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SOME RESULTS ON SINGULAR VALUE INEQUALITIES OF

COMPACT OPERATORS IN HILBERT SPACE

A. TAGHAVI, V. DARVISH, H. M. NAZARI, S. S. DRAGOMIR

Abstract. We prove several singular value inequalities for sum and product

of compact operators in Hilbert space. Some of our results generalize the

previous inequalities for operators. Also, applications of some inequalities are

given.

1. Introduction

Let B(H) stand for the C∗-algebra of all bounded linear operators on

a complex separable Hilbert space H with inner product 〈·, ·〉 and let

K(H) denote the two-sided ideal of compact operators in B(H). For

A ∈ B(H), let ‖A‖ = sup{‖Ax‖ : ‖x‖ = 1} denote the usual operator

norm of A and |A| = (A∗A)1/2 be the absolute value of A.

An operator A ∈ B(H) is positive and write A ≥ 0 if 〈Ax, x〉 ≥ 0 for

all x ∈ H . We say A ≤ B whenever B −A ≥ 0.

We consider the wide class of unitarily invariant norms ||| · |||. Each

of these norms is defined on an ideal in B(H) and it will be implicitly

understood that when we talk of |||T |||, then the operator T belongs

to the norm ideal associated with ||| · |||. Each unitarily invariant norm

||| · ||| is characterized by the invariance property |||UTV ||| = |||T |||
for all operators T in the norm ideal associated with ||| · ||| and for all

unitary operators U and V in B(H). For 1 ≤ p < ∞, the Schatten p-

norm of a compact operator A is defined by ‖A‖p = (tr |A|p)1/p, where
tr is the usual trace functional. Note that for A ∈ K(H) we have,

‖A‖ = s1(A), and if A is a Hilbert-Schmidt operator, then ‖A‖2 =

(
∑

∞

j=1 s
2
j(A))

1/2. These norms are special examples of the more general

class of the Schatten p-norms, which are unitarily invariant [2].
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The direct sum A⊕B denotes the block diagonal matrix

[

A 0

0 B

]

defined on H ⊕H , see [1, 9]. It is easy to see that

(1.1) ‖A⊕B‖ = max(‖A‖, ‖B‖),

and

(1.2) ‖A⊕B‖p = (‖A‖pp + ‖B‖pp)1/p.

We denote the singular values of an operator A ∈ K(H) as s1(A) ≥
s2(A) ≥ . . . are the eigenvalues of the positive operator |A| = (A∗A)1/2

and eigenvalues of the self-adjoint operator A denote as λ1 ≥ λ2 ≥ . . .

which repeated accordingly to multiplicity.

There is a one-to-one correspondence between symmetric gauge func-

tions defined on sequences of real numbers and unitarily invariant

norms defined on norm ideals of operators. More precisely, if ||| · ||| is
unitarily invariant norm, then there exists a unique symmetric gauge

function Φ such that

|||A||| = Φ(s1(A), s2(A), . . .),

for every operator A ∈ K(H). Let A ∈ K(H), and if U, V ∈ B(H) are

unitarily operators, then

sj(UAV ) = sj(A),

for j = 1, 2, . . . and so unitarily invariant norms satisfies the invariance

property

|||UAV ||| = |||A|||.
In this paper, we obtain some inequalities for sum and product of

operators. Some of our results generalize the previous inequalities for

operators.

2. Some singular value inequalities for sum and product of

operators

In this section we give inequalities for singular value of operators.

Also, some norm inequalities are obtained as an application.
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First we should remind the following inequalities. We apply inequalities

(2.1) and (2.3) in our proofs.

The following inequality due to Tao [8] asserts that if A,B,C ∈

K(H) such that

[

A B

B∗ C

]

≥ 0, then

(2.1) 2sj(B) ≤ sj

[

A B

B∗ C

]

,

for j = 1, 2, . . ..

Here, we give another proof for above inequality.

Let

[

A B

B∗ C

]

≥ 0 then

[

A −B

−B∗ C

]

≥ 0 and have the same sin-

gular values (see[1, Theorem 2.1]). So, we can write

[

0 2B

2B∗ 0

]

≤
[

A B

B∗ C

]

,

and
[

0 −2B

−2B∗ 0

]

≤
[

A −B

−B∗ C

]

.

On the other hand, we know that for every self-adjoint compact oper-

ator X we have sj(X) ≤ λj(X ⊕−X), for all j = 1, 2, . . .. By using of

this fact we obtain

sj

([

0 2B

2B∗ 0

])

= λj

([

0 2B

2B∗ 0

]

⊕
[

0 −2B

−2B∗ 0

])

≤ λj

([

A B

B∗ C

]

⊕
[

A −B

−B∗ C

])

= sj

([

A B

B∗ C

]

⊕
[

A −B

−B∗ C

])

.

So, we obtain

sj

([

0 2B

2B∗ 0

])

≤ sj

([

A B

B∗ C

]

⊕
[

A −B

−B∗ C

])

.
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Equivalently,

2sj(B ⊕B∗) ≤
([

A B

B∗ C

]

⊕
[

A −B

−B∗ C

])

.

Since sj(B) = sj(B
∗) and sj

([

A B

B∗ C

])

= sj

([

A −B

−B∗ C

])

,

we have

2sj(B) ≤ sj

([

A B

B∗ C

])

.

In [1, Remark 2.2], Audeh and Kittaneh proved that for every A,B,C ∈

K(H) such that

[

A B

B∗ C

]

≥ 0, then

(2.2) sj

([

A B

B∗ C

])

≤ 2sj(A⊕ C),

for j = 1, 2, . . .. Therefore, by inequality (2.1) we have the following

inequality

(2.3) sj(B) ≤ sj(A⊕ C),

for j = 1, 2, . . .. Since every unitarily invariant norm is a monotone

function of the singular values of an operator, we can write

(2.4)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

[

A B

B∗ C

]∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

≤ 2|||A⊕ C|||.

We can obtain the reverse of inequality (2.4) for arbitrary operators

X, Y ∈ B(H) by pointing out the following inequality holds because of

norm property

|||X + Y ||| ≤ |||X|||+ |||Y |||.

Replace X and Y by X − Y and X + Y , respectively. We have

2|||X||| ≤ |||X − Y |||+ |||X + Y |||,
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for all X, Y ∈ B(H).

Let X =

[

A 0

0 C

]

and Y =

[

0 B

B∗ 0

]

in above inequality. So,

2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

[

A 0

0 C

]∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

≤
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

[

A B

B∗ C

]∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

[

A −B

−B∗ C

]∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= 2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

[

A B

B∗ C

]∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

Hence,

|||A⊕ C||| ≤
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

[

A B

B∗ C

]∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

,

for all A,B,C ∈ B(H).

[

A 0

0 C

]

is called a pinching of

[

A B

B∗ C

]

.

For operator norm we have

max{‖A‖, ‖C‖} ≤
∥

∥

∥

∥

∥

[

A B

B∗ C

]∥

∥

∥

∥

∥

.

Here we give a generalization of the inequality which has been proved

by Bhatia and Kittaneh in [5]. They have shown that if A and B are

two n× n matrices, then

sj(A+B) ≤ sj ((|A|+ |B|)⊕ (|A∗|+ |B∗|)) ,

for 1 ≤ j ≤ n.

For giving a generalization of above inequality, we need the following

lemmas.

In the rest of this section, we always assume that f and g are non-

negative functions on [0,∞) which are continuous and satisfying the

relation f(t)g(t) = t for all t ∈ [0,∞).

The following lemma is due to Kittaneh [7].
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Lemma 2.1. Let A,B, and C be operators in B(H) such that A and

B are positive and BC = CA. If

[

A C∗

C B

]

is positive in B(H ⊕H),

then

[

f(A)2 C∗

C g(B)2

]

is also positive.

Let T be an operator in B(H). We know that

[

|T | T ∗

T |T ∗|

]

≥ 0, if

T is normal then we have

[

|T | T ∗

T |T |

]

≥ 0, ( see [4]).

Lemma 2.2. Let A be an operator in B(H). Then we have

(2.5)

[

|A|2α A∗

A |A∗|2(1−α)

]

≥ 0,

where 0 ≤ α ≤ 1.

Proof. It is easy to check that A|A|2 = |A∗|2A, then we have A|A| =
|A∗|A for A ∈ B(H). Now by making use of Lemma 2.1, for f(t) = tα

and g(t) = t1−α, 0 ≤ α ≤ 1, and positivity of

[

|A| A∗

A |A∗|

]

, we obtain

the result. �

Theorem 2.3. Let A and B be two operators in K(H). Then we have

sj(A+B) ≤ sj
(

(|A|2α + |B|2α)⊕ (|A∗|2(1−α) + |B∗|2(1−α))
)

,

for j = 1, 2, . . . where 0 ≤ α ≤ 1.

Proof. Since sum of two positive operator is positive, Lemma 2.2 im-

plies that
[

|A|2α + |B|2α A∗ +B∗

A+B |A∗|2(1−α) + |B∗|2(1−α)

]

≥ 0,

By inequality (2.3) we have the result. �

Corollary 2.4. Let A and B be two operators in K(H). Then we have

sj(A+B) ≤ sj ((|A|+ |B|)⊕ (|A∗|+ |B∗|)) ,

for j = 1, 2, . . ..
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Proof. Let α = 1
2
in Theorem 2.3. �

It is easy to see that if A and B are normal operator in K(H), then

we have

sj(A +B) ≤ sj ((|A|+ |B|)⊕ (|A|+ |B|)) ,
for j = 1, 2, . . ..

On the other hand, for α = 1 in Theorem 2.3, we have

sj(A +B) ≤ sj(|A|2 + |B|2 ⊕ 2I)

= sj(|A|2 + |B|2) ∪ sj(2I)

= sj(A
∗A+B∗B) ∪ sj(2I),

for j = 1, 2, . . ..

Theorem 2.5. Let A,B and X be operators in B(H) such that X is

compact. Then we have the following

sj (AXB∗) ≤ sj
(

A∗f(|X|)2A⊕ B∗g(|X∗|)2B
)

,

for j = 1, 2, . . ..

Proof. Since

[

|X| X∗

X |X∗|

]

≥ 0, by Lemma 2.1 we have

Y =

[

f(|X|)2 X∗

X g(|X∗|)2

]

≥ 0.

Let Z =

[

A 0

0 B

]

. Since Y is positive, we have

Z∗Y Z =

[

A∗f(|X|)2A A∗X∗B

B∗XA B∗g(|X∗|)2B

]

≥ 0.

Hence, by inequality (2.3), we have the desired result. �

In above theorem, let X be a normal operator. Then we have

sj (AXB∗) ≤ sj
(

A∗f(|X|)2A⊕ B∗g(|X|)2B
)

,

for j = 1, 2, . . ..



8 A. TAGHAVI, V. DARVISH, H. M. NAZARI, S. S. DRAGOMIR

Corollary 2.6. Let A, B and X be operators in B(H) such that X is

compact. Then we have

sj (AXB∗) ≤ sj (A
∗|X|A⊕ B∗|X∗|B) ,

for j = 1, 2, . . ..

Proof. Let f(t) = t
1

2 and g(t) = t
1

2 in Theorem 2.5. �

Here, we apply above corollary to show that singular values of AXB∗

are dominated by singular values of ‖X‖(A⊕B). For our proof we need

the following lemma.

Lemma 2.7. [2, p. 75] Let A,B ∈ B(H) such that B is compact.

Then

sj(AB) ≤ ‖A‖sj(B),

for j = 1, 2, . . ..

Theorem 2.8. Let A,B,X ∈ B(H) such that A and B are arbitrary

compact. Then, we have

sj(AXB∗) ≤ ‖X‖s2j(A⊕ B),

for j = 1, 2, . . ..
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Proof. From Corollary 2.6 we have

sj(AXB∗) ≤ sj(A
∗|X|A⊕ B∗|X∗|B)

= sj

([

A 0

0 B

]

∗
[

|X| 0

0 |X∗|

][

A 0

0 B

])

= sj

([

A 0

0 B

]

∗
[

|X| 12 0

0 |X∗| 12

]

∗
[

|X| 12 0

0 |X∗| 12

][

A 0

0 B

])

= sj

(([

|X| 12 0

0 |X∗| 12

][

A 0

0 B

])

∗
([

|X| 12 0

0 |X∗| 12

][

A 0

0 B

]))

= sj





∣

∣

∣

∣

∣

[

|X| 12 0

0 |X∗| 12

][

A 0

0 B

]∣

∣

∣

∣

∣

2




= s2j

([

|X| 12 0

0 |X∗| 12

][

A 0

0 B

])

≤
∥

∥

∥

∥

∥

[

|X| 12 0

0 |X∗| 12

]∥

∥

∥

∥

∥

2

s2j(A⊕ B)

= ‖X‖s2j(A⊕B),

for j = 1, 2, . . .. The last inequality follows by Lemma 2.7. �

In Theorem 2.8, let A and B be positive operators in K(H). Then

we have

(2.6) sj(A
1

2XB
1

2 ) ≤ ‖X‖sj(A⊕B),

for j = 1, 2, . . ..

Corollary 2.9. Let A and B be two operators in K(H). Then we have

(2.7) sj(AB
∗) ≤ sj (A

∗A⊕ B∗B) ,

for j = 1, 2, . . ..

Proof. Let X = I in Corollary 2.6. �
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Moreover, we can write inequality (2.7) in the following form

sj(AB
∗) ≤ sj(|A|2 ⊕ |B|2)

= s2j(|A| ⊕ |B|) = s2j(A⊕B),

for j = 1, 2, . . ..

We should note here that inequality (2.7) can be obtained by Theorem

1 in [3] and Corollary 2.2 in [6].

Here, we give two results of Corollary 2.9. As the first application, let

A =

[

X Y

0 0

]

and B =

[

Y −X

0 0

]

, such that X, Y ∈ K(H) then

by easy computations we have

sj(XY ∗ − Y X∗) ≤ sj((XX∗ + Y Y ∗)⊕ (XX∗ + Y Y ∗)),

for j = 1, 2, . . ..

For obtaining second application, replace A and B in (2.7) by AXα

and BX(1−α) respectively, where X is a compact positive operator and

α ∈ R. So, we have

sj(AXB∗) ≤ sj
(

XαA∗AXα ⊕X(1−α)B∗BX(1−α)
)

= sj

([

XαA∗AXα 0

0 X(1−α)B∗BX(1−α)

])

= sj

([

XαA∗ 0

0 X(1−α)B∗

][

AXα 0

0 BX(1−α)

])

= sj

([

AXα 0

0 BX(1−α)

][

XαA∗ 0

0 X(1−α)B∗

])

= sj

([

AX2αA∗ 0

0 BX2(1−α)B∗

])

= sj(AX
2αA∗ ⊕ BX2(1−α)B∗),

for all j = 1, 2, . . ..

Finally, we have

(2.8) sj(AXB∗) ≤ sj(AX
2αA∗ ⊕ BX2(1−α)B∗),
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for all j = 1, 2, . . ..

By a similar proof of Theorem 2.8 to inequality (2.8), we obtain

sj(AXB∗) ≤ max{‖X2α‖, ‖X2(1−α)‖}s2j(A⊕ B),

for all j = 1, 2, . . ..

In above inequality, for positive operators A and B in K(H) we have

sj(A
1

2XB
1

2 ) ≤ max{‖X2α‖, ‖X2(1−α)‖}sj(A⊕ B)

for all j = 1, 2, . . ..

3. Some singular value inequalities for normal operators

Here we give some results for compact normal operators. For every

operator A, the Cartesian decomposition is to write A = ℜ(A)+iℑ(A),
where ℜ(A) = A+A∗

2
and ℑ(A) = A−A∗

2i
. If A is normal operator then

ℜ(A) and ℑ(A) commute together and vice versa.

Theorem 3.1. Let A1, A2, . . . , An be normal operators in K(H). Then

we have

1√
2
sj (⊕n

i=1(ℜ(Ai) + ℑ(Ai))) ≤ sj(⊕n
i=1Ai)

≤ sj (⊕n
i=1(|ℜ(Ai)|+ |ℑ(Ai)|)) ,

for j = 1, 2, . . ..

Proof. Let A1, A2, . . . , An be normal operators, then

⊕n
i=1Ai =













A1 0

A2

. . .

0 An













is normal, so we have

(⊕n
i=1ℜ(Ai))(⊕n

i=1ℑ(Ai)) = (⊕n
i=1ℑ(Ai))(⊕n

i=1ℜ(Ai))).

By above equation, we obtain the following

√

(⊕n
i=1Ai)∗(⊕n

i=1Ai) =
√

(⊕n
i=1ℜ(Ai))2 + (⊕n

i=1ℑ(Ai))2.
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So

sj(⊕n
i=1Ai) = sj(| ⊕n

i=1 Ai|)

= sj

(

√

(⊕n
i=1Ai)∗(⊕n

i=1Ai)
)

= sj

(

√

(⊕n
i=1ℜ(Ai))2 + (⊕n

i=1ℑ(Ai))2
)

,

for j = 1, 2, . . ..

By using Weyl’s monotonicity principle [2] and the inequality

√

(⊕n
i=1ℜ(Ai))2 + (⊕n

i=1ℑ(Ai))2 ≤ | ⊕n
i=1 ℜ(Ai)|+ | ⊕n

i=1 ℑ(Ai)|,

we have the following

sj

(

√

(⊕n
i=1ℜ(Ai))2 + (⊕n

i=1ℑ(Ai))2
)

≤ sj(|⊕n
i=1ℜ(Ai)|+|⊕n

i=1ℑ(Ai)|),

for j = 1, 2, . . .. Now for proving left side inequality, we recall the

following inequality

0 ≤ (ℜ(Ai) + ℑ(Ai)
∗(ℜ(Ai) + ℑ(Ai) ≤ 2(ℜ(Ai)

2 + ℑ(A2)
2).

Therefore, by using the Weyl’s monotonicity principle we can write

sj

(

√

((⊕n
i=1ℜ(Ai)) + (⊕n

i=1ℑ(Ai)))
∗ ((⊕n

i=1ℜ(Ai)) + (⊕n
i=1ℑ(Ai)))

)

,

which is less than

√
2sj

(

√

(⊕n
i=1ℜ(Ai))2 + (⊕n

i=1ℑ(Ai))2
)

.

for j = 1, 2, . . .. Therefore,

sj((⊕n
i=1ℜ(Ai)) + (⊕n

i=1ℑ(Ai))) = sj(|(⊕n
i=1ℜ(Ai)) + (⊕n

i=1ℑ(Ai))|)
≤

√
2sj(

√

(⊕n
i=1ℜ(Ai))2 + (⊕n

i=1ℑ(Ai))2).

for j = 1, 2, . . .. �

The following example shows that normal condition is necessary.

Example 3.2. Let A =

[

−1 + i 1

i 1 + 2i

]

, then a calculation shows

s2(ℜ(A) + iℑ(A)) ≈ 1.34 > s2(|ℜ(A)|+ |ℑ(A)|) ≈ 1.27.
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Corollary 3.3. Let A be a normal operator in K(H). Then we have

(1/
√
2)sj(ℜ(A) + ℑ(A)) ≤ sj(A) ≤ sj(|ℜ(A)|+ |ℑ(A)|),

for j = 1, 2, . . ..

For each complex number x = a+ib, we know the following inequality

holds

(3.1)
1√
2
|a+ b| ≤ |x| ≤ |a|+ |b|.

Now, by applying Corollary 3.3, we can obtain operator version of in-

equality (3.1).

Here, we determine the upper and lower bound for A+ iA∗.

Theorem 3.4. Let A1, A2, . . . , An be in K(H). Then
√
2sj (⊕n

i=1(ℜ(Ai) + ℑ(Ai))) ≤ sj(⊕n
i=1(Ai + iA∗

i ))

≤ 2sj(⊕n
i=1(ℜ(Ai) + ℑ(Ai))),

for j = 1, 2, . . ..

Proof. Note that Ai + iA∗

i is normal operator for i = 1, . . . , n, so T =

⊕n
i=1(Ai + iA∗

i ) is normal. On the other hand, we can write T =

ℜ(T ) + iℑ(T ) where

ℜ(T ) = (⊕n
i=1(Ai + A∗

i ) + i⊕n
i=1 (A

∗

i − Ai))/2,

ℑ(T ) = (⊕n
i=1(Ai −A∗

i ) + i⊕n
i=1 (A

∗

i + Ai))/2i.

It is enough to compare ℜ(T ) and ℑ(T ) to see ℜ(T ) = ℑ(T ). So

(3.2) ℜ(T ) + ℑ(T ) = ⊕n
i=1(Ai + A∗

i ) + i⊕n
i=1 (A

∗

i − Ai).

Now apply Theorem 3.1, we have

(1/
√
2)sj(ℜ(T ) + ℑ(T )) ≤ sj(ℜ(T ) + iℑ(T ))

≤ sj(|ℜ(T )|+ |ℑ(T )|),(3.3)

for j = 1, 2, . . .. Put (3.2), ℜ(T ) + iℑ(T ) = ⊕n
i=1(Ai + iA∗

i ) and ℜ(T )
in (3.3) to obtain

(3.4) (1/
√
2)sj(⊕n

i=1(Ai+A∗

i )+i⊕n
i=1 (A

∗

i −Ai)) ≤ sj(⊕n
i=1(Ai+iA∗

i )),
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and

sj(⊕n
i=1(Ai + iA∗

i )) ≤ 2sj(⊕n
i=1(Ai + A∗

i )/2 + i⊕n
i=1 (A

∗

i − Ai)/2)

= sj(⊕n
i=1(Ai + A∗

i ) + i⊕n
i=1 (A

∗

i −Ai)),

for j = 1, 2, . . .. By writing ℜ(⊕n
i=1Ai) = ⊕n

i=1(Ai+A∗

i )/2 and ℑ(⊕n
i=1Ai) =

⊕n
i=1(Ai −A∗

i )/2i we have

(1/
√
2)sj(2ℜ(⊕n

i=1Ai) + 2ℑ(⊕n
i=1Ai)) ≤ sj(⊕n

i=1(Ai + iA∗

i ))

≤ sj(2ℜ(⊕n
i=1Ai) + 2ℑ(⊕n

i=1Ai)),

for j = 1, 2, . . .. Finally
√
2sj (⊕n

i=1(ℜ(Ai) + ℑ(Ai))) ≤ sj(⊕n
i=1(Ai + iA∗

i ))

≤ 2sj(⊕n
i=1(ℜ(Ai) + ℑ(Ai))),

for j = 1, 2, . . .. �
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