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Abstract: Classification of alcoholic electroencephalogram (EEG) signals is a challenging job in biomedical 

research for diagnosis and treatment of brain diseases of alcoholic people. The aim of this study is to introduce a 

robust method that can automatically identify alcoholic EEG signals based on time-frequency image information 

as they convey key characteristics of EEG signals. In this paper, we propose a new hybrid method to classify 

automatically the alcoholic and control EEG signals. The proposed scheme is based on Time-Frequency (T-F) 

images, texture image feature extraction and non-negative least squares classifier (NNLS). In T-F analysis, the 

spectrogram of the Short Time Fourier Transform (STFT) is considered. The obtained T-F images are then 

converted into 8-bits gray-scale images. Co-occurrence of the Histograms of Oriented Gradients (CoHOG) and 

Eig(Hess)-CoHOG features are extracted from T-F images. Finally obtained features are fed into Non-negative 

least squares (NNLS) classifier as input for classify alcoholic and control EEG signals. To verify the 

effectiveness of the proposed approach, we replace the NNLS classifier by Artificial Neural Networks (ANN), k-

nearest neighbor (KNN), Linear Discriminant Analysis (LDA) and Support Vector Machine (SVM) classifier 

separately, with the same features. Experimental outcomes along with comparative evaluations with the state-of-

the-art algorithms manifest that the proposed method outperforms competing algorithms. The experimental 

outcomes are promising and it can be anticipated that upon its implementation in clinical practice, the proposed 

scheme will alleviate the onus of the physicians and expedite neurological diseases diagnosis and research.   

 

Key-words: Electroencephalogram, Time-Frequency images; Texture image; Feature extraction; Classification; 

Alcoholism; Non-negative least squares classifier. 

 

1. Introduction  

Psychiatric phenotypes, brain disorders and metal tasks such as alcoholism can be detected by analysis 

and classification EEG signals. Alcoholism causes neurological deficiencies like impairment of decision making, 

learning and memory deficits, and suffering behavioral changes [1, 2] and also cause of some serious accidents 
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during driving or operating machines where alertness and proper judgments are required. Brain weight reduces 

due to excessive alcohol consumption [1, 3, 4]. Permanent alcohol abuse produces hidden damages in the brain 

such as memory weakness and decision making impairments [5]. It has been also reported that after quitting 

alcohol consumption the disorders and weaknesses also remain same [6]. The EEG is the most frequently-used 

technique for studying the functional states of the brain. The EEG produces aperiodic and non-stationary time 

series data, which refers to the recording of the brain's spontaneous electrical activity. Vast amounts of multi-

channel EEG signals are visually analyzed by experts to identify and understand abnormalities within the brain 

and how they propagate. However, the visual inspection of EEG signals is not a satisfactory procedure because 

there are no standard criteria for the assessment and it is time-consuming, error-prone, and subject to fatigue [7-

8]. Therefore, need to develop automatic classification methods which can used to identify alcoholic people and 

it can help the psychiatrists to under brain activity. 

Recently, numerous methods have been proposed for determination of alcoholic EEG signals. The 

variance and event-related potential of EEG signals increases with increases the level [9-10]. The second order 

autoregressive model [11] and Wavelet Transform (WT) [12] based features used for classification of normal 

and alcoholic EEG signals. Principal Component Analysis (PCA) based pre-processing and WT based features 

used for analysis of alcoholic and controls EEG signals [13]. Quantitative such as frequency analysis, absolute 

and relative powers of the four classical bands used for determine alternation in alcoholic patients [14]. 

Correlation dimension used as measures to discrimination of alcohol and normal EEG signals [15]. Chaotic 

measures are used as features to alcoholic from normal EEG signals [16]. The fast Fourier transform (FFT) and 

auto regressive (AR) method based power density used as features for classification of alcohol and control EEG 

signals [17].  The nonlinear features used as input to support vector machine (SVM) classifier for classification 

of alcohol and normal EEG signals [18]. Energy measures has been extracted from wavelet packet 

decomposition with various classifier for computer based identification of alcohol EEG signals [19]. 

 

2. Proposed Method 

In this work, a new hybrid method is presented for EEG signal classification which combines T-F 

representation, co-occurrence of the Histograms of Oriented Gradients (CoHOG), and Sparse Representation 

based classifier (SRC). T-F image based features give more inside information of EEG signals.  An illustration is 

given in Fig. 1. The EEG signals are firstly transformed into T-F domain by using the spectrogram of Short Time 

Fourier Transform (STFT). Obtained T-F images are then converted into 8-bits gray-scale images. Two different 

gradient based algorithms are employed to characterize the texture information of the T-F images. These 

methods are CoHOG and Eig(Hess)-CoHOG, respectively. The CoHOG combines the gradient orientations with 

different offsets to describe the shapes and provides features about objects. On the other hand, the Eig(Hess)-

CoHOG algorithm employs the Hessian matrix and eigenvalues to extract local texture features. The feature 

vector for each T-F image is obtained by concatenation of CoHOG and Eig(Hess)-CoHOG features. When the 

feature vector for each T-F images is examined, a sparse structure can be seen. Thus, a sparse representation 

based classifier is considered in the classification phase of the proposed method. The NNLS method is used in 

sparse classifier.  
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Fig. 1 Proposed Method 

3. Background 

3.1. Spectrogram 

The discrete time STFT of x[m] is defined as; 

( , ) [ ] [ ]
m

j n

m

X n x m w n m e 






               (1) 

The discrete STFT is defined as [20]; 

2( , ) ( , ) k

N

X n k X n 





                 (2) 

where the window function w[m] centered at time n is multiplied with the signal x[m] before the Fourier 

transform. The window function is viewing the signal just close to the time n and the Fourier transform will be 

an estimate locally around n. The usual way of finding the STFT is to use a fixed positive even window, w[m], of 

a certain shape, which is centered on zero and has unity power. Similar to the ordinary Fourier transform and 

spectrum we can formulate the spectrogram as;  

2
S( , ) ( , )n k X n                 (3) 
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which is used very frequently for analyzing time-varying and non-stationary signals.  

3.2 CoHOG and Eig(Hess)-CoHOG features 

HOG is known as popular rotational invariant texture descriptors based on local gradients [21]. HOG 

outlines the distribution of gradient orientations in image and is particularly helpful in classification of textured 

objects having deformable shapes. A HOG feature is computed locally on each key point from a block. A key 

point is a center of the central cell of block. Neighbor region of each key point is divided into different cells. A 

histogram on gradient orientations is built over all the pixels of the cell. The histogram entries of all cells 

constitutes the feature on all key points [22]. Simple one-dimensional mask (  1 ;0 ;1 ) is used to compute 

gradient magnitude on gray scale image as: 

yxyxIyxIyxfx ,    ),1(),1(),(   

yxyxIyxIyxf y ,    )1,()1,(),(   (4) 

where xf  and 
yf  denotes image gradient on x and y components. ),( yxI is the pixel intensity at position  yx,

. The magnitude and orientation are calculated as: 

22 ),(),(),( yxfyxfyxm yx   (5) 
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The orientation is assigned into eight bins. The corresponding orientation bins are built and orientation’s 

magnitude ),( yxm  is voted on each bin. Orientation histogram of every cell and spatial blocks are normalized 

as:  
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(7) 

where v  denotes feature vector and 
),( jih  is un-normalized histogram of the cell at the position ),( ji . The co-

occurrence histogram of oriented gradient (CoHOG) feature is based on a co-occurrence matrix obtained from a 

2D histogram of pairs of gradient orientations [23, 24]. The combinations of neighbor gradient orientations 

provide reliable features of objects in classification problems. The CoHOG is employed on grayscale image in 

the proposed method as: 

1 1

,

0 0

1      if and

0 otherwise
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i j

p q
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where I is a gradient orientation image, i  and j  indicates gradient orientations, and  x, y  denotes the offsets on 

vertical and horizontal orientations. The orientations of gradient are computed as: 

http://www.tureng.com/search/constitute
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where v  and h  are the vertical and the horizontal components of gradient obtained using  appropriate filters.  

For Eig(Hess)-CoHOG features, the Hessian matrix H is computed as a second-order partial derivative 

matrix of grey scale image I  for a scale  . 
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where  operator shows the convolution operation, xxD ,
yyD and

xyD are the second-order derivative of the 

image along x , y and xy directions, respectively. xxG , yyG and xyG  are the second-order derivative filter of 

the image along x , y and xy directions, respectively. Eigenvalues and eigenvectors of the Hessian matrix are 

used to obtain the principal directions and principal curvatures on surface of image. 
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where   are the Eigenvalues of the Hessian matrix. The Eigen analysis of the Hessian matrix is important for 

texture analysis. In [24], gradient magnitude and orientations were calculated using the Eigenvalues 1  and 2 . 

Thus, the Eig-HOG feature, the gradient magnitude and orientation can be calculated as: 

2
2

2
1 )()(  gradientI  (12) 
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3.3 Non-negative least squares (NNLS) classifier 

 Let’s suppose a set of training data        and a set of test data        are given, where the 

columns of the data sets show the sample and each row shows a feature.The corresponding class labels for these 

n training data samples are            respectively, where C denotes number of classes. The non-negative 

matrix factorization (NMF) can be formulated as; 

      
 

 
         

                                          (14) 

where X must be non-negative and       
  is the Frobenius norm. Similarly, semi-NMF can be defined as; 

      
 

 
         

                                             (15) 
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In the above equations negative values are allowed in X and A. In NMF each sample is approximated by the non-

negative superposition of the basis vectors [25]. In NNLS, the training dataset is firstly replaced with the basis 

vectors, thus Eq. (15) can be redefined as; 

    
 

 
         

                          (16) 

The approximation is handled by a non-negative and sparse superposition of the training samples. The class 

labels are then predicted by a sparsity interpretation as given; 

                                                 (17) 

where pi shows the ith test data.   

4. Results and Discussions 

To show the efficiency of our proposal, the experiments were conducted on the EEG dataset which 

contains both alcoholic and control persons’ EEG signals. The EEG dataset which is available online in [26] is 

used. In this section, a short description is given and please refer to [27] for further detail. 64 electrodes are used 

to acquire EEG signals, sampling frequency is 256 Hz. The dataset used in proposed method contains 120 files 

with the length 2048 samples from each alcoholic and control EEG signals.  

 
(a)  

 
(b)  

Fig. 2 T-F representation of EEG signals. (a) Control EEG signal, (b) Alcoholic EEG signal 

The EEG signals were firstly converted to T-F domain by using the spectrogram method. T-F domain 

provides more inside information of EEG signals. The T-F representation of control and alcoholic EEG signals is 

given in Fig 2 (a) and (b), respectively. In spectrogram presentation, Hamming window was considered. T-F 

domain representations were then converted to gray scale images. The T-F representation of the alcoholic and 

control EEG signals have texture. These texture nature can be used to differentiate control and alcoholic EEG 

signals. Nowadays, HOG is known as a robust texture descriptor and consequently, CoHOG characterises the 

occurence of HOG in a given texture. in addition recently proposed Eig(Hess)-CoHOG is another powerfull 

texture descriptor. Thus, we considered these features for classifiying the control and alcoholic EEG signals that 

is represented by T-F images. For computing CoHOG and Eig(Hess)-CoHOG features, the number of orientation 
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bins was selected as 8 and 4x4 squared grid was chosen for each key point. Thus a 128 element HOG feature 

vector was obtained. The orientations in the range          are quantized into eight labels thus the co-occurrence 

matrix size became 8x8. Six offsets were considered in experimental works. Thus, the dimensionality of the 

CoHOG descriptor became 1536 [28]. On the other hand, for calculating the Eig(Hess)-CoHOG features, the 

orientations labels in the range (0,2π)are quantized into seven labels. These caused a reduction in the 

dimensionality of the obtained feature vector. The total dimensionality of the Eig(Hess)-CoHOG became 1176. 

Finally, CoHOG and Eig(Hess)-CoHOG features was concatenated. The final dimensionality of each feature 

vector was 2712 and each feature vector was normalized according to the zero mean and unit variance criteria.  

 

Fig. 3 A feature vector for control EEG signal  

As it was mentioned earlier, NNLS classifier was used due to the sparse nature of the feature matrix. A 

feature vector for control EEG signal is represented in Fig. 3. As can be seen in Fig 3, most of the feature values 

are zero. In other words, 63.86% of the feature vector is 0. In the experiments, the following parameters were 

used; the kernel function was chosen as linear, the prediction rule was chosen as nearest neighbor and sparsity 

threshold was chosen as 0.0001. We also experimented with other parameters, but we did not get any 

performance improvement. The performance of the proposed algorithm was computed by classification 

accuracy, sensitivity and specificity. It is worth to mentioning that the experimental results were recorded using 

10-fold cross validation. The experimental results were tabulated in Table 1.  

Table 1 Performance evaluation results with different feature set  

Feature Features set Classifier  Sensitivity 

(%) 

Specificity 

(%) 

Accuracy 

(%) 

CoHOG  

NNLS 

91.67 91.67 91.67 

Eig(Hess)-CoHOG 100 83.33 91.67 

CoHOG &CoHOG Eig(Hess) 100 91.67 95.83 

 

As can be seen in Table 1, concatenation of the CoHOG and Eig (Hess)-CoHOG features yielded the highest 

accuracy and sensitivity values (95.83 % and 100%) while individually CoHOG and Eig (Hess)-CoHOG features 

yielded same accuracy and sensitivity value (91.67%). 
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In order to asses the effectivess of the proposed NNLS classifier, we performed more experiments for comparing 

the performances of some well-known classifiers such as, Artificial Neural Networks (ANN), k-nearest neighbor 

(KNN), Linear Discriminant Analysis (LDA) and Support Vector Machine (SVM). We achieved highest 

performance for the proposed NNLS classifier with the CoHOG & CoHOG Eig(Hess) features.  All classifier’s 

parameters were tuned accordingly. The ANN had a single hidden layer and it trained with Levenberg-

Marquardt learning rule. The activation function in the hidden layer was chosen as sigmoid. In KNN classifier, 

we performed several experiments with various K values. The best performance was obtained with K=5. The 

Euclidean distance was used for similarity measure. On the other hand, for LDA, we used the Fisher method for 

minimizing the errors in the least square sense. Finally, for SVM, Radial Basis Function was used as kernel. The 

parameters of the RBF were set based on the experiments. The optimum sigma=0.01 and C=100 values were 

assigned.  

Table 2 A Comparison report for various classifiers 

                              Classifiers 

 ANN KNN LDA SVM NNLS 

F-measure 0.8750 0.8333 0.7730 0.9285 0.9538 

Kappa 0.7500 0.6667 0.5417 0.8333 0.9167 

Specificity  0.8750 0.8750 0.8333 0.9583 0.9167 

Sensitivity 0.9583 0.7500 0.7500 0.9167 100 

Accuracy 91.67% 81.25% 79.17% 93.75% 95.83% 

 

We compared the classifiers based on Receiver operating characteristics (ROC) curve, F-measure and 

Kappa values. Higher F-measure and Kappa values show the efficiency of the classifier. According to the Table 

2, the proposed method yielded the best results. 0.9538 F-measure value and 0.9167 Kappa value was tabulated 

in Table 2 for NNLS classifier. The second best results were obtained with SVM. ANN and KNN obtained the 

third and fourth best results respectively. The worst result was yielded with LDA classifier. These evaluation 

results were supported by the ROC curves that were illustrated in Fig. 4. When we consider the area under the 

ROC curve by visually, the biggest area under the ROC curve was constructed by NNLS which showed the 

efficiency of our proposed method.   

 

Fig. 4 Performance of the ROC curves for the reported classification methods 
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The performance results of proposed method are compared with other published methods handling the 

classification problem in the same datasets. It can be notice from Table 3, that our proposal yielded a better 

accuracy than the existing methods.  

Table 3 A Comparison report for the proposed method with the existing methods  

Authors Features Classifiers 
Performance 

(Accuracy) 

Ehlers et al. [15] Correlation dimension Discriminant analysis 88% 

Kannathal et al. [16] CD, LLE, entropy, H Unique ranges 90% 

Acharya et al. [18] ApEn, SampEn, LLE, HOS SVM with poly kernel 91.3% 

Faust et al. [19] WPD — Relative energy kNN 95.8% 

Proposed Method CoHOG and Eig(Hess)-CoHOG NNLS 95.83% 
ApEn=Approximate entropy; SampEn=Sample entropy; LLE=Lyapunov exponent; HOS=Higher order spectra 

WPD=wavelet packet decomposition; CD=correlation dimension; H=Hurst's exponent;  

 

5. Conclusions 

 In this paper, a hybrid method is proposed for classification of alcoholic and control persons along with 

their EEG signals. The proposed hybrid method is based on T-F images, texture image feature extraction and 

NNLS classifier. In T-F analysis the spectrogram of the STFT is considered. CoHOG and Eig(Hess)-CoHOG 

features are extracted from T-F images. The experimental results show the efficiency of our proposed method. 

One important observation from the results is that concatenated feature vector yields the best accuracy. It is also 

worth to mentioning that accuracy is the highest one between the reported results. In future, this proposed 

method can help psychologist to identify physiological states of the brain for better treatment. The method has 

used high dimensional features vector in future some features reduction technique can be analyzed.  

Disclosure of potential conflicts of interest: No conflicts of interest 

Research involving human participants and/or animals: The dataset of EEG signals used is online available. 

Informed Consent: Yes  
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