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Abstract. Generalizations of Kato and Furuta inequalities for power
series of bounded linear operators in Hilbert spaces are given. Appli-
cations for normal operators and some functions of interest such as the
exponential, hyperbolic and trigonometric functions are provided as well.

1 Introduction

In the following we denote by B (H) the Banach algebra of all bounded linear
operators on a complex Hilbert space (H; 〈·, ·〉) .

If P is a positive selfadjoint operator on H, i.e. 〈Px, x〉 ≥ 0 for any x ∈ H,
then the following inequality is a generalization of the Schwarz inequality in
H

|〈Px, y〉|2 ≤ 〈Px, x〉 〈Py, y〉 , (1)

for any x, y ∈ H.
The following inequality concerning the norm of a positive operator is of

interest as well, see [13, p. 221].
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Let P be a positive selfadjoint operator on H. Then

‖Px‖2 ≤ ‖P‖ 〈Px, x〉 (2)

for any x ∈ H.
The “square root” of a positive selfadjoint operator on H can be defined as

follows, see for instance [13, p. 240]: If the operator A ∈ B (H) is selfadjoint
and positive, then there exists a unique positive selfadjoint operator B :=

√
A ∈

B (H) such that B2 = A. If A is invertible, then so is B.
If A ∈ B (H) , then the operator A∗A is selfadjoint and positive. Define the

“absolute value” operator by |A| :=
√
A∗A.

In 1952, Kato [14] proved the following celebrated generalization of Schwarz
inequality for any bounded linear operator T on H:

|〈Tx, y〉|2 ≤
〈
|T |2α x, x

〉〈
|T∗|2(1−α) y, y

〉
(K)

for any x, y ∈ H and α ∈ [0, 1] .
In order to generalize this result, in 1994 Furuta [12] obtained the following

result: ∣∣∣〈T |T |α+β−1 x, y〉∣∣∣2 ≤ 〈|T |2α x, x〉〈|T∗|2β y, y〉 (F)

for any x, y ∈ H and α,β ∈ [0, 1] with α+ β ≥ 1.
If one analyses the proof from [12], that one realizes that the condition α,β
∈ [0, 1] is taken only to fit with the result from the Heinz-Kato inequality

|〈Tx, y〉| ≤ ‖Aαx‖
∥∥∥B1−αy∥∥∥ (HK)

for any x, y ∈ H and α ∈ [0, 1] where A and B are positive operators such that
‖Tx‖ ≤ ‖Ax‖ and ‖T∗y‖ ≤ ‖By‖ for all x, y ∈ H.

Therefore, one can state the more general result:

Theorem 1 (Furuta Inequality, 1994, [12]) Let T ∈ B (H) and α,β ≥ 0
with α+ β ≥ 1. Then for any x, y ∈ H we have the inequality (F).

If we take β = α, then we get∣∣∣〈T |T |2α−1 x, y〉∣∣∣2 ≤ 〈|T |2α x, x〉〈|T∗|2α y, y〉 (3)

for any x, y ∈ H and α ≥ 1
2 . In particular, for α = 1 we get

|〈T |T | x, y〉|2 ≤
〈
|T |2 x, x

〉〈
|T∗|2 y, y

〉
(4)
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for any x, y ∈ H.
If we take T = N a normal operator, i.e., we recall that NN∗ = N∗N, then

we get from (F) the following inequality for normal operators∣∣∣〈N |N|α+β−1 x, y
〉∣∣∣2 ≤ 〈|N|2α x, x

〉〈
|N|2β y, y

〉
(5)

for any x, y ∈ H and α,β ≥ 0 with α+ β ≥ 1.
This implies the inequalities∣∣∣〈N |N|2α−1 x, y

〉∣∣∣2 ≤ 〈|N|2α x, x
〉〈

|N|2α y, y
〉

(6)

for any x, y ∈ H and α ≥ 1
2 and, in particular,

|〈N |N| x, y〉|2 ≤
〈
|N|2 x, x

〉〈
|N|2 y, y

〉
(7)

for any x, y ∈ H.
Making y = x in (6) produces∣∣∣〈N |N|2α−1 x, x

〉∣∣∣ ≤ 〈|N|2α x, x
〉

for any x ∈ H and α ≥ 1
2 and, in particular,

|〈N |N| x, x〉| ≤
〈
|N|2 x, x

〉
for any x ∈ H.

If we take β = 1− α with α ∈ [0, 1] in (5), then we get

|〈Nx, y〉|2 ≤
〈
|N|2α x, x

〉〈
|N|2(1−α) y, y

〉
(8)

for any x, y ∈ H.
We can state the following corollary of Furuta’s inequality for the numerical

radius w of an operator V ∈ B (H), namely w (V) = sup‖x‖=1 |〈Vx, x〉|, which
satisfies the following basic inequalities

1

2
‖V‖ ≤ w (V) ≤ ‖V‖ .

Corollary 1 Let T ∈ B (H) and α,β ≥ 0 with α+ β ≥ 1. Then we have

w
(
T |T |α+β−1

)
≤ 1
2

∥∥∥|T |2α + |T∗|2β
∥∥∥ . (9)
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In particular, we also have

w
(
T |T |2α−1

)
≤ 1
2

∥∥∥|T |2α + |T∗|2α
∥∥∥ , (10)

for any α ≥ 1
2 and, as a special case,

w (T |T |) ≤ 1
2

∥∥∥|T |2 + |T∗|2
∥∥∥ . (11)

Proof. We have from (F) for any x ∈ H that∣∣∣〈T |T |α+β−1 x, x〉∣∣∣ ≤ 〈
|T |2α x, x

〉1/2 〈
|T∗|2β x, x

〉1/2
(12)

≤ 1

2

〈[
|T |2α + |T∗|2β

]
x, x
〉

where α,β ≥ 0 with α+ β ≥ 1.
Utilising the inequality in (12) and taking the supremum over x ∈ H, ‖x‖ = 1

we get

w
(
T |T |α+β−1

)
= sup

‖x‖=1

∣∣∣〈T |T |α+β−1 x, x〉∣∣∣
≤ 1

2
sup
‖x‖=1

〈[
|T |2α + |T∗|2β

]
x, x
〉

=
1

2

∥∥∥|T |2α + |T∗|2β
∥∥∥ .

�

For various interesting generalizations, extension of Kato and Furuta in-
equalities, see the papers [3]-[12], [17]-[21] and [23].

Motivated by the above results, we establish in this paper some generaliza-
tions of Kato and Furuta inequalities for functions of operators that can be
expresses as power series with real coefficients. Applications for some functions
of interest such as the exponential, hyperbolic and trigonometric functions are
provided as well.

2 Functional inequalities

Now, by the help of power series f (z) =
∑∞
n=0 anz

n we can naturally construct
another power series which will have as coefficients the absolute values of the
coefficient of the original series, namely, fA (z) :=

∑∞
n=0 |an| z

n. It is obvious
that this new power series will have the same radius of convergence as the
original series. We also notice that if all coefficients an ≥ 0, then fA = f.
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Theorem 2 Let f (z) =
∑∞
n=0 anz

n and be g (z) =
∑∞
n=0 bnz

n be two func-
tions defined by power series with real coefficients and both of them convergent
on the open disk D (0, R) ⊂ C, R > 0. If T is a bounded linear operator on the
Hilbert space H and z, u ∈ C with the property that

|z|2 , |u|2 , ‖T‖2 < R, (13)

then we have the inequality

|〈Tf (z |T |)g (u |T |) x, y〉|2 (14)

≤ fA
(
|z|2
)
gA

(
|u|2
)〈
fA

(
|T |2
)
x, x
〉〈

|T∗|2 gA

(
|T∗|2

)
y, y

〉
for any x, y ∈ H.

Proof. From Furuta’s inequality (F) we have for any natural numbers n ≥ 0
and m ≥ 1 the following power inequality∣∣∣〈T |T |n+m−1 x, y

〉∣∣∣ ≤ 〈|T |2n x, x〉1/2 〈|T∗|2m y, y〉1/2 , (15)

where x, y ∈ H.
If we multiply this inequality with the positive quantities |an| |z|

n and |bm−1|

|u|m−1 , use the triangle inequality and the Cauchy-Bunyakowsky-Schwarz dis-
crete inequality we have successively:∣∣∣∣∣

k∑
n=0

l∑
m=1

anz
nbm−1u

m−1
〈
T |T |n+m−1 x, y

〉∣∣∣∣∣ (16)

≤
k∑
n=0

l∑
m=1

|an| |z|
n |bm−1| |u|

m−1
∣∣∣〈T |T |n+m−1 x, y

〉∣∣∣
≤

k∑
n=0

|an| |z|
n
〈
|T |2n x, x

〉1/2 l∑
m=1

|bm−1| |u|
m−1

〈
|T∗|2m y, y

〉1/2
≤

(
k∑
n=0

|an| |z|
2n

)1/2〈 k∑
n=0

|an| |T |
2n x, x

〉1/2

×

(
l∑

m=1

|bm−1| |u|
2(m−1)

)1/2〈 l∑
m=1

|bm−1| |T
∗|2m y, y

〉1/2
for any x, y ∈ H and k ≥ 0, l ≥ 1.
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Observe also that

k∑
n=0

l∑
m=1

anz
nbm−1u

m−1
〈
T |T |n+m−1 x, y

〉
(17)

=

〈
T

(
k∑
n=0

anz
n |T |n

)(
l∑

m=1

bm−1u
m−1 |T |m−1

)
x, y

〉
for any x, y ∈ H and k ≥ 0, l ≥ 1.

Making use of (16) and (17) we get∣∣∣∣∣
〈
T

(
k∑
n=0

anz
n |T |n

)(
l∑

m=1

bm−1u
m−1 |T |m−1

)
x, y

〉∣∣∣∣∣ (18)

≤

(
k∑
n=0

|an| |z|
2n

)1/2〈 k∑
n=0

|an| |T |
2n x, x

〉1/2

×

(
l∑

m=1

|bm−1| |u|
2(m−1)

)1/2〈
|T∗|2

l∑
m=1

|bm−1| |T
∗|2(m−1) y, y

〉1/2
for any x, y ∈ H and k ≥ 0, l ≥ 1.

Due to the assumption (13) in the theorem, we have that the series
∑∞
n=0 anz

n

|T |n ,
∑∞
m=0 bmu

m |T |m ,
∑∞
n=0 |an| |T |

2n and
∑∞
m=0 |bm| |T

∗|2m are convergent in

B (H) and the series
∑∞
n=0 |an| |z|

2n and
∑∞
m=0 |bm| |u|

2m are convergent in R
and then, by taking the limit over k→ ∞ and l→ ∞ in (18), we deduce the
desired result (14). �

Remark 1 The above inequality (14) can provide various particular instances
of interest.

For instance, if we take g = f in Theorem 2 then we get∣∣∣〈Tf2 (z |T |) x, y〉∣∣∣ (19)

≤ fA
(
|z|2
)〈
fA

(
|T |2
)
x, x
〉1/2 〈

|T∗|2 fA

(
|T∗|2

)
y, y

〉1/2
for any x, y ∈ H.

Also if we take g (z) = 1 in (14), then we get

|〈Tf (z |T |) x, y〉|2 ≤ fA
(
|z|2
)〈
fA

(
|T |2
)
x, x
〉〈

|T∗|2 y, y
〉

(20)

for any x, y ∈ H.
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Corollary 2 With the assumptions of Theorem 2 we have the norm inequality

‖Tf (z |T |)g (u |T |)‖2 (21)

≤ fA
(
|z|2
)
gA

(
|u|2
)∥∥∥fA (|T |2)∥∥∥∥∥∥|T∗|2 gA (|T∗|2)∥∥∥

and the numerical radius inequality

w (Tf (z |T |)g (u |T |)) (22)

≤ 1
2

[
fA

(
|z|2
)
gA

(
|u|2
)]1/2 ∥∥∥fA (|T |2)+ |T∗|2 gA

(
|T∗|2

)∥∥∥ .
Proof. The inequality (21) follows from (14) by taking the supremum over
x, y ∈ H with ‖x‖ = ‖y‖ = 1.

From (14) we also have the inequality

|〈Tf (z |T |)g (u |T |) x, x〉|

≤
[
fA

(
|z|2
)
gA

(
|u|2
)]1/2 〈

fA

(
|T |2
)
x, x
〉1/2 〈

|T∗|2 gA

(
|T∗|2

)
x, x
〉1/2

≤ 1
2

[
fA

(
|z|2
)
gA

(
|u|2
)]1/2 〈[

fA

(
|T |2
)
+ |T∗|2 gA

(
|T∗|2

)]
x, x
〉1/2

for any x ∈ H, which, by taking the supremum over ‖x‖ = 1 produces the
desired result (22). �

The following result also holds:

Theorem 3 Let f (z) =
∑∞
n=0 anz

n be a function defined by power series with
real coefficients and convergent on the open disk D (0, R) ⊂ C, R > 0. If T is a
bounded linear operator on the Hilbert space H with the property that ‖T‖2 < R,
then we have the inequality∣∣∣〈T |T | f(|T |2) x, y〉∣∣∣2 ≤ 〈|T |2 fA (|T |2) x, x〉〈|T∗|2 fA (|T∗|2)y, y〉 (23)

for any x, y ∈ H.

Proof. From Furuta’s inequality (F) we have for any natural numbers n ≥ 1
the power inequality∣∣∣〈T |T |2n−1 x, y〉∣∣∣ ≤ 〈|T |2n x, x〉1/2 〈|T∗|2n y, y〉1/2 (24)

where x, y ∈ H.
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If we multiply this inequality with the positive quantities |an−1| , use the
triangle inequality and the Cauchy-Bunyakowsky-Schwarz discrete inequality
we have successively∣∣∣∣∣

〈
k∑
n=1

an−1T |T |
2n−1 x, y

〉∣∣∣∣∣ (25)

≤
k∑
n=1

|an−1|
∣∣∣〈T |T |2n−1 x, y〉∣∣∣

≤
k∑
n=1

|an−1|
〈
|T |2n x, x

〉1/2 〈
|T∗|2n y, y

〉1/2
≤

〈
k∑
n=1

|an−1| |T |
2n x, x

〉1/2〈 k∑
n=1

|an−1| |T
∗|2n y, y

〉1/2

for any x, y ∈ H and k ≥ 1.
Observe also that

k∑
n=1

an−1T |T |
2n−1 = T |T |

k∑
n=1

an−1 |T |
2(n−1) ,

k∑
n=1

|an−1| |T |
2n = |T |2

k∑
n=1

|an−1| |T |
2(n−1)

and
k∑
n=1

|an−1| |T
∗|2n = |T∗|2

k∑
n=1

|an−1| |T
∗|2(n−1)

for any k ≥ 1.
Therefore, by (25) we have the inequality〈

T |T |

k∑
n=1

an−1 |T |
2(n−1) x, y

〉2
(26)

≤

〈
|T |2

k∑
n=1

|an−1| |T |
2(n−1) x, x

〉〈
|T∗|2

k∑
n=1

|an−1| |T
∗|2(n−1) y, y

〉

for any x, y ∈ H and k ≥ 1.
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Due to the assumption ‖T‖2 < R, we have that the series
∑∞
n=0 an |T |

2n ,∑∞
n=0 |an| |T |

2n and
∑∞
n=0 |an| |T

∗|2n are convergent in B (H) and taking the
limit over k→ ∞ in (26) we deduce the desired result from (23). �

Corollary 3 With the assumptions of Theorem 3 we have the norm inequality∥∥∥T |T | f(|T |2)∥∥∥2 ≤ ∥∥∥|T |2 fA (|T |2)∥∥∥∥∥∥|T∗|2 fA (|T∗|2)∥∥∥
and the numerical radius inequality

w
(
T |T | f

(
|T |2
))
≤ 1
2

∥∥∥|T |2 fA (|T |2)+ |T∗|2 fA

(
|T∗|2

)∥∥∥ .
The following result for functions of normal operators holds.

Theorem 4 Let f (z) =
∑∞
n=0 anz

n be a function defined by power series with
real coefficients and convergent on the open disk D (0, R) ⊂ C, R > 0. If N is
a normal operator on the Hilbert space H and α,β ≥ 0 with α + β ≥ 1 with
the property that ‖N‖2α , ‖N‖2β < R, then we have the inequality∣∣∣〈f(N |N|(α+β−1)

)
x, y
〉∣∣∣2 ≤ 〈fA (|N|2α

)
x, x
〉〈
fA

(
|N|2β

)
y, y

〉
(27)

for any x, y ∈ H.

Proof. Utilising Furuta’s inequality written for Nn we have∣∣∣〈Nn |Nn|α+β−1 x, y〉∣∣∣2 ≤ 〈|Nn|2α x, x〉〈|(Nn)∗|2β y, y〉 (28)

for any x, y ∈ H.
Since N is normal, then

|Nn|2 = (Nn)∗Nn = N∗...N∗N...N

= N∗...NN∗...N = ...

= (N∗N) ... (N∗N) = |N|2n

for any natural number n, and, similarly,

|(Nn)∗|
2
= |(N∗)n|

2
= |N∗|2n = |N|2n

for any n ∈ N.
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These imply that |Nn|2α = |N|2αn, |(Nn)∗|
2β

= |N|2βn and |Nn|α+β−1 =

|N|(α+β−1)n for any α,β ≥ 0 and for any n ∈ N.
Utilising the spectral representation for Borel functions of normal operators

on Hilbert spaces, see for instance [1, p. 67], we have for any α,β ≥ 0 and for
any n ∈ N that

Nn |N|(α+β−1)n =

∫
σ(N)

zn |z|(α+β−1)n dP (z)

=

∫
σ(N)

[
z |z|(α+β−1)

]n
dP (z)

=
[
N |N|(α+β−1)

]n
,

where P is the spectral measure associated to the operator N and σ (N) is its
spectrum.

Therefore, the inequality (28) can be written as∣∣∣〈[N |N|(α+β−1)
]n
x, y
〉∣∣∣ ≤ 〈[|N|2α

]n
x, x
〉1/2 〈[

|N|2β
]n
y, y

〉1/2
(29)

for any x, y ∈ H and for any n ∈ N.
If we multiply the inequality (29) by |an| ≥ 0, sum over n from 0 to k ≥

1 and utilize the Cauchy-Bunyakowsky-Schwarz discrete inequality, we have
successively∣∣∣∣∣

〈
k∑
n=0

an

[
N |N|(α+β−1)

]n
x, y

〉∣∣∣∣∣ (30)

≤
k∑
n=0

|an|
∣∣∣〈[N |N|(α+β−1)

]n
x, y
〉∣∣∣

≤
k∑
n=0

|an|
〈[

|N|2α
]n
x, x
〉1/2 〈[

|N|2β
]n
y, y

〉1/2

≤

〈
k∑
n=0

|an|
[
|N|2α

]n
x, x

〉1/2〈 k∑
n=0

|an|
[
|N|2β

]n
y, y

〉1/2
for any x, y ∈ H and for any k ≥ 1.

Since ‖N‖2α , ‖N‖2β < R then
∥∥∥N |N|(α+β−1)

∥∥∥ < R and the series

∞∑
n=0

|an|
[
|N|2α

]n
,

∞∑
n=0

|an|
[
|N|2β

]n
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and ∞∑
n=0

an

[
N |N|(α+β−1)

]n
are convergent in the Banach algebra B (H) .

Taking the limit over k → ∞ in the inequality (30) we deduce the desired
result from (27). �

Corollary 4 With the assumptions of Theorem 4, we have the inequality

∥∥∥f(N |N|(α+β−1)
)∥∥∥2 ≤ ∥∥∥fA (|N|2α

)∥∥∥∥∥∥fA (|N|2β
)∥∥∥ . (31)

Remark 2 If we take β = 1 − α with α ∈ [0, 1] in (27), then we get the
following generalization of Kato’s inequality for normal operators (8)

|〈f (N) x, y〉|2 ≤
〈
fA

(
|N|2α

)
x, x
〉〈
fA

(
|N|2(1−α)

)
y, y

〉
(32)

where x, y ∈ H and ‖N‖2α , ‖N‖2(1−α) < R.

3 Applications

As some natural examples that are useful for applications, we can point out
that, if

f (z) =

∞∑
n=1

(−1)n

n!
zn = ln

1

1+ z
, z ∈ D (0, 1) ; (33)

g (z) =

∞∑
n=0

(−1)n

(2n) !
z2n = cos z, z ∈ C;

h (z) =

∞∑
n=0

(−1)n

(2n+ 1) !
z2n+1 = sin z, z ∈ C;

l (z) =

∞∑
n=0

(−1)n zn =
1

1+ z
, z ∈ D (0, 1) ;
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then the corresponding functions constructed by the use of the absolute values
of the coefficients are

fA (z) =

∞∑
n=1

1

n!
zn = ln

1

1− z
, z ∈ D (0, 1) ; (34)

gA (z) =

∞∑
n=0

1

(2n) !
z2n = cosh z, z ∈ C;

hA (z) =

∞∑
n=0

1

(2n+ 1) !
z2n+1 = sinh z, z ∈ C;

lA (z) =

∞∑
n=0

zn =
1

1− z
, z ∈ D (0, 1) .

Other important examples of functions as power series representations with
nonnegative coefficients are:

exp (z) =

∞∑
n=0

1

n!
zn z ∈ C, (35)

1

2
ln

(
1+ z

1− z

)
=

∞∑
n=1

1

2n− 1
z2n−1, z ∈ D (0, 1) ;

sin−1 (z) =

∞∑
n=0

Γ
(
n+ 1

2

)
√
π (2n+ 1)n!

z2n+1, z ∈ D (0, 1) ;

tanh−1 (z) =

∞∑
n=1

1

2n− 1
z2n−1, z ∈ D (0, 1)

2F1 (α,β, γ, z) =

∞∑
n=0

Γ (n+ α) Γ (n+ β) Γ (γ)

n!Γ (α) Γ (β) Γ (n+ γ)
zn, α, β, γ > 0,

z ∈ D (0, 1) ;

where Γ is the Gamma function.

Example 1 Let x, y ∈ H.
a) If we take f (z) = sin z and g (z) = cos z in (14), then we get

|〈T sin (z |T |) cos (u |T |) x, y〉|2 (36)

≤ sinh
(
|z|2
)

cosh
(
|u|2
)

×
〈

sinh
(
|T |2
)
x, x
〉〈

|T∗|2 cosh
(
|T∗|2

)
y, y

〉
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for any z ∈ C and T ∈ B (H) .
b) If we take f (z) = ln 1

1+z and g (z) = ln 1
1−z in (14), then we get∣∣∣〈T ln (1H + z |T |)−1 ln (1H − z |T |)−1 x, y

〉∣∣∣2 (37)

≤

(
ln

1

1− |z|2

)2
×
〈

ln
(
1H − |T |2

)−1
x, x

〉〈
|T∗|2 ln

(
1H − |T∗|2

)−1
y, y

〉
for any z ∈ C and T ∈ B (H) with |z| < 1 and ‖T‖ < 1.

c) If we take f (z) = exp(z) and g (z) = exp (z) in (14), then we get

|〈T exp [(z+ u) |T |] x, y〉|2 (38)

≤ exp
(
|z|2
)

exp
(
|u|2
)

×
〈

exp
(
|T |2
)
x, x
〉〈

|T∗|2 exp
(
|T∗|2

)
y, y

〉
for any z, u ∈ C and T ∈ B (H) .

d) By the inequality (20) we have∣∣∣〈T sin−1 (z |T |) x, y
〉∣∣∣2 ≤ sin−1

(
|z|2
)〈

sin−1
(
|T |2
)
x, x
〉〈

|T∗|2 y, y
〉

(39)

and ∣∣∣〈T tanh−1 (z |T |) x, y
〉∣∣∣2 (40)

≤ tanh−1
(
|z|2
)〈

tanh−1
(
|T |2
)
x, x
〉〈

|T∗|2 y, y
〉

for any z ∈ C and T ∈ B (H) with |z| < 1 and ‖T‖ < 1.

Example 2 Let x, y ∈ H.
a) If we take f (z) = 1

1±z in (23), then we get∣∣∣∣〈T |T |(1H ± |T |2
)−1

x, y

〉∣∣∣∣2 (41)

≤
〈
|T |2

(
1H − |T |2

)−1
x, x

〉〈
|T∗|2

(
1H − |T∗|2

)−1
y, y

〉
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for any T ∈ B (H) with ‖T‖ < 1.
b) If we take f (z) = ln 1

1±z in (23), then we get∣∣∣∣〈T |T | ln(1H ± |T |2
)−1

x, y

〉∣∣∣∣2 (42)

≤
〈
|T |2 ln

(
1H − |T |2

)−1
x, x

〉〈
|T∗|2 ln

(
1H − |T∗|2

)−1
y, y

〉
for any T ∈ B (H) with ‖T‖ < 1.

c) If we take f (z) = exp (z) in (23), then we get∣∣∣〈T |T | exp
(
|T |2
)
x, y
〉∣∣∣2 (43)

≤
〈
|T |2 exp

(
|T |2
)
x, x
〉〈

|T∗|2 exp
(
|T∗|2

)
y, y

〉
for any T ∈ B (H) .

Example 3 Let N be a normal operator on the Hilbert space H, α,β ≥ 0 with
α+ β ≥ 1 and x, y ∈ H.

a) If we take f (z) = 1
1±z in (27), then we get∣∣∣∣〈(1H ±N |N|(α+β−1)

)−1
x, y

〉∣∣∣∣2 (44)

≤
〈(
1H − |N|2α

)−1
x, x

〉〈(
1H − |N|2β

)−1
y, y

〉
provided ‖N‖ < 1.

In particular, we have∣∣∣〈(1H ±N)−1 x, y
〉∣∣∣2 (45)

≤
〈(
1H − |N|2α

)−1
x, x

〉〈(
1H − |N|2(1−α)

)−1
y, y

〉
,

for α ∈ [0, 1] .
b) If we take f (z) = exp (z) in (27), then we get∣∣∣〈exp

(
N |N|(α+β−1)

)
x, y
〉∣∣∣2 ≤ 〈exp

(
|N|2α

)
x, x
〉〈

exp
(
|N|2β

)
y, y

〉
. (46)

As a special case, we have

|〈exp (N) x, y〉|2 ≤
〈

exp
(
|N|2α

)
x, x
〉〈

exp
(
|N|2(1−α)

)
y, y

〉
, (47)

for α ∈ [0, 1] .
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