

Directed technical change with capital-embodied technologies : implications for climate policy

This is the Unpublished version of the following publication

Lennox, James and Witajewski, J (2014) Directed technical change with capital-embodied technologies: implications for climate policy. (Unpublished)

The publisher's official version can be found at http://www.feem.it/getpage.aspx?id=6607&sez=Publications&padre=73 Note that access to this version may require subscription.

Downloaded from VU Research Repository https://vuir.vu.edu.au/30581/

Introduction

Capital-embodiment of technologies

Majority of technologies are capital-embodied

- Especially true of energy technologies
 - Gas turbines, distillation columns, solar panels, wind turbines, LED bulbs, batteries, ...

Transition to low carbon requires

- R&D to develop new and improve existing low-C technologies
- Investments to adopt these technologies

1.2

Why model capital-embodiment?

Adoption of new technologies requires investments

Increasing the pace of adoption is increasingly costly

User cost of capital increases with the innovation rate

- Return on real assets must cover:
 - Required return on equity
 - Physical depreciation
 - Expected change in asset price
- TC causes declining asset prices ⇔ obsolescence costs
 - => If rates of TC varies between sectors or over time, so should rates of economic depreciation

Model

Original framework

Acemoglu, Aghion, Burzstyn & Hémous (AABH), 2012 in AER

Two production sectors: clean & dirty

$$Y_{j,t} = L_{j,i,t}^{1-a} \bigcup_{0}^{1} A_{j,i,t}^{1-a} x_{j,i,t}^{a} di, \quad j \in \{c,d\}$$

Composite good used for final & intermediate consumption

$$Y_{t} = \left(Y_{c,t}^{(e-1)/e} + Y_{d,t}^{(e-1)/e}\right)^{e/(e-1)}, \quad e > 1$$

- Dirty output -> emissions -> climate -> damages
- Representative household composed of workers and scientists
 - Maximises intertemporal utility function
 - Workers can work in clean or dirty production
 - Scientists can work on clean or dirty technologies
- Monopolistic production of intermediates
 - Successful scientists become one-period monopolists
 - Production uses only the final good

Capital-embodied technologies

Production uses capital services instead of intermediate inputs

Clean and dirty production functions become:

$$Y_{j,t} = L_{j,i,t}^{1-a} \bigcup_{0}^{1-a} k_{j,i,t}^{a} di \quad j \in \{c,d\}$$

Technical change becomes "investment specific" (Krusell, 1998):

$$k_{j,i,t} = (1 - d)k_{j,i,t-1} + A_{j,i,t}z_{j,i,t}$$

New capital produced by monopolists using only the final good

$$p_{j,i,t} = (p_{j,i,t}^{K} A_{j,i,t} - 1) z_{j,i,t}$$

Monopolists rent capital to producers at constant mark-up over user costs

$$r_{j,i,t} = \frac{1}{a} \underbrace{\stackrel{\stackrel{.}{E}}{I} 1}_{A_{j,i,t}} - \frac{(1-d)}{(1+i_t)} \frac{1}{A_{j,i,t+1}}$$

Embodiment and obsolescence costs

Rental rate per unit of effective capital of type (j,i)

$$r_{j,i,t} = (d + i_t + g_{j,i,t})/(aA_{j,i,t}), g_{j,i,t} \int A_{j,i,t+1}/A_{j,i,t} - 1$$

- $1/A_{j,i,t}$ cost per unit of effective capital
- 1/a monopolists' mark-up over investment costs
- $g_{i,i,t}$ growth rate of technology

Response of clean to dirty output ratio to a step change in $g_{c,t}$

$$\frac{Y}{Y_{d,t}} \stackrel{\text{a}}{=} \left(1 + t_t\right)^e \stackrel{\hat{E}_{t}}{=} t + d + g_{c,t} \stackrel{\hat{z}}{=} \stackrel{\hat{z}}{=} A_{c,t} \stackrel{\hat{z}$$

- lacktriangledown Decreases with increase in $\mathcal{G}_{c,t}$ once-off short-run effect
- Increases with growth of $A_{c,t}$ dominant long run effect

Research and development

Research and development firms

- One R&D firm per capital good. Hires scientists to improve technology building on previous sector-average technology
- Knowledge frontier as in AABH: $A_{j,i,t} = (1 + h_j s_{j,i,t}) A_{j,t-1}$

Symmetry

- Deterministic progress implies symmetry of firms within each sector:
- Complete spillovers and deterministic progress unrealistic, but convenient
 - Concerned with productivity differences between not within sectors.

Spillovers

- Knowledge spillovers between sectors empirically significant but not primarily between clean and dirty energy technologies
- => Assume spillovers from an exogenously growing technology frontier

$$A_{j,t} = A_{j,t-1} + h_{j}f A_{t-1} + A_{j,t-1} = A_{j,t-1} = S_{j,t-1} = S_{j,t-1}$$

Decentralised R&D decisions

Scientists are the sole input to R&D

 Fixed supply of scientists, equally capable of working on any technology

Profit-maximising allocation of scientists

- R&D firms seek to maximise their profits
 - Capture PV of investment in their technology in the current period
 - Do not capture future value because of inter-temporal spillovers
- Profits depend only on level of raw investment not on the level of output as in AABH: $p_{j,t} = z_{j,t}(s_{j,t})(1-a)/a$

Hiring more scientists in sector *j* improves *j* technologies

- Increases demand for effective capital $k_{j,t}$ and hence $A_{j,t}z_{j,t}$
- Decreases raw capital $z_{i,t}$ per unit of effective capital

Climate

Analytical model

- 25% of emissions permanent, 75% slowly degrading (Archer 2005)
- Damage proportional to CO₂ concentration

Numerical implementation

- Climate sub-model from DICE (Nordhaus & Sztorc 2013)
- Environmental quality from Weitzman (2010) damage function

$$F_t = 1 - \frac{1}{1 + aT^2 + bT^{6.754}}$$

Optimal policies in the calibrated model

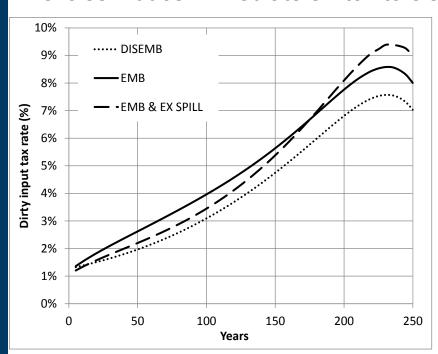
Structure of optimal policies

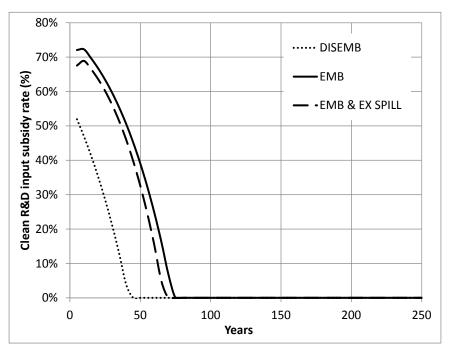
Capital rental subsidy corrects monopoly distortion

- Optimal subsidy rate = α (inverse of the mark-up factor)
 - Could use (time-varying) investment subsidies with equivalent economic effect

Dirty tax corrects emissions externality

- Marginal cost of a unit increase in CO₂ concentration
- Less present value of future CO₂ removals (by biogeophysical sinks)


R&D subsidy internalises intertemporal tech spillovers

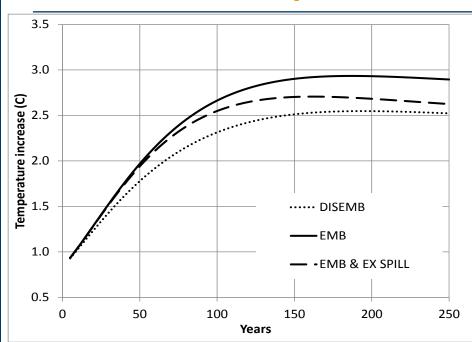

- Fixed R&D supply implies subsidy can be phased out once clean technology is sufficiently advanced that clean profits exceed dirty
- Intersectoral spillovers make R&D in backward sector relatively more productive => subsidy rate need to induce clean R&D is lower

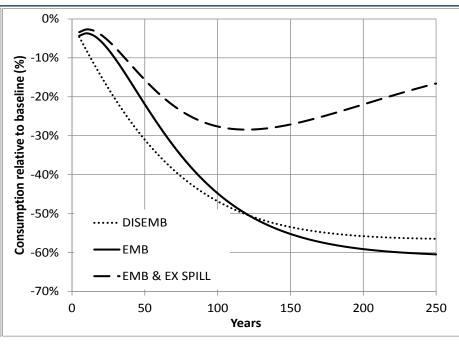
Optimal policies: effects of embodiment & spillovers

Policies induce immediate switch to clean R&D in all models

Dirty tax rates

- Similar initial rates but rising faster
 Including spillovers
- Lower initial rates but rising faster because faster clean progress lowers aggregate costs


R&D subsidy rates

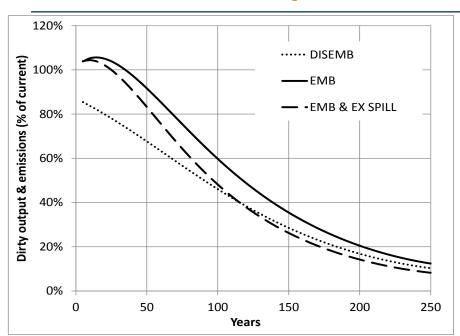

- Higher rates & slower phase-outIncluding spillovers
- Reduces required subsidies

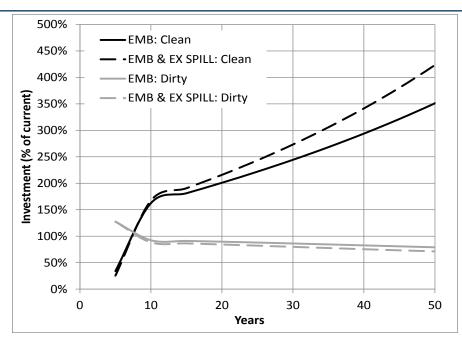
3.3

Embodiment & spillovers: temperature & consumption

Atmospheric temperature

- Mitigation more costly
 Significantly higher peak temperature
 Including spillovers
- Aggregate mitigation costs decline faster
 Temperature peaks earlier & lower


Consumption


- Consumption losses reduced in first century but increased in second Including spillovers
- Consumption losses smaller and decline in second century

3.4

Embodiment & spillovers: output & investment

Dirty output

Jump in clean capital rents vs. dirty
 => initial fall (rise) in clean (dirty) output
 => persistent lag in mitigation

Including spillovers

- Initial response unchanged
- Dirty output declines faster thereafter

Investment

- Jump in clean capital rents vs. dirty
 => initial fall (rise) in clean (dirty) investment
 Including spillovers
- Faster growth of clean technology=> accelerated demand for clean capital in long run

Conclusions and recommendations

Key findings

Capital-embodiment can substantially alter dynamic responses:

- Diffusion of new technologies requires investments
- Technical progress generates obsolescence costs
- Returns to R&D depend on investment not output

Increasing the rate of clean TC relative to dirty

- Naturally, beneficial in the long run
- Perverse level effect in the short(er) run

Optimal mitigation timing

Investment & R&D decisions intimately linked

Extensions and implications

Adding a third, non-energy-intensive sector

- Additional margin of substitution
- Realistic composition effects => plausible macroeconomic costs
- Endogenous intersectoral spillovers

Two region or small open economy version

- New technologies embodied in imported equipment
- Disembodied international knowledge spillovers in R&D

Heterogeneous capital in large-scale CGE models

- Composition of capital differs by sector
- Different types of capital depreciate at different rates
- Some types are highly sector-specific

Implications for large-scale CGE or macro/energy models

Embodied technologies \Leftrightarrow heterogeneous capital

- Rarely considered in CGE models, although likely widely relevant
 - May be explained in significant part by data limitations
- Considered in some bottom-up energy (sub-)models
 - But linked to learning curves, not R&D-driven technical change

Embodiment distinct from irreversibility

Irreversibility of investment binds only for "large" shocks to "narrowly defined" industries (or capital asset classes)

Acknowledgements

The research leading to these results has received funding from the People Programme (Marie Curie Actions) of the European Union's Seventh Framework Programme (FP7/2007-2013) under REA grant agreement no. 328454.

