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Abstract. The objective of this study is to develop a reliable and robust analysis system that can 

automatically detect motor imagery (MI) based electroencephalogram (EEG) signals for the 

development of brain-computer interface (BCI) systems. The detection of MI tasks provides an 

important basis for designing a communication way between brain and computer in creating devices 

for people with motor disabilities. This paper presents a synthesis approach based on optimum 

allocation system and Naive Bayes (NB) algorithm for detecting mental states based on EEG signals. 

In this study, an optimal allocation (OA) is introduced to discover the most effective representatives 

with minimal variability from a large number of MI based EEG data and the NB classifier is 

employed on the extracted features for discriminating the MI signals. The feasibility and effectiveness 

of the proposed method is demonstrated by analyzing the results and its success on two public 

benchmark datasets. The results indicate that the proposed approach outperforms the most recently 

reported five methods and achieves 0.64%-20.90% improvement on average accuracy. The 

performances of this proposed approach implies that it can be reliably used to detect EEG based MI 

activity and can be a promising avenue for EEG based BCI applications.  

 

Key-words. Motor imagery; EEG; Optimum allocation; Naïve Bayes; Brain computer interface. 

 

1. Introduction 

Motor imagery (MI) is one of the most frequently used mental strategies in brain-computer interface 

(BCI) applications [1, 2, 3] for severe motor disabled patients and rehabilitation [4, 5, 6, 7]. MI is a 

common mental task in which subjects are instructed to imagine themselves performing a specific 

motor action (such as a hand or foot movement) without an overt motor output [8] and each task is 

treated as a MI class.  There are various acquisition techniques for capturing MI brain activities such 

as, electroencephalography (EEG), electrocorticography (ECoG), Positron Emission Tomography 

(PET), functional Magnetic Resonance Imaging (fMRI), and Magnetoencephalography (MEG). 

Among these techniques, EEG is the most studied measure of potential for non-invasive BCI designs, 

mainly due to its excellent temporal resolution, non-invasiveness, usability, and low set-up costs [9, 

10, 11, 12]. The BCI is a communication system that provides a direct communication pathway for 
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transmitting messages from the human brain to computers by analyzing the brain’s mental activities 

[13,14]. Obtaining this communication channel between brain and computer is very essential in 

creating devices for disabled people (who cannot move their hands, legs or other limbs), and for 

taking the interaction between human and machine to another level.  

In the BCI development, users produce EEG signals of different brain activity for different 

MI tasks that will be identified by a system and are then translated into commands. These commands 

will be used as feedback for motor disabled patients to communicate with the external environments. 

If the MI tasks are reliably distinguished through detecting typical patterns in EEG data, a motor 

disabled people could communicate with a device by composing sequences of these mental states. 

Thus, a MI-based BCI provides a promising control and communication means to people suffering 

from motor disabilities. Therefore, the detection of MI tasks is very essential for the BCI development 

to generate control signals.   In most current MI based BCIs, the detection algorithms are carried out 

mainly in two stages: feature extraction and feature detection [15]. A successful EEG-based BCI 

system mainly depends on whether the extracted features are able to differentiate MI-oriented EEG 

patterns. How to improve the recognition performance of MI signals is still a vital issue for the 

development of BCI systems. The goal of the study is to develop an approach for detecting different 

MI EEG signals improving the classification performance. The present study proposes a methodology 

where an optimum allocation scheme is developed for feature extraction stage and a probabilistic 

classifier, Naïve Bayes (NB) is employed for detecting the obtained features. In order to verify the 

effectiveness of the proposed approach, we compare it with the five most recently reported methods 

that are discussed in Section 2.  

There are strong grounds of using an optimum allocation technique for getting representative 

sample from each group of a category of MI data in this study. An optimum allocation technique is 

developed to allocate numbers of sample units into different groups with a minimum variation, 

providing the most precision. This method is applicable when a dataset is heterogeneous and very 

large in size. When measuring an EEG, a large amount of data with different categories is obtained 

over a time period and this huge amount data are not directly usable in BCI applications. Then it is 

required to divide the dataset into several groups to make homogeneity within group according to 

their specific characteristics and used to select representative samples from the groups, such that those 

samples reflect the entire data. Thus this study intends to develop an  optimum allocation technique 

based sampling to select representative sample points from every time group instead of random 

sampling. In the optimum allocation based sampling, sample points are selected from each group 

considering variability of the observations but the random sampling does not consider variability. To 

describe the original patterns of EEG signals more representatively, the variability consideration is the 

most important thing to provide the highest precision of a sample for the least cost during the 

selection of sample points from a group. In this study, a sample is defined as a subset (or small part) 

of observations from a group.   
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Through optimum allocation procedure, a sample selected from a group of a particular class 

of MI data is called an ‘optimal allocated sample’ denoted as Opt.S and all of the optimal allocated 

samples together for that MI category is called AOS set as described in details in Section 3. In order 

to achieve the representative characteristics, eleven statistical features are extracted from the AOS set 

as discussed in details in Section 3.2.2. These features represent the characteristics of the original MI 

EEG data without redundancy. The extracted features are then used as the inputs to the Naïve Bayes 

(NB) probabilistic model for the classification of MI EEG signals. To the best of our knowledge, such 

an optimum allocation based NB approach has not been used on the MI data for detection of MI task 

in BCI so far. The reason of choosing of the NB method as a classifier for this study is due to the 

simplicity of its structure, and the speed of the learning algorithm it employs [16, 17]. Another 

advantage is that small amount of bad data or “noise” does not perturb the results by much. 

The proposed approach is evaluated on two datasets, IVa and IVb of BCI Competition III [18, 

19], where both sets contain MI EEG recorded data. A popular k-fold cross validation method (k=10) 

is used to assess the performance of the proposed method for reducing the experimental time and the 

number of experiments in the MI tasks EEG signal classification. This cross-validation procedure is 

applied to control over-fitting of the data. The performance of the proposed approach is also 

compared with five most recent reported methods. The study results from both datasets demonstrate 

that our proposed algorithm produces a promising performance for the detection of MI EEG signals. 

Experimental results also show that the proposed approach outperforms the other five most recently 

reported methods with respect to the classification performance for dataset IVa.  

The rest of the paper is organized as follows: Section 2 presents a review of the existing 

methods of the detection of MI EEG signals. Section 3 describes methodology that is proposed in this 

study. This section also discusses the performance evaluation methods. The experimental results and 

discussions are provided in Section 4. Finally Section 5 draws the conclusions of the study.  

 

2. Related work 

Due to the rapidly growing interest in the MI-based BCIs, numerous methods have been reported by 

different researchers for the detection of MI EEG signals. In this section, we have provided a brief 

description of most recently reported five methods, which were implemented on dataset IVa of BCI 

Competition III.  

Suk and Lee in [20] introduced a bayesian spatiospectral filter optimization (BSSFO) based 

bayesian framework for discriminative feature extraction for motor imagery classification in an EEG-

based BCI in which the class-discriminative frequency bands and the corresponding spatial filters are 

optimized by means of the probabilistic and information-theoretic approaches. In that work, the 

problem of simultaneous spatiospectral filter optimization is formulated as the estimation of an 

unknown posterior probability density function (pdf) that represents the probability that a single-trial 
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EEG of predefined mental tasks can be discriminated in a state. In order to estimate the posterior pdf, 

they proposed a particle-based approximation method by extending a factored-sampling technique 

with a diffusion process. The method achieved overall 75.46% of classification accuracy. The 

weakness of their method is that the classification performances are very low that are not enough for 

comparison with the existing methods. 

Zhang et al. [21] devised an approach based on z-score linear discriminant analysis (Z-LDA), 

which introduces a different decision boundary definition strategy to handle with the heteroscedastic 

class distributions. They employed common spatial pattern (CSP) to estimate the spatial projection 

matrix, which projects the EEG signal from original sensor space to a surrogate sensor space in the 

feature extraction stage. Finally they used the obtained features to the Z-LDA and then compared with 

LDA, support vector machine (SVM), nonparametric discriminant analysis (NDA) and 

heteroscedastic LDA (HLDA). Although the CSP is a popular method in BCI applications, it is very 

sensitive to noise, and often over-fits with small training sets. The overall accuracy performance was 

81.1% for their proposed Z-LAD approach that is not a sufficient amount. 

Siuly and Li [22] developed a scheme based on cross-correlation and least square support 

vector machine (LS-SVM) for the detection of two-class MI signals. That study employed a cross-

correlation technique for feature extraction and a least square support vector machine (LS-SVM) for 

classifying the obtained features. The effectiveness of the proposed classifier was verified replacing 

the LS-SVM classifier by a logistic regression (LR) classifier and a kernel logistic regression (KLR) 

classifier, separately, with the same extracted features. Experimental results showed the superiority of 

the LS-SVM classifier compared to the LR and KLR classifiers. Their method achieved the overall 

classification accuracy of 95.72%. This method may not be suitable if data is very large in size as the 

cross-correlation technique takes more time in execution. 

Siuly et al. [23] reported a clustering technique-based LS-SVM for the classification of EEG 

signals. They developed a clustering technique for feature extraction and the obtained features were 

used to the LS-SVM as the inputs for recognition of EEG signals. It employed the 10-fold cross-

validation method to evaluate the performance .The average accuracy was 88.32%.  The weakness of 

that method was that they did not select the parameters optimally through any technique. They 

manually selected the parameters for the LS-SVM method. 

Lu et al. [24] introduced a regularized common spatial patterns (R-CSP) algorithm by 

incorporating the principle of generating learning for EEG signal classification. That study used two 

regularization parameters in regularizing the covariance estimates and these parameters were not 

selected optimally through a technique. They obtained an average accuracy rate of 74.2% for all 

subjects. It was reported that the algorithm was particularly effective in small sample settings.  

Addressing aforementioned problems, this paper proposes an automatic approach based on 

optimum allocation and Naïve Bayes (NB) classifier which can discriminate two-class MI tasks for 

the development of BCI systems. In the proposed algorithm, an optimum allocation based technique is 
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developed to obtain the most representative sample points from each group of a MI category 

considering minimum variability and a NB classifier is applied to detect the MI tasks for the 

application of BCI systems. The proposed method will be suitable for applicable for any large size of 

EEG data. 

 

3. Methodology 

The proposed approach aims to develop a methodology for the detection of MI based EEG signals for 

the application in BCI systems that can work in automatic way. The developed scheme in this study is 

labelled in four stages as described in Fig. 1. The first stage is the data acquisitions, the second stage 

is feature extraction, third is detection and the final stage is performance evaluation. These stages are 

discussed in the following sections.  

 

 

     

                               EEG signals of a MI task                             Feature extraction                                   Detection & Evaluation 

       

           Brain         

 

Note: G1=Group 1; G2=Group 2; Gk=Group k; Opt.S1=Optimal allocated sample 1; Opt.S2= Optimal allocated sample 2: Opt.Sk= Optimal 

allocated sample k; AOS= All of the Optimal allocated samples together from the groups of a class.  

 

Fig.1. Diagram for the proposed methodology for detection of MI EEG signals 

 

3.1. Signal acquisitions 

In this study, we used two datasets, IVa and IVb from BCI Competition III [18,19], which was 

provided by Fraunhofer FIRST, Intelligent Data Analysis Group (Klaus-Robert Müller, Benjamin 

Blankertz), and Campus Benjamin Franklin of the Charité - University Medicine Berlin, Department 

of Neurology, Neurophysics Group (Gabriel Curio).  

Dataset IVa [18, 19] comprises EEG recordings of five healthy subjects (namely, aa, al, av, 

aw and ay) with a sampling frequency of 100 Hz. In each trial, a visual cue was shown for 3.5 s and 

the subjects performed left hand, right hand, or right foot motor imaginary, but cues for only the 

classes of right hand (RH) and right foot (RF) were provided for the competition [19].  The subjects 

sat in comfortable chairs with their arms resting on armrests. This data set contains MI EEG data from 

the four initial sessions without feedback. The EEG signals were recorded from 118 electrodes 
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according to the international 10/20 system. There were 280 trials for each subject, namely 140 trials 

for each task per subject.  A training set and a testing set consisted of different sizes for each subject. 

Among 280 trials, 168, 224, 84, 56 and 28 trials compose the training set for subjects, aa, al, av, aw, 

ay, respectively, and the remaining trials compose the testing set. This study uses the down-sampled 

data at 100 Hz where the original sampling rate is 1000 Hz.  

Dataset IVb [18, 19] was collected from one healthy male subject. He sat in a comfortable 

chair with arms resting on armrests. This data set has the data from the seven initial sessions without 

feedback. The EEG data consisted of two classes: left hand (LH) and right foot (RF) MI. Signals were 

recorded from 118 channels in 210 trials. 118 EEG channels were measured at the positions of the 

international 10/20 system. Signals were band-pass filtered between 0.05 and 200 Hz and digitized at 

1000 Hz with 16 bit (0.1 µV) accuracy. They provided a version of the data that was down-sampled at 

100 Hz, which is used in this research. 

 

3.2. Feature extraction  

This study develops an optimum allocation based approach for feature extraction to find a suitable 

representation of the original EEG recordings. The extracted features provide the inter-class 

discrimination information for detecting different categories or different classes (e.g. right hand 

movement; right foot movement) of MI tasks. The proposed optimum allocation based approach 

consists of the following steps as described below.  

 

3.2.1. Data partition 

In this step, the full data of EEG signals for each category (e.g. right hand movement) of MI tasks is 

partitioned into various groups to properly account for possible stationarities as signal processing 

methods require stationarity of signals. Although an overall EEG signal may not be stationary, usually 

smaller windows, or parts of those signals will exhibit stationarity. The partitions of the observations 

are performed with respect to a specific time period. The time period is determined viewing the 

signals periodic patterns in each class.  Each partition is called ‘group’ in this work where the groups 

for the data of a particular MI task are denoted as G1, G2,….,Gk  as  shown  in Fig.1. The number of 

observation of k groups are denoted as N1, N2, …,Nk, respectively. It is worthy to mention that the 

groups must be non-overlapping. 

 Based on the data structure, we segment the recorded EEG signals of every MI task in each 

subject into seven (k=7) groups such as G1, G2,….,G7  for dataset IVa and into ten (k=10) groups such 

as G1, G2,….,G10  for dataset IVb. For the RH class of dataset IVa, we get the number of observation 

for each of seven groups as 11627 that means N1= N2=….=N7=11627, while the RH class holds 

81389 data points of 118 dimensions. For the RF class of the same dataset, we acquire the sizes of 

each group is 15689 that means N1= N2=….=N7=15689  while the RF consists of 109823 
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observations of the same dimension. For dataset IVb, we get 9743 data points in each of the groups 

for the LH class e.g. N1= N2=….=N10=9743 and 11065 data points in each of the groups of the RF 

class, e.g. N1= N2=….=N10=11065 while the LH class and RF class hold 97430 and 110652 data 

points of 118 dimensions, respectively.  

 

3.2.2. Determination of optimal allocated sample (Opt.S) size and then selection of the Opt.S by 

the optimum allocation 

This step aims to select a representative sample from every group of a MI task in each subject 

considering minimum variance. Generally in a random sample section, variability is not considered 

within a group which is most important thing to provide precision of sample. This study develops an 

approach called optimum allocation, which is used to determine the number of observations to be 

selected from different groups considering minimum variability among the values. If the variability 

within a group is large, the size of a sample from that a group is also large. On the other hand, if the 

variability of the observations within a group is small, the sample size will be small in that group. 

Furthermore, this optimum  allocation is also used to find out how a given total sample size for an 

entire dataset of each MI task in a subject, denoted as n, should be allocated among the k groups with 

the smallest possible variability.  In this study, the observation of EEG signals of each MI class (e.g. 

movement of right hand) is considered as a population. 

Suppose, xijl  is the value of the l
th 

observation of the j
th
 channel in the i

th
 group in a sample. 

Here i=1, 2,…, k; j=1, 2,…, h; l=1,2,…, ni, where ni is the sample size of the i
th
 group which is 

determined by the optimum allocation  approach. Xijl is the corresponding value in the population 

where l=1, 2,…, Ni. The precision of each group largely depends on the choice of the sample size. In 

order to find out the variability of the mean in this process, we assume that the samples are drawn 

independently from different group, and the sample mean is an unbiased estimator of the population 

mean X . The variance of the sample mean x ,  )(xV
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Here, ijx is the mean of a simple random sample in the j
th
 channel of the i

th
 group whose variance is 

i
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Where Ni is the size of the i
th
 group; ni is the required sample taken from the i

th
 group; 2

ijs is the 

standard deviation of the j
th
 channel in the i

th
 group; and n is the total sample size in the stratification 

process.  

 Now let us see how a given total sample size, n, should be allocated among different group so 

that the estimator, x , will have the smallest possible variability. The question is to determine n1, n2, 

…,nk for minimizing, )(xV , subject to the constraint that the total size n equals knnnn  ..21 . 

This is equal to minimizing the function 

)(
)(1

)()(

1

2

1 1
2

2

2
1


 






k

i

i
i

ij

i

ii
k

i

h

j

i
k

i

i nn
n

s

N

nN

N

N

h
nnxV      (3) 

For ni,  is an unknown Langrange’s multiplier. For the extreme case of the function, we 

have 0>0
2

2

ii n
and

n 






 . By differentiating the function   with respect to ni and equating the 

derivation to zero, we have, 

0
)(1

1

2

1 1
2

2

2



 

 

k

ii

ij

i

ii
k

i

h

j

i

i n

s

N

nN

N

N

hn





 






h

j

ij
i

i s
Nh

N
n

1

2


          (4) 

Summing up the both sides of equation (4), we have 
hNn

sN

k

i

h

j

iji 
 


1 1

2
)(

  and putting the value of 

  into equation (5), we get: 

n

sN

sN

n
h

j

iji

k

i

ij

h

j

i

i 









)(

1

2

1

2

1
           (5) 



9 

 

Thus equation (5) is derived to calculate the best sample size for the i
th 

group solving a set of 

equations by optimum allocation. Using equation (5), a sample selected from a group of a MI task in a 

subject is called ‘optimum allocated sample’ denoted as Opt.S. The all of the Opt.S (s) from the 

groups of a MI task together makes a matrix called AOS as described in Fig.1. For example: if we 

select three Opt.S  from three groups of a MI class with the sizes 10, 12, 11,respectively,  then the 

sizes of AOS will be 33. In equation (5), total sample size, n is determined by using equations (6) in 

[26, 27] 

n=

PS

n

n

1
1 0

0




           (6) 

Here, 
2

2

0
d

qpz
n


 where n0 means the initial sample size, z is the standard normal variate (Z-value) 

for the desired confidence level; p is the assumed proportion in the dataset estimated to have a 

particular characteristic; q=1-p and d is the margin of errors or the desired level of precision; and PS 

denote population size which consider the total number of data points in a class. The total sample size, 

n can be calculated by using a survey software called ‘Sample size calculator ’ that  is available in 

online, http://www.surveysystem.com/sscalc.htm. 

Generally, the sum of all Opt.S sizes from all groups in a MI class should be approximately 

equal to the total sample size (n) of that class (for example, knnnn  ..21 ) as all groups  come 

from individual MI class . Sometimes, the calculated n may be a bit larger than the given n due to the 

rounding figure of the calculated sample size. In this research, we get Z=2.58 considering 99% 

confidence level; d=0.01 for 99-100% confidence interval. If the estimator p is not known, 0.50 (50%)  

 

           Table 1: Calculated sample size by the optimum allocation approach for dataset IVa 

Groups Sizes Obtained sizes of the Opt.S  in each of the seven groups  of 

every two class 

RH RF 

G1 n1 3786 1702 

N1 11627 15689 

G2 n2 1895 1473 

N2 11627 15689 

G3 n3 1674 2360 

N3 11627 15689 

G4 n4 1567 3945 

N4 11627 15689 

G5 n5 1344 2429 

N5 11627 15689 

G6 n6 2150 1476 

N6 11627 15689 

G7 n7 1401 1067 

N7 11627 15689 

AOS Total, n 13817 14452 

 Total N 81389 109823 

 

http://www.surveysystem.com/sscalc.htm
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is used as it produces the largest sample size. The larger the sample size, the more sure we can be, that 

their answers truly reflect the whole data. Thus, we consider p=0.50 so that the sample size is the  

maximum and q=1-p=.50 (50%). By equation (6), for dataset IVa, we obtain, n=13816 for the RH 

class with data size of 81389 and n=14451 for the RF class with the data size of 109823. For dataset 

IVb, we have n=14213 for the LH class with the size of 97430 and n=14466 for the RF class with the 

size of 110652. 

 The sizes of the Opt.S (ni) for each group of every MI class in every subject for dataset IVa 

and IVb are calculated by equation (5) as presented in Tables 1 and 2, respectively. As the number of  

data points in each of the five subjects of dataset IVa is same, the calculated sample sizes for each 

group of every class in Table 1 are applicable for every subject. As shown in both tables, the sample 

sizes are not equal in every group in a class, due to different variability of the observations in different  

groups. Using the obtained sample size of each group (displayed in Tables 1 and 2), we select sample 

from every group of each class in both datasets. As mentioned before, a selected sample from a group 

is called Opt.S and all Opt.S in a class for a subject are integrated together denoted as AOS set of that 

class. For example, as shown in Table1, for the RH class of dataset IVa, we obtain seven Opt.S for 

each subject with the sizes of 3786, 1895, 1674, 1567, 1344, 2150, 1401 (e.g. n1=3786, n2=1895, 

n3=1674, n4=1567,n5=1344, n6=2150 and n7=1401),  while they are 1702, 1473, 2360, 3945, 2429, 

1476 and 1067 for the RF class. Thus the AOS set for the RH class and the RF class in every subject  

 

               Table 2: Calculated sample size by the optimum allocation approach for one subject for dataset IVb   

Groups Sizes Obtained sizes of the Opt.S  in each of the seven groups  of 

every two class 

LH RF 

G1 n1 1219 1506 

N1 9743 11065 

G2 n2 1052 1312 

N2 9743 11065 

G3 n3 2445 924 

N3 9743 11065 

G4 n4 1024 2141 

N4 9743 11065 

G5 n5 1031 1473 

N5 9743 11065 

G6 n6 1922 1705 

N6 9743 11065 

G7 n7 1291 2218 

N7 9743 11065 

G8 n8 1625 869 

N8 9743 11065 

G9 n9 1922 949 

N9 9743 11065 

G10 n10 1291 1371 

N10 9743 11065 

AOS Total, n 14822 14468 

 Total N 97430 110652 
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of dataset IVa consists of 13817 and 14452 observations, respectively as displayed in Table1. Again, 

for dataset IVb, it can be seen in Table 2 that the size of the AOS set for the LH class and the RF class  

are 14822 and 14468, respectively. Then these AOS sets are used to extract representative 

characteristics. Note that in both datasets, the dimension of each AOS set for every subject is 118. 

 

3.2.3. Statistical feature extraction 

Choosing good discriminating features is the key to any successful pattern recognition system. It is 

usually hard for a BCI system to extract a suitable feature set which distils the required inter-class 

discrimination information in a manner that is robust to various contaminants and distortions. This 

study considers eleven statistical features: mean, median, mode, standard deviation, maximum, 

minimum, first quartile (Q1), third quartile (Q3) (75
th
 percentile), inter-quartile range (IQR), skewness 

and kurtosis. These features are calculated from each AOS set of every class to achieve representative 

characteristics that ideally contain all important information of the original signal patterns. The 

reasons of considering those features are described here. Mean corresponds to the centre of a set of 

values while median is the middle most observation. Mode is the value in the data set that occurs most 

often.  In a tabular form, the mode is the value with the highest frequency. Mean and median are the 

measures irrespective of data are discrete or continuous. However, the mode is most suitable for 

discrete data but is tricky for continuous case. The mode for a continuous probability distribution is 

defined as the peak of its histogram or density function. Mean, median and mode are the most used 

features that can describe almost all distributions with a reasonable degree of accuracy [22, 28, and 

29] and provide a fairly good idea about the nature of the data. Standard deviation gives information 

about the spread of data on how close the entire set of data is to the average value in the distribution. 

Maximum and minimum values are used to describe the range of observations in the distribution.  Q1 

and Q3, measure how the data is distributed in the two sides of the median. IQR is difference between 

Q3 and Q1 that is used in measuring the spread of a data set that excludes most outliers. Skewness 

describes the shape of a distribution that characterizes the degree of asymmetry of a distribution 

around its mean [30]. Kurtosis measures of whether the data are peaked or flat relative to a normal 

distribution.  

In this step, we calculate a feature sets of eleven features from each AOS set in each class 

from a subject in both datasets. From every AOS set of each MI class, we acquire a feature vector set 

of size 118 with11 dimensions. Thus we obtain a vector set of size 236 with 11 dimensions for two-

class MI data of every subject in datasets, IVa and IVb. In each subject, the obtained feature vector set 

is divided into a training set and a testing set using the 10-fold cross validation approach as discussed 

in Section 3.4. The training set is applied to train a classifier and the testing vectors are used to verify 

the accuracy and the effectiveness of the classifiers for discriminating MI tasks. In our experiments, 

the proposed method is trained on one single subject in the both datasets, separately, as the MI based 
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EEG signals are naturally highly subject-specific depending on physical and mental tasks. In this 

research we present all experimental results from the testing set. 

 

3.3. Detection  

This study employs Naive Bayes (NB) classifier to detect two-class MI tasks for the application of 

BCI systems  as it provides a flexible way for dealing with any number of attributes or classes and 

fastest learning algorithm that examines all its training input. The NB [16, 17, 31, 32] is a 

straightforward and frequently used probabilistic classifier based on applying Bayes' theorem with 

strong (naive) independence assumptions. The NB classifier assumes that the presence (or absence) of 

a particular feature of a class is unrelated to the presence (or absence) of any other feature. Depending 

on the precise nature of the probability model, the NB classifier can be trained very efficiently in a 

supervised learning setting. In practical applications, parameter estimation for naive Bayes models 

uses the method of maximum likelihood. In this classifier, each class with highest post-probability is 

addressed as the resulting class.   

Suppose, X={X1, X2, X3,.....,Xn} is a feature vector set that contains Ck (k=1,2,..m) classes data 

to be classified into. Each class has a probability P(Ck) that represents the prior probability of 

detecting a feature into Ck and the values of P(Ck) can be estimated from the training dataset. For the n 

feature values of X, the goal of classification is clearly to find the conditional probability P(Ck| x1, x2, 

x3,.....,xn). By Bayes’s rule, this probability is equivalent to 

P(Ck| X1, X2, X3,.....,Xn)=
 )()(

)()(

kn321k

kn321k

C|X,.....,X ,X ,XPCP

C|X,.....,X ,X ,XPCP
       (7) 

Using the chain rule for the reaped application of conditional probability, we have, 

P( n321k X,.....,X ,X ,X,C )=P(Ck).P(X1, X2, X3,.....,Xn|Ck) 

=P(Ck).P(X1| Ck).P(X2|Ck,X1).P(X3|Ck,X1,X2)….P(Xn|Ck,X1,X2,…Xn-1)    (8) 

For the joint probability and for the independent assumption of Naïve Bayes theorem, we get 

P( n321k X,.....,X ,X ,X,C )=P(Ck).P(X1| Ck).P(X2|Ck).P(X3|Ck)….P(Xn|Ck)= P(Ck)


n

i
ki CXP

1

)|(   (9) 

Thus from equation (7) we have,  

P(Ck| X1, X2, X3,.....,Xn)=

 



 



k

j

n

i
jij

n

i
kik

CXP )P(C

CXP )P(C

1 1

1

)|(

)|(

               (10) 

Equation (10) is the fundamental equation of the NB classifier.  If we are interested only in the most 

probable value of Ck, then we have the NB classification rule  

http://www.wikipedia.org/wiki/Bayes%27_theorem
http://www.wikipedia.org/wiki/Statistical_independence
http://www.wikipedia.org/wiki/Supervised_learning
http://www.wikipedia.org/wiki/Maximum_likelihood
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which simplifies to the following because the denominator does not depend on Ck 

Ck 



n

i
kik

C
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k

1

)|()(maxarg         (12) 

Thus the NB classifier combines this model with a decision rule. The decision rule for the NB 

classifier is defined as below: 





n

i
kik

C
n CXPCpXXXclassify

k
1

,2,1 )|()()....,( maxarg       (13) 

In this wok, we use the obtained feature vector set as the input in equation (13). In the training 

stage, P(Xi|Ck) is estimated with respect to the training data. In the testing stage, based on the 

posterior probability P(Ck|Xi), a decision whether a test sample belongs to a class Ck is made. For 

dataset IVa, Ck (k=1, 2) is treated as RH =-1 and RF =+1 and for the dataset IVb, Ck (k=1, 2) is 

considered as LH =-1 and RF =+1. Thus in this research, we achieve the detection results of each fold 

for each subject from the both datasets.  

 

3.4. Performance evaluation 

This study uses 10-fold cross-validation [22, 23, 33] process to assess the performance of the 

proposed approach. In 10-fold cross-validation procedure, a data set is partitioned into 10 mutually 

exclusive subsets (folds) of approximately equal size and the method is repeated 10 times. Each time, 

one of the folds is used as a test set and the other nine folds are put together to form a training set. In 

this research, the stability of the performance of the proposed method is assessed based on different 

statistical measures, such as accuracy, true positive rate or sensitivity and true negative rate or 

specificity as described in equations (14), (15) and (16) [34, 35, 36]. These statistical measures are 

calculated from each of the 10 folds. The overall performance of the proposed method is computed 

averaging the accuracy values across all 10 trials. 

Accuracy =
FPFNTNTP

TNTP




         (14) 

Overall performance= 


10

1k

kaccuracy
10

1
where accuracy

k 
is the accuracy of k

th
 fold (k=1,2,…..10). 

True positive rate (TPR)=Sensitivity=
FNTP

TP


        (15) 

True negative rate (TNR)=Specificity=
FPTN

TN


       (16) 

True positive (T P): patterns correctly predicted as pertaining to the positive class 
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True negative (TN): patterns correctly predicted as belonging to the negative class 

False positive (FP): patterns predicted as positive which come from negative class  

False negative (FN): patterns predicted as negative whose true class is positive 

 In this research, for every subject of dataset IVa, we consider right hand (RH) class as 

positive class and right foot (RF) class as negative class. In dataset IVb, we consider left hand (LH) as 

positive class and right foot (RF) as negative class.  

 

4. Experiments, results and discussions 

This section presents experimental outcomes of the proposed optimum allocation based NB approach 

for two datasets:  IVa and IVb of BCI Competition III and also provides a comparison of the present 

method with five recent reported methods for dataset IVa. As we did not find any research reports for 

the dataset IVb in the literature, we could not compare the experimental results with other methods. In 

this research, the experiments of the proposed method are performed on one single subject in the both 

datasets, separately, as the MI based EEG signals are naturally highly subject-specific depending on 

physical and mental tasks. All of the experimental works of this research are executed in MATLAB 

(version 7.14, R2012a). In this paper, all experimental results are presented based on the testing set. 

 

4.1. Results for BCI III: Dataset IVa  

Table 3 presents the accuracy for each of the 10 folds and the overall performances over the ten folds 

for dataset IVa. The overall performances for each subject are reported in terms of mean ± standard 

deviation (SD) of the accuracy over the ten folds. As shown in Table 3, most of the accuracy values 

for each of folds are close to 100. The overall performances for subjects, aa, al, av, aw and ay are 

97.92%, 97.88%, 98.26%, 94.47% and 93.26%, respectively and the average of the performances for 

all subject is 96.36%. Table 3 also reports that there is no significant variation of the accuracies 

among the different folds which indicates the stability of the proposed method. 

          

       Table 3: Experimental outcomes for the proposed approach for dataset IVa of BCI Competition III 

Subject Accuracy for each of the 10 folds (%) Overall 

performance 1 2 3 4 5 6 7 8 9 10 

aa 83.33 100 100 100 95.83 100 100 100 100 100 97.92±5.29 

al 95.83 95.83 100 100 100 95.83 95.83 100 95.45 100 97.88±2.24 

av 95.83 100 95.83 100 100 100 100 100 100 90.91 98.26 ±3.11 

aw 95.83 95.83 100 83.33 100 91.67 100 91.67 95.45 90.91 94.47 ±5.26 

ay 79.17 95.83 95.83 87.5 100 100 91.67 91.67 95.45 95.45 93.26 ±6.24 

Total                                                                                                                                            96.36±2.32 

 

 Fig.2 presents the pattern of the true positive rate (TPR) for each subject of dataset IVa. Here 

the TPR means the correctly detection rate for the RH class for this dataset. This figure shows the 

individual TPR against each of the 10-folds for the five subjects, aa, al, av, aw and ay. As can be seen 



15 

 

in Fig.2, the most of the values of the TPR for the proposed approach is close to 100 for each of the 

folds of each subject and the variations of the TPR among the 10-folds for each subject is not 

substantial that indicate the proposed approach is fairly stable.  

 

 

Fig.2. Patterns of the true positive rate (TPR) for each subject of dataset IVa 

 

The contour of the true negative rate (TNR) for each of the five subjects is provided in Fig.3. 

For dataset IVa, the TNR refers to the correctly detection rate for the RF class. This figure displays 

the separate TNR for each of the ten folds of each of the five subjects. From Fig. 3, it is observed that 

the TNR in most of the folds of each subject is approximately 100% and there is no  

 

 

Fig.3. Patterns of the true negative rate (TNR) for each subject of dataset IVa 

 

significant variation of the TNR among the ten folds of each subject. This indicates that the proposed 

method is reliable and robust. Along with Table 3, Fig.2 and Fig.3, it can be concluded that, although 

there is bit variability in performance over the subjects, generally the proposed approach provides 

higher performance for all of the subjects and it is consistent and fairly stable.  
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4.2. Results for BCI III: Dataset IVb 

The experimental outcomes for the proposed optimum allocation based NB approach for dataset IVb 

are presented in Table. 4.  As mentioned in Section 3.1, this dataset holds data for one male subject. 

This table displays individual accuracy rate of each of the ten folds of that subject and the overall 

performance of the proposed method in terms of mean ± standard deviation of the accuracy over ten  

 

 Table 4. Experimental outcomes for the proposed approach for dataset IVb of BCI Competition III  

Subject Accuracy for each of the 10 folds (%) Overall  

performance 1 2 3 4 5 6 7 8 9 10 

One healthy 

male 

79.17 83.33 91.67 91.67 95.83 95.83 100 95.83 100 86.36 91.97±7.02 

 

folds. As shown in the table, the method provides higher accuracy values for most of the folds and the 

variation among the different folds is not significant. The overall performance for this dataset is 

91.97% and the standard deviation is 7.02%.  

Fig.4 shows the pattern of TPR of each of the ten folds for a healthy male subject of dataset 

IVb. Here the TPR means the correctly detection rate for the LH class of this dataset. It can be seen 

from this figure that most of the values of the TPR lies in approximately 95 to 100.  There is no 

significant difference of the TPR values among the ten folds that indicate the consistency of the 

proposed method. 

 

 

Fig. 4. Pattern of the true positive rate (TPR) for dataset IVb 

 

The shape of the TNR of each of the ten folds for one healthy subject is illustrated in Fig.5. 

Here the TNR refers the correctly detection rate of the RF class for the dataset IVb. This figure 

demonstrates that the most of the values of the TNR is close to 100 and the variation among the TNR 

values of the ten folds is not substantial. This proves the reliability of the proposed approach. Thus, it 

is obvious from Table 4, Fig.4 and Fig.5 for dataset IVb that the proposed algorithm produces a good 

performance both individually and overall. 
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Fig.5. Pattern of the true negative rate (TNR) for dataset IVb 

 

4.3. Comparison to previous work 

To further examine the efficiency, this section provides a report for comparison between the proposed 

approach and five recently developed methods for dataset IVa. These five methods are already 

discussed in Section 2. As mentioned before, we cannot present the comparison results for dataset IVb 

as there were no reported research results available in literature. Table 5 presents the comparison 

results of the performance for the proposed method and the five existing algorithms for dataset IVa. 

This table shows the classification performance for each of the five subjects as well as the overall 

mean and the SD of the performances for all subjects. As shown in Table 5, the proposed method 

yields the most excellent performance of 97.92% and 93.26% for subjects, aa and ay, respectively. 

The performance of the proposed method for subject av is also very high (98.26%) that close to the 

highest performance (98.75%). The CC based LS-SVM [22] and Z-LDA method [21] provides better 

result for subjects al and aw, respectively. The highest mean for all five subjects is obtained by the 

proposed approach which is 96.36% and the SD value is the lowest (2.32%) as well. Therefore, it can 

be stated that generally the proposed approach significantly outperforms the five existing methods. 

 

      Table 5.  A comparison report over five most recent reported methods for dataset IVa 

Authors  Methods Detection performance (%) 

aa al av aw ay Mean SD 

Proposed approach OA & NB based approach  97.92 97.88 98.26 94.47 93.26 96.36 2.32 

Suk and Lee [20] BSSFO 79.46 94.64 57.65 91.96 53.57 75.46 19.06 

Zhang et al. [21] Z-LDA 77.7 100.0 68.4 99.60 59.9 81.1 18.2 

Siuly and Li [22] CC based LS-SVM 97.88 99.17 98.75 93.43 89.36 95.72 4.35 

Siuly et al. [23] CT based LS-SVM 92.63 84.99 90.77 86.50 86.73 88.32 3.22 

Lu et al. [24] R-CSP with aggregation 76.80 98.20 74.50 92.90 77.00 83.90 10.86 

 

Further looking at the performance comparison in Table 5, it is noted that  the proposed 

algorithm is ranked first in terms of the overall performance (96.36%), while the CC based LS-SVM 

method [22] comes second position (95.72%) and the CT based LS-SVM algorithm [23] is third 

(88.32%). The Bayesian spatio-spectral filter optimization algorithm [20] is the last (75.46%). The 
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results indicate that the proposed method achieves up to 20.90% improvements overall the five 

existing methods for dataset IVa of BCI competition III.   

 

5. Conclusions 

Although MI activities has emerged as the most useful for real-life BCIs, there are still some problems 

that make it a challenge to detect EEG signals of MI activities for the application of BCIs. In this 

paper, we propose an automatic approach that interprets how EEG signals are organised to detect 

different categories of MI tasks. Our proposed approach develops an optimum allocation based 

algorithm to determine representatives sample points from every group of the original data 

considering the minimum variation within each group. Then eleven statistical features are extracted 

from a group of samples points for a particular MI activity. After that, a probabilistic model, NB 

classifier is employed to detect different MI tasks based on extracted features. In our experiments on 

two public databases, IVa and IVb of BCI Competition III, the proposed method outperforms the 

state-of-the-art methods in terms of overall detection performance. The adoption of the optimum 

allocation technique with the NB resulted in an improvement of performance up to 20.90% compared 

to other five reported methods. The performance also show that two-class MI based EEG signals can 

be reliably identified using the proposed approach and this may be a promising avenue for robust 

EEG based BCI applications. 
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