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ABSTRACT 

 

This paper investigates the application of Independent Component Analysis (ICA) in vibration of 

structures to infer excitation forces from vibration response signals only.  First, fundamental notions of 

ICA, statistical independence (SI) of variables and an ICA algorithm for real number, fastICA, were 

reviewed. The performance of ICA was assessed using harmonic force excitation as source signals and 

mixture signals are displacement responses from finite element simulation of vibration of a cantilever 

beam. It was found that fastICA could extract source signals that share most dynamic characteristics of 

the excitation source signals. Further studies are proposed to tailor ICA better to vibration signals.    
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INTRODUCTION  

 

Independent Component Analysis (ICA) is fundamentally a blind source separation method that seeks 

to separate underlying components from available data whether the data are in the form of sounds, 

images, vibration responses or financial share prices. Since 1990s, ICA has been of great interest to 

researchers in diversified areas of statistics, medical imaging, and structural damage detection (Zang et 

al 2004). ICA relies on response data collected by sensors, called mixture signals, and the assumption 

that the independent component sources, called source signals, are statistically independent, to extract 

the unknown source signals. Most of the studies require that there are as many sensors as there are 

independent components and that the system behaves linearly, but non-linear behaviour and both 

under and over-determined cases have also been solved. ICA assumes that there is a relationship 

between S, the vector representing source signals, or underlying components and X, the vector 

representing mixture or response signals of the system to the source signals. In the simplest form the 

relationship is linear and can be expressed as: X = AS, where X is available from sensors output, while 

both A and S have to be determined, A is the mixing matrix. ICA seeks the optimum solution out of all 

possible matrices A such that the statistical independence of S is maximized. It is basically an 

optimization problem based on a bold assumption of statistical independence of source signals.  

 

Statistical Independence  

 

From the point of view of statistics, two scalar variables of exchangeable data X and Y are statistically 

independent if and only if their joint probability density function (jpdf), p(x,y), is a product of their 

individual probability density function (pdf), p(x) and p(y): 
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p(x,y) = p(x) . p(y)     (1) 

 

Eq. 1 is universally accepted but in practice, when only values of variables X and Y are given, only 

p(x) and p(y) can be readily computed but p(x,y) cannot be, unless SI had been ensured or assumed. 

 

Most authors (Hyvӓrinen et al 2001, Stone 2004) used simple measures of kurtosis and negentropy as 

simple measures of SI, based on the fact that the mixtures, as a consequence of Central Limit Theorem, 

would be more Gaussian than the sources. An equivalent assumption, albeit heuristic, is that the 

sources would be more non-Gaussian, leading to accepting the objective function of optimization as 

seeking sources of maximum non-Gaussianity, which can be measured by kurtosis and negentropy.  

 

Kurtosis is defined as  kurt(x) = E{x4} – 3(E{x2}), where the symbol E stands for expected value. 

Thus kurt (x) is a normalized version of fourth moment of (statistical) distribution of X. Although 

simple to calculate, kurtosis is sensitive to outliers. Negentropy borrows the concept of entropy from 

Thermodynamics which represents the degree of being unstructured, unorganized, unpredictability, is 

also popular in Theory of Information. For a distribution Y, entropy of a variable is defined in terms of 

pdf  as H(y)=  - ( ) log ( )p y p y dy . Negentropy J is then defined as J(y) = H(yGauss) – H(y), where 

yGauss is a Gaussian random variable of the same covariance matrix as y, which is shown by 

Information Theory of having the largest entropy among all random variables of equal variance. Thus 

negentropy is always non- negative. It is more involved to compute negentropy than kurtosis, and like 

kurtosis, it refers to only one variable, whereas the concept of SI is inherently concerned with two or 

more variables. In this aspect, the concept of mutual information  in Information Theory  defined as: 

`  
( , )

( , ) ( , ) log
( ) ( )y Y x X

p x y
I X Y p x y

p x p y 

 
  

 
      (2) 

is more directly related to SI, but it still requires the availability of jpdf. Mutual information can 

however be approximately computed (Comon and Jutten 2010). On the other hand, the equality of the 

two sides of Eq.1 should be understood in a statistical sense and this highlights the basic concept of 

statistical hypothesis testing to ensure not to commit Type I and Type II error: a test must have 

hypotheses, the null and alternative hypothesis, a corresponding statistic and a measure of the 

reliability of the test.  

 

In Eq.1, cumulative distribution functions can replace the  respective pdf, as so do expected values of 

absolutely integrable functions of variables, including positive powers of x and y: 

 

    E{g(x).h(y)} = E{g(x)}. E{h(y)}    (3) 

    E{xp yq} = E{xp} . E{yq)}     (4) 

 

It follows from Eq. 4 that SI is more stringent requirement than un-correlatedness, as un-

correlatedness requires only E{x.y} = E{x}. E{y}, i.e only for the case that both p and q equal 1. Thus 

statistical independence implies un-correlatedness but the reverse is not true. At the same time, 

variables describing physically independent phenomena are intuitively thought to be statistically 

independent but it is not generally true (Stone 2004).  

 

Although the first research paper on SI appeared in 1935 (Wilks 1935), a simple and rigorous testing 

procedure from the point of view of statistics was only available from 2006 by Bakirov and his 

associates (Bakirov et al 2006, Szekely et al 2007). Bakirov proposed the null and alternative 

hypotheses as: 

 

 H0: p(x,y) = p(x) p(y), H1: p(x,y) ≠ p(x) p(y) 

 

Bakirov proposed a coefficient of statistical independence I = I(X,Y)  with 0 ≤ I ≤ 1 and I = 0 if and 

only if X and Y are independent. It is a non-parametric test, independent of distribution model of test 
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statistic. Szekely et al (2007) proposed the concept of distance covariance, dCov  (X,Y) and distance 

correlation, dCor  R(X,Y), where: 
2 2(X, Y )  ||p (x,y)- p(x)p( ) ||y                       (5)

 

2
2

2 2

( , )
( , ) ,

( ) ( )

X Y
R X Y

X Y



 
                   (6) 

It can be seen from Eq. 5 that dcov is directly related to the definition of statistical independence. The 

authors proposed two tests called dcov.test and mvI.test. Both tests are implemented in the module 

indep.test of the package “energy’” developed by Rizzo and Szekely  in R language which can be 

downloaded from http://cran.r-project.org/web/packages/energy/index.html (Unnisa et al 2014). The 

mvI.test takes longer (as many times as the number of elements) computing time than the dcov.test. 

They would yield the p-value of the test and it is widely accepted that H0 should be rejected if p-value 

< 0.05. It should be noted that in statistical hypothesis test, p-value is viewed as a measure of 

reliability of the hypothesis test. 

 

For time series, especially when temporal order does matter and data are not exchangeable, Zhou used 

similar approach as Bakirov group and has developed a criterion for statistical independence of time 

series (Zhou 2011) but a practical test is not yet available. 

 

Implementation of ICA  

 

Hyvӓrinen and associates have contributed greatly to the implementation of ICA (Hyvӓrinen 2013) 

and offered an algorithm for real number signals called fastICA available in R, Matlab, C++ and 

Python programming. fastICA was developd by Marchini, Heaton and Ripley and can be downloaded 

from http://research.ics.aalto.fi/ica/fastica/. Basically it employs an approximation of negentropy as 

the objective function in the optimization searching of the unmixing matrix W where S = WX under 

the constraints that W is an orthonormal matrix after the data has been centered, normalized and 

whitened. As the name implies it is a very fast algorithm, using fixed point iteration scheme for 

maximizing negentropy. It should be noted that the output of ICA (source signals, matrices A and W) 

are ambiguous as far as sign, scale and order are concerned. 

 

This paper investigates the application of ICA, using simulated vibration response by finite elelment 

method (FEM) as signal mixtures to yield S which are then compared to force excitation signals.  

 

FINITE ELEMENT SIMULATION OF VIBRATION 

 

A simple structure in the form of a  steel cantilever beam of 1 m long, 25 mm wide and 12 mm deep, 

of density 8324 kg/m3, Young’s modulus of 210 GPa was studied. It was modeled by Timoshenko 

beam element with twenty elements of equal length as shown in Figure 1.  First, a modal analysis was 

carried out to obtain natural frequencies and corresponding mode shapes. The natural frequencies 

within 1000 Hz were found to be 9.7, 61.0, 170.8, 334.5, 552.8 and 825.4 Hz. Force signals were input 

at two nodes in very short time steps of 0.5-1 milliseconds for a time duration between 0.5-5 seconds. 

 

Newmark transient analysis by ANSYS software was carried out to obtain nodal displacement 

responses using integration time step of 0.5 to 3 microseconds. A three-dimensional FEM model of 

finer meshing was also studied by explicit solver of LsDyna software. The results from the two models 

were similar. The response signals were obtained in time steps of 0.5 or 1 millisecond and input into 

fastICA to find source signals. 

 

A tacit assumption of ICA is the source signals should be statistically independent. Only force signals 

that satisfy the SI indep.test test developed by Bakirov and associates were used. Details can be found 

in (Unnisa et al 2013). Harmonic, saw-tooth, impact and random signals in various combinations were 

studied but only the case of two harmonic force excitations of different frequencies is reported here. 

http://cran.r-project.org/web/packages/energy/index.html
http://research.ics.aalto.fi/ica/fastica/
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Figure 1. FEM model showing node numbers   Figure 2. Excitation force F  

 

A sinusoidal excitation force, termed F1, of 100 N amplitude, frequency of 0.6 Hz was acting at node 

9, another sinusoidal excitation force, termed F2, of 20 N amplitude, frequency of 1 Hz, lagging by 66 

degrees was acting at node 21 as shown in Figure 2. Let F be the original excitation force vector 

formed from F1 and F2. The displacement response mixture signals at node 10 and 21, termed v10 and 

v21 were given by transient dynamic solution of ANSYS software and shown in Fig. 3. 

 

 
Figure 3. Displacement mixture signals v10 and v21 given by FEM solution. 

 

It can be seen that the FEM solution for v10 and v21, as a linear combination of F1 and F2, are 

expected to be also sinusoidal, but they are affected by beat phenomenon caused by their close 

excitation frequencies of 0.6 and 1 Hz. 

 

SOURCE SIGNAL EXTRACTION BY fastICA 

 

The mixture signals v10 and v21 were then input into the fastICA algorithm to extract the source 

signals which are shown separately in Figure 4, and together in Figure 5. Note that source signal 

vector S extracted by fastICA are inherently arbitrary in scale, sign and order. Taking into account beat 

phenomenon by FEM simulation, it can be seen that fastICA was successful in extracting S. 

 

A Proposal to Compare S with Original Excitation Forces F  

 

The question is how would one compare S with the original excitation signal F when source signals 

extracted by ICA are arbitrary in scale, sign and order. On first thought using probability distribution 

function (pdf) may be a convenient way as pdf is normalised, however as it does not reflect the fact 

that the temporal order of a force excitation signal does influence the resulting displacement response. 
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This property of vibration signals is termed convolutionary. In other words, a signal obtained by 

permuting (or shuffling) the values of a force variable would have the same pdf but their resulting 

displacement response would be different. In statistics term, pdf is more suitable for exchangeable data 

than for time series. A better approach for random variables is to compare their power distribution: 

 

 
Figure 4. S1 and S2 separately shown   Figure 5. S1 and S2 shown together 

 

Power Spectrum Density 

 

First the cross-spectral density function (CSDF), Gxy, between two variables X and Y is defined as : 

2

( ) ( ) j f

xy f xyS R e d  






  , where Rxy is the cross-correlation function between x and y. A special 

case when x = y leads to auto spectral density function (ASDF) Gxx or Gyy which reflects the 

distribution of power in frequency domain. ASDF is also known as power spectrum density function 

(psdf). The CSDF should be tested for combination between S and F, four such combinations in this 

study.  

Coherence or coherency squared function defined as: 

2

2
( )

( )
( ) ( )

xy

xy

xx yy

G f
f

G f G f
   also gives an idea on 

how related the two variables x and y are. These entities are evaluated for the case of excitation forces 

F1 and F2, and their (permuted) counterparts output by fastICA, S1 and S2. A typical plot of ASDF (in 

semi-log scale) is shown in Figure 6. 

 

 
Figure 6. ASDF of F2, S2     Figure 7. ASDF of S2 in linear scale 

 

It should be noted that in the FEM simulation, the sampling frequency of response signals used was 

200, hence the Nyquist frequency of 100 Hz used in Figure 6. Within this range there are only two 

natural frequencies of 9.7 and 61.0 Hz found. As expected, most of the power is concentrated around 1 

Hz for F2. For S2, while a large part is concentrated around 1 Hz, some small portion is found near the 

above natural frequencies of the beam. The relative small portion is better shown in linear scale as in 

Figure 7. This is to be expected as response signals reflect not only frequency content of excitation 

forces but also the dynamic characteristics of the structure. As these are used as input for fastICA, the 
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extracted source signals would reflect the influence of the structures. By evaluating cross-correlation 

functions, it can be shown that while F1 and F2 are completely uncorrelated, S1 and S2 are coarsely 

related around those peaks of natural frequencies. Further, on computing kurtosis of these signals, it 

was found that values for F1 and F2 (1.4985 and 1.5000 respectively) are smaller than those of S1 and 

S2 (1.6904 and 2.2271 respectively). This shows that fastICA algorithm gives source signals that are 

more non-Gaussian than the original forces even though they are less statistically independent. This 

suggests that fastICA based on non-Gaussianity objective function does not ensure more degree of SI, 

which is the originating platform of ICA. 

 

CONCLUSION    

 

This study shows that fastICA using real signals can be used in vibration studies to obtain 

characteristics of excitation force source signals when only response mixture signals are available. 

There are still a number of issues that require further studies before ICA can be fully employed to 

vibration studies: 

1. Developing a suitable criterion of SI for convolutionary time signals of vibration, such as 

proposed by (Zhou 2011), and a rigorous test from statistics point of view, similar to indep.test 

by Rizzo and Szekely. 

2. Developing an ICA algorithm that can cater for complex values in frequency domain by 

combining proposals of (Junhongand Zhuobin 2011) and (Hyvӓrinen 2013), preferably with 

no normalization involved so that the matrix A and W are uniquely determined. As these 

matrices reflect the dynamic characteristics of the system, they would be of great interest in 

system identification and structural damage detection. 
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