scheduling the execution sequence of multiple joins within a query and determining the 

number of processors to be allocated for each join operation. One join-sequence scheduling 

heuristic and several processor allocation heuristics are proposed and evaluated by 

simulation. It is found that the best scheme is a two-phase approach which applies the join

sequence heuristic to build a bushy tree first as if under a single processor system, and then 

allocates processors to the internal nodes of the bushy tree in a top down manner. Multi-join 
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query optimisation for symmetric processors is investigated in [Shek93] and optimisation 

algorithms are developed by using dynamic programming and greedy heuristics. In addition, 

its cost model takes into account the memory resources and pipelining, and is used to 

compare the performance of the algorithms. 

Inter-query Level 

[Wolf95] devises and evaluates a number of heuristic scheduling algorithms on multiple 

queries with data dependency only existing within each query. One of the algorithms, the 

hierarchical algorithm, consists of two components, intra-query precedence-based 

scheduling and inter-query non-precedence-based scheduling. The former advocates that 

when a task is assigned to a number of processors, each of its children will be allocated to 

subsets of those processors, and is also referred to as tree-split algorithm. The latter will 

give each task a number of processors such that the total work time is minimised. By 

employing a nonmalleable scheduling algorithm, the number of non-utilised processors is 

found. The task with the largest wasted work is regarded as a bottleneck. The number of 

processors will be reconsidered for every operation in the task and the objective is to drive 

the bottleneck to zero. 

Dynamic site allocation algorithms and query scheduling policies are studied in [Frie94] in a 

distributed memory multiprocessor system with a hypercube architecture. The site 

allocation does not employ a prior optimisation but select sites during the execution. When 

multiple queries are running concurrently, the selection of queries is made based on their 

resource requirements. 

Parallel Task Scheduling 

Parallel task system is studied in [Du89] where a task is running on one or a group of 

processors and there is no workload or processor migration once the number of processors 

assigned to a task is determined and fixed. Both the complexity of nonpreemptive and 

preemptive scheduling of parallel tasks are examined. Finding an optimal nonpreemptive 

schedule for parallel tasks with the precedence constraints consisting of chains, is strongly 

NP-hard when the number of processors is equal to or greater than two; for preemptive 

scheduling, the problem is also NP-hard for arbitrary number of processors for a set of 

independent tasks. 
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[Ture94] considers nonpreemptive scheduling of a system of independent tasks. The paper 

tackles the problem of finding a schedule with minimum average response time by designing 

a polynomial time algorithm whose worst-case performance is within a fixed multiplicative 

constant of the optimal. The algorithm is shelf-based where the tasks are assigned to 

shelves whose placement corresponds to constant time values, and all tasks assigned to a 

shelf have starting times equal to this value. The paper also claims that the algorithm can be 

extended to solve the comparable malleable minimum makespan problem in polynomial time 

with identical worst-case performance bounds. 

d. Other Relevant Work 

[McCa94] introduces the concept of efficiency preservation as a characteristic of processor 

allocation policies and argues that the measure should be taken relatively to a particular 

workload since all allocation policies are tied closely to the supporting workload. Two 

families of processor allocation policies, Equipartition and Folding, are proposed which 

emphasise efficiency preservation and equality of processor allocation. Folding gives better 

performance than that of Equipartition based on a static analysis and a simple Markovian 

birth-death model. 

2.5 Parallel Performance Modelling 

2.5.1 Parallel Computation Model 

Analytical models are generally more versatile, as they can be applied in a wide range of 

systems. They are comparatively inexpensive and allow more effective sensitivity analysis 

and system tuning. A widely used analytical model on parallel systems is Amdahl's law 

whereby all operations are divided into either sequential or parallel processing with the 

running time of parallel operations improving by a factor equal to the number of processors 

[Amda67]. The Amdahl's law is revisited by [Gust88] and it is found that the speed-up 

should be measured by scaling the problem to the number of processors, not by fixing the 

problem size. 

[Helm90] proposes a simple model of parallel computations which is capable of exploiting 

the speed-up greater than non n processors. The model tries to unify the previous modelling 
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results by including a certain number of parameters describing the previous reports and 

illustrating different assumptions responsible for the apparently contradictory outcome. A 

software tool for measuring parallelism in large programs is presented in [Kuma90] and an 

important feature of this tool is to accept ordinary Fortran program as its input so that 

parallelism can be measured easily in large scientific applications. 

2.5.2 Parallel Join and Load Balancing 

In [Pate94] an analytical model is given to estimate the execution time of hybrid hash join 

when a single join is running on a single node. Physical database issues taken into account 

into the model are disk seek time, caching choices, intra-operator synchronisation and disk 

interference patterns, and the model is evaluated by a simulation study. In [Pete94] an 

analytical model for designing architectures and characterising applications is proposed. 

Load imbalance and the number of iterations are treated as two main factors, and the model 

is applied to discrete-event simulation on distributed-memory MIMD machines. 

Theoretical resource allocation is studied in [Azar94] using probability theory. It is found 

that with n balls and n boxes, if we choose two boxes randomly (instead of one box) and put 

the ball into the one less full, the fullest box contains balls exponentially less than that of 

one box. The infinite version of the random allocation process is also studied, and an 

analysis is provided in a situation where a ball is chosen uniformly at random and replaced 

with a new ball, and the new ball is placed in the least full box among a number of possible 

destinations. 

2.5.3 Skewed Distributions 

Perhaps the most well-known non-uniform distribution is the Zipf distribution which gives a 

good approximation for the occurrence frequencies of words in natural text. Based on this 

distribution, the rth highest multiplicity m, is given by m, :::: CI r6 where r stands for the 

rank [Zipf49]. In [Knut73], the Zipf distribution is employed to describe the results of 

hashing, and recently, it is used to describe the number of appearances of unique tuples 

[Wolf93a, Wolf93b]. 
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The effect of load skew on the performance of parallel unary relational operations based on 

the SIMD paradigm operating in a homogeneous distributed memory configuration is 

examined in [Leun94a]. It is found that the horizontal partitioning of a given relation often 

leads to uneven distribution of workload among the participating processors. The paper 

shows that in most data partitioning schemes, the actual performance can depart 

significantly from the ideal loading condition where each processor receives the same 

number of data tuples for processing. It also found that as the number of processors 

increases, the load imbalance between the least utilised and the most utilised processors will 

tend to increase as 0 ( k In k) . 

In [Falo96], it is shown that the multi-fractal theory formalises and generalises the 80-20 

law, and also includes the uniform case as a special case when p=0.5. The paper defines 

that a binomial multifractal distribution is a distribution of N records with parameters (N, p, 

k) if it has 2k possible attribute values, each attracting records with the bias parameter p . 

Using this assumption, the paper presents a simple way to estimate the multiplicity vector 

which can help to extrapolate for several useful statistical quantities such as supersets of a 

relation. However, it does not examine the application of multifractals to other useful 

settings such as the join size estimation and join selectivity. In addition, the discovery does 

not reveal any relationship between the partitioning result and the partitioning function. 

2.6 Summary 

We have reviewed the works relevant to this thesis in this chapter. Parallel processing of 

relational databases has been shown to provide highly effective improvement on 

performance. The motivation for using parallelism, the features of relational databases, 

forms of parallelism, and parallel database systems architecture are presented. A 

comparison between distributed and parallel databases systems is provided. To clarify the 

mechanism of relational database processing, we provide a pyramid of parallel relational 

query processing where four main steps are identified, namely, data placement, data 

loading, data processing, and data consolidation. Three common data partitioning methods 

are listed and previous studies on data skew and load balancing are examined. A detailed 

survey on skew handling in parallel join is provided where a number of existing algorithms 

are classified into several groups and their main contributions are highlighted. The 

important issues on parallel query processing are examined and existing performance 
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models on parallel computation are surveyed. 

From the literature survey in parallel relational query processing, we see that most of the 

existing work are concerned with practical algorithms aiming at processing relations in 

parallel effectively. However, a critical problem with load balancing in such an environment 

is the skewness where there is not a great deal amount of work have been done so far. 

Considering both the complexity and the importance of the skew problem, we believe that a 

systematic and in-depth theoretical treatment on it is needed urgently. This will also lay 

down a foundation by which the degree of skew can be predicted accurately and the 

efficiency of various algorithms may be evaluated. Taking the skew factor into the cost 

model of query optimisation, it is possible to produce a high-performance and cost-efficient 

parallel processing plan. 
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CHAPTER3 

SKEW TAXONOMY AND ANALYSIS 

3. 1 Introduction 
3.2 Conceptual Framework of Skew 
3.3 Different Types of Skew 

3.3.1 Data skew 
3.3.2 Load skew 
3. 3. 3 Operation skew 

3.4 Performance Degradation 
3.5 Summary and Concluding Remarks 

3.1 Introduction 

A major obstacle to performance improvement in parallel database processing is the 

presence of skew, which in extreme cases can contribute to performance degradation to a 

level below that of uniprocessing. Skew handling algorithms for parallel join have been an 

active research area for some time, but most of the existing methods can not deal with the 

case of no data skew efficiently and in general involve considerable overheads. Moreover, 

the unsolved questions are what is a systematic definition of the entire problem of data 

skew, why there is the problem of data skew, and what are the effects of skewness on 

system performance. Related questions are what is the classification of the problem of data 

skew since it is a such complex and critical issue in parallel databases, and how to model 

the problem of data skew quantitatively. We expect that a formal skew foundation can be 
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established by answering the above questions on which the various skew handling 

algorithms can be evaluated and compared. 

In this chapter, a new analysis of skew for parallel database system is presented with 

attention focused on the relational model operating in a shared-nothing distributed memory 

environment in SP1\1D mode. Three types of skew are identified: data skew, load skew, and 

operation skew. Load skew may further be distinguished into 1/0, operation, and result load 

skew. These different types of skew are quantitatively analysed and expressions are 

provided for their evaluation. In particular, it is shown that skew effect can be significant 

even when the data partitioning is carried out uniformly across all processors. In addition, 

performance bounds on best and worst case behaviour are also presented. 

The rest of this chapter is organised as follows. Different types of skewness are introduced 

in Section 3.2 and parallel database performance issues are discussed in Section 3.3. 

Finally, Section 3.4 presents a summary. 

3.2 Conceptual Framework of Skew 

Data skew is the phenomenon that certain values for a given attribute occur more frequently 

than other values and is the main reason of having imbalanced load over processors. 

Throughout this thesis, we shall refer to the entire load balancing problem as the problem of 

data skew and further identify three types of skewness within the problem of data skew in 

parallel relational database systems, data skew, load skew, and operation skew. 

The word "skew" stems from statistics, but there is a difference between the definition of 

skew in statistics and load skew used by computer scientists as shown in Figure 3. 1. The 

former can be defined as a data set with observations that are not symmetrically distributed, 

while the latter is the load imbalance over the processors . More precise! y, the differences 

are that the former describes the departure from the symmetrical distribution and the latter 

describes the departure from uniformity. In terms of load balancing, equalised load 

distribution (i.e. uniform distribution) means no skew whereas no skew refers to 

symmetrical distribution (i.e. normal distribution) in statistics. There is no doubt that the 

latter is not sufficient to represent the former unless it is related to other measurement (e.g. 

measures of variation). 
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Statistical Skew Load Skew 

0.2 0 . 4 0.6 0. 8 1 

Normal Distribution Uniform Distribution 

1. Statistical skew to the left 1. Linear load skew 
2. No statistical skew 2. No load skew 
3. Statistical skew to the right 3. Non-linear load skew 

Figure 3.1: Statistical Skew vs Load Skew 

3.3 Different Types of Skew 

In general, several types of skew may be identified, these are data skew, load skew, and 

operation skew. Data skew is a property of the attributes without reference to the mode of 

processing involved. It is concerned with the clustering and replication of the underlying 

attribute values. Load skew is related to how the data are allocated to different processors, 

and is linked to the uneven spread of input workload and output across different nodes. 

Operation skew signifies the combined effects resulting from the skew effects of a number 

of input relations, which may accumulate and reinforce each another. 

To provide a concrete illustration of the principles, we make use of the following example. 

Two relations of the database, customer and sales_order, are shown in Tables 3.1 and 3.2. 

For these relations, we may have a natural join on the attribute rnstomer _no. The result of 

the join will have nine tuples. We cluster the two relations by customer _no and thus may 

present the join as shown in Table 3.3 (where next to the attribute value is the number of 

times the value occurs). 
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'-'U3LUIUCf_N0 Name Address 

1000 Smith A. B. ABC, Victoria 

1001 White B. C. BCD,N.S.W. 

1002 Naugh C.D. CDE, Queensland 

1003 Young D.E. DEF, South Australia 

1004 Hua E.F. EFG, Tasmania 

1005 DeWittF.G. FGH, N.T. 

Table 3.1: Records Listing of Relation Customer (hereafter called relation A) 

Sales_Order_No Customer_No Order_Status Date 

AIOI 1005 O.K. 1-1-94 

Al02 1002 O.K. 2-2-94 

Al03 1002 O.K. 3-3-94 

Al04 1002 O.K. 3-3-94 

Al05 1002 O.K. 3-3-94 

A106 1000 O.K. 3-3-94 

B102 1002 O.K. 3-4-94 

B103 1002 O.K. 3-4-94 

0456 1002 O.K. 3-8-94 

D478 1002 O.K. 3-9-94 

ElOO 1005 O.K. 4-4-94 

E200 1002 O.K. 4-4-94 

Table 3.2: Records Listing of Relation Sales_ Order (hereafter called relation B) 

Customer Relation (A) Sales_ Order Relation (B) Join Result(# tuples) 

( 1000, 1) 4 (1000, 1) 1 

( 1001 , 1) (1001 , 0) 0 

( 1002, 1) (1002, 9) 9 

( 1003, 1) (1003, 0) 0 

' 

i 
( 1004, 1) (1004, 0) 0 

( 1005, 1) (1005, 2) 2 

Table 3.3: Join Result Distribution 

4 The values in the bracket, in order, represent the Customer Number and the number of the times that 
customer appears in the table. 

Page 38 



Skew Taxonomy and Analysis 

3.3.1 Data Skew 

Data skew relates to the intrinsic distribution and occurrences of data values of particular 

attributes, and its presence is unrelated to whether a single processor or multiprocessor are 

used to process the data. It is caused by the non-uniform distribution and multiple 

occurrence of attribute values. When a relational operation is applied to such an attribute, 

the number of result tuples may vary significantly, as compared to a value distribution 

without data skew. In the above example, data skew is present in attribute customer _no of 

the relation B, where the tuple value 1002 occurs more frequently than that of 1001. The 

data skew is inherent in the data set and solely depends on the database applications. The 

knowledge about the data skew is essential to study the skew behaviour in parallel 

databases and to develop truly efficient algorithms for database operations. Data skew 

could be given a priori based on certain distributional assumptions, or by carrying out 

sampling of actual data values. The skewness of the tuples within the relation can be 

described in terms of coloured balls in an um, where the colours correspond to the domain 

values. The question on how to estimate the number of colours present in the um on the 

basis of sampling and knowledge of the total number of balls in the urn has been studied in 

[Good49]. The parent distribution of known size may be subdivided into an unknown 

number of mutually exclusive classes. In taking a random sample of n elements without 

replacement from the population, we can estimate the total number of classes. In other 

words , the number of domain values of the relation can be worked out from sampling and 

its cardinality. Therefore, data skew can be described in terms of duplicate values of the 

partitioning attribute. 

Denoting by r the number of tuples in the relation R, and n the sample size. We let X; 

signify the number of tuples for each domain value in the samples, and y the estimated 

number of domain values of relation R. Unlike the load and operation skew, data skew can 

be described with mean Tvs and its deviation Vvs since the individual domain value does 

not determine the distribution results 

r 
TDs =-, 

y 

n 

L (x; - Tvs )2 
i =I 

n 
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The larger the variation from mean, the higher is the data skew present in the relation for 

that particular attribute. 

The estimated number of domain values y is given by 

(3-2) 

where 

( . l)(i) 
_ _ (-); r - n + l -

Ai -1 1 nc;i , (3-3) 

with the notation mui = m (m -1) (m- 2) ... (m - i + 1), so that 

Tvs = { [ (i) ] } t 1-(-i)'(r-n;~-1) X; 

r 
(3-4) 

Generally, more samples will result in better accuracy, but the extra cost of sampling will 

need to be taken into account. Sampling issues can be found in [Sesh92]. In addition, we 

note that there is no data skew if the partitioning attribute is the primary key of the relation 

since y::::: r, Tvs::::: 1, and Vvs = 0. 

3.3.2 Load Skew 

While data skew is unrelated to the processing mode of relational operations, load skew is 

directly related to parallel processing and does not exist in the case of conventional 

uniprocessor operation. When a relational operation is allocated to more than one 

processor, load skew may occur because of the uneven load distribution. Again consider 

the join example given earlier and assume three processors participating in the join. Let the 

join domain be customer _no, and tuples of the two input relations are allocated according 

to range partitioning with two values assigned to each processor. Then three tuples (with 

values 1000 and 1001) will go to the first processor, eleven tuples (with 1002 and 1003) 
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will go to the second, and four tuples (with 1004 and 1005) will go to the third. All three 

processors receive different volume of tuples with a consequent effect on processing time. 

This non-uniform load distribution is referred to as load skew. Clearly, the load skew limits 

processor utilisation and the speedup of the operations by parallelism. 

Since a relational operation involves several processing steps, the load skew may be further 

classified as follows based on its physical operations: 

• JO load skew (IOLS) , which is caused by uneven I/O load distribution 

imposed on the processors to read input relations into their local memory. The 

I/O cost of each processor is mainly determined by the size of the fragment(s) 

of the input relation(s) that is allocated to it. In addition, the access paths of the 

relations may also affect the I/O cost. A relation with an index usually involves 

less I/O costs than that without an index since only the blocks that contain the 

required tuples will be retrieved. 

• operation load skew (OLS), which is determined by non-uniform CPU costs 

for searching tuples that belong to the result relation among the processors. 

Therefore, OLS depends not only on the partitioning of the input relations , but 

also on the processing algorithms that are used at different processors. For 

example, when one of the input relations is small or has index, the nested-loop 

join involves the smallest cost; otherwise the hash join may perform better than 

the nested-loop join. 

• result load skew ( RLS), which refers to the skewed loads for the processors 

generating the result of the operation. Some processors may generate a large 

number of result tuples while others may only have a few, leading to different 

CPU costs. RLS depends on the selectivity factor of the operation over the 

fragments allocated to the processors. 

Figure 3.2 shows the three different load skews over some common relational operations 

and associated processing methods. The following assumptions are made in Figure 3.2. 

• The input relations are R and S, with r :;::; I Rj , s = IS I. and r < s; 

• The length of predicates and the number of columns to be projected are one; 
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• Sel and Join_Sel are the selectivity for Selection and Joining; 

• To save memory, hash-based join algorithms build hash table with the smaller input 

relation; 

• Memory size is large enough to hold entirely either R or S; 

• For set theoretic operations (Union, Intersection, and Difference), the two input 

relations (R and S) are compatible with R c S. 

We primarily focus on a shared-nothing distributed memory architecture. In such an 

architecture, the total load skew may be obtained as follows. We let N denote the number 

of nodes, where a node includes the 1/0 as well as processor components. Here, we assume 

that there is a single processor to each node. In the general case, a node may consist of a 

collection of heterogeneous processors operating on a shared memory basis. The following 

notations are used. 

r; : the number of tuples in the ith node after the partitioning of relation R 

r?:.rt ?:.0, i= 1, ... ,N; 

cr R: selectivity factor of the relation R of a given operation; 

cr; : selectivity factor of the ith fragment in the relation R of a given operation 

after partitioning ; 

R; : total load of the ith node of relation R; 

Rskew: the maximum imbalanced load associated with relation R; 

T LS: load skew factor ( 0 s; T LS) . 

The total output from an operation is 

N 

rcrR = I,(11cr;)= r1cr1 +r2cr2+ ... +rNcrN . 
i=l 

Now, the workload of each node consists of three components 

Wi: loading cost for each tuple (including disk access time and transfer time), 

Wi: processing cost for each tuple (mainly comparison and computation time as 

reading time from RAM should be comparatively small), 
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ft;: writing cost for each tuple. 

A high IOLS does not necessarily mean high total load skew as both processing and writing 

cost ( OLS and RLS) need to be taken into account. The total load is the weighted arithmetic 

mean 

R = Wiri + W2ri + W3'f CTi 
i Wi+W2+W3 , 

(3-5) 

and the total load imbalance as represented by the deviation from the perfectly balanced 

situation is given by 

(3-6) 

The load skew factor is given by 

(3-7) 

where 1 :::;; T LS :::;; N , and the larger this factor, the higher the load skew occurs over the 

nodes. 

Equal partitioning has been mistakenly regarded as the aim of parallel processing. Figures 

3.3 and 3.4 show that there still exists load skew even when the relation is perfectly 

partitioned. This is because selectivity factor of each fragment may also contribute to load 

r 
skew. Assuming iv;=~= ""i = t, where tis a standard cost unit, and ri = - , where the 

N 

relation is evenly partitioned to all processors, we have 
r. (2 + (j' .) 

R. =I l 

I 3 ' 

N(2 + (j' max) 
T LS = , and the load skew factor against the number of processors is plotted 

2N +I 

in Figure 3.3. 
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The data in the legend of Figure 3.3 refer to the maximum partition selectivity; that is 0.3 

means the highest selectivity factor among all partitions is 0.3. As we increase the number 

of parallel processors, the load skew rises and approaches a constant level. Moreover, 

decreasing the maximum partition selectivity factor will reduce the load skew. Therefore, 

from Figure 3.3, we can conclude that load skew still exists in evenly partitioned relation 

over processors because of the varying selectivity factor(s) among the partitions. 

r 
Assuming ~ = W2 = t , 'i = N , cr 

01
•
1
x = 0. 3 , and W3 = xt where x is the cost ratio of 

r. (2 + xa;) N(2 + xcr max ) 
writing over processing tuples, we have Ri = ' and T LS = . 

2+x 2N +x 
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The cost ratio of writing over processing tuples is introduced and its effect on load skew is 

shown in Figure 3.4. Increasing either the number of processors or the cost ratio will lead 

to higher load skew. From Figure 3.4, we see that the cost ratio of writing and processing 

tuples, working in conjunction with the partition selectivity factor, has a significant 

influence on load skew. 

For a shared-nothing architecture, since load skew is mainly caused by non-uniform 

placement of data over processors, the methods which partition the input relation(s) onto the 

nodes will significantly contribute to the load skew. However, a partitioning method may 

not be the sole cause of all the above load skews. For example, the round-robin partitioning 

for a unary operation such as selection, does not involve IOLS and OLS since the tuples of 

the input relation(s) are evenly spread over the processors. However, hash join partitioning 

would involve all types ofload skews. In summary, IOLS would be caused by allocating the 

tuples with the identical join attribute values to the same processors in the presence of data 

skew. The various relational algebraic operations and the existence of the data skew create 

OLS. In comparison, RLS should only occur when the number of matching records of 

processors are different, and depends on selectivity factor. 

3.3.3 Operation Skew 

Given a relational operation, skew may also be classified into no operation skew (NOS) , 

single operation skew (SOS), and double operation skew (DOS) depending on how many 

input relations are skewed (i.e. the skew dimension) after partitioning. Multiple operations 

can always be regarded as a series of binary operations. If the tuples of both operand are 

evenly allocated over the processors, it is NOS. SOS indicates that one input relation has 

load skew in the attribute(s) related to the operation, whereas DOS relates to the load skew 

on both input relations for binary operations, such as join. Evidently, unary relational 

operations, such as selection and projection, may have either SOS or NOS, while binary 

operations are likely to have any one of them. In the earlier example, there is only a SOS 

(due to relation B) in the join operation described above. 

It is worth noting that DOS is complex but normally only appears in the operations which 

use the intermediate results of other operations . For the base relations, it is pointed out in 
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[Elma94] that when a binary 1: l or 1 :N relationship type is involved, a single join operation 

is usually needed; For a binary M:N relationship type, two join operations are needed. For 

example, joining Sales_Order and Product is actually doing two joins, Sales_Order and 

Order _Product Goin attribute is Sales_Order _No) , and Order-Product and Product Goin 

attribute is Product_No). Therefore, it is not a join of DOS but two joins of SOS. 

Furthermore, duplicate attributes (except foreign keys) are avoided in the database design 

because they cause anomalies (deletion, insertion, and update). Therefore, the operations on 

the normalised database relations do not often involve DOS. 

If we adopt the following notations 

si : the total load of the ith processor after partitioning relation S, 

u R: the average load associated with relation R over N nodes 

us : the average load associated with relation S over N nodes 

Rskew : the maximum imbalanced load associated with relation R, 

T05 : operation skew factor , 

then for unary operations such as Selection (relation R), we have 

NOS: T0 5 =1 

SOS: T05 = TLS (same as load skew); 

and for binary operations such as Nested-Loops Join (relation Rand S), we have 

NOS: T05 =1 

SOS: T05 = T LS X 1 (same as load skew) 

DOS 5: max(R1 Sp···, RNS N )! (uR u5) . 

That is , 

5 Double skewed relational operation over processors may also produce "No Operation Skew" because the 
two load skewed relations can cancel out the effect of each other. 
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max(R;) 
unary operations 

Tos = 
UR 

(3-8) 
max(R;S;) 

binary operations 
URUS 

where T0 s 2:: 1, and the larger this factor, the higher is the operation skew over the nodes. 

3.4 Performance Degradation 

Data skew, load skew, and operation skew are not isolated but closely related. Their 

relationships are presented in Figure 3.5. Data skew cannot be changed, whereas load skew 

and operation skew could be avoided using various skew handling approaches (see Chapters 

4 and 5, and [Liu96b]). 

Data Skew Load Skew Operation Skew 

Figure 3.5: Data Skew, Load Skew, and Operation Skew 

In equation (3-5), the parameter r; is the tuple allocation over processors, and clearly data 

skew has significant influence on r; . Supposing there is no data skew, load skew can still 

occur because of uneven partitioning and variation of the selectivity factor. Assuming a 

perfect hash function is employed in a situation where data skew is absent, we obtain the 

following bounds for the load skew 

Lower Bound: 

Upper Bound: 

r(J R 
a .r. = --
'' N 

Rskew = 0 
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_ ri (~ + W2 + i.t;cr;) 1 (rN J R - -- R 
Skew TIT W W N i 

YV I + . 2 + 3 i=l 

=---LR; , r 1 ( N J 
N N i=I 

where the last equality is obtained by noting that 1i = r IN. The question arise is: "If 

there is data skew, what effect does data skew have on load skew?". Our answer is data 

skew affects load skew through partitioning method. Round-robin, range partitioning and 

hashing are the three most common partitioning strategies. Among them, in terms of load 

balancing, round-robin is the best policy as it destroys the effect of data skew entirely if it 

exists. Unfortunately, round-robin policy can only be feasibly adopted with unary 

operations and compulsory sequential reading. On the other hand, data skew has influence 

on range partitioning and hashing, and in most cases, data skew exacerbates load skew 

except where proper splitting function is employed in which case data skew can offset the 

impact of load skew. 

Skew degrades the system performance in a number of ways. It causes bucket overflow in 

parallel processors with shared-nothing or shared-disk architecture. If a highly skewed 

relation is partitioned into N parts without any load balancing mechanism, it is possible for 

one processor get all the work while all other processors have nothing in the extreme case. 

The individual bucket (memory such as RAM) of the processors may not have enough 

space to store the entire relation, resulting in bucket overflow, in which case it may be 

necessary to re-partition the relation. 

Skew also causes load imbalance by directing different tuple volumes to different 

processors. The most lightly loaded processor has to wait until the heaviest loaded one 

finishes . Thus scaleup and speedup cannot achieve the expected linear results, and it is 

possible that system performance may be even worse than that of the uniprocessor case 

since the use of multiple processors involves extra overheads. 

Skew may also cause problem on the network and connecting processors. If one processor 

is over utilised, the corresponding VO operations and the CPU time for the processor 

outweigh others. Clearly, disk VO is a particular problem in database systems because of 

its slow access time, typically 10,000 times of main memory access time. In addition, 
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various processors must exchange information such as synchronisation data, concurrency 

control messages and some of the intermediate results. Eventually, the heavily loaded 

processor becomes the bottleneck (hot spot) of the system and can even cause congestion of 

the communication network. 

3.5 Summary and Concluding Remarks 

We have provided a new taxonomy of skew for parallel database systems, with attention 

focused on the relational model operating in a shared-nothing distributed memory 

architecture in SP.MD mode. Three types of skew are identified: data skew, load skew, and 

operation skew. Data skew is an intrinsic property of the attributes related to the naturally 

occurring replication and clustering of the underlying data values irrespective of how the 

data are processed. Load skew is related to how the data are allocated to different 

processing nodes, and is caused by the non-uniform spread of input workload and output 

across different processors. Operation skew is caused by the combined effects of a number 

of input relations , which may reinforce or neutralise each another. Load skew may further 

be distinguished into I/O skew, operation skew, and result skew. These different types of 

skew have been quantitatively analysed and expressions are provided for their evaluation. 

In particular, it is shown that skew effect can be significant even when the data partitioning 

is carried out uniformly for all processors. In addition, performance bounds on best and 

worst case behaviour are also derived. 

The skew taxonomy further clarifies the problem of load balancing in parallel database 

systems, identifies the main issues causing skewness, and provides alternatives to solving 

the problem. While most of the existing works try to partition the relation evenly to all 

processors, in the light of our taxonomy, it becomes clear that this is not enough since the 

total load consists of three components, loading, processing, and writing. Equal sized 

fragments for each processor only mean equal loading and processing cost among 

processors; but some processor(s) might do fruitless work because their fragment's 

selectivity is zero which is likely in some situations (e.g. Select a tuple from a relation). 

Skew handling involves two basic steps: skew estimation and skew management (see Figure 

3.6). Skew estimation attempts to identify the existence of the data skew or load skew 

among parallel processors and, if exist, estimate the degree of the corresponding skew. 
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Based on the knowledge of the first step, the skew management procedure then attempts to 

avoid or solve skewed load distribution. In our opinion, skew estimation has been largely 

neglected compared with skew management. 

Skew Estimation Skew Management 

Static Skew Handling Dynamic Skew Handling 

Skew Handling 

Figure 3.6: The Usage of Skew Taxonomy 

Another way to look at the skew taxonomy is in static and dynamic skew handling methods 

(Figure 3.6). The former approaches the problem before dividing the total workload and the 

main focus is on data skew (or load skew for binary relational operations). It is normally 

feasible for simple operations such as unary operation and binary join. However, it will 

become highly complex as the number of processors increases and in situations where 

multiple queries with multiple operations are involved. The static handling method will 

need to perform estimation for every input relations and intermediate result relations. As it 

is not always possible to estimate precisely the host of parameters, it often leads to 

unrealistic bounds on the results. The latter approaches the problem at run time by waiting 

for operation skew (or load skew for unary relational operations) occurrence and resolving 

the skew. Generally, it does not require preprocessing and relies on no distribution 

assumptions. However, taking overheads into account, the extent of performance gain of 

this approach is not always certain with the result that few systems will take the risk of 

adding in extra complexity and cost to the existing system through the deployment of these 

algorithms. Moreover, the efficient and effective overall objective function in terms of both 

cost and response time is hard to obtain. 
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CHAPTER4 

SKEW PREDICTION AND MODELLING 

4.1 Introduction 
4.2 Partitioning Methods 
4.3 A Case Study of Using Range Partitioning for Parallel Processing 
4.4 Skewness Analysis of Range Partitioning 

4.4.1 Unimodel distribution 
4.4.2 Multimodel distribution 
4.4.3 Erlang distribution 

4.5 Problem Description and Um Model for Hash Partitioning 
4. 6 Load Skew Foundation Model of Hash Partitioning 

4.6.1 Mean of maximum and minimum load 
4.6.2 Standard deviation of maximum and minimum load 
4.6.3 Distribution function of maximum and minimum load 
4.6.4 Model simplification 

4. 7 Operation Skew Foundation Model of Hash Partitioning 
4. 7. 1 Parallel hash based join 
4.7.2 Parallel nested loops join 
4.7.3 Parallel sort merge join 

4.8 Summary 

4.1 Introduction 

Parallel processing provides a useful solution in very . large databases where, in theory, a 

near linear speedup of database operations is thought to be possible [DeWi92a, Moha94, 

V ald93]. However, linear speedup is not achievable in practice not only because of high 

communication overheads (initiation and termination) and low resource utilisation, but also 

because of the non-uniform load distribution over the processors -- the problem of skew (see 

Chapter 3). The study of skewness may be classified into empirical skew handling and 
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theoretical skew prediction. The former has attracted the attention of many researchers, and 

a number of skew handling algorithms have been proposed [Liu96b, DeWi92b, Hua91, 

Kits90, Lu92, Omie91, Wolf93a Wolf93b], while the latter has been largely neglected 

[Falo96]. 

With the increasing complexity of parallel databases, it is difficult to accurately predict the 

execution time since it requires a communication model and a computation model. The 

communication model is characterised by parameters such as the inter-processor 

communication, the ratio of network bandwidth to local memory or local cache bandwidth, 

the contention for the destination, and the computation overheads of transmitting and 

receiving messages which are independent of transmission latency between processors 

[Dris95]. On the other hand, the computation model is concerned with different relational 

operations carried out at each processor and the methods employed for processing these 

operations. Exploiting parallelism in parallel databases has been under investigation for 

many years [Bitt83, Mish92, Pang93, Pira90, Qada88, Echn89], but the main barrier in 

formulating a precise computation model is the lack of adequate skewness description. Here, 

we present a complete analytical foundation model for the study of skewness based on the 

extreme value distribution theory, and Chapter 5 will expand the foundation model by 

describing data skew using Zipf distribution and Normal distribution. Two main data 

partitioning methods, range and hashing, are analysed and their influences on load balancing 

are predicted quantitatively. 

An analysis and taxonomy of skew in parallel database processing is presented in Chapter 3 

and three kinds of skewness, namely, data skew, load skew, and operation skew are 

identified. Figure 3.5 shows the relationships among data skew, load skew, and operation 

skew. It goes without saying that skew exists not only in intra-operation level but also in 

inter-operation and inter-query levels. However, we believe that the upper level parallelism 

can not proceed efficiently and effectively without the solving the lower level skewness. 

This Chapter focuses on skew prediction of range partitioning and hash partitioning in the 

absence of data skew at the intra-operation level. In a given query, the data skew presented 

in the relevant base relations are fixed, and thus the optimal system throughput mainly 

depends on the data partitioning methods. A detailed skew analysis is presented based on 

range partitioning. In addition, a complete analytical model of load skew under hash 

partitioning is developed, and it shows that even when data skew is absent, load skew may 
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still be present. Moreover, as data skew increases, load skew will be magnified supra

linearly. In both situations, the effects of both maximum and minimum load skew are 

quantified, and the standard deviation of the mean load and the distribution functions for all 

extreme values (minimum and maximum) are provided in the foundation model based on the 

number of processors and the cardinality of the relation. 

The remainder of the Chapter is organised as follows. Section 4.2 provides a comprehensive 

discussion of the data partitioning methods. The skew problem with range partitioning is 

discussed in Section 4.3 and a detailed skew analysis of range partitioning is provided in 

Section 4.4. The skew problem with hash partitioning is described using um models in 

Section 4.5. Section 4.6 introduces the load skew foundation model and section 4.7 presents 

the operation skew foundation model under hash partitioning. Finally, a summary is 

included in section 4.8. 

4.2 Partitioning Methods 

To process database operations in parallel, three common data partitioning methods are 

often used: round-robin, hashing, and range partitioning. Round-Robin distributes the tuples 

of one relation in a round-robin fashion; range partitioning sends tuples to processors 

according to ranges (boundary values); hash partitioning transfers tuples to various 

processors using a hash function to determine the destinations. These three partitioning 

strategies have already been widely used in real database systems such as Teradata 

(hashing), Tandem (range partitioning), Bubba (hashing and range partitioning), and 

Gamma (all three strategies). 

Simplicity Load Balancing Data Association 

Round-Robin Simple 0 0 0 0 0 Balanced DODOO None 

I I 
Hash Partitioning oDDDD DD 

0 0 l 0 ~ Skewed 

I 
Range Partitionin Complex Complete 

Figure 4.1: Comparison of Three Partitioning Methods 

In terms of simplicity, round-robin is the best choice, followed by hashing which needs to 
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apply a hash function, and range partitioning which involves a number of comparisons and 

a range table. From the load balancing point of view, range partitioning is likely to have 

higher degree of skewness; hashing is better than range partitioning because it involves 

some degree of randomisation; round-robin is the only policy providing complete evenness, 

cancelling the effect of data skew entirely. However, range partitioning maintains the 

association of data and provides better control of outgoing tuples, facilitating not only exact 

match retrieval but also range processing, e.g. activating only relevant processors by 

applying predicate with boundary values. By comparison, round-robin and hashing must 

direct the range predicate to all processors. In addition, round-robin demolishes the data 

association, and so would only be useful in situations where a complete sequential scan is 

needed. Figure 4.1 gives a summary of partitioning methods. Round-Robin gains load 

balancing with its complete evenness by sacrificing data associa:tion; at the other extreme, 

range partitioning sustains the association of data but has poor load balancing; hashing is a 

compromise of round-robin and range partitioning, and may be viewed as either an 

enumerated range partitioning method or a round-robin policy with distinct values. 

Partitioning Attribute Processors 

#8 

#? 

#4 Processor 0 

#7 

#5 

#6 Processor 1 

#1 

#9 Processor 2 

Figure 4.2: Hash Partitioning 

Hash partitioning strategy has been widely used for both unary and binary relational algebra 

operations such as selection, projection and join. Consider an example of hash partitioning 

on a single relation as shown in Figure 4.2, where the length of the horizontal bars on the 

left side of the figure represents the number of occurrences of the attribute values before 

partitioning. The right side of the figure is the distribution results after partitioning. This 

example shows that data skew (left) affects load skew (right) through hashing, and the 

prediction on the influences of hash partitioning strategy on load skew is provided from 

Section 4.5 to Section 4.8. 
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Partitioning Attribute 

#8 

#2 

#4 

#5 

#6 

#1 

#9 

Range 

Partitioning 

Processors 

ProcessorO 

Processor 1 

Processor 2 

Figure 4.3: Range Partitioning 

An example of range partitioning is shown in Figure 4.3 where tuples are distributed 

according to boundary values, i.e. #1 to #3 for Processor 0, #4 to #6 for Processor 1, and 

#7 to #9 for Processor 2. At the left hand side of the figure, the length of each bar represents 

the number of tuples of one specific domain value in a relation. We can see from the figure 

that the distribution result on the right hand side is different from that of using hash 

partitioning but this method also results in load skew over processors. Skewness analysis of 

binary operations using range partitioning is introduced in Sections 4.3 and 4.4. 

4.3 A Case Study of Using Range Partitioning for 
Parallel Processing 

By range partitioning, relations are horizontally distributed to multiple processors. The 

method maintains the data association and has better control of outgoing tuples in a unary 

operation, but it may involve a high degree of skew in binary relational operations. Here, we 

show query examples to illustrate the skewness caused by data partitioning. A detailed 

analysis is provided in Section 4.4 and both of Section 4.3 and Section 4.4 assume a range 

partitioning strategy. 

The following is a legal court management system of relational database design. Within the 

system, each office has a number of lawyers; each case is heard in only one court session 

and presided over by one judge; each client in a case is represented by one lawyer; all 

documents have unique internal numbers within the case. 
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CLIENT (client#, client-name, sex, age, address, city, lawyer#) 

LA WYER (lawver#, lawyer-name, phone, office#) 

CASE (case#, date, judge) 

COURT_CASE (client#, lawver#, case#, time, court-room, address, city) 

DOCUMENT (document#, type, date-prepared, case#) 

OFFICE (office#, area, level, person-in-charge) 

Query 4.1: SELECT client#, client-name, age 

FROM client 

WHERE sex='M' and age>40 and city='MELBOURNE' 

Query 4.2: SELECT document#, type, date-prepared, case# 

FROM document 

WHERE document#=l23456 

Query 4.3: SELECT client#, client-name, client.city, court_case.time, 

court_ case. court-room 

FROM client, court_case 

WHERE client.city=court_case.city and court_case.court-room= 'n 11 O' 

Query 4.4: SELECT lawyer#, lawyer-name, office#, level, person-in-charge 

FROM lawyer, office 

WHERE lawyer.office#=office.office# and person-in-cbarge= 'SMITH NEWS' 

Parallel processing of unary operations using range partitioning does not involve load skew 

since relations can always be partitioned evenly. In most cases, the cardinality of the 

relations is known and a range table is constructed for distribution purpose. Therefore, each 

processor receives an equal number of tuples and the boundary values for each processor 

are also recorded in the range table. The selection criteria of incoming query is applied to 

the range table and sent to only relevant processors for processing. 

In Query 4.1, we want to list the male clients who lives in Melbourne and their age is over 

40. The client# is selected as partitioning attribute and the predicates are forwarded to all 

processors since the predicate attribute is different from the partitioning attribute. Assuming 

there are 100 tuples in the client table and 10 processors, we send the first 10 tuples to the 
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first processor and record the boundary values in the range table. In such a way, unary 

operation can always be evenly partitioned based on range partitioning. In Query 4.2, the 

partitioning attribute, document#, is also the predicate attribute, so that the predicate is only 

forwarded to a set of processors in accordance with the range table. Again, equal 

partitioning is assured. 

For a binary operation, the same technique may be applied to the first relation and then the 

second relation is partitioned based on the constructed range table. As a result, there is little 

control on the outgoing tuples of the second relation, which may cause load imbalance. 

In Query 4.3, we can select either an unsorted attribute, e.g. client-city, or a sorted attribute, 

e.g. client#, but the entire second relation has to be broadcasted to every processor. In this 

case, there is no load skew. However, the principle of relational database is that data are 

stored in simple tables and all tables are linked using duplicate attributes (i.e. the foreign 

key). Hence, most of the binary join operations make use of the foreign key attribute which 

is sorted in the referenced table [Ullm89]. An example of this is shown in Query 4.4 and 

clearly the partitioning attribute is office.office#. The office table is evenly partitioned first 

and the range table is constructed. Applying the range table to the second table, we 

distribute the fragments of different sizes over processors. Consequently, load skew may 

occur due to less control and in Section 4.4 we will analysis and quantify the degree of load 

skew caused in this situation, i.e. parallel processing of binary operations using range 

partitioning on a sorted attribute. 

4.4 Skewness Analysis of Range Partitioning 

In this section, we provide a theoretical treatment of skewness in binary operation using 

range partitioning for parallel processing, together with useful closed-form formula for the 

operation performance prediction in the presence of data skew. Parallel processing of binary 

operation with range partitioning consists of: 

Step 1: equal partitioning based on the area covered for the first operation. 

Then, obtain the boundary values a1, a2, ... , ah ak.1 assuming there are k 

processors. 
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Step 2: apply these boundary values to the second relation and thus partition 

the second relation into k partitions. The size of each partition is represented by 

the area covered by the function curve and boundary intervals. e.g. the size of the 

first partition in Figure 4.4 is the shaded area6 bounded by Ro and a1 under the 

curvef(z). 

Let the attribute value z be distributed over the interval /: [ R0 , R] , where R > R0 , and 

has density function 

R0 :::;; z:::;; R 

z > R or z < R0 

f(z) 

... 
a(2) a(3) a(i) a(k-1) R 

Attribute Values 
z 

Figure 4.4: Partitioning the Second Relation using Range Partitioning 

With k processors, we divide I into k unequal length subintervals {I; };=
1

, i.e. 

Let there be a total of x tuples distributed over /, then the }th processor will have a workload 

of 

6 This area can be calculated using mathematical software such as Mathematica or a simulation 
software assuming f{z) is reasonable simple and its integration interval is easy to define. 
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tuples, where F(.) is the cumulative distribution function. The most heavily loaded 

processor is the j * corresponding to 

max.[F(a .)- F(a ._1)] 
l$j$k J J 

with Pmwc given by 

4.4.1 Unimodel Distribution 

For a unirnodel distribution, the k quantities in the above equations need not all be evaluated 

and j* may be taken to be the processor where the mode occurs. The mode m may be 

located using the conditions f ' ( m) = 0 and f" ( m) < 0 . 

Although this may not always correspond to the most heavily loaded processor, it should 

provide a close approximation to system performance. Figure 4.5 shows an example of this 

situation where the area <1> with the mode mis less than the area <2> covered by its 

neighbour subinterval. 

m 

f(z) 

... 
a(j+ 1) 

Attribute Values z 

Figure 4.5: A Special Case 

4.4.2 Multimodel Distribution 

For multimodel distribution with modes m1, m2, ••. , mq, the evaluation of the k quantities in 

the above equations may similarly be simplified by confining attention to 
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wheres ifthe set of q subintervals containing m1, m2, . .. , mq as shown in Figure 4.6. 

m{2) m(q) 

m(1) 
m(f) 

f(z) (l 
... 

Attribute Values 
z 

Figure 4.6: Multimodel Distribution 

4.4.3 Erlang Distribution 

Supposing the attribute values are distributed according to the Erlang Distribution which 

can be used to model a wide variety of characteristics 

r r-1 -pz 

( ) 
p z e 

T1 z = (r - 1) ! ' z>O 

with the mean r I p and the standard deviation Fr I p . 

When confined to a finite interval [0, R], then it becomes the truncated density 

r r-1 -pz 

( ) 
cp z e 

f z = (r-1)! ' 05:z5:R 

Where C - rR p z e dz 
[ 

r r-1 -pz ]-I 
- Jo (r -1)! 
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For r> 1, the mode of f(z) is found from 

Thus, we obtain 

· cp'(r-l)z'-2e-pz cp'z'-1(-p)e-pz 
f (z)= + =0 

(r - 1) ! (r - 1) ! 

=> (r - l)z'-2 
- pz'-1 = 0 

=> (r - 1) = pz or 

j* = r r k~ 1 l . 

r-l 
z =--

p 

Hence Pmax may be taken to be 

Quadrature is normally required for the evaluation of F(.). However, for R>> 1, F(.) may be 

approximated by [Cox62] 

r-1 e -p: (pz y 
F(z)=l-I ., 

i=O l · 

This gives 

i.e. 
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When r = 1, 11( z) yields the exponential distribution 11( z) = pe-pz , and thus we have 

pe-pz 
f(z) = 1 -pR' -e 

05:z5:R. 

As f(z) is a decreasing function, then evidently the most heavily loaded processor is the first 

one, i.e. 

Rik l - e-pR/k 

Pmax = l f (z)dz = -pR . 
0 1- e 

4.5 Problem Description and Urn Models for Hash 
Partitioning 

As in [Azar94], the skew problem of hash partitioning may be described by the urn model of 

coloured balls, where each of the colours refers to one unique domain value with each ball 

representing an individual tuple, and each urn corresponding to a processor. Hence, a 

relation consists of coloured balls. During the partitioning, the balls are assigned to urns 

according to their colours, i.e. balls of the same colour will be sent to one and only one urn 

based on hashing. Figure 4.7 shows the data skew, load skew, and their relationship in 

parallel database systems. The number of appearances of each value before processing 

relates to data skew whereas the number of tuples in each processor after partitioning relates 

to load skew. The load skew can be represented as a function of data skew and the number 

of processors, and the relationship between data skew and load skew is reflected by the 

transforming hash function. Hereafter, the skew model is based on hash partitioning method 

which can be regarded as randomly distributing balls to urns. 

There are two relations, R and S, in the case of a binary operation. Therefore, the balls of S 

are distributed to the same number of urns randomly after the completion of the distribution 
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of R. Tilis may result in different load skew distribution of operand relations as shown in 

Figure 4.8. In this case, the most heavily loaded urn of R matches the lowest loaded um of S 

and thus reduces the imbalance. The number of balls in each urn after distributing balls of R 

and S gives the degree of operation skew. 

Data Skew 

Colours (distinct domain values) 

#of Balls 
per Color 

(#of Appearance 
per Domain 

Value) 

Mapping 
(Transforming Hash Function) 

Partitioning 

f(data skew,# of Processors) 

URN No. 

Load Skew 

(Processor No.) 

#of Balls 
per URN 

(#of Tuples 
per Processor) 

Figure 4.7: Data Skew vs Load Skew 

#of Balls 
per URN 

Load Skew (Relation R) 
(#of Tuples 

per Processor) 

URN No. (Processor No.) 

+ Merging for Binary Operations 

Load Skew (Relation S) 

URN No. (Processor No.) 

11 

#of Balls 
per URN 

(# ofTuples 
per Processor) 

#of Balls 
per URN 

(# ofTuples 
Operation Skew (Relation R&S) per Processor) 

URN No. (Processor No.) 

Figure 4.8: Load Skew vs Operation Skew 
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4.6 Load Skew Foundation Model of Hash Partitioning 

Let x be the number of tuples of relation Rand k, the number of processors. The aim of the 

model is to find the average number of tuples in the most heavily loaded processor and in 

the least heavily loaded processor. With traditional urn model, their limiting distributions of 

maximal and minimal occupancy of boxes are based on asymptotic methods of probability 

theory. The only assumption made is that we are allocating x balls to k urns randomly and 

independently, with the probability of any one ball getting into a given urn equal to llk. 

Therefore, supposing tuples are randomly allocated (e.g. hashed) to each available 

processor with the same probability 1/k, then the joint distribution of the occupancy 

numbers x1 , ••• , xk across all processors (i.e. xi gives the number of tuples in processor i) 

follows a multinomial distribution, and we need to find 

the largest and the smallest multinomial occupancy numbers respectively in this situation. 

From [John60], it is shown that, for large x, the standardised variables 

i = 1,2, .. . ,k ' 

follow a multivariate normal distribution, with zero mean, unit variances, and each 

-1 
covariance equal to -(--) . 

k-l 

We denote max(wl' ... , wk) by Lk and min(w1, • ••• wk) by Lk·· In [Gala87] , it is 

shown that the maximum extreme value limiting distribution function for 

where 
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1 bk ( ) 1 ak =--- lnlnk+ln4n , bk= .J2fllk ' 
bk 2 2ln k 

(4-0) 

is given by 

H(t) = exp (-e -r), 

which is the Gumbel distribution with mean equalled to Euler's Constant y = 0.577216, and 

variance of 7t
2 I 6. Again form [Gala87], the minimum extreme value limiting distribution 

function for 

where ck = -ak and dk =bk, is given by 

H*(t)= l-exp(-e 1
). 

In order to measure load skew, the maximum number of tuples in an urn is often used, i.e . 

by means of an extreme value. There are three types of extreme value distribution in order 

statistics and namely, the Frechet Type, Weibull Type, and Gumbel Type [Gala87]. Among 

them together with their corresponding preconditions, the Gumbel (third) type distribution is 

adopted in the skew model. 

4.6.1 Mean of Maximum and Minimum Load 

a. Mean of Maximum Load 

From the properties of the Gumbel distribution [Gala87], we have 
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In this particular situation, the parameters ak and bk are given in (4-0) . Thus, we get, on 

simplification, 

E(Lk)= .J y +.J2Ink- k(Inink+In4n) 
2In k 2 2ln k 

= 
1 

(11n k - ln ln k - 0.69J . 
.J2Ink 2 

Thus, 

E(L) = x + E(Lk )~x(k- l) 
k k 

= x [i + fk=l(21n k - In Ink - 0.69)] . 
k 'Jhlnk 2 

After the above transformation and simplification, we obtain for the maximum average load 

L = 3-[1 + ~(2Ink- lnlnk -0.69J]. . (4-1) 
k vhlnk 2 

b. Mean of Minimum Load 

From the properties of the Gumbel distribution [Gala87], we have 

( 
. ) E ( Lk * )- ck 

E L * = = -v 
k d I' 

k 
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Again from (4-0) and on simplification, we have 

y ~ 1 
E(LK *)= - .fihl-v2lnk + .fihl(lnlnk+ln4n) 

2ln k 2 2ln k 

= 1 
(lnlnk + 0.69-2lnk) . 

.J2Ink 2 

Thus, 

( ) 
x E(Lk *Nx(k-1) E L * = - + __..;:___.:;.._;;_.._ __ 
k k 

= .::_[1- ~(21n k- ln ln k - 0.69)] . 
k vhlnk 2 

After the above transformation and simplification, the minimum average load is given by 

L* = x[l- ~(21nk- lnlnk -0.69)] . (4-2) 
k vhlnk 2 

By introducing a load skew factor <p , 

<p = ~(21nk- lnlnk -0.69) vhlnk 2 
(4-3) 

equations (4-1) and (4-2) can be rewritten as 

(4-4) 

and 
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L * = x (1- <p). 
k 

(4-5) 

Figure 4.9 shows the 3D representation of maximum average load in varying parameters k 

and x. With a small number of processors, maximum average load drops sharply but the 

curve in the figure becomes smooth when the number of processors is further increased. 

Moreover, in heavy workload, having more processors means reduced maximum load, 

whereas with light workload, maximum load is kept to a minimal level. The 3D 

representation of minimum average load is shown in Figure 4.10. In general, the trend is 

close to that of maximum average load. The load reduction is significant when k is small, 

but becomes marginal when k is large. A relatively light workload is insensitive to the 

increase of the number of processors. Finally, in both figures, we can see that a large 

number of processors do not reduce the maximum average load or increase the minimum 

average load significantly. 

L 

1. 1 0 

Figure 4.9: Maximum Avg Load when k is in [ 2, 105
] and x is in [105

, 109
] 

Page 69 



Skew Prediction and Modelling 

Figure 4.10: Minimum Avg Load when k is in [ 2, 105 
] and x is in [ 105

, 109 
] 

4.6.2 Standard Deviation of Maximum and Minimum Load 

From the properties of the Gumbel distribution [Gala87], we have 

2xb2 n2 
Var(Lk )= 7t k = --

6 12lnk 

Using (4-0), we obtain 

x(k-I) 
Var(L) = 2 x Var(Lk) 

k 

x(k-I) n 2 

:=: x---
k2 12 ln k 
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11:
2 x(k -1) 

=----
12k2lnk 

n x(k -1) 
(JL = -

k 12 Ink 

In addition, 

1 11:2 
Var(L~ *) = - 2 xVar(Lk *) = - , 

bk 6 

2 b 2 2 
"'Ir (L*)-nxk n var k -- =---

6 12lnk' 

x(k -1) 
Var(L *) = k2 x Var(Lk *) 

x(k-l) rr 2 

= x---
k2 12 lnk 

rr 2 x(k -1) 
= 

12k 2 lnk ' 

7t x(k -1) 
(J L* = -

k 12ln k 

Therefore, the standard deviations of Land L* may both be approximated by 

7t x(k -1) 
k l2Ink 

(4-6) 

The graph representations of standard deviations of L and L * are shown in Figure 4.11 

where parameters k and x are in the same range as their mean load values. In the figure, the 

standard deviations are large when the workload is heavy and the number of processors is 

small. Increasing the number of processors reduces the standard deviations. 
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S.D. 

1. 10 

Figure 4.11: Standard Deviations when k is in [2, 105
] and xis in [105

, 109
] 

4.6.3 Distribution Function of Maximum and Minimum Load 

a. Distribution Function of Maximum Load 

Here, 

so that from [Gala87], 
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=Pr ~(i-f) _a, lb, ~L, 
x(k - I) 

k(t - !...).J21n k 
k _ 21n k + ln ln k + ln 411: 

~x(k-1) 2 2 

{ 
. ( 2 ln k In( 411: ln k )]} 

= Pr Lk :::; (kt - x) x( k _ 
1
) - 2 ln k + 

2 

{ [ 
ln ( 4 n: ln k) 2 ln k ]} ==> Pr( L :::; t) = exp - exp 2 ln k - - (kt - x) ) . 

2 x(k-1 

Therefore, the maximum load distribution function may be approximated by 

{ [ 
ln(4n:lnk) 21nk ]} 

Pr( L :::; t) = exp - exp 2 ln k -
2 

- (kt - x) x( k _ 
1
) , ( 4-7) 

from which the percentiles may be determined. 

b. Distribution Function of Minimum Load 

Similar to the above, we have 

so that, 
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Therefore, 

[(
b L *-a x) ] =Pr k k k k ~ x(k -1) + k ?::. t 

=Pr L * > k -

k(t - x).J21n k 
k + 2 In k _ In In k _ ln 4 rc 

~x(k- l) 2 2 

{ 
. ( 2 ln k ln( 4rc ln k )]} 

= Pr Lk * ?::. (kt - x) x( k _ 
1
) + 2 In k -

2 
. 

{ [ 
In(4n:lnk) 2Ink ]} 

Pr( L *?::. t) = 1- exp - exp 2 Ink -
2 

+ (kt - x) x( k _ 
1
) • ' 

{ [ 
In(4n:Ink) 2Ink ]} 

Pr(L*:=;t)=exp -exp 2Ink-
2 

+(kt-x) x(k-I) · 

Thus, the minimum load distribution function is given by 
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p (L) 

1 
0.8 

Figure 4.12: Maximum Load Distribution when k is in [ 16, 19], 

tis in [600, 720] and x=lOOOO 

P(L) 

1 
0.8 

t 

110000 

x 

Figure 4.13: Maximum Load Distribution when x is in [90000, 110000], 

t is in [ 400, 500] and k=256 

Setting the value of x and varying the value of kin a short range, the cumulative distribution 

function is displayed in Figure 4.12. With 17 processors, it is almost certain that the 

maximum average load is less than 700 tuples. When the maximum load is 660 tuples, the 
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chance of it being the maximum load is 10% with 16 processors, and the probability 

steadily grows when the number of processors is increased. Again for the maximum load 

distribution, setting the value of k and varying the value of x and t give the result displayed 

in Figure 4.13. With ax value of 90000, the probability of a t value of 400 tuples being the 

maximum load is 20%. When the workload is raised, the probability of the t value of 400 

tuples being the maximum load is decreased. In other words, increasing workloads will 

raise the maximum average load with a fixed number of processors. 

P (L*) 

Figure 4.14: Minimum Load Distribution when xis in (90000, 110000], 

tis in (300, 380] and k=256 

Figure 4.14 shows the 3D representation of the minimum load distribution when the number 

of processors is set to 256. When the value oft is increased, the likelihood of it being the 

minimum load is decreased. When the value of xis 100000, it is sure that the minimum 

load is less than 300 tuples, reducing workloads to 90000 will lessen the chance of the 300 

tuples being the minimum load. Figure 4.15 shows the 3D representation of the minimum 

load distribution when the workload is set to 10000 tuples. With 16 processors, increasing 

the t value will lower the chance of it being the minimum load, and increasing the number of 

processors will reduce the chance of the t value being the minimum load. 
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p (L*) 

Figure 4.15: Minimum Load Distribution when k is in [ 16, 19], 

tis in (500, 620] and x=10000 

4.6.4 Model Simplification 

For k>>l , we obtain from equations (4-1) - (4-8) the following approximations, 

maximum average load: 

minimum average load: 

standard deviation of maximum and minimum average load: 
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maximum load distribution function: 

minimum load distribution function: 

4.7 Operation Skew Foundation Model of Hash 
Partitioning 

Recalling in Figure 3.5, operation skew due to hash partitioning is based on load skew, the 

relational operation and its processing method. With a unary operation, the operation skew 

is the same as load skew because there is only one operand relation. With a binary 

operation, operation skew is the combined effects of load skew with two input relations 

since the load skew in one relation may not match the load skew in another relation. In 

other words, load skew in both operand relations may reinforce or cancel out each another. 

The operation processing method also has influence on operation skew since it determines 

the local processing complexity. 

With operation skew in binary operations, we concentrate on the join operation. Being one 

of the most expensive and widely used relational algebra operations, join combines two 

relations with a common domain into a single relation. Looking for efficient join algorithm 

has been an active research area for decades, hash based join, sort merge join and nested 

loops join are generally considered as common join algorithms. Accurately modelling the 

parallel join is always desirable because it not only predicts execution time precisely but 

also provides more effective and efficient parallel query processing. 

Skew modelling focuses on load imbalance over multiple processors after data partitioning, 

and therefore to emphasise and isolate the skew problem with various fragments sizes, only 

Page 78 



Skew Prediction and Modelling 

the number of tuples after partitioning is considered. It is recognised that memory, 1/0, and 

communication contentions also contribute to the total time, but the skew model is 

independent of the off-line operations such as the operating system, the data placement and 

the hardware platform. It only depends on on-line operations such as the degree of data 

skew in the incoming queries and the data partitioning strategies . In this section, we 

introduce an operation skew factor , compares it to the load skew factor of the last section, 

and then integrate the factor into three common parallel join processing methods. 

With the binary join operation, the same distribution procedure is carried out for both 

operand relations. Hence, after partitioning the two relations , the final result is only affected 

by the total number of tuples allocated to the processor irrespective of their owner 

(belonging to either relation R or S), so we can derive the following operation skew factor 

\V by replacing x with (x+y) of equation (4-3). 

\µ-= k - 1 (2 ln k - ln ln k - 0.69) 
2(x+ y)lnk 2 

(4-9) 

Hash based join, sort merge join and nested loops join are three common join methods and 

their processing complexity are well known in uniprocessor system. Taking into account of 

skewness, the complexity of these three methods are given below. 

4.7.1 Parallel Hash Based Join 

The hash based join is the most widely used join algorithms. With multiple processors, two 

relations are partitioned with the same hash function, and at each processor, one fragment is 

used to build the hash table and the other fragment is applied to probe the table. If there is a 

match, output the result. In such a simple parallel hash-based join, the maximum and 

minimum load over k processors are given as 

(4-10) 

and 
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L*= x+ y (l-'tf). 
k 

4.7.2 Parallel Nested Loops Join 

(4-11) 

One of the simplest join methods is the nested loops join. For every tuple in relation R 

(outer relation) the entire relation S (inner relation) is scanned and the matches are found. 

The advantages of the method are its simplicity and that it requires no extra space. In 

parallel nested loops join, both operand relations are partitioned with the same hash 

function. At each processor, for every tuple of one fragment, all tuples of another fragment 

are compared and matching results output. Therefore, the maximum and minimum load 

over k processors are given respectively as 

(4-12) 

and 

(4-13) 

4. 7 .3 Parallel Sort Merge Join 

The sort merge join consists of two phases, the sort phase and the merge phase. In the first 

phase, the relations are sorted on the join key. Then, the input relations are merged in the 

order of join key. The parallel version of sort merge join has three phases , sort, transfer, 

and merge, namely. After the relations are sorted, the fragments of the relations are 

transferred to various processors in the transfer phase. Finally , each processor works 

independently on the sorted range tuples. The tuples are merged in the individual processor. 

The sort merge join is sensitive to the initial order of its input since the ordered input 

relations omit the sorting phase of the algorithm. In addition, sort merge join uses extra 

space proportional to the size of the input relations . Again here, we only consider the 

complexity of operation skew so that we do not include the time for sorting and data 

hashing. Therefore, we have 
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L = xlog 2 

x(I+\jf) (y(l+\jf)) 
k k 

(4-14) 

and 

L* = x log . 
x(I-\jf) (y(l-'V)) 

k 2 k 
(4-15) 

4.8 Summary 

In this chapter we presented a comparison of common partitioning methods emphasising 

their strengths and weaknesses. Two main partitioning methods are used in parallel 

processing, namely, range and hash partitioning. Skewness analysis of range partitioning is 

introduced using Unimodel, Multimodel, and Erlang distributions. With a hash function, the 

load skew resulted depends on the data skew in the base relations and the hash function. We 

provided the skew prediction foundation model in the absence of data skew using the 

extreme value distribution theory of order statistics. Both maximum and minimum average 

load values are provided based on a complete analytical skew model. Standard deviations 

of the mean load and the extreme values distributions are also provided for the load skew. 

In addition, an operation skew foundation model is developed for the join operation. 
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CHAPTERS 

SKEW PREDICTION OF HASH 

PARTITIONING WITH DATA SKEW 

5 .1 Introduction 
5. 2 Problem Description and Urn Model of Hash Partitioning with Data Skew 
5.3 Load Skew Extension Model 

5.3.1 Representing data skew with Zipf Distribution 
5.3.2 Representing data skew with Normal Distribution 

5 .4 Operation Skew Extension Model 
5.4.1 Operation skew with single data skew 
5.4.2 Operation skew with double data skew 

5.5 Simulation Experimentation 
5. 5 .1 Simulation model 
5.5 .2 Validation ofload skew foundation model 
5.5.3 Validation of operation skew foundation model 
5 .5 .4 Load skew and operation skew generation 
5 .5 .5 Validation of load skew extension model 
5.5.6 Validation of operation skew extension model 

5. 6 Data Skew, Load Skew and Operation Skew 
5.7 Concluding Remarks on Skew Modelling and Prediction 

5.1 Introduction 

In the last chapter, we assume that before hash partitioning the data values are inherently 

uniformly distributed and present a skew foundation model in Section 4.6 which gives the 

accurate prediction in the absence of data skew. The problems remain are that what 
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happen if there is data skew, and going a bit further what is the relationship between data 

skew and load and operation skew. These are the main tasks of this chapter. Section 5.2 

discusses the skew problem with data skew and its relationship with the mathematical urn 

model. The load skew extension model is presented in Section 5.3 and operation skew 

extension is provided in Section 5.4. All the models are evaluated on the Terabyte 

Database Simulation Model and the results are reported in Section 5.5. We offer an 

analysis on data skew, load skew and operation skew in Section 5.6. Finally, we give a 

discussion of the skew model usage and concluding remarks on skew modelling in Section 

5.7. 

5.2 Problem Description and Urn Model of Hash 
Partitioning with Data Skew 

If data skew exists, a given attribute value of a relation may appear more frequently than 

other values, and this might result in an uneven number of tuples spread across processors 

after partitioning. Therefore, the situation can be described as a distribution with bias. 

Using the telephone directory example, generally, there are more entries starting with 

letter "c" and "d" than that starting with letter "y" and "z". Again in the context of the urn 

model [John77], urns correspond to different classes with different probabilities, and the 

balls are likely to go to the most favoured urn. In other words, the maximum load 

potentially happens in the most favoured urn and minimum load occurs in the least 

favoured urn. When all the urn's classes have the same probability llk of receiving balls, 

we obtain the situation studied in the last chapter, i.e. there is no data skew. 

Figure 5 .1 shows the phenomenon represented by the urn models in the presence of data 

skew. There are four urns (processors) with different capacities and the third urn is the 

most favoured urn. The balls (tuples) are treated equally as the single distribution union 

but the distribution rule is biased in the sense that urns are associated with different 

receiving probabilities as shown in the figure: 10%, 30%, 50%, and 20%. Certainly, the 

final distribution result will reveal that number of balls in each urn is proportional to the 

urn probability. 
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Urn #1 Um#2 Um#3 Um#4 

10% 30% 50% 20% 

Figure 5.1: Urn Models with Different Probabilities 

5.3 Load Skew Extension Model 

In this section, we shall examine the influence of data skew on the load skew. Supposing 

the processors are now chosen with non-uniform probabilities p 1 , •• • , pk caused by data 

skew, then letting p max = max(p1' ... , pk) ' and replacing l/k by p max in equation ( 4-1 ), 

( 4-6), and ( 4-7), the maximum load skew now becomes 

- [ (1 f Pmax -1) ( ( ) lnln(l f Pmax) )] 
L = XPmax l+ · ( ) 2ln 1/ P max - -0.69 • , (5-1 ) 

2x ln 1/ Pmax 2 

with standard deviation 

x(ll Pmax -1) 
12ln(l/ Pmax) ' 

(5-2) 

and distribution function given by 

In( 47t ln(l/ Pm-.x )) . ( t 21n(l/ Prmx) ]} --x . (5-3) 
2 Pnnx x(l/ Pm1x -1) 

Likewise, we have Pmin == min(pp· ··•Pk) and replacing l/k by Pmin in equation (4-2), 

(4-6), and (4-8), the minimum value may be obtained 
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- [ ( 1 I p . - 1) ( ln ln ( 1 I p . ) )] 
L * = XPmin 1- tm ) 2 ln(l/ Pmin )- nun - 0.69 , (5-4) 

2xlnl/pmin 2 

with standard deviation 

x(ll Pmin -1) 
12 ln(l/ Pmin) ' 

and distribution function given by 

[ 
In( 4rc ln( II P rrin ) ) ( t 

Pr(L*::=;;t) =e -exp 2ln(l/ Prrin) + - . -x 
2 Pmm 

(5-5) 

21n(ll Pnin) ]'} 
x(ll Pmr. -1) 

. (5-6) 

Although the distribution function and the standard deviations are useful , we shall 

primarily focus on the mean maximum and minimum load in the rest of the thesis as these 

provide the simplest yet reliable summary of skew behaviour. 

5.3.1 Representing Data Skew with Zipf Distribution 

In many textual or bibliographic databases, the data distribution tends to follow the Zipf 

law '[Zipf49] which has been found to give a reasonable approximation to the number of 

appearances of each domain value of the relation. The Zipf distribution has been widely 
-· -

used in skew handling algorithms [Lync88, Kell91 , Wolf93a, Wolf93b]. Here, we take 

the probabilities of processors receiving tuples as following a Zipf distribution and, to 

make it more general , we introduce a data skew factor 8 in the probability mass function 

as follows 

1 
P=----

' k 1 ' 
ie x I-.-0 

j=l J 

(5-7) 

where 0 :::; 8 :::; 1 and i is the ith processor. When e = 0 , it yields a discrete uniform 
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distribution (i.e. no da:ta skew), thus subsuming the representation in Chapter 4 as a 

special case as shown in Figure 5.2. One of the most commonly used distributions for 

describing skew is the pure Zipf distribution ( e = I ) where the ith common word in 

natural language text seems to occur with a frequency proportional to i [Knut73, Zipf49] 

and its probability mass function is 

1 1 1 
p = =---=-----

! ix±~ ix Hk ix (y +Ink) ' 
j=l 1 

(5-8) 

where "( = 0.577216 and Hk are respectively the Euler's constant and the kth Harmonic 

Number [Knut73]. Figure 5.3 shows the probability density of Zipf distribution with 10 

processors with the light coloured columns indicating the maximum and the minimum 

probability. 

In Figure 5.3, the maximum probability is 

1 1 
Pmax =pl= Hk = y+Ink (5-9) 

and the minimum probability is 

1 1 
Pmin =pk= kxHk = k(y +Ink)' (5-10) 

1 2 3 4 5 6 7 8 9 10 

The Number of Processor -- i (k=10) 

Figure 5.2: Density of Discrete Uniform Distribution with 10 Processors 
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P(i) 

, 2 3 4 5 6 7 8 9 10 

The Number of Processor·· i (k=10) 

Figure 5.3: Density of Zipf Distribution with 10 Processors 

Thus, from equations (5-1) and (5-4) the maximum and the minimum load skew for the 

Zipf law are: 

L= x [1+ (y;lnk-I\(2In(y+Ink) 
y+lnk 2x y+lnk 

and 

lnln(y + lnk) 

2 
(5-11) 

L*= x [1- (k(y+lnk)-l) (1m(k(y+lnk)) lnln(k(y+lnk)) _0.69]] . (5-12) 
k('Y +Ink) 2x1n(k('Y +Ink)) 2 

5.3.2 Repre~enting Data Skew with Normal Distribution 

Given a certain degree of data skew e , the estimate from the previous section will be 

shown to be fairly accurate in Section 5.5 and Chapter 10. However, discovering the 

degree of data skew has been proven to be a difficult task since it involves either 

expensive sampling or periodic collection of statistics from the data dictionary [Liu95, 

Pira90]. Moreover, both methods require complex procedures for sampling or updating 

the data dictionary and to obtain a satisfactory confidence level often results in extremely 

high cost. 

The focus of our study is on very large parallel databases which consist of relations close 
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to terabyte size and it would seem appropriate to model the data values using the 

continuous normal distribution, which provides a useful description of many phenomena. 

In addition, the normal distribution is the most useful distribution in modelling in general 

because of the following reasons [Gray80]. 

• The sum of n independently and identically distributed random variables tends 

to be normally distributed as n tends to infinity. This result is the central limit 

theorem. 

• If the random variable is distributed binomially, then as n tends toward 

infinity, the random variable tends to be normally distributed with mean µ = nq, 

d 
. 2 an vanance cr = npq . 

• If the random variable is distributed according to the Poisson distribution with 

parameter 'A, then as 'A gets large, the random variable tends to be normally 

distributed with mean µ = 'A . 

The normal density with mean µ and standard deviation cr , is given by 

. 1 ( (i - µ )~ J 
\jl = P(L; µ,cr) = .J2iC exp - ? , 

cr 2rr 2cr -

where the parameters µ and cr satisfy -oo < µ < +oo and cr > 0 . The distribution is 

Bell-Shape and symmetrical, and by suitably adjusting µ and cr a variety of skewness 

characteristics may be captured. 

To adapt the normal density function for our purpose, we split it into k intervals where k is 

the number of processors. Each interval has length 
6

cr , where cr is the standard 
~ k 

deviation of the normal distribution, which in total takes up 99.73% of the mass (since 

µ ± 3cr accounts for 99.73% of the probabilities). When k is an even number, the 

boundary values of the largest and smallest probability intervals are 
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Therefore, 

and 

= <I>(O)-<I>(-:) = <I>(O)-[ 1- <I>(:)]= <I>(6 / k )-0.5 

6cr 
µ-3cr+-k -µ 

=<I>-----
cr 

= <I>(-3 + !)- <I>(-3) = 1-<I>( 3-: )-[l-<I>(3)] 

=<1>(3)-<1>(3-6/ k) . 

When k is an odd number, the boundary values of the largest and smallest probability 

interval are 

[ 
6cr 6cr J µ-- µ+- and 
2k' 2k 

Therefore, 
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and 

= ~U)-~(-n = ~U)-(1 -~U)J 
= 2<1>(3/ k)-1 

6cr 
µ-3cr+-k -µ 

= <l> ---------
cr 

= ~(-3 + ~ )- ~(-3) = I - ~( 3 - ~ )- (I - ~( 3)) 

= <1>(3)-<1>(3-6/ k). 

However, the 6cr only covers 99.73% of the mass in normal distribution and the rest 

covers probabilities beyond 3cr on either side of µ which may be significant when the 

number of processors k is large, and we assume that this is spread evenly across all 

0.27% 
processors with for each processor. 

k 

Figure 5 .4 shows the discretised mass function of the normal distribution, with the light 

coloured columns representing the minimum and the maximum probabilities. Whether the 

number of processors is even or odd affects the maximum load, and their effects are 

shown in Figur~ 5.4(a) and Figure 5.4(b). 

It is shown that if <I>(C) is the standard normal distribution function evaluated at C, 

and 

{
<I>( 6 I k) - 0.5 +A 

Pmax z 2<1>(3 I k)- l +A 

Pnun z 1-<1>(3-6/ k)+A 

fork even 

fork odd 
(5-13) 

(5-14) 
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where A = 0.2?% 
k 

It is also shown in Appendix A that for all k, 

( 2<1>(3 I k )- I+ A)~ ( <1>( 6 I k )- 0.5 +A). 

P(i) 

1 2 3 4 5 6 7 8 9 
The Number of Processor·· i (k=11) 

(a). 11 Processors 

P(i) 

1 2 3 4 5 6 7 8 
The Number of Processor·· i (k=10) 

(b ). 10 Processors 

Figure 5.4: Density of Normal Distribution 

Thus, we may take 

Pmax ""'2<1>(3 I k )- I+ A 

10 11 

9 10 

for all k, with the understanding that this is exact for odd k but represents a slight over

estimation for k even. 
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We note that neither Pmax nor Pmin directly depends on the mean and variance of the 

underlying normal distribution. The number of processors alone is sufficient to 

characterise Pmax and Pmin· This is so because 

• where the peak (mode) of the distribution occurs is unimportant as long as all the 

processors are identical, 

• the spread of the distribution (variance) is already incorporated through the number 

of processors since nearly all the tuples (µ ± 3cr) must be allocated to those 

processors. 

Although a closed-form representation for <D(x) is not available, an excellent 

approximation is given by [Borj79] 

<Dx=l- --
[ 

1 ] e-x
2

12 

( ) 0.66lx + 0.339.J x 2 + 5.51 J2ii, ' 
x~O. (5-15) 

Assuming the number of processors is even, from equation ( 5-1), the maximum load skew 

is given by 

L z x x (<P(6! k)-05+A) x 

{1 + [ (( <!>( 6 I k )-05+ Ar' - I );(2x!n( <!>( 61 k )-05 +A nr (5-16) 

(21n(c_1>(61 k)-o.s+Ar
1 
-1n1n(<P(61k)-o5+Ar

1
12-0.69)} 

and the minimum value, from equation (5-4) , is 

L*::=xx(<P(3)-<P(3-6/ k)+A) x 

{1-[((<!>(3)-<!>(3-6/ k)+ Af1 
-1) /2xln{<!>(3)-<!>(3-6/ k) + AfT (5-17) 

(21n(<P(3)-<P(3-61 k)+Ar
1 

-1nin(<D(3)-<P(3-61k)+Ar
1

12-0.69)} 

Page 92 



Skew Prediction of Hash Partitioning with Data Skew 

Fork large, values such as A, 0.69 and 0.5 may be ignored in equations (5-16) and (5-17), 

and constants 0.661 and 0.339 may be approximated by 2/3 and 1/3 in equation (5-15). 

By applying these simplifications, we can obtain a closed form result as follows : 

L = xx(1-(3e-1
'"' 1(121 k+(36/ k2 +551)1'2)} (21t)"

2 
) x 

{ 1 + [ ( (I -( 3e -
1
'"' I (121 k + (3 61 k2 + 551 r)} ( 2it )1'2 r -I J 

{ 2x1n(1-(3e-1
'"' I (121k+(36/k2+5.51)1'2)} (2it J1'2 rJ r 

[ 2ln( 1-( 3e-
1
"" I (121k+(36Ik'+551 )"2 )) I (2it )1'2 r 

- In 1n(1-( 3e-1
"' ' I (121k+(36/k'+5.51 )"2 )) I (2it )"2 r / 2 ]} 

and 

I*=xx( (3e-(3-6ik)'n I ( 2(3-6/ k) +((3-6/ k)2 +5.si)"2)} (211;)1'2 } 

{1-l ((( 3e-(3-6
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5.4 Operation Skew Extension Model 

With a unary operation, operation skew is the same as load skew, but with a binary 

operation, operation skew is the combined effects of load skew in the two operand 

relations. The propagation of skew in multi.way join is how the skew has developed after 

several joins. Accurately predicting the skew propagation will give a more precise query 

cost model, but it can not be carried out without an operation skew model presented in the 

thesis. Given a relational operation, if there are data skew in the input relations, it will 

affect the operation skew in the end. Depending on how many input relations are skewed, 

i.e. skew dimension, the operation skew can be referred as no data skew, single data skew, 

and double data skew. Again, we only consider binary join operation skew although the 

skew model can be easily implemented to other binary relational operations. 

The case of operation skew without data skew is discussed in the last chapter. This section 

shall focus on operation skew with single and double data skew relations. The inter

attribute correlations also have a potentially important effect on skew, performance, and 

estimation of join sizes [Bell89]. For the operations with single skewed relation, the 

chance of the maximum load of the skewed relation matching the maximum load of the 

non skewed relation is 1/k, whereas in other cases the average load of the non skewed 

relation and the maximum load of the skewed relation are used to represent the 

distribution results; for the operations with double skewed relations, assume the skewed 

partition from one relation always matches the skewed partition from the other relation 

and thus the distribution results can be represented by maximum load in each relation. The 

maximum load of both operand relations also provide a bound for worst case scenario and 

the assumption is also true with an unbiased range partitioning. 

5.4.1 Operation Skew with Single Data Skew 

Relational operation of one skewed input relation is extremely common in any real 

relational databases. For an instance, there are two tables, Supplier and Part, and they 

have a one-to-many relationship. 

Table: Supplier 

Supplier-No ' Supplier-Name Status City Comment 
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Table: Part 

Part-No Part-Name Colour Description Weight City Supplier-No 

One common binary operation is joining two relations through the Supplier-No attribute. 

To process it on multiple processors, both relations are partitioned on the Supplier-No 

attribute. Table Supplier can be horizontally fragmented evenly, but Table Part is skewed 

since there may be several parts supplied by the same vendor. In the following subsections 

on operation skew with single data skew, we assume that Table R with x tuples is always 

the skewed relation. 

a. Nested Loops Join 

After data partitioning on both input relations, the nested loops join method is employed 

at each processor for local join processing. The maximum and minimum time complexity 

of this join can then be given by 

and 

where L is the load value, x and y are the relational cardinality for R and S, e =0 
indicating a non skewed relation, and e = 1, a skewed relation. Thus, after simplification, 

we have for the maximum and minimum complexity 

(
LxmaJ8 = l)J x( y(k-1) + L . (8 = o)J 

k k ymax 

and 

(
Lxmin(8=l)Jx(y(k-l)+L . (8 =0)) . 

k k _v mm 
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b. Hash Based Join 

With hash based local join, one relation R is used to set up the hash table and another 

relation S is applied to probe the hash table. The matched results are written to the output 

buffer. The complexity of parallel hash based join can be given by 

and 

c. Sort Merge Join 

Assuming both relations are already sorted, the merging takes place right after 

partitioning. Therefore, the complexity fully depends on the number of tuples allocated to 

each processor, i.e. 

and 

5.4.2 Operation Skew with Double Data Skew 

A binary join of many-to-many relationship tables does not result in double data skew 

since there is always an intersection entity introduced in this situation and it is replaced 

with two binary joins of one-to-many relationship tables. However, when two relations 

have one common and non-key attribute, double data skew occurs if this attribute serves 

as the partitioning attribute. 
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Table: Project 

Project-No Project-Name City Manager-ID Sponsor-Name 

Table: Supplier-Project 

pp lier-No Project-No Qty Date 

Based on the above Supplier and Supplier-Project table, and Part and Supplier table in 

section 5 .4 .1, if information on Project and Supplier are required, links must be 

established through the Supplier-Project table. Therefore, they may only involve multiple 

single data skew but not double data skew. However, if we try to collect some statistics 

based on the city location from table Supplier and Project, we may partition on the city 

attribute because it reduces the aggregation cost. This causes double data skew. The 

problem is more complex when both relations are deformed and follow some unknown 

discrete distributions. However, we believe that in real databases there is always some 

degrees of correlation between two attributes from two relations. For example, if they are 

the same attribute they will have the common domain, and one skewed value in one 

relation is likely to associate with other skewness in another relation. Therefore in the 

following subsection on double data skew, assume there is strong correlation between the 

two relations, i.e. the skewed fragment of relation R matches the skewed fragment of 

relation S. 

Therefore, the maximum and minimum complexity of parallel nested loops join can be 

given as 

Likewise, we can derive those of parallel hash join 

and parallel sort merge join 
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5.5 Simulation Experimentation 

5.5.1 Simulation Model 

A simulation study has been conducted with a simulator written in C++ programming 

language running on a Sun workstation. The skew model is hardware independent since it 

predicts the partitioned load among processors together with its distribution, and does not 

specify how communication is modelled?. To simplify the implementation, we assume a 

parallel architecture shown in Figure 5 .5, where data reside at the host site at the 

beginning of the processing and are distributed to processors randomly or according to 

specific distributions. 

HOST 

Worker Processor 

P(l) 

Figure 5.5: Parallel Database Architecture 

The input of the simulation model include the relation cardinality, the number of 

processors, and the number of experiments per run, and the output from the simulation 

model can be the extreme loads (minimum and maximum) for each experiment, the 

statistics collected for each run (mean maximum and minimum as well as their standard 

deviations), ideal loading, and the graph representation of each experiment and each run. 

The details of the simulation model can be found in [Liu94] and the parameters used in 

the simulation are listed in Table 5.1 (see Appendix B). 

There are three steps in the simulation and they are tuple generation, tuple allocation, and 

statistics collection. At the end of the simulation, a graph result representation is also 

provided to visualise the skew distribution. Skew prediction with range partitioning in 

7 Inserting a few parameters characterising communication, our model may become a complete parallel 
execution time prediction model and we will discuss this at the end of this chapter. 
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Section 4.4 is straight forward by calculating the integration of the input distribution but 

skew prediction with hash partitioning in Sections 4.6, 4.7, 5.3 and 5.4 involve a 

considerable amount of randomness. Therefore, we will evaluate the skew model of hash 

partitioning against our terabyte database simulation model [Liu94]. 

Parameters Meaning 

x the number of tuples of the relation (cardinality) 

k the number of processors 

Ideal ideal loading= xlk 

L the number of tuples in the most heavily loaded processor 

L* ' the number of tuples in the most lightly loaded processor 

t the number of tuples in the fullest or least fullest processors used in 

distribution function 

Pr the probability oft being the extreme value (either maximum or minimum) 

Relative Error(%) (Predicted - Experimental) I Experimental 

Table 5.1: Parameters Listing for Evaluation 

a. Tuple Generation 

Tuples are generated randomly and the random number generator uses the linear 

congruential method. To reduce the variation two hundred runs are conducted for the 

same experiment, and for the initialisation purpose the seed is obtained by function 

"srand((int) time(NULL))". 

unsigned temp; 
for (unsigned long i==O; i<size; i++) 

{ 
temp==rand( ); /*generate tuples */ 

-· 1* each processor has the same probability receiving tuples i.e. no data skew */ 
for (unsignedj==l;}<==sizel;j++) /*allocate tuples to processors *I 

if (temp<( double(})* Tup_Range I (double(sizel)))) 
{ psU-l]=psU-l]+l; break; } 

/* collect statistics for this experiment and store them in a structure */ 

Figure 5.6: Algorithm for Uniform Skewness Generation 

b. Tuple Allocation 

In each run of the experimentation, when each tuple is generated, a random number is 

produced. The random number gives the tuple destination after comparing with the 

boundary values of each processor. Throughout the simulation, a tuple is treated as one 
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unit and distributed to one processor. Assuming each processor having the same 

probability receiving tuples, the algorithm for tuple allocation is showing in Figure 5.6. 

c. Statistics Collection and Result Representation 

Both the maximum and minimum values are collected in each run and two hundred runs 

are conducted for each experiment. To visualise the skew distribution, graph 

representation can be selected as shown in Figures 5.7 and 5.8 (directly output from the 

running program). In Figure 5.7, each 3D-bar represents one processor; the length of the 

3D-bar represents the number of tuples in that processor; two vertical lines with 

coordinates on them provide scale of workload, i.e. 60 means 60 tuples. In Figure 5.8, two 

points with the minimum and maximum value for each run of the experiment are plotted; 

the relative positions of the points are determined by their maximum and minimum values 

and standard deviation from the mean load. 

Figure 5.7: The First Run of the Experiment with 20 Processors and 1000 Tuples 

5.5.2 Validation of Load Skew Foundation Model 

In this subsection, we evaluate the load skew foundation model of Section 4.6 and this 

may be regarded as the heart of skew prediction because the operation skew model in 

Section 4.7 and the Zipf and Normal distribution in Chapter 5 can be viewed as extensions 

of the fundamental model. Consequently, we validate not only mean load of the extreme 

values but also their standard deviations and distribution functions. To reduce the 

variation introduced by the random numbers, a large number and a wide range of 

experiments are carried out for each run. 
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Figure 5.8: Skew Distribution (both minimum and maximum values) of the Experiment 
with 100 Runs Where Each Run Consists of 25 Processors and 56, 789 Tuples 

No. of Tuples Comparison Relative Error 

(16 Processors) Predicted Experimental (%) 

5000 344.08 345.54 -0.42 

6000 409.60 409.76 -0.04 

7000 474.87 474.5 +0.08 

8000 539.95 540.02 -0.01 

9000 604.87 603.86 +0.17 

10000 669.67 671.40 -0.26 

20000 1313.17 1313.11 0 

30000 1952.37 1952.56 -0.01 

40000 2589.33 2598.47 -0.35 

50000 3224.88 3223.72 +0.04 

60000 3859.41 3858.61 +0.02 

70000 4493.18 4495.54 -0.05 

-· 80000 5126.34 5125.87 +0.01 

90000 5759.00 5761.66 -0.05 

100000 6391.25 6392.90 -0.04 

500000 31565.84 31573.36 -0.02 

1000000 62946.67 62956.04 -0.01 

Table 5.2: Skew Foundation Model Evaluation of Maximum Load with 16 Processors 
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a. Mean of Maximum and Minimum Load 

To the best of our knowledge, there are few papers on skew prediction, and traditionally 

skewness in parallel database is either neglected or is assumed the ideal loading with 

equal partitioning. Figure 5.9 shows the comparison between the predicted values of skew 

model given by equation (4-1) together with experimental results obtained from 

simulation. Not only the maximum load but also the minimum load can be predicted based 

on the equation (4-2) and the comparison is shown in Figure 5.10. In Figures 5.9 and 

5.10, the notation 4Pred signifies the predicted result based on 4 processors, and 4Expe 

signifies the corresponding observed experimental result. We observed that the predicted 

values are in close agreement with the experimental results. The number of tuples in these 

experiments range from 5000 to 1,000,000, and the number of processors ranges from 4 to 

1024. Altogether, a total of two hundred experiments for each run have been performed 

and the comparisons are summarised in Tables 5.2 and 5.3 . 

No. of Tuples Comparison Relative Error 

(16 Processors) Predicted Experimental (%) 

5000 280.916 280.85 ' +0.02 

6000 340.401 341.99 -0.47 

7000 400.129 401.58 -0.36 

8000 460.049 462.21 -0.47 

9000 520.125 520.71 -0.11 

10000 ' 580.333 582.82 -0.43 

20000 1186.83 1191.03 -0.35 

30000 1797.63 1798.4 -0.04 

40000 2410.67 2413.64 -0.12 

-- 50000 3025.12 3029.3 • -0.14 

60000 3640.59 3645.93 -0.15 

70000 4256.82 4256.37 +0.01 

80000 4873.66 4876.58 -0 .06 

90000 5491 5493 .8 -0.05 

100000 6108.75 6113 .06 -0.07 

500000 30934.2 30873 .36 +0.20 

1000000 62053.3 62043.92 +0.02 i 

Table 5.3: Skew Foundation Model Evaluation of Minimum Load with 16 Processors 
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b. Standard Deviation of Maximum and Minimum Mean Load 

Due to the stochastic character of skew behaviour, the standard deviations of the mean 

load are often useful. A comparison of predicted values given by equation (4-3) with 

experimental results is shown in Table 5.4. The relative error is larger than their 

corresponding mean load. More experiments per run tend to produce more accurate 

results but will lead to longer simulation time. Nevertheless, these results suggest a 

relative error of no more than 5%. 

No. of Tuples Comparison 
I 

Relative Error ( % ) 

(16 Processors) Predicted Experimental 

(Maximum, Minimum) (Maximum, Minimum) 

1000 4.17 4.29 3.98 -2.92 

5000 9.32 9.10 8.88 +2.42 

10000 13.18 ' 13.62 13.09 -3.23 

20000 ' 18.64 19.16 18.09 -2.71 

30000 22.84 22.51 22.44 1.46 

40000 26.37 26.12 25.14 0.93 

50000 29.48 30.50 28.10 -3.34 

60000 32.29 30.79 31.47 +4.87 

70000 34.88 33.27 34.50 +4.82 

80000 37.29 
i 

35.90 36.17 +3.86 

90000 39.55 38 .90 37.99 +1.67 

100000 41.67 43 .08 41.50 -3 .23 

500000 93.22 92.30 93 .11 +1.00 

1000000 131 .84 130.08 132.09 +1.35 

Table 5.4: Skew Foundation Model Evaluation of Standard Deviation of Mean Maximum 
Load and Mean Minimum Load with 16 Processors 

c. Distribution Function of Maximum and Minimum Load 

+4.77 

+4.95 

+0.69 

+3.04 

+1.77 

+4.87 

+4.91 

+2.63 

+1.10 

+3.10 

+4.11 

+0.41 

+0.12 

-0.19 

The predicted maximum load distribution function is given by equation (4-4) and 

comparison with the simulation results is displayed in Figure 5.11 . In Figure 5.1 l(a), there 

are 16 processors and 10000 tuples, and the ideal loading is 625 tuples per processor. 

From Figure 5.1 l(a) , we see that the chance of the maximum load less than or equal to 

640 tuples is zero, indicating that the ideal loading is far from accurate. Likewise, the 

situation with 256 processors and 100,000 tuples is shown in Figure 5.1 l(b) . The 
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minimum load distribution function is given by equation ( 4-5) and the comparison with 
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(a) 4-64 processors 
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(b) 128-1024 processors 

Figure 5.9: Validation of the Mean of Maximum Load of Skew Foundation Model 
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the simulation results is shown in Figure 5 .12. In Figure 5 .12( a), the chance of minimum load 

less than or equal to 604 tuples is 100%, and of course, this is much less than the ideal 

loading. Figure 5.12(b) shows the performance of 256 processors and 100,000 tuples. 
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Figure 5.10: Validation of the Mean of Minimum Load of Skew Foundation Model 
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Figure 5.11: Validation of the Maximum Load Distribution of Skew Foundation Model 
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Figure 5.12: Validation of the Minimum Load Distribution of Skew Foundation Model 

5.5.3 Validation of Operation Skew Foundation Model 

In this section, we will evaluate the operation skew foundation model presented in section 

4. 7. Again, a number of experiments are conducted for each run and both the mean 

extreme load values and their standard deviations are obtained from the simulation. 

Considering that skew estimation only requires the mean workloads, we plot the following 

figures and present the discussion based on the mean load. 

a. Parallel Hash Join 

Figure 5 .13 shows the comparison between the predicted operation skew values given by 

(4-10) and (4-11) and the simulation values. Increasing the number of processors will 

reduce both the maximum and minimum workload. There are five different groups 

workload ranging from 10000 to 50000 tuples. From the Figures 5.13(a) and 5.13(b), we 
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can conclude that the analytical model fits properly based on the simulation results. 
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(b) Minimum Load Prediction 

Figure 5.13: Validation of Operation Skew of Parallel Hash Join 

b. Parallel Nested Loops Join 

Figure 5.14 shows the model evaluation of parallel nested loops join. There are five groups 

of workloads ranging from 1000 to 1800 tuples. Both maximum and minimum load 

prediction based on the formula provided in Section 4.7 match the experimentation values. 
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Figure 5.14: Validation of Operation Skew of Parallel Nested Loops Join 

c. Parallel Sort Merge Join 

The evaluation of parallel sort merge join is shown in Figure 5.15. With a large number of 

processors, the maximum load is reduced when the workload is set. There are five groups 

of workload ranging from 1000 to 5000 tuples. All predicted values agree with the 

experimental values collected. 

Page 108 



Skew Prediction of Hash Partitioning with Data Skew 

• • • • • Pred1 k 
12050 Ill Exp1k 

Pred2k 
10050 x Exp2k 

8050 
Pred3k 

• Exp3k 
L 

Pred4k 6050 
'.% Exp4k 

4050 Pred5k 

• Exp5k 

2050 

50 

4 8 16 32 64 128 

No. of Processors •• k 

(a) Maximum Load Prediction 

12000 • • • • • Pred1 k 

Ill Exp1k 

10000 .,, Pred2k 

x Exp2k 

8000 Pred3k 

• Exp3k 
L• 6000 Pred4k 

:::K Exp4k 

4000 Pred5k 

• Exp5k 

2000 

0 

4 8 16 32 64 128 

No. of Processors -- k 

(b) Minimum Load Prediction 

Figure 5.15: Validation of Operation Skew of Parallel Sort Merge Join 

5.5.4 Load Skew and Operation Skew Generation 

a. Load Skew Generation 

With the data skew modelled by discrete uniform distribution (i.e. no data skew), load 

skew is still possible because of the selection of partitioning function, e.g. when hash 

partitioning is used, a perfect hash function is hard to find. The algorithm of generating 

load skew with the uniformly distributed data skew is shown in Figure 5.6. When the data 

skew is modelled by a pure Zipf distribution (modified version introduces a parameter e ), 
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the probabilities of processors receiving tuples are changed correspondingly and the 

algorithm generating the skewness is listed below in Figure 5.16. 

unsigned temp; 
for (unsigned long i=O; i<size; i++) 

{ 
temp=rand( ); /*generate tuples */ 
double temp_sum=O.O; 
/*processors probabilities of receiving tuples follow a Zipf distribution *I 
for (unsignedj=l;j<=sizeJ;j++) I* allocate tuples to processors*/ 

if (temp<(temp_sum+(Tup_Range I (double(j) * Harmo)))) 
{ psU-lJ=psU-1]+1; 

break; } 
else 

{temp_sum=(Tup_Range I (double(j) * Harmo) + temp_sum;} 
/*collect statistics for this experiment and store them in a structure */ 

Note: Harmo is the function to calculate the Harmonic number of sizel which is the number of 
processors 

Figure 5.16: Algorithm for Zipf Skewness Generation 

unsigned temp; 
double probabi, SND_Value; 
for (unsigned long i=O; i<size; i++) 

{ 
temp=rand( ); /*generate tuples */ 
/*processors probabilities of receiving tuples follow Normal distribution */ 
for (unsignedj=O;j<sizel+2;j++) /*allocate tuples to processors*/ 

{ 
SND_Value=double(j) * 6.0 I double(sizel) - 3; 
if (SND_Value > 0) 

probabi=l-S_Nor _Dis(SND_ Value); 
else 

probabi=l-(1-S_Nor _Dis(abs(SND_ Value))); 
if (temp<(Tup_Range * probabi)) 

{ psU-l]=psU-1]+1; break; } 

· /* collect statistics for this experiment and store them in a structure */ 

Note: S_Nor_Dis(SND_Value) is the function to calculate the Standard Normal Distribution of 
value SND_Value. 

Figure 5.17: Algorithm for Normal Distribution Skewness Generation 

When the data skew is modelled by Normal Distribution, i.e. the deformity on the number 

of appearances of attribute values in the incoming query follows a bell-shape symmetrical 

normal distribution, Figure 5.17 presents the simulation algorithm. It is also worth 

pointing out that numerical integration is required in the calculation of standard normal 

distribution so that it slows down the simulation speed significantly. 
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b. Operation Skew Generation 

For unary relational operation, certainly, load skew is equivalent to operation skew. 

However, for binary relational operations such as join, both join methods and data skew 

have influence on operation skew. If the operand relations are all uniformly distributed, 

the algorithm generating skewness is listed in Figure 5 .18. 

unsigned temp; 
for (unsigned long i=O; i<size; i++) 

{ 
/* deal with tuples in Relation R */ 

temp=rand( ); /* generate tuples */ 
/*each processor has the same probability receiving tuples i.e. no data skew*/ 
for (unsignedj=l;j<=sizel;j++) I* allocate tuples to processors */ 

if (temp<(double(j) * Tup_Range I (double(sizel)))) 
{ psU-l]=psU-1]+ 1; break; } 

for ( i=O; i<sizeO; i++) 
{ 

/* deal with tuples in Relation S */ 

temp=rand( ); /* generate tuples */ 
/*each processor has the same probability receiving tuples i.e. no data skew*/ 
for(j=l;j<=sizel;j++) I* allocatetuplestoprocessors *I 

if (temp<(double(j) * Tup_Range I (double(sizel)))) 
{ prU-l]=prU-l]+l; break; } 

for (j=O; }<sizel; }++) 
{ 
if (flag="HASH") 

psU]=psU] *pr[JJ; 
else if (fiag="NESTED_LOOPS") 

psU]=psU]+prU]; 

delete pr; 

I* join method selection 

/* collect statistics for this experiment and store them in a structure */ 

*I 

Figure 5.18: Algorithm for Uniform Distribution Operation Skewness Generation 

Figure 5.19 shows the situation when both input relations follow Zipf distribution and the 

corresponding operation skew comprises three steps. First, relation R is partitioned to 

processors according to the Zipf distribution, and then relation Sis fragmented over the 

same number of processors still based on the Zipf distribution but into a temporary array. 

In the last step, fragments are randomly allocated to processors. The algorithm is shown in 

Figure 5 .20. 

Figure 5.21 shows the situation when both operand relations follow normal distribution 

and a random merging takes place at the end. The algorithm doing so is very close to that 

of Zipf distribution which is shown in Figure 5.20. 
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Figure 5.19: Generating Operation Skew with Zipf Distributed Relations 

/* initialise all elements of the dynamic array pt[ ] to - l */ 
for (j=O;j<sizel;j++) 

{ 
temp=rand() % sizel ; 
for (unsigned k=O; k<=j; k++) 

while (temp=pt[k]) do 
temp=rand( ) % sizel ; 

if (flag="HASH") 
psU]=psU] *pr[temp]; 

else if (/lag="NESTED _LOOPS") 
psU]=psU]+pr[temp] ; 

ptU]=temp; 
} 

I* check its uniqueness 

/* join method selection 

*I 

*/ 

Figure 5.20: Algorithm for Random Merging on Operation Skewness Generation 

5.5.5 Validation of Load Skew Extension Model 

a. Load Skew Prediction for the Zipf Data Skew Distribution 

In this section, we evaluate the load skew prediction when the degree of data skew is 

represented by a pure Zipf distribution. In equations (5-11) and (5-12) , we analytically 

approximate the harmonic number Hk by ('Y +Ink) , and thus we expect the relative 

error will be slightly larger than that without data skew, especially when the number of 

processors k is small. Figure 22(a) shows the comparison between the predicted load skew 

given by equation (5-11) and the simulation results , and Figure 22(b) offers the contrast 
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between predicted minimum load by equation (5-12) and that by simulation. Despite the 

approximation, both of the relative errors of minimum and maximum load prediction are 

less than 10%, and when k is greater than or equal to 8, the relative error of maximum 

load prediction is less than 4%. 
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Processor 3 

the 3rd fragment of relation R 
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the4th fragment of relation R 

Processor 5 
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Processor 6 
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Random Merging 

Processor 3 

the 1st 
fragment S 

Processor 2 

the 2nd fragment of S 

Processor 6 

the 3rd fragment of relation S 

Processor 5 

the 4th fragment of relation S 

Processor 1 

the 5th fragment of S 

Processor 4 

the 6th 
fragment S 

Figure 5.21: Generating Operation Skew with Normal Distributed Relations 

b. Load Skew Prediction for the Normal Data Skew Distribution 

With the data skew modelled by the normal distribution, the degree of skewness is less 

than that of pure Zipf distribution, and the prediction results are given by equations (5-16) 

and (5-17). In the simulation program, to avoid the complex integration which not only 

slows down the simulation speed but also reduces the accuracy because of dynamic setting 

the integration interval, the approximation from equation (5-15) is also employed to 

distribute the tuples. Figure 5.23 shows the comparison of the maximum and minimum 

load for the normal distribution. The relative error is less than 3% for maximum load 

prediction and 5 % for minimum load prediction. 
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Figure S.22(a): Load Skew Prediction with High Data Skew (pure Zipf Distribution) 
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Figure S.22(b): Load Skew Prediction with High Data Skew (pure Zipf Distribution) 
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Figure 5.23: Validation of the Load Skew Prediction with 

Data Skew Modelled by Normal Distribution 

5.5.6 Validation of Operation Skew Extension Model 

In this section, the operation skew extension model in section 5.4 is evaluated. Based on 

the skew dimension, the case of no data skew is discussed in Chapter 4 and we shall focus 

on the evaluation of single and double data skew here. We only provide the 

experimentation result with parallel hash join since all three foundation models are 

already verified in section 5.5.3. Therefore, our primary concern is on the operation skew 

factor. Once again, to reduce variation a large number of experiments are conducted for 

each run and both the mean maximum and minimum extreme load values are collected 

from the simulation. 

a. Parallel Hash Join with Single Data Skew 

With parallel hash based join methods, the complexity at each processor is simply related 

to the number of tuples from each relation distributed to the processor. Figure 5 .24 shows 

the comparison between the predicted operation skew values and the simulation results. 

In the figure , increasing the number of processors will reduce both the maximum and 

minimum workload despite the skewness in one relation, and the operation skew load is 
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increased when the size of relations is raised. Based on five different groups workload 

ranging from 10000 to 50000 tuples, we see that the analytical model provides good 

agreement with experimental results. 

42000 

37000 

32000 

27000 

L 22000 

17000 

12000 ' 

7000 ••••• • 1188& -..... 

• • • • • Pred10k 

II Exp10k 
Pred20k 

x Exp20k 

Pred30k 

• Exp30k 
Pred40k 

x Exp40k 
Pred50k .. ExpSOk 

2000-+------t------"""'f::...._ ____ ..,.'"'""""...;..;;~~...,. 

18100 

16100 

14100 

12100 

L • 10100 

8100 

6100 

4100 

2100 

4 8 16 

No. of Processors - k 

(a) Maximum Load Prediction 

100 +-------1-------l 

4 8 16 

No. of Processors •• k 

(b) Minimum Load Prediction 

32 

- - • • • Pred10k 

II Exp10k 

Pred20k 

x Exp20k 

Pred30k 

• Exp30k 

Pred40k 

)K Exp40k 

PredSOk 
i • ExpSOk ' 

32 

Figure 5.24: Validation of Operation Skew of Parallel Hash Join 
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b. Double Data Skew 

With double skew operations, based on our assumption on strong correlation, skew 

fragments in one relation will match skew fragments in another relation. Therefore, the 

situation may be simplified by distributing two relations to the same number of processors 

with exactly the same probability of receiving tuples. Certainly, this will give the same 

result as distributing one large relation to processors. Thus, it presents the same trend as 

that of load skew validation with Zipf or Normal data skew. 
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Figure 5.25(a): Maximum Load Skew with 256 Processors 
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· · Figure 5.25(b): Minimum Load Skew with 8 Processors 

5.6 Data Skew, Load Skew and Operation Skew 

Maximum load skew is the number of tuples in the fullest processor, and when we 

increase either the relation cardinality or the degree of data skew, the maximum load skew 

steadily increases as shown in Figure 5.25(a) which is based on equation (5-I) . With 256 

processors, the maximum probability of receiving tuples among processors is Ilk= 11256 

without data skew, but using Ilk= I/128 means that the degree of data skew is increased 

by a factor of 2. We see from the figure that maximum load skew magnifies supra-linearly 
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with increasing data skew. Minimum load skew is the number of tuples in the least loaded 

processor, and when we increase either the cardinality of the relation or the degree of data 

skew, minimum load skew also grows as shown in Figure 5.25(b) with 8 processors, 

which is based on equation (5-4). 
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Figure S.26(a): Maximum Load with 10000 Tuples 
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Figure S.26(b): Minimum Load with 20000 Tuples 

Figures 5.26(a) and 5.26(b) show different kinds of data skew model and their influences 

on load skew with a fixed relation cardinality and an increasing number of processors. 
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The pure Zipf distribution tends to yield high maximum load skew especially when the 

number of processors is large. The maximum load prediction of the Normal Distribution 

always lies between those of the Uniform and Zipf distributions, and thus may be used to 

model the situations when the degree of data skew is moderate. In addition, with the 

Normal Distribution, maximum load skew increases much slower than that of Zipf 

distribution when the number of processors increases. 
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Figure 5.27: Varying the Number of Tuples with 16 Processors 

Figure 5.27 shows the different kinds of data skew models and their influences on load 

skew for different relation cardinality. This suggests that the Uniform distribution of 

values leads to low load skew, Normal Distribution of data values leads to moderate load 
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skew, and pure Zipf distribution of data values results in high load skew. Ideal loading 

always underestimates maximum load and overestimates minimum load even when data 

skew is absent. In addition, the minimum load skew of the Normal Distribution gives 

values less than those of the Zipf distribution since the Normal Distribution density 

spreads over a shorter range (the probabilities associated with 2cr , 4cr , and 6cr are 

68%, 95 %, and 99.73 % respectively) and the Zipf distribution has a long flat tail. 

However, comparing both the range (difference between the maximum and the minimum) 

and the maximum load skew, the Zipf distribution still tends to generate a larger degree of 

skew. 

In Figures 5.28, 5.29, and 5.30, the impact of data and load skew on operation skew is 

studied and the relational cardinality for R and S are 15,000 and 5,000 tuples. In the 

absence of data skew, the relationship between load skew and operation skew over the 

number of processors is displayed in Figure 5.28. Both maximum and minimum load for 

each relation are shown and their corresponding operation skew is also presented in the 

figure. The larger relation tends to produce larger skewness and operation skew is always 

higher that either of the load skew of the relation operand. 
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Figure 5.28: Load Skew and Operation Skew in Hash Join without Data Skew 

When one relation is skewed and another relation is distributed uniformly, the operation 

skew performance is shown in Figure 5.29 . An interesting point is that there is a cross 

over between the maximum load of relation R and S. This is caused by the Zipf skewness 

in relation S. Comparing R and S, S gives less load with a small number of processors 
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because of its small cardinality and S results in more load with a large number of 

processors because the skewness threatens the benefit of parallel processing. 

6000 

5000 

4000 

L 3000 

2000 

1000 

0 

4 8 16 

No. of Processors (k) 

-+- Load-RMax 

-ii- Load-SMax 

__._..Operation-Max 

~Load-RMin 

~Load-SMin 

.............. Operation-Min 

32 64 

Figure 5.29: Load Skew and Operation Skew in Hash Join with Single Zipf Data Skew 

When both of the input relations of the binary relational operation are skewed, the 

maximum load increased and the minimum load decreased sharply as shown in Figure 

5.30. Operation Skew is a combined effects of both load skew and thus it is higher than 

any of them. Assuming both load skew following Zipf distribution, the relation with 

larger cardinality gives higher load skewness. 
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Figure 5.30: Load Skew and Operation Skew in Hash Join with Double Zipf Data Skew 

Page 121 



Skew Prediction of Hash Partitioning with Data Skew 

5.7 Concluding Remarks on Skew Modelling and 
Prediction 

In Chapter 3 a skew taxonomy is established, and in Chapters 4 and 5 the skew models are 

developed. Thus, together, the skew foundation is laid down with a detailed systematic 

study. The problem of data skew under range partitioning is analysed and the degree of 

data skew is quantified. A complete analytical model for load skew under hash 

partitioning is presented and consists of the foundation model and extension model. Not 

only the mean maximum and minimum load skew, but also their standard deviations and 

distribution functions are provided in the skew foundation model. In addition, the model is 

extended to include data skew described by the Zipf distribution and the Normal 

distribution. The skew model is verified on the Terabyte Database Simulation Model and 

experimental results exhibit close agreement with the predicted values. An analysis of the 

relationship between data skew and load skew is also provided based on the proposed 

model, and the results show that it is possible to have load skew even when there is no 

data skew, and as data skew increases, load skew will grow supra-linearly. 

The usage of the performance model is to predict the execution time for the average case. 

In the thesis , both the foundation and extension models are given based on the average 

case. If the degree of data skew can be detected, the Zipf skew model and the 

corresponding extension skew model can provide a meaningful prediction with the 

parameter 8 varying from 0 to 1, matching a wide range degrees of data skew. However, 

if the data skew is unknown or is too costly to estimate, the skew model can still be 

usefully employed by adopting the Normal distribution for describing data skew, since the 

Normal distribution lies between the Zipf and Uniform extremes. Furthermore, the 

distribution of a large number of tuples in large databases tends to the Normal distribution 

by virtue of the Central Limit Theorem. 

We summarise the applications of the skew model as follows 

• Predict execution time. 

Not only in parallel databases but also in parallel programming, the skew model can 

be used for time prediction because Amdahl's Law with ideal loading is always an 
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under-estimation, and the Gustafson function (the parallel component is a function 

of parallel processors i.e. f(k)) does not include overhead and does not give the 

details of the function. The presented skew model and the parallel processing 

methods of the operations can form a computation model which can be further 

combined with architecture characteristics, thus giving a complete time prediction 

performance model. In addition, the skew model could be extended to model the 

propagation of skew in multiway join, and the error rate on this propagation could 

also be quantitatively analysed. 

• Predict system utilisation. 

Given the minimum load skew of the skew model, we can predict when the first 

processor finishes its work in multiprocessor systems. Dividing minimum load skew 

into ideal load or the mean load, we can have a system utilisation factor varying 

from 0 to 1. Based on the model , we may conclude that 100% utilisation is hard to 

obtain because of the selection of the transforming function. 

• Provide alternatives to resolve skew problems. 

Applying our model, we can determine the precise degree of load skew, so that we 

may avoid cases of no load skew or low load skew in which the benefits of most of 

existing skew handling methods are minimal. In the light of the skew model, we can 

acquire a deeper understand of skew behaviour in parallel relational database. 

Using the minimum and maximum load skew prediction, we can design dynamic 

algorithms with precise threshold functions or complete cost models to tackle 

certain degrees of load imbalance without involving excessive complexity. 

• Analysis of Sensitivity. 

Skew prediction may provide a theoretical foundation by which the various skew 

handling algorithms may be compared. In addition, it facilitates database systems 

tuning so as to provide the most effective means of optimising system efficiency. 

• Provide more effective and efficient parallel processing. 

Other benefits gained from skew prediction are data placement efficiency and query 

optimisation. When data are placed using a hashing function, by calculating the 

skew distribution, we can predict the maximum number of tuples allocated among 

processors. Taking into account the skew and load imbalance factor, we can have 
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more accurate cost functions for relation operations for various types of queries. 

Therefore, it improves both precision and efficiency in the optimisation of query 

execution. 
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CHAPTER6 

MINIMISING THE SKEW EFFECT ON 

PARALLEL QUERY PROCESSING 

6.1 Introduction 
6.2 System Architecture for Parallel Query Processing 
6.3 Parallel Query Execution Model 

6.3.1 Skewed data partitioning 
6.3.2 Parallel execution of selection/projection 
6.3.3 Parallel execution of joins 

6.4 Processor Allocation for Parallel Query Processing 
6.4.1 Intra-parallel processor allocation 
6.4.2 Phase-based processor allocation 
6.4.3 Modified phase-based processor allocation 

6.5 Performance Evaluation 
6.5.1 Query execution time vs. number of processors 
6.5.2 Query execution time vs. data skew factor 

---~ 6.5.3 Effect of increasing communication time 
6.5.4 Non data replication vs. full data replication 
6.5 .5 Hash partitioned join vs. simple range partitioned join 

6.6 Summary 

6.1 Introduction 

Query execution in parallel databases involves translating a high-level query into an 

efficient low-level execution plan followed by the execution of the plan. The formulation of 

a parallel query plan deals not only with the execution sequence and the processing methods 

of the operations required in the plan, but also the processor allocation which enables 
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parallel processing of the operations so as to minimise query response time [Hong92, 

Gang92, Chek95]. 

This chapter investigates the effect of data skew on the parallel execution of queries that 

involve a number of relational operations, and explores the processor allocation strategies 

that may reduce the negative effect of the data skew. In particular, three parallel query 

processing strategies are presented: intra-parallel processor allocation (IPA) applies sole 

intra-operation parallelism for query execution; phase-based processor allocation (PPA) 

adopts a phase-oriented paradigm to cluster the operations of the query plan into several 

execution phases; and modified phase-based processor allocation (MPA) attempts to 

improve the PPA strategy when some of the operations are expected to involve a certain 

degree of data skew. The performance of these three processor allocation strategies are 

evaluated by a simulation study under various settings. Two join partitioning methods, 

simple range partitioned join and hash partitioned join, are presented and their 

performance in the presence of data skew is investigated. 

The remainder of the chapter is organised as follows. Section 6.2 introduces the system 

architecture. Section 6.3 presents the query cost models for the selection, projection and join 

operations. The processor allocation methods are presented in Section 6.4, followed by the 

performance evaluation in Section 6.5. The chapter is concluded in Section 6.6. 

6.2 System Architecture for Parallel Query Processing 

This thesis may be viewed as two parts, skew modelling and skew effects on query 

processing. Although skew modelling is implemented on a shared memory parallel client

server system and will be presented in Chapter 10, the skew model itself is hardware 

independent. For query processing in Chapters 6 to 9, we assume a shared nothing parallel 

database architecture SN which consists of multiple processors connected by a cross bar 

network as shown in Figure 6.1 [Leun93]. 111.is is analogous to the Transputer System and 

the implementation of databases on a such system can be found in [Leun93]. The cross bar 

is capable of connecting n inputs and n outputs in a one-to-all fashion so that a broadcast 

operation can be carried out in one single step. By employing this kind of dynamic 
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interconnection networks8
, messages can be passed to destination processor from source 

processor without hopping through any intermediate processors. 

Cross Bar Network 

Processor 1 Processor 2 Processor i Processor n 
[l] 

... 
11111 ffi 
11111 11111 
11111 11111 

Figure 6.1: A Parallel Database Architecture 

Hereafter, we shall separate the word contention and overhead. The former is related to 

resources such as memory and disk while the latter is associated with communication. The 

best example to explain contention is by a queuing model [Leun88] where the number of 

servers (processors) is limited so that customers (tasks or workloads) have to wait in a 

queue for service available. The resource contention problem occurs only when the 

resources are shared among processing elements, i.e. it is not an important issue in SN. The 

overhead is hardware-connection dependent and is directly caused by inter processor 

communication. In other words, the communication overhead may be reduced by adding 

complexity in connection, e.g. in a fully connected network. 

In addition, we define the word fine grain and coarse grain in parallel systems as follows. 

With a fine grained parallel system it is expected to have a large number of less powerful 

processors whereas with a coarse grained parallel system, generally, the number of 

processors is small but each processor tends to be more powerful, e.g. having a 64 bit word 

size. In the thesis, we shall refer the number of processors as degree of parallelism. When 

the degree of parallelism is high we call it massively parallel. In this situation contention is 

a significant cost factor in SE or SD whereas overhead plays an important role in SN. 

8 Dynamic network is capable of establishing a connection between two or more processors on the 
fly as messages are routed along the links. 
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We focus on SN as system architecture not only because it has been widely used both for 

commercial and research purposes, 'e.g. Gamma, Bubba, Volcano, TANDEM: NONSTOP 

SQL (Englert, 1989), Teradata DBC/1012, but also because it has the following salient 

features . 

First, SN provides the scalability and has little contention problem. In SN, the system is 

easy to scale up to a large number of processors, e.g. there are 16,385 processors in CMS , 

because the contention in SN environment is less important or negligible. By comparison, in 

SE, when the number of processors is increased, the memory contention is also increased so 

that the overall system performance may even decrease with the addition of processors. In 

SD, the public disk is the bottleneck and the contention problem still exists even with the aid 

of RAID technology. 

Second, SN can provide high performance at low cost. By exploiting parallelism, we are 

aiming at improving performance without extra cost or with low cost so that the 

improvement is made based on the existing hardware, e.g., we may connect the existing 

systems together to offer a parallel system with a common user interface such as a network 

of workstations. With socket level network programming, all stand alone systems are 

connected. At any time, if one system is idle, i.e. there is no local job, the system is 

regarded as a candidate worker processor to share the workload of other busy processors. 

All jobs are assigned a priority and local jobs al ways have the highest priority at local 

processors. Moreover, the manufacturing cost of SN is also low comparing with SD and SE 

since SD requires specialised disk controllers and inter connection networks to enable inter 

processor communication, and SE needs specialised hardware to implement tight coupling, 

e.g. cache coherency. 

However, SN does have its own problem and the most important issue in SN is load 

balancing since processors are loosely coupled and data are stored locally. Therefore, it is 

crucial to ensure that workload is partitioned evenly over processors during processing. 

Inter process communication is also expensive because the processes are running on 

different sites. SN also complicates loading and updating data since data are stored at local 

sites possibly with replication or fragmentation. It is highly likely that the time for 

accessing data at one site is much more expensive than those at other sites. 
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Another drawback with SN is the complexity of resource allocation. With the private 

owned memory, disk and processor in SN, algorithm designer must be careful to provide 

high resource utilisation. In the rest of this thesis, we only consider processors and our 

objective is to allocate processors to operations in the query in such a way so that the 

overall query execution time is minimised. 

For data placement, assume that the database is distributed over the processors possibly 

with fragmentation and replication. In parallel query processing, the host accepts queries 

from users and distributes each query together with the required base relations to the 

processors for execution. The processors perform the query in parallel with possibly 

intermediate data transmission between each other through the network, and finally send the 

result of the query to the host for consolidation. 

In Chapters 6 and 7, the degree of parallelism is small and thus communication overhead is 

ignored. In Chapters 8 and 9, the number of processors is assumed to be large and thus the 

optimal degree of parallelism can be derived as the combined effects of communicating 

overhead and computing in parallel. 

6.3 Parallel Query Execution Model 

In previous chapters, we have focused on modelling and predicting skewness at operation 

level which is the theoretical foundation of skew and load balancing. In contrast, from 

Chapters 6 to 9 we will concentrate on query level and consider parallel processing methods 

to improve performance. A query is specified by a parallel execution plan that may involve 

a number of relational operations. The plan can be represented by a query tree Q=(P, A) , 

where Pis a set of nodes and A is a set of arcs. Each node in P represents an operation, and 

each arc between two nodes specifies the execution order of the operations and the arrow 

indicates the data flow. For example, an arc from node Pi to Pj indicates that the operation 

Pj will use the intermediate result of Pi as an operand and thus it can be processed only after 

Pi is processed. Node Pi is also called a predecessor of Pj and Pj is a successor of Pi· A node 

in P may have several incoming arcs and one outgoing arc except the root node which has 

no outgoing arc and gives the final result of the query. For simplicity, the query plan is 
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asswned to involve selections, projections and joins (S-P-J query) and an example of such 

plans is shown in Figure 6.2 with 8 processors. 

Associated with each operation node is its allocated processors, processing method used and 

the execution cost estimated. The execution cost is composed of local processing cost and 

the communication cost for transferring operand data from the processors where the data 

are resident to the processing processor. The local processing cost is assumed to be 

proportional to the sizes of the operand relations while the data transmission cost is 

proportional to the amount of data transferred. 

Processor 1, 2 , 3 , 5 
Processor4 , 6, 7, 8 

Processor 1 Processor 2 Processor 3, 4 , 5 Processor 6 , 7 , 8 

Processor 3 Processo r 6 , 7 , 8 

Figure 6.2: An Example of Parallel Query Execution Plan 

6.3.1 Skewed Data Partitioning 

Using the Zipf distribution, given the number of processors n and a data skew factor 8 for 

an operand relation, the size of the ith fragment may be represented by 

r 
r. =----

1 · 0~ 1 
l £..J-.-e 

j=I } 

(e ~ o) (6-1) 

Clearly, when 8 = 0, i.e. no data skew in the relation, the fragment sizes follow a discrete 

uniform distribution and thus we have r. = !_. In contrast, when 8 = 1 indicating a high 
I n 

data skew, the fragment sizes follow a pure Zipf distribution and, therefore, we have 
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r r r 
---~-----

i x H n i x ( y + Inn) ' 

where y = 0.57721 (Euler Constant) and Hn is the Hannonic number which can be 

approximated by ( y + ln n). In the case of 0 >0, the first fragment r1 is al ways the largest 

in size whereas the last one rn is the smallest. (Note that fragment i is not necessarily 

allocated to processor i.) Therefore, the size of the maximum fragment is 

max(11) = 'i = -!- ~ r L ~ y+lnn 
j=I } 

8000 

7000 -------~....---t--+---+---+---4 llSkew (Theta=1) 

6000 

Maximum 5000 . 
Load 

4000 

max{r(i)} 3000 

2000 

1000 

0 
2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 

No. of Processors (n) 

Figure 6.3: Influence of Skew on Maximum Processor Load 

Figure 6.3 shows the effect of data skew on the maximum processor load which is measured 

by the number of tuples allocated. The cardinality of the relation is assumed to be 10,000. It 

is clear that the maximum processor load in the case of data skew is much higher than that 

without skew. For example, when the number of processors is 10, the maximum loads for 

the two cases are 3500 and 1000, respectively. Another interesting point is that the load 

reduction appears to be significant when the number of processors increases from 2 to 10, 

and becomes marginal with further increase in the number of processors. This observation 

indicates that allocating large number of processors to a single operation may not be 

beneficial, particularly when data skew is involved. This shall be referred to as the Skew 

Principle in parallel query processing. 
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6.3.2 Parallel Execution of Selection/Projection 

The parallel execution of a unary operation is carried out in two steps. First, the operand 

relation R is partitioned into a number of equal-sized fragments and each processor 

(possibly with a partial copy) is assigned a fragment. The processors with the fragments 

then conduct the operation in parallel. The execution time of the operation therefore only 

consists of the time for initialising the operation and the time of local processing since the 

partitioning involves simply dividing the relation equally into a given number of fragments 

whose time is negligible and there is no load skew among the processors. Using the notation 

in Table 6.1, the execution time can then be expressed as 

I 

r 
~nary = I;nit +max( LR(i) ) = I;nit + - (Wl + w2 + W3 a i) . 

n 
(6-2) 

I,, Parameters II Meaning 

r, s the cardinality of relation R and S 

n the number of processors 

r; the number of tuples in the ith processor after the partitioning of relation R 

CT; selectivity factor of the ith fragment of the relation R after partitioning 

~ loading time for each tuple (including disk access time and transfer time) 

w2 processing time for each tuple (mainly comparison and computation time) 

I 

w; writing time for each tuple 

8 the data skew factor ( 8 ~ 0) 
- · ., - - ' 

L , the local operation processing time 

T;nit time cost for initialising the operation on multiple processors (fixed cost) 

T'=• time cost for hashing one tuple 

O' Joiri _Sel the join selectivity factor 

Tdal. time cost for transferring one tuple 

Table 6.1: Notations 
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6.3.3 Parallel Execution of Joins 

We present two partitioning methods for parallel join execution, hash partitioned join and 

simple range partitioned join. In the hash partitioned join method, an identical hash 

function is first used to partition the tuples of each of the join relations into a sequence of 

fragments based on join attribute values. The hash partitioning ensures that the tuples in a 

fragment of one relation may only be joined with those in the corresponding fragment of the 

other relation. Each pair of the corresponding fragments are then allocated to a processor, 

and the processors allocated with join fragments conduct the join in parallel. Therefore, the 

execution time of the hash partitioned join includes initialisation time, hash partitioning 

time, data transmission time as well as local join processing time, i.e. 

Thash_join = 'I';n;r + ~ max( T:ash) + 'Y L Tjata + Lha~h_join 

where the parameters ·~ and 'Y are determined by the overlapped execution time among 

hashing, data transmission and local join processing. When the join relations originally 

reside in more than one processor, hash partitioning may be performed by those processors 

in parallel. The hash partitioning time can then be given as 

max.(1;:ash) = max(r; + s;) X ~ash. The data transmission time is required for the hash 

partitioning processor(s) to transfer all tuples belonging to the fragments of other 

processors. The average total transmission time is then expressed as 

"' . n-I L.J TJara = --(r + s)~ara. The local join time is determined by the join method used, 
n 

such as nested-loops join, sort merge join and hash join. The costs of the join methods vary 

with the index available on the join attributes and the cardinality of join relations, and thus 

none of them always outperforms the others. Nevertheless, the hash join method is often 

used in parallel processing since it usually performs best when no index but only the join 

relations are transferred across the processors. Assuming that the hash join is used, the local 

processing time involves the time for building a hash table for one relation, probing the table 

for the other relation and writing the joined tuples into the buffer. Note that because of load 

skew and operation skew, both the sizes of the fragments allocated to the processors and the 

sizes of the join results vary with the skew factor 8. Given the equation (6-1) of skewed 

data partitioning, the largest pair of the fragments allocated to a single processor is given by 
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~n 1 
(r + s) I £...j=I -:a 

J 
and the corresponding join result size 

"n 1 (r X s X cr Join_sei) I£... j=l -:a. Therefore, the local join time can be rewritten as 
J 

r+s rxs 
Lhash_join = n 1 x (it; + w2) + n 1 x ~ x (j Join_Sel . 

I-:e I-:e 
j=l } j=I } 

The total execution time of the hash partitioned join may therefore be expressed as 

n-1 
T hash_join = T;nit + p max('i + S; )~arh + y-- (r + s )~ata 

n 

r+s( ) rxs 
+ n 1 l1'i + lt;, + n 1 ~(j Joi11_Se/ 

I--:e I-:e 
j=l J j =l } 

will be 

(6-3) 

The simple range partitioned join method is different from the hash join method in that it 

equally partitions the first join relation into a set of fragments , each assigned to a processor, 

and broadcasts the entire second relation to every processor. In this method, the time for 

data partitioning is negligible since it only involves dividing one relation into equal-sized 

fragments. Moreover, since the join relations may reside fully or partially at more than one 

processor, the data transmission is needed only for the processors which do not have the 

fragments assigned to them. In other words , data transmission time depends on how many 

fragments of the partitioned relation need to be transferred and whether the other relation 

needs broadcast, and the time cost is given by LTL
1
a = ( LI R;I +al SI )Tdara , where a 

Ri not in s; 

is in the range (0, 1) based on data stored at local processors. For each processor that 

conducts the join, the local processing time involves joining the tuples of one fragment of a 

relation with all tuples in the other relation. Given the notation and assumption in Table 6.1, 

the local join time can be expressed as 

Lhash_join = max(Ti~caz) 
r r x s 

(- + s)(l11i + W2) +--W3 O' Join_set · 
n n 
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Therefore, the total execution time for the simple range partitioned join is given by 

T,ange_join = T:nic + "f L T}ata + Lhash_join 

= T:nit + r( 4 ri + asJ~aca + (!_ + s)(w; + W2) + r x s W:i CJ Join_Sel . (6-4) 
r; not m s; n n 

On the surface, the execution time of the simple range partitioned method appears larger 

than that of the hash partitioned method mainly because of its much larger local join time. 

However, since the fragments in the simple range partitioned method are always equally 

partitioned, there is no load skew among the processors. In other words, the execution time 

is not affected by the data skew factor and hence would be smaller as compared to that of 

the hash partitioned method when the data skew is high. 

6.4 Processor Allocation for Parallel Query Processing 

Processor allocation deals with efficient assignment of the processors to the operations 

involved in a query execution plan such that the query response time is minimised. The 

minimisation of the query response time is achieved by exploiting a number of parallel 

processing strategies according to different database architectures and the characteristics of 

the queries. We first present in this section two simple processor allocation methods, intra

parallel processor allocation (IPA) and phase-based processor allocation (PPA) . A new 

method that attempts processor allocation adaptively in accordance with the load skew is 

then presented. 

6.4.1 Intra-Parallel Processor Allocation (IPA) 

In the IPA method, the operations in a given query plan are carried out one after another, 

starting from the leaf operations that need only base relations to the root operation that 

produces the query result. For each of the operations, parallel processing is exploited by 

partitioning and distributing operand relation(s) over all available processors, followed by 

execution of the operation in parallel. 
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When the operand relations of each operation are uniformly distributed to the processors, 

i.e. no load skew, maximum speedup of the operation is achieved since no processors are 

idle when others are busy working. However, if load skew occurs, some processors may 

have heavier load than the others and require more time to complete the part of the operation 

assigned. The completion time of the whole operation therefore would be much higher than 

expected since it is determined by the time required for the heaviest loaded processor. 

Moreover, as shown in Figure 6.3, in the case of high load skew, the heaviest load over the 

processors reduces only marginally when the number of the processors is large, indicating 

that allocating a large number of processors does not help the reduction of execution time of 

the operation. 

6.4.2 Phase-based Processor Allocation (PPA) 

The PPA method follows a phase-oriented paradigm by which the operations of a query plan 

are performed by several execution phases. The first phase involves the operations that 

require only base relations and thus are ready to process. The next phase may then contain 

the operations that become ready to process after completion of the first phase, and so on. 

The last phase produces the result of the query. Within an execution phase, each of the 

operations is allocated to one or more processors such that all operations in the phase are 

processed in parallel and are expected to complete at about the same time. The details of 

this method is given in [Leun93]. 

As compared with the IPA method, the PPA method would achieve larger speedup of the 

query processing in the existence of the load skew. For example, consider two operations 

that have the 'identical processing cost and the data skew factor e= 1. If the two operations 

can be processed in the same execution phase with 10 processors each, the maximum 

processor load as shown in Figure 6.3 is equivalent to processing about 3500 tuples. In 

contrast, if the two operations are processed one after another applying pure intra-operation 

parallelism, the total maximum processor loads increase up to 2800x2 tuples assuming 20 

processors used for each operation. Nevertheless, a drawback of the phase-based processor 

allocation method is that the processors allocated with different operations within an 

execution phase may not al ways complete the execution at about the same time, reducing 

the processor utilisation even though there is no load skew. The low processor utilisation 
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affects the speedup of the query execution particularly when the number of processors is 

limited [Jian95]. 

It may also be noted that the PPA method often involves less data transmission cost than the 

IPA method, especially when the base relations are replicated over the processors. For 

example, we consider two join operations that have the same cost and can be processed in 

parallel. By applying both inter-operation and intra-operation parallelism, each operation 

may be allocated to half of the processors, denoted by m. Assuming hash partitioned join 

method used, the portion of the total join relations to be transferred will be 1 - _!__ since one 
m 

out of m fragments in each operation need not be transferred. However, if only intra

operation parallelism is used, the two join will be processed one after another by 2m 

1 
processors. The portion of the join relations to be transferred is then increased by -

2m 

Such an increase is not negligible when the number of processors is not extremely large and 

the communication cost over the network is comparable to the local processing cost. 

6.4.3 Modified Phase-based Processor Allocation (MPA) 

The MP A method attempts to improve the efficiency of parallel query processing in the 

presence of load skew. As noted from the description of the IPA and PPA methods, the 

intra-operation parallelism performs well when there is no load skew and the data 

transmission cost is small as compared to local join cost; otherwise the PPA method may 

outperform the IPA method. Although naturally the PPA method is less affected by the 

skewness, neither of the methods pay special attention to the skew problem. The idea behind 

the MPA method is that if an operation is expected to involve load skew, it should be 

processed together with some other operations in one execution phase since the inter

operation parallelism may reduce the negative influence of the load skew on the 

performance improvement. The heuristic implemented in the MP A method is neighbourhood 

search and the method is a phase-based approach aiming at local improvement, i.e. in each 

execution phase. 

For instance, consider the simple query with 5 join operations and 6 relations with query 

tree shown in Figure 6.4. In the figure, the numbers after the base relations refer to the 
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relations cardinality and the numbers beside the operation nodes are related to the number of 

tuples output from this join operation. Certainly, the output tuples are affected by the join 

selectivity and it is reasonable to assume that the number of tuples output from a join 

operation is proportional to the maximum relation cardinality of the operand relations. With 

the IPA method, the execution result is shown in Table 6.2, and as we predicted that there 

are 5 execution phases and 12 processors for each join operation. With the PPA method, 

there are only three execution phases and Pl, P2, and P4 will be grouped into the first 

execution phase. The third column of Table 6.3 shows the number of processors allocated 

for each operation and 2, 3, 7 means the allocation result in this phase is Pl with 2 

processors, P2 with 3 processors, and P4 with 7 processors. From the fourth column, we 

can see that although the total execution time for the phase is 85 .1, the first operation is 

finished much early with a execution time of 50.8. 

S Join Operations (P1 -- PS) 

6 Base Relations (R1 -- R6) 

12 Processors 

4000 

2000 4000 

R1 : 1000 R2 : 2000 R3:3000 R4 : 4000 

Tcomm = 0 .003 

W1=W2=W3=0 .01 

6000 

RS: 5000 R6 : 6000 

Figure 6.4: An Example of Query Tree in the Presence of Skew 

Phase Number vp~1 ation Number No. of Processors Execution Time 

1 Pl 12 17.4 

2 P2 12 40.1 

3 P3 12 91.4 

4 P4 12 62.8 

5 PS 12 61.1 

Total Execution Time 272.8 

Table 6.2: Execution Time for IPA 
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In addition, with the two partitioning methods, the simple range partitioned join method that 

is insensitive to the load skew should be attempted for the highly skewed operations, 

hopefully leading to less execution times than that of using hash partitioned join. 

Phase Number Operation Number No. of Processors Execution Time 

1 Pl,P2, P4 2, 3, 7 85.1 (50.8, 85.1, 79.4) 

2 P3 12 91.4 

3 P5 12 61.1 

Total Execution Time 237.6 

Table 6.3: Execution Time for PPA 

The MPA method is outlined as follows: 

• Step 1. Given a query execution plan, the load skew for each of the operations in 

the plan is estimated according to the equation ( 6-1) presented earlier. 

• Step 2. The PPA method is applied to cluster the operations of the query plan into 

different execution phases, denoted by Hi, i=l,2 , ..... ,m, and the execution time of 

each phase is calculated. 

• Step 3. The execution phases are checked one after another in reverse order from 

H m-I to H 2 (there is only one root operation in H m and all leaf operations are in 

H
1 

). The heuristic employed is neighbourhood search since the number of 

operations in each execution phase after Step 2 is in a decreasing order and the 

objective is to distribute the number of operations in each phase evenly. If the 

current phase, say Hi , has at least one skewed operation, consider re-clustering the 

operations in the current phase Hi and its precedent phase Hi-I into new 

execution phases, that is : 

=> a. Find all possible groups of the operations from Hi and Hi-I that can be 

executed in parallel. 

=> b. For each possible group H i, , calculate the new phase execution time 

=> c. Given H .· , re-calculate the execution times for the rest of the operations in 
r 

the phases Hi-I and Hi , i.e. T( H,_1 - H;) and T( H; - H;). (Note that 

H;_1 - H; and Hi - H; might be empty groups.) 
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new phase partitioning leads to less execution time than that of the existing 

phases, the existing phases are replaced by the new one. 

It may be noted that in step 3 the execution phases from Hm-i down to H2 are examined 

since no reformulation of the execution phases is possible for the first and the last phases. 

Moreover, the modification is carried out in the reverse order of the phases because the late 

phases are likely to have less number of operations as the query plan in the form of tree, and 

thus have less feasibility to be improved if some of their operations are highly load skewed. 

In addition, the MPA method attempts to improve the query execution time by altering only 

the adjacent execution phases. The minimum query execution time would be found but is 

not practical because of the time complexity of the exhaustive search. 

From the query in Figure 6.4, using the proposed method MPA, the execution results are 

shown in Table 6.4. We notice the number of operations in the first and second phases is 

changed with two operations in each phase and the reason is P3 is a skewed operation and is 

not preferred to stay in an execution phase itself. Therefore, based on MPA, we will do a 

checking and then find out that grouping P3 and P4 gives better results . Consequently, the 

execution phase is reformed with P3 and P4 in the second execution phase and Pl and P2 in 

the first phase9
• Moreover, comparing each phase' s execution time to each operation's 

execution time within the phase, we can conclude that the new algorithm offers much better 

processor utilisation. 

Phase Number Operation Number No. of Processors Execution Time 
- .. ~ -

1 Pl,P2 3, 9 45 .1 (37.4, 45.1) 

2 P3,P4 6, 6 92.8 (92.8, 86.1) 

3 PS 12 61.1 

Total Execution Time 199.0 

Table 6.4: Execution Time for MPA 

9 Sometimes, the number of total execution phases for one query may also be changed with the 
possibility of eliminating or inserting the execution phase. 
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6.5 Performance Evaluation 

A simulation study has been conducted to evaluate the performance of the above processor 

allocation methods. In the simulation, the processors are assumed to be identical in 

processing capacities and are connected by a cross-bar network. For the sake of simplicity, 

the database relations are assumed to be stored over the processors with either non 

replication or full replication. The former allows a relation to be available at only one 

processor, while the latter assumes that the relation is available at every processor. 

Since joins are the most time-consuming operations and form the main target of 

parallelisation, we have used a set of join queries in the simulation. Each query involves 5 to 

10 joins and is performed on the base relations with cardinality varying from 1000 to 

10,000 tuples. The execution times of the queries are calculated according to the cost 

equations given in Section 6.3 and the default parameter settings are given in Table 6.5 

[Liu96a]. The simulation is implemented using C language and runs on a Sun workstation. 

A number of test runs were conducted and the results of the simulation are presented below. 

I Parameters II Values 

number of processors n 4 to 40 

Number of base relations 6 - 12 

Data replication full, optionally no 

Tda,,, 0.003 (time unit per tuple) 

Thash 0.01 (time unit per tuple) 

~.Wz,~ 0.01 (time unit per tuple) 

T';nit -· Ao - - 0.1 (time unit per tuple) 

Overlapping factors ~ . 'Y 1.0 

Number of test queries 10 

Number of joins per query 5 - 11 

Cardinality of relations (r, s) 1000 - 10,000 

Data skew factor 0 0 - 1.0 

Percentage of joins with data skew 20% -30% 

Partitioning Methods hash partitioning, optionally simple range partitioning 

Table 6.5: Default Parameter Settings 
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1800 • IPA 1780 
1600 • IPA 
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Figure 6.5: Query Execution Time vs Number of Processors 
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Figure 6.6: Query Execution Time vs Data Skew Factor 

6.5.1 Query Execution Time vs Number of Processors 

Figure 6.5 shows the average query execution times of the three processor allocation 

methods, IPA; -PPA and MPA, when the number of processors varies from 4 to 40. A full 

data replication was assumed and the data skew factor took values of 0.5 and 1.0. Firstly, it 

is shown that for all three methods the query execution times are reduced significantly along 

with the increase of processors, indicating performance gain from parallelisation. Secondly, 

when the degree of data skew is moderate and the number of processors is small, the IP A 

method appears to perform better than the PPA method. With the increase in the processors 

and/or the data skew factor, however, the PPA method becomes outperforming the IPA 

method. 'This is not surprising because it is noted early that the IPA method is sensitive to 

the degree of load skew and often involves large data transmission cost as compared to the 

PPA method especially when the queries are distributed over many processors. Finally, 
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Figure 6.5 demonstrates that the MPA method consistently performs better than the other 

two methods no matter if the data skew is low or high. This supports our claim that 

assigning more operations into the execution phases with high data skew may reduce the 

negative skew effect on the overall query execution time. 
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1000 
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---PPA 

• MPA 

910 
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510 J..::;:;;;;;o;;:=M~;..----
410 ....... ~~~t--~~-+-~~~-+-~~----t 
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Communication time per Tuple 
( x0.001 time unit) 

(a) 16 processors 

4 0.25 0.5 2 

Communication time per Tuple 
( x0.001 time unit) 

(b) 32 processors 

Figure 6.7: Effect of Increasing Communication Time 

6.5.2 Query Execution Time vs Data Skew Factor 

Figure 6.6 shows how the query execution time changes with the data skew factor 8 when 

10 and 24 processors were used. Clearly, a large value of 8 and thus high data skew leads to 

significant increase in the query execution time. For example, the query execution times 

shown in Figure 6.6(a) are increased by about 34%, 29% and 17% for the IPA , PPA and 

MPA methods when 8 changes from to 0 to 1.0. In addition, as a comparison of the three 

methods, a similar trend to Figure 6.5 is shown here, i.e. the PPA method outperforms the 

IPA method -except when the data skew is low and the number of processors is small, 

whereas the new MPA method is always superior. It is also worth noting that in Figure 

6.6(b) the IPA method appears to lead much large query execution time as compared to the 

PPA method. This is again because the sole intra-operation parallelism attempts to 

distribute every operation of the query to all processors and thus involves larger data 

transmission time than the PPA method. When there are a number of processors, the local 

join times for both methods are reduced significantly and hence the data transmission time 

becomes dominant in the total query execution time. Therefore, the large time difference 

between the two methods occurs. 
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6.5.3 Effect of Increasing Communication Time 

The performance of the processor allocation methods presented may vary with different 

hardware platforms. One important hardware parameter is the ratio of the communication 

bandwidth to the processor speed. We have conducted test runs by varying the 

communication time such that the data transmission time took different portion in the total 

query time. The results are shown in Figure 6. 7 and indicate that no matter what ratio was 

assumed, the trend of the performance of the three methods remains unchanged. The MPA 

method always performs best while there is crossover point for the IPA and PPA methods. 

2050 • IPA 2180 • IPA 

1850 PPA 1980 ---PPA 

1650 • MPA 1780 • MPA 

1450 1580 

1250 1380 

1050 1180 

850 980 

650 ' 780 
4 8 16 24 32 40 4 8 16 24 32 

No. of Processors (n) No. of Processors (n) 

(a) e = 0.5 (b) 8 = 1.0 

Figure 6.8: Query Execution Time with No Database Replication 

6.5.4 Non Data Replication vs Full Data Replication 

Test runs were also conducted assuming non replication of base relations and the results are 

shown in Figure 6.8. With non replication, each relation is stored at one and only one 

processor and thus , the data transmission time tends to increase and dominate the total 

query execution time. As a consequence, the IP A method shows poor performance in all 

cases. In contrast, the impact of data replication appears small to the PPA and the MPA 

methods. In other words , these two methods have steady performance over a wide range of 

data replication. 
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Figure 6.9: Comparison of Hash Partitioned Join Method and 

Simple Range Partitioned Method 

6.5.5 Hash Partitioned Join vs Simple Range Partitioned Join 

32 

In the previous test runs, we have used hash partitioning as underlying join processing 

method since it is expected to perform well in most of cases. However, another partitioning 

method described in Section 3, simple range partitioning, may also perform well when there 

is a high skew in the query processing. We have compared the two partitioning methods in 

the simulation and the results shown in Figure 6.9 validate our expectation. Generally, the 

simple range partitioned method only works well when the degree of the data skew is high 

and/or the number of processors is small. However, an interesting point is that the 

improvement of the simple range partitioned method is, as expected, insensitive to the data 

skew factor. This indicates that the simple range partitioned method may be a good choice 

when the 10_3:~ skew is unknown but highly possible. Another point is that the hash 

partitioned method tends to gain more improvement as the number of processors increases, 

while the simple range partitioned method only gives marginal improvement. The main 

reason is due to the fact that the hash method partitions both join relations into fragments 

but the range method partitions only one relation and broadcasts the other over all 

processors. Since allocating more processors does not reduce the size of the broadcast 

relation, the improvement obtained by the range method approaches a limit no matter how 

many more processors are allocated. 
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6.6 Summary 

In this chapter, we analyse the performance of parallel query processing in the presence of 

data skew. The effects of data skew on processor allocation are studied and it is found that 

having a large number of processors does not improve the overall execution time 

significantly in the presence of data skew (the Skew Principle). Cost models for both unary 

and binary operations are also presented with the data skew factor modelled by the Zipf 

distribution under different data partitioning methods. Two basic processor allocation 

algorithms, namely IPA and PPA, are studied and compared, one using sole intra-operation 

parallelism and the other using phase-oriented inter-operation parallelism. A new efficient 

algorithm, MPA, which is found to outperform the two basic ones, especially in the cases of 

high data skew, is presented. 

The performance of the processor allocation algorithms as well as the data partitioning 

methods are evaluated by detailed simulation experiments. It is shown that the new 

algorithm MPA always performs best for a wide range degree of data skew. The IPA 

method appears to be better than the PPA method only when the data skew is low and the 

number of processors is limited, otherwise the PPA would be a better choice. The simple 

range partitioning method only works well when the number of processors is small despite 

its insensitivity to skewness. It is also found that the effects of communication time and idle 

time (closely associated with data skew) are critical in limiting the extent of performance 

improvement in parallel query execution. 
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CHAPTER 7 

PARALLEL PROCESSING OF AGGREGATE 

FUNCTIONS IN THE PRESENCE OF SKEW 

7. 1 Introduction 
7.2 Parallelising Aggregate Functions 

7.2.1 Selection of partition attribute 
7. 2. 2 Sequence of aggregation and join operation 

7. 3 Three Parallel Processing Methods 
7. 3 .1 Join partitioning method 
7.3.2 Aggregation partitioning method 
7.3.3 Hybrid partitioning method 

7.4 Sensitivity Analysis 
7.4. l Varying the aggregation factor 
7.4.2 Varying the relation cardinality 
7.4.3 Varying the ratio of ~omm I Tproc 

7.4.4 Varying the join selectivity factor 
7.4.5 Varying the degree of skewness 

-· ~ 7.4.6 Varying the number of processors 
7.5 Summary 

7 .1 Introduction 

In recent years, a new approach to improve the performance of database systems is data 

warehouse which is a repository of integrated information, available for querying and 

analysis [Inmo96]. With the growing number of large data warehouses for decision support 

applications, efficiently executing aggregate functions is becoming increasingly important. 

In data warehouse, large historical tables are usually joined with other tables and 
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aggregated, so better optimisation of aggregate functions has the potential to result in huge 

performance gains. 

The parallelisation of query processing can be conducted at intra-operation level, inter

operation level or a combination of both, and Section 2.1. 3 provides a discussion on forms 

of parallelism. Although parallel processing of major relational operations (e.g. selection, 

projection and join) has been studied extensively, parallel aggregation receives much less 

attention in spite of the fact that it is critical to the performance of database applications 

such as decision support, quality control, and statistical databases. Aggregation may be 

classified into scalar aggregate and aggregate function [Bitt83, Grae93]. The former refers 

to the simple aggregation that produces a single value from one relation such as counting the 

number of tuples or summing the quantities of a given attribute; while the latter refers to 

those that cluster the tuples of the relation(s) into groups and produce one value for each 

group. The queries with aggregate functions often involve more than one relation, and thus 

require join operations. The issues on parallel processing scalar aggregate has been studied 

in [Shat94] for locally distributed databases. 

Join before aggregation is the conventional way for processing aggregate functions in uni

processor systems and parallel processing of aggregate functions has received little 

attention. This chapter concentrates on the issues of aggregate functions and investigates 

efficient parallel processing methods for queries involving aggregations and joins10. Three 

methods, namely, join-partition method (JPM), aggregation-partition method (APM) and 

hybrid-partition method (HPM), are presented. JPM and APM mainly differ in the selection 

of partitioning attribute for distributing workload over the processors and HPM is an 

adaptive method based on APM and JPM with a logical hybrid architecture. Furthermore, 

all methods take into account the problem of data skew since the skewed load distribution 

may affect the query execution time significantly. The performance of the parallel 

aggregation methods are compared under various queries and different environments with a 

simulation study, and the results are also presented. 

In the next section, we discuss the critical issues on parallelising aggregate functions 

namely, the selection of partitioning attribute, the sequence of aggregation and join 

10 Hereafter, aggregation means simple aggregation operation (e.g. AVG and SUM on an 
attribute in one relation) while aggregate function (or aggregation query) consists of aggregation 
and join operation. 
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operation, and the skewness. The parallel processing methods and their cost models are 

introduced in Section 7.3 followed by a sensitivity analysis in Section 7.4. 

7 .2 Parallelising Aggregate Functions 

For simplicity of description and without loss of generality, we consider queries that involve 

only one aggregation function and a single join. The example queries given below arise from 

a Suppliers-Parts-Projects database. The first query clusters the part shipment by their city 

locations and selects the cities with average quantity of shipment between 500 and 1000. 

The second query retrieves the project number, name and the total quantity of shipment for 

each project. 

SUPPLIER (filt., sname, status, city) 

PARTS (M, pname, colour, weight, price, city) 

PROJECT @, jname, city, budget) 

SHIPMENT (s#, p#. j#, qty) 

Query 7.1: SELECT parts.city, A VG( qty) 

FROM parts, shipment 

WHERE parts. p#=shipment. p# 

GROUP BY parts.city 

HAVING A VG(qty)>500 AND A VG(qty)<lOOO; 

Query_7.2: SELECT project.j#, project.jname, SUM(qty) 

FROM project, shipment 

WHERE project.j#=shipment.j# 

GROUP BY project.j#, project.name 

HAVING SUM(qty)>lOOO; 

Based on the architecture presented in Chapter 6, an aggregation query is carried out in 

three phases: 

• Data partitioning, the operand relations of the query are partitioned and the 

fragments are distributed to each processor; 
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• Parallel processing, the query is executed in parallel by all processors and the 

intermediate results are produced; 

• Data consolidation, the final result of the query is obtained by consolidating 

the intermediate results from the processors. 

7.2.1 Selection of Partition Attribute 

Choosing proper partition attribute is a key issue in the above procedure. Although in 

general any attributes of the operand relations may be chosen, two particular attributes, i.e. 

join attribute and group-by attribute, are usually considered (e.g. p# and city in the first 

example query). If the join attribute is chosen, both relations can be partitioned into N 

fragments using either range partitioning or hash partitioning strategy, where N is the 

number of processors. The cost for parallel join operation can therefore be reduced by a 

factor of N 2 as compared with a single processor system. However, after join and local 

aggregation at each processor, a global aggregation is required at the data consolidation 

phase since the local aggregation is performed on a subset of the group-by attribute. In 

contrast, if the group-by attribute is used for data partitioning, the relation with the group

by attribute can be partitioned into N fragments while the other relation needs to be 

broadcast to all processors in order to perform the join, leading to a reduction in join cost by 

a factor of merely N. Although, in the second method, the join cost is not reduced as much 

as in the first method, no global aggregation is required after local join and aggregation at 

each processor because the tuples with identical values of the group-by attribute have been 

allocated to the same processor. Assuming that there are indexes on the join attribute and 4 

processors, a_Il;c!_ the execution time is given in terms of the number of tuples processed in the 

absence of data skew, Figure 7.1 and Figure 7.2 illustrate the execution time of two types of 

partitioning strategies on the first example query. 

7.2.2 Sequence of Aggregation and Join Operation 

When the join attribute and group-by attribute are the same as shown in the second example 

query (i.e.)#), the selection of partitioning attribute becomes obvious. Instead of performing 

join first, the aggregation would be carried out first followed by the join since the join is 

more expensive in cost and it would be beneficial to reduce the join relation sizes by 
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applying aggregation first. Generally, aggregation should always precede join whenever it is 

possible with the exception that the size reduction gained from aggregation is marginal or 

the join selectivity factor is extremely small. Figure 7.3 shows that by applying aggregation 

first, the execution time of the second example query is much lower than that of join 

operation first as shown in Figures 7 .1 and 7. 2. However, aggregation before join may not 

always be possible, and the semantic issues on aggregation and join and the conditions 

under which the aggregation would be performed before join can be found in [Kim82, 

Daya87, Bult87, Yan94]. In the following sections, we assume the more general case where 

aggregation can not be executed before join. Since earlier aggregation reduces execution 

time, we process aggregation before join if it is possible. 

Cardinality 

r=S=800 

-.. ( JoinSelectivity= 1 /r(i)= l /200 ) ( AggregationFactor=0 .5 

JOIN (Rx S) 

•- LOCAL 
AGGREGATION 

r 
Cardinality 

r=S=800 

JOIN (Rx S) 

AGGREGATION 

UNION 

Assumption: Worker (4 processors) & No Skew 
Execution Time: No. of tuples Processed 

200 x (log 200) 200 x (log 200) 200 x Oog 200) 200 x (log 200) 

200 200 200 200 

100 100 100 100 

Figure 7.1: Join-Partition method 

( JoinSelectivity= l /r(i)= l /200 ) ( AggregationFactor=0.5 

Assumption: Worker (4 processors) & No Skew 
Execution Time: No. of Tuples Processed 

I 

200 x Qog 800) 200 x Qog 800) 200 x Qog 800) 200 x Qog 800) 

200 200 200 200 

Negligible Negligible Negligible Negligible 

Figure 7.2: Aggregation-Partition method 
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Cardinality 

r=S=800 

~ 

( JoinSelectivity= l /r(i)= l /200 ) (AggregationFactor=0.5 ) 

Assumption: Worker (4 processors) & No Skew 
Execution Time: No. of Tuples Processed 

AGGREGATION 200 200 200 200 

JOIN (Rx S) 100 x log(200) 100 x log(200) 100 x log(200) 100 x log(200) 

UNION Negligible Negligible Negligible Negligible 

Figure 7.3: Aggregation Before Join 

7 .3 Three Parallel Processing Methods 

We present in this section three parallel processing methods for queries that involve joins 

and aggregation functions. The notations used in the description of the methods and in the 

subsequent performance evaluation are given in Table 7 .1 . 

I Parameters II Meaning I 
N the total number of processors 

I m the number of processor clusters 

n the number of processor in each cluster (N = m X n) 

r, s the number of tuples in base relations R and S 

ri, Si the number of tuples of fragments of relations R and S at processor i 

Sel(i) join selectivity factor for fragment i 

Agg(i)_ _ 
I 

aggregation factor for fragment i I 

8 reduction factor after performing Having clause 
I 

a dat:a partitioning skew factor 

~ dat:a processing skew factor 

~omm the average dat:a transmission time for each message 

~oin the average join time for each tuple 

i:gg the average aggregation time for each tuple I 

z message size in terms of the number of tuples 

Table 7.1: Parameters Listing of Parallel Processing of Aggregate Functions 
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7.3.1 Join Partitioning Method (JPM) 

The JPM can be stated as follows. First, the relations R and S are partitioned into N 

fragments based on the join attribute, i.e. the tuples with the same join attribute values in the 

two relations fall into a pair of fragments. Each pair of the fragments will be sent to one 

processor for execution. Upon receipt of the fragments, in parallel, the processors perform 

the join operation and then the local aggregation operation on the fragments allocated. After 

that, a global aggregation operation is carried out by re-distributing the local aggregation 

results across the processors such that the result tuples with identical values of group-by 

attribute are allocated to the same processors. Then, each processor performs a N-way 

merging with the local aggregation results , followed by doing a restriction operation for the 

Having clause if exists at local processors. Finally, the host simply consolidates the partial 

results from the processors by a union operation, and produces the query result. 

The execution time for the JPM method can be expressed as follows 

JPM= ~omm x (max(r; +s;))+~oin x (max(r;Iogs;))+T,,gg x (max(r; X S; x Sel(i))) 

+Tcomm x (max(r; X S; x Sel(i) x Agg(i))) 

+~gg x (max(r; x s; x Sel(i) x Agg(i))) x (1+1) . (7-1 ) 

The maximum execution time for each of the components in the above equation varies with 

the degree of skewness, and could be far from the average execution time. Therefore, we 

introduce two skew factors a and ~ to the above cost equation, and a describes the data 

partitioning skew while ~ represents the data processing skew. Assume that a follows the 

Zipf distribution as in equation (6-1). Recall that the first element p 1 always gives the 

highest probability and the last element p N gives the lowest. Considering both operand 

relations R and S use the same number of processors and follow the Zipf distribution, the 

data partitioning skew factor a thus can be represented as 

1 1 
a=a, =as=--= , 

HN y+InN 

where y = 0.57721 is Euler' s Constant, and N is the number of processors. 
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Tue other skew factor ~ for data processing skew is affected by the data partitioning skew 

factors in both operand relations since the join/aggregation results rely on the operand 

fragments. Therefore, the range of P falls in [a r x as , 1] . However, the actual value of p 

is difficult to estimate because the largest fragments from the two relations are usually not 

allocated to the same processor, resulting the p much less than the product of a r and as. 

We assume in this chapter P = (a r x as + 1) I 2 = (a 2 + 1) I 2 . 

Applying the skew factors to the above cost equation, we also make the following 

assumptions and simplifications: 

• Ji = 1i x si x Sel(i) = J i.e. in the absence of the skewness, 

• Agg(i) = Agg, 

• ~oin = ~gg = Tproc' 

• data transmission is carried out by message passing with a size z. 

The cost equation (7-1) can then be re-written below 

JPM ~ I;"~ {[ a(r + s)+ J x :gg} z} 

[ ( ) 
J ( 1 + 1) x J x Ag g] 

+Tproc a.rxlog as +13 + p 

[[ 
r + s 2 x ( y + In N )2 J ] 

= ~om;,,· - · + 2 X J X Ag g / Z 
y+lnN l+(y+lnN) 

( ) 

1 J r s 2x +~N-
+T log( + (y )

2 
x Jx(1+2x Agg) . 

proc y + In N y + In N 1 + ( y + In N) 

7.3.2 Aggregation Partitioning Method (APM) 

In the APM method, the relation with the group-by attribute, say R, is partitioned into N 

fragments in terms of the group-by attribute, i.e. the tuples with identical attribute values 
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will be allocated to the same processor. The other relation S needs to be broadcast to all 

processors in order to perform the binary join. After data distribution, each processor first 

conducts the joining one fragment of R with the entire relation S, followed by the group-by 

operation and having restriction if exists on the join result. Since the relation R is 

partitioned on group-by attribute, the final aggregation result can be simply obtained by an 

union of the local aggregation results from the processors, i.e. the step of merging of the 

local results used in JPM method is not required. Consequently, the cost of the APM is 

given by 

APM = I:omm x ( max(rj + s)) + Tjoin x ( max(rj logs)) 

+~gg x (max(rj xs x Sel(J)) x (l+Agg(J))) 

+I:omm x (max(rj x s x Sel(J) x Agg(J) x 8 )). (7-2) 

The skew factors a and~ can be added to the above equation in the same way for the JPM 

method. For the purpose of comparison of the two methods, we assume that 

Jj = rj x s x Sel(J) = 1 and Agg(i) = __!__ Agg . The time of APM method can then be 
N 

expressed as 

APM= T [(ar+s+ J x Agg x e)1 z]+T [(ar) x iog s +!... x (1+ Agg)] 
comm ~ X N proc ~ N 

[[ 
r 2(y+lnN)2 J x Agg x eJ] = ~omm + S + 2 X / Z 

_ _ y + In N 1 + ( y +In N) N 

r 2(y + ln N)- Agg 
[ ') J +T logs+ x J x l+-- . '~ y+lnN l+(y+lnN)2 

( N ) 

7.3.3 Hybrid Partitioning Method (HPM) 

The HPM method is a combination of the JPM and APM methods. In the HPM, the 

processors are divided into m clusters each of which has Nim processors as shown in Figure 

7.4. Based on the proposed logical architecture, the data partitioning phase is carried out in 
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two steps. First, the relation with group-by attributes is partitioned into processor clusters in 

the same way as the APM, i.e. partitioning on the group-by attribute and the other relation is 

broadcast to the cluster. Second, within each cluster, the fragments of the first relation and 

the entire broadcast relation is further partitioned by the join attributes as the JPM does. 

Depending on the parameters such as the cardinality of the relations and the skew factors, a 

proper value of m will be chosen such that the minimum query execution time is achieved. 

Hybrid Logical Architecture 

Cluster No. I I I 

m 

Processor No. I ... 
n 1 2 n 

Figure 7 .4: Logical Architecture for HPM 

The detailed HPM method is described below: 

Step 1 Partition the relation R on group-by attribute to m clusters, denoted by r;,. 

Within each cluster, further partition the fragment r;, and the other relation Son join 

attribute to n=Nlm processors, denoted by riJ and sj . Therefore, the total data 

transmission time is given by 

I:omm x ( max(r;j + s j ) ) 

where i is in the range of [l,m] and} is in the range of [l ,n]. 

Step 2 Carry out join at each processor and the maximum processing time is expressed 

as 

Step 3 Perform local aggregation at each processor with the execution time 

T,,
88 

x ( max(r;j x s j x Sel(i))) 

Step 4 Redistribute the local aggregation results to the processors within each cluster 

by partitioning the results on the group-by attribute. l11e transmission time is given 

as 

I:amm X (max(rij X sj X Sel(J)x Agg(J))) 
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Step 5 Merge the local aggregation results within each cluster and this requires the time 

J:88 x (max(ru x sj x Sel(J)x Agg(J))) 

Step 6 Perform the Having predicate in each cluster with the processing time 

i:gg x(max(ru xsj xSel(J)xAgg(J))) 

Step 7 Transfer the results from the clusters to the host. The time for data 

consolidation in the host is small and thus only data transmission cost is counted, i.e. 

T:omm x ( max(ru x sj x Sel(J)x Agg(J)x e )) 

The total execution time of the HPM is the sum of the time of the above steps and is 

HPM 

= I::omm X ( max(ru + s j)) + Tjoin X ( max(ru logs j)) + I:gg X ( max(r;j X s j X Sel(J))) 

+T:omm x(max('ij Xsj xSel(J)xAgg(J))) 

+Tagg x (max(ru x sj x Sel(J)x Agg(J)))x 2 

+ I::omm x ( max(ru x s j x Sel(J) x Agg(J) x 8)). (7-3) 

By applying the same simplification assumptions in the previous methods and 

Ag g (J) = ~ Ag g , equation (7 -3) can be re-written as 
m 

'[ (1+8) Ago] HPM= T -· a xa xr+a xs+ x l x--0 I z comm rt m n A 
't-'n m 

+T [a xa xrxlog(a xs)+_!_x(1+2x Agg)], proc n m n A 
1-'n m 

where J = ru xsj xSel(i), 

and 
1 + (y +Inn )2 

Bn = ( )z 2 y + lnn 
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Figure 7.5: Cost vs No. of Clusters in HPM 

It can be seen from the above execution time equation that the number of clusters m has 

strong influence on the performance of HPM. Figures 7.5(a) and 7.5(b) show the changes of 

query execution time when increasing the number of clusters in the HPM. It appears that a 

value of m = r .JN"l approximately gives the optimal cost of the query11 although the 

precise value of m may be worked out by finding the minimum value by differentiating 

equation (7-3). 

7.4 Sensitivity Analysis 

The performance of the three parallel processing methods presented may vary with a 

number of parameters listed in Table 7.1. In this section, we analysis among them the effect 

of the aggregation factor, the join selectivity factor, the degree of skewness (a and ~ ), the 

relation cardinality, and the ratio of Y::omm I Tproc- The default parameter values are given in 

Table 7.2. 

7.4.1 Varying the Aggregation Factor 

The aggregation factor ~ is defined by the ratio of result size after aggregation to the size 

of the base relation and its impact on three methods is shown in Figure 7.6. Not 

surprisingly, APM is insensitive to the aggregation factor. The reasons include little data to 

1 l The approximation can also show the robustness of the adaptive method (HPM). 
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transmit after joining and processing the Having predicate comparing with data partitioning 

at beginning and broadcasting relation S, and little data to select with the group-by condition 

(Having) as the aggregation factor is reduced by a factor of the number of processors. 

Generally, the larger the aggregation factor, the more the running time is needed as shown in 

Figure 7.6(a) with 16 processors. Moreover, increasing the number of processors will 

reduce the running time despite data partitioning and processing skew, and the performance 

of JPM is better than that of APM except when the aggregation factor is very large as 

shown in Figure 7.6(b) with 32 processors. In both Figures 7.6(a) and 7.6(b) , HPM offers 

the best performance. 

I Parameters II Values I 
N 16 

' M=4 m 

r 1000 tuples 

s 1000 tuples 
' 

i Sel(i) 5(Nlr) = 0.08 

Agg(i) 0.5 

e 0.5 

a 0.2985 

~ 0.5446 

an 0.5093 

am 0.5093 

~n 0.6297 

l;;omm 0.1 standard time unit per message 

Tpro<; ··-
0.01 standard time unit per tuple 

z 100 tuples per message 

Table 7.2: Default Values Listing of Parallel Processing of Aggregate Functions 

7.4.2 Varying the Relation Cardinality 

The cardinality of the operand relations are assumed to be the same elsewhere in the 

sensitivity analysis and their influences on performance are investigated in this subsection. 

Figure 7. 7 shows the query execution time when we fix the cardinality of one relation and 

increase the cardinality of another relation. JPM appears to be better than APM only when 
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the varied relation size is small while the HPM again outperforms APM and JPM in all 

situations. Comparing Figure 7.7(a) to Figure 7.7(b), increasing processors will raise the 

cross-over point of JPM and APM. 

T (time 
unit) 

T (time 
unit) 

• JPM • JPM 

A APM a APM 
44 34 HPM 

39 29 
T (time 

34 unit) 24 

29 19 

24 14 
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 
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(a) 16 processors (b) 32 processors 

Figure 7.6: Varying Aggregation Factor 
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Figure 7.8: Varying the Ratio of Tcomm /Tproc 
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7.4.3 Varying the Ratio of I;omm I I;roc 

The ratio of I;omm I Tproc reflects the characteristic of the network used in the parallel 

architecture. Primarily, data communication is not a critical issue any more in parallel 

database systems comparing with distributed database systems [Alma94]. As we increase 

the ratio shown in Figure 7.8, system performance decreases since we treat Tproc as a 

standard time unit and magnify the communication cost, i.e. higher ratio means more 

expensive communication. Being a parallel database system, the ratio tends to stay small 

and APM is the most sensitive to the communication cost. Nevertheless, HPM will always 

perform better than either JPM or APM. 

7.4.4 Varying the Join Selectivity Factor 

The join selectivity factor has significant influence on parallel aggregation processing as it 

determines the number of intermediate tuples resulting from join intermediately. After that, 

those tuples are processed for aggregation and evaluated with the predicates. Eventually, the 

qualified tuples are unioned to form the query result. Lower selectivity factor involves less 

aggregation processing time and transferring time, and thus favours JPM as displayed in 

Figure 7.9. Less processors will reduce the impact of the entire second relation (both 

communication and processing) on running time so it favours APM. 
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Figure 7.9: Varying the Selectivity Factor 
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Figure 7.10: Varying the Skewness with 16 Processors 

7.4.5 Varying the Degree of Skewness 

Figure 7. lO(a) indicates the tendency of the performance when the data processing skew 

changes accordingly with the data partitioning skew whereas Figure 7 .1 O(b) provides the 

comparison when we ignore the data partitioning skew, i.e. a = 1 IN and alter the data 

processing skew. The values on the horizontal axis of both figures represent the expanding 

skewness factor which then is multiplied by the basic unit given by the Zipf distribution. 

Unlike the a , the B is inversely proportional to data processing skew and the larger the 

factor B, the less the data processing skew is. We conclude from Figure 7.10 that either of 

partitioning skew or processing skew degrades the performance of parallel processing, HPM 

outperforms APM and JPM even in the presence of skewness, and APM is less affected by 

the skewness compared with JPM. 
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7.4.6 Varying the Number of Processors 

One of the desired goals of parallel processing is to have a linear scale up which can be 

achieved when twice as much processors perform twice as large a task in the same time. 

When the number of processors is increased, as we expected, performance is improved in 

spite of the skewness shown in Figure 7 .11. APM performs extremely well when the number 

of processors is small, and it is even better than RPM because the number of clusters in 

RPM may not be optimised and less processors make the communication cost insignificant 

which favours APM. However, when the database system scales up, both RPM and JPM 

perform better than APM. 

7.5 Summary 

Traditionally, join operation is processed before aggregation operation and relations are 

partitioned on join attribute. In this chapter, we demonstrate that group-by attribute may 

also be chosen as the partition attribute and present three parallel methods for aggregation 

queries, JPM, APM, and RPM. These methods differ in their way of distributing query 

relations, i.e. partitioning on the join attribute, on the group-by attribute, or on a 

combination of both; consequently, they give rise to different query execution costs. In 

addition, the problem of data skew has been taken into account in the proposed methods as 

it may adversely affect the performance advantage of parallel processing. A performance 

comparison of these methods has been provided under various circumstances of queries and 

processors. The results show that when the join selectivity factor is small and the degree of 

skewness is fow, JPM leads to less cost; otherwise APM is desirable. Nevertheless, the 

hybrid method (HPM) is always superior to the other two methods since the data 

partitioning is adaptively done on both join attribute and group-by attribute. In addition, it is 

found that the partitioning on group-by attribute method is insensitive to the aggregation 

factor and thus the method will simplify algorithm design and implementation. 
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8.1 Introduction 

The objective of the parallel query processing is to translate a high-level query into an 

efficient low-level execution plan and allocate processors to each operation in such a way 

that the overall execution time is minimised. Following [Hong92, Gang92, Shek.93, 

Hasa94, Chek95], we divide the processing into two phases, query decomposition and 

parallel plan formulation. The former includes query normalisation, query analysis, 

elimination of redundancy, and rewriting while the latter is looking for parallel optimal 

plans to execute the query; this chapter is devoted to the latter and considers a single query 

from Section 8.3 to Section 8.7, and multiple queries in Section 8.8 and Section 8.9. 

In Chapter 6, intra-query parallelism is studied and the emphasis is on skew effects and 

skew principle by which allocating a large number of processors to a single operation may 

not necessarily be beneficial. In this chapter, we study the processor allocation strategies for 

parallel relational databases and the focus is on both intra-query parallelism possibly with 

massive parallelism and multiple dependent queries of inter-query parallelism. Global 

optimisation issues on processor allocation are investigated and the degree of parallelism 

may be large. A complete query cost model is developed taking into account of 

communication overheads in multicasting and the load skew of data partitioning. The 

concepts of optimal degree of parallelism for each operation and time equalisation are 

introduced. Two new processor allocation algorithms are presented. DPAA is a dynamic 

method based on non phase-based approach, and MPPPA tries to group operations evenly 

into execution phases based on the heuristic of the merge-point evaluation. Optimising 

processor allqq_ation issues are discussed and processor bounds achieving optimal time are 

given. The optimal time of a single query can be easily derived with the proposed clustering 

method, subtree-grouping method (SGM). 

Processor allocation in parallel system is an NP complete problem and many heuristic 

methods have been proposed [Kris86]. However, the heuristics though invaluable in certain 

circumstances, hardly ever take into account the global picture. An optimised processor 

allocation strategy, OPA, is presented by making use of the processor bounds for optimal 

time. OPA guarantees to provide a global optimal solution when the number of processors is 

sufficient and a local phase optimal solution when the number of processors is insufficient. 

Query examples are given to illustrate how the new algorithms perform. 
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How to schedule multiple queries in processor allocation with each query consisting of 

multiple relational operations is also an important issue. The result of exploiting parallelism 

at this upper level is inter-query parallelism. In contrast to intra-query parallelism, inter

query parallelism has received little attention particularly for multiple dependent queries. 

When there is query dependency, the complexity of the problem grows dramatically since 

the queries can only be represented using a directed graph which is no longer a tree 

structure. We extend SGM to deal with multiple independent queries represented by a 

logical hyper-tree structure. Finally, we focus on multiple dependent queries. Their 

applications are discussed, and query processing is represented using the critical path 

scheduling (CPS). A decompression algorithm is developed to optimise the execution time 

by making use of the activity analysis of critical path analysis , and resource scheduling and 

leveling in project management. 

The remainder of the chapter is organised as follows. Section 8.2 describes the data 

communication model, the skewness in computation and the query cost model. The 

processor allocation policy classification is discussed in Section 8.3. The new processor 

allocation policies are presented in Section 8.4 and time equalisation technique is proposed 

in Section 8.5 . Optimisation issues on processor allocation such as optimal query time and 

processors bounds are introduced, and an adaptive processor allocation algorithm is 

developed in Section 8. 6. Intra-query examples are given in Section 8. 7, and the issues of 

multiple queries and their applications are described in Section 8.8. Multiple query 

execution with query dependency is introduced in Section 8.9. Finally, the chapter is 

concluded in Section 8.10. 

8.2 Optimal Degree of Parallelism with Overheads 

In Chapters 6 and 7, we assume that the number of processors is small so that the 

communication mainly deals with data transmission, and communication overheads are 

ignored. However, in this chapter, we shall introduce the concepts of optimal degree of 

parallelism and sufficient number of processors . Depending on the individual operation cost 

model, the optimal degree of parallelism may require a large number of processors, i.e. 

massive parallelism. In such a situation, communication overheads will play a significant 

role in the overall query cost model. 
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With the hardware architecture model shown in Figure 6 .1, the software model consists of 

one process serving as the coordinator and other processes running on worker processors. 

Due to database fragmentation, processors may deal with their partitions simultaneously. 

Broadcasting Operation (one to all) 

D 
Multicasting Operation (all to all) 

(Tinit + r• Tdata) (Tin it + r/4 • T data) • 4 

Figure 8.1: Data Communication 

8.2.1 Data Communication Overheads 

The broadcast one-to-all operation can be carried out in one single step without hopping 

through any intermediate processors but the multicasting all-to-all operation is expected to 

involve communication delay. Figure 8.1 shows the data communication operation for 

broadcasting and multicasting. There is little problem with broadcasting one-to-all 

operation, but the multicasting all-to-all operation does involve some degree of optimisation. 

If communication includes an identifiable preparation phase such as packaging and 

transmission, multiple sites may take advantage of the preparation time so that channels are 

better utilised used. However, exactly how to model the preparation and transmission time is 

beyond the scope of this thesis, and the communication modelling issues can be found in 

[Saad89, Bhat93, Alma94]. In the thesis, we make use of the worst case scenario for 

multicasting operation where each site carries out the broadcast operation in sequence. In 

Figure 8.1, there are four sites and one site has a relation of size r for the broadcasting 

operation; for multicasting there are 4 sites and each site has a relation of size r/4 due to 

replication and fragmentation. Hence from the figure, the data transmission time for 

multicasting operation is the same as that of broadcasting operation but the multicasting 

operation does introduce more overheads, e.g. synchronisation and hand-shaking, are 

required before every individual transmission. 
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Para met 
. 

g 

r, s the cardinality of relation R and S 

n the number of processors 

r; the number of tuples in the ith processor after the partitioning of relation R 

(Ji selectivity factor of the ith fragment of the relation R after partitioning 

~ loading time for each tuple (including disk access time and transfer time) 

w2 processing time for each tuple (mainly comparison and computation time) 

~ writing time for each tuple 

e the data skew factor ( e 2:: 0) 

L the local operation processing time 

T;nil time cost for initialising the operation on multiple processors (fixed cost) 

Thash time cost for hashing one tuple 

0- l oin_Sel the join selectivity factor 

T,,,. the communication time for data gathering at the end of the processing 

~aJa_pa ,. the communication time for data partitioning at the beginning of the processing 

T""'. time cost for transferring one tuple 

Table 8.1: Parameters Listing of Optimal Processor Allocation 

8.2.2 Load Imbalance Description 

Due to the non-uniform occurrences of relation domain values (the data skew), the data 

fragments over processors after unbiased partitioning may result in uneven sizes. In this 

chapter, the lDad skew is measured in terms of the different sizes of fragments that are 

allocated to the processors. Given the notations in Table 8.1, the size of the ith fragment12 is 

described by a Zipf Distribution as shown in equation (6-1) . In the case of 8 >0, it is 

observed that the first fragment r1 is al ways the largest in size whereas the last one rn is the 

smallest. Therefore, 

r 
(8-1) 

n 1 
I~ 
j=I ) 

12 The fragment i is not necessarily allocated to the processor i. 
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8.2.3 Query Cost Model with Overheads 

a. Selection I Projection 

The unary operations are processed locally without data partitioning because of their 

simplicity. As such, each processor will load the data fragment at that site into memory, 

process it, and output the result to the buffer. The time for selection or projection operation 

is given by 

~nary = Y;nic + max(LR(i)) 

(8-2) 

b. Binary Join (Hash Partitioning Strategy and Local Hash Join) 

When the tuples of operand relations are read in at each processor, a hash function is 

employed to determine these tuples destinations. This works as a multicasting phase in 

which each processor sends a data stream to every other processors, and if there is a perfect 

hash function and no data skew in data partitioning, the sizes of the transmitted data stream 

will be all the same. Local join processing is then carried out in individual processor. The 

costs of join methods vary with the index available on the join attributes and the distribution 

of cardinality of join relations, and thus none of the join methods always outperforms 

others. Nevertheless, the hash join method is often used in parallel processing since it 

usually performs best when no index but only the join relations are transferred across the 

processors. Assuming that the hash join is used, the local processing time involves the time 

for building a .. hash table for one relation, probing the table by the other relation and writing 

the joined tuples into the buffer. Therefore, the time for binary join is given by 

~a~1t_Join = Y;nic + ~max( T~ash) + yTdaca _ par + L1tas1t_Joir1 , (8-3) 

where the parameters ~ and 'Y are determined by the overlapped execution time among 

hashing, data transmission and local join processing. 

Assuming that binary join requires two base relations R and S, we obtain 
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max(~~sh) = max(lj + S;) X T,,ash 

and 

(
n-1 ) ~ata_par = -n- max(ri +Si) x Tdata +~nit . x n. 

Moreover, the local hash join has three components: loading into memory, processing, and 

writing; thus its time can be described by 

Lhash_join = max(r; + S;) x (it; + w2) + max(ri x S; x cr Join_Sel) x tti; . 

Therefore, the total execution time of hash partitioned join is given by 

Thash_ join = ~nit + p max(r; + S;) x Thash 

+ y x ( n ~ 1 
max(1; + s,) x T,,.,, + T,,,, J x n (8-4) 

+ max(r; + S;) x (it; + w2) + max('i x S; x cr Join_Sel) x W3 

To simplify the above equation, when 8 = 0 and ~ = "( = 1 , the time for binary join in the 

absence of skew can be rewritten as 

) 
r+s ( r+s 

~ash_ join = ~nit ( n + 1 + -- ~ash + n - 1 )-- ~ata 
n n (8-5) 

r+s rxs 
+ --(Wi + W2) + -- cr Join_Sel x W3 

n n 

when 0::; e::; 1 and p = "( = 1 , the time for binary join in the presence of skew is 

r+s r+s 
T/w.,.h_join =Tinit(n+l)+ n l Thash +(n-l)-n-

1
-Tdata 

I. -:a I.--:e 
j=I } j=I } (8-6) 

r+s rxs 
+ n 1 (w; + ~) +-n-

1
- CJ Join_Sel X ~ 

I. -:a I. -:a 
j=l } j=I } 
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8.2.4 Optimal Degree of Parallelism for One Operation 

The degree of parallelism is the number of processors used to execute the operation, and in 

the cost model equation (8-4) increasing the number of processors raises the parallel 

processing overheads and decreases the data processing time without skewness. Therefore, 

for every operation in the query, there is an optimum number of processors that minimises 

the overall execution time. Beyond the turning point, adding extra processors will degrade 

the performance. The issues on optimal degree of parallelism for parallelisation are also 

discussed in [Wils92, Alma94]. 

time (t) 

Optimal 

Time 

No. 1 Overheads 

No. 2 Computation 

No. 3 Overall Processing Performance 

No. 1 

Optimal Number of Processors Ntilllber of Processors (n) 

Figure 8.2: Optimal Number of Processors and Optimal Time 

From the practical points of view, the degree of parallelism is affected by the 

communication overhead that includes software overhead, hardware latency, and message 

delays caused by network and memory contention. Generally, this overhead depends on such 

factors as the message length, number of nodes involved, traffic conditions, network 

bandwidth, and messaging algorithms used. Letting t; be the time of processing the ith 

operation and n; be the number of processors required, Figure 8.2 shows that the execution 

time for each operation is given by t; = Toverheads + Tcomputation = f(n ;). Consequently, the 

optimal degree of parallelism 11op-i can be obtained from dt;ldn;(nop-i) = 0, and the optimal 

time top-i is equal to f(nop-;). 
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Figure 8.3: Optimal Degree of Parallelism r=s=lOOO tuples, 

Tdata=0.003 time unit, T11ash=W1=W2=W3=0.01 time unit and T;n;1=0.2 time unit 

Figure 8.3 shows the optimal degree of parallelism of a binary join operation without 

skewness where we have assumed r=s and cr =llr. In the figure, the time consists of 
Join_Sel 

the processing time, data transmission time and parallel processing overheads. With a small 

number of processors, the CPU processing time dominates the join time function and the 

overhead is a small component of join time. However, increasing the number of processors 

gives rise to large overhead, e.g. in Figure 8.3, when the number of processors reaches 

1024, the join time can even be approximated by the overheads only. 
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Figure 8.4: Optimal Time for Each Operation 

The skewness degrades the system performance but it delays the turning point as shown in 

Figure 8.4. With the same workload of relation cardinality 1000, 1500, 2000 tuples, Figure 

8.4(a) shows the turning points are 64, 128, and 256 processors in the absence of data skew 

whereas Figure 8.4(b) does not show any turning points in the presence of data skew. The 
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main reason is that although the skewness has int1uence both on communication and 

computation, it does not have any impact on parallel processing overheads associated with 

the number of processors. To find the optimal number of processors that minimises t; , we 

set the derivative dt/dni = 0. However, considering that it may be difficult to differentiate 

the cost model and rounding a non-integer value may lose the truly optimal solution, a short 

algorithm is provided in Figure 8.5 to look for the turning point13
• 

intflag=l; 

float miny=cost(l, r, s, skew); 

floaty; 

int n=2; 

DO { y=cost(n, r, s, skew); 

I* flag to indicate the turning *I 

I* variable to store the minimal execution time */ 

I* look/or the turning point */ 

IF (y<miny) {miny=y; n++;} 

ELSEflag=O; } 

WHILE (flag && (n<num_site)); 

return (miny && n); I* return the turning point and the time */ 

Figure 8.5: Algorithm For Optimal Time 

8.3 Processor Allocation Policy Classification 

In intra-query parallelism, decisions have to be made on allocating the available processors 

among a number of competing database operations running in parallel and the overall 

objective is to minimise the query execution time. In other words, there are n processors, N 

operations, and operation sequences are listed in the query tree (an example can be found in 

[Liu96a]). We are looking for an optimal processor allocation rule represented by the 

numbers { n1 , n2 , ••• , n;, ... , n N} and the optimal clustered execution phases, time given by 

{Pi, P2 , ••• , P j, ... , Pm}, with the constraint L,ni :::; n, (i.e. the total number of 
each phase 

processors available at one time is limited), so that min(~ pi) is achieved. 

Based on the searching scope, processor allocation can be divided into phase-based 

13 A numerical solution may be worked out using the Mathematica. 

Page 173 



Optimal Processor Allocation for Parallel Query Execution 

approach and non phase-based approach. The former groups the operations into several 

blocks based on the data flow and starts from the outside block with all ready operations. 

Blocks of operations are either directly saved or indirectly stored (modified first) into phases 

and the operations are executed phase by phase. The advantage of the approach is its 

simplicity but it may only achieve the local phase optimisation. The latter globally 

approaches the entire query tree considering all operations, and ideally conducts the 

operations in such a way that the query execution time is minimised under the processors 

constraint and data dependency. In both approaches , heuristic methods may be employed to 

avoid the exhaustive search for optimal solution. 

8.4 Two Intra-query Processor Allocation Algorithms 

Based on above discussion, a non phase-based approach Dynamic Processor Allocation 

Algorithm and a phase-based approach Merge-Point Phase Partitioning Algorithm using the 

heuristic of merge point evaluation, are presented below. 

8.4.1 Dynamic Processor Allocation Algorithm (DP AA) 

With DPAA, all ready operations in the query tree start executing simultaneously by 

allocating the optimal number of processors to each operation. Here, the optimal numbers 

of processors are allocated to one operation after another until no more operations or no 

more processors . Therefore, we may have surplus processors in free processor pool when 

there are a large number of processors in the system, or we may have operations waiting 

and an empty ·processor pool when the number of processors in the system is small. During 

execution if one operation finishes , its parent operation is checked and is labelled as ready

to-run if all its children finish their jobs. Otherwise, the parent operation has to wait for its 

children to complete. TI1e algorithm is presented in Figure 8.6. The advantage of the 

algorithm is its simplicity and flexibility and the limitation of the algorithm is the number of 

processors must be sufficiently large to provide a satisfactory performance. 
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Notation n 

ni 

ti 

Q 

m 

k 

a[k] 

sum 

the total number of processors available 

the optimal number of processors for the ith operation 

the optimal execution time of the ith operation 

the entire query tree or the query plan 

the total number of phases if phase-oriented approach 

the phase number in parallel plan of phase-oriented approach ( 1 :::;; k :::;; m ) 

the sub total number of processors in each phase 

the total number of processors needed for the parallel execution plan 

Dynamic Processor Allocation Algorithm (DPAA) 

BEGIN 

traverse Q to find all ready operations; 

allocate the optimal number of processors to each operation 

until no more processors or no more operations; 

execute operations with processors allocated in parallel; 

WHILE there is unfinished operations DO { 

IF one operation finishes THEN { 

check all of its sibling; 

IF all of them are ready i.e. dependency allowance THEN 

proceed to execute their parent; 

ELSE 

parent operation waits; 

WHILE there are unprocessed children operations 

allocate MIN( optimal no. processors, available no. processors) 

to them14
; 

-- - } /* end inner else */ 

/* end outer if *I 

} /* end while *I 

END 

Figure 8.6: Dynamic Processor Allocation Algorithm 

14 If there are multiple unprocessed children operations and the available number of processors 
can not satisfy the children optimal number of processors, children operations have to be executed 
one by one. This situation is really one of the worst case scenarios of the algorithm. 
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Merge-Point Phase Partitioning (MPPPA) 

BEGIN 

traverse Q to find all ready operations and store in phase 1; 

k= 1; /* start from the first execution phase *I 

a[k ]= I.ni; 
one phase 

REPEAT { 

IF ( n >= a[k] ) THEN { 

allocate the optimal # processors to each operation within the phase; 

parallel execution; !* local (phase) optimisation is achieved */ 

phase execution time depends on the local heaviest operation; } 

ELSE { 

FOR each operation in this phase 

IF not all its sibling are in this phase THEN 

put this operation in the next execution phase; 

/* if this operation's parent's all children are in the current phase, 

we call its parent a merging point; if its parent is not a merging 

point, we delete it from the current phase and re-schedule it to the 

next phase */ 

apply TEM to all operations within the phase; 

I* time equalisation used in each phase */ 

} /* end else */ 

k=k+ 1; !* proceed to the next execution phase */ 

find all updated ready operations in Q and store in phase k; 

a[k]= In; ; 
one phase 

} /* end repeat loop */ 

UNTIL reach the root; 

END 

/* Note: Time Equalisation Method (TEM) will be discussed in the following section */ 

Figure 8.7: Merge-Point Phase Partitioning Algorithm 

8.4.2 Merge-Point Phase Partitioning Algorithm (MPPPA) 

With MPPPA, all ready operations of the query tree are grouped into the first execution 

phase, and then an evaluation is conducted within the phase. If one operation' s parent is a 

merge point, this operation can remain in current phase; otherwise this operation will be left 
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in the next execution phase. An operation is a merge point if and only if all its children are 

in previous execution phase. The heuristic employed here tries to distribute the number of 

operations in each execution phase evenly, and the time equalisation technique is also 

employed in each phase so that local phase optimisation is achieved. The algorithm is shown 

in Figure 8.7. 

Notation t the number of operations in the phase 

int flag= l; 

IF (n >= t) THEN allocate each operation with one processor first; 

ELSE { IF (n >= t/2) THEN 

ELSE 

/* when# processors is small and# operations is relatively large *I 

{ flag=2; 

break the current execution phase into two phases with each phase 

having equal number of processors;} 

{ flag=O; 

execute operations one by one with n processors; } 

/* end outer else */ 

IF (tlag!=O) THEN { 

WHILE there is available processors 

{compare the time among operations; 

record the longest execution time and the operation number; 

allocate one more processor to the operation with the longest time; 

decrement the available number of processors; } 

in parallel, execute the operations with allocated processors; 

flag-~; ~ } /*end if*/ 

Figure 8.8: Time Equalisation Method 

8.5 Time Equalisation Technique 

It is not impossible to have several operations starting in one execution phase with an 

insufficient number of processors. The situation may be described as t operations of one 

phase and n processors available. We are looking for a set of { n1 , n2 , ••• , nr} such that 

min( max(/i (n;))) . The individual functions for all operations are known 

Page 177 



Optimal Processor Allocation for Parallel Query Execution 

f 1(n1),f2 (n2 ), .•• ,fr(nr) and the constraint is n1 +n2 + ... +nr ~n. The minma.x 

objective gives rise to the following time equalisation criterion: 

The problem can be solved algebraically with the following 

However, sometimes, it may be difficult to work out the inverse function of f; ( n; ) . 

Therefore, we provide an algorithm listed in Figure 8.8 to complete the time equalisation. 

8.6 Optimal Processor Allocation of A Single Query 

Processor allocation is a classical resource scheduling problem and the resource constraint 

is the number of processors available. In this section, we shall illustrate that it has a global 

optimised solution when the number of processors is sufficient, and becomes an NP 

complete problem when the number of processors is insufficient. Hence, global optimal 

query execution time is discussed first followed by processor bounds derivation achieving 

global optimal time. The bounds also give the boundary between sufficient and insufficient 

number of processors. Finally, we propose an optimised processor allocation algorithm that 

is an adaptive method based on MPPPA, DPAA, and processors lower bound derivation. 

The algorithm.__ presents a global optimal solution when the number of processors is 

sufficiently large and a locally optimal solution when the number of processors is 

insufficient. 

8.6.1 Optimal Time 

In Section 8.2.4, the optimal number of processors and optimal time for each operation are 

introduced and the task of this section is to provide the optimal time and number of 

processors bounds for the entire query. The query tree is decomposed into the simplest 

units with at most three operations in one single unit. A unit is regarded as an operation of 
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the superunit which in turn is an operation of the next higher level superunit. With a 

postorder tree traversal, a query tree may be divided into several units. We name this 

subtree-grouping method (SGM). 

In Figure 8.9, there are 4 units and they consist of Pl ,P2,P3 in unit one, P4,P5 ,P6 in unit 

two, P456,P7,P8 in unit three, P123 , P45678, P9 in unit four. Associated with each 

operation are the optimal number of processors ni for producing the optimal time ti. The 

numbers angled brackets are the optimal number of processors and the optimal time for 

each unit. 

<Top, n op> 
unit 4 

n 4 7 8 > 

Figure 8.9: An Example of Optimal Time T0 P and Number of Processors n0P 

The general steps obtaining the query optimal time are as follows , 

Step 1. Unit Division 

Step 2~ --- Postorder tree traversal, within each unit the unit optimal time is 

worked out by 

T op = Tparenc +max( ~hild -zefc ' ~1z;1d- rig1z1 ) · 

In the example shown in Figure 8.9, there are 4 units and the query optimal time T0 p can be 

worked out by starting with unit 1 and ending with the unit 4 including the root operation. 

Thus, we have 
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= t9 + max( (t3 + max(t1 , t2 ) ) , (t 8 + max(t456 , t7 ))) 

= t9 +max((t3 +max(tl't2)),(t8 +max((t6 +max(t4,t5)),t1))). 

8.6.2 Processor Bounds 

Still based on the unit concept, the upper bound on number of processors for optimal time 

( UBNP) n0 p is obtained by following steps, 

Step 1. Unit Division 

Step 2. Postorder tree traversal, within each unit the upper bound of the unit 

optimal number of processors is worked out by 

nop = max(nparent' (n child-left + nchild-right )). 

Still based on the example shown in Figure 8.9, the upper bound of the optimal number of 

processors n0p can be worked out by starting with unit 1 and ending with the unit 4 with the 

root operation. Thus, we have 

= max(n9 , (max(n3 ,(n1 +n2 ))+max(n8 ,(n456 +n7 )))) 

=max( n9 , (max(n3 , (n1 + n2 )) + max(n8 , (max(n6 , (n4 + n5 )) + n7 )))) . 

The lower bound on number of processors for optimal time (LBNP) n 'op can be worked out 

with the following algorithm. 

Step 1. Traverse the query tree, and work out the optimal number of processors 

and optimal time for each operation; group operations into units and calculate 

the unit optimal time. 

Step 2. Starting from the highest level unit, i.e. unit with the root operation, 

reduce the slack time on the non-critical operation (or unit) to zero within the 

unit. If the non-critical operation is itself a unit, decision has to be made on 

decreasing the number of processors either from descendant operations or 

parent operations. 
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Interval 

-l 
'l"~s.,.d 

Interval 

Simple Unit 

#Processors Saved 

Figure 8.10: Searching the Number of Processors in One Simple Unit 

if (t2 == t3); /* reduce the local slack time to zero *I 

else if (t2 > t3) { 

t3 = t2; using the new t3 to work out n3' ; } 

else { t2 = t3; using the new t2 to work out n2'; } 

while (t > (tl +max(t2,t3))) { 

tl ' = tl +interval; 

I* compare# processors saved by allocating a */ 

!* time interval to Parent and children 

using the tl' to work out nl ' ; 

t3' = t2' = t2 +interval; 

using the t2' and t3 ' to work out n2' and n3 ' ; 

if ((n2'+n3 ')<nl ' ) { 

n2 = n2' ; n3 = n3'; t2 = t3 = t2' ; } 

else { nl = nl ' ; tl = tl'; } 

t = t - interval; 

} 

*I 

Figure 8.11: Algorithm on Searching the Number of Processors in One Simple Unit 

The most fundamental issue of the algorithm is that given a time t, work out the minimal 

number of processors in one simple unit as shown in Figure 8.10. In the figure, the right 

child is the critical operation and thus we make t2 equal to t3 by reducing the number of 

processors from n2 to n2'. Next, based on the extra time unit interval , we compare the 

processors ' reduction on parent and children. The time unit interval is allocated to the 

operation so that the number of processors required in parent and children operations are 

close. The algorithm is shown in Figure 8.11. 
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Optimised Processor Allocation Algorithm (OPA) 

BEGIN 

traverse Q to work out ti and n i for each operation; 

in post tree order, divide Q into units; 

within each unit, sum = max(nparenr• (nchi!d-left +nchild-righr)) until the unit with root is 

reached; 

I* calculate total optimal number of processors for Q */ 

IF (sum <= n) THEN DP AA; 

ELSE MPPPA; 

I* global optimisation is achieved */ 

I* local optimisation is achieved */ 

END 

Figure 8.12: Optimised Processor Allocation Algorithm (OPA) 

8.6.3 Optimised Processor Allocation Algorithm (OPA) 

The remaining questions are how to achieve the global optimal query execution time with a 

sufficient number of processors and how to obtain the local phase optimal time with an 

insufficient number of processors in one algorithm. This gives rise to the proposed OPA that 

consists of two algorithms, DPAA and MPPPA , and their usage depends on the number of 

processors available. When the number of processors available is relatively large, i.e. 

sufficient, DP AA is used, and when the number of processors is small, i.e. insufficient, 

MPPPA is employed with the time equalisation within each phase. The detailed algorithm is 

shown in Figure 8.12 and the method is summarised in following four steps. 

Step 1. Work out the optimal number of processors and the optimal execution 

time-for each operation based on the cost model with travelling the whole query 

tree. 

Step 2. Decompose the query tree into simple units , and calculate the optimal 

number of processors and optimal execution time for the unit; then, treat that 

entire unit as one operation and work out the optimal number of processors and 

optimal time for the super unit; in such a way, detect the query optimal 

execution time as well as the total number of processors required m . 
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Step 3. If m is not greater than n i.e. the number of processors is sufficient, 

DPAA is adopted. With DPAA, first, all ready operations15 in the query tree are 

executed with the optimal number of processors. Then, whenever one operation 

finishes, a checking is involved. If all the operation's siblings are ready, 

proceed to process their parent operation, otherwise wait. This process 

continues till no more unprocessed operations are in the query tree and the 

program stops with a guaranteed global optimisation. 

Step 4. If the condition in Step 3 cannot be satisfied, form the execution phases 

with MPPPA approach. With the minmax execution time objective, the local 

optimisation is obtained by applying time equalisation in each phase. Here the 

heuristic employed is merge-point phase partitioning, and an operation in the 

query tree is defined as a merge point if all its children are in the previous 

execution phase. The aim of the heuristic is distributing the number of 

operations evenly in each execution phase. 

8. 7 Examples of Intra-query Parallelisation 

For comparison purpose, two other algorithms are also considered and implemented in the 

simulation. One algorithm, the intra-parallel processor allocation (Intra) , executes 

operations one after another starting from the leaf nodes in the query tree. The operand 

relations of each operation are partitioned and distributed over the optimal number of 

processors or the available number of processors (the smaller of above two). Another 

algorithm, the phase-oriented processor allocation (Phase) , clusters the query tree into 

several execution phases based on the data flow. The first phase involves the operations 

that require only base relations and thus are ready to process. The next phase may then 

contain the operations that become ready after completion of the first phase, and so on. 

Within each phase, the number of processors allocated to the operation is always less than 

the optimal number of processors despite the possibility of existing idle processors. The 

details of above two algorithms without introducing the degree of parallelism are discussed 

in [Leun93 , Jian95]. 

15 Ready operations are those whose operand relations are all available and thus the first group of 
ready operations only requires base relations. 
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Algorithm Name 1 nL~~e Number I Execution Time Operation I.D. 

Intra 1 2.8 Pl 

2 3.5 P2 

3 3.9 P3 

4 3.4 P4 

5 4.2 PS 

6 3.4 P6 

7 3.8 P7 

8 3.5 P8 

9 3.7 P9 

Query execution time 32.2 

Phase 1 4.2 Pl,P2,P4,P5,P7 

2 3.9 P3,P6 

3 3.5 pg 

4 3.7 P9 

Query execution time 15.3 

MPPPA 1 4.2 Pl ,P2,P4,P5 ,P7 

2 3.9 P3,P6 

3 3.5 P8 

4 3.7 P9 

Query execution time 15.3 

DPAA non-phase approach 

Query execution time 14.8 

OPA non-phase approach 

Query execution time 14.8 

Table 8.2: An Example of Query Execution Time with A Sufficient No. of Processors (256) 

To illustrate how OPA works, we take an example query with 9 operations. First, we 

traverse the query tree and work out the optimal number of processors as well as the 

optimal execution time for every operation as listed in Figure 8. 13. Then, we intentionally 

decompose them into the simplest unit with three operations. The unit of operations 1, 2, 3 

requires 63 processors to have the minimal execution time -- 7.4 since the number of 

processors needed is the maximum of two phases, i.e. the maximum of phase 1 with 

operations 1 and 2 and phase 2 with operation 3, and the execution time is the summation of 

two phases, i.e. the totalling of phase 1 with operation 2 and phase 2 with operation 3. 

Consequently, the global optimal execution time 14.8 is obtained as well as the optimal 

number of processors required 241. Assuming a system with 256 processors, the query can 
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be processed with the globally optimised execution time of 14.8. According to DPAA, 

operations Pl ,P2,P4,P5 ,P7 are executed in parallel with 241 processors in use. When P4 is 

finished, one checking is conducted and it is found that P4 has to wait because P5 is still in 

progress; when P5 is completed, another checking is carried out and it is found that P6 can 

be processed. This dynamic processing continues until no more operations in the tree. Tue 

experimental results from simulation upon four algorithms are shown in Table 8.2 assuming 

a system with 25 6 processors. 

Figure 8.13: A Query Example with Sufficient Number of Processors 

...... --···-"""' 

/-~-9/~ 
, P 3 ',« phase 3 '. .··~P~ . '>~ phase 3 

6 '0 phase 2 PG ph•~ 
phm ~ phm 1 

phase 1 phase 1 

Figure 8.14: A Query Example with An Insufficient Number of Processors 
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Algorithm Name Phase Number Execution Time Operation I.D. 

Intra 1 3.1 Pl 

2 5.5 P2 

3 6.1 P3 

4 5.1 P4 

5 6.4 P5 

6 5.3 P6 

7 7.3 P7 

8 5.7 P8 

9 6.0 P9 

Query execution time 50.5 

Phase 1 33.2 Pl,P2,P4,P5,P7 

2 8.2 P3,P6 

3 5.7 P8 

4 6.0 P9 

Query execution time 53.1 

MPPPA 1 13.2 Pl ,P2,P4,P5 

2 10.4 P6,P7 

3 9.3 P3,P8 

4 6.0 P9 

Query execution time 38.9 

DPAA non-phase approach 

Query execution time 49.2 

OPA 1 13 .2 Pl ,P2,P4,P5 

2 10.4 P6,P7 

3 9.3 P3,P8 --... · -- -

4 6.0 P9 

Query execution time 38.9 

Table 8.3: An Example of Query Execution Time with An Insufficient No. of Processors (8) 

If the number of processors in the system is insufficient e.g. 8 processors, the operations are 

grouped into execution phases based on MPPPA. as shown in Figure 8.14. First, all ready 

operations Pl,P2,P4,P5 ,P7 in the query tree are collected into the first phase and a merge 

point evaluation is then accomplished to assure that all current phase operations' parent 

operations are in the next execution phase. As a result, P7 is left to the second phase with 

P6 and P3. Furthermore, P3 has to stay in phase 3 with P8. At last, P9 is in phase 4. The 
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operations in the tree are executed phase by phase and time equalisation technique is 

implemented within each phase. The experimental results of four algorithms from 

simulation are shown in Table 8.3 assuming a system with 8 processors. 

8.8 Multiple Queries Execution 

In a multi-user environment, it is common for a system receiving multiple queries at the 

same time. As a result, several queries are running on different processors in parallel. 

Multiple queries execution can be classified into two categories based on query dependency, 

multiple dependent and independent queries. Examples of these two categories of queries 

and their applications are given below. We extend the SGM method to cope with multiple 

independent queries. The decompression algorithm for tackling query dependency will be 

introduced in Section 8.9. 

8.8.1 No Query Dependency 

Figure 8.15 shows that there are m independent queries arriving at the system at the same 

time. To represent this with a hyper-tree structure, we make use of a logical root node, i.e. 

dummy node, and several logical arcs, i.e. pseudo-dependency. Associated with each query 

node, the numbers in angled brackets give the optimal time and optimal number of 

processors of the query respectively. 

' 
' Dummy • 
' Node ~ .. . , . .. - -., 

Pseudo-dependency 

8 8 ••• 8 ••• -e 
<111]op, n[1]op> <'.I12]op, n[2)op> <'.llj] op, nUJ op > <11m]op, n[m)op> 

Figure 8.15: Multiple Queries without Query Dependency 

The processors bounds and SGM provided in Section 8.6 clearly draw the line of 

demarcation where the global optimal solution of a single query is achievable. Here, we 
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extend SGM to cover multiple queries and present the steps of deriving the global optimal 

time and the optimal processors bounds of multiple queries as follows: 

Step 1. Isolate each query and work out the individual query optimal time and 

number of processors, 11i]op and n[i]op' based on the method provided in Section 8.6. 

Step 2. Each query is treated as a composite unit; the optimal time and the optimal 

number of processors for multiple queries are given by 

Tap = mfX( T[i] 0P) 

and 

nap= L(n[iLP) · 
i 

. ' -

Figure 8.16: An Example of Three Queries without Data Dependency 
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Figure 8.16 shows an example of three queries without data dependency. The shaded circles 

indicate the skew operation, and the number of operations in queries are five, six, and six, 

respectively. A logical task with the three queries is constructed, and the logical root and its 

data flow are represented in dotted lines in the figure. As such, the optimal time and the 

optimal number of processors for the logical task can be easily derived. 

When the number of processors is relatively small, the global optimal solution is 

unreachable, and the complexity in processor allocation and operation ordering is much 

higher than that of single query. The relevant issues on multiple independent queries 

optimisation can be found in [WoU95, Ture94, Frie94, Du89]. 

8.8.2 Query Dependency 

Recently, an active database research area is data mining, by which the extraction of 

information from large amounts of data accumulated and used for other purposes. A good 

example is the airline reservation system analysing the travellers pattern to keep planes fully 

booked. During the analysis , it is found that the result of one query is required by other 

queries, i.e. multiple dependent queries. 

Footscray 

Heterogeneous Database 

Figure 8.17: Traditional Database Approach 
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Query2 ... 

Footscray 

Heterogeneous Database 

Figure 8.18: Data Warehouse Approach 

Data 
Dictionary 

(a) Example I with 6 Queries (b) Example II with 9 Queries 

Figure 8.19: Examples of Multiple Dependent Queries 

Another example of the existing query dependency is in heterogeneous databases where data 

are fragmented and possibly replicated at different sites with both hardware and software 

heterogeneity. Figure 8.17 shows an example of distributed databases located at six 

locations and there are m queries in the system. Assuming every query requires information 

from all sites and each site provides the same information to all queries, the most efficient 

way to process these queries is to identify the common components of different queries and 

rearrange multiple queries using query dependency. A more advanced approach is to 

integrate information in advance and store them in a data warehouse for direct querying and 

OIAP (see Figure 8.18). During integration, we can rearrange queries by isolating common 

query components based on the data dictionary so that the data transmission is minimised 

and the high reference of locality is obtained. 
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Figure 8.19 shows multiple queries with query dependency. A cyclic query dependency is 

shown in Figure 8.19(a) hereafter known as example I, and an acyclic query dependency is 

shown in Figure 8.19(b) hereafter known as example II. 

04 06 

Dummy 
as 

01 03 

Figure 8.20(a): Activity-Oriented Representation of Example I 

01 04 07 

02 05 08 

03 06 09 

Figure 8.20(b ): Activity-Oriented Representation of Example II 

8.9 Multiple Queries Execution with Query Dependency 

As shown in Figure 8.19, multiple queries with query dependency produce a much more 

complicated situation where queries are stored in a directed graph structure. A popular tool 

in Operations Research to manage and control project is the critical path scheduling (CPS) 

which is a representation of a project plan by a schematic diagram or network that depicts 

the sequence and interrelation of all the component parts of the project, and the logical 

analysis and manipulation of this network in determining the best overall program of 

operation [Batt64]. There is considerable similarity between project plan and control and 

query execution plan as we will discuss them later. Other reasons for using CPS are that it 
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has a very strong mathematical foundation, and based on the optimum time required for 

each activity. Using a logical mathematical model of the project, the most economical use of 

available resources (processors) can be obtained. In addition, we believe that CPS can be 

applied in the complete process of parallel query optimisation in intra-operation, inter

operation, and inter-query level. In other words, query execution without query dependency 

can be treated as a special case of that with query dependency. However, SGM of Section 

8.6 is comparatively simple and thus it will be employed whenever it is applicable. SGM has 

its limitation since it is a tree structure optimisation. By contrast, multiple dependent queries 

are represented by a graph structure. 

8.9.1 Problem Description with CPS 

If multiple queries execution is regarded as a project, the project duration is the query 

execution time. Then the query execution plan may be formulated using CPS. As such, the 

resources and activities in the project are the processors and queries in execution. The 

objective function is the query cost model and the aim is to minimise the multiple queries 

execution time. The query representation in Figure 8 .19 may be described as an event

driven network where the nodes are the jobs (i.e. queries) and the arrows indicate the 

dependency. To make use of CPS, we intentionally convert them to an activity-driven 

network. Figure 8.20 shows the translation results of Figure 8.19, and here the arrows are 

the queries, the nodes are events, and a dummy activity is introduced for synchronisation 

purpose. 

8.9.2 Activity Analysis and Critical Path 

With the examples of Figure 8.20, we conduct an activity analysis and identify the critical 

path based on top and n0 P of each query. Using the notations listed in Table 8.4, the analysis 

results of Figure 8.20(a) with 6 queries are shown in Table 8.5. Likewise, the activity 

analyses of Figure 8.20(b) with 9 queries are shown in Table 8.6. 

8.9.3 Resource Leveling and Resource Scheduling 

If the number of processors available is infinite, we shall allocate processors according to 

the activity analysis table, i.e. n 0 p for each query and nop- i for the operation within the 
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Parameters Meaning 

EST earliest start time 

LST latest start time 

EFT earliest finish time 

LFT latest finish time 

TF Total Float: the maximum additional time that can be made available to complete a 

particular activity and cannot be exceeded without delaying the project 

TF=LFT-EFT 

FF Free Float: the additional time available to complete an activity, assuming all other 

activities commence and finish as early as possible 

FF=the EST of its following activity -EFT 

IF Interfering Float: the difference between TF and FF for any activity 

IF=TF-FF 

Table 8.4: Notations of Activity Analysis 

Activity Arrow top n l EP i LJ<T TF FF IF Remarks 

Ql 0-1 5.6 24 0 0 5.6 5.6 0 0 0 critical 

Q2 1-2 4.8 19 5.6 5.6 10.4 10.4 0 0 0 critical 

Q3 1-3 3.7 20 5.6 6.7 9.3 10.4 1.1 1.1 0 ---

Dummy 1-4 0 0 10.4 10.4 10.4 10.4 0 0 0 critical 

Q4 2-4 4.8 14 10.4 10.9 15.2 15.7 0.5 0.5 0 ---

Q5 3-4 5.3 15 10.4 10.4 15.7 15.7 0 0 0 critical 

Q6 4-5 4.5 28 15.7 15.7 20.2 20.2 0 0 0 critical 

Table 8.5: Activity Analysis of Example I 

Activity Arrow r=;:;=Tn: EST WT EFT I LFT TF I FF IF Remarks . ~ .. 

Ql 0-1 8.2 29 0 1.5 8.2 9.7 1.5 0 1.5 ---

Q2 0-2 9.6 32 0 0 9.6 9.6 0 0 0 critical 

Q3 0-3 6.8 22 0 0.7 6.8 7.5 0.7 0 0.7 ---

Q4 1-4 6.3 20 8.2 9.7 14.5 16.0 1.5 1.5 0 ---

Q5 2-4 6.4 18 9.6 9.6 16.0 16.0 0 0 0 critical 

Q6 3-4 8.5 19 6.8 7.5 15.3 16.0 0.7 0.7 0 ---

Q7 4-5 3.4 10 16.0 16.9 19.4 20.3 0.9 0.9 0 ---

Q8 4-6 2.9 8 16.0 17.4 18.9 20.3 1.4 1.4 0 ---

Q9 4-7 4.3 12 16.0 16.0 20.3 20.3 0 0 0 critical 

Table 8.6: Activity Analysis of Example II 
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query. The multiple queries execution time can be derived using the critical path and a 

global optimal solution is achieved. However, it is often the case that the number of 

processors in the system is limited in the above CPS process. This is analogous to real 

world projects where we separate planning from scheduling to ensure an initial 

concentration on the development of the construction logic and the deferment of project 

resource considerations. 

When there is not enough processors at a given stage for concurrent operations, we refer to 

this situation as resource constraint. Historically, there are two approaches, resource 

leveling and resource scheduling towards resource constraint. The former is to remove or 

ease the peak requirements of limited resource or minimise the number of certain specific 

limited resource types; the latter seeks the minimal time extension of the project duration 

based on the resource availability. Both approaches maintain the construction logic. In this 

thesis, we assume that the number of processors in the system is known and only consider 

resource scheduling. 

8.9.4 Decompression Algorithm 

When the resources are limited, the critical path of CPS may be changed and thus the query 

execution time may be lengthened. This process can be carried out by network 

decompression that is based on continuous optimal increase of the project duration from the 

shortest time to the longest time possible. We summarise the decompression algorithm as 

follows. 

Step 1. Construct the CPS network and complete the activity analysis table. 

Step 2. Phase classification based on the critical path activities and their 

interfering float (IF). 

Step 3. While travelling along the critical path, check the available resource at 

each phase. If it is greater than or equal to the total number of processors of all 

current activities , execute queries in parallel and terminate the program. There is 
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a logical synchronisation point at the end of each phase so early completed 

queries have to wait due to query dependency. 

Step 4. With processors constraint, decompression starts by eliminating as much 

total float (TF) as possible from non-critical activities one by one. When the IF 

of a non-critical activity is not zero, there is an option since the float time is 

shared by multiple activities. If the project cost-curve can be represented or can 

be approximated by a linear function, the cheapest way of increasing the non

critical path is determined by using the activity with the steepest cost slope. To 

fulfil this first level decompression, we provide a simple algorithm in Figure 

8.21. This process carries out for all phases in the CPS and stops only when the 

resource constraint is released. As a result, all activities are critical at the end of 

this step. We will continue to Step 5 if the number of processors available is still 

insufficient. Up to this step, the project duration is unchanged. 

Step 5. Further decomposition by reducing the number of processors for all 

concurrent activities. In fact, there is an option of serial execution of all paths 

which will also reduce the number of processors required. However, we assume 

activities are intermittent, so parallel execution of all paths gives better results 

since the number of concurrent activities is limited and the number of processors 

is reasonably large. As a result, parallel execution tends to distribute operations 

more evenly than that of serial execution in particular in the presence of load 

imbalance (see Chapter 6). Therefore, we are aiming at finishing all paths in the 

phase at the same time but the project duration is lengthened. Comparing the 

reductio~ _on the number of processors in each phase (including all paths) by 

increasing the same amount of time, the maximum gain is selected from the 

alternatives. The reduction is continued until the resource constraint is relaxed. 

During the reduction within each phase, all paths are increased by the same time 

and the best activity for decompression is selected by the first level 

decompression algorithm shown in Figure 8.21. 

However, in step 5, the selection of time unit is a proven difficult task since a small time 

unit may take long time to release the resource constraint and a larger time unit may miss 

the optimal point. Therefore, a good heuristic is reducing the number of processors and 

comparing the time shortened at each path. 
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8.9.5 Multiple Dependent Queries Examples 

To show how the decompression algorithm works, we go through the two examples shown 

in Figures 8.19(a) and 8.19(b). The results of the first step are already presented in Tables 

8.5 and 8.6. According to the phase classification in Step 2, we obtain several phases 

displayed in Table 8.7. When the number of processors available is infinite, we allocate 

processors based on Tables 8.5 and 8.6. Both examples are terminated with global minimal 

execution time, 20.2 and 20.3 time unit respectively. 

FOR all non-critical paths DO 

WHILE (TF > 0) DO 

} ; 

reduce a processor from the first query in the non-critical path; 

min_time_reduction=query new time - query old time; 

FOR all queries in this non-critical path DO 

reduce a processor from the ith query; 

temp_time_reduction=query new time - query old time; 

IF (min_time_reduction < temp_time_reduction) { 

} 

recalculate TF; 

min_time_reduction = temp_time_reduction; 

allocate one less processor to this query; 

} 

Figure 8.21: First Level Decompression Algorithm 

If the number of processors available is small, we conduct first level decompression in Step 

4. In example I, Q3 and Q4 are decompressed by increasing their completion time to 4.8 

and 5.3 time unit, and decreasing the number of processors by 6 and 4. In example II, 

similar action can be taken in the second phase. However, there are options when we try to 

decompress the non-critical paths, QI and Q4, and Q3 and Q6. For the path with Ql and 

Q4, the problem can be described as reducing a maximum number of processors by 

increasing the given time unit. As such, we can reduce processors from Ql , Q4, or Ql and 

Q4. Based on the algorithm in Figure 8.21, a full comparison is conducted and the best 

plan is selected. We provide the same treaunent on the path with Q3 and Q6. 
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If the number of processors available is still not enough after the decompression in Step 4, 

we continue Step 5. In example I, we increase the project duration by a certain time. Then, 

a decision is made on which phase, i.e. phases 1, 2, 3, 4, the time should be allocated. 

Within each phase, all queries finish at the same time, and again, a decision has to be made 

on which query the time should be allocated. 

Phase No Example I Phase No Example IT 

(Queries Contained) (Queries Contained) 

1 Ql 1 Ql, Q4 

2 Q2, Q3, Dummy Q2,Q5 

3 Q4,Q5 Q3,Q6 

4 Q6 2 Q7, Q8, Q9 

Table 8.7: Phase Classification 

This is really an extension to Step 4 with introducing multiples phases in one project. For 

example II, the same procedure is applied. 

8.10 Summary 

We have presented several intra-query processor allocation algorithms, namely, one phase

based, one non phase-based, and an adaptive algorithm in this chapter. The previous query 

cost model on a shared nothing parallel architecture is refined by incorporating the effects of 

data communication overheads. MPPPA makes use of the heuristic of merge-point 

evaluation sc)tliat the number of operations in each execution phase is distributed evenly. 

DP AA is a dynamic approach and its performance is sensitive to the number of processors 

available. The concept of optimal degree of parallelism for each operation is introduced, and 

achieving time equalisation is highlighted and implemented in MPPPA. The global optimal 

time and the optimal number of processors bounds are derived for each query, and they also 

provide a boundary where global optimal solution is achievable. Another usage of the 

bounds and the optimal time is providing a criterion by which other processor allocation 

algorithms can compare and their relative efficiency may be defined. OPA is an adaptive 

method based on MPPPA and DPAA by making use of the optimal processors bounds, and 
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the method always presents a global optimal solution with a sufficient number of processors 

and a local phase optimal solution in all other situations. 

We have also presented a decompression algorithm in the chapter for multiple dependent 

queries and activity analysis based on CPS to deal with the optimisation issues in multiple 

query execution in parallel databases. The algorithm makes use of resource scheduling and 

resource leveling in project management, and the queries representation is converted to the 

activity-oriented network diagram. Examples are given to illustrate the operation of the 

algorithm. SGM has been extended to cope with multiple independent queries. 
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CHAPTER9 

PERFORMANCE STUDY OF PROCESSOR 

ALLOCATION ALGORITHMS 

9 .1 Introduction 
9.2 Simulation Model 
9.3 Intra-query Processor Allocation Algorithms Overview 
9.4 Intra-query Experimentation Design 
9 .5 Sufficient Number of Processors 

9 .5 .1 Different query groups 
9.5.2 Communication time 
9.5.3 Degree of data skew 
9.5.4 Selectivity factor 

9. 6 Insufficient Number of Processors 
9.6.1 Different query groups 
9.6.2 Effect of number of processors 
9.6.3 Selectivity factor 
9.6.4 Communication time 
9.6.5 Degree of data skew 

9. 7 Multiple Dependent Queries 
9.8 Summary 

9.1 Introduction 

In this chapter, we conduct a performance study on the intra-query and the multiple 

dependent queries processor allocation algorithms presented in Chapter 8. Five intra

query processor allocation algorithms, namely, the intra-parallel processor allocation 

(Intra), the phase-oriented processor allocation (Phase), the dynamic processor allocation 

(DPAA) , the merge-point phase partitioning (MPPPA) , and the optimised processor 
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allocation (OPA), are implemented, and their performance are evaluated on a simulation 

model. A large number of queries in five different query groups are selected for 

experimentation, and the algorithms performance are presented in the cases of both having 

a sufficient and an insufficient number of available processors. The results show that the 

proposed algorithms DPAA, MPPPA , and OPA always provide better performance than 

those of the traditional methods, Intra and Phase, and the performance improvements are 

significant. The adaptive method, OPA, guarantees to provide a global optimal solution 

with a sufficient number of processors. When the system is relatively small , the problem 

of processor allocation is identified as an NP complete problem. However, even in this 

situation OPA still provides a near global optimal solution by offering local phase 

optimisation. 

Three multiple queries processing algorithms, the intra-query-only parallel processing 

(JQO), the phase-inter-query parallel processing (PIQ) , and the critical path scheduling 

(CPS) , are selected for experimentation dealing with a number of dependent queries, and 

their dependency is represented by a directed graph. In this upper level of query 

processing, the query execution time of a single query is conducted using OPA intra-query 

algorithm. The query dependency logic follows that of examples I and II in Figure 8.19, 

and more experiments are carried out using example II by varying the input parameters of 

each query. The experimental results show that CPS provides a global minimal execution 

time when there is a sufficient number of processors, and it always outperforms two 

existing algorithms, PIQ and IQO. 

The remainder of the chapter is organised as follows. Section 9.2 describes the simulation 

model and Section 9.3 provides an overview of the intra-query allocation algorithms. 

Experimental-design issues are discussed in Section 9 .4 and the simulation results are 

presented in Sections 9 .5 and 9 .6 with a sufficient and an insufficient number of 

processors. Multiple dependent queries experimentation is introduced in Section 9.7. The 

chapter is concluded in Section 9.8. 

9.2 Simulation Model 

A simulation model has been constructed to evaluate the performance of the processor 

allocation algorithms. The processors in the simulation are assumed to be identical in 
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Yes 

Start 

Input Query Type and 
Nurrber of Queires 

Input One Query 

Establish Query Tree 

Execute Intra-query Processor Allocation 
Algorithms 

Output Query Tree 

Output Processor Allocation 
Results 

Calculate Avg. Query 
Results 

Input Database and System 
Information (General) 

Yes 

No 

Error Messages 

End 

Figure 9.1: Simulation Model for Intra-query Processor Allocation 
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processing capacities and connected by a dynamic cross bar as shown in Figure 6.1. The 

issues on data placement and system architecture are discussed in Section 6.2. 

I Parameters II Values 
I 

Cardinality of relations 1,000 to 16,000 

Number of processors n 4 to 256 

Number of base relations 6 to 14 

Number of joins per query 5 to 13 

w1, w2, tt-; 0.01 x 10-2 

Number of group queries 5 

Number of queries in each group 3 to 10 

Degree of data skew 8 0 to 1.0 

T;nit 0.1 x 10-2 

T1io.sh 0.01 x 10-2 

Overlapping factors ~ ' "( 1.0 

Percentage of joins with data skew 0% to 60% 

I:iata 0.003 x10-2 

Table 9.1: Default Parameters Settings of Optimal Processor Allocation 

The simulator is written in C++ programming language and runs on a Sun workstation. 

For intra-query parallelism the input to the simulation is a set of base relations and 

queries, and the output consists of the global and local phase execution times as well as 

the average query execution time of all queries in each query mix. The flow chart of the 

simulation model is shown in Figure 9.1 (see Appendix C). In the simulation, queries are 

stored in a tree structure and tree traversal always follows a post tree order. The maximum 

number of operation is 24 and the maximum number of phases in phase-based processor 

allocation approach is also 24. The default parameters' settings are listed in the Table 9.1 

[Leun93]. 

For multiple query execution, the simulation is an extension of that of the intra-query 

processing and again the simulator is coded in C++ programming language running under 

Sun workstation. The input includes multiple queries and their dependency ; the intra

query processing simulator can provide on-line information on databases and systems, and 

individual query. However, here, the queries are stored in the graph structure instead of 

the tree structure and query dependency is represented using a two-dimension matrix. The 

flow chart of the simulation model for multiple dependent queries processor allocation is 
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shown in Figure 9.2. The assumptions are that each query cost model is known, i.e. the 

query processing time is a function of number of processors employed, and the intra-query 

parallel processing has been conducted using OPA. The output is the processor 

assignments and the multiple queries execution time. 

Start 
Input Multiple Queries and 

Their Dependency 

Error Messages ------------< 

Yes 

Constraints 

No 

Search the Optimal Query Time 
and Optimal Number of 

Processors for All Queries 
(See Figure 10.1) 

Global Optimal Solution 
can be Provided 

Execute Inter-query Processor 
----~ Allocation Algorithm 

Load the Query Execution Time 
using OPA Algorithm 

(See Figure 10.1) 

Output Processor Allocation 
Results 

Output Queries 
Time 

End 

Figure 9.2: Simulation Model for Multiple Dependent Queries Processor Allocation 
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9 .3 Intra-query Processor Allocation Algorithms 
Overview 

For evaluation purposes, five algorithms are implemented in the simulation and they are 

Intra, Phase, DPAA, MPPPA, and OPA. AH five algorithms have been discussed in 

Chapter 8. Among them, time equalisation is employed in the phase-based approaches and 

the degree of parallelism is implemented in all algorithms. Intra and DPAA are non-phase

based approach whereas Phase and MPPPA are phase-based approach. OPA is a hybrid 

approach based on DPAA and MPPPA making use of the processors bounds on achieving 

query optimal time. 

9.4 Intra-query Experimentation Design 

A large number of queries are selected and they are categorised into five data sets with the 

relation cardinality varying from 1000 to 16000 tuples. Data set 1 comprises three left

deep tree queries with the number of joins varied from 5 to 9. Data set 2 includes three 

right-deep tree queries with the number of joins varied from 5 to 9. Data set 3 contains 

balanced-bushy-tree queries with the number of joins varied from 7 to 13. Data set 4 is 

made up of 3 unbalanced-bushy-tree queries with the number of joins varied from 9 to 11. 

Finally, data set 5 constitutes ten mixed queries with the number of joins varied from 5 to 

13 . The examples of data sets are shown in Figure 9. 3 and the fifth data set type is a 

combination of the above four kinds of data sets. 

For two relations R and S, the corresponding estimate for the size of the join is the product 

of the relation sizes divided by the product of the domains for each of the variables that 

are arguments of both R and S. The domain of a variable can frequently be treated as the 

largest of the domains of the arguments in which that variable appears [Ullm89]. 

Frequently, we express the estimate of the join size as the product of the sizes of the 

relations being joined, times a parameter of the join, called the join selectivity factor. 

Figure 9.4 shows a query example with 10 join operations and 11 input relations, and the 

join selectivity factor is 1 divided by the summation of the operand relation sizes16
• For 

16 This assumption has been widely used and accepted especially in the fields of query processing 
and join size estimation [Ullm89] . 
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simplicity, all join selectivity factors in the query are assumed to be the same, and once 

one of them changes all other selectivity factors change correspondingly in the simulation. 

Type 1 Query Type 2 Q u e ry 

Type 3 Query Type 4 Q u e ry 

Figure 9.3: Examples of Data Sets 

1/(P1 +P2) 

1 /(r1 +r2) 

Figure 9.4: The Selectivity Factor in A Query Tree 

To implement the degree of skewness, we make use of the skew factor 8 which is a 

floating point value among 0 and 1. An example of skewed query is shown in Figure 9.5 

with 12 operations where the shaded circles represent skewed operations and the number 

associated with the operation node is the degree of skewness. 
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Figure 9.5: An Example of Skewed Query 

9.5 Sufficient Number of Processors 

~ 

pg ) 

"----

Sufficient number of processors means that the optimal number of processors for each 

operation can always be supplied by the system processor pool according to the data flow 

of the query tree graph. Assume that in the simulation the sufficient number of processors 

is 256. With a sufficient number of processors, a global optimal solution for a query is 

achievable, and thus the non phase-based approaches provide minimal query execution 

time. 
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20 -•-Phase 

18 -:A;-DPAA 

16 
)( MPPPA 

::+( OPA 

·---· 
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23 

18 

13 

8 
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)( MPPPA 
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8 . ·' 0.01 0.1 1 2 

Data-1 Data-2 Data-3 Data-4 Data-5 Communication Time (x0.0003) 

Figure 9.6: Different Query Groups Figure 9.7: Effect of Communication Time 

9.5.1 Different Query Groups 

The five algorithms' performances are shown in Figure 9.6 with five different data sets. As 

we can see from the figure, Intra always has the poorest performance especially with data 

sets 3 and 4 because the number of operations in the phase-oriented approaches is nearly 

even-distributed in the bushy-tree parallelism. In addition, MP PP A constantly provides 
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better performance than that of Phase since the time equalisation technique is 

implemented in MPPPA. The improvements are quite stable except that for data set 1, 

where Phase gives a worse performance because the number of operations in each 

execution phase is distributed unevenly with a number of operations in the first phase and 

only one operation in all other execution phases. DPAA and OPA give the same 

performance, and as such, when the number of processors is sufficient they provide a 

global optimal solution. With a balanced-bushy query, there is a slightly difference 

between MPPPA and DPAA. For all groups of queries , experimental results match our 

prediction that OPA provides the minimal query execution time. 

9 .5.2 Communication Time 

More experiments have been conducted using data set 5 since it consists of more queries 

and mixes four kinds of query types. Figure 9.7 shows the effect of increasing 

communication time. When the communication time is comparatively low, Intra gives 

better performance than that of Phase because Intra involves heavy inter-processor 

communication time. Again, OPA and DPAA offer the best performance despite the 

changing of communication time cost, and the new algorithms, OPA, DPAA, and MPPPA 

outperform the traditional algorithms, Intra and Phase . 

-+-Intra 
12 

-ii-Phase 
16 l 15 . 

~a~DPAA ~-10 

8 . ~ ~: ~ MPPPA __.-:::::a~ 
12 * OPA -•::::::--

+ ·==--· ~;:I( 11 1111 a 

'~t -~r---
8 I I 

0 0.2 0.4 0.6 0.8 1 0.5 1 2 4 

Degree of Data Skew (THETA) Selectivity Factor (x 1/(r+s)) 

Figure 9.8: Degree of Data Skew Figure 9.9: Selectivity Factor 

9.5.3 Degree of Data Skew 

To measure and model the load imbalance over multiple processors, the degree of data 

skew is introduced and its effect on performance is shown in Figure 9.8. In the figure , 

when the degree of data skew is raised, the query execution time of all algorithms are 
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increased. Intra gives the worst performance since it tends to involve a large number of 

processors while Phase provides a good performance in particular in the absence of data 

skew. When the degree of data skew is high, Phase 's performance is closing to Intra ' s 

because it suffers from long idle time, i.e. low processor utilisation within each execution 

phase. OPA and DPAA give the best performance for all degrees of data skew. 

9.5.4 Selectivity Factor 

A given query consists of a number of relational operations such as selection or join and 

the raw input relation sizes are known. However, the intermediate result size is a run-time 

dynamic factor and fully depends on the operation selectivity which may have a 

significant impact on other inner operations in the query. In other words, the operation 

selectivity factor affects the query time by changing operand relation sizes. Figure 9.9 

shows the algorithm's performance under the variation of selectivity factor. When the 

selectivity is high, i.e . the workload is heavy, the performance of Phase deteriorates more 

quickly comparing with that of Intra. The reason is that the heavy workload makes the 

ratio of computation to communication high and thus it is in favour of Intra . With a 

sufficient number of processors, OPA and the non phase-based approach DPAA 

outperform the phase-based approachMPPPA. 

9.6 Insufficient Number of Processors 

When the number of processors is limited, the optimal number of processors of the 

operations in the query tree can not be endowed. This situation is referred as the 

insufficient number of processors. In other words , hereafter, the resource is constrained 

but the objective of query time minimisation remains. 

9.6.1 Different Query Groups 

Figure 9.10 shows five algorithms comparison on five different data sets. When the 

number of processors is relatively small , e.g. 4 in Figure 9. lO(a) , OPA and MPPPA always 

outperform others. For data set 1, Intra produces a better performance than that of Phase 

since Phase does not provide an effective phase clustering and may not supply an efficient 

processor allocation strategy within each phase. Phase even performs better than DPAA 
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based on the experimentation on data set 4 with a small number of processors. With the 

balanced-bushy queries, all algorithms except Intra provide nearly the same performance. 
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26 -Ill-Phase 

24 

22 

20 

12·+----+-----+--------__,. 

Data-1 Data-2 Data-3 Data-4 Data-5 

(a) 4 processors 

-•-Intra 
20 

-1111-Phase 

16 

·---· 
18 -.&.-DPAA 

~ MPPPA 

)t( OPA 

~:~ .. ~-~~:~ 
10~ lli ~ ... ~ 
8 I 

Data-1 Data·2 Data-3 Data-4 Data-5 

(b) 64 processors 

Figure 9.10: Different Query Groups 

When the number of processors is relatively large, e.g. 64 in Figure 9.lO(b), the 

performance starting from the best is in order of OPA and MPPPA, DPAA, Phase, and 

Intra. In the figure, clearly the improvements of OPA and MPPPA over other algorithms 

are in a wide range and the most amelioration gains in the fourth data set. Using the third 

data set, MPPPA presents the same performance as that of DPAA since the balanced

bushy-tree queries are highly likely to have the same operation execution sequence for 

both phase and non phase based approaches. 

9.6.2 Effect of Number of Processors 

Figure 9 .11 shows that increasing the number of processors reduces the query execution 

time based on-the fifth data set. Phase performs better than Intra when the number of 

processors is either very small or relatively large, i.e. there are two cross-over points. 

OPA, MPPPA, and DPAA outperform Intra and Phase despite the number of processors 

available. When the number of processors gets large the performance difference between 

DPAA and MPPPA is reduced, and thus it infers that a large number of processors is in 

favour of DPAA. Another interesting point is that the load reduction is large with a small 

number of processors but becomes marginal as the number of processors increases to a 

large number. 
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Figure 9.11: Effect of Number of Processors Figure 9.12: Selectivity Factor 

9.6.3 Selectivity Factor 

When the number of processors is 4, the effect of selectivity factor on performance is 

shown in Figure 9.12. In all cases, OPA and MPPPA provide the best results, and the 

improvement over traditional methods Intra and Phase is constantly above 10 percent. 

There is a cross-over point between Intra and Phase when the selectivity factor closes to 

4/(r+s) . Intra performs better when the selectivity factor is high whereas Phase provides 

better performance when the selectivity factor is low. 

9.6.4 Communication Time 

Increasing the data communication time encourages the local processing and inhibits inter 

processors communication. Figure 9 .13 shows that increasing data communication time 

degrades the performance for all algorithms. With a small number of processors (see 

Figure 9.13(a)), Intra gives the best performance when the communication time is very 

cheap, and responses more quickly to the communication time than any other algorithms. 

OPA and MPPPA outperform Phase and DPAA in spite of the change of communication 

time cost. When the number of processors is increased to 64 in Figure 9.13(b) , OPA and 

MPPPA outperform others but there is a cross-over point for Intra and Phase. High 

communication cost tends to bias in favour of Phase, whereas low communication cost 

tends to bias in favour of Intra. 
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Figure 9.13: Query Execution Time vs Communication Time 
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Figure 9.14: Query Execution Time vs Degree of Data Skew 

9.6.5 Degree of Data Skew 

Data skew causes the load imbalance over processors and thus it slows down the system 

as shown in Figure 9. 14. Figure 9. 14(a) shows the effects of data skew on query execution 

time with 4 processors. In the absence of data skew, DPAA and Phase have the best 

performance. In the presence of data skew in particular with a high degree of data skew, 

clearly, MPPPA and OPA provide better performance than other algorithms, and the 

improvement increases as the degree of data skew grows. Figure 9.14(b) shows the 

performance of the algorithms with 64 processors and Phase always performs better than 

Intra. As shown in both Figures 9.14(a) and 9.14(b), the changing of the degree of 

skewness has the same impact on Intra and Phase. When the number of processors is 

small, DPAA responses more quickly to the increasing degree of data skew than MPPPA 

and OPA. 
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9.7 Multiple Dependent Queries 

For experimentation in the inter-query level with data dependency, we implement two 

other existing multiple dependent queries processing algorithms . One is pure intra-query

only parallel processing (IQO) which executes queries sequentially with all available 

processors, and another is phase-inter-query parallel processing (PIQ) which group 

queries into execution phases based on the query dependency before processing. All 

algorithms assume that single query time is already optimised by exploiting intra-query 

parallelism. 

To simplify the implementation of multiple queries , we store the individual query 

execution results in files and make use of the algorithm shown in Figure 9.15 to extract 

the query response time on-line from query files (directly written by the intra-query 

simulator). This method provides a considerable simulation performance gain comparing 

to combining intra-query and inter-query processor allocation algorithms. 

int k, temp_pro; 

for (k=O ; k<Max_Num_Query; k++ ) { 

if ( ... ) { 

char buffer[20]; 

sprintf(buffer,"queryfile%d.dat", k) ; 

a[k]fs.open(buffer,ios:: in ); 

a[k] f S>>temp _pro>>a[k] .time; 

while ((temp_pro!=a[k].num_pro ) && (temp_pro !=-l)) { 

a[k]fS>>temp_pro>>a[k] .time; 

} //end of inner while 

a[k]fs.close(); 

a[k].num_pro=temp_pro; 

II end of if 

cout<<endl<<a[k] .time<<" , "<<k; 

II end of for 

Figure 9.15: Dynamic Files Linking 
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Figure 9.16: Multiple Queries for Experimentation 
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Based on examples I and II provided in Figure 8.19, the multiple queries execution time 

are displayed in Table 9.2. CPS provides a global minimal execution time, and PIQ gives 

better performance than that of IQO when the number of processors is sufficient. Going a 

bit further, we implement the three algorithms based on the query logic presented in the 

example II of Figure 8. 19(b). The forming queries of example II are shown in Figure 9 .16 

where the angled numbers under each query graph are their optimal query execution time 

and optimal number of processors to provide the optimal time. As we can see that the 9 

different types of queries are selected and they cover left-deep tree, right-deep tree, and 

bushy tree parallelism. The initial setting of the parameters is the same as that of Table 

9.1. 

I II CPS II PIQ 11/QO I 
Example I -- Type I Dependency 20.2 20.2 28.7 

Example II -- Type II Dependency 20.3 22.4 54.4 

Table 9.2: Three Methods Comparison with Sufficient Number of Processors 

CPS PIQ IQO 

Sufficient No of Processors 33.95 88 .26 38.56 

Table 9.3: Experimentation Result of Example II with Sufficient Number of Processors 

Assuming that the number of processors is sufficient, the experimental result is shown in 

Table 9.3. When a certain number of processors is involved, CPS performs as we 

discussed in Chapter 8. In the simulation, we output three tables, Tables 9.4, 9.5, 9.6 with 

32 processors. In the Table 9.4, the activity analysis of the input is provided; in the Table 

9 .5, with the processor constraint the first level decompression is conducted and the result 

is that all paths are finished closely; in Table 9.6, due to the further processors shortage, 

the second level decompression is carried out until the number of available processors is 

sufficient. 

Still based on the dependency logic of examples I and II, more experiments are conducted. 

Figure 9.17 shows the results when there is a sufficient number of processors. CPS 

always gives the best performance despite varying the types of dependency logic. The 

performance of IQO is extremely poor when queries are loosely inter related, i.e. acyclic 

query dependency, and most of the queries are able to proceed concurrently. This is also 

because PIQ is a phase based approach where in this situation it can group queries into 

phases evenly. Figure 9 .18 shows the performance comparison by varying the number of 
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processors when the number of processors available is insufficient. When the number of 

processors is small, IQO performs better than PIQ; when the number of processors is 

relatively large, PIQ gives better performance than that of IQO. CPS outperforms the 

other two despite the varying number of processors. Another interesting point observed is 

that the algorithms performance also depend on the query dependency logic. In example I, 

in general IQO provides a much better performance than that of PIQ ; however, in example 

II, PIQ constantly performs well especially with a large number of processors because 

there are several queries in each execution phase and the number of queries in each phase 

is evenly distributed. 

Activity Arrow tap nap EST LST EFT LFT TF FF IF Remarks 

Ql 0-1 1.87 55 0 7.51 1.87 9.38 7.51 0 7.51 ---
Q2 0-2 12.85 78 0 0 12.85 12.85 0 0 0 critical 

Q3 0-3 10.49 83 0 2.05 10.49 12.54 2.05 0 2.05 ---

Q4 1-4 12.71 78 1.87 9.38 14.58 22.09 7.51 7.51 0 ---

Q5 2-4 9.24 83 12.85 12.85 22.09 22.09 0 0 0 critical 

Q6 3-4 9.55 78 10.49 12.54 20.04 22.09 2.05 2.05 0 ---

Q7 4-5 9.45 36 22.09 24.5 31.54 33.95 2.41 2.41 0 ---

Q8 4-6 11.86 70 22.09 22.09 33.95 33.95 0 0 0 critical 

Q9 4-7 10.23 14 22.09 23 .72 32.32 33.95 1.63 1.63 0 ---

number of processors 364 optimal execution time 33.95 

Table 9.4: Activity Analysis 

~rrow tap nap EST I LST EFT LFT TF FF em arks 

Ql 0-1 2.61 8 0 0.08 2.61 2.69 0.08 0 0.08 ---

Q2 0-2 12.85 78 0 0 12.85 12.85 0 0 0 critical 
-· --

Q3 0-3 11 .56 11 0 0.08 11.56 11.64 0.08 0 0.08 ---

Q4 1-4 19.4 5 2.61 2.69 22.01 22.09 0.08 0.08 0 ---
Q5 2-4 9.24 83 12.85 12.85 22.09 22.09 0 0 0 critical 

Q6 3-4 10.45 14 11 .56 11.64 22.01 22.09 0.08 0.08 0 ---

Q7 4-5 11.62 10 22.09 22.33 33 .71 33 .95 0.24 0.24 0 ---

Q8 4-6 11.86 70 22.09 22.09 33.95 33.95 0 0 0 critical 

Q9 4-7 11.32 7 22.09 22.63 33.41 33.95 0.54 0.54 0 ---

number of processors 192 optimal execution time 33.95 

Table 9.5: The First Level Decompression 
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Activity Arrow top nop EST LST EFT LFT TF 

Ql 0-1 8.75 1 0 1.97 8.75 10.72 1.97 

Q2 0-2 13.12 22 0 2.15 13.12 15.27 2.15 

Q3 0-3 14.63 5 0 0 14.63 14.63 0 

Q4 1-4 19.4 5 8.75 10.72 28.15 30.12 1.97 

Q5 2-4 14.85 6 13.12 15.27 27.97 30.12 2.15 

Q6 3-4 15.49 5 14.63 14.63 30.12 30.12 0 

Q7 4-5 12.41 9 30.12 31.26 42.53 43.67 1.14 

Q8 4-6 12.26 17 30.12 31.41 42.38 43.67 1.29 

Q9 4-7 13.55 6 30.12 30.12 43.67 43.67 0 

number of processors 32 execution time 

Table 9.6: Second Level Decompression of 32 Processors 

10 
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Figure 9.17: Sufficient Number of Processors 
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Figure 9.18: Varying Number of Processors 
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9.8 Summary 

In this chapter, we have evaluated the performance of the processor allocation algorithms. 

Here, the main issues are the number of processors, communication time, selectivity 

factor, and degree of data skew. At the intra-query level, the proposed methods OPA, 

DPAA and MPPPA provide better performance than the traditional methods Intra and 

Phase based on the experimentation on a large number of queries in five different query 

groups. The phase-based approaches Phase and MPPPA perform well when there is a 

sufficient number of processors, and the non phase-based approaches Intra and DP AA 

provide better performance when there is an insufficient number of processors. OPA is an 

adaptive method based on MPPPA and DPAA, and always gives the best performance. 

We have also presented a performance study on three multiple query processing 

algorithms focusing particularly on multiple dependent queries. The simulation based on 

two query dependency logic has been carried out and the results show that CPS is superior 

to PIQ and IQO in all cases. The intermittent result tables of CPS algorithm are also 

presented to illustrate how it performs. PIQ provides better performance than that of IQO 

when the number of available processors in the system is large or when there are a large 

number of concurrent queries due to the dependency in the queries graph. In contrast, 

IQO involves the least complexity and offers a reasonable performance only when there 

are a small number of concurrent queries and a small number of available processors. 

In addition, the experimentation further demonstrates that the processor bound provided in 

Section 8.6.2 is able to indicate when a global optimal solution is achievable. 
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CHAPTER 10 

EMPIRICAL STUDY OF SKEW MODEL ON 

PARALLEL SYSTEM 

10.1 Introduction 
10.2 Parallel System Experimentation Environment 
10.3 Experimental Design 

10. 3 .1 Inter-processor communication with pipes 
10.3.2 Mutual exclusion 
10.3.3 Database processing procedure 

10.4 Synthetic Database Generation 
10.5 Performance Evaluation of Skew Model 

10.5.1 Load skew prediction without data skew 
10.5 .2 Load skew prediction with Zipf data skew 
10.5.3 Load skew prediction with Normal Distribution data skew 
10.5.4 Operation skew prediction in parallel hash join 

10.6 Conclusion 

10.1 Introduction 

In this chapter, we implement the skew model presented in Chapters 4 and 5 on a parallel 

client-server system with synthetically generated databases. First, we highlight the 

characteristics of the DEC Alpha server architecture and its operating environment for 

parallel processing in Section 10.2. The issues on how to justify the configuration of 

Alpha system and how to simulate a large number of processors in such a system are dealt 
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with in Section 10.3. The generation of synthetic databases is described in Section 10.4. 

Performance analysis of the skew model is presented in Section 10.5 , and load skew and 

operation skew prediction are evaluated with data skew modelled by the Discrete 

Uniform, Zipf, and Normal Distributions. Finally, we conclude the chapter in Section 

10.6. 

Sun Workstation 
Dump Terminals 

SGI Station Pentium PC 

users (clients) 

DEC Alpha Server RAID Controller RAID 

Commun ication Procesor 

& Main Memory 

Secondary 10 Bus 

User Interface 

Application 
Code 

Communication 
Software 

Communication 
Software 

Server 

Database 

Figure 10.1: Client-Server Parallel System 

10.2 Parallel System Experimentation Environment 

Within the system, most of the operating system functions are implemented in user 

processes so that to request a service such as reading a block of a file, a client process 

sends the request to a server process which carries out the work and transfers back the 

information (see Figure 10.1). Therefore, with the shifting the application code in clients, 

the kernel only handles the communication between clients and server. The advantages of 

this approach are enhanced data sharing, centralised management, integrated servicing, 

data interchangeability and interoperability, and location independence of data and 

processing. The database is stored in Redundant Array of Inexpensive Disks (RAID) and 

the testing database is generated using the synthetic methods [Gray94]. 

The Alpha server consists of four Alpha 64-bit processors and each of them has a CPU 

clock speed of 190 Mhz. The server offers SMP, industry-standard PCI and EISA I/O, 256 
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MB RAM, 600 MB CD ROM Drive and 8 GB capacity 4mm DAT Tape Drive. 

System Bus 
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32 bits Standard 1/0 Module 

Figure 10.2: Alpha System Architecture 
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Figure 10.2 shows the system architecture of Alpha Server. The Alpha microprocessor is 

one of the leading RISC 64-bit processors and provides the floating-point unit supporting 

both DEC and IEEE floating point data types. All instructions are 32-bit long and have a 

regular instruction format. Each processor module has an interface to the system bus 

which is the primary interconnect among CPU, memory and VO subsystems. The system 

bus is a limited-length, nonpended, synchronous, 128-bit wide multiplexed address and 

data bus with central arbitration, and is capable of delivering a peak data transfer 

bandwidth of 667 MB/Sec. A PCI 110 bus with three slots supports 32-bit PCI options and 

EISA options (via a PCI to EISA bridge) giving a bandwidth of 132 MB/Sec; an EISA 

secondary 1/0 bus with eight slots operates at 8.33 MHz giving a bandwidth of 32 MB/Sec 

[Digi95b] . The system has one internal BA35E Storage Works shelf with the hardware 

RAID Disk controller. 

The memory subsystem is interleaved and can support up to four memory modules for a 

total of 256 MB of memory. A minimum of one memory module is required and the 

memory is available in 64 MB and 128 MB. In the implementation, we adopt the shared 

memory architecture so the memory is addressed uniformly. 
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On the Alpha server, Digital UNIX serves as the operating system. Previously known as 

DEC OSF/1, Digital UNIX is a 64-bit advanced kernel architecture based on CMU's 

Mach V2.5 kernel design with components from BSD 4.3 and 4.4, UNIX System V. The 

current version of Digital UNIX (Ver 3.2C) provides the symmetric multiprocessing 

(SMP) which enables systems containing two or more processors to execute the same 

copy of the operating system, access common memory, and execute instructions 

simultaneously [Digi94, Digi95a]. 

Closely related to our focus, the operating system also offers processor affinity and 

unattended reboot, and provides multiple threads from the same or different tasks running 

concurrently on different processors. In addition, it is able to stop and start a specified 

nonboot processor and there are no architectural limits on the number of CPUs supported. 

There are five SMP modes which can be configured at system boot time and during the 

implementation the optimised SMP mode is set. 

10.3 Experimental Design 

One way to implement parallel processing is through parallel compiler where separate 

programs need to be created for the host, the coordinator processor, and the worker 

processors. As a result, different programs running on different CPUs and final result has 

to be consolidated at the host. For instance, the Shiva system, originally designed by 

Defence Science and Technology Organisation (DSTO), is an Intel i860 based system 

consisting of one single master processor unit (MPU) and a number of slave processors 

(SP). The host of the system is a SUN Spare IPX Station and the communication is 

through the SBus which provides communication bandwidth of 80 MB/Sec. For 

processing, application programs are cross compiled on the host and downloaded to 

MPU. Then, based on the partitioning information, MPU sends various parts of the binary 

code to the local memories of SPs. 
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CPU O CPU 1 CPU 2 CPU 3 

Bind Processes to CPUs 

Figure 10.3: Parallel Processing on Multiple Processors 

On the DEC Alpha system, Digital UNIX provides support for multithreaded applications 

where multiple threads are created in one single program. On top of this, it provides 

system calls to bind processes to CPUs. In the implementation, we employ higher level 

system calls17
, and the implementation language is DEC C for Digital UNIX Systems. As 

shown in Figure 10.3, the parent process in the main program creates four children 

processes using the fork( ) system call. Then, the children processes are bound to CPUs 

and subsequently interprocess communication channels are established between the parent 

process and all children processes. 

10.3.1 Inter-processor Communication with Pipes 

There are several possible inter-process communication (!PC) solutions on Digital UNIX 

such as files, shared file pointers, FIFOs, messages, pipes, semaphores, signals, shared 

memory, and ·process tracing, and they differ in the type and amount of information 

communicated between processes, ease of communication, reliability of communication, 

and efficiency. In general each method has some applications for which it is well-suited, 

and in the implementation pipes have been used because of their simplicity and elegancy. 

The idea is that the output of one process is sent directly to the input of the other process 

through the file descriptors. 

17 In fact, Digital UNIX can be treated as a parallel operating system with the option of processor 

affinity. 
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#include <stdio.h> 
#include <sys/signal.h> 
#include <sys/types.h> 
#include <sys/resource.h> 
#define CPU_3 Ox8 
#define CPU_2 Ox4 
#define CPU_l Ox2 
#define CPU_O Oxl 

main( int argc, char *argv[]) 
{ 

int pfa[2], nread, i; 
char fdstr[l 0]; 
char strgl[Sl2]; 
int loop; 

/* character string for file descriptor */ 
/* storage fpr messages */ 
I* message size *I 

int bytes; /* number of messages for transimission */ 
int pid; 
loop= atoi(argv[l]); 
bytes= atoi(argv[2]); 
if (pipe(p/d) == -1) 

/* convert argument to number */ 
/* convert argument to number */ 

fputs("Error in Pipe" ,stderr); 
switch (pid=fork()) 
{ 

case -1: 

case 0: 

default: 

fputs("Error in fork" ,stderr); 
exit(l ); 

if (close(p/d[l] == -1)) 
fputs("Error in Close'',stderr); 
/*convert number to char */ 

sprintf(fdstr, "o/od", pfd[O]); 
if ( execlp(" ./childp", "childp '',/ dstr,argv[ 1] ,NULL )==-1) 

fputs("Error in Exec",stderr); 
break; 

printf("\nPlease Wait -- We are doing the binding now\n"); 
if (bind_to_cpu(pid, CPU_2, BIND_NO_INHERIT)) { 

kill (pid, SIOK.ILL); exit(l); } 
/* creating message */ 

for (i=O; i<bytes; i++) 
strg 1 [11=' a'; 

I* sending message *I 
for (i=O; i<loop; i++) 

if (write(pfd[l],strg l ,sizeof(strg l))==-1) 
fputs("Error in Write" ,stderr); 

printf("\nl am at the end of piping\n"); 
} /* end of switch */ 

} /* end of main */ 
Figure 10.4: /PC file Main_pipe.c 
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#include <stdio.h> 
#include <sys/resource.h> 
#include <sys/sysinfo.h> 

main( int argc, char *argv[]) 
{ 

int/d, nread, i; 
int loop ; 
char s[512]; 
long cpu_num ; 
printf("\nWe are the Children -- How are you" ); 
getsysinfo(GSI_CURRENT_CPU, &cpu_num, OL, OL, OL); 
printf("\nThis child running on CPU %d\n" , cpu_num); 
fd=atoi(argv[l]); /*convert file desc to an int */ 
loop=atoi(argv[2]); /* convert num_loops to an int */ 
for (i=O ; i<loop; i++) 
{ 

switch(nread=read(fd, s, sizeof(s))) 
{ 

case -1 : 

default: 

fputs ("Error in Read" ,s tderr); 
exit(l ); 

printf(" read %d bytes: %s\n" ,nread, s); 
} /* end of switch */ 

} /* end of for loop */ 
return; 

} /* end of main */ 

Figure 10.5: /PC file Childp.c 

The limitation of the method is that two piped processes must be related so that they can 

share a file descriptor. In a shared memory architecture children processes only need to 

communicate with their parent process and thus one-way communication channel is 

sufficient for passing information. The example codes for the reader and writer are listed 

in the Figures 10.4 and 10.5, and it is assumed that a parent process writes the data to a 

child process which reads it at the end of the pipe. 

10.3.2 Mutual Exclusion (ME) 

Mutual Exclusion (ME) is designed for the critical section problem which occurs when 

two or more concurrent processes access the common resource or data. The solution is to 

allow only one process to use the shared resource while all other processes must wait until 

it becomes available. As such, any systems making use of multiple threads of control , 

need to consider mutual exclusion between the threads. However, to achieve high 

performance in a multiple processors system, system calls and kernel activities are 

allowed to occur on every processor and the kernel workload can be distributed 

throughout the system. Therefore, the uniprocessor ME solutions on avoiding race 
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conditions fail to work properly mainly because multiple processors executing in the 

kernel simultaneously violate the assumption on supporting short-term ME. In addition, 

ME with interrupt handlers may not function as we desired since the interrupt handlers 

only affect the processes priority on the processors that they are executed on, and do not 

affect interrupts delivered to other processors. 

typedef int lock_unit; 
int test_and_set (int *addres) 
{ int old_ value; 

old_value=swap_atomic(addres, 1 ); 
/* swap_atomic is the most basic single atomic read-modify-write instruction and 
such an instruction swaps a value stored in a register with a value in memory */ 
if (old_value==O) 

return O; 
return 1; 

void intlock (lock_unit *lock_status) 
{ *lock_status=O; 
} 

void lock (lock_unit *lock_status) I* this is an automatic locking routine */ 
{ while (test_and_set (lock_status)==l) 

void unlock (lock_unit *lock_status) 
{ *lock_status=O; 
} 

/* Implementing a critical section with spin lock which only allows one processor at 
a time to change the lock status from 0 to 1 *I 

lock (&spin_lock); 
critical section code 
unlock( &spin_lock); 

Figure 10.6: Algorithm for Mutual Exclusion 

There are many complex ME methods on SMP, and here we implement a simple short

term ME solution. This method reinstates the uniprocessor assumption on multiple 

processors system by requiring that all kernel execution occur on one physical processor. 

This physical coordinator processor is referred as the master and all other processors in 

the systems are named as the slaves. The method is known as Master-Slave ME method 

(MSME). As a result, in user mode, processes may execute on any processor in the system 

but they will be switched to the master processor whenever they involve system calls. 

Moreover, all interrupt handlers and device drivers run only on the master processor. The 

algorithm for MSME is listed in Figure 10.6, and it does not provide a good performance 

if long-term ME is expected because it makes use of spin locks, and processors waiting for 
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the lock do not perform any useful work while spinning. However, in the implementation, 

skew modelling considers the distribution result with the synthetic relations so the 

performance is not the utmost important issue. 

Default DEC Alpha System with 4 Processors (Defa) 

B user • processing iller G ------------ - - -~;n~p~r~~~y - wn 1ng transparency 

One Alpha Processor with Manually Parallel Processing (OAP) 

reading ... data ... local ... data ... 
writing .... 

transim ission 
.... 

processing 
.... 

transimission 
.... 

Four Alpha Processors with Manually Parallel Processing (FAP) 

reading i--. 
data r-. data __. local 

i--. data 
~ writing 

partitioning transimission processing transimission 

Figure 10.7: Processing Procedures on DEC Alpha 

10.3.3 Database Processing Procedure 

Using the DEC Alpha system, we conduct experiments based on three different methods 

involving CPUs as shown in Figure 10.7. Method I carries out processing on default DEC 

Alpha system with four CPUs so that the files are read into memory for processing and are 

written back to disks for storing. From the user point of view, the operating system is 

really a parallel operating system which takes care of parallel processing and provides full 

user transparency. Method II involves only one CPU at a time, i.e. sequential processing. 

At the beginning of processing, files are still read into memory and then transmitted to one 

CPU through the communication channel. Processing is conducted locally at that CPU and 

the processing result is transferred back to main memory before writing to disks. Method 

III is processing in parallel on four CPUs and does it manually with full user control. 

Files are read into memory and sent to CPUs according to a partitioning function. After 

local processing at each processor in parallel, the processing results are transferred back to 

main memory. At the end, the results are output from memory to disks. 

Table 10.1 shows the elapsed time comparison for reading and writing based on the above 
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three methods. In the experimentation, the database file has 2500 tuples with 80 

bytes/tuple and the file size is 208 Kbytes. Assume that the file size for writing is one 

fourth of that for reading, and the size of each communication message is 512 bytes. To 

test reading and writing, high level system calls such as fscanf( ) and fprinif( ) are 

employed since in commercial database systems these operating system calls are also used 

for loading and storing data. To reduce the variation in on-line environment, each 

operation has been conducted 100 times and the average is reported. Based on the results 

shown in Table 10.1, all three methods have the same reading and writing time and this 

agrees with our prediction since the server is a shared memory system. 

II Defa II OAP II FAP 

CPU No. unknown 0 1 2 3 all 4 CPUs 

reading 1.6112 1.6046 1.6201 1.6129 1.6023 1.6109 

writing 0.4741 0.4753 0.4713 0.4723 0.4743 0.4751 

Table 10.1: Reading and Writing Time Comparisons (time units) 

Accurately timing processing data on CPU has been proven a difficult task because a 

simple comparison such as IF-ELSE consumes a very short time and is far quicker than 

that of reading and writing. The reason is Alpha microprocessor has a powerful floating 

point unit and the system memory has 256 MB . The results in Table 10.2 are based on 

processing simple floating point operations, and the selectivity factor at each processor is 

0.25 , i.e. only one fourth of the forwarded data are transferred back to main memory from 

processors and one fourth of the read data are written back to disks. Furthermore we 

assume that there is no skew after data partitioning in F AP, and the collected data 

processing time is shown in Table 10.2. Deja gives 0.3044 for processing and 

transmission-, and the detail of the processing procedure is transparent to users, e.g. which 

CPU has been used for which portion of the file , how many CPUs has been used for 

parallel processing, how the interprocessor communication is implemented. As indicated 

in the result, Defa's execution time lies in between that of OAP and FAP. The sequential 

method OAP presents the longest elapsed time because it involves data transmission and 

only one CPU has been used for processing. F AP offers the best performance because it 

fully utilises all four CPUs in the system. 
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Def a OAP FAP 

CPU No. unknown 0 1 2 3 all 4 CPUs 

data part. -- -- -- -- 0.0241 

forward trans. 0.108 0.1101 0.1098 0.1291 0.0282 

processing 0.3044 0.3532 0.3672 0.3612 0.3498 0.0892 

(0.0886,0.0892, 

0.0883,0.0869) 

backward trans. 0.0284 0.0261 0.0298 0.0290 0.0060 

Total Time 0.3044 0.4896 0.5034 0.5008 0.5079 0.1475 

Table 10.2: Processing Time Comparisons (time units) 

A problem remains is how to simulate more than four processors on the existing DEC 

Alpha system. This can be solved with the idea of processes stacks where a processes 

stack is set up for each CPU and a number of processes can be put into one stack The 

stack follows a first in last out order (F !LO) and each CPU will execute one process at 

one time until the stack is empty. To avoid data sharing at each CPU with multiple 

running processes18
, the wait( ) system call is used to ensure only one active process at 

one time on each CPU. The penalty of this approach is of course longer execution time 

and there is also a limit of the number of processes which can be created at one time in 

memory. However, the objective of the implementation is to verify the skew model in 

which we only consider the number of tuples in each process but not the overall execution 

time nor the concurrency problem caused by data sharing. Figure 10.8 shows an 

experiment of simulating 16 processors with four CPUs and in the figure, there are four 

processes stacks with four processes on each stack. 

10.4 Synthetic Database Generation 

Synthetic database is a group of files or relations filled with dummy information but 

having certain statistical properties [Gray94] . In the implementation the synthetic 

databases are generated, and subsequently partitioned and sent to the processes for 

18 This introduces the problem of concurrency where semaphores must be implemented to protect 

data sharing. 

Page 228 



Empirical Study of Skew Model on Parallel System 

processing. In Table 10.3, a synthetic database is generated with seven relations19 and 

each relation consists of different number of tuples of various tuple sizes. In the table , the 

column of No. of Bytes is the file content size, i.e. how many characters are in the file, 

and the column of No. of Blocks is the actual file size when the file is created in Digital 

UNIX. The size of the No. of Blocks may be slightly larger than that of the No. of Bytes 

since the operating system requires extra blocks to store file information such as file 

inode. Reading and writing time are presented in Table 10.3 based on the average of 100 

runs. 

CPU 0 CPU 1 

Bind Processes Stacks 
to CPUs 

FILO Stack 

CPU 2 CPU 3 

Figure 10.8: Using Processes Stacks to Simulate 16 Processors with 4 CPUs 

The attributes .of relation TenK are listed in Table 10.4, and on Digital UNIX, an integer 

is 4 bytes, a float is 8 bytes, a character is 1 byte, and a date type is 8 bytes. Hence each 

record requires 80 bytes. The column of cardinality is the number of unique domain 

values, i.e. 20 means that there are 20 distinct values out of 10000 values, and the column 

of range refers to the range of the domain values, e.g. with column 2 there are only two 

distinct values and they are 0 and 1. Unique 1 is the primary key of the relation and this 

column is sorted. 

19 These synthetic relations simulate the example database EMP - DEPT of ORACLE 7 .1.3 running 

on SUN SPARC server. 
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Relation No. of Tuples No. of Bytes No. ot' Blocks Reading Writing Time 

Time 

OneK 1,000 80,000 79 K 0.9131 0.9955 

TwoK 2,000 160,000 168 K 1.3284 2.0314 

FiveK 5,000 340,000 344 K 2.7570 3.7311 

TenK 10,000 800,000 792K 6.5152 8.794 

TwentyK 20,000 1,600,000 1344 K 15 .6784 31.5116 

FiftyK 50,000 3,400,000 3336 K 28.1734 29.6847 

HundK 100,000 6,800,000 6656 K 55.9047 77.2801 

Table 10.3: A Synthetic Database with 7 Relations 

me Type Cardinality Range Order Comment 

uniquel (4) integer 10000 0-9999 sorted primary key 

unique2 (20) character 10000 -- random candidate key 

string 1 (20) character 10000 -- random --

twenty (4) integer 20 0-19 random 0,1...19,0,1... 

date (8) date 2000 -- random e.g.14021996 

thousand (8) float 1000 0-999 random 0,1...999,0,1... 

two (4) integer 2 0-1 random 0,1,0,1,0,1.. . 

string2 (18) character 5000 -- random --
hundred (4) integer 100 0-99 random foreign key 

Table 10.4: Attributes Listing of Relation TenK 

10.5 Performance Evaluation of Skew Model 

To implement ·the skew model, the synthetic database has been generated and is stored on 

secondary disks. First, the relation is read into main memory and children processes are 

created in the parent process of the main program. The number of processes is related to 

the number of processors and subsequently children processes are bound to CPUs. Then, 

the communication channels between parent process and all children processes are 

established. The relation is partitioned on single attribute in the parent process and tuples 

are sent to the corresponding CPUs. The number of tuples are counted at each process 

and the result is reported back to the parent process. Children processes are terminated 

and the result is written to disk in the main program. In the following subsections, we 

describe the implementation of both unary and binary relational operations and data skew 

is modelled using Discrete Uniform Distribution. Zipf Distribution, and Normal 
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Distribution. Experimental results on operation skew are also collected for the parallel 

hash based join. 

10.5.1 Load Skew Prediction without Data Skew 

When the data skew follows discrete uniform distribution, we refer to this situation as no 

data skew. In the implementation, the degree of data skew is reflected by the selection of 
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Figure 10.9: Maximum Load Prediction without Data Skew 
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Figure 10.10: Minimum Load Prediction without Data Skew 
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4 processors Maximum Load Prediction Minimum Load Prediction 

Predicted Experiment RE-% Predicted Experiment ~ 
1000 265.78 268.19 0.90 234.22 234.65 0.18 

2000 522.32 523.02 0.13 477.68 478.07 0.08 

3000 777.34 777.86 0.07 722.66 722.37 0.04 

4000 1031 .57 1030.50 0.10 968.43 969.78 0.14 

5000 1285.29 1286.42 0.09 1214.71 1213.64 0.09 

6000 1538.66 1540.19 0.10 1461 .34 1458.84 0.17 

7000 1791.76 1791.21 0.03 1708.24 1710.11 0.11 

8000 2044.64 2046.37 0.08 1955.36 1955.03 0.02 

9000 2297.35 2300.41 0.13 2202.65 2195.10 0.34 

10000 2549.91 2551.18 0.05 2450.09 2446.94 0.13 

20000 5070.58 5076.78 0.12 4929.42 4927.25 0.04 

30000 7586.45 7584.09 0.03 7413 .55 7418.20 0.06 

40000 10099.82 10101.58 0.02 9900.18 9901.69 0.02 

50000 12611.60 12617.70 0.05 12388.40 12384.95 0.03 

60000 15122.26 15113.55 0.06 14877.74 14874.73 0.02 

70000 17632.05 17630.92 0.01 17367.94 17365.16 0.02 

80000 20141.17 20144.01 0.01 19858.83 19852.44 0.03 

90000 22649.73 22651.64 0.01 22350.27 22348.38 0.01 

100000 25157.83 25156.74 0.00 24842.17 24842.58 0.00 

200000 50223.21 50223 .05 0.00 49776.79 49778.86 0.00 

300000 75273.37 75250.78 0.03 74726.63 74728 .96 0.00 

400000 100315.66 100311.03 0.00 99684.34 99680.74 0.00 

500000 125352.92 125352.42 0.00 124647.08 124660.63 0.01 

600000 150386.61 150387.59 0.00 149613.39 149605.53 0.01 

700000 175417.58 175418.77 0.00 174582.42 174558.77 0.01 

800000 200446.42 200457.56 0.01 199553.58 199524.30 0.01 

900000 
... 225473.50 225477.72 0.00 224526.50 224506.20 0.01 

1000000 250499.11 250539.36 0.02 249500.89 249478.41 0.01 

2000000 500705.85 500710.63 0.00 499294.16 499259.72 0.01 

3000000 750864.48 750919.19 0.01 749135.52 749122.31 0.00 

4000000 1000998.22 1001008.75 0.00 999001.78 998963 .25 0.00 

5000000 1251116.03 1251174.50 0.00 1248883.96 1248884.75 0.00 

6000000 1501222.56 1501280.38 0.00 1498777.44 1498752.38 0.00 

7000000 1751320.52 1751342.50 0.00 1748679.49 1748625.00 0.00 

8000000 2001411.69 2001469.13 0.00 1998588.31 1998527.50 0.00 

9000000 2251497.32 2251509.75 0.00 2248502.68 2248491.25 0.00 

10000000 2501578 .32 2501664.75 0.00 2498421.68 2498378.75 0.00 

Table 10.5: Load Skew Prediction without Data Skew on 4 Processors 
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partitioning attribute. In the case of no data skew, the primary key is chosen since it is the 

only unique identification of the relation, and it is guaranteed that there is no repeated 

values. Using 4 CPUs for the processors, the experimental results are shown in Table 

10.5. Both maximum and minimum load values are collected in the implementation and 

their values are compared with the theoretical prediction based on the skew model. The 

first column of the table is the number of tuples in the relation, i.e. the relation cardinality, 

and relative errors are also calculated in columns 4 and 7. According to implementation, 

the skew model gives precise prediction on both maximum and minimum load in 

particular when the relation size is large. 

Using processes stacks introduced in Section 10.4, we simulate the number of processors 

which varies from 4 to 16. The maximum load prediction without data skew is shown in 

Figure 10.9 and the corresponding minimum load prediction is shown in Figure 10.10. In 

both figures , the experimental values agree with the skew model, and as increasing the 

number of processors, both the maximum and the minimum load over processors are 

reduced. 

10.5.2 Load Skew Prediction with Zipf Data Skew 

With the Zipf data skew, we only implement the situation when the number of 

appearances of distinct domain values follows a pure Zipf distribution, and thus we pick 

up a non-key attribute in the synthetic relation as the partitioning attribute. The 

experimental results with 4 processors are listed in Table 10.6. All relative errors are less 

than 8.6% and larger than those of the case of without data skew. The reason is that the 

approximation on the Harmonic Number H k by "( +In k for simplicity used in the 

skew model. The experimental maximum values are always less than the predicted values 

while the experimental minimum values are greater than the predicted minimum values. 

This further agrees with our forecast because by simplifying Harmonic Number, the 

maximum load is increased and the minimum load is decreased in the skew model. 

Varying the number of processors from 4 to 16, the maximum and minimum load 

comparisons are shown in Figures 10.11 and 10.12. The general trend is still the same 

with increasing number of processors reducing the skew values but the curves tend to 

more smooth or the load reduction is slower comparing those of Figures 10.9 and 10.10. 
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4 processors Maximum Load Prediction Minimum Load Prediction 

II Predicted I..,.. ,_ 
RE-% Predicted Experiment RE-% '~ 

1000 520.94 479.90 8.55 111.38 119.65 6.91 

2000 1035.06 957.50 8.10 232.10 243.25 4.58 

3000 1548.06 1438.96 7.58 354.36 362.68 2.29 

4000 2060.48 1917.03 7.48 477.41 480.76 0.70 

5000 2572.52 2394.20 7.45 600.97 601.67 0.12 

6000 3084.30 2878.22 7.16 724.89 722.22 0.37 

7000 3595.88 3365.42 6.85 849.09 838.70 1.24 

8000 4107.30 3847.94 6.74 973.50 956.91 1.73 

9000 4618.60 4323.85 6.82 1098.09 1076.98 1.96 

10000 5129.78 4799.54 6.88 1222.82 1198.43 2.04 

20000 10237.98 9586.68 6.79 2475.18 2403 .50 2.98 

30000 15342.62 14386.62 6.65 3732.39 3599.34 3.70 

40000 20445.43 19202.61 6.47 4992.11 4800.68 3.99 

50000 25547.06 24007.97 6.41 6253.45 5997.38 4.27 

60000 30647.86 28816.67 6.35 7515.92 7186.33 4.59 

70000 35748.03 33579.35 6.46 8779.26 8394.24 4.59 

80000 40847.69 38390.61 6.40 10043.29 9605 .72 4.56 

90000 45946.95 43213.61 6.33 11307.87 10804.41 4.66 

100000 51045.86 47996.16 6.35 12572.92 12022.79 4.58 

200000 102023.48 95977.96 6.30 25239.23 23986.18 5.22 

300000 152989.86 144048.69 6.21 37920.90 35977.92 5.40 

400000 203950.43 191988.84 6.23 50610.52 48017.27 5.40 

500000 254907.28 240005 .08 6.21 63305.23 59983.32 5.54 

600000 305861.50 288034.72 6.19 76003.54 72018.50 5.53 

700000 356813.72 336060.69 6.18 88704.59 83978.19 5.63 

800000 407764.35 383930.28 6.21 101407.81 96009.21 5.62 

900000 
-·- -

458713.69 432106.63 6.16 114112.80 107996.44 5.66 

1000000 509661.95 479939.09 6.19 126819.26 120022.22 5.66 

2000000 1019108.06 959926.25 6.17 253933.83 240010.92 5.80 

3000000 1528518.66 1439945.88 6.15 381096.98 360100.16 5.83 

4000000 2037910.89 1920310.25 6.12 508285.27 479882.49 5.92 

5000000 2547291.36 2400076.75 6.13 635489.64 599896.38 5.93 

6000000 3056663.49 2880312.00 6.12 762705.43 719853.81 5.95 

7000000 3566029.30 3360275.50 6.12 889929.87 839875 .75 5.96 

8000000 4075390.11 3839804.50 6.14 1017161.15 960060.75 5.95 

9000000 4584746.82 4319890.50 6.13 1144398.03 1079979.63 5.96 

10000000 5094100.11 4800244.00 6.12 1271639.60 1199912.88 5.98 

Table 10.6: Load Skew Prediction with Zipf Data Skew on 4 Processors 
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Figure 10.11: Maximum Load Prediction with Zipf Data Skew 

1100 •Predicted 

! .. ···: ····:i ..... :!• .... :1 .... :1 ... :.a-------------------C-·· _E_xp_e_ri_m_e_nt_a_r -----i 
!:'::: 

900 

L 700 

500 I Min 

300 
111111 

100 
4 5 6 7 8 9 10 11 12 13 14 15 16 

No. of Processors ·• k 

Figure 10.12: Minimum Load Prediction with Zipf Data Skew 

10.5.3 Load Skew Prediction with Normal Distribution Data Skew 

With the Normal Distribution data skew, the appearances of distinct values of attributes 

can be described using symmetrical Normal Distribution. Again, a non-key attribute has 

to be selected for partitioning within the synthetic relation since there are two valleys and 

a peak in the distribution. Using 4 CPUs for the processors, the maximum and minimum 

load comparisons are displayed in Table 10.7. The relative error on maximum load 
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prediction is bounded by 0.4% while the relative error on minimum load is less than 

12.3%. There are two explanations on the high mean error for minimum load prediction. 

One is caused by the approximation on the standard normal distribution for generating 

skewness in the synthetic relation in the implementation, since integration in the standard 

normal distribution has been a complex and expensive task in any simulation or 

implementation and inappropriate selection of integration interval not only slows down 

the implementation but also drops the preciseness. Another reason is that the minimum 

load of normal distribution tends to 
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Figure 10.13: Maximum Load Prediction with Normal Distribution Data Skew 

600 j~i~~~ 
?~~ 
: :·:·: 

500 
mm 

I 400 

L 
Min 300 

200 lj!l!l 

1 00 ~~1]1~ 
~I! 

0 
4 

•Predicted 

C Experimental 

::::::A:--------------------
~~{ 

lli'!i .:, ... '~ ... '·.~ ... '~ ... 'j:···'~ 
:11111 

5 6 7 8 9 10 11 12 13 14 15 16 

No. of Processors - k 

Figure 10.14: Minimum Load Prediction with Normal Distribution Data Skew 
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4 II - - ximum Load Prediction Minimum Load Prediction 

- cted Experiment RE-"" :-. _ _: __ ted Experiment RE-% 

1000 446.73 446.71 0.00 51.94 59.18 12.23 

2000 885.85 882.59 0.37 112.27 123.90 9.39 

3000 1323.72 1320.12 0.27 173.98 188.89 7.89 

4000 1760.94 1757.78 0.18 236.40 257.78 8.29 

5000 2197.75 2194.01 0.17 299.27 321 .60 6.94 

6000 2634.27 2629.29 0.19 362.47 385.65 6.01 

7000 3070.56 3069.31 0.04 425.92 451.04 5.57 

8000 3506.68 3500.41 0.18 489.56 517.76 5.45 

9000 3942.65 3938.19 0.11 553.36 584.12 5.27 

10000 4378.50 4372.96 0.13 617.29 647.40 4.65 

20000 8732.95 8735.31 0.03 1261.10 1303.59 3.26 

30000 13083.45 13099.09 0.12 1909.26 1963.91 2.78 

40000 17431.90 17435.41 0.02 2559.69 2621.22 2.35 

50000 21779.04 21786.96 0.04 3211.55 3283.04 2.18 

60000 26125.25 26155.01 0.11 3864.44 3929.79 1.66 

70000 30470.76 30479.73 0.03 4518.11 4605.72 1.90 

80000 34815.71 34855.77 0.11 5172.39 5259.23 1.65 

90000 39160.20 39186.18 0.07 5827.18 5909.19 1.39 

100000 43504.31 43565.02 0.14 6482.38 6573.61 1.39 

200000 86932.59 87065.19 0.15 13048.60 13175.78 0.97 

300000 130348.35 130547.97 0.15 19628.61 19781.84 0.77 

400000 173757.64 174096.31 0.19 26215.76 26390.28 0.66 

500000 217162.79 217620.27 0.21 32807.47 33010.17 0.61 

600000 260565.00 261035.88 0.18 39402.42 39637.97 0.59 

700000 303964.98 304578.91 0.20 45999.83 46239.49 0.52 

800000 347363.20 348105.03 0.21 52599.18 52836.14 0.45 

900000 ~ 390759.97 391551.41 0.20 59200.12 59496.38 0.50 

1000000 434155.54 435086.63 0.21 65802.40 66092.18 0.44 

2000000 868070.62 870104.81 0.23 131869.89 132237.59 0.28 

3000000 1301946.14 1305168.13 0.25 197981.00 198403.64 0.21 

4000000 1735801.19 1740553.88 0.27 264114.69 264583.63 0.18 

5000000 2169643.14 2175441.50 0.27 330262.81 330915.19 0.20 

6000000 2603475.80 2610366.50 0.26 396421.18 397090.09 0.17 

7000000 3037301.41 3030275 .50 0.23 462587.31 463194.97 0.13 

8000000 3471121.45 3481019.75 0.28 528759.59 529393 .50 0.12 

9000000 3904936.93 3915571.50 0.27 594936.89 595730.63 0.13 

10000000 4338748.59 4350963.50 0.28 661118.40 661842.88 0.11 

Table 10.7: Load Skew Prediction with Normal Distribution Data Skew on 4 Processors 
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produce small values. In other words, normal distribution has two deep valleys and the 

small number always tends to generate a large relative error. 

Using 4 CPUs for 4 - 16 processors, the maximum and minimum load comparisons are 

shown in Figures 10.13 and 10.14. Both figures show a close agreement between the 

experimentation and skew model. In addition, the maximum load is nearly linear to the 

number of processors and the minimum load reduces sharply with increasing the number 

of processors. 

10.5.4 Operation Skew Prediction in Parallel Hash Join 

With operation skew in binary join, two synthetic relations are read into memory and they 

are partitioned one after another. The fragments are sent to chlldren processes from the 

parent process. Hash based join will be conducted at each processor so that the 

complexity of the operation is directly related to the fragment size of operand relations, 

i.e. the operation skew is a linear summation operation of the load skew in input relations. 

However, whether the relation is skewed will affect the operation skew significantly. As 

such, we will implement the operation skew of parallel hash based join. The output 

from the implementation is the parallel join complexity in terms of the maximum and 

minimum number of tuples allocated over processors. Throughout this section, we 

assume that two relations have the same cardinality R=S, and we only consider the 

comparison at each processor not the IO bottleneck. In addition, we assume that if there is 

data skew in input relation it always follows a pure Zipf distribution. 

When there i~ _ no data skew in both input relations, two synthetic relations of one-to-one 

relationshlp are loaded into memory. Both of them are partitioned using the primary key. 

Table 10.8 shows the implementation results of 4 processors. Experimental results closely 

agree with the predicted values in the skew model, and the relative mean error is less than 

1.7% for maximum load and less than 2.8% for minimum load. Varying number of 

processors 4 - 16, the load comparisons between predicted and experimental are shown in 

Figures 10.15 and 10.16. 
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Figure 10.16: Minimum Operation Skew Prediction without Data Skew 

To implement the situation of single data skew, the appearances of number of distinct 

domain values in one synthetic relation follow a pure Zipf distribution and those of 

another synthetic relation follow a discrete uniform distribution. Therefore, two synthetic 

relations of one-to-many relationship are selected, and one relation is partitioned on 

primary key and 
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4 processors Maximum Load Prediction Minimum I .mul Prediction 

R=S Predicted Experiment RE-% Predicted Experiment RE-% 

1000 531.57 522.81 1.68 468.43 476.64 2.71 

2000 1044.64 1029.47 1.47 955.36 967.53 1.82 

3000 1554.67 1537.93 1.09 1445.33 1457.25 0.86 

4000 2063.13 2046.03 0.84 1936.87 1954.16 0.84 

5000 2570.58 2548.55 0.86 2429.42 2450.16 0.58 

6000 3077.32 3055.83 0.70 2922.68 2941.72 0.15 

7000 3583.52 3562.76 0.58 3416.48 3437.25 0.07 

8000 4089.28 4062.83 0.65 3910.72 3938.77 0.08 

9000 4594.70 4570.00 0.54 4405.30 4434.65 0.15 

10000 5099.82 5076.38 0.46 4900.18 4925.56 0.22 

20000 10141.17 10101.62 0.39 9858.83 9894.52 0.87 

30000 15172.90 15123.51 0.33 14827.10 14878.15 0.93 

40000 20199.64 20144.25 0.27 19800.36 19852.16 1.09 

50000 25223.21 25160.14 0.25 24776.79 24846.45 1.14 

60000 30244.51 30171.12 0.24 29755.49 29821.61 1.25 

70000 35264.10 35201.23 0.18 34735.90 34793.52 1.41 

80000 40282.34 40200.96 0.20 39717.66 39793.52 1.37 

90000 45299.46 45233.72 0.15 44700.54 44772.82 1.45 

100000 50315.66 50218.90 0.19 49684.34 49755.01 1.39 

200000 100446.42 100345.78 0.10 99553.58 99645.70 1.55 

300000 150546.75 150402.25 0.10 149453.25 149597.22 1.66 

400000 200631.33 200470.09 0.08 199368.67 199521.08 1.75 

500000 250705 .85 250539.42 0.07 249294.15 249436.08 1.73 

600000 300773.21 300585.03 0.06 299226.79 299430.13 1.76 

700000 350835.17 350643.75 0.05 349164.83 349318.41 1.74 

800000 400892.83 400684.44 0.05 399107.17 399320.09 1.79 

900000 450946.99 450721.53 0.05 449053.01 449278.63 1.81 

1000000 500998.22 500756.09 0.05 499001.78 499232.13 1.80 

2000000 1001411.69 1000981.38 0.04 998588 .31 998983.06 1.87 

3000000 1501728.96 1501208.13 0.03 1498271.04 1498678.88 1.88 

4000000 2001996.43 2001476.38 0.03 1998003.57 1998482.75 1.90 

5000000 2502232.08 2501663.50 0.02 2497767.92 2498386.25 1.91 

6000000 3002445.12 3001765.00 0.02 2997554.88 2998218.25 1.90 

7000000 3502641.03 3501906.25 0.02 3497358.97 3497930.00 1.92 

8000000 4002823.38 4002038.00 0.02 3997176.62 3997965.01 1.93 

9000000 4502994.65 4502190.12 0.02 4497005.35 4497760.23 1.92 

10000000 5003156.63 5002235.00 0.02 4996843.37 4997703.92 1.92 

Table 10.8: Operation Skew Prediction of Parallel Hash Join without Data Skew on 4 Processors 
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4 processors Maximum Load Prediction Minimum Load Prediction 

R=S Predicted Experiment RE-% Predicted Experiment RE-% 

1000 774.89 732.04 5.85 357.44 367.39 2.71 

2000 1540.64 1462.68 5.33 726.52 740.01 1.82 

3000 2304.90 2193.95 5.06 1097.52 1106.99 0.86 

4000 3068 .37 2924.52 4.92 1469.52 1481.94 0.84 

5000 3831.34 3643.53 5.15 1842.15 1852.94 0.58 

6000 4593.97 4380.03 4.88 2215 .23 2218.52 0.15 

7000 5356.32 5118.29 4.65 2588.65 2590.43 0.07 

8000 6118.46 5835.34 4.85 2962.34 2960.06 0.08 

9000 6880.43 6558.56 4.91 3336.25 3341.38 0.15 

10000 7642.26 7293.59 4.78 3710.34 3702.09 0.22 

20000 15255.62 14588.73 4.57 7457.53 7393 .55 0.87 

30000 22864.23 21884.48 4.48 11210.77 11106.95 0.93 

40000 30470.39 29193.00 4.38 14967.16 14805.96 1.09 

50000 38074.96 36500.15 4.31 18725.55 18515.30 1.14 

60000 45678.43 43805.48 4.28 22485.36 22207.52 1.25 

70000 53281.04 51102.40 4.26 26246.25 25881.56 1.41 

80000 60882.99 58427.91 4.20 30007.99 29602.21 1.37 

90000 68484.38 65703.48 4.23 33770.44 33288.51 1.45 

100000 76085.32 73003 .02 4.22 37533.47 37017.42 1.39 

200000 152079.28 145976.81 4.18 75183.43 74032.34 1.55 

300000 228058.20 218977.59 4.15 112852.56 111009.11 1.66 

400000 304029.34 292018.38 4.11 150531.61 147943.78 1.75 

500000 379995.51 365019.72 4.10 188217.00 185009.88 1.73 

600000 455958.15 438047.97 4.09 225906.89 221991.13 1.76 

700000 531918.11 510949.31 4.10 263600.20 259084.98 1.74 

800000 607875.95 584018.19 4.09 301296.20 295986.69 1.79 

900000 . - . 683832.06 657000.94 4.08 338994.42 332964.00 1.81 

1000000 759786.72 730057.38 4.07 376694.49 370028.31 1.80 

2000000 1519284.52 1459981.63 4.06 753757.37 739921.81 1.87 

3000000 2278734.78 2190033 .00 4.05 1130880.86 1110010.63 1.88 

4000000 3038160.44 2920176.00 4.04 1508035.72 1479929.25 1.90 

5000000 3797570.37 3650194.00 4.04 1885210.63 1849961.25 1.91 

6000000 4556969.13 4379974.51 4.04 2262399.79 2220307.25 1.90 

7000000 5316359.43 5110225.09 4.03 2639599.74 2589959.32 1.92 

8000000 6075743.03 5840288.12 4.03 3016808.23 2959810.18 1.93 

9000000 6835121.15 6569983.48 4.04 3394023.70 3329988.37 1.92 

10000000 7594494.68 7300155.49 4.03 3771245.02 3700110.91 1.92 

Table 10.9: Operation Skew Prediction of Parallel Hash Join with Single Data Skew on 4 Processors 
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another is fragmented on foreign key. Using 4 CPUs simulating 4 processors, the results 

are displayed in Table 10.9. Again, we approximate the Harmonic Number in one relation 

in the skew model and thus expect the relative error is slightly larger than that of operation 

skew without data skew. Increasing the number of processors from 4 to 16, the load 

comparisons are shown in Figures 10.17 and 10.18. Not surprisingly, all values provide a 

similar trend as in load skew prediction with Zipf data skew. 
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Figure 10.17: Maximum Operation Skew Prediction with Single Data Skew 
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Figure 10.18: Minimum Operation Skew Prediction with Single Data Skew 
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Finally, we implement data skew in both input synthetic relations and the appearances of 

distinct values in both relations follow a pure Zipf distribution. With the assumption on 

strong correlation between the two input relations, two synthetic relations are loaded and 

they are partitioned on a common non-key attribute. With 4 processors, the experiment 

results and the relative error are listed in Table 10.10. 
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Figure 10.19: Maximum Operation Skew Prediction with Double Data Skew 
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Figure 10.20: Minimum Operation Skew Prediction with Double Data Skew 
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4 Maximum Load Prediction Minimum Load Prediction 
processors 

=S Predicted Experiment RE-% Predicted Experiment RE-% 

1000 1041.89 959.10 8.63 222.76 238.54 6.62 

2000 2070.13 1916.75 8.00 464.20 480.96 3.48 

3000 3096.12 2877.13 7.61 708.72 721.13 1.72 

4000 4120.95 3836.08 7.43 954.82 955.70 0.09 

5000 5145.04 4801.96 7.14 1201.94 1202.05 0.01 

6000 6168.60 5762.36 7.05 1449.78 1439.60 0.71 

7000 7191.76 6720.25 7.02 1698.17 1682.10 0.96 

8000 8214.61 7680.66 6.95 1947.00 1920.08 1.40 

9000 9237.19 8635.70 6.97 2196.17 2159.72 1.69 

10000 10259.56 9605.83 6.81 2445.65 2397.58 2.00 

20000 20475.95 19199.45 6.65 4950.35 4798 .93 3.16 

30000 30685.25 28795 .32 6.56 7464.77 7201.60 3.65 

40000 40890.86 38377.59 6.55 9984.23 9595.78 4.05 

50000 51094.13 47998.60 6.45 12506.89 11996.23 4.26 

60000 61295.72 57629.56 6.36 15031.84 14382.29 4.52 

70000 71496.06 67207.41 6.38 17558.52 16802.92 4.50 

80000 81695.39 76816.86 6.35 20086.57 19207.74 4.58 

90000 91893.90 86381.13 6.38 22615.74 21598.04 4.71 

100000 102091.73 95967.22 6.38 25145.85 23995.00 4.80 

200000 204046.95 192017.80 6.26 50478.46 47995.69 5.17 

300000 305979.72 288027.53 6.23 75841.80 72004.66 5.33 

400000 407900.86 384032.72 6.22 101221.04 95985.38 5.45 

500000 509814.57 480089.28 6.19 126610.45 120009.42 5.50 

600000 611723.00 576070.81 6.19 152007.08 143982.45 5.57 

700000 713627.43 672026.38 6.19 177409.18 168017.06 5.59 

800000 815528.70 767917.69 6.20 202815.62 192016.95 5.62 
-· .. 

900000 917427.38 863916.94 6.19 228225.59 216007.00 5.66 

1000000 1019323.90 960015 .94 6.18 253638.53 240059.93 5.66 

2000000 2038216.12 1920265.50 6.14 507867.66 479847.31 5.84 

3000000 3057037.33 2879818.25 6.15 762193 .95 720084.00 5.85 

4000000 4075821.77 3839964.75 6.14 1016570.55 959973 .69 5.90 

5000000 5094582.73 4800040.50 6.14 1270979.29 1199891.63 5.92 

6000000 6113326.99 5760330.00 6.13 1525410.86 1439908.50 5.94 

7000000 7132058.61 6720379.50 6.13 1779859.73 1679788.00 5.96 

8000000 8150780.21 7680397.50 6.12 2034322.30 1919822.13 5.96 

9000000 9169493.64 8640177.00 6.13 2288796.07 2159937.25 5.97 

10000000 10188200.21 9600266.01 6.12 2543279.20 2399898.12 5.97 

Table 10.10: Operation Skew Prediction of Parallel Hash Join with Double Data Skew on 4 Processors 

Page 244 



Empirical Study of Skew Model on Parallel System 

Varying the number of processors from 4 to 16, the comparisons of both minimum and 

maximum between the skew model and the implementation results are shown in Figures 

10.19 and 10.20. 

10.6 Conclusion 

We have implemented the relational database processing and the skew model on a parallel 

client server system with a shared memory architecture. The server is a DEC Alpha 2100 

system and the database is stored in RAID and generated using synthetic methods. From 

the experiments, we conclude that overheads due to parallel processing such as data 

transmission and partitioning play an important role in the overall processing time. IO is 

clearly the bottleneck in parallel processing on DEC Alpha Server and constantly 

consumes more than 60% of the total elapsed time. The default setting on DEC Alpha 

Server makes use of parallel processing but the solution provided is not optimal. With the 

proper partitioning of data, the processing time is linearly speeded up relative to the 

number of processors as in the FAP method. However, when the number of processors is 

scaled up, the parallel processing overheads may dominate the total time in a shared 

memory system. 

During the skew model implementation, we program and address it as a shared memory 

system but we believe that implementing the skew model on shared nothing systems will 

give the same result because of the architecture independence of the skew model. Data 

skew is modelled using Discrete Uniform Distribution, Zipf Distribution, and Normal 

Distribution. The experimental results collected from the implementation further confirm 

the validity of the analytical model in predicting load and operation skewness. 
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CHAPTER 11 

CONCLUSIONS 

11. 1 Summary of the Thesis 
11.2 Future Work and Limitations 

11.1 Summary of the Thesis 

With new data demands and advanced requirements for flexible data correlation, systems 

performance is a critical issue, especially with the advent of Decision Support Systems 

(DSS) and On-Line Analytic Processing Systems ( OIAP) applications. Since the 

processing power of conventional computer systems can only handle a small fraction of 

current applications, parallel processing with multiple processors is widely acknowledged 

as the only viable solution for very large relational databases. 

However, parallelism does bring with it considerable problems. One of these problem is 

that of skewness since it is highly likely that processors are assigned different workloads 

so that the earlier finished processors have to wait until the most heavily loaded 

processors to complete. The causes of such load imbalance include the data partitioning 

function and the phenomenon that some attributes appear more often than others in input 

relations. Another problem is effective query optimisation over multiple processors in the 

presence of the skewness. This thesis has focused on skew taxonomy, modelling, and 

prediction, and skew effects on query processing. 
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A skew taxonomy has been developed followed by a skew analysis. We believe that this is 

the first time the skew problem has been systematically studied. With the taxonomy, we 

developed a skew foundation model by identifying three types of skew, namely, data 

skew, load skew, and operation skew. Load skew is further classified into I/O load skew, 

operation load skew, and result load skew. These different types of skew have been 

quantitatively analysed and evaluated. In the light of skew taxonomy, we discover that 

skew effect may be significant even when data are partitioned evenly over the processors. 

To strengthen the skew framework, a skew model has been developed based on extreme 

value properties. The skew model consists of two parts, foundation model and extension 

model. In the foundation model , not only the mean maximum and minimum load but also 

their standard deviations and distribution functions are obtained. All extreme value 

predictions are evaluated in the simulation study. Furthermore, we implemented the skew 

model on a parallel system, DEC Alpha 2100. The test database is generated using 

synthetic methods and the results show a close agreement between experimental and 

predicted values. 

Although skew handling has received considerable attention in recent years , most of 

proposed methods are devoted to solving or avoiding data skew for single binary join 

operation. We have extended the current work to a higher level which deals with multiple 

binary operations in one query. We also find that allocating a large number of processors 

does not always improve the performance significantly in the presence of data skew. 

Based on this , we approach the skew problem by identifying the skewed operations and 

group them with other operations based on a phase based processor allocation approach so 

that the performance degradation caused by skewness is kept to a minimal level. The 

heuristic employed in our new algorithm is based on neighbourhood search. 

We have identified and evaluated three critical issues in the processing of aggregate 

functions , namely, the selection of partitioning attribute. the sequence of aggregation and 

join operation, and the skewness. Three parallel methods of processing aggregate 

functions are introduced and they differ in their selection of partitioning attributes. Cost 

models for these methods incorporating the effect of data skew have been developed. 
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We have also developed three new intra-query processor allocation algorithms. The first 

uses a dynamic non phase based approach, a second one uses a phase based approach and 

the third is a hybrid method based on the system size. The optimal degree of parallelism 

is introduced for each operation together with the operation optimal time. Using network 

analysis, the optimal query time and processors bound are derived. A time equalisation 

algorithm is also developed to achieve local optimisation in the phase based approach. 

Furthermore, we have developed a new inter-query processor allocation algorithm which 

focuses on multiple dependent queries and makes use of the activity analysis, resource 

scheduling, resource leveling, and decompression techniques. 

To sum up, the key contributions of this thesis include the following. 

• Provided for the first time a theoretical study of skewness in parallel database 

systems in depth, where the extent of skewness are quantitatively analysed and 

performance bounds were obtained. 

• Provided a skew prediction model based on range partitioning. 

• Provided a systematic skew foundation analytical model of hash partitioning where 

the relationship between data skew and load skew as well as load characteristics 

are expressed in closed form. 

• Developed parallel methods for the processing aggregate functions for general 

database queries. 

• Developed a new processor allocation algorithm which minimises the skew effect 

through inter-operator parallelism and intra-operator parallelism. 

• Provided a complete parallel query execution model incorporating the parallel 

processing overheads and load imbalance in massive parallel systems. 

• Developed new intra-query processor allocation algorithms. 

• Developed a new inter-query processor allocation algorithm for enhancing the 

performance of multiple dependent queries. 

11.2 Future Work and Limitations 

Skew modelling can be extended in several ways. Although operation skew for join 

operation is presented in the thesis, the operation mainly covers the method of sort merge 

join, hash join, and nested loops join. As such, we can extend the skew model in a 
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practical environment taking into account more detailed system characteristics, e.g. hybrid 

hash join in shared nothing systems incorporating the effect of buffer size. Moreover, 

based on the skew model, the propagation of skew in multiway join can be quantitatively 

analysed and the error rate on skew propagation can also be provided in multiple 

operations. 

It is also true that extremely severe skew is rarely found because the skew in one relation 

may not reinforce the skew in another relation, and in fact, they might even cancel out 

each another in a binary operation. 

From the user points of view, an interface of the skew model is needed for it to be widely 

useable , and it may be built as a kind of parallel performance tools. It may be 

implemented using component architectures, such as Javabeans or ActiveX Control, so 

that the model can be used, manipulated, or customised visually. 

Our results primarily focus on relational databases but they may be extended to object

oriented databases [Kim90, Leun95 , Liu96c]. Skewness occurs whenever multiple 

processors are involved, and thus the research techniques in parallel relational databases 

can be directly applied or slightly modified in parallel object-oriented databases, both of 

which deal with data partitioning functions and are concerned with the distribution of 

tuples or objects . The skew taxonomy and model may be modified to reflect the skew 

behaviour in parallel object-oriented databases. In Object-Oriented systems, we have 

objects and they are linked through pointers. Therefore, they seldom have multiple 

explicit joins and several objects in one path expression. The issues here are skew 

propagation and constrained processor allocation. 

In addition, we can develop novel processor allocation methods through introducing the 

concept of processor allocation efficiency because adding one additional processor to 

different operations may have different impact both locally and globally. This is 

particularly meaningful when the number of processors is relatively small and there is no 

global optimal solution. Moreover, the techniques from classical optimisation theory such 

as dynamic programming and network analysis, and heuristics such as simulated 

annealing and tabu search may also be incorporated into new processor allocation 

methods to achieve better performance. 
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The cost model used in query processing plays a crucial role in the overall optimisation 

process. Therefore, it should always be adjusted based on the real environment 

parameters before actual query processing implementation. 
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APPENDIX A 

To show 

(2<1>(3/ k)-l+A)~(<l>(6/ k)-0.5+A) , 

the inequality is equivalent to 

2<1>(3 I k) ~ <P( 6 I k) + 0.5 

~ 2<1>(3/ k)+<P(O)-<P(O)~ <1>(61 k)+0.5 

since <P(O) = 0.5 , we have 

<1>(31 k)-<P(O)+<P(3/ k)~<P(6! k)-<1>(31 k)+<P(3! k) 

or 
t 2 12 

1 1 3/k - 1 f 6/k --- e 2 dt ~ -- e 2 dt . .J2rr, 0 .J2rr, 3/ k 

Letting y = t - 3/k on the right, we have 

2 ( +3/k)2 
1 l3tk _r I l3tk Y 

2 dt> 2 d ~ e _ ~ e y. 
v2n ° v2n ° 

which is true since the integrand on the right hand side is always bounded by that on the 

left. 
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APPENDIX B 
TERABYTE DATABASE 

SIMULATION MODEL 

B.1 Simulation Model Overview 

The Terabyte Database Simulation Model (TDBSM) is designated for providing a user 

friendly environment which is able to facilitate users doing research in parallel database 

system in particular in query optimisation, data mining, and parallel architecture design. 

The model presents the TDBSM platform, i.e. an integrated development environment, 

which provides 

+ online help, and temporarily Operating System exit, 

+ built-in calendar, calculator, and ASCII table, 

+ multiple, movable, and resizable windows with fully mouse support, dialogue 

boxes, put down menus, and online status options, 

+ simulation setting to initiate or update database sites and query workload 

parameters, 

+ a list of unary relational algebraic operations such as selection, projection 

(with and without duplicate removal) , and aggregation (minimum or maximum), 

+ a list of binary relational algebraic operations such as join (nested-loops join, 

sort-merge join, and hash-based join), and aggregate functions, 

+ online clock and heap view, 

Page 266 



Appendix B 

+ library primitives including objects such as TView, TMenu, and TDialog , and 

applications such as skew generation in parallel database and path expression 

operation in Object-Oriented database. 

TDBSM employs a hybrid architecture where nodes are loosely coupled and each node 

may have a number of processors with possible both hardware and software heterogeneity. 

The parameters are classified into systems, database sites, and workload categories. The 

default values of all parameters are interfacing users through dialog boxes and these 

values can be updated by users at any time. The TDBSM simulator is written in C++ and 

compiled using Borland C++ with the framework of Turbo Vision. The model is an event 

driven simulation which consists of four main types of events, keyboard events, mouse 

events, message events, and nothing event, respectively. 

B.2 Source File Names Listing 

Header Files 

ascii.h 
bgi.h 
bgii.h 
calculator.h 
calendar.h 
cost51 .h 
dialog.h 
fileopen.h 
hc_view.h 
graphapp.h 
mouse.h 
gpuzzle.h 
sk_simu.h 
sksiml .h 
tdbhelp.h 
tdbsimu.h 
tvcmds.h 

Standard Include Header Files 

borlandc\include 
borlandc\tvision\include 

Program Files 

ascii.cpp 
calculator.cpp 
calendar.cpp 

II ascii table 
11 calculator 
II calendar 
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cost51 .cpp 
fileopen.cpp 
he_ view .cpp 
mouse.dlg 
gpuzzle.cpp 
sk_simu.cpp 
tdbsimul.cpp 
tdbsimu2.cpp 
tdbsimu3.cpp 
tdbsimu4.cpp 
utls.cpp 

Libraries 

borlandc\lib 
borlandc\tvision \lib 

11 path expression operation 
II open file 
11 clock and heap 
11 mouse selection 
II game 
II skewness 
11 main program one 
11 main program two 
11 main program three 
11 main program four 
11 graphics utilities 

II C++ library 
II Library for application framework Turbo Vision 

B.3 An Example of Data Representation - Data Skew 

TDBSM has employed visualisation on the result representation. An example of data 

representation on data skew is provided in the following figures. In the figures , 

• each 3D-bar represents one processor, 

• the length of the 3D-bar indicates the number of tuples in that processor, 

• two vertical lines with coordinates provide scale of workload, e.g. 60 means 

60 tuples. 

=> The first experiment with 20 processors and 1000 tuples 
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:::::} The second experiment with 20 processors and 1000 tuples 

:::::} The third experiment with 20 processors and 1000 tuples 

:::::} The fourth experiment with 20 processors and 1000 tuples 
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~ The fifth experiment with 20 processors and 1000 tuples 

~ The sixth experiment with 20 processors and 1000 tuples 

~ The seventh experiment with 20 processors and 1000 tuples 
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~ The eighth experiment with 20 processors and 1000 tuples 

~ The ninth experiment with 20 processors and 1000 tuples 

~ The tenth experiment with 20 processors and 1000 tuples 
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Data representation of the average of the Minimum and Maximum values of the above ten 

experiments in this run. In the figure, 

+ there are two points (minimum value and maximum value) for each 

experiment, 

+ the relative positions of the points are determined by their maximum and 

minimum values and standard deviation from the mean load. 

Data representation of the average of the Minimum and Maximum values of 100 

experiments, each of which consists of 25 processors and 56,789 tuples. 

B.4 Source Codes for Main Programs 

Source Code for TDBSIMUl.CPP 

II************************************************************ 
II---- Terabyte Database Simulation Model----
II simulating the basic relaitonal operations such as Joining, Selection, and Projection; 
II collecting the existing simualtion models for Skew, Load Balancing, Updating, 
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II and Image Processing; providing a user friendly environment for the group 
II developing research interests. 
V************************************** *********************** 

l*----------------------------------------------------------*I 
II Main program One to define Constructor and Destructor, and a few member functions 
l*----------------------------------------------------------*I 

#define Uses_TView 
#define Uses_ TRect 
#define Uses_TStatusLine 
#define Uses_TStatusDef 
#define Uses_ TStatusltem 
#define Uses_ TKeys 
#define Uses_MsgBox 
#define Uses_fpstream 
#define Uses_TEvent 
#define Uses_TDeskTop 
#define Uses_ TApplication 
#define Uses_TWindow 
#define Uses_TDeskTop 

#include <tv .h> 
#include "bgi.h" 

#if !defined( _BGII_H ) 
#include "bgii.h" 
#endif II _BGII_H 

#include "TDBSimu.h" 
#include "gadgets.h" 
#include "fileview.h" 
#include "puzzle.h" 
#include "tdbhelp.h" 
#include <help.h> 
#include <dir .h> 
#include <stdio.h> 
#include <string.h> 

II main: create an application object. Constructor takes care of all initialization. 
II Calling run() from TProgram makes it tick and the destructor will destroy the world. 
II File names can be specified on the command line for automatic opening. 

int main( int argc, char **argv) 
{ 

TDBSimu tdbProgram(argc, argv); 
tdbProgram.run(); 
return 0; 

II Application Instance. 

II Constructor for the application. Command line parameters are interpreted 
II as file names and opened. Wildcards are accepted and put up a dialog 
II box with the appropriate search path . 

TDBSimu::TDBSimu( int argc, char **argv) : 
TProginit( &TDBSimu::initStatusLine, 

&TDBSimu:: initMenuBar, 
&TDBSimu::initDeskTop) 
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TView *w; 
char fileSpec[128]; 
int len; 
TRect r = getExtent(); II Create the clock view. 
r.a.x = r.b.x - 9; r.b .y = r.a.y + 1; 
clock= new TClockView( r ); 
insert( clock); 
r = getExtent(); II Create the heap view. 
r.a.x = r.b.x - 13 ; r.a.y = r.b.y - 1; 
heap= new THeapView( r ); 
insert(heap ); 
while (--argc > 0) II Display files specified 

{ II on command line. 
strcpy( fileSpec, *++argv ); 
len = strlen( fileSpec ); 
if( fileSpec[len-1] == ' \\') 

strcat( fileSpec, "*.*" ); 
if( strchr( fileSpec, '*')II strchr( fileSpec, '?')) 

openFile( fileSpec ); 
else 

} 
fexpand(pathToDri vers ); 

w = validView( new TFileWindow(fileSpec)); 
if( w != 0) 

deskTop->insert(w); 

bgiPath =new char[sizeof(pathToDrivers)]; 
strcpy(bgiPath, pathToDrivers); 
appDriver = DETECT; 
appMode = O; 
if (graphApplnit(appDriver, appMode, bgiPath, True)== False) 

messageBox("Cannot load graphics driver.",mfErrorlmfOKButton); 

II destructor to delete the graphics path and switch off the 
II graphics mode if it is on 
TDBSimu: :-TDBSimu() 
{ 

graphAppDone(); 
delete bgiPath; 

II tdbApp: :getEvent() 
II Event loop to check for context help request 
void TDBSimu: :getEvent(TEvent &event) 
{ 

TWindow *w; 
THelpFile *hFile; 
fpstream *helpStrm; 
static Boolean helplnUse =False; 
TApplication: :getEvent( event); 
switch (event.what) 
{ 
case evCommand: 

if ((event.message.command== cmHelp)&&(helplnUse==False)) 
{ 
helplnUse =True; 
helpStrm =new fpstream("TDBHELP.HLP",ios::inlios::binary); 
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II 

hFile =new THelpFile(*helpStrm); 
if ( !hel pS trm) 

else { 

{ 
messageBox("Could not open help file" ,mtErrorlmfOKButton); 
delete hFile; 
} 

w =new THelpWindow(hFile, getHelpCtx()); 
if (validView(w) != 0) { 
execView(w); 
destroy( w ); 
} 
clearEvent(event); 

helplnUse =False; 
} 
break; 

case evMouseDown: 
if (event.mouse.buttons != 1) 

event.what= evNothing; 
break; 

help In U se=False; 

11 Create statusline. 
TStatusLine *TDBSimu::initStatusLine( TRect r ) 
{ 

r.a.y = r.b .y - 1; 
return (new TStatusLine( r, 

); 

*new TStatusDef( 0, OxFFFF ) + 
*new TStatusltem( "-Fl- Help", kbFl , cmHelp ) + 
*new TStatusltem( "-Alt-X- Exit" , kbAltX, cmQuit ) + 
*new TStatusltem( "-FlO- Menu'', kbFlO, cmMenu ) 
) 

II Puzzle function 
void TDBSimu::puzzle() 
{ 

TPuzzleWindow *puzz = (TPuzzleWindow *) validView(new TPuzzleWindow); 
if(puzz != 0) 
{ 
puzz->helpCtx = hcPuzzle; 
deskTop->insert(puzz); 
} 

II retrieveDesktop() function ( restores the previously stored Desktop ) 
void TDBSimu::retrieveDesktop() 
{ 

struct ffblk ftOlk; 
if (findfirst("TDBSimu.DST'', &ffblk, 0)) 

messageBox("Could not find desktop file", mfOKButton I mtError); 
else 

fpstream *f =new fpstream("TDBSimu.DST'', ios ::inlios ::binary) ; 
if( !f) 
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messageBox("Could not open desktop file '', mfOKButton I mfError); 
else 

{ 
TDBSimu::loadDesktop(*t); 
if( !f) 
messageBox("Error reading desktop file", mfOKButton I mfError); 
} 

delete f; 
} 

II saveDesktop() function -- saves the DeskTop by 
II calling storeDesktop function 
void TDBSimu: :saveDesktop() 
{ 

fpstream *f =new fpstream("TDBSimu.DST", ios: :outlios: :binary); 

if( f) 
{ TDBSimu: :storeDesktop(*f); 
if( !f) 

{ 
messageBox("Could not create TDBSimu.DST." ,mfOKButtonlmfError); 
delete f; 
: :remove("TDBSimu.DST" ); 
return; 
} 

delete f; 

II write View() function (writes a view object to a resource file ) 
static void writeView(TView *p, void *strm) 
{ 

fpstream *s = (fpstream *) strm; 
if (p != TProgram::deskTop->last) 

*s << p; 

II storeDesktop() function ( stores the Desktop in a resource file) 
void TDBSimu::storeDesktop(fpstream& s) 
{ 
deskTop->forEach(::writeView, &s); s << O; 

} 

II Tile function 
void TDBSimu::tile() 
{ deskTop->tile( deskTop->getExtent() ); 

Source Code for TDBSIMU2.CPP 

l*-------------------------------------------------------------------*I 
II Main program Two: Member function definition and Event function declaration 
I*-----------------------------·-------------------------------------*/ 

#define Uses_TDialog 
#define Uses_ TCheckBoxes 
#define Uses_TRect 
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#define Uses_TStaticText 
#define Uses_TButton 
#define Uses_TEvent 
#define Uses_TWindow 
#define Uses_ TColorGroup 
#define Uses_ TColorltem 
#define Uses_TColorDialog 
#define Uses_ TPalette 
#define Uses_TDeskTop 
#define Uses_TApplication 
#define Uses_ TChDirDialo g 
#define Uses_THistory 
#define Uses_TlnputLine 
#define Uses_MsgBox 
#define Uses_TLabel 
#define Uses_ TSitem 
#define Uses_ TPro gram 

#include <tv.h> 
#include "bgi.h" 
//#include "dialog.h" 
#include "sk_simu.h" 
#include "TDBSimu.h" 
#include "tvcmds.h" 

II graphic displaying header file 
II dialog header file 

11 skew simulation header file 
II tdbsimu header file 

#include "tdbhelp.h" 
#include "ascii.h" 
#include "calendar.h" 
#include "calc.h" 
#include "cost51.h" 
#if !defined( _STRING_H ) 
#include <string.h> 
#endif // _STRING_H 
#if !defined( _FSTREAM_H ) 
#include <fstream.h> 
#endif // _FSTREAM_H 
#if !defined( _STRSTREA_H ) 
#include <strstrea.h> 
#endif // _STRSTREA_H 
#if !defined( _IO_H ) 
#include <io .h> 
#endif // _IO_H 
#include <stdlib.h> 
const MAXSIZE = 80; 
II DOS Shell Command. 
void TDBSimu::shell() 
{ 

suspend(); 
system("cls"); 
cout <<"Type EXIT to return ... "; 
system( getenv( "COMSPEC")); 
resume(); 
redraw(); 

II TDBApp::handleEvent() 
II Event loop to distribute the work. 
void TDBSimu::handleEvent(TEvent &event) 
{ 

TApplication: :handleEvent( event); 
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if (event.what== evCommand) 
{ 

switch (event.message.command) 
{ 

case crnAboutCmd: // About Dialog Box 
aboutDlgBox(); 
break; 

case cmCalendarCmd: // Calendar Window 
calendar(); 
break; 

case crnAsciiCmd: // Ascii Table 
asciiTable(); 
break; 

case cmCalcCmd: // Calculator 
calculator(); 
break; 

case crnPuzzleCmd: // Puzzle 
puzzle(); 
break; 

case cmOpenCmd: // View a file 
openFile("*. *"); 
break; 

case cmChDirCmd: // Change directory 
changeDir(); 
break; 

case crnDOS_Cmd: // DOS shell 
shell(); 
break; 

case cmSelectionCmd: // selection 
randomize(); 
Selection(); 
break; 

case cmWDProjectionCmd: // projection with duplicate 
WDProjection (); 
break; 

case cmWODProjectionCmd: // projection without duplicate 
randomize(); 
WODProjection(); 
break; 

case crnAggregationCmd: // Change directory 
Aggregation(); 
break; 

case cmNLJoinCmd: // nest loops join 
randomize(); 
NLJoin(); 
break; 

case cmHBJ oin Cmd: // hash basd join 
HBJoin(); 
break; 

case cmDataMiningCmd: // data mining 
break; 

case crnArchitectureCmd: // architecture design 
break; 

case cmUpdatingCmd: // Updating 
updating() ; 
break; 

case cmRASkewCmd: // skew handling 
skew(); 
break; 
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case crnISSkewCmd: II skew handling 
ISSkew(); 
break; 

case cmDHSkewCmd: II skew handling 
DHSkew(); 
break; 

case cmLoadBalancingCmd: II load balancing 
I ISiteAllocation(); 

break; 
case cmPEJoinCmd: II path expression join 

pejoin(); 
break; 

case cmSystemCmd: II setting systems parameters 
SystemDlg(); 
break; 

case cmDB_SiteCmd: II setting DB sites 
DB_SiteDlg(); 
break; 

case cmWorkloadCmd: II setting workload 
WorkloadDlg(); 
break; 

case cmTile: II Tile current file windows 
tile(); 
break; 

case cmCascade: II Cascade current file windows 
cascade(); 
break; 

case cmSetBGIPath: II Mouse control dialog box 
setBGIPath(); 
break; 

case cmMouseCmd: II Mouse control dialog box 
mouse(); 
break; 

case cmColorCmd: II Color control dialog box 
colors(); 
break; 

case cmSaveCmd: II Save current desktop 
saveDesktop(); 
break; 

case cmRestoreCmd: II Restore saved desktop 
retrieveDesktop() ; 
break; 

default: II Unknown command 
return; 

clearEvent (event); 
} 

II About Box function() 
void TDBSimu: :aboutDlgBox() 
{ 

TDialog *aboutBox =new TDialog(TRect(O, 0, 55,13), "About"); 
aboutB ox-> insert( 

new TStaticText(TRect(9, 2, 46,9), 
"\003Terabyte Database Simulation Model\n\n\003\n"ll These strings will be 
"\003Designed by Kevin Liu\n\003\n" II concatenated by the compiler. 
"\003Copyright (C) 1994\n\003\n" 11 The Ctrl-C centers the line. 
"\003Victoria University of Technology" 
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) 
); 

aboutBox->insert( 
new TButton(TRect(20, 10, 35, 12), " OK", crnOK, bIDefault) 
); 

aboutBox->options I= ofCentered; 
deskTop->execView(aboutBox); 
destroy( aboutBox ); 

II Ascii Chart function 
void TDBSirnu: :asciiTable() 
{ 

TAsciiChart *chart= (TAsciiChart *) validView(new TAsciiChart); 
if( chart != 0) 
{ 

chart->helpCtx = hcAsciiTable; 
deskTop->insert( chart); 

II Calendar function() 
void TDBSirnu: :calendar() 
{ 
TCalendarWindow *cal=(TCalendarWindow *) validView(new TCalendarWindow); 

if( cal != 0) 
{ 

cal->helpCtx = hcCalendar; 
deskTop->insert( cal ); 

II Calculator function 
void TDBSirnu::calculator() 
{ 

TCalculator *calc = (TCalculator *) validView(new TCalculator); 
if(calc !=0) 
{ 

calc->helpCtx = hcCalculator; 
deskTop->insert(calc); 

11 Cascade function 
void TDBSirnu::cascade() 
{ 

deskTop->cascade( deskTop->getExtent() ); 

II Change Directory function 
void TDBSirnu::changeDir() 
{ 

TView *d = validView( new TChDirDialog( 0, crnChangeDir ) ); 
if( d != 0) 

{ 
d->helpCtx = hcFCChDirDBox; 
deskTop->execView( d ); 
destroy( d ); 
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void TDBSimu::pejoin() 
{ 

double tdl, td2, td3, tpl , tp2, tp3 , tp4 ; 
char again; 
suspend(); 
do { 

data_ entry(); 
processing_tdl2(&tdl, &td2); 
processing_td3( &td3 ); 
processing_tpl23(&tpl, &tp2, &tp3 , &tp4); 

II printf("\nTel = %.21f + %.21f = %.2lf', tdl , tpl, tdl+tpl ); 
II printf("\nTe2 = %.2lf + %.2lf = %.2lf', td2, tp2, td2+tp2); 
II printf("\nTe3 = %.21f + %.2lf = %.2lf' , td3, tp3 , td3+tp3 ); 

printf("\nElapsed time (without re-distribution) %.21f' , td 1+tp1 ); 
printf("\nElapsed time (with re-distribution) %.21f', td2+tp2 ); 
printf("\nElapsed time (with full data replication) %.2lf", td3+tp3); 
printf("\nUniprocessor Elapsed Time= %.2lf', tp4 ); 
printf("\nLinear speed up= %.2lf', (td3+tp4)1(td2+tp2)); 
printf(" \nTry again (yin) > "); 
scanf("%c%*c", &again); 

} while(again=='y'); 
resume(); 
redraw(); 

void TDBSimu::updating() II a demonstation of the Borland's random number 
{ II generator 

const int maxPts = 5; 
con st int CLIP _ON= 1; 
typedef TPoint PolygonType[maxPts]; 
char errorMsg[MAXSIZE]; 
TEvent event; 
PolygonType poly; 
ushort i, color; 
ushort maxX, maxY; 
suspend(); 
if (graphicsStart() ==False) 
{ 
strcpy( error Ms g,grapherrorms g(graphresult())); 
strcat( errorMsg,". " ); 
messageBox(errorMsg, mtError I mfOKButton); 
} 
else 
{ 
maxX = getmaxx(); 
maxY = getmaxy(); 
outtextxy(O, (maxY - textheight("M")), 

"Press any key to return ... "); 
setviewport(O, 0, maxX - 1, (maxY - (textheight("M") + 5)), CLIP _ON); 
do { 

color= random(getmaxcolor()) + 1; 
setfillstyle(random(l 1) + 1, color); 
setcolor(color); 

for(i = O; i < maxPts ; ++i) 
{ 
poly[i] .x = random(maxX); 
poly[i].y = random(maxY); 
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} 
fillpoly(maxPts, (int*) poly); 
event.getKeyEvent(); 
} while (event.what= evNothing); 

graphicsStop(); 
} 
resume(); 

II Skew Handling function --- Random Allocation 
void TDBSimu::skew() 
{ 

suspend(); 
char ans, c_ans; II user's response 
unsigned exp=l; II the number of experiments at ont time 
do { 

displayO(); II display the fancy screen 
exp=displayl(exp);ll prompt the user input 
display4(exp); II display the user selection 
II ask the user to confirm his selection 
cputs("\n\n Do you confirm the above variables setting ? (Y or N) "); 
fflush(stdin); 
scanf(" %c" ,&c_ans); 
fflush(stdin); 
while (toupper( c_ans) !='Y') 

{ 
textcolor(LIGHTGRA Y); 
clrscr(); 
exp=display 1 (exp); 
display4(exp); 
cputs("\n\n Do you confirm the above variables setting ? (Y or N) "); 
fflush(stdin); 
scanf("%c",&c_ans); 
ftlush(stdin) ; 
} 

display5(); II prompt the user for listing numbers 
display3(); II prompt the user for Graph Display 
textcolor(LIGHTGRA Y); 
II build up the final result structures -- min, max, and sd 
randomize(); 
result* pt=new result [exp]; 
for (unsigned ctr= 1; ctr<=exp; ctr++) 

distribute( ctr, pt); II random allocation per exp 
final(pt, exp); II display the final result 
delete pt; II free memory 
gotoxy( 1, 10); 
cputs(" Do you want to try another group of experiments ? (Y or N) "); 
fflush(stdin); 
scanf(" %c" ,&ans); 
fflush(stdin); 
} 
while ( toupper( ans)==' Y'); 
resume(); 
redraw(); 

II Skew Handling function --- Interval Simulation 
void TDBSimu::ISSkew() 
{ 
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suspend(); 
char ans, c_ans; II user's response 
unsigned exp=l; II the number of experiments at ont time 
do { 

displayISO(); II display the fancy screen 
exp=displayISl(exp); II prompt the user input 
display4(exp); II display the user selection 
II ask the user to confirm his selection 
cputs("\n\n Do you confirm the above variables setting ? (Y or N) "); 
fflush(stdin); 
scanf("%c",&c_ans); 
fflush(stdin); 
while (toupper(c_ans)!='Y') 

{ 
textcolor(LIGHTGRA Y); 
clrscr(); 
exp=display rs 1 (exp); 
display4(exp); 

cputs("\n\n Do you confirm the above variables setting ? (Y or N) "); 
fflush(stdin); 
scanf("%c" ,&c_ans); 
fflush(stdin); 
} 

displayIS5(); II prompt the user for listing numbers 
display3(); II prompt the user for Graph Display 
textcolor(LIGHTGRA Y); 
II build up the final result structures -- min, max, and sd 
randomize(); 
result* pt=new result [exp]; 
for (unsigned ctr= 1; ctr<=exp; ctr++) 

distribute( ctr, pt); II random allocation per exp 
final(pt, exp); 11 display the final result 
delete pt; II free memory 

II jctr=O; 
gotoxy( 1, 1 O); 
cputs(" Do you want to try another group of experiments ? (Y or N) "); 
fflush(stdin); 
scanf(" %c" ,&ans); 
fflush(stdin); 
} 
while (toupper(ans)=='Y'); 
window( 1, 1,80,25); 
textattr(LIGHTGRA Y +(BLACK<<4)); 
clrscr(); 
resume(); 
redraw(); 

II Skew Handling function --- Double Hashing 
void TDBSimu::DHSkew() 
{ 

suspend(); 
char ans, c_ans; II user's response 
unsigned exp=l; II the number of experiments at ont time 
do { 

displayDHO(); //display the fancy screen 
exp=displayDHl(exp);ll prompt the user input 
displayDH4( exp); II display the user selection 
II ask the user to confirm his selection 
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cputs("\n\n Do you confirm the above variables setting ? (Y or N) "); 
fflush(stdin); 
scanf("%c" ,&c_ans); 
fflush(stdin); 
while (toupper(c_ans)!='Y') 

{ 
textcolor(LIGHTGRA Y); 
clrscr(); 
exp=displayDHl (exp); 
displayDH4(exp); 

cputs("\n\n Do you confirm the above variables setting ? (Y or N) "); 
fflush(stdin); 
scanf("%c" ,&c_ans); 
fflush(stdin); 
} 

display5(); II prompt the user for listing numbers 
display3(); II prompt the user for Graph Display 
textcolor(LIGHTGRA Y); 
II build up the final result structures -- min, max, and sd 
randomize(); 
result * pt=new result [exp]; 
for (unsigned ctr=l; ctr<=exp; ctr++) 

distributeDH(pt); II random allocation per exp 
final(pt, exp); 11 display the final result 
delete pt; II free memory 
gotoxy(l ,10); 
cputs(" Do you want to try another group of experiments ? (Y or N) "); 
fflush(stdin) ; 
scanf(" o/oc" ,&ans); 
fflush(stdin); 
} 
while (toupper(ans)=='Y'); 
window( 1, 1,80,25); 
textattr(LIGHTGRA Y +(BLACK<<4)); 
clrscr(); 
resume(); 
redraw(); 

II Color Control Dialog Box function 
void TDBSimu::colors() 
{ 

TColorGroup &group 1 = 
*new TColorGroup("Desktop") + 

*new TColorltem("Color" , 1 )+ 
*new TColorGroup("Menus") + 

); 
TColorGroup &group2 = 

*new TColorltem("Normal", 2)+ 
*new TColorltem("Disabled", 3 )+ 
*new TColorltem("Shortcut", 4)+ 
*new TColorltem(" Selected", 5)+ 
*new TColorltem("Selected disabled", 6)+ 
*new TColorltem("Shortcut selected", 7 

*new TColorGroup("DialogslCalc") + 
*new TColorltem("Frame/background", 33 )+ 
*new TColorltem("Frame icons", 34)+ 
*new TColorltem("Scroll bar page", 35)+ 
*new TColorltem(" Scroll bar icons", 36)+ 
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20)+ 

); 

*new TColorltem("Static text", 37)+ 
*new TColorltem("Label normal" , 38)+ 
*new TColoritem("Label selected", 39)+ 
*new TColoritem("Label shortcut", 40 

TColoritem &item_coll 1 = 
*new TColoritem("Button normal" , 41 )+ 
*new TColorltem("Button default", 42)+ 
*new TColorltem("Button selected", 43)+ 
*new TColorltem("Button disabled", 44)+ 
*new TColorltem("Button shortcut", 45)+ 
*new TColorltem("Button shadow", 46)+ 
*new TColorltem("Cluster normal" , 47)+ 
*new TColorltem("Cluster selected" , 48)+ 
*new TColorltem("Cluster shortcut", 49 
); 

TColorltem &item_coll2 = 
*new TColorltem("Input normal" , 50)+ 
*new TColorltem("Input selected", 51)+ 
*new TColorltem("Input arrow", 52)+ 
*new TColorltem("History button", 53)+ 
*new TColorltem("History sides", 54 )+ 
*new TColorltem("History bar page", 55)+ 
*new TColorltem("History bar icons", 56)+ 
*new TColorltem("List normal", 57)+ 
*new TColorltem("List focused", 58)+ 
*new TColoritem("List selected", 59)+ 
*new TColorltem("List divider", 60)+ 
*new TColorltem("Information pane", 61 
); 

group2 = group2 + item_colll + item_coll2; 
TColorGroup &group3 = 

*new TColorGroup("Viewer") + 
*new TColoritem("Frame passive", 8)+ 
*new TColorltem("Frame active", 9)+ 
*new TColorltem("Frame icons", 10)+ 
*new TColorltem("Scroll bar page", 11)+ 
*new TColorltem("Scroll bar icons", 12)+ 
*new TColorltem("Text", 13 )+ 

*new TColorGroup("Puzzle")+ 

); 
TColorGroup &group4 = 

*new TColoritem("Frame passive", 8)+ 
*new TColorltem("Frame active", 9)+ 
*new TColoritem("Frame icons", 10)+ 
*new TColoritem(" Scroll bar page" , 11 )+ 
*new TColorltem("Scroll bar icons", 12)+ 
*new TColorltem("Normal text" , 13)+ 
*new TColorltem("Highlighted text" , 14 

*new TColorGroup("Calendar") +*new TColorltem("Frame passive", 16)+ 
*new TColorltem("Frarne active", 17)+ *new TColorltem("Frame icons", 18)+ 
*new TColorltem("Scroll bar page'', 19)+ *new TColorltem("Scroll bar icons", 

*new TColorltem("Normal text", 21)+ *new TColorltem("Current day", 22)+ 
*new TColorGroup("Ascii table")+ *new TColorltem("Frame passive", 24)+ 
*new TColoritem("Frarne active", 25)+ *new TColorltem("Frame icons", 26)+ 
*new TColorltem("Scroll bar page'', 27)+ *new TColorltem("Scroll bar icons", 

28)+*new TColoritem("Text", 29); 
TColorGroup &group5 =group l + group2 + group3 + group4; 
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TColorDialog *c =new TColorDialog((TPalette*)O, &groups ); 
if( validView( c ) != 0 ) 

{ 
c->helpCtx = hcOCColorsDBox; II set context help constant 
c->setData(&getPalette()); 

if( deskTop->execView( c) != cmCancel) 
{ 
getPalette() = *(c->pal); 
deskTop->setState( sfVisible, False ); 
deskTop->setState( sfVisible, True); 
} 

destroy( c ); 
} 

Source Code for TDBSIMU3.CPP 

l*----------------------------------------------------------*I 
II Main program Three: Event function declaration and menu initialization 
l*----------------------------------------------------------*I 

#define Uses_TRect 
#define Uses_ TButton 
#define Uses_TMenuBar 
#define Uses_TSubMenu 
#define Uses_TMenu 
#define Uses_ TMenultem 
#define Uses_TKeys 
#define Uses_fpstream 
#define Uses_TView 
#define Uses_ TPalette 
#define Uses_MsgBox 
#define Uses_TFileDialog 
#define Uses_ TApplication 
#define Uses_TDeskTop 
#define Uses_TStaticText 
#define Uses_TDialog 
#define Uses_TEventQueue 
#define Uses_TinputLine 
#define Uses_THistory 

#include <tv .h> 
#include "bgi.h" 
#include "TDBSimu.h" 
#include "tvcmds.h" 
#include "gadgets.h" 
#include "mousedlg.h" 
#include "tdbhelp.h" 
#include "fileview.h" 

#if !defined( _STRING_H ) 
#include <string.h> 
#endif II _STRING_H 
#include <help.h> 

II Mouse Control Dialog Box function 
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void TDBSimu::setBGIPath() 
{ 

char s[MAXPATH]; 
TDialog *d =new TDialog(TRect(0,0,35,8), "Path to BGI Files"); 
d->options I= ofCentered; 
II Buttons 
d->insert(new TButton( TRect(23 ,5,33,7), "Cancel", cmCancel, btNormal) ); 
d->insert(new TButton( TRect(l2,5,22,7),"0-K-" , cmOK, bfDefault) ); 
II Input line, history list and label 
TinputLine *pathlnput =new TinputLine( TRect(3 ,3,30,4), 68 ); 
d->insert( pathlnput ); 
d->insert( new THistory(TRect(30,3,33,4 ), pathlnput, cmSetBGIPath) ); 
fexpand(bgiPath); 
strcpy(s,bgiPath); 
d->setData(s ); 
d = (TDialog *) validView(d); 
if(d !=NULL) 
{ 
if (deskTop->execView(d) == cmOK) 

{ 
d->getData(s); 
delete bgiPath; 
if ( (strlen(s) > 0) && (s[strlen(s)-1] '= '\\')) 

strcat(s ,"\\"); 
bgiPath =new char [sizeof(s)]; 
strcpy(bgiPath, s); 
if ( graphApplnit(appDriver, appMode, bgiPath, True)== False) 
messageBox("Cannot load graphics driver. ", mfError I mfOKButton); 
} 

destroy( d ); 
} 

void TDBSimu::mouse() 
{ 

TMouseDialog *mouseCage = (TMouseDialog *) vatidView( new 
TMouseDialog() ); 

if (mouseCage != 0) 
{ 

mouseCage->helpCtx = hc01"IMouseDBox; 
mouseCage->setData( &(TEven tQueue: :mouseReverse)); 

if (deskTop->execView(mouseCage) != cmCancel) 
mouseCage->getData( &(TEven tQueue: :mouseReverse)); 

destroy( mouseCage ); 

II File Viewer function 
void TDBSimu::openFile( char *fileSpec) 
{ 

TFileDialog *d= (TFileDialog *)validView( 
new TFileDialog(fileSpec, "Open a File", "-N-ame", fdOpenButton , 100 )) ; 
if( d != 0 && deskTop->execView( d) '= cmCancel) 

{ 
char fileName[150]; 
d->getFileName( fileName ); 

d->helpCtx = hcFOFiteOpenDBox; 
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TView *w= validView( new TFileWindow( fileName) ); 
if( w != 0) 

deskTop->insert(w); 

destroy( d ); 

II "Out of Memory" function (called by valid View() ) 
void TDBSimu: :outOtMemory() 
{ 

messageBox( "Not enough memory available to complete operation.", 
mtError I mfOKButton ); 

11 getPalette() function ( returns application 's palette ) 
TPalette& TDBSimu::getPalette() canst 
{ 

static TPalette newcolor ( cpColor cHelpColor, sizeof( cpColor cHelpColor )-1 ); 
static TPalette newblackwhite( cpBlackWhite cHelpBlackWhite, sizeof( 

cpBlackWhite cHelpBlackWhite)-1 ); 
static TPalette newmonochrome( cpMonochrome cHelpMonochrome, sizeof( 

cpMonochrome cHelpMonochrome)-1 ); 
static TPalette *palettes[] = 

{ 
&newcolor, 

&newblackwhite, 
&newmonochrome 
} ; 

return *(palettes[appPalette]); 

II isTileable() function (checks a view on desktop is tileable or not) 
static Boolean isTileable(TView *p, void * ) 
{ 

if( (p->options & oITileable) != 0) 
return True; 

else 
return False; 

II idle() function (updates heap and clock views for this program. ) 
void TDBSimu::idle() 
{ 

TPro gram: :idle(); 
clock->update(); 

heap->update(); 
if (deskTop->firstThat(isTileable, 0) 1= 0) 

{ 
enableCommand( cm Tile); 
enableCommand( cmCascade ); 
} 

else { 
disableCommand( cm Tile); 
disableCommand( cmCascade ); 
} 

II close View() function 
static void close View(TView *p, void *p 1) 
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message(p, evCommand, cmClose, pl); 

II loadDesktop() function 
void TDBSimu::loadDesktop(fpstream &s) 
{ 

TView *p; 
if (deskTop->valid(cmClose)) 

{ 
deskTop->forEach(::closeView, 0); II Clear the desktop 
do { 

s >> p; 
deskTop->insertBefore(validView(p), deskTop->last); 
} 
while (p != 0); 

II Menubar initialization. 
TMenuBar *TDBSimu::initMenuBar(TRect r) 
{ 

II manually build sub-menu for skew 
TMenultern *skew =new Th1enultem(" -R-andom Allocation", 
cmRASkewCmd,kbNoKey, hcNoContext); 
TMenultem *skewl=new TMenultem("-I-nterval Simulation", 
cmISS kewCmd,kbN oKey, hcN oC on text); 
skew->append( skew 1); 
skew 1->append(new TMenultem("-D-ouble Hashing", 
cmDHSkewCmd,kbNoKey, hcNoContext)); 
II manually build sub-menu for projection 
TMenultem *projection=new TMenultem("With -D-uplicate ... ", 
cmWDProjectionCmd,kbNoKey,hcNoContext); 
projection->append(new TMenultem("With-o-ut Duplicate ... ", 
cmWODProjectionCmd,kbNoKey,hcNoContext)); 
II manually build sub-menu for join 
TMenultem *join=new Thlenultem("-N-est Loops ... ", 
cmNLJ oinCmd,kbN oKey,hcN oContext); 
join->append(new TMenuitem(" -H-ash Based ... ", 
cmHBJoinCmd,kbNoKey, hcNoContext)); 
II manually build sub-menu for skew 
TMenultem *qo =new TMenultern("-R-andomness", 
cmUpdatingCmd, kbN oKey, hcN oContext); 

TMenultem *qol=new TMenultem( "S-k-ew" , kbNoKey, new TMenu( *skew)); 
TMenultem *qo2=new Thlenultern( "-L-oadBalancing", 
cmLoadBalancingCmd,kbN oKey ,hcN oCon text); 
TMenultem *qo3=new TMenultem("-P-ath Expression" , 
crnPEJoinCmd,kbNoKey,hcNoContext); 
qo->append(qol); 
qo 1->append(qo2); 
qo2->append( qo3 ); 
r.b.y = r.a.y + 1; 
return new TMenuBar( r, *new TSubMenu( "-\360-", 0, hcSystem) + 
*new TMenultern( "-A-bout...", cmAboutCmd, kbNoKey, hcSAbout) + 
newLine() +*new TMenultem( "-P-uzzle", cmPuzzleCmd. kbNoKey, hcSPuzzle 

) +*new TMenultem( "Ca-1-endar", cmCalendarCmd, kbNoKey, hcSCalendar)+ 
*new TMenultem( "Ascii - T-able", cmAsciiCmd, kbN oKey, 

hcSAsciiTable)+*new TMenultem( "-C-alculator" , cmCalcCmd, kbNoKey, 
hcCalculator)+ *new TSubMenu( "-F-ile", 0, hcFile) +*new TMenultem( "-0-pen ... ", 
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cmOpenCmd, kbF3, hcFOpen, "F3" )+*new TMenultem( "-C-hange Dir...", 
cmChDirCmd, kbNoKey, hcFChangeDir)+ newLine() +*new TMenultern( "-D-OS 
Shell", cmDOS_Crnd, kbNoKey, hcFDosShell)+*new TMenultem( "E-x-it", cmQuit, 
kbAltX, hcFExit, "Alt-X")+ *new TSubMenu( "0-p-erations", 0, hcNoContext)+*new 
TMenultem( "-S-election ... ", cmSelectionCmd,kbN oKey, hcN oContext)+*new 
TMenultem( "-P-rojection",kbNoKey, new TMenu( *projection))+ *new TMenultem( 
"-A-ggregation ... ",cmAggregationCrnd,kbNoKey,hcNoContext)+newLine()+ *new 
TMenultern( "-J-oin",kbNoKey, new TMenu( *join))+ *new TSubMenu( 
"-A-pplications", 0, hcNoContext) +*new TMenultern( "-D-ata 
Mining" ,cmDataMiningCrnd,kbN oKey ,hcN oCon text)+new Line()+ *new 
TMenultem(" -A-rchitecture" ,cmArchitectureCrnd,kbN oKey,hcN oContext)+newLine()+ 
*new TMenultem("-Q-uery Optirnization",kbNoKey,new TMenu( *qo)) + *new 
TSubMenu( "-S-etting", 0, hcNoContext) +*new TMenuitern( "-S-ystern ... ", 
cmSystemCmd, kbNoKey,hcNoContext) +*new TMenuitem( "D-B-_Site ... ", 
cmDB_SiteCmd, kbNoKey,hcNoContext)+ newLine()+*new TMenuitem( 
"-W-orkload ... ", cmWorkloadCmd, kbNoKey,hcNoContext )+*new TSubMenu( 
"-W-indows'', 0, hcWindows) + *new TMenuitern( "-R-esizelmove", cmResize, 
kbCtrlF5, hcWSizeMove, "Ctrl-F5") +*new TMenuitem( "-Z-oom", cmZoom, kbF5, 
hcWZoom, "F5") +*new TMenultern( "-N-ext" , crnNext, kbF6, hcWNext, "F6") 
+*new TMenuitem( "-C-lose", crnClose, kbAltF3, hcWClose, "Alt-F3") +*new 
TMenultem( "-T-ile", cmTile, kbNoKey, hcWTile) +*new TMenuitem( "C-a-scade", 
cmCascade, kbNoKey, hcWCascade )+ *new TSubMenu( "-0-ptions", 0, hcOptions) 
+*new TMenuitem( "Set -B-GI Path", cmSetBGIPath, kbNoKey, hcNoContext) + 
newLine()+*new TMenuitem( "-M-ouse ... ", cmMouseCmd, kbNoKey, hcOMouse) 
+*new TMenuitem( "-C-olors ... ", cmColorCmd, kbNoKey, hcOColors) + 
*new TMenuitem( "-S-ave desktop", cmSaveCrnd, kbNoKey, hcOSaveDesktop) + 
*new TMenultem( "-R-etrieve desktop",cmRestoreCmd,kbNoKey,hcORestoreDesktop) 
); 
} 

Source Code for TDBSIMU4.CPP 

#define Uses_TDialog 
#define Uses_ TCheckBoxes 
#define Uses_ TStaticText 
#define Uses_TEvent 
#define Uses_TWindow 
#define Uses_ TPalette 
#define Uses_ TApplication 
#define Uses_TChDirDialog 
#define Uses_THistory 
#define Uses_ TlnputLine 
#define Uses_MsgBox 
#define Uses_ TLabel 
#define Uses_ TSitem 
#define Uses_TPrograrn 
#define Uses_TRect 
#define Uses_TButton 
#define Uses_ TLabel 
#define Uses_TView 
#define Uses_TDeskTop 
class opstream; 
#include <tv .h> 
#include "bgi.h" II graphic displaying header file 
#include "TDBSimu.h" 
#include "tvcmds.h" 
#include "tdbhelp.h" 
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#include "dialog.h" II dialog header file 
#include "tdbsimu4.h" 
//#if !defined( _SITEALL_H) 
//#include "siteall.h" 
//#endif // _SITEALL_H 

void TDBSimu::SystemDlg() 
{ 

TDialog *sdialog =new TDialog(TRect(0,0,38,14),"System Parameters"); 
sdialog->options I= ofCentered; 
abStdlnputLine(sdialog,2,2," -NoN ode-"," -N oRela-"); 
abStdlnputLine(sdialog,2,4," -IntCst-" ," - TrmCst-"); 
abStdlnputLine(sdialog,2,6," -NetBan-" ," -BlkSiz-"); 
TCheckBoxes *check= new TCheckBoxes(TRect(3,9,35,10), 

new TSitem("-G-raphic Show",0)); 
sdialog->insert( check); 
cancelOKStdButtonsH(sdialog,3, 11 ); 
sdialog->selectNext(False); 
sdialog->setData(&data); 
ushort result=TProgram::deskTop->execView(sdialog); 
if (result=cmOK) { 

sdialog->getData(&data); 
} 

TObject::destroy(sdialog); 

void TDBSimu::DB_SiteDlg() 
{ 

TDialog *sdialog =new TDialog(TRect(0,0,38, 19),"DB Sites Parameters" ); 
sdialog->options I= ofCentered; 
TView *c; 
sdialog->insert(c=new TinputLine(TRect(l0,2,35,3),numLen)); 
sdialog->insert(new TLabel(TRect(2,2, 10,3), "-NoPro-", c)); 
abStdlnputLine(sdialog,2,4," -SekTim-" ," -LatTim-" ); 
abStdlnputLine(sdialog,2,6," -XerTim-"," -RevTim-"); 
abStdlnputLine(sdialog,2,8," -PCTim-" ," -WriTim-"); 
abStdlnputLine(sdialog,2.1 O," -PETim-", "-MemSiz-"); 
abStdlnputLine(sdialog,2, 12," -PHTim-" ," -PPTim-"); 
cancelOKStdButtonsH(sdialog.3 , 15); 
sdialog->selectNext(False); 
sdialo g->setData( &data 1); 
ushort result=TProgram::deskTop->execView(sdialog); 
if (result=cmOK) { 

sdialog->getData( &datal ); 
} 

TObject::destroy(sdialog); 

void TDBSimu: :WorkloadDlg() 
{ 

TDialog *sdialog =new TDialog(TRect(0,0,38, 15),"Workload Parameters"); 
sdialog->options I= ofCentered; 
abStdlnputLine(sdialog,2,2," -Len Pre-"," -N oColn-"); 
abStdlnputLine(sdialog,2,4." -QuySiz-" ," -TupSiz-" ); 
TView *cb; 
sdialog->insert( cb=new TinputLine(TRect( 10,6,35, 7),numLen) ); 
sdialog->insert(new TLabel(TRect(2,6, 10,7), "-R_Size-", cb)); 
TView *cc; 
sdialog->insert( cc=new TinputLine(TRect( 10,8,35, 9),numLen) ); 
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sdialog->insert(new TLabel(TRect(2,8, 10,9), "-S_Size- '', cc)) ; 
cancelOKStdButtonsH(sdialog,3, 12); 
sdialog->selectNext(False); 
sdialo g->setData( &data2) ; 
ushort result=TProgram::deskTop->execView(sdialog); 
if (result=cmOK) { 

sdialog->getData(&data2); 
} 

TObject::destroy(sdialog); 

void TDBSimu::Selection() 
{ 

static SelData sdata; 
static double a, b; 
static int sig=5; 
static char str[12], strl [12]; 
operation(); 
TDialog *seledia =new TDialog(TRect(0,0,38,9),"Selection"); 
seledia->options I= ofCentered; 
TView *sl; 
seledia->insert(s l=new TinputLine(TRect( 10,2,35,3), 12)); 
seledia->insert(s l); 
seledia->insert(new TLabel(TRect(2,2, 10,3), "-selfac- ", s l )); 
TView *s2; 
seledia->insert(s2=new TlnputLine(TRect( 10,4,35,5), 12)); 
seledia->insert(s2 ); 
seledia->insert(new TLabel(TRect(2,4, 10,5), "-Ts(sel)- ", s2)); 
a=rand()% 100; 
a=a/100; 
gcvt(a,sig, str); 

II bc=selfacl32767; II 0 <= selafc <= 1 
b=ReaTim*rk+rpk*atof(data.sNetBan)+rpk*atof(datal.sRevTim)+ 

at of( data2.sR_Size )*atof( data2.sLenPre )* atof( data l .sPETim)ITotn+ 
ceil(a*atof(data2 .sR_Size)*atof(data2.sTupSiz)I 
at of( data.sBlkSiz)ITotn)*atof( datal .s W ri Tim); 

gcvt(b,sig, str 1 ); 
strcpy (sdata.selfac,str); 
strcpy (sdata.ts, strl) ; 
seledia->selectN ext(False ); 
seledia->setData(&sdata); 
seledia->insert( 

new TButton(TRect(l4, 6, 24, 8)," OK", cmOK, bfDefault) 
); 
deskTop->execView(seledia) ; 
destroy(seledia); 

void TDBSimu: :WDProjection() 
{ 

static WDPData wdpdata; 
static double a; 
static int sig=5; 
static char str[ 12]; 
operation(); 
TDialog *seledia =new TDialog(TRect(0,0,38 ,7),"Projection (Dupl)"); 
seledia->options I= ofCentered; 
TView *sl; 
seledia->insert(s l=new TinputLine(TRect(l 0,2,35,3), 12)); 
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seledia->insert( s 1); 
seledia->insert(new TLabel(TRect(2,2, 10,3 ), "-Tp l(wd)- '', s 1 )); 
a=ReaTim*rk+rpk*atof(data.sNetBan)+rpk*atof(datal .sRevTim)+ 

at of( data2.sR_Size )*atof( data2.sN oColn )*atof( datal .sPETim)ff otn+ 
ceil(atof(data2.sR_Size)*atof(data2.sTupSiz)/atof(data.sBlkSiz)ffotn)* 
atof(datal .sWriTim); 

gcvt(a,sig, str); 
strcpy (wdpdata.tpl, str); 
seledia->selectN ext(False); 
seledia->setData(&wdpdata); 
seledia->insert( 

new TButton(TRect(l4, 4 , 24, 6)," OK", cmOK, btDefault) 
); 
deskTop->exec View( seledia); 
destroy(seledia); 

void TDBSimu: :WODProjection() 
{ 

static double tp 1; 
static WODPData wodpdata; 
static double a, b; 
static int sig=5; 
static char str[ 12], str 1 [ 12 J: 
operation(); 
TDialog *seledia =new TDialog(TRect(0,0,38,9),"Projection (No Dupl)"); 
seledia->options I= ofCentered; 
TView *sl; 
seledia->insert(s l=new TinputLine(TRect( 10,2,35,3),12)); 
seledia->insert(s 1 ); 
seledia->insert(new TLabel(TRect(2,2, 10,3 ), "-UniRat-", s 1 )); 
TView *s2; 
seledia->insert(s2=new TinputLine(TRect( 10,4,35,5), 12)); 
seledia->insert( s2 ); 
seledia->insert(new TLabel(TRect(2,4, 10,5), "-Tp2(nd)-", s2)); 
a=rand()% 100; 
a=a/100; 
gcvt(a,sig, str); 
tpl=ReaTim*rk+rpk*atof(data.sNetBan)+rpk*atof(datal.sRevTim)+ 

atof( data2.sR_Size )*at of( data2.sN oColn)* at of( datal .sPETim)/Totn+ 
ceil( at of ( data2.sR_Size) * atof( data2.sTupSiz)/atof( data.sBlkSiz )ff otn) * 
atof(datal .sWriTim); 

b=tp 1 +ceil(a *atof( data2.sR_Size )*atof(data2.sTupSiz)/ 
at of( data.sBlkSiz)ff otn )*atof( data 1.s WriTim); 
gcvt(b,sig, str 1 ); 
strcpy (wodpdata.UniRat,str); 
strcpy (wodpdata.tp2, strl); 
seledia->selectN ext(False ); 
seledia->setData(&wodpdata); 
seledia->insert( 

new TButton(TRect(14, 6, 24, 8)," OK", cmOK, btDefault) 
); 
deskTop->execView(seledia); 
destroy(seledia); 

void TDBSimu::Aggregation() 
{ 

static AggData aggdata; 
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static double a; 
static int sig=5; 
static char str[12]; 
operation(); 
TDialog *seledia =new TDialog(TRect(0,0,38, 7),"Aggregation (min)"); 
seledia->options I= ofCentered; 
TView *sl; 
seledia->insert(s l=new TlnputLine(TRect( 10,2,35,3),12)); 
seledia->insert(s 1 ); 
seledia->insert(new TLabel(TRect(2,2,10,3), "-Tal(mi)-" , sl)); 
a=ReaTirn*rk+rpk*atof(data.sNetBan)+rpk*atof(datal .sRevTirn)+ 

(at of( data2.sR_Size )-1 )*atof( data 1.sPCTirn)ff otn+ 
ceil(atof(data2.sTupSiz)/atof(data.sBlkSiz))*atof(data.sNetBan)+ 

ceil( atof( data2.sTupSiz )*Totn/ at of( data.sBlkSiz) )* ato f( data l .sRevTirn)+ 
(Totn-1 )*atof(datal .sPCTirn)+ 
ceil(atof(data2.sTupSiz)/atof(data.sBlkSiz))*atof(datal .sWriTirn); 

gcvt(a,sig, str); 
strcpy (aggdata.ta 1, str); 
seledia->selectN ext(False ); 
seledia->setData(&aggdata); 
seledia->insert( 

new TButton(TRect(l4, 4, 24, 6), "OK", crnOK, btDefault) 
); 
deskTop->exec View( seledia); 
destroy(seledia); 

void TDBSirnu: :NLJoin() 
{ 

static NLJoinData nljdata; 
static double a, b; 
static int sig=5; 
static char str[l2], strl[l2]; 
operation(); 
TDialog *seledia =new TDialog(TRect(0,0,38 ,9),"Join (Nest Loops)"); 
seledia->options I= ofCentered; 
TView *s l; 
seledia->insert(s 1 =new TlnputLine(TRect( 10,2,35,3 ), 12)); 
seledia->insert(s 1 ); 
seledia->insert(new TLabel(TRect(2,2,10,3), "-selfac-", sl)); 
TView *s2; 
seledia->insert(s2=new TlnputLine(TRect( 10,4,35,5), 12)); 
seledia->insert(s2 ); 
seledia->insert(new TLabel(TRect(2,4,10,5), "-Tjn(nl)-", s2)); 
a=rand()% 100; 
a=a/100; 
gcvt(a,sig, str); 
b=ReaTirn*rk+rpk*atof(data.sNetBan)+ReaTirn*sk+ 

sk*atof( data.sNetBan)+(rk+sk)* at of( data l .sRevTim)ff otn+ 
atof( data2.sR_Size )*atof( data2.sS_Size )* ato f( data l .sPCTirn)+ 
ceil( a *atof( data2.sR_Size )*atof( data2.sS_S ize )* 
ato f( data2.sTupSiz)/atof( data.sBlkSiz)/Totn )*atof( data l .s WriTirn); 

gcvt(b,sig, str 1 ); 
strcpy (nljdata.jselfac,s tr); 
strcpy (nljdata.tjn, strl ); 
seledia->selectNext(False ); 
seledia->setData(&nljdata); 
seledia->insert( 
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new TButton(TRect( l4, 6, 24, 8), " OK", crnOK, btDefault) 
); 
deskTop->exec View( seledia ); 
destroy(seledia); 

void TDBSirnu::HBJoin() 
{ 

static HBJ oinData hbjdata: 
static double a, b; 
static int sig=5; 
static char str[l2), strl[l2); 
operation(); 
TDialog *seledia =new TDialog(TRect(0,0,38,9),"Join (Hash Based)"); 
seledia->options I= ofCentered; 
TView *sl; 
seledia->insert(s 1 =new TinputLine(TRect( 10,2,35,3),12) ); 
seledia->insert(s 1 ); 
seledia->insert(new TLabel(TRect(2,2, 10,3 ), "-selfac- ", s 1 )); 
TView *s2; 
seledia->insert(s2=new TinputLine(TRect( 10,4,35,5), 12)); 
seledia->insert(s2 ); 
seledia->insert(new TLabel(TRect(2,4, 10,5), "-Tjh(hb)-", s2)); 
a=rand()% 100; 
a=a/100; 
gcvt(a,sig, str); 

II bc=selfac/32767; // 0 <= selafc <= 1 
b=ReaTirn*rk+rpk*atof(data.sNetBan )+ReaTirn*sk+ 

spk*atof(data.sNetBan)+(rk+sk)*atof(datal .sRevTirn)ITotn+ 
atof( data2.sS_Size )*atof( datal .sPHTirn)/Totn+atof( data2 .sR_Size )* 
atof( datal .sPPTirn)ITotn+ceil( a *atof( data2.sR_S ize )* 
atof(data2.sS_Size)*atof(data2.sTupSiz)latof(data.sBlkSiz)/Totn)* 
atof(datal.sWriTirn); 

gcvt(b,sig, str 1 ); 
strcpy (hbjdata.jselfac,str); 
strcpy (hbjdata.tjhh, strl ); 
seledia->selectN ext(False ); 
seledia->setData(&hbjdata); 
seledia->insert( 

new TButton(TRect(l4, 6, 24, 8)," OK", crnOK, btDefault) 
); 
deskTop->exec View( seledia); 
destroy(seledia); 

I* void TDBSirnu: :SiteAllocation() 
{ 
static int h,i,j,k, avgsize; 
get_para(); 
nurn_site=O; 
for(h=O;h<8 ;h++) 
{ 
nurn_site =nurn_site+2; 
printf("sites=%d: ",nurn_site); 
fp=fopen("c:\\ternpdir\\set_qry" ,"r"); 
fscanf(fp," %d %d",&nurn_query,&num_qtype); 
nurn_run =0; surn_phase =0; 
surn_ttirne =0.0; sum_cratio =0.0; sum_ut =0.0; 
rntd_hash=O; rntd_part=O; 
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for(i=O;i<num_qtype;i++) II jS to jl 1 
{ 
qry_num_run =0; qry_sum_phase =0; 
qry_sum_ttime =0.0; qry_sum_cratio =0.0; qry_sum_ut =0.0; 
qry _mtd_hash=O; qry _mtd_part=O; 
forU=O;j<num_query;j++)I/ each query in Jx 
{ 
root = get_query(); 
for(k=O;k<nnn;k++) 

{ 
init(root); 

II varying rel sizes 

avgsize =compute_avgsize(root)lnum_rel; II for varying cardinalilty 
II printf("RUN %d-- ",num_run); 
II print_inorder(root); 

phase_partition(); 
stat(); 
update_size(root,avgsize,szfactor); 
} 

free_node(root); 
} 
II resultqry(); 
} 

result(); 
fclose(fp ); 
} 
} */ 
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APPENDIX C 
SIMULATION MODEL FOR INTRA

QUERY PROCESSOR ALLOCATION 

Source Code for Intra-query Processor Allocation 

l*************************************************************I 
#include <iostream.h> 
#include <fstream.h> 
#include <stdlib.h> 
#include <math.h> 
#define MAX_NODE 48 
#define MAX_PHASE 24 
#define MAX_ OP 24 
#define wl 0.0001 
#define w2 0.0001 
#define w3 0.0001 
#define thash 0.0001 
#define tdata 0.00003 
#define tinit 0.001 

l*************************************************************I 
typedef struct nnode { 

int pid; 
int type; 
int num_tuple; 
float skew; 
int num_pro; 
t1oat ttime; 
int allocated; 
float op_time; 

II real no. of processors 

long op_num_pro; II optimal no. of processors 
struct nnode *lnode, *mode, *pnode; 
} NODE; 

typedef struct subset_ready { 
int num_op_phase; 
float ph_time; 
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int num_pro_phase; 
NODE *nodeptr[MAX_OP]; 
} SUBSET; 

long num_site=l 00; II total no . of processors 
int num_op=4, num_phase; 
//float sel=l.0; II assume join_sel= l/(r+s) 
t1oat sum_ph_time; II query execution time 
float avg_qtime=0.0; 
int sum_no_pro; II real num of processors for the query 
ifstream ifquery; 
ofstream ofquery; 
NODE *root=NULL; 
SUBSET phase[MAX_PHASE]; 

void print_tree(NODE *p); 
NODE *get_query(void); 
void phase_partition(void); 
void find_ready_op(NODE *p, int phs); 
void print_phase(void); 
NODE *optimize(NODE *q, int rz, int sz, float skew); 
float hashjoin(long n, int rz, int sz, float skew); 
float Harmo (int k, float skew); 
void merge_point(NODE *p, int phs); 
void time_equal(int temp_phs); 
void collect_data(NODE *p); 

/*************************************************************/ 
int main() 
{ 
int num_query= 1, num_qtype= 1; 
ifquery.open("ifquery.dat"); 
if (ifquery.fail()) 

{ 
cout<<"\n\nCan't open file\n" ; 
return l; 
} 

ofquery.open("ofquery.dat"); 
if (ofquery.fail()) 

{ 
cout<<"\n\nCan' t open file\n"; 
return 1; 
} 

II checking I/O 

ifquery>>num_query>>num_qtype>>num_site; 
ofquery<<"\n Optimised Processor Algorithm"; 
ofquery<<"\n\n%%% This is the beginning of the simulation program" ; 
ofquery<<"\nnum_query=" <<num_query<<", num_qtype=" < <num_q type<<", 
num_pro= "< <num_site; 
cout<<"\nnum_site "<<num_site; 
for (int i=l; i<=num_query; i++) 

{ 
sum_ph_time=O.O; II initialisation 
sum_no_pro=O; 
root=get_query(); II establish the tree 
cout<<"\n\nNew Query"<<i; 
ofquery<<"\n\nNew Query "<<i; 
collect_data(root); II collect optimal time and no. of pro 
cout<<endl<<sum_no_pro<<endl; 
if (sum_no_pro>num_site) II not enough processors 
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else 

sum_ph_time=0.0; 
sum_no _pro=O; 
phase_partition() ; //merge-point approach 
print_tree(root) ; 
print_phase(); 
} 

ofquery<<"\n==== Global Optimisation is achieved==" 
<<"\nOptimal processors required are "<<sum_no_pro; 

ofquery<<"\nThe execution time for this query is "<<sum_ph_time; 
avg_qtime+=sum_ph_time; 
} 

avg_qtime = avg_qtime/num_query; 
ofquery<<"\nthe average of this group of queries exe time is "<<avg_qtime; 
ofquery<<"\n%%% This is the end of the Simulation program"; 
if query .close(); 
ofquery.close(); 
return O; 
} 

/*************************************************************! 
void print_phase(void) //print the operations within each phase 
{ 
for (int i=O; i<num_phase; I++) 

{ 
ofquery<<"\nphase[" <<i< <"] .num_op=" <<phase[i] .num_op_phase<<", 

ph_time="; 
ofquery<<phase[i] .ph_time<<", num_pro=" <<phase[i] .num_pro_phase; 
sum_ph_time = sum_ph_time+phase[i].ph_time; 
for (int j=O; j<phase[i].num_op_phase; j++) 
of query<<", pid="<<phase[i] .nodeptr[j]->pid; 
} 

/*************************************************************/ 
void collect_data(NODE *p) //travel the binary tree 
{ 
if (p !=NULL) { 

I* 

co llec t_data(p-> !node); 
collect_data(p->rnode ); 
if (p->type>O) 

{ 
p=optimize(p,p->lnode->num_tuple,p->rnode->num_tuple,p->skew); 
cout<<"\npid "<<p->pid+ 100<<"\t" <<p->lnode->num_tuple<<"\t" 
<<"\t"<<p->rnode->num_tuple<<","<<p->skew; 
if ((p->lnode->type>O) II (p->rnode->type>O)) 

{ 
if (p->lnode->op_nurn_pro+p->rnode->op_num_pro > p->op_nurn_pro) 

p->op_num_pro=p->lnode->op_num_pro+p->rnode->op_nurn_pro; 
if (p->lnode->op_tirne > p->rnode->op_time) 

{p->op_time += p->lnode->op_time;} 
else 

{p->op_time += p->rnode->op_time;} 

ofquery<<"\npid=" <<p->pid+ 100<<", num_tuple=" <<p->num_tuple 
<<", skew="<<p->skew<<", type"<<p->type<<", op-time=" 
<<p->op_time<<", op-num-pro"<<p->op_num_pro; 

Page 299 



Appendix C 

*I 

if (p->lnode->type>O) 
{ 
ofquery<<", lnode="<<p->lnode->pid+ 100; 
} 

else 
ofquery<<", lnode="<<p->lnode->pid; 

if (p->type== 1) 

else 

{ 
if (p->rnode->type>O) 

{ ofquery<<", rnode="<<p->rnode->pid+lOO; } 
else 

ofquery<<", mode=" <<p->rnode->pid; 

ofquery<<"rnode = NULL\n" ; 

I* else 

*I 

ofquery<<"\npid=" <<p->pid<<", num_tuple=" <<p->num_tuple 
<<", skew="<<p->skew<<" , type"<<p->type; 

sum_ph_time=p->op _time; 
sum_n o _pro=p->op_num_pro; 
} 

l*************************************************************I 
void phase_partition(void) II phase partitioning strategy 
{ 
int temp_phs,i; 

temp_phs=O; 
phase [temp _phs] .num_ op _phase=O; 
phase[temp _phs] .num_pro_phase=O; 
phase[temp_phs].ph_time = -1; 
find_ready _op(root,temp_phs ); 
cout<<"\nph_timeO = "<<phase[temp_phs] .ph_time; 
if (phase[temp_phs].num_pro_phase > num_site) { 

phase[temp_phs].num_op_phase=O; 
phase[temp_phs].num_pro_phase=O; 
phase[temp_phs].ph_time = -1; 
merge_point(root,temp_phs); 
cout<<"\nph_timel = "<<phase[temp_phs].ph_time; 
if (phase[temp_phs].num_pro_phase > nurn_site) 

time_equal(temp_phs); 
cout<<"\nph_time2 = "<<phase[temp_phs].ph_tirne;} 

llcout<<"\nThe number of operations in this phase ="<<phase[temp_phs].num_op_phase; 

phase[temp_phs] .nodeptr[phase[temp_phs].num_op_phase] =NULL; 
while(phase[temp_phs] .num_op_phase >0) 

{ 
i = O; II mark op as allocated 
while(phase[temp_phs] .nodeptr[i] !=NULL) 

{ phase[temp_phs] .nodeptr[i]->allocated = 1; i++; } 
temp_phs++; 
phase[temp_phs] .num_pro_phase=O; 
phase[temp_phs].ph_time = -1; 
phase[temp_phs] .num_op_phase=O; 
find_ready_op(root,temp_phs); 
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cout<<"\nph_timeO = "<<phase[temp_phs].ph_time; 
if (phase[temp_phs].num_pro_phase > num_site) { 

phase[temp_phs].num_op_phase=O; 
merge_point(root, temp_phs); 
cout<<"\nph_timel = "<<phase[temp_phs] .ph_time; 
if (phase[temp_phs] .num_pro_phase > num_site) 

{ cout<<"\nthis is in the phase No. "<<temp_phs; 
cout<<"\nthere are "<<phase[temp_phs].num_op_phase<<" operaions in 

this phase"; 
time_equal(temp_phs); 
cout<<"\nph_time2 = "<<phase[temp_phs] .ph_time; } } 

II cout<<"\nthe number of operations in this phase 
="<<phase[temp_phs].num_op_phase; 

phase[temp_phs].nodeptr(phase[temp_phs].num_op_phase] =NULL; 
II cout<<"\nph_time = "<<phase[temp_phs].ph_time; 

} 
num_phase = temp_phs; 
ofquery<<"\nthe number of phases for this query is "<<num_phase; 
} 

l*************************************************************I 
void time_equal(int temp_phs) 
{ 

II time equalisation 

int te_flag= 1; II flag to indicate are there enough processors 
inti ; 
floaty, max_y=-1.0; 
int temp=num_site-phase[temp_phs].num_op_phase; 

II the available number of processors 
int ttemp=O; II record the critcal operation 

if (phase[temp_phs].num_op_phase<=l) 
{ if (num_site<=phase[temp_phs].nodeptr[O]->op_num_pro) 
phase[temp_phs].ph_time=hash_join(num_site, 

phase[temp_phs].nodeptr[O]->lnode->num_tuple, 
phase [temp _phs] .n odeptr [0]->rnode->num_tuple, 
phase[temp_phs].nodeptr[O]->skew); 

else 
phase[ temp_phs]. ph_time=hash_j oin(phase[ temp _phs] .nodeptr[O]->op _num_pro, 

phase[temp_phs].nodeptr[O]->lnode->num_tuple, 
phase[ temp _phs] .nodeptr[O]->rnode->num_tup le, 
phase[temp_phs].nodeptr[O]->skew); 
} 

else {if (num_site>phase[temp_phs].num_op_phase) 
( 

else 

for (i=O; i<phase[temp_phs].num_op_phase; i++) 
phase[temp_phs] .nodeptr[i]->num_pro= 1; 
} 

{ 
te_flag=O; 
max_y=-1; 
for (i=O; i<num_site; i++) 

{ 
y=hash_join( 1, 
phase[temp_phs].nodeptr[i]->lnode->num_tuple, 
ph ase[ternp _phs] .nodeptr[i]->mode-> num_tuple, 
phase[temp_phs] .nodeptr[i]->skew ); 
if (y>max_y) max_y=y; 
} 
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phase[temp_phs].ph_time=max_y; 

for (i=num_site; i<phase[temp_phs] .num_op_phase; i++) 
{ 
y=hash_join(num_site, 
phase[temp_phs].nodeptr[i]->lnode->num_tuple, 
phase[temp_phs].nodeptr[i]->rnode->num_tuple, 
phase[temp _phs] .nodeptr[i]->skew); 
phase[temp_phs].ph_time += y; 
} II find out the critical operation 

I* end if else *I 

if (te_flag== 1) { 
while (temp !=0) 

ttemp=O; 
max_y=hash_join(phase[temp_phs].nodeptr[O]->num_pro, 
phase[temp_phs] .nodeptr[O]->lnode->num_tuple, 
phase[temp_phs].nodeptr[O]->rnode->num_tuple, 
phase[temp_phs] .nodeptr[O]->skew ); 
for (i= 1; i<phase[temp_phs].num_op_phase; i++) 

{ 
y=hash_join(phase[temp_phs].nodeptr[i]->num_pro, 

phase[ temp_phs] .n odeptr[i ]->ln ode-> num_tuple, 
phase[temp_phs].nodeptr[i]->rnode->num_tuple, 
phase[temp_phs] .nodeptr[i]->skew ); 

if (max_y<y) 
{ max_y=y; ttemp=i ; } 

II find out the critical operation 
phase[temp_phs].nodeptr[ttemp]->num_pro++; 
if (phase[temp_phs].nodeptr[ttemp]->num_pro >= 

phase[temp_phs].nodeptr[ttemp]->op_num_pro) 
break; 

temp--; 
} I* end while *I 

phase[temp_phs] .ph_time=max_y; 
} I* end if *I 

} 
cout<<"\nphase time is "<<phase[temp_phs] .ph_time; 
if (te_tlag) { 

phase[temp_phs] .num_pro_phase=O; 
for (i=O; i<phase[temp_phs] .num_op_phase; i++) II display results 

{llcout<<"\nThe "<<phase[temp_phs].nodeptr[i]->pid<<"th operation 
has "<< llphase[temp_phs].nodeptr[i]->num_pro<<" processors" ; 

phase[temp_phs] .num_pro_phase += phase[temp_phs].nodeptr[i]-
>num_pro; 

else phase[temp_phs].num_pro_phase=num_site ; 
} 

l*************************************************************I 
void find_ready _op(NODE *p, int phs) II find all ready operations 
{ 
llif(phase[phs].num_op >= num_site) return O; 
if(p !=NULL && p->allocated==O) 

I* --- no further search *I 

{ 
if(((p->lnode->allocated==l && p->rnode==NULL) 

II (p->lnode->allocated==l && p->rnode->allocated==l )) 
&& (p->type>O)) 
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} 
else { 

p = optimize(p, p->lnode->num_tuple, 
p->rnode->num_tuple, p->skew); 
phase[phs].nurn_pro_phase += p->op_num_pro; II each phase 
if (p->op_time > phase[phs].ph_time) 

phase[phs].ph_time = p->op_tirne; II each phase 
phase[phs] .nodeptr[phase[phs].num_op_phase] = p; 
p->allocated=-1 ; II temp marking 
phase[phs] .num_op_phase++; 

find_ready _op(p->lnode,phs); 
find_ready _op(p->rnode,phs); 
} 

l*************************************************************I 
void merge_point(NODE *p, int phs) 
{ 
if(p !=NULL && (p->allocated==O II p->allocated==-1 )) 
{ 
if (((p->lnode->allocated=l && p->rnode==NULL) 
II (p->lnode->allocated==l && p->rnode->allocated==l)) && (p->type>O)) 

{ 
if ((p->pnode->rnode->allocated==-1 && 

p->pnode->lnode->allocated==-1 ) II 
(p->pnode->rnode->allocated==-1 && 
p->pnode->lnode->allocated==l ) II 
(p->pnode->rnode->allocated==l && 
p->pn ode-> lnode->allocated==-1 )) 

II II (p->pnode->lnode==NULL) II (p->pnode->rnode==NULL)) 

else 

} 
else { 

{ 
p=optimize(p, p->lnode->num_tuple, 
p->rnode->num_tuple, p->skew); 
phase[phs].nurn_pro_phase += p->op_num_pro ; //each phase 
if (p->op_time > phase[phs].ph_time) 

phase[phs].ph_time = p->op_time; II each phase 
phase[phs].nodeptr[phase[phs].nurn_op_phase] = p; 
phase[phs] .num_op_phase++; 
} 

p->allocated=O; 

merge_point(p->lnode,phs ); 
merge_point(p->rnode,phs); 
} 

/*************************************************************/ 
NODE *get_query(void) II read in queries from input files and 
{ II store them as a binary tree -- return root 
NODE *rel_in[MAX_NODE], *op_in[MAX_NODE], *qro ot; 
int oplink[MAX_NODE][4]; 
inti , num_rel=6; 

ifquery>>num_rel>>nurn_op; 
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for(i=O;i<num_rel;i++) II read in relations 
{ 
rel_in [i]=(NODE *)malloc( sizeof(NODE) ); 
ifquery>>rel_in[i]->pid>>rel_in[i]->type>>rel_in[i]->type 
>>rel_in[i]->skew>>rel_in[i]->num_tuple; 
rel_in[i]->lnode=NULL; 
rel_in[i]->rnode=NULL; 
rel_in [i ]-> n um_pro=O; 
rel_in[i]->ttime=0.0; 
rel_in [i]->alloc ated= 1 ; 
} 

for(i=O;i<num_op;i++) II read in operations of the query 
{ II query is stored as post tree traversal 
op_in[i]=(NODE *)malloc(sizeof(NODE)); 
ifquery>>op_in[i]->pid>>op_in[i]->type>>op_in[i]->skew>> 
op_in[i]->num_tuple>>oplink[i] [O]>>oplink[i] [ 1 ]>> 
oplink[i] [2 ]>>oplink[i] [3]; 
op_in[i]->ttime =0.0; 
op_in[i]->allocated=O; 
} 

qroot=op_in[num_op-1] ; 
for(i=O;i<num_op;i++) 

II set up the binary tree 

{ 
if( oplink[i] [0]=0) 

else 

op_in[i]-> lnode=rel_in [ oplink[i] [ 1 ]] ; 
rel_in [ oplink[i] (1 ]]->pnode=op_in [i]; 
} 

op_in[i]->lnode=op_in[oplink[i] [1)-1] ; 
op_in[oplink[i][ 1)-1]->pnode=op_in[i] ; 
} 

if (op_in[i] ->type==l ) 
{ 

else 

if( oplink[i] [2)==0) { 

else 

op_in [i]->rnode=rel_in[ oplink[i] [3 ]] ; 
rel_in[oplink[i] (3 ]]->pnode=op_in(i] ; 
} 

op_in[i]->rnode=op_in [oplink[i] (3)-1); 
op_in[ oplink[i][3]-1]->pnode=op_in[i]; 
} 

op_in[i]->rnode=NULL; 

return(qroot); 
} 

l*************************************************************I 
void print_tree(NODE *p) II travel the binary tree and print out data 
{ 
if (p!=NULL) { 

print_tree(p->lnode) ; 
if (p->type>O) 

{ 
ofquery<<"\npid=" <<p->pid+ 100<<", num_tuple=" <<p->num_tuple 
<<" , skew=" <<p->skew<<", type" <<p->type<<", op-time=" 
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else 

<<p->op_time<<", op-num-pro"<<p->op_num_pro; 
if (p->lnode->type>O) 

ofquery<<", lnode=" <<p->lnode->pid+ I 00; 
else 

ofquery<<" , lnode="<<p->lnode->pid; 
if (p->type== 1) 

else 

{ 
if (p->rnode->type>O) 

ofquery<<", mode=" <<p->rnode->pid+ 100; 
else 

ofquery<<", rnode="<<p->rnode->pid; 
print_tree(p->rnode); 
} 

ofquery<<"rnode = NULL\n"; 

ofquery<<"\npid=" <<p->pid<<" , num_tuple=" <<p->num_tuple 
<<", skew="<<p->skew<<", type"<<p->type; 

l*************************************************************I 
NODE *optimize(NODE *q, int rz, int sz, float skew) 
{ II find out the optimal number of processors for each operation 
long n=l; 
int flag=l; 
float miny=hash_join(n, rz, sz, skew); 
floaty; 

/lcout<<"\n"<<miny<<", \t\t"<<n; 
n++; 
do 

y=hash_join(n, rz, sz, skew); 
II cout<<"\n"<<y<<", \t"<<n; 

if (y<miny) 
{ 
miny=y; 
n++; 

else flag=O; 
} 

while (flag && (n<num_site)); 
q->op_num_pro=n; 
q->op_time=miny; 
return q; 
} 

l*************************************************************I 
float hash_join(long n, int rz, int sz, float skew) 
{ 
float tt; 
float skew _f; 
if (n<l) 

{ 

II work out the execution time 

cout<<"\problem with the number of pro"; 
return O; 
} 

if (skew==O) 
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skew_f=n; 
else 
II skew_f=0.57721+log(n); 

skew_f=Harmo(n, skew); //based on the cost model 
if (skew_f==O) 

cout<<"\nproblem is here with skew"; 
tt=(thash+(n-1)*tdata+w1 +w2)*(rz+sz)lskew _f; 
tt=tt+tinit*(n+ 1 )+w3 *rz/skew _f/(rz+sz)* sz; 
return tt; 
} 

/************************************************************/ 
float Harmo (int k, float skew) //find out the Harmonic number of k 
{ 
float sumH=O.O, c=O.O; 
inti; 
for (i=O; i<k; i++) 

{ 
C=C+l.0; 
surnH=sumH+ 1.0/pow( c,skew ); 
} 

return(sumH) ; 
} 

Input File: IFQUERY.DA T 

9 1 32 
6 5 
0 0 0.0 1000 
1 0 0.0 2000 
2 0 0.0 3000 
3 0 0.0 4000 
4 0 0.0 5000 
5 0 0.0 6000 
1 1 0.0 2000 0 0 0 1 
2 1 0 .0 4000 0 2 0 3 
3 1 1.0 4000 1 1 1 2 
4 1 0.0 6000 0 4 0 5 
5 1 0.0 6000 l 3 1 4 
10 9 
0 0 0.0 1000 
1 0 0.0 2000 
2 0 0.0 3000 
3 0 0.0 4000 
4 0 0.0 5000 
5 0 0.0 6000 
6 0 0.0 7000 
7 0 0.0 8000 
8 0 0.0 9000 
9 0 0.0 10000 
l 1 0.0 10000 0 0 0 1 
2 1 0.0 10000 0 2 0 3 
3 1 0.0 10000 0 4 0 5 
4 1 0.05 10000 1 2 1 3 
5 1 0.0 10000 0 6 0 7 
6 1 0.05 10000 1 4 1 5 
7 1 0.05 10000 1 1 1 6 
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8 1 0.0 10000 0 8 0 9 
9 1 0.0 10000 1 7 1 8 
10 9 
0 0 0.0 1000 
1 0 0.0 2000 
2 0 0.0 3000 
3 0 0.0 4000 
4 0 0.0 5000 
5 0 0.0 6000 
6 0 0.0 7000 
7 0 0.0 8000 
8 0 0.0 9000 
9 0 0.0 10000 
1 1 0.0 2000 0 0 0 1 
2 1 0.0 4000 0 2 0 3 
3 1 0.0 6000 0 4 0 5 
4 1 0.0 8000 0 6 0 7 
5 1 0.0 10000 0 8 0 9 
6 1 0.05 10000 1 4 1 5 
7 1 0.05 10000 1 3 1 6 
8 1 0.05 10000 1 2 1 7 
9 1 0.0 10000 1 1 1 8 
10 9 
0 0 0.0 1000 
1 0 0.0 2000 
2 0 0.0 3000 
3 0 0.0 4000 
4 0 0.0 5000 
5 0 0.0 6000 
6 0 0.0 7000 
7 0 0.0 8000 
8 0 0.0 9000 
9 0 0.0 10000 
1 1 0.0 10000 0 0 0 1 
2 1 0.0 10000 0 2 0 3 
3 1 0.05 10000 1 1 1 2 
4 1 0.0 10000 0 4 0 5 
5 1 0.05 10000 1 3 1 4 
6 1 0.0 10000 0 6 0 7 
7 1 0.05 10000 1 5 1 6 
8 1 0.0 10000 0 8 0 9 
9 1 0.0 10000 1 7 1 8 
10 9 
0 0 0.0 1000 
1 0 0.0 2000 
2 0 0.0 3000 
3 0 0.0 4000 
4 0 0.0 5000 
5 0 0.0 6000 
6 0 0.0 7000 
7 0 0.0 8000 
8 0 0.0 9000 
9 0 0.0 10000 
1 1 0.0 10000 0 0 0 l 
2 1 0.0 10000 0 2 0 3 
3 1 0.05 10000 1 1 1 2 
4 1 0.0 10000 0 4 0 5 
5 1 0.05 10000 1 3 1 4 
6 1 0.0 10000 0 6 0 7 
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7 1 0.0 10000 0 8 0 9 
8 1 0.0 10000 1 6 1 7 
9 1 0.0 10000 1 5 1 8 
10 9 
0 0 0.0 1000 
1 0 0.0 2000 
2 0 0.0 3000 
3 0 0.0 4000 
4 0 0.0 5000 
5 0 0.0 6000 
6 0 0.0 7000 
7 0 0.0 8000 
8 0 0.0 9000 
9 0 0.0 10000 
1 1 0.0 10000 0 0 0 1 
2 1 0.0 10000 0 2 0 3 
3 1 0.05 10000 1 1 1 2 
4 1 0.0 10000 0 4 0 5 
5 1 0.05 10000 1 3 1 4 
6 1 0.0 10000 0 6 0 7 
7 1 0.0 10000 0 8 0 9 
8 1 0.0 10000 1 6 1 7 
9 1 0.0 10000 1 5 1 8 
10 9 
0 0 0.0 1000 
1 0 0.0 2000 
2 0 0.0 3000 
3 0 0.0 4000 
4 0 0.0 5000 
5 0 0.0 6000 
6 0 0.0 7000 
7 0 0.0 8000 
8 0 0.0 9000 
9 0 0.0 10000 
1 1 0.0 10000 0 0 0 1 
2 1 0.0 10000 1 1 0 2 
3 1 0.0 10000 0 3 0 4 
4 1 0.05 10000 1 2 1 3 
5 1 0.0 10000 0 5 0 6 
6 1 0.05 10000 1 5 0 7 
7 1 0.05 10000 1 4 1 6 
8 1 0.0 10000 0 8 0 9 
9 1 0.0 10000 1 7 1 8 
12 11 
0 0 0.0 1000 
1 0 0.0 2000 
2 0 0.0 3000 
3 0 0.0 4000 
4 0 0.0 5000 
5 0 0.0 6000 
6 0 0.0 7000 
7 0 0.0 8000 
8 0 0.0 9000 
9 0 0.0 10000 
10 0 0.0 10000 
11 0 0.0 10000 
1 1 0.0 10000 0 0 0 1 
2 1 0.0 10000 0 2 0 3 
3 1 0.05 10000 1 1 1 2 
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4 1 0.0 10000 0 4 0 5 
5 1 0.05 10000 1 3 1 4 
6 1 0.0 10000 0 6 0 7 
7 1 0.0 10000 0 8 0 9 
8 1 0.05 10000 1 6 1 7 
9 1 0.0 10000 0 10 0 11 
10 1 0.0 10000 1 8 1 9 
11 1 0.0 10000 1 5 1 10 
12 11 
0 0 0.0 1000 
1 0 0.0 2000 
2 0 0.0 3000 
3 0 0.0 4000 
4 0 0.0 5000 
5 0 0.0 6000 
6 0 0.0 7000 
7 0 0.0 8000 
8 0 0.0 9000 
9 0 0.0 10000 
10 0 0.0 10000 
11 0 0.0 10000 

1 0.0 10000 0 0 0 1 
2 1 0.05 10000 1 1 0 2 
3 1 0.0 10000 0 3 0 4 
4 1 0.0 10000 1 2 1 3 
5 1 0.0 10000 0 5 0 6 
6 1 0.0 10000 1 5 0 7 
7 1 0.0 10000 0 8 0 9 
8 1 0.05 10000 1 6 1 7 
9 1 0.05 10000 1 4 1 8 
10 1 0.0 10000 0 10 0 11 
11 1 0.0 10000 1 9 1 10 

Output File: OFQUERY.DAT 

New Optimised Algorithm 

%%% This is the beginning of the simulation program 
num_query=9, num_q type= 1 

New Query 
the number of phases for this query is 3 
pid=O, num_tuple=lOOO, skew=O, typeO 
pid=lOl, num_tuple=2000, skew=O, typel, op-time=28.405186, op-num-prol8, lnode=O, 
rnode=l 
pid= 1, num_tuple=2000, skew=O, typeO 
pid=l03, num_tuple=4000, skew=l, typel , op-time=95.91362, op-num-pro32, lnode=lOl, 
rnode=l02 
pid=2, num_tuple=3000, skew=O, typeO 
pid=l02, num_tuple=4000, skew=O, typel, op-time=35.620136, op-num-pro32, lnode=2, 
rnode=3 
pid=3 , num_tuple=4000, skew=O, typeO 
pid=105, num_tuple=6000, skew=O, typel , op-time=40.249237, op-num-pro32, lnode=l03 , 
rnode=104 
pid=4, num_tuple=5000, skew=O, typeO 
pid=104, num_tuple=6000, skew=O, typel , op-time=41.83366, op-num-pro32, lnode=4, 
rnode=5 
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pid=5, num_tuple=6000, skew=O, typeO 
phase[O].num_op=2, ph_time=36.232773, num_pro=32, pid=l, pid=2 
phase[l].num_op=2, ph_time=96.837158, num_pro=32, pid=3, pid=4 
phase[2].num_op=l, ph_time=40.249237, num_pro=32, pid=5 
The execution time for this query is 173 .319168 

New Query 
the number of phases for this query is 5 
pid=O, num_tuple=lOOO, skew=O, typeO 
pid=101 , num_tuple=lOOOO, skew=O, typel, op-time=28.405186, op-num-pro18, lnode=O, 
rnode=l 
pid=l, num_tuple=2000, skew=O, typeO 
pid=107, num_tuple=lOOOO, skew=0.05, typel, op-time=59.946423, op-num-pro32, lnode=lOl, 
rnode=106 
pid=2, num_tuple=3000, skew=O, typeO 
pid=102, num_tuple=lOOOO, skew=O, typel , op-time=35.620136, op-num-pro32, lnode=2, 
rnode=3 
pid=3, num_tuple=4000, skew=O, typeO 
pid=104, num_tuple=lOOOO, skew=0.05, typel, op-time=59.946423, op-num-pro32, lnode=102, 
rnode=l03 
pid=4, num_tuple=5000, skew=O, typeO 
pid=103, num_tuple=lOOOO, skew=O, typel, op-time=41.83366, op-num-pro32, lnode=4, 
rnode=5 
pid=5, num_tuple=6000, skew=O, typeO 
pid=106, num_tuple=lOOOO, skew=0.05, typel, op-time=59.946423, op-num-pro32, lnode=104, 
rnode=105 
pid=6, num_tuple=7000, skew=O, typeO 
pid=105, num_tuple=lOOOO, skew=O, typel, op-time=48.044277, op-num-pro32, lnode=6, 
rnode=7 
pid=7, num_tuple=8000, skew=O, typeO 
pid=109, num_tuple=lOOOO, skew=O, typel, op-time=55.811359, op-num-pro32, lnode=107, 
rnode=108 
pid=8, num_tuple=9000, skew=O, typeO 
pid=108, num_tuple=lOOOO, skew=O, typel, op-time=54.253826, op-num-pro32, lnode=8, 
rnode=9 
pid=9, num_tuple= 10000, skew=O, typeO 
phase[O] .num_op=2, ph_time=46.814262, num_pro=32, pid=2, pid=3 
phase[l].num_op=2, ph_time=74.892899, num_pro=32, pid=4, pid=5 
phase[2] .num_op=2, ph_time=61 .550564, num_pro=32, pid= 1, pid=6 
phase[3].num_op=2, ph_time=79.650932, num_pro=32, pid=7, pid=8 
phase[4].num_op=l, ph_time=55.811359, num_pro=32, pid=9 
The execution time for this query is 318.720032 

New Query 
the number of phases for this query is 4 
pid=O, num_tuple= 1000, skew=O, typeO 
pid=101, num_tuple=2000, skew=O, typel , op-time=28.405186, op-num-pro18, lnode=O, 
rnode=l 
pid= 1, num_tuple=2000, skew=O, typeO 
pid=109, num_tuple=lOOOO, skew=O, typel, op-time=42.836071, op-num-pro32, lnode=lOl , 
rnode=108 
pid=2, num_tuple=3000, skew=O, typeO 
pid=102, num_tuple=4000, skew=O, typel, op-time=35 .620136, op-num-pro32, lnode=2, 
rnode=3 
pid=3, num_tuple=4000, skew=O, typeO 
pid= 108, num_tuple=lOOOO, skew=0.05 , typel, op-time=49 .088291, op-num-pro32, !node= 102, 
rnode=107 
pid=4, num_tuple=5000, skew=O, typeO 
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pid=103, num_tuple=6000, skew=O, type l , op-time=41.83366, op-num-pro32, lnode=4, 
rnode=5 
pid=5, num_tuple=6000, skew=O, typeO 
pid=107, num_tuple=lOOOO, skew=0.05 , typel , op-time=52.79253, op-num-pro32, lnode=103 , 
rnode=106 
pid=6, num_tuple=7000, skew=O, typeO 
pid=104, num_tuple=8000, skew=O, type l , op-time=48 .044277, op-num-pro32, lnode=6, 
rnode=7 
pid=7, num_tuple=8000, skew=O, typeO 
pid=106, num_tuple=lOOOO, skew=0.05 , typel , op-time=56.402477, op-num-pro32, lnode=l04, 
rnode=l05 
pid=8, num_tuple=9000, skew=O, typeO 
pid=105, num_tuple=lOOOO, skew=O, typel , op-time=54.253826, op-num-pro32, lnode=8, 
rnode=9 
pid=9, num_tuple=lOOOO, skew=O, typeO 
phase[O].num_op=2, ph_time=69.66013 3, num_pro=32, pid=4, pid=5 
phase[l].num_op=2, ph_time=66.222633, num_pro=32, pid=3, pid=6 
phase[2].num_op=2, ph_time=57.868973, num_pro=32, pid=2, pid=7 
phase[3].num_op=2, ph_time=50.584 797, num_pro=32, pid= 1, pid=8 
The execution time for this query is 244.336533 

New Query 
the number of phases for this query is 5 
pid=O, num_tuple=lOOO, skew=O, typeO 
pid=lOl , num_tuple=lOOOO, skew=O, type l , op-time=28 .405 186, op-num-pro l 8, lnode=O, 
rnode=l 
pid= 1, num_tuple=2000, skew=O, typeO 
pid=103, num_tuple=lOOOO, skew=0.05. typel , op-time=59.946423, op-num-pro32, lnode=lOl , 
rnode=l02 
pid=2, num_tuple=3000, skew=O, typeO 
pid=102, num_tuple=lOOOO, skew=O, typel , op-time=35.620136, op-num-pro32, lnode=2, 
rnode=3 
pid=3, num_tuple=4000, skew=O, typeO 
pid=105, num_tuple=lOOOO, skew=0.05. type l , op-time=59.946423, op-num-pro32, lnode=l03, 
rnode=l04 
pid=4, num_tuple=5000, skew=O, typeO 
pid=104, num_tuple=lOOOO, skew=O, typel , op-time=41.83366, op-num-pro32, lnode=4, 
rnode=5 
pid=5, num_tuple=6000, skew=O, typeO 
pid=107, num_tuple=lOOOO, skew=0.05 , type l , op-time=59.946423, op-num-pro32, lnode=105 , 
rnode=106 
pid=6, num_tuple=7000, skew=O, typeO 
pid=106, num_tuple=lOOOO, skew=O, typel , op-time=48.044277, op-num-pro32, lnode=6, 
rnode=7 
pid=7, num_tuple=8000, skew=O, typeO 
pid=l09, num_tuple=lOOOO, skew=O, type l , op-time=55 .8 11359, op-num-pro32, lnode=107, 
rnode=108 
pid=8, num_tuple=9000, skew=O, typeO 
pid=108, num_tuple=lOOOO, skew=O, type l , op-time=54.253826, op-num-pro32, lnode=8, 
rnode=9 
pid=9, num_tuple= 10000, skew=O, typeO 
phase[O].num_op=2, ph_time=36.232773, num_pro=32, pid=l , pid=2 
phase[l].num_op=2, ph_time=69.584389, num_pro=32, pid=3 , pid=4 
phase[2].num_op=2, ph_time=74.892899, num_pro=32, pid=5, pid=6 
phase[3].num_op=2, ph_time=79.650932 , num_pro=3 2, pid=7 , pid=8 
phase[4].num_op=l, ph_time=55.811359, num_pro=32, pid=9 
The execution time for this query is 316 .172363 

New Query 
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the number of phases for this query is 3 
pid=O, nurn_tuple=lOOO, skew=O, typeO 
pid=lOl, nurn_tuple=lOOOO, skew=O, typel, op-tirne=28.405186, op-nurn-prol8, lnode=O, 
rnode=l 
pid=l, num_tuple=2000, skew=O, typeO 
pid=103, nurn_tuple=lOOOO, skew=0.05, typel, op-time=59.946423, op-num-pro32 , lnode=lOl , 
rnode=l02 
pid=2, nurn_tuple=3000, skew=O, typeO 
pid=102, nurn_tuple=lOOOO, skew=O, typel, op-time=35.620136, op-nurn-pro32, lnode=2, 
rnode=3 
pid=3, nurn_tuple=4000, skew=O, typeO 
pid=l05, nurn_tuple=lOOOO, skew=0.05, typel, op-tirne=59.946423, op-num-pro32 , lnode=l03 , 
rnode=l04 
pid=4, nurn_tuple=5000, skew=O, typeO 
pid=104, num_tuple=lOOOO, skew=O, typel, op-time=41.83366, op-num-pro32, lnode=4, 
rnode=5 
pid=5, nurn_tuple=6000, skew=O, typeO 
pid=l09, nurn_tuple=lOOOO, skew=O, typel , op-time=55 .811359, op-nurn-pro32, lnode=105 , 
rnode=108 
pid=6, nurn_tuple=7000, skew=O, typeO 
pid=106, nurn_tuple=lOOOO, skew=O, typel , op-time=48.044277, op-nurn-pro32, lnode=6, 
rnode=7 
pid=7, nurn_tuple=8000, skew=O, typeO 
pid=l08, nurn_tuple=lOOOO, skew=O, typel , op-time=55 .811359, op-num-pro32 , lnode=l06 , 
rnode=l07 
pid=8, nurn_tuple=9000, skew=O, typeO 
pid=l07, nurn_tuple=lOOOO, skew=O, typel, op-tirne=54.253826, op-nurn-pro32, lnode=8, 
rnode=9 
pid=9, nurn_tuple=lOOOO, skew=O, typeO 
phase[O].num_op=4, ph_tirne=79.650932, num_pro=32, pid=l, pid=2 , pid=6, pid=7 
phase[l].nurn_op=2, ph_time=69.584389, num_pro=32, pid=3, pid=4 
phase[2] .nurn_op=2, ph_time=82.206299, num_pro=32, pid=5 , pid=8 
The execution time for this query is 231.44162 

New Query 
the number of phases for this query is 4 
pid=O, nurn_tuple=lOOO, skew=O, typeO 
pid=lOl, nurn_tuple=lOOOO, skew=O, typel , op-time=28.405186, op-nurn-prol8 , lnode=O, 
rnode=l 
pid= 1, nurn_tuple=2000, skew=O, typeO 
pid=l03, nurn_tuple=lOOOO, skew=0.05, typel, op-tirne=59.946423, op-num-pro32, lnode=lOl, 
rnode=102 
pid=2, num_tuple=3000, skew=O, typeO 
pid=l02, nurn_tuple=lOOOO, skew=O, typel. op-time=35.620136, op-nurn-pro32, lnode=2, 
rnode=3 
pid=3, nurn_tuple=4000, skew=O, typeO 
pid=l05, nurn_tuple=lOOOO, skew=0.05 , typel, op-time=59.946423, op-nurn-pro32, lnode=l03 , 
rnode=104 
pid=4, num_tuple=5000, skew=O, typeO 
pid=l04, nurn_tuple=lOOOO, skew=O, type!. op-time=41.83366, op-num-pro32, lnode=4, 
rnode=5 
pid=5, nurn_tuple=6000, skew=O, typeO 
pid=l09, num_tuple=lOOOO, skew=O, typel , op-time=55 .811359, op-num-pro32, lnode=l05 , 
rnode=108 
pid=6, nurn_tuple=7000, skew=O, typeO 
pid=l06, nurn_tuple=lOOOO, skew=O, type!. op-time=48 .044277, op-num-pro32, lnode=6, 
rnode=7 
pid=7, num_tuple=8000, skew=O, typeO 
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pid=108, num_tuple=lOOOO, skew=O, typel , op-time=55.811359, op-num-pro32, lnode=106 , 
rnode=107 
pid=8, num_tuple=9000, skew=O, typeO 
pid=107, num_tuple=lOOOO, skew=O, typel, op-time=54.253826, op-num-pro32, lnode=8, 
rnode=9 
pid=9, num_tuple=lOOOO, skew=O, typeO 
phase[O].num_op=4, ph_time=79 .650932, num_pro=32, pid=l , pid=2, pid=6, pid=7 
phase[l] .num_op=2, ph_time=69.584389, num_pro=32, pid=3, pid=4 
phase[2] .num_op=2, ph_time=82.206299, num_pro=32, pid=5, pid=8 
phase[3] .num_op=l, ph_time=55.811359, num_pro=32, pid=9 
The execution time for this query is 287.252991 

New Query 
the number of phases for this query is 4 
pid=O, num_tuple=lOOO, skew=O, typeO 
pid=101, num_tuple=lOOOO, skew=O, typel , op-time=28.405186, op-num-pro18, lnode=O, 
rnode=l 
pid=l, num_tuple=2000, skew=O, typeO 
pid=102, num_tuple=lOOOO, skew=O, type! , op-time=44.552067, op-num-pro32, lnode=lOl , 
rnode=2 
pid=2, num_tuple=3000, skew=O, typeO 
pid=l04, num_tuple=lOOOO, skew=0.05 , type!, op-time=59.946423 , op-num-pro32, lnode=102, 
rnode=103 
pid=3, num_tuple=4000, skew=O, typeO 
pid=103, num_tuple=lOOOO, skew=O, type! , op-time=38.727505 , op-num-pro32, lnode=3, 
rnode=4 
pid=4, num_tuple=5000, skew=O, typeO 
pid=107, num_tuple=lOOOO, skew=0.05 , typel , op-time=59.946423, op-num-pro32, lnode=104, 
rnode=106 
pid=5, num_tuple=6000, skew=O, typeO 
pid=105, num_tuple=lOOOO, skew=O, type! , op-time=44.939163, op-num-pro32, lnode=5, 
rnode=6 
pid=6, num_tuple=7000, skew=O, typeO 
pid=106, num_tuple=lOOOO, skew=0.05 , type!, op-time=56.402477, op-num-pro32, lnode=l05, 
rnode=7 
pid=7, num_tuple=8000, skew=O, typeO 
pid=109, num_tuple=lOOOO, skew=O, typel , op-time=55 .811359, op-num-pro32, lnode=107, 
rnode=108 
pid=8, num_tuple=9000, skew=O, typeO 
pid=108, num_tuple=lOOOO, skew=O, typel , op-time=54.253826, op-num-pro32, lnode=8, 
rnode=9 
pid=9, num_tuple= 10000, skew=O, typeO 
phase[O] .num_op=2, ph_time=46.161304, num_pro=32, pid= 1, pid=5 
phase[l].num_op=2, ph_time=52.064331 , num_pro=32, pid=2, pid=3 
phase[2] .num_op=2, ph_time=81.778625, num_pro=32, pid=4, pid=6 
phase[3] .num_op=2, ph_time=79.650932, num_pro=32, pid=7, pid=8 
The execution time for this query is 259.655182 

New Query 
the number of phases for this query is 3 
pid=O, num_tuple=lOOO, skew=O, typeO 
pid=101, num_tuple=lOOOO, skew=O, type! , op-time=28.405186, op-num-pro18 , lnode=O, 
rnode=l 
pid= 1, num_tuple=2000, skew=O, typeO 
pid=103, num_tuple=lOOOO, skew=0.05, type! , op-time=59.946423, op-num-pro32, lnode=lOl , 
rnode=102 
pid=2, num_tuple=3000, skew=O, typeO 
pid=102, num_tuple=lOOOO, skew=O, typel , op-time=35.620136, op-num-pro32, lnode=2, 
rnode=3 
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pid=3, num_tuple=4000, skew=O, typeO 
pid=105, num_tuple=lOOOO, skew=0.05 , typel , op-time=59.946423, op-num-pro32, lnode=l03, 
rnode=104 
pid=4, num_tuple=5000, skew=O, typeO 
pid=104, num_tuple=lOOOO, skew=O, typel , op-time=41.83366, op-num-pro32, lnode=4, 
rnode=5 
pid=5, num_tuple=6000, skew=O, typeO 
pid=lll , num_tuple=lOOOO, skew=O, typel , op-time=55.811359, op-num-pro32, lnode=105 , 
rnode=l 10 
pid=6, num_tuple=7000, skew=O, typeO 
pid=106, num_tuple=lOOOO, skew=O, typel, op-time=48 .044277 , op-num-pro32, lnode=6, 
rnode=7 
pid=7, num_tuple=8000, skew=O, typeO 
pid=108, num_tuple=lOOOO, skew=0.05 , typel , op-time=59.946423, op-num-pro32, lnode=106 , 
rnode=107 
pid=8, num_tuple=9000, skew=O, typeO 
pid=107, num_tuple=lOOOO, skew=O, typel , op-time=54.253826, op-num-pro32, lnode=8, 
rnode=9 
pid=9, num_tuple=lOOOO, skew=O, typeO 
pid=l 10, num_tuple=lOOOO, skew=O, typel , op-time=55.811 359, op-num-pro32, lnode=108 , 
rnode=109 
pid=lO, num_tuple=lOOOO, skew=O, typeO 
pid=109, num_tuple=lOOOO, skew=O, typel , op-time=55 .811359, op-num-pro32, lnode=lO, 
rnode=ll 
pid=l 1, num_tuple=lOOOO, skew=O, typeO 
phase[O].num_op=4, ph_time=79.650932, num_pro=32, pid=l , pid=2, pid=6, pid=7 
phase[l].num_op=4, ph_time=ll7.86364, num_pro=32, pid=3, pid=4, pid=8, pid=9 
phase[2].num_op=2, ph_time=82.206299, num_pro=32, pid=5, pid=lO 
The execution time for this query is 279.720886 

New Query 
the number of phases for this query is 5 
pid=O, num_tuple=lOOO, skew=O, typeO 
pid=101 , num_tuple=lOOOO, skew=O, type l , op-time=28 .4051 86, op-num-pro 18, lnode=O, 
rnode=l 
pid=l , num_tuple=2000, skew=O, typeO 
pid=102, num_tuple=lOOOO, skew=0.05 , typel , op-time=47.1 8721 8, op-num-pro32, lnode=lOl , 
rnode=2 
pid=2, num_tuple=3000, skew=O, typeO 
pid=l04, num_tuple=lOOOO, skew=O, typel , op-time=55 .811359, op-num-pro32, ln ode=102, 
rnode=103 
pid=3, num_tuple=4000, skew=O, typeO 
pid=103, num_tuple=lOOOO, skew=O, typel , op-time=38.727505, op-num-pro32, lnode=3, 
rnode=4 
pid=4, num_tuple=5000, skew=O, typeO 
pid=109, num_tuple=lOOOO, skew=0.05 , typel , op-time=59.946423, op-num-pro32, lnode=104, 
rnode=108 
pid=5, num_tuple=6000, skew=O, typeO 
pid=105, num_tuple=lOOOO, skew=O, type l , op-time=44 .939163, op-num-pro32, lnode=5, 
rnode=6 
pid=6, num_tuple=7000, skew=O, typeO 
pid=106, num_tuple=lOOOO, skew=O, typel , op-time=52.684025 , op-num-pro32, lnode=105 , 
rnode=7 
pid=7, num_tuple=8000, skew=O, typeO 
pid=l08, num_tuple=lOOOO, skew=0.05 , typel , op-time=59.946423, op-num-pro32, lnode=106, 
rnode=107 
pid=8, num_tuple=9000, skew=O, typeO 
pid=l07, num_tuple=lOOOO, skew=O, typel , op-time=54.253826, op-num-pro32, lnode=8, 
rnode=9 
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pid=9, num_tuple= 10000, skew=O, typeO 
pid=ll 1, num_tuple=lOOOO, skew=O, typel , op-time=55 .8 l 1359, op-num-pro32, lnode=109, 
rnode=llO 
pid=lO, num_tuple=lOOOO, skew=O, typeO 
pid=l 10, num_tuple=lOOOO, skew=O, typel , op-time=55.811359, op-num-pro32, lnode=lO, 
rnode=l 1 
pid=l 1, num_tuple=lOOOO, skew=O, typeO 
phase[O] .num_op=2, ph_time=46.161304, num_pro=32, pid=l , pid=5 
phase[l].num_op=4, ph_time=98.702522, num_pro=32, pid=2, pid=3, pid=6, pid=7 
phase[2].num_op=2, ph_time=82.206299, num_pro=32, pid=4, pid=8 
phase[3].num_op=2, ph_time=82.206299, num_pro=32, pid=9, pid=lO 
phase[4].num_op=l, ph_time=55.811359, num_pro=32, pid=l 1 
The execution time for this query is 365 .087799 
%%% This is the end of the Simulation program 
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