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SUMMARY TO THE THESIS A STATISTICAL
APPROACH TO AUTOMATIC PROCESS

CONTROL (REGULATION SCHEMES)

Automatic process control (APC) techni.ques have been applied to process
variables such as feed rate, temperature, pressure, viscosity, and to product quality
variables as well. Conventional practices of engineering control use the potential for
step changes to justify an integral term in the controller algorithm to give (long-run)
compensation for a shift in the mean of a product quality variable. Application of
techniques from the fields of time series analysis and stochastic control to tackle product
quality control problems is also common. The focus of this thesis is on the issues of
process delay (‘dead time’) and dynamics (‘inertia’) which provides opportunity to
utilise technologies from both statistical process control {(SPC) and APC.

A presentation of the application of techniques from both SPC and APC is made
in an approach to control the quality of a product (product variability) at the output. The
thesis considers the issues of process control in situations where some form of feedback
control is necessary and yet where stability in the feedback control loop cannot be easily
attained. ‘Disturbances’ afflict a process control system which together with issues of
dynamics and dead time (time delay), compound the control problem.

An explanation of proportional, integral and derivative (PID) controllers, time
series controllers, minimum variance (mean square error) control and MMSE (minimum

mean square error) controllers is given after a literature review of stochastic process

control and ‘dead-time compensation’ methods.




The dynamic relationship between (output) controlled and (input) manipulative
variables is described by a second-order dynamic model (transfer function) as also is the
process dead time. The use of an ARIMA (0,1,1) stochastic time series model
characterizes and forecasts the drifting behaviour of process disturbances. A feedback
control algonthm is developed which minimizes the variance of the output controlled
variable by making an adjustment at every sample point that exactly compensates for
the forecasted disturbance. An expression is derived for the input control adjustment
required that will exactly cancel the output deviation by imposing feed back control
stability conditions. The (dead-time) simulation of the stochastic feedback control
algorithm and EWMA process control are critiqued.

The feedback control algorithm is simulated to find the CESTDDVN (control
error standard deviation) or control error sigma (product variability) and the adjusfment
frequency of the time series controller. An analysis of the time series controller
performance results and discussion follow the simulation. Time series controller
performance is discussed and an outline of a process regulation scheme given. The
thesis enhances some of the methodologies that have been recently suggested in the
literature on integrating SPC and APC and concludes with details of some suggestions
for further research.

Solutions to the problems of statistical process monitoring and feedback control
adjustment connected with feedback (closed loop) stability, controller limitations and
adequate compensation of dead time in achieving minimum varance control, are found
by the application of both process control techniques. By considering the dynamic
behaviour of the process and by manipulating the inputs during non-stationary

conditions, dynamic optimization is achieved. The IMA parameter, suggested as an on-




line tuning parameter to compensate dead time, leads to adaptive (self-tuning) control. It
is demonstrated that the performance of the time series controller is superior to that of
the EWMA and CUSUM controllers and provides minimum variance control even in
the face of dead time and dynamics.

Some articles/papers have appeared in.Technometrics, Volume 34, No.3, 1992,
in relation to statistical process monitoring and feedback adjustment (251-267), ASPC
(286-297), and discourse given on integrating SPC and APC (268-285). By exploiting
the time series controller’s one-step ahead forecasting feature and considering closed-
loop (feedback) stability and dead-time compensation, this thesis adds further to these

contributions.
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CHAPTER 1
INTRODUCTION TO THE THESIS
A STATISTICAL APPROACH TO AUTOMATIC

PROCESS CONTROL (REGULATION SCHEMES)

1.1 INTRODUCTION

A manufacturing process is concerned with the conversion of a set of input raw
materials into a set of desired outputs. The outputs are generally expected to conform to
some measurable targets. Exact conformance is not possible due to factors which cause
output variables to deviate from their targets. These factors may be variations in the
inputs or variations in the conversion process itself. Variations in the inputs may cause
instability in the process resulting in a bias in the outputs due to the presence of
assignable or special causes of variation. The presence of non-random effects can be
detected as unexpected variations in system measurements. In addition to the inputs, the
process may well be afflicted by disturbances forcing it to drift off target if no control
action is taken to eliminate them.

Satisfactory control of a process requires that its output follows some
predetermined command signal and that it remains unaffected by disturbances or
variations in the process parameters. Engineering control systems continually adjust
processes on-line in order to counteract the effects of disturbances. Statistical process
control (SPC) seeks to reduce to an acceptable level the residual variation in the output
that can degrade product quality. An objective in automatic process control (APC) is to

maintain certain key process variables as near their desired values, called set points, for




as much of the time as possible. From among the process variables, certain variables are
chosen as the key ones. By maintaining these variables at specified values, it is possible

to achieve certain production objectives.

1.2 MOTIVATION AND AIMS IN STATISTICAL. APPROACH TO
AUTOMATIC PROCESS CONTROL

One frequent production objective is to produce material of desired quality by
having an acceptable level of variation (product variability) in the measured output
characteristics. Based on recent history and/or a particular model, one approach to
control is to forecast the deviation from target which would occur if no action were
taken and then to act so as to cancel out this deviation. A mathematical model is
constructed to describe the behaviour of the production system in a concise wajf. A
structural model is then developed and set up as an hypothesis to account for the
sampling observations. The resulting model is used to forecast the behaviour of the time
series describing the disturbance. Using the structural model, the process is controlled
by generating warning signals of future untoward events.

This thesis considers the application of techniques from both SPC and APC to
the control of product quality at the output. In the process industries, close control of a
laboratory measured variable to the specified target is frequently necessary in order to
meet the desired quality characteristic at the output. It is common that the effect of any
process adjustments is delayed beyond when the adjustment is made. This delay is
called dead time and may be caused by delay in performing laboratory measurements,
by processes that take a longer time to deliver material from the point of adjustment to

the sample point or by general inertia in the system or in the chemical reaction that is




occurring. The main focus of this thesis is the time series controller and its application
to reduce output variance and hence to aid in the control of product quality. This thesis
(i) addresses issues related to feedback control (closed-loop) stability without large
increases in the system or closed-loop gain by considering a ‘critically damped’
second-order system, (ii) gives direct indicatiqn, through simulation, of when to make
an adjustment (change) in the input variable and by how much the input variable should
be adjusted so that the mean of the quality variable is at or near target, (iii) the
simulation results provide information about the number of adjustment intervals (Als)
(sample periods) after which a sample needs to be taken and the process adjusted, (iv)
provides values of the required adjustment (dxt) in the input variable, the adjustment

variance (vardxt) and the variance of the control error (varCE) from simulation results

and (v) hypothesises use of the IMA parameter, @ as an on-line tuning parameter of the

close-loop time constant for use in Dahlin' algorithm by drawing attention to and

making inferences from the work of Harris, MacGregor and Wright {1982].

The sequential achievements of this thesis are:

(1) the development of a second-order model for a dynamic system with delay (dead
time)} giving proper justification for doing so giving due reference to the
conventional approach of describing a process by a first-order model,

(i)  use made of the Integrated Moving average (IMA)’s Exponentially Weighted
Moving Average (EWMA) property for making forecasts of the deviation (error)
from target,

(iii)  utilization of the time series controller’s one-step ahead forecast error variance

to predict forecasts over the dead time period,




{iv)  derivation of a stochastic feedback control algorithm for the required input
adjustment to compensate the output deviation due to disturbance, and a
simulation study using the algorithm to obtain the time series controller’s
performance measures,

(v) showing that the performance of a time §eries controller is superior to that of the
EWMA and CUSUM controllers from information obtained from simulation
results,

(vi)  achieving optimization under non-stationary conditions and

(vil)  the presentation of an outline for a process regulation scheme.

1.3 ORGANISATION OF THE THESIS
The thesis is organised into ten Chapters, Chapters 2 to 9 containing the body of
the thesis and Chapter 10 providing suggestions for further work at the interface

between statistical process control and automatic process control.

1.3.1 Review and Literature Survey of Stochastic Process Control

The second chapter relates to stochastic process control. It gives a review and
literature survey spanning the past 30 years. A discussion of statistical and automatic
process contro] 1s given and the terms algorithmic process control, feedforward control,
Jfeedback control and adaptive control are briefly explained. A comparison of adaptive
control with feedback control is made, bringing out the subtle difference between the
two. The effect of process dynamics (inertia) on control and the conditions under which
adaptation would facilitate feedback regulation are discussed. Some discussion on

controllers and in particular, the three term PID controller is given.




1.3.2 Discrete Stochastic Control and Direct Digital Control

The background of discrete stochastic control is reviewed briefly in Chapter 3.
The motivation and objectives of the thesis are explained as also its salient features. A
description is given of minimum variance control and minimum variance controllers. A
review of the design of sampled data controllers is made and the concept of direct
digital control explained. The need to identify dead time and its effect on sampled-data

(discrete) control systems is also explained. The role and characteristics of inertia are

described.

1.3.3 Dead-Time Compensation
The effects of dead time on the performance of a controller are described in
Chapter 4. The need for a dead-time compensator is explained as also is the principie of

working of some common dead-time compensators.

1.3.4 Stochastic Process Control Algorithm

The salient features of time series controllers are explained in Chapter 5 and the
control equation is derived for a feedback control model. An exponent of the criterion
for the time series controller algorithm is given and an approximate feedback control
equation is derived when there are disturbances and process dynamics (inertia).
Justification for considering second-order dynamic models and in particular, restricting
attention to the ‘critically damped behaviour’ of the second-order system are discussed.
An expression is also derived for the feedback control adjustment required in the input
variable of a time series controller. Time series controller performance measures are

explained and an outline of the strategy to be adopted to determine these measures is




also detailed. A review of Baxley's (Baxley [1991]) simulation study of statistical
process control algorithms for drifting processes is given. The Chapter concludes by
detailing how the experimental strategy for simulation studies used in that study can be

followed to find the controller (tuning) parameters.

1.3.5 Simulation Study of the Stochastic Process Control Algorithm

Simulation methodology to determine the time series controller performance
measures are discussed in Chapter 6 as also is the EWMA control charting procedure.
The simulation strategy and the drifts (fast and slow) are explained. A discussion of

Baxley’s [1991] and Kramer’s [1990] results is given before concluding the Chapter.

1.3.6 Time Series Controller Performaﬁce Measures - Analysis and Discussion |

An analysis and discussion of time series controller performance measures is
presented in Chapter 7. The simulation methodology and EWMA process control are
explained as too is the feedback control adjustment. The benefits and limitations of
integral control are briefly discussed along with details of a constrained variance control

scheme. The simulation resuits are discussed along with some inferences.

1.3.7 Process Regulation Scheme - An Qutline
A brief review of process regulation is given in Chapter 8 and an explanation of
a feedback control process regulation scheme given. An outline of such a scheme along

with a cost model are presented.




1.3.8 Controller Performance and Product Quality Control

The performance, limitations and robustness, in reference to the function of a
controller are explained in Chapter 9. The characteristics and requirements of a feedback
controller are given along with a brief discussion of the working of a direct digital
sampled data (discrete) controller. Examplqs of controller applications are also

provided.

1.4 CONCLUSION

This thesis considers mainly feedback control (closed-loop) stability problems
from the automatic or engineering process control point of view by the application of
process control techniques at the interface of SPC and APC. The literature on stochastic-
dynamic process control is replete with work by (statistical) process control speciaiists,
for example Box [1957], Box and Jenkins [1962, 1963, 1965, 1968, 1970, 1976],
Astrom [1970], Box and MacGregor [1974], MacGregor [1987, 1988], Harris [1989],
Harris and MacGregor [1987], Harris and MacGregor and Wright [1982]. It is
acknowledged that this work covers topics that relate to the analysis of closed-loop
dynamic-stochastic systems, assessment of control loop performance, on-line process
control, discrete stochastic and linear quadratic controllers etc. Unfortunately, these
valuable contributions along with the work done sepaxa;tely by control engineers in
automatic process control focus only on particular aspects of process control and are
very much disjointed. The main thrust of this thesis is to show that by proper modelling
of a dynamic process and the disturbance, with adequate dead-time compensation and

(feedback) integral control, it is possible: to minimise the control error standard




deviation (product variability) at the output by bringing the two methodologies together
for more efficient operation.

This research is aimed at finding a solution to the commonly occurring product
quality control problem by utilising both SPC and APC techniques. This thesis offers

solutions beneficial to both the scientific and technical communities.




CHAPTER 2
STOCHASTIC PROCESS CONTROL: A REVIEW

AND LITERATURE SURVEY

2.1 INTRODUCTION

In this chapter, the need for process control is explained and definition given to
the terms ‘statistical process control” and ‘automatic’ or ‘engineering process control’.
Some major contributions to process control by both statisticians and control systems
engineers are outlined and an explanation and review given of algorithmic statistical
process control. A brief description of proportional integral derivative and time series

controllers is also provided.

2.2 PROCESS CONTROL

The manufacturing industries may be broadly classified into two types: (i) the
component parts manufacturing industries and (ii) the process industries. Typical
examples of the component manufacturing industries are production and assembly lines.
The process industries, on the other hand, are typified by the manufacture of bulk
chemicals, powders or fluids, plastics, etc. This distinction is a broad one and there is in
fact a spectrum of types (Weatherill and Rowlands [1991]). A reality is that some
modern processes, such as the production of computer chips, are hybrids, using certain
manufacturing aspects of the parts industries and other aspects similar to that of the
process industries. ‘

Global production objectives are generally to achieve production targets at an

acceptable cost and to manufacture products of a desired quality in a safe manner with




the minimum possible harm to the environment. These goals are realised by monitoring
and controlling production. Controf tools are used:
(1) to detect changes in process performance from a stable state,
(11)  to identify the assignable or special causes of variation indicated by these
deviations and eliminate the same and/or
(1ii})  to adjust a relevant process variable or variables so as to maintain a performance
criterion in some desirable neighbourhood of a target value (Box and Jenkins [1963]).
The first two control actions of process monitoring and control are commonly
achieved by traditional statistical process control (SPC) techniques.
The objective of statistical process control, (explained subsequently in Section
2.2.2), is to engage in regular process surveillance in order to detect the presence of
special causes of variation. SPC aims to contain variation in output so that the level of
product quality is both predictable and satisfactory. In contrast, one of the main aims of
automatic process control (APC), (explained in Section 2.2.3), is to provide an
instantaneous continuous response, counteracting changes in the balance of a process
and to apply self-corrective action to bring the output close to the desired target without,
where possible, human intervention (Keats and Hubele [1989]). APC aims also to
maintain certain key process variables as near their desired values, called “set points’,
for as much of the time as possible in order to satisfy production objectives. One
approach is to ‘forecast’ the output deviation from target which would occur if no

control action were taken and then to act so as to cancel out this deviation.

10




2.2.1 Need for Feedback Control and Feedforward Control

The third process control action, mentioned above, is possible by an appropriate
Sfeedback or feedforward procedure that indicates when and by how much to adjust. This
is called adaptive quality control (Box and Jenkins [1962]). Feedback control systems
are frequently referred to as closed-loop system's. When knowledge of the value of some
fluctuating measured input variable is used to partially cancel out deviations of the
output from the target value, then the action is called feedforward control, (Figure 2.1),
When it is possible to use the deviation from target or error signal of the output
characteristic itself to calculate the appropriate compensatory changes that need to be
made, 1t is called feedback control (Harrison [1964]), (Figure 2.2). In some situations,
feedforward-feedback control, a combination of feedforward and feedback control, is

used.

MEASURED INPUT

VARIABLE FEEDFORWARD

CONTROL
SYSTEM

CONTROLLER
OUTPUT

DISTURBANCE | TROCESS [ cONTROLLED

OUTPUT
VARIABLE

Figure 2.1 FEEDFORWARD CONTROL MODEL
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Figure 2.2~ FEEDBACK CONTROL MODEL

Feedback that is amenable to computer control, is often termed empirical or
technical. Empirical feedback occurs when the reason for taking action is not very
complex in nature and predictable by a simple rule. The rule describes unequivocally the
control action that should be taken and the modifications that should be made.
Intelligent feedback results from the interaction of the human mind with information
obtained from experimentation as characterised by, cycle:- conjecture-design-
experiment-analysis (Box [1957]), leading to new ideas and models. One non-automatic
example of technical feedback is the use of quality control charts to indicate when
something is wrong and to highlight any abnormal variations in the behaviour of a

process (See Figure 2.3).
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Figure 2.3 STATISTICAL PROCESS CONTROL (SPC)

2.2.2 Control Charts and Statistical Process Control (SPC)

Control charts, the tools of SPC, are used to decide when to adjust the process
and when to leave the process alone as a result of either identifying special or assignable
causes of varability or concluding that only a chance cause system of variation is
present. Special causes should be duly accounted for when reacting to control warnings.
Control charts are used for detecting apparent departures from a model. A model is a
theoretical description that adequately accou;nts for the current behaviour of the system

and will allow reasonable prediction of its future behaviour. A model can be constructed
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by direct analysis of the physical laws governing the system. Due to lack of knowledge
of all the factors governing the system’s behaviour, it may not be possible to build a
complete model of the system. Modelling is combined with experimentation to obtain
data from the system. Various techniques are used to determine a model which best fits
the measured data (Hunt [1989]). Process monitoring and control is concerned with
regularly checking that the system continues to follow the assumed model and as such it
parallels hypothesis testing as a statistical procedute. SPC techniques help an analyst in
monitoring a process so as to detect and remove special causes of variability that are
inconsistent with the working model. SPC attempts to improve the process over the long
term by finding and removing these special causes. It may also subsequently prompt
action in an attempt to reduce product variability (control error standard deviation).
Single value, X-bar and range control charts, cumulative sum (CUSUM) charts and
exponentially weighted moving average (EWMA) charts are tools of trade employed in

SPC, (Figure 2.3).

2.2.3 Automatic Process Control (APC)

We refer to Section 2.2.1 in which we dealt with feedback and feedforward
control. In automatic process control (Figure 2.4), various forms of feedback and
feedforward control regulation schemes are used for process adjustment to make the
required change in the input level in order to compensate for the output deviation. If no
compensatory adjustments are made by taking proper control action, the process drifts
off target and the course followed by the output results in ‘disturbance’ (Box and
Kramer [1992]). Disturbance causes variabijity in the output or outputs of an otherwise

stable process by producing undesirable changes in the (output) mean. The need for
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process regulation arises when the system is afflicted with disturbances unless proper
control action 1s taken to compensate them.

APC is a collection of techniques for devising algorithms to manipulate the
adjustable variables of a process to achieve the desired process behaviour, namely,
output close to a specified target value. Automatic control of a process can be defined as
the maintenance of a balanced state by measuring one or more of the conditions
representing the balance and providing an automatic counteraction to any change in the
condition!. Control systems engineers call this ‘balanced state’ a ‘steady state’ of the
process. The steady state level of the output obtained is the value at which the discrete
output from a stable system eventually comes to ‘equilibrium’ when the input is held at

some constant value (page 338, Box and Jenkins 1970, 1976]).

DETERMINE
PROCESS UPDATE
ADJUSTMENT CONTROL | _(F ADAPTIVE)

ALGORITHM ~— ~

» i
\
| |

PROCESS ANDQUALITY
CHARACTERISTICS

Figure 2.4 AUTOMATIC PROCESS CONTROL (APC)

1 Adapted from the definitions used in the Science of Automatic Control by A.S.M.E.

Industrial Instruments and Regulators Division Committee on Technology, U.S.A.
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The ISA? definition of steady state is, ‘a characteristic of a condition such as a
value, rate, periodicity, or amplitude exhibiting only negligible change, over an arbitrary
long period of time’. The balance in the process may be a balance of any form of
energy, for example, heat or pressure (Eckman [1945]). Unstable processes may need
frequent control to stabilise them. Consequently, it is worthwhile to concentrate on
controliing stable processes (explained subsequently).

Control systems engineers are more concerned with the dynamics (inertial
characteristics) and stability of the system. The term ‘controlled process’ is often used to
mean a ‘process state’ that is (narrowly) interpreted as stationary having iid variation
about a target value (Wiel and Vardeman [1992]). An alternative, has ‘a state of
control’ as a process state in which future behaviour can be predicted within probability
limits determined by the common-cause system (Box and Kramer [1992]). If a state of
statistical control is identified with a process generating independent and identically
distributed (iid) random variables, control of such random processes by automatic
means invariably leads to an undesirable increase in process variability. Successful
application of APC requires that certain conditions are extant such as feedback (closed-
loop) control stability without large increases in closed-loop gain.

APC provides a continuous steady dynamic response, (‘the behaviour of the
output of an automatic control device as a function of the input both with respect to
time’), in counteracting changes in the balance of a process and must be properly
applied to obtain successful results. Oscillations, (for example, in a feedback control

system), of the output controlled variable above and below the set point results in a

2 ISA stands for Instrument Society of America Standard on Process Instrumentation

Technology (ISA-S851.1/1976).
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periodic change of the controlled variable from one value to another at a constant
amplitude and period, (called ‘cycling’) and it will take significant time for the process
to reach its steady state. The period of oscillation in such a feedback control system
depends on the combination of all dynamic elements in it including the controller
(control mechanism). During uniform oscillation of the controlled variable, a ‘signal’
passing through the feedback (path) returns to its starting point with exactly the same
amplitude one complete cycle later. If it is attenuated more than it is amplified by the
combination of elements through which it passes, the signal will gradually diminish in
amplitude and the oscillation is said to be ‘damped’. For ‘undamped’ oscillation to
persist, the product of ‘gains’, (‘ratio of output change to the change in input causing
it’), for all the elements in the feedback (path) must be unity ‘at that period of
oscillation’. At this particular period of oscillation, if, for some reason, the gain of the
elements in the feedback (path) exceeds the value of 1, each succeeding cycle will
exceed the preceding cycle in amplitude until some natural limit is reached, possibly
damaging the equipment (controller). A sound principle is to avoid gain products
exceeding unity because of the inherent dangers that are present in an ‘expanding’ cycle.
When the gain product is less than I, the oscillation will dampen and (in a ‘linear’
feedback control system) eventually disappear. 4 gain product of unity is then the limit
of stability of feedback control. In feedback comtrol, the conditions for uniform
oscillation serve as a convenient reference on which to base rules for controller
adjustment. An undamped oscillation may thus indicate the stability of a feedback
control system (page 8, Schinskey [1988]). The aim to increase the feedback (closed-
loop) gain of the controller (control mechanism) does not always result in making the

control system stable. In fact, such an idea, in particular situations, may make the
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system totally unstable. Without an increase in initial or a priori information, it may not
be possible to improve the feedback gain without bringing in a state of instability into
the system (Alonefits [1987]). Higher gains tend to drive the feedback control system
into instability and fo accentuate any (measurement) noise which is present in the
system. So, a limit exists in the allowable feec%back gain which amounts to a trade-off
between performance and stable operation of the system.

In situations where the cost of making an adjustment to the process is
considerable, APC can result in increased costs. APC, referred to as ‘engineering
feedback control’ is a short-term approach to control that attempts to minimise (output)
variation by transferring the predictable component of the output variation to the input
manipulated (control) variable [MacGregor] (Box and Kramer [1992]). The appropriate
engineering control strategy depends upon (i) the characteristics of the stochastic
{statistical) component of the process modelled by a suitable time series and (i) the
costs associated with making dynamic adjustments to process conditions.

The purpose of automatic control is to get maximum efficiency of process
operation by adjustment of a controller (control mechanism). By using a logical method
tor selecting controller adjustments and by suitable ‘tuning’, (which means, to have the
freedom of choice to vary the parameters of control), there is the potential for returns in
the form of efficient process operation. It is possible to formulate (design}) a control

mechanism by suitably medelling a probabistically predictable process (Box and

Jenkins [1970, 1976]).
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23 REVIEW OF CONTRIBUTIONS BY BOX AND JENKINS TO
STOCHASTIC PROCESS CONTROL

In recent times, several statisticians and control systems engineers have
endeavoured to define the contexts in which the various SPC and APC techniques can
be applied.

In the early 1960's, Box and Jenkins published a paper entitled Some statistical
aspects of adaptive optimisation and conirol [1962], In this paper, the authors explained
what is meant by adaptive control. For adaptive control, automatic and continual
identification of process dynamics (inertia) is used as a basis for the automatic and
continuing structural planning (formulation) of the controller features and characteristics

(parameters) (Hunt [19891), (Figure 2.5).

PROCESS

ADJUSTMENT | . cHARACTERISTICS | IDENTIFICATION OF
MECHANISM PROCESS DYNAMICS
CONTROLLER
PARAMETERS PROCESS
INPUT L~ MEASUREMENTS
\3 CONTROLLER CONTROL QUTPUT \
21 PROCESS Vi

Figure 2.5 ADAPTIVE CONTROL

Variation in process dynamics (inertia) can lead to a deterioration in control
performance. By modelling a process and its disturbance, it is possible to formulate a
control mechanism leading to the adaptive control situation (Box and Jenkins [1970,

1976]). A similarity exists between the process of adaptation and the complex process of

learning by the human mind. The concepts of adaptation are complex and more vague
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than other concepts in the context of automatic control. A range of definitions link
adaptive control to artificial intelligence by trying to simulate the human learning
process (Bar-Shalon, Gershwin [1978]). It may be worthwhile to compare adaptive

control with feedback control.

One of the main reasons for the use of feedback control is the reduction of the
effect of parameter variation; but the degree to which achieving the overall objectives of
formulating (designing) a control mechanism depends critically upon the level of
available knowledge about the process dynamics (inertia) (Hunt [1989]). This raises the
matter of the distinction between adaptive control and feedback control. It also provides
a clue that adaptation is closely connected with the lack of a priori information. Putting
these ideas in a nut shell, adaptation may be viewed as ‘the estimation of information
that, if given a priori, would enable feedback regulation (Caines [1988]) in a process
control system whose dynamics are uncertain or time-varying and which has the ability

to continuously adapt to changing process conditions” (Hunt [1989]).

The remark of Caines and Chen [1985], that some further level of adapration
must be used if it is desired to relax presently required a priori information, results in
some kind of hierarchy of feedback and points to the iterative nature of adaptive
control. The distinction between feedback and adaptation is not crystal clear. However,
in a certain sense, it may be said that while adaptive control removes ignorance about
process dynamics, feedback control copes with ignorance. The term adaptive automatic
control may be applied to a system that does not require, for its construction and
operation, complete initial information regarding the controlied process, yet it ensures a
value of the criterion chosen (output) close} to its {external) target value. If the initial

information regarding the controlled process is incomplete, there is a need to use an
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adaptive system, since such an adaptive system is able to adjust to changing external
conditions, change its parameters when these external conditions change, and, in short,
adapt itself to the new situation (Andreyev [1969]). It is the lack of knowledge of the
system model parameters as opposed to some other quantity that makes the problem an
adaptive one. This thesis will generally be dealing with such parameter adaptive control
(explained in Section 3.6), (Figure 2.6) problems only when there is lack of knowledge
of the system model parameters. Bayesian and Non-Bayesian classifications (Alonefits
[1987]) of adaptive control will not be addressed. Adaptive quality control is explained

in Figure 2.7.
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Feur and Morse [1978].
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Figure 2.7 ADAPTIVE QUALITY CONTROL

In the above figure, the input variable 'X' and the output variable 'Y' of the main
control loop are applied to the 'caleulating element' of an adaptive system.

The calculating element determines the required system characteristic by using
the initial and 'working information' (‘the set of facts regarding the controlled process
that are obtained during the course of operation of the system) which includes
information about the deviations of the characteristics of th¢ main conirol loop as a
system that adapts itself to a standard. The characteristic of the system thus determined
i1s compared with a standard system and in accordance with the results of this
comparison, a ‘command' is given to the 'governing element'.

The governing element changes the parameter (y,) being adjusted in such a way
that the actual characteristic of the system approaches that of the standard system and
feeds the main control loop.

*Extract from Andreyev [1969], pages 311 and 312. O

22




Box and Jenkins published another paper, a year later, entitled On Jurther
contributions to adaptive quality control [1963]. In their paper, Box and Jenkins [1963],
developed some approaches to control problems in both the parts and the process
industries. In the former, the approach led to a control procedure similar to Shewhart
control charting. In the latter, their approach to a specific problem in the chemical
manufacturing industry led to control procedures that were similar to those used by
control systems engineers. The authors concluded that complete automatic control is not
possible without analytical techniques. The authors’ view was that the cost of automatic
control and the analytical hardware required cannot always be justified. In situations
where it is possible to justify the use of automatic control, it may be possible to improve

manual adjustment by using the mathematical ideas behind automatic control.

This led further to Mathematical models for adaptive control and oprimisdrion
by Box and Jenkins [1965]. In building their models, they followed an evolutionary
(adaptive) approach by submitting mathematical ideas to practical fest, modifying
appropriately and retesting the models. In the paper, the authors set up realistic and
flexible stochastic models for disturbances which force the system, unless controlled,
away from their optimal operating conditions. They used the process knowledge and
took care of the inertia or dynamics of the system which makes the control actions
needed to combat these disturbances, more complex in nature. In doing so, they found
methods for estimating the unknown parameters in the models from process input-
output data. They also used the models, after fitting parameters, to design optimal

control schemes.

In subsequent papers, (part I and II)‘, Box and Jenkins [1968] discussed some

forecasting and control problems for situations requiring a control scheme which adjusts
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some variable, whose precise effect on the quality characteristic is known, so as to
minimise the variation of this quality characteristic about a target value. In part I ([Box
and Jenkins [1968]), the authors described an iterative mode! fitting procedure using a
process of identification, estimation, diagnostic checking, refitting and rechecking to
find a satisfactory representation.

In part Il of a second paper, (Box, Jenkins and MacGregor [1974]), the authors
described how stochastic and dynamic models may be brought together to design
feedforward and feedback control schemes. They showed how the parameters in the
stochastic and dynamic models may be simultaneously estimated from measurements

made on the operating system.

2.4 STOCHASTIC MODELS AND STOCHASTIC DISTURBANCES

In process control, it is common to come across disturbances (noise) that are
drifting or non-stationary in nature. The importance of considering disturbances of this
type was known to control systems engineers from the early stages of the development
of deterministic control theory. This theory was developed to provide tools to analyse
and synthesise a large variety of feedback control systems. Results from various
branches of applied mathematics and control problems were used in developing this
theory. The early development focussed on stability theory and the theory of analytic
Junctions. Due to complexity and the stringent performance criteria required of
controlled processes, the theory of optimal control of deterministic processes was
developed using the tools of the calculus of variations. In controlling deterministic
processes, no significant distinction was macie between a feedback control system and a

feedforward control system and no dynamics (inertia) were assumed in the feedback.
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There were some drawbacks in using deterministic control theory, such as not using
realistic models for disturbances and postulating them as a function which is known a
priori. In the framework of deterministic control theory, many of the classical methods
were capable of dealing with disturbances in an heuristic manner (Hall [1956]). The
effects of the disturbances were required to be predicted by suitable models. There
existed many situations where there was a need to model the disturbances in a proper
and fitting manner. It was possible for statisticians to describe such disturbances in the
form of stochastic time series models.

Since analytic functions are limited in their capacity to accurately model, the
potential for the use of 'statistical models' became apparent. Barnard [1959] and Bather
[1963] linked the control problem and SPC charts. Barnard [1959] suggested that for a
‘wandering’ industrial process, it is possible to make improvements in pro'cess
adjustments by means of a model that closely described the disturbance, by using
control charts and its signals. He suggested that it may be useful to view the primary
function of a control chart as providing an estimate of the current process mean, which
in turn, is connected with the control problem. Other statisticians, Box [1970], Jenkins
[1970] and Astrom [1970] endeavoured to provide an answer to the problem of how to
characterise and model the disturbance.

A 'deterministic model’ makes possible exact calculation of the value of some
time-dependent quantity at any instant of time. In many process control problems, it
might not be possible to write a deterministic model to calculate the future behaviour
exactly, because of unknown factors. However, it might be possible to derive a model
that could be used to calculate the probability of a future value lying between two

specified limits. Such a model is called a 'probabilistic' or a 'stochastic model'.
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Box and Jenkins [1970, 1976] adopted this approach and made a major
contribution to stochastic control. Since a disturbance causes a process to drift off target,
it 1s necessary to compensate for this by taking proper control action. For process drifts
arising from disturbances, the true process level is not even a stationary stochastic
process (Box and Kramer [1992]). A process ‘in which the mean is varying in nature
with respect to time can be described as a non-stationary disturbance. A stationary
disturbance represents the situation where there is no drift in the mean and the process is

in a perfect state of control,

Disturbances entering at various points of a process are often persistent in
nature, such as variations in ambient temperature or a change in the properties of
feedstocks to a process input. In many instances, it may not be economically possible or
physically feasible to eliminate these. Disturbances envisaged as the result of a sequence
of independent random shocks are represented by a first order (linear) differential
equation and as dynamic control systems in continuous time. Such a system is referred

to as a “first-order dynamic system’.

Control systems engineers described the system model behaviour in which the
response of a system to a given input is certain and well defined (deterministic). The
engineers used Laplace transforms to obtain simplified solutions (Deshpande and Ash
[1981]). The linearity assumption supplies an approximation for many practical
situations. In a similar manner, in dealing with discrete processes, linear difference
equations are employed to represent the processes in which the sampling intervals are
short enough so that the dynamic or inertial properties of the process cannot be ignored.
A first-order process may be represented b;}f the first-order difference equation when

sampled at discrete intervals or by the first-order transfer function or ‘filter’, (the term
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used in engineering terminology, by control systems engineers), (cf. MacGregor
[1987)).

Later, Box and Jenkins compiled their series of papers into a book entitled Time-
series analysis: forecasting and control. This book was first published in 1970 and later
a second revised version in 1976 (Box and .{enkins [1970, 1976]). In this book, an
approach for dealing with drifting processes by a class of stochastic time series models
called autoregressive integrated moving average (ARIMA) models is described in
detail. These are used to describe the stochastic disturbances to the system and to
provide a means of modelling the process dynamics (inertia). These time series models
characterise and forecast the drifting behaviour of the process when no control action is
taken and describe the dynamic relationship between the controlled variables (outputs)
and the manipulated variables (control inputs). A feedback control algorithm, derived
from these models, minimises the variance of the output controlled variable at every
sample point that exactly compensates for the forecasted disturbance. Models of this
kind are used in inventory control problems, in econometrics and to characterise certain

disturbances that regularly occur in industrial processes.

2.5 MODERN TIME SERIES ANALYSIS AND CONTRIBUTIONS OF
ASTROM

Modem time series analysis is a subject embracing three closely related fields
which have tended to develop somewhat independently. These are:
(i) Statistical communication and control theory
(ii) The probabilistic theory of stochastic'processes possessing finite second

moments and
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(i) The statistical theory of regression analysis, correlation analysis and spectral
(harmonic} analysis [Parzen] (Box and Jenkins [1962]). Prior to the publication of the
book by Box and Jenkins, Astrom [1970] published a book, entitled Introduction to
Stochastic Control Theory, in which he makes some noteworthy contribution to the
control of stochastic systems. These books are important milestones in modern time

series analysis.

2.6 CONTRIBUTIONS OF CONTROL SYSTEMS ENGINEERS

Control systems engineers, performed impeortant applications in the field of
electrical control systems. The engineers were concerned with systems in which the
response to a given input is certain and well defined (deterministic). They described the
system model behaviour and technical feedback by means of a set of differential
equations. These equations, describing the problem in continuous time, are solved by
use of Laplace transforms. A large number of books and papers have been published in
the control systems engineering area, for example in the design of direct digital control,

PID controllers and in the design of discrete data sample systems.

2.7 CONTRIBUTIONS OF OTHER STATISTICIANS TO STOCHASTIC
PROCESS CONTROL

In 1986, Alwan and Roberts published a paper, Time Series modelling for
Statistical Process Control. In this paper, the authors took a two-fold approach trying to
make a possible union of time-series modelling and traditional ideas of process control.
Hoadley [1981] and Hunter [1986] perceived similar ideas of integrating time-series

modelling and process control.
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MacGregor [1987] published a paper, Interfaces between process control and
on-line statistical process control, in which he outlined areas where the operations of
APC and SPC are common and overlapping.

Following this work, two papers were published in 1989, one by Harris on the
same subject and one by Van der Weil, Tucker fmd Faltin [1989]. In the second of these,
the authors explained what is meant by Algorithmic Statistical Process Control (ASPC)
(Figure 2.8) and gave an appropriate literature review, while discussing its
implementation, ASPC is the term used by the authors for an integrated approach to
quality improvement, an approach that realises quality gains through appropriate
process adjustment and through elimination of special causes of variability signalled by
process monitors.

Two papers, one on Statistical process monitoring and feedback adjustment
(Box and Kramer [1992]) and another, ASPC: Concepts and an application (Van der
Wiel, Tucker, Faltin and Doganaksoy [1992]) have renewed interest and rekindled
discussion on the integration of the two process control disciplines.

The second paper gave an insight into obtaining better product quality through
an integration of techniques from both the methodologies. Through appropriate process
adjustment and by eliminating assignable causes of variability signalled by statistical
process monitors, it may be possible to achieve an improvement in quality. It is the
contention of the authors that ASPC reduces predictable quality variation using
feedback and feedforward techniques and then monitors the complete system to detect

and remove the causes of unexpected variation.
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ALGORITHMIC STATISTICAL PROCESS CONTROL (ASPC)
* Taken from Tucker, Faltin and Vander Wiel [1991]

ASPC advocates that compensatory adjustments be applied in conjunction with
rather than in competition with SPC. The authors refer to literature that concerns control
of stochastic systems relevant to the algorithmic part of ASPC (Astrom [1970] and Box
and Jenkins [1970, 1976]). They refer also to MacGregor's work on On-line statistical
process control [1988] in which the author suggested that SPC charts be used for
statistically monitoring the performance of a feedback (closed-loop) control system.
Even before MacGregor's suggestion, Bather [1963] and Barnard [1959] had linked the
optimal control problem and SPC charts as rﬁentioned earlier in Section 2.4. MacGregor

[1988] reviewed the basic concepts from stochastic control as well as from so called on-
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line SPC methods, pointed cut similarities, overlap and cited reasons for lack of
interface between the two fields. Box and Kramer [1992] gave overview descriptions of

both methodologies delineating their similarities and differences.

2.8 ALGORITHMIC STATISTICAL PROCESS CONTROL (ASPC)

The aim of ASPC is to use SPC and APC methodologies to perform the separate
functions of process monitoring and control. ASPC is the term given by Scott A. Vander
Wiel, Tucker, Faltin and Doganakscy [1992] to represent the situation in which
techniques from both the methodologies are employed in a synergistic way to make
quality gains. In ASPC, the role of statistical monitoring is to detect and give (warning)
signals when the operation of the closed-loop process is not consistent with the
estimated model and the control algorithm. ASPC represents a proactive approach to
quality improvement. Variations in product quality are reduced in two ways, one
through algorithmic compensation for predictable deviations and the second through

elimination of special causes of variability as signalled by statistical monitoring charts.

2.9 REVIEW AND DEVELOPMENT OF ALGORITHMIC STATISTICAL
PROCESS CONTROL
2.9.1 Feedforward And Feedback Control Medels

A feedforward control model is proposed when the major disturbances to a
production system can be measured. Feedback control may be applied, when the
primary sources of disturbance are either not known or cannot be measured. Making use
of the available knowledge of the prodlfction process and the serially occurring

industrial data (which are very likely correlated), it is often possible to build stochastic
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models to represent and model the disturbances. Box and Jenkins [1970] expressed the
process inputs and outputs in terms of time series and described the disturbances by
time series models in order to manipulate the system for control purposes.

Feedforward or open-loop control is used to eliminate the effect of some
fluctuating measured input by making an adjustment from direct calculation of its effect
on the output. For a specified target value of the output, the feedforward control model
gives an estimate of the required change to be made in the compensating variable to
minimise the mean square error (sum of the squared deviations between an output
value and the target value). When the time series model predicts an out-of-control
signal for shifts in the mean of the quality deviations from target, changes are made to
the compensating variable to offset the effects of the predicted situation (Keats and
Hubele [1989]).

Feedback or closed-loop control uses past output deviations from target to
determine a process adjustment. The approach makes use of the error (difference
between the output and the target values) as the mechanism of identifying changes to the
input. Using time series analysis, the effect of the disturbance in the absence of a control
action is estimated and a dynamic model is developed linking the input and the process
output.

Automatic feedback control is an adaptive process since, (i) the feedback from
the output changes the process variables to maintain the output close to some desired
target and (ii) there is no initial information regarding the disturbances. The intention of
feedback control action is to minimise the system variation, which in the process

industries includes drifts along with measurement error.




2.10 PROPORTIONAL INTEGRAL DERIVATIVE (PID) CONTROLLERS

In feedback control systems, the process adjustments (control actions) are
performed either manually or by automatic means through the use of 'controllers’. A
digital computer connected directly to the process accomplishes the execution of the
control action by observing the system so thajc the available data appears in discrete-

time.

Slow changes are encountered in many chemical processes. Under such
circumstances, it may be adequate to monitor and take whatever control action is
necessary at convenient time intervals. For many automatic controllers, as soon as the
measurements are made, the control actions are initiated immediately. By means of the
discrete data, the adjustments are made to bring the process into a state of control. With
the process data available, it is possible to control the mean square error, about the
target by proportional-integral feedback control schemes (Box and Kramer [1992]).

The proportional plus integral (PI) controller makes a compensation (correction)
(which lags behind the trend, if any, in the disturbance) proportional to a (linear)
combination of terms involving the deviation and the integral of all the previous errors.
A PI controller is a 'standard linear controller’. A special case of such a controller is,
regulation based on the control-modified EWMA statistic.

The proportional integral derivative (PID) controller is a modified form of the PI
controller in which an additional term involving the first derivative with respect to the
time of the error is included. This type of automatic control action makes a correction
which is proportional te a (linear) combination of (i) the first derivative of the current
deviation ('the difference between value of the output controlled variable and position

of the final controller set point’), (i) the deviation itself and (iii) the integral of the
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deviations over all past history (Box and Kramer [1992]). PID controllers, also known
as three-term controllers, are automatic, continuous time controllers. These controllers
(1) are not capable of providing tight control over processes in which the effect of an
adjustment is delayed unti] the following sample due to time taken to deliver material
{rom the point of adjustment to the sample po‘int (called, the ‘dead time’), (ii) tend to
perform poorly unless ‘detuned’ in the face of dead times in order to take necessary
action at each sampling instant (page 428, Harris, MacGregor & Wright [1982]), and
(iii) are not suited to direct-digital (discrete) control. PID controllers are also not capable
of producing control actions that might be called for by a minimum variance feedback
controller (page 437, Box and Jenkins [1970, 1976]). Time series controllers employ
stochastic characteristics to regulate production processes. With time series controllers,
it is possible to provide tight control of processes with dead time and to provide
minimum variance at the same time. PID controllers are compared with time series
controllers by Palmor and Shinnar [1979]. A description of time series controllers, their

statistical control algorithms and performance measures are given in chapter 5.

2.11 CONCLUSION

In this chapter, we have discussed statistical and automatic process control. A
review of the contributions of statisticians and control systems engineers has been
given. Explanation of the terms feedforward control, feedback control, adaptive control
and algorithmic statistical process control have been provided. A comparison of
adaptive control was made with feedback control. Various kinds of controllers have

been discussed, in particular, PID controllers.
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In the following chapters, attention is focussed on time series controllers which
take the hypothesis setting approach to decide whether or not the process mean is on
target. Process monitoring parallels hypothesis testing and concerns continuous
checking of the assumed process model. Checking for a state of control is regarded as a
test of a null hypothesis. An hypothesis that is 'alternative to this has a “state of control’
as a process state in which future behaviour can be predicted within probability limits
determined by the common-cause system. It may be possible that sudden and substantial
shocks impinge on the constant cause system of a process that was in a state of control
Against such an alternate hypothesis, the three-sigma control limits provide enough
control to detect shocks without sounding false alarms that may be present when the
shocks are not there in the system (Alwan and Roberts [1986]). In this context, a review
is given of a method suggested in Simulation study of statistical process control
algorithms for drifiing processes by Baxley (Baxley [1991]) in Chapter 5. Later, use is
made of some of the principles developed in the simulation to formulate a time series
control algorithm which takes into due consideration drifts and dead time (delay) in the

process and its dynamic characteristics.
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CHAPTER 3
DISCRETE STOCHASTIC CONTROL AND

DIRECT DIGITAL CONTROL

3.1 INTRODUCTION
3.1.1 Background of Discrete Stochastic Control

SPC and APC techniques overlap (explainéd subsequently), in the areas of on-
line quality control and the control logic based on knowledge about the nature of the
process and the disturbances. Stochastic control theory provides a means to explore this
area of overlap between SPC and APC. Process knowledge is necessary to make
meaningful decisions in responding to the upsets occurring in a process due to
disturbances. Knowledge about the nature of the disturbances (noise) is necessary to
detect out-of-control state situations and to estimate the true levels of the output
deviations from the required targets. Coping with delay or dead time (defined in Section
3.6.1), the inability of a process to adapt to an adjustment, is important part to effective
operations. The need to identify the dead time and the effects of system dynamics
(inertia) (explained in Section 3.8) while controlling a process are discussed in this
Chapter. The design of sampled data controllers (Palmor and Shinnar [1979]) is
reviewed and a brief description given of direct digital control (DDC) with justification
for its use. Some methods to compensate for the dead time are discussed as also is the
role of the IMA parameter, r which measures the rate of drift of the process.

MacGregor [1988] suggested the use of statistical process monitoring on closed-
loop (feedback) control systems and pointf;d out the overlap between SPC and APC

when (i) control actions have their full effect on the process outputs in the immediately
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succeeding periods, (ii) process noise (disturbance) is modelled as a first-order
integrated moving average process (IMA), (iii) a fixed cost is associated with taking any
non-zero control action and (iv) additional costs are assessed in proportion to the
squared deviation of the outputs from the required target. Unfortunately, there are
situations, especially in the process industries, when the control actions (‘'adjustments”)
have little or no effect on the process outputs in the immediately succeeding periods due

to dead time and dynamics (inertia).

3.2 THESIS OUTLINE AND SALIENT FEATURES
3.2.1 Thesis Outline

The traditional Shewhart control charting procedures, when there are drifting
disturbances, have a relatively high 'control error variability' compared with time séries
controllers {described in Section 5.2) under a similar situation (Baxley [1991]). This is
one of the reasons for studying the performance of time series stochastic feedback
control algorithms for drifting processes. Another reason is that Baxley [1991]
contended that the performance of time series controllers for some particular cases is
well known. A more general approach to the control of product quality by simulation of
statistical time series process control algorithms for drifting (dynamic) processes with
the existence of dead time (time delay) is made in this thesis. Baxley [1991], in his
'simulation study of statistical process control algorithms for drifting processes’ (Baxley
[1991]), (reviewed in Section 5.10), provided results for only some 6 values of the time
series controller for the IMA parameter, ® ranging from 0.25 to 0.75 for the dead time,
b =0 and 1 only and for the dynamics (inertia) = 0. Baxley [1991] derived the

statistical algorithm considering the drifting nature of the process and not the process
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dynamics and closed-loop (feedback control) stability. Kramer [1990] considered values
of ® ranging from 0.1 to 0.9 and b =0 only.

This thesis studies cases where dead time values, b range from 1 to 2. Baxley
[1991] considered a (first-order) system with delay described by a first-order dynamic
model. The mathematical derivation of the feedback control algorithm from first
principles given in this thesis proposes a novel process 'control' approéch which requires
only an increase in the order of the system (second-order) and leads to a dynamic model
requiring less computer storage and less computing time for simulation of the algorithm,
Some of the features of good (feedback) control considered : (i) Permissible gain of the
feedback (closed) loop, (ii} Stability of the feedback control loop and (i1} Precise
regulation of loops containing dead time. The control engineer faces a challenge in the
control of production processes involving time delays (dead time) because of their non-
linear nature. The significant amounts of lag(s) introduced (by the dead time) into the
system response frequently makes use of conventional control algorithms a poor
prospect. The innovative feedback control algorithm obtained gives minimum variance
control even in the presence of dead time and it is shown that it has both integral action
and dead-time compensation (explained in Chapter 4). Integral control is extensively
used in the continuous process industries for control of noisy, drifting processes. The
use of the ARIMA (0,1,1) stochastic model to describe non-stationary disturbances
implies necessarily integral action in the controller. There need not be any constraint
placed on the input variable in order to obtain minimum variance at the output. Process
control loops containing pure dead time are difficult to stabilise with conventional three-
mode or three-term (PID) controllers (explained in Section 2.10). In the (control

engineering) literature, (Smith [1957]), it is suggested to use an integral or 'floating'
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controller (Buckley [1960]) for control of a (dynamic) process with dead time. The
integral controller is simple in operation and easy to adjust. The time series control
algorithm derived in this thesis gives information about the adjustment intervals (Als)
(sample periods), obtained via simulation. Sampling and adjustment done at these Als
result only in a slight increase in control error variability and does not call for an
adjustment every time a sample is taken.

Shewhart charts lack the capacity to detect small skifis in the process mean
unlike the EWMA and the CUSUM charting methods which detect such shifts more
rapidly. So, an intermediate charting method, such as the MTA {machine tool‘
adjustment} chart, developed by Kramer [1990] is required which can detect such shifts
at a pace that would enable proper control action to be taken economically at the
appropriate time. Box and Jenkins [1963] developed minimal cost procedures and
mentioned their similarity with Shewhart charts. These procedures have been developed
and extended by Kramer [1990] to include monitoring and adjustment costs when the
system has no dead time (time delay). A time series controller with suitable design
parameters (Chapter 7) and an outline of a process regulation scheme is proposed
(Chapter 8). The EWMA controller is not explored in detail for the reason that the
feedback control equation does not adequately provide a term for compensating dead
time, which is possible in a time series controller algorithm; and moreover, the EWMA
controller requires a 'controller gain' (explained in Section 6.6) below one in order to
avoid over-control (Baxley [1991]). The CUSUM controller with accompanying
CUSUM chart and V-mask is complex for analysis, particularly when the process

dynamics and the dead time are to be considered.
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3.2.2 Salient Features

The salient features of the thesis are
(i) Drifting processes due to disturbances are modelled as ARIMA (0,1,1) non-
stationary time series for values of 0 < ® < | and categorised as 'fast' or 'slow' drifts
(explained in Section 6.7.2).
(i)  The presence of dead time in the process requires that forecasts are made of the
disturbance and these are provided using the EWMA made over the delay period as
explained in Chapter 6.
(iii)  The property of the time series controller is used to obtain the necessary one step
ahead forecasts.
(iv)  The feedback control algorithm (Chapter 5) gives information about when to
make an adjustment and by how much.
(v) The IMA parameter, ® is used as an on-line tuning parameter for dead-time
compensation.
(vi)  Complex processes are represented by a second-order dynamic model.
(vii)  Dead-time simulation (explained in Chapter 3) is used for comparing variances
at the sampling points.
(viil) Extensive simulations, approximations and use of special triple-entry -tables are
not required (as in the regulation schemes of Box and Kramer [1992]).
(ix)  Closed-loop (feedback) control stability is taken care of by considering a
‘critically damped' system by keeping the system gain (g) less than 1.0 and
(x) The stochastic feedback control algorithm provides minimum variance control

even in the face of dead time and process dynamics.
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3.3 MINIMUM VARIANCE CONTROLLERS

Control error variance (also called mean square error or mean square
deviation, explained in Section 3.3.1) is a(n arbitrary) benchmark to measure the
theoretical best achievable control performance and to evaluate the performance of the
feedback control strategy employed. Suppose that this theoretical best achievable
control represents a significant improvement over current performance, then, this
feedback control strategy can possibly be considered as standard if this improved
performance is required and warranted. However, if the best achievable performance
itself is inadequate, alternate approaches such as feedforward control may be used to
achieve such a reduction in variability. The controllers employing this principle of
minimum variance for process control are termed minimum variance controllers. Box,
Jenkins and MacGregor [1974] discussed in their paper, 'Some recent advances in
forecasting and control, part II', the relationship between minimum variance controllers
and methods used in statistical process control (SPC). They showed that the feedback
control algorithms of minimum variance controllers are similar to most feedback control

algorithms derived by using statistical process control (SPC) methods.

3.3.1 Minimum Variance Control

A feedback control strategy to minimise the mean square of the output deviation
(error) from the target is by minimum mean square error ('sum of the squared deviations
between an output value and the target value') or variance control. Minimum variance
control is the best possible control in the mean square error sense for processes
described by linear functions with disturbances which can be added together and treated

as a single disturbance for purposes of mathematical analysis and convenience. Its
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implementation may demand aggressive control much in excess of what is (normally)
required and so may not be practically desirable. However, minimum variance control
provides a convenient bound on achievable performance against which the performance
of other controllers may be compared. Such a basis is important in the context of
deciding corrective control actions. Harris [1989] described a technique to ascertain the
best theoretically achievable feedback control performance as measured by the output
mean square error. The performance of an optimal stochastic minimum variance
controller depends upon the form and parameters of the dynamic stochastic model used
for the disturbance (noise). The form of the stochastic model considered here is the
autoregressive integrated moving average (ARIMA) time series model.

An inherently continuous system, when sampled periodically, followed by a

sequence of 'discrete control’ actions, is called a 'sampled-data’ system (explained in
Section 3.5.3). Examples of sampled-data systems are found (i) in power electronics,
(ii) in signal transmission, in ‘pulse’ form in biological nervous systems and (1ii) in the
generation of a 'torque pulse' at each ignition that synchronises the operation of an
internal combustion engine. Systems where the signals are sufficient to describe the
system's behaviour at the sampling instants at discrete times are called 'discrete-time
systems'. In discrete control systems, time delays are integral multiples of the 'sampling
period’ (known as the 'clock period').

Univariate stochastic control theory based on discrete time series dynamic
(transfer function) models for the process and its disturbances, leads to digital control
algorithms. These algorithms include the classical PID (proportional, integral and
derivative) and dead-time compensation, (explained in Chapter 4), terms. Palmor and

Shinnar [1979] gave a set of rules to choose the parameters of discrete controllers with
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dead-time compensation and stability properties. For this purpose, they used the
structure of a particular form of étochastic controller proposed by Box and Jenkins
[1970, 1976] (Harris, MacGregor and Wright [1982]). The results of Palmor and
Shinnar [1979] are discussed and efforts made to follow some of their rules to determine
the process parameters of a time series controller with suitable compensation for dead

time.

3.4 DESIGN OF SAMPLED DATA CONTROLLERS - A REVIEW

Palmor and Shinnar [1979] unified some of the ideas of stochastic control theory
and provided certain control algorithms. In their paper, they gave an overview of the
design of sampled data controllers. The design was based on the connections between
these discrete controllers, which have the required dead-time compensation and stability
properties, and other control techniques aimed at solving specific problems. The authors
introduced the basic ideas of the design of minimum variance and constrained minimum
variance controllers and considered the properties of the resulting control algorithms. In
particular, they showed the relationship between the dead-time compensation terms in
these stochastic controllers and the dead-time compensation via the predictors which
employ the Smith [1957] prediction techniques. Palmor and Shinnar [1979] presented
an analysis of the stability of these stochastic controllers and their properties. They
discussed also the situation when there is substantial error in the estimated process dead
time. For this, they recommended reducing the gain of the optimal controller in order to
make amends for the improper cgmpensation of the 'phase (change in the slope of the
input-output curve) lag' due to the dead time by providing a 'phase lead' term in the

controller.
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3.5 DIRECT DIGITAL CONTROL (DDC)
3.5.1 Digital Computers Application to Process Control

Use of automation techniques in industry made it possible to apply digital
computer capabilities for the solution of process control problems. The development of
minicomputer technology combined with the knowledge gained about computer process

control has led to an increase in the application of digital computers to process control.

3.5.2 Direct Digital Control (DDC) - CONCEPT

Digital computers are used for on-line automatic process control (APC) to
monitor processes, where the output is measured and the input is changed only at
discrete intervals of time. Computer based controllers incorporating tuning tools make
complex algorithms practically possible.

Direct digital control (DDC) is the term used for controlling processes directly
by computer. DDC highlights some basic control functions such as problems relating to
choice of sampling period, ('the time interval between observations in a periodic

sampling control system'), control algorithms and reliability of processors.

3.5.3 Direct Digital Control (DDC) or Sampled-Data Systems

A measuring system senses the value of the output controlled variable in the
traditional (conventional) feedback control system and transmits a message dependent
on it to its controller. The controller compares this value with the value of the chosen
controlled variable, called the desired value - or an input variable which sets the desired
value of the controlled variable, called the set point, so as to generate a deviation called

the error. The controller acts on this error to produce a control signal. This signal is then
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fed to a final control element, which is an automatic positioning valve to reduce the
error. In sampled-data (discrete) digital control systems, in contrast to conventional
control systems, the discrete (digital) signals represent information by a set of discrete
values in accordance with a prescribed law.

The electrical signal, in a basic sampled-data (discrete) (digital) control system,
represents the output controlled variable and is fed to a device called an analogue*-to-
digital converter, where it is sampled. The sampling period, a constant in process
cqntrol applications, is called the 'clock period' in digital computer terminology. The
value of the discrete (digital) signal is compared with the discrete form of the set point
in the digital computer to produce an error. A control algorithm is executed yielding a
discrete controller output. This discrete (digital) signal is then converted to an electrical
signal by a digital-to-analogue converter and then fed to a final control element. The
control strategy is repeated so as to achieve closed-loop (feedback) computer control of
the process and this type of sampled-data (discrete) control technique is referred to as
‘direct-digital computer control’ (*An analogue system is one in which the data are
everywhere known or specified at all instants of time and the (input, output) variables
are continuous functions of time).

In a sampled-data (discrete) control system, the analogue controller in a
conventional control system is replaced by a digital computer and the control action
produced by the controller in the feedback (closed) loop is initiated by the computer
programme. The feedback controller is a special-purpose analogue computer used in the
direct digital (discrete) (sampled-data) control of production processes. Digital
computers automatically collect data about a process and its operating conditions and

provide details about the product produced by the plant, its reliability and specifications.
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It is possible to achieve the objectives for sampled-data (discrete) digital control (DDC)

by using digital techniques in the process control of some time-delay models.

3.5.4 Justification for the Use of DDC

The use of digital controllers offers advantages such as (i) making available a
wider selection of process control algorithms than in analogue controllers, (ii) faster
calculations, (iii) logic capabilities, both at the controller input and the output, (iv) on-
line restructuring of (control) loops and (v) adaptive-control features. Factors in
justifying computer contrel for a given application include the number of conventional
controllers that are to be replaced by digital computers and whether or not there is better
process control performance. The computer needs to be used to automate functions and
operations that could not be automatically accomplished earlier. Feedforward control,
dead-time compensation and optimal control techniques can be implemented by
exploiting the capabilities of the computer and by the use of DDC hardware systems.

Control strategies can be implemented that are otherwise impractical or
impossible with conventional analogue hardware. The availability of control computers
makes possible a type of hybrid approach to process control involving both the digital
capabilities and conventional analogue capabilities. The implementation of control
strategies is achieved by leaving those (feedback) loops with conventional analogue
control systems where feedback control is envisaged and employing direct digital
control (DDC) only for those process loops in which there can be significant

improvements made in control performance.
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3.5.5 Self-tuning {Adaptive) Control

Marshall [1979] showed that process control is possible if a system is
sufficiently understood to be modelled. Time-delay control systems benefit from
improved process modelling. Good modelling makes possible the application of the
principles of prediction to the stochastic disturbances in order to improve control.
Identification methods for systems afflicted by disturbance on-line give estimates
recursively for use in adaptive controllers. Parameter estimation (identification) methods
result in adaptive control. Control systems combining recursive methods of estimation
and use of minimum variance controllers are called 'self-tuning' (adaptive) controllers.

Digital computation facilitates simultaneous estimation of parameters and on-
line control and provides the required computer solutions for adaptive control. Process
regulation schemes that involve recursive techniques are programmed using micro-
processors. Modelling and formulation (design) of self-tuning regulators is by
(1) determining suitable model] structures, (ii) estimating model parameters recursively
and (tii) using estimates to calculate the control. A regulator (controller) with facilities
for tuning its own parameters is called a 'self-tuning regulator'. The self-tuning regulator
controls processes by suitably altering algorithms to track process parameters which

change with time.

3.6 DEAD TIME OR TIME DELAY
3.6.1 The Need to Identify Dead time

Identifying and minimising dead time in production processes is one of the
measures that can be adopted to achieve a reduction in product variability (control error

standard deviation), if the best achievable performance is not adequate enough to
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provide minimum variance control. Dead time is the property of a production system by
which the response to a control adjustment is delayed in its effect, It is 'the interval of
time between initiation of an input change and the start of the resulting observable
response’. There may be a finite delay before any effect is observed in the output when
changes are made in a process input. Dead time occurs when process materials move
from one processing stage to another without any change taking place in the properties
or characteristics of the processed materials. Such delays are caused by flows of liquids
or gases through pipes, Time delays are also known by various other names such as
transportation lag or velocity-distance lag, or pure delay. Dead time may be a problem
of transportation and is present in (process) control systems. Time delays occur also in
human biological, political and economic systems. The effect of dead time in these
systems is discussed in the works of Bateman [1945], Justin [1953], Howarth and Parks
[1972], York [1972], Howarth [1973] and Smith [1974] (Marshall {1979]).

Dead time causes difficulties in satisfactory control of processes by sluggish
response to control actions and so, where possible, efforts must be made to reduce it.
Time delays are often created by sampling systems. So, it may be necessary to decrease
the frequency qf taking samples from a process. Sampling at periods that are shorter
than the delay period may not be useful when delays occur in a process. An effective
manner of improving process control is to reduce or eliminate the (feedback) dead time
since a feedback control strategy alone by itself cannot return the process output to its
target value until the process dead time or time delay has elapsed.

A feedback controller applies corrective action to the input of a process based on
the present observation of its output. In this way, control action is moderated by its

effect on a process. A process containing dead time does not produce any immediate
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effect and thereby delays control action. Dead time is one of the difficult dynamic
elements that occurs in many production systems. The delay produces a change* in
slope of the input-output curve and this property becomes an essential consideration in
feedback loops characterised by the behaviour of the critical quality variable {during
transition between two steady states). In view of this fact, feedback conirol-system
design techniques must be capable of identifying and dealing with dead time (*called
'phase shift' or 'span shift' in control theory terminology).

There is a time delay when an adjustment is made to the flow rate of a liquid
travelling a significant distance between two receptacles and in measuring the thickness
of insulation while coating a wire. A time delay is significant over long distances in
remote control systems and in processes which involve complex chemical reactions.
There will be cases of delay in control because of remote operations, which may be
several time periods in duration. Many industrial processes, patticularly thermal

processes and distillation processes may be best represented by including an element of

time delay in the system model.

3.6.2 Sampled-data (Discrete) Control Systems and Dead time

Sampled-data techniques involve the use of storing or holding and releasing
information when required, which is a delay process. In this manner, a connection exists
between sampled-data (discrete) control systems and delays. Systems involving the use
of digital computers in process control rely on the use of stores of memory. Reliable
storage or holding of data is the delay between the input or the calculation and the
output at some multiple of the clock period later. Sampled-data techniques enable

algorithms to be used in numerical analysis (digital computing methods). Formulation
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of a process control problem by sampled-data enables a solution to be found whereas it
is difficult to analyse the corresponding control problem in continuous time. The control
problem in the sampled-data (discrete) case is solved by modelling the disturbance by
time series techniques. The characterisation of disturbance in continuous time is
difficult to treat in a rigorous fashion. Smith [1957] prediction techniques and its
extensions are capable of using digital computing (numerical) methods.

In production systems, where there are lags as in production involving chemical
reactions, it is often convenient, from a modelling point of view, to replace the
accumulation effects of the lags by a single time delay. There are many complex

processes in which this assumption is helpful.

3.7 IDENTIFICATION OF DEAD TIME

For satisfactory operation, it is necessary to ensure that a process containing an
element of time delay should not be affected by parametric variations or extraneous
noise (disturbance). Suitable (feedback) control strategies may be employed to minimise
the effects of external disturbance and variations in the process parameters. A control
strategy may be defined as a set of rules by which a control action is determined when
an output deviates from a desired set point. It is an algorithm or a control equation that
determines the controller output as a function of the present and past measured errors
(Deshpande and Ash [1981]). An appropriate (feedback) control strategy for a process
containing an element of time delay, is to assume a dynamic model which adequately
represents the process that it is required to control. This model should be capable of
tracking any variations in the parameters ,of the process. Thus a process must be

identified continually and the parameters of the model adapted accordingly.
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ldentification of a process consists of deriving a suitable form for the model and fitting
it with the required parameters. The form of the model and the initial values for it are
determined beforehand and as the process operates, it is usual in practice to determine
the changes in the process parameters. For this purpose, an ARIMA (0,1,1) time series
model is assumed for the process, a brief description of which is given in Section 5.6. In
order to reduce the effects of disturbance on the system output, an estimate of the
disturbance is required (Mitchell [1987]).

Having discussed the dead time and its characteristics, focus is turned to the
other dynamic parameters of the process, namely, the dynamics (inertia) and r, the rate

of process drift.

3.8 THE ROLE AND CHARACTERISTICS OF INERTIA

The concept of inertia is explained by the term 'capacity’. In automatic control,
capacity is a location where mass or energy can be stored and acts as a buffer between
inflowing and outflowing streams, determining how fast the level of mass or energy can
change. The mechanical measure of the property 'capacitance’ is 'inertia’, which
determines the amount of energy that can be stored in a stationary or flowing liquid,
fluid, gas or fine granular material. The inertia is an important determinant of an optimal
process control system. A control action applied to a process at time zero may not be
fully effective until an elapse of some significant time due to the system dynamics
(inertia). This is particularly true in the process industries, where attempts to
compensate for the disturbances ignoring the dynamics may lead to inappropriate

control actions. The need to allow for dynamics is less common in the parts industries
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and in view of this fact, controllers specifically built for the purpose of dealing with the
dynamics and not tuned properly may be ineffective in such situations.

Excessive changes in the input variable may be required when a minimum
variance feedback control scheme is applied to a monitored process. This may be due to
(i) the parameter governing the dynamics (inertia) of the system, 8, being large in
relation to the monitoring interval and (ii) there may not be any penalty associated with
large adjustments. Kramer [1990] showed a method to evaluate the expected variance of
the control actions (adjustment variance) by using the fact that minimum variance
control generates deviations from target that are equivalent to the uncorrelated random
shocks. The adjustment variance becomes larger as & becomes closer to the value one.
Since the dynamic parameter § is a function of the monitoring (sampling) interval, it is
possible to reduce its inertial effects by lengthening the (monitoring) interval. However,
as 8 gets larger, the adjustment variance also can be reduced by suitably lengthening the
monitoring interval. This fact was substantiated by Kramer [1990] with arguments
which led to the conclusion that altering the monitoring interval changes also the
variance. Abraham and Box [1979] showed that changes in § have effects on the optimal
control adjustment and also affect the resulting variance of the optimum control
adjustment (vardxt). The parameter, 8, plays a minor role in determining the monitoring
interval corresponding to an increase in the mean square error (variance) deviation,
whereas the rate of drift of the process, r, plays a dominant role. This is true when the
value of 8 is not near one as a result of the small bias resulting from the dynamic nature
of the input-output relationship (Baxley [1991]). In view of this, the role of the

parameter r in making changes in the variance is discussed.
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3.9 THE RATE OF DRIFT OF THE PROCESS (r)

For the ARIMA (0,1,1) disturbance model for processes with drifting behaviour

from a given fixed-target value, the disturbance process z is

Zt:it‘i'at: (31)

~

where z, is an estimate of Z which is independent of a and is an EWMA of the past
t

data defined by

%=1z + Oz +@ zrt-)- 0<@<1 3.2)
where, the rate of drift of the process, r=1- ©.
2
The coefficients r, 1@, 1@ , ... in equation (3.2) form a convergent sequence that sums to

unity. Algebraic manipulation of equation (3.1) and equation (3.2) gives

A

2y, =12, +0Z.2,, -2, =1a,.

For the first-order ARIMA(0,1,1) disturbance model
Z -2, =4, — G)a[-l :

Summing this equation and using equation (3.1) with t = 1 leads to

t-1
Z =%+a+ry a. 0<r<l (3.3)

=
In particular, if the process mean is set on target at time t = 1 by adjusting its level so

that Z, =0 then, the subsequent course of the deviations from the target is represented

by

t-1

zZ=a+ry a, 0<rsl. (3.4)

1=1
Equation (3.4) is an interpolation between the sequence of uncorrelated random shocks,

2 . . . .
N(0,5_), of the stationary disturbance equation, z=a for a process in a perfect state of
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statistical control with no drift obtained as r approaches the value 0 and the highly

nonstationary random-walk mode!,

Zt:iat‘ (35)

Equation (3.5) is obtained when r = 1 in equation (3.4).

The purpose of this discussion is to show that for intermediate values of r, the
process can represent slight, moderate, or severe degrees of non-stationarity (drifts).
When the process drift, r = 0, the disturbance is a sequence of random shocks and the
process 15 known to be in a perfect state of control requiring no control action to be
taken. When the drift, r = 1, this degree of non-stationarity is so extreme that it can
hardly be regarded as describing any control situation likely to be met in real life,
although it has been shown in the literature that the variance doubles after only two

monitoring intervals.

3.10 CONCLUSION

In this chapter, a description of the background of stochastic control theory has
been given and an explanation provided of direct digital control (DDC) and justification
for its use. The need to identify dead time has been explained as also has been the inertia
and the parameter r.

In Section 2.2.3, mention was made that statistical process control charts can be
considered an appropriate engineering control strategy under certain specific conditions.
One of these is specifying a loss function that quantifies the cost of being away from the
desired or target value and the cost of makin'g an adjustment. In light of optimal control

theory and by using the quadratic criterion function, it is possible to derive minimum

variance controllers (discussed in Section 3.3.1). The principle employed in the

T
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quadratic loss function is that the penalty or loss associated with being off target
depends only on the squared magnitude of the mean square error (variance). The
quadratic loss function so derived depends only on the absolute value of the standard
deviation from target. It will be shown in Chapter 5 that the control adjustment equation
of the MMSE (minimum mean square error) controller is the discrete equivalent of a
properly tuned integral controller. This form of the minimum variance controller would
minimise the mean overall adjustment cost when it is possible to neglect other variable
costs. Apart from the process adjustment costs, if there are other costs in monitoring and
controlling a process and in taking observations, then the resulting minimum-cost
feedback adjustment schemes have to be formulated on the basis of different
configurations. In this context, these aspects are considered in the subsequent chapters
of the thesis for the stochastic control algorithm of the time series controller derived in

Chapter 5.
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CHAPTER 4

DEAD - TIME COMPENSATION

4.1 INTRODUCTION

The term dead time and the need to eliminate it if possible was explained in
Section 3.6. The effects of the adjustment and the dead time on the performance of a
controller are explained in this current Chapter. The need for a dead-time compensator
is explained as also is the principle of working of a variety of the dead-time

compensators that are useful in practical situations.

4.2 SAMPLED-DATA (DISCRETE) CONTROL AND DEAD TIME

Process control schemes incorporate information regarding the process into the
controller, by having a process model (delay) built into the controller mechanism. The
dead-time element required for building the controller mechanism is not usually
physically realisable and even if approximated, results in increased costs and
inaccuracies in process modelling.

So, it is usual to assume the value of the time delay of the process in discrete
(sampled-data) control systems, is a priori information. The sampled-data (discrete)
control is used to provide the plant operator with information about control actions
(adjustments) that should be taken to account for the plant dynamics (inertia) and the

nature of the stochastic (random) disturbances.
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4.3 SAMPLING AND FEEDBACK CONTROL PERFORMANCE

Sampling at periods that are much shorter than the time delay (dead time) is
likely to result in poor control. The sampling rate in sampled-data control has its
influence on the closed-loop (feedback) behaviour. A rational choice of sampling rate is
based on this influence and also on the recommendations for its selection. Sampling is
economically advantageous where high production rates combine with relatively
expensive or time-consuming measurements of individual items. Qutput-sampling is a
practical necessity in the control of a large variety of continuous processes such as paper
and sheet plastic. It is observed that as the sampling interval is decreased, the feedback
control loop performance improves, but at the same time, the effort necessary to
accomplish this also increases. MacGregor [1976] introduced a variance constraint on
the input manipulated variable since the control error variance often increases for a
decreasing sampling period, (relative to the time response of the process). Box and
Jenkins [1970, 1976} and Astrom [1970] showed that under minimum variance control,
the error in the process output is the forecast error of the effective disturbance at the
output. It is interesting to evaluate the changes in the variance of this output error at the
sampling instants by increasing the sampling interval rate. According to Abraham and
Box [1979], the effect of lengthening the sampling interval is (i) to increase the mean
square error slightly and (ii) to reduce the cost of the feedback control scheme. The
control performance is affected by too large sampling periods and long time delays tend
to reduce the controller gain (CG). So, there is a need for an optimal choice of the
sampling interval.

The control achieved using a sampling interval larger than the time delay may be

'tight' requiring less-frequent sampling and there may be little economic incentive for
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such tighter control. Tighter control can reduce the stable operation of processes.
However, some processes, such as polyme;isation, sheet forming and fiber and other 'no
blend’ type processes require tighter control and efforts are constantly made to control
the quality variables as tightly as possible by minimising the variance of the output
deviation about given set points (Kelly, MacGregor and Hoffman [1987]). A controller
gives different levels of performance for the same process depending upon how tightly
it is tuned. In some other situations, there can be definite economic incentives for
moving process set points closer to the process or quality constraints. It is usual to
minimise the product variability (control error sigma) for the required adjustment
interval in order to achieve this objective (Harris and MacGregor [1987]). This can be
done by simulating the feedback control algorithm (derived in Chapter 5 under the

effects of the dead time) for values of the IMA parameter @ ranging from 0 to 1.0.

4.4 THE NEED FOR A DEAD-TIME COMPENSATOR

A time lag (time delay or dead time) in limiting the permissible process gain
(PG) reduces the ability to control the process. So, a controller mechanism is necessary
to reduce this limitation. This mechanism is called the 'dead-time compensator’. The
principle of working of the dead-time compensator is explained below.

Assume that a small adjustment is made in the input variable at the 'n'th sample.
The adjustment made will not have any effect on the next sample if the sampling
interval is smaller than the dead time (made up of the process delay and tﬁe
measurement delay). If there is no appreciable effect of the adjustment in the process,
the same control error deviation from the desired target will be measured at the output

and there is a tendency to overcorrect the control error deviation if another adjustment is
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made. In this scenario, there exists an option either (i) to reduce the controller gain (CG)
and to apportion a part of the adjuétment to each of the samples occurring during the
dead time (time delay), or (ii) to reduce the control action by accounting for all the
control actions already taken during the time delay, the effects of which are not yet
perceived. The first option is achieved if the CG is chosen by a proper stability analysis,
Long time delays reduce the CG (Palmor and Shinnar [1979]). Baxley [1991] found
different values for the CG in his simulation study by the 'Central Composite Design'
method and the corresponding standard deviation of the control error along with the
mean adjustment interval (Al). The maximum value of the controller gain for the stable
operation of a time-delay process is 1.0 (Chandra Prasad and Krishnaswamy [1974]).
So, the first option is chosen by setting the value of the time series controller gain to be
1.0 and minimising the control actions by accounting for all the control actions taken
during the time delay period. Plausible reasons for setting the value of the controller
gain to be 1.0 are given in Chapter 6. This is in contrast to the EWMA controller for
which a controller gain below 1.0 is required in order to aveid overcompensation of the
control error and over control of the process.

The second option results in deriving an equation for the dead-time compensator
from optimal control algorithms. This type of compensator is advantageous in that the
problem of over-correction reduces during the time delay and it may be possible to
choose the value of the controller gain without the aid of the dead-time compensator.
The dead-time compensator, though it may not be able to eliminate (completely) the
dead time in real systems, has a stabilising effect on the process. The response of a

dead-time compensator is faster and smoother than an analogue (continuous)

conventional controller in spite of sampling infrequently. The Smith predictor, (or the




Smith dead-time compensator) is a result of the minimal variance strategy and that
minimal variance control for processes having dead time includes this type of dead-time

compensation. A description of the Smith predictor is given in the next Section.

4.5 THE SMITH'S PREDICTOR AND THE DAHLIN'S CONTROLLER

In this Section, the Smith's predictor a.t;d the principle of operation of Dahlin's
controller are described briefly. Smith's [1957] principle provides a criterion for
selecting a control strategy for time delay processes and dead-time compensation
techniques. The technique is an approach to control of systems with long dead times.
This principle, known as the Smith predictor, states that the response of a process with a
time delay should be the same as that for the same process without the delay, but
delayed by a time equal to that of the delay. Smith [1957] proposed a discrete version of
a dead-time compensator based on this principle. This (linear) predictor consists of a
conventional PID controller in combination with a process model, which is used as a
predictor of the output over the interval of the dead time, in a feedback loop around it.

Figure 4.1 gives a block diagram of the Smith predictor.
Load

Controller Process

S h

Figure 4.1 Dead-time cornpen‘sation with Smith predictor
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The Smith predictor contains two feedback loops; a positive loop containing the
dead time and a negative loop without it. The positive feedback loop cancels out the
effect of the negative feedback loop through the process, leaving the negative feedback
loop in the predictor with only the lag and gain of the model in it. This arrangement
makes the predictor input identical to that which would exist if there were no dead time
in the process resulting in better control. The compensation technique involves the
prediction of the process output through the use of a process model which does not
contain the dead time. The output of this predictor element is also delayed with a time-
delay element which constitutes a separate model of the process dead time. With model
dead time, lag and the controller gain matched to the process, the Smith predictor
reproduces a step change exactly one dead time later. A Smith Predictor achieves some
form of derivative action required for compensating dead time in first-order processes
by a lag in its feedback path. By matching the lag in the Smith Predictor to the lag
(inertia) in a dead-time process, the input manipulated variable follows the process lag
exactly but delayed by the dead time. The delayed predictor output is compared to the
measured process output and the resulting model error quantity is added to the current
predictor output to correct for predictor deficiencies, provided that the model is a true
representation of the process and there are no further disturbances to the process during
the dead-time period. It is observed that the optimal predictor part of the controller
algorithm changes also with the time delay. The Smith predictor is an optimal dead-time
compensator for only those systems having disturbances for which the optimal
prediction is a constant over the period of the dead time.

In brief, the Dahlin's controller works on the principle proposed by Dahlin

(1968) that digital controllers be designed to yield a desired first order plus dead-time
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response to a set point or load change. Dahlin's algorithm specifies that the sampled-
data (discrete) closed-loop (feedback) control system behaves as though it were a
continuous first-order process with dead time. For designing sampled-data controllers,
Dahlin considered a tuning parameter ranging from 0 to 1 whereas in the original
formulation, the parameter could take values from -1 to 1. Thus a dead-time
compensator allows the use of a large process gain. In order to select é suitable value for
the time constant of the closed-loop response, namely, the Dahlin's tuning parameter, an
(trial or) initial value is assumed and the control system is simulated on a computer. A
proper selection of this parameter can be made by repeatedly varying this parameter and
examining the closed-loop response. The Dahlin computer-control algorithm is designed
for a specific input, for example, a step change in set point. If an input (load) change
occurs in a process for which the control algorithm is based on a change in set point, the
response may not be equally good. The usual procedure, therefore, is to design for the
worst possible change in either set point or load that is likely to occur.

Dead-time compensators are usually complex to deal with in real systems.
Nevertheless, they have a stabilising effect on the process in a manner which is similar
to that of a controller working on an unconstrained optimal control algorithm. The
precaution to be taken against instability for large gains in the real systems by having a
dead-time compensator, is by ensuring that there is no deviation between the assumed
dynamic (transfer function) model and the real system (Palmor and Shinnar [1979]). It is
explained later in Section 5.6 how the benefit of having built in the Dahlin's dead-time
compensator in the stochastic feedback control algorithm Equation (5.16) helps to

achieve the required dead-time compensation, and minimum variance,
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4.6 CONCLUSION

In this chapter, an exposition of the influence of the sampling interval on
feedback control performance was discussed. A brief explanation of the need to
compensate dead time and a description of the working of some of the dead-time
compensators was also given. Dead-time simulation is a method to control sampled-data
processes with time delay. In the next chapter, the derivation of tfle stochastic time

series controller algorithm is given and its simulation discussed in Chapter 6.
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CHAPTER 5

STOCHASTIC PROCESS CONTROL ALGORITHM

5.1 INTRODUCTION

Time series controllers are described mﬂnd a feedback control model is given in
this Chapter. The derivation of an approximate feedback control difference equation
together with an algorithm for calculating the control adjustment required in the input
variable when there are dynamics and delay in a process, are also presented. The
statistical control algorithm developed for the time series controller and the controller
performance measures (explained in Section 5.9) are discussed in detail. A brief review
of a method suggested by Baxley in controlling drifting processes (Baxley [1991]) is

presented.

5.2 TIME SERIES CONTROLLERS
5.2.1 Characteristics and Features

Time series controllers are used in the chemical and process industries for
regulating quality variables measured at discrete time intervals. Their 'stochastic
feedback control algorithms" are used to calculate a series of adjustments which
compensate the disturbances. Recourse to ARIMA medels is often made in order to
forecast the drifting behaviour. The stochastic feedback control algorithm or equation
derived from these ARIMA models is computerised. Thus, 'time series control

algorithms', by calculating a series of adjustments, compensate for the disturbances by

'"The terms ‘stochastic feedback control algorithm’ and ‘statistical time series control
algorithm’ are synonymous and used alternatively in this thesis.

1
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making an adjustment at every sample point. It will be shown in Section 5.6 that the
stochastic feedback control algorithm derived for the time series controller has 'reset'-or
'Integral' action and a controller having integral action can eliminate (stcady-state)
'offset’' (deviation from set point) (Shinskey [1988]).

Time series conirollers require an adjustment for every sample and provide a
performance benchmark by giving a minimum control error variance so long as the
underlying process model remains correct. It is used to test the performance of feedback
control strategies formulated (designed) using various available techniques employing
methods used in statistical process control (SPC) or more elaborate strategies such as
'pole placement designs' and 'linear quadratic controllers’.

Time series controllers are capable of giving one-step ahead forecast error
variance over the time delay (dead time) period in a process. It may be possible to
restrict sampling and adjusting a process until an acceptable control error variance is
achieved by making use of the time series controller's forecast error variance property

(explained in Section 5.7) and to minimise monitoring and adjustment costs.

3.2.2 Statistical Control Algorithm - Criterion

The modified Shewhart approach of splitting the control chart into six zones and
employing run rules takes a hypothesis testing approach to decide whether or not the
process mean is on target. Since this hypothesis testing approach is ruled out, (since we
require the mean to be exactly on target or as close as possible to the desired target), it is
necessary to have an alternate method, to calculate the process adjustment from
statistics calculated from historical data. If the null hypothesis (on target) is rejected,

there is no statistic built into the control logic which provides an estimate of the new
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process level and hence no adjustment can be calculated. The statistical control
algorithm employed by a time series controller makes an adjustment to compensate
exactly for the 'forecasted deviation' from target. There are also the (i) EWMA
controller and (ii) the CUSUM controller which meet the same criterion; but these
controllers are different from time series controllers in that they use the EWMA and the
CUSUM statistics respectively to derive their own individual 'stochastic feedback
control algorithms' to calculate the adjustment that may exactly compensate for the

disturbance (Baxley [1991]).

53 A COMPARISON OF TIME SERIES AND PID CONTROLLER
PERFORMANCES

The proportional integral derivative (PID) controller, though simple in
performance, does not possess the capability of providing tight control over processes
with dead time. Consider a discrete PID controller taking a control action on an output
deviation from target occurring at time t. This control action will not affect the output
until the lapse of dead time. At time t+1, the PID controller makes another correction for
the same output error if there are no (new) disturbances to the process. The effect of the
first correction will come through to compensate for the original error over the next
adjustment interval, but then, overcompensation of the output error is the result of the
second correction coming through a period later. A controller that is tuned tightly
compensates the disturbance and not the real changes in the process and leads to
overcompensation. This problem may be overcome by tuning the controller correctly
and doing away with overcompensation (Wardrop and Garcia [1992]). PID controllers

tend to give unstable (oscillatory) performance in the face of dead times unless they are
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detuned so that only part of the necessary action is taken at each instant. There is a
tendency to compound the problem of tight control with more periods of dead time
(time delay) introduced by sampling. On the other hand, the optimal time series
controller in which the prediction is made at time t, of the disturbance b+1 (where b is
the dead time), periods into the future, over the period of the process dead time, will not
compensate for the same error a second time (Harris, MacGregor and Wright [1982]).
Dead-time compensators are built based on a similar principle. A time series controller
is better in performance with respect to dead-time compensation than the EWMA
controller which requires the controller gain to be less than 1.0 and has no dead-time
compensation term in its control algorithm (page 286, Baxley [1991]).

The effect of the choice of the sampling interval on the controller performance
can be considered by comparing the minimum output error variance obtainable at the
sampling instants for various sampling intervals. The sampling intervals are different
from one another and the same error variances are not compared at these sampling
instants. Simulation is a mechanism to evaluate these variances at intermediate times.
The technique of dead-time simulation and control used for sampled-data control of
processes with time delay (dead time), is explained in Chapter 6.

Thus, by building a dynamic-stochastic model of the process based upon data
collected at a single interval, the time series controller performance is predicted at
longer sampling intervals and thereby a reasonable choice of the sampling interval is

arrived at which is used for sampling, adjustment and process control.
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5.4 DEVELOPMENT OF TIME SERIES MODELS
5.4.1 Feedback Control Difference Equation

The 'stochastic difference equation’ for the feedback control model is derived

with the help of a block diagram shown in Figure 5.1.

Disturbance
. Z
Pri)cess Controlled t
nput Output Y
X t
L Process
e,=Z,+Y,

Xt+=f(et,8t_1, ----------- )

Figure 5.1 Block Diagram for the Feedback Control Model

In the feedback control scheme shown in Figure 5.1, the process is regulated by
manipulating the input variable X which in turn affects the controlled output Y. X is
the setting of the input variable (the plus sign on the subscript of X¢+ implies that the
adjustment is made at time t during the interval between t and t+1). A definite
deterministic relationship exists between the process input X and its output Y which
does not exhibit stochastic characteristics. Z:’ the non-stationary disturbance, is the
output of the (linear) system, when subjected to a sequence of uncorrelated random

shocks {at} where at~N(0,0:).
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3.4.2 Symbols used in the Feedback Control Model Block Diagram of Figure 5.1.
a Random shocks N(0, c:),

1

Z Disturbance,’
C Forecast error,
X,  Input Manipulative Variable (Linear function of e; and of integral over time of
past errors),
Y, Output or Controlled Variable,
e=2+Y,
Box and Jenkins [1970, 1976] described some dynamic models of the order (r,s) by
Sr(B)Y[= mS(B)BbX1, (Table 10.1, page 350, Box and Jenkins [1970, 1976]),
‘b” being the number of whole periods of dead time, where 8 (B) and o (B) are
polynomials in B and BX = X BbXt= X > B is the backward shift operator.
A first-order discrete (sampled data) single input single output (SISO) dynamic
system is parsimoniously represented by the general (linear) difference equation
(1+EV)Y =gX 0<8<1 (5.1)
where £ = 6/(1-8) and V is the backward difference operator, V = 1-B.
The terms g(ain) and d are explained subsequently.
This discrete dynamic model is of the order (1,0) and has the form
(1-8B)Y, = o B'X. 0<5<l
With s = 0, the impulse response tails off exponentially (geometrically) from the initial

starting value

4

* ‘2’ denotes the stochastic variable and ‘Z’ represents the stochastic disturbance. The
same logic holds good for a, which denotes the variable and {a,} represents the
sequence of random variables.
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o, =g/l +&) =g/l +(8/(1-8)=g(1-9)

(page 352, Box and Jenkins [1970, 1976])
where g, the (steady-state) gain denotes the ratio of change in the steady-state process
output to the change in the input which caused it (Deshpande and Ash [1981], (Shinskey
[1988]). & represents the inertial capacity or the dynamics of a process to recover back
to its equilibrium conditions after an adjustment is made where the adjustments do not
have an immediate effect on the process. It is connected to the sampling interval and the
time constant by means of the relation 8 = e where T is the sampling interval of the
discrete process and v, the process time constant. The time constant* is the time required
for the process output to complete 63.2% (t = 1-1/e = 1-1/2.718 = 0.632) of its final
steady-state value after a (step) change is made in the input (*Time constant is the ratio
of change in the output controlled variable to the product of the process (static) gain and
the input step change (Shinskey [1988])).

So, the recursive feedback control (linear) difference equation for the discrete
dynamic model with b units of delay (dead time) can be written in the form
(1-8B)Y =0 X = g(1-8)X , = g(1-8)B'X 0<5<l (5.2)
For this feedback control first-order difference equation, the output change
asymptotically approaches 'g' for a unit change in the input. 'g' is also called the 'system

gain 'or 'pure gain' (Box and Kramer [1992]).

5.5 JUSTIFICATION FOR SECOND-ORDER DYNAMIC MODELS
For feedback control (closed-loop) stability, the parameter 6 must satisfy the
condition that 0 < & < 1 in the discrete dynamic model of the process and the gain

should be less than or equal to 1.0 (Shinskey [1988]).
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The first-order dynamic model that can approximate the behaviour of a number
of processes which is characterised by the linear difference equation (5.2) can be written
as

Y =08Y +g(l-8)X 0<8<1 (5.3)

The views of Box and Kramer [1992] in regard to the effect on control action of
larger values of 6 are briefly reviewed. The MMSE (minimum mean square error) or
minimum variance control schemes based on the first-order dynamic model and the
ARIMA (0,1,1) disturbance model produce the minimum mean square error (MMSE) at
the output for the particular form of adjustment that may require excessive control
action in the following situations. (1) if the values of & are not small; (ii) as & becomes
larger and in particular, as it approaches unity and (iii) when the time constant of the
process is large with respect to the sampling interval (Kramer [1990]). As & becomes
larger, the minimum variance control exhibits large ‘alternating’ character in the required
adjustments (control actions) to give minimum output variance (Box and Kramer
[1992]).

For larger values of 8, the general recourse is to go in for constrained variance
control schemes. In such control schemes, reduced control action may be achieved at a
cost of small increases in the mean squared error at the output by placing a constraint on
the input manipulated variable. Kramer [1990] developed a constrained variance control
scheme in which he showed the effect on both adjustment variance and the specified
output variance in order to evaluate the trade-offs between the two variances.

Processes found in practice are often complex because of their dynamic
characteristics which change with time. Approximating such processes by first-order

dynamic models does not always seem to be satisfactory. It can be shown from the
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simulation study results of the time series controller for a first-order (plus dead time) v
dynamic model and the ARIMA (0,1,1) model that for drifting processes, for values of &
from 0 to 1, the required adjustments are of alternating character and sometimes with
huge increases in control error standard deviation and its adjustment variance (vardxt).
A control algorithm based on ARIMA (0,1,1) disturbance model and the first-order
dynamic model of equation (5.3} is of ‘practical use’ only for fairly small values of &
(page 256, Box and Kramer [1992]). It is likely that some processes may have more
than one dynamic element and the exact mathematical model relating the output and the
input could be greater than the first-order. The aim is to develop a stochastic process
control algorithm based on a process model that would be of practical utility in
manufacturing industry. Many complicated dynamic systems can be fairly closely
approximated by second-order systems with delay (dead time). The mathematical
justification and suggestions of process control practitioners in regard to the use of a
second-order dynamic model are aiscussed subsequently. Detailed analysis and
identification of the dynamic models and their suitability can be found in Box and
Jenkins [1970, 1976].

Some commonly used identification techniques are maximum likelihood or
prediction error methods and the recursive least squares method. The recursive least
squares method and its extensions require that the value of the dead time (time delay) of
the process must be known in order to account for the delay. Palmor and Shinnar
[1979], though, of the view that the first-order model with dead time is sufficient for
representing some of the most commonly occurring simple processes, cautioned that

complex (process) model that helps to “identify’, (‘Identification’ is the term used by

engineers for process modelling), processes is (also) not (very) accurate. They




contended that there had been several claims in the process industries to second-order
models coupled with delays as sufficient for most purposes. In particular, the dynamic
models (transfer function) of the form

3(B)Y, =0 BB X
are sufficient for most practical cases of interest in sampled-data (discrete) control,
based on laboratory measurements (Palmor and Shinnar [1979]).

It can be shown that for a given stable (transfer function) dynamic model, the
higher terms in the polynomials decrease exponentially with increasing sampling
interval (T). In practice, therefore, a second-order polynomial for ®(B) and 3(B)
described by

Y =[w,-oB)(1-5B- 5232)13“‘ X
is probably the highest order that can be justified.

The transfer function, [(o - mlB)/ (1- 8B - 62B2)] depends on the sampling
interval (T) and also on the tuning of the process controller and therefore it can be
adjusted and can approximate any (linear) response at fixed time intervals. However, the
polynomial in the numerator can be extended further if there is a large variation in the
assumed 'a priori’ dead time value. The disadvantage of this is that the matrices used in
calculating the process parameters would increase and the procedure would take a
longer time than usual to identify the process.

It is possible to approximate the behaviour of high-order processes by a system
having one or two time constants and a dead time. When one or two time constants
dominate, the smaller ones (*work together’) add up to produce a lag that almost
resembles (pure) dead time. It is possible also to approximate the actual input-output

mathematical model of a high-order, complex dynamic process with a simplified model




consisting of a second-order process combined with a dead-time element. The second-
order model will reduce to the first-order model if one of the two time constants of the
former model is smaller than the other (pages 12-15, Deshpande and Ash [1981]).

Box and Jenkins [1963] suggested that many dynamic models could be
adequately represented by, at most, two exponential stages with variable gains and delay
governed by parameters 8,, §,, g and dead time b. Box and Jenkins [1970, 1976]
mentioned also in their menograph that complex processes with dead time (delay) can
reputedly be closely approximated by second-order systems having more than one time
constant, {usually, two) (Page 345, Box and Jenkins [1970, 1976]). This view is shared
also by MacGregor [1988], he commented:- 'To adequately characterise the dynamic
behaviour of more complex processes, it may sometimes be necessary to use higher-
order dynamic models' (page 25, MacGregor [1988]). A second-order process with dead
time is a useful model for some complex processes which are fairly common (Shinskey
[1988]).

It is conjectured, therefore, that the dynamic system will be better described by
a second-order system that is represented by a dynamic model of the order (2,1), (‘a
discretely coincident' continuous system, page 358, Box and Jenkins [1970, 1976]).

Some methodologies were suggested by MacGregor [1988], Box and Kramer
[1992] to use statistical process control charts to monitor the performance of closed-loop
controlled systems. Such methodologies, though taking care of on-line process control
and monitoring, do not always seem to deal with stability problems of the feedback
control loop in an explicit and simple manner. It is acknowledged that the literature

contains derivations for general formulae for minimum variance control. However, it is
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worth considering a concrete example of controlling a second-order dynamic system by
a second-order dynamic model of the form:-
Y (1-3B-8B)=(0,-0 B)B X (5.4)

For stability reasons, interest is focused on the ‘critically damped' behaviour of
the second-order dynamic system (for which the time constants T, and T, are real and
equal), as a special case, and not on the behaviour of the system when it is either
‘overdamped' or underdamped’ for which t and t_ may be complex. Some justification
for restricting attention to a (critically) damped second-order system with dead time is
given in Sections 7.2.3, 7.2.5, 9.5.3 and 9.6.

The second-order dynamic system can then be thought of as equivalent to two
discrete first-order systems arranged in series.

The second-order model will be
(1) underdamped, when the roots are complex, that is, when

5 +48 <0;
(i)  overdamped, when the roots are real (and not equal), that is, when

5'+48 >0,and
(iify  critically damped, when the roots are real and equal, that is when

5'+45=0.

Stability is achieved when the point (§,,5,), lies in a triangular region defined by
the conditions, §,—-8=1, § +8,=1 and §, < 1. This is shown in Figure 5.2.

It can be seen that the process delay, b is distributed in equation (5.4) between
the terms B and the ®(B) polynomial.

Using ®, = ©,B, equation (5.4) is approximated to

(1-3B-8B)Y =B " X (5.5)
{ 2 t t 2
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where (0, - ® ) = o, for mathematical convenience in dealing with a single term in 0. ®
is the magnitude of the process response to a unit step change in the first period
following the dead time carrying over into additional sample periods. Only whole

periods of dead time (delay) are being considered.

0,1)

—

8,-8,=1 8 48, =1

Figure 5.2 Triangular region defined by the inequality conditions for achieving stability
For dead time b = 1, equation (5.5) becomes
Y=8Y +8Y 0B X =8Y +38Y i0X .
For dead time b =2, equation (5.5) becomes
Y=8Y +3Y 0B X=8Y +8Y 40X _
These equations are directly built into and used in the subsequent simulations.
The following points in regard to the feedback control equation (5.5) should be
noted:
(1) A (linear) difference equation is employed to represent the discrete (sampled-

data) second-order dynamic system. This is similar to representing continuous dynamic

systems by linear differential equations. The (linear) model implies that the response to
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a set of impulses of an input series can be added to provide the output and suggests an
approximation for practical situations. In dealing with discrete processes, linear
difference equations representing the processes in which the sampling intervals are
short, take care of the dynamic or inertial properties of the process. A second-order
process is represented by the second-order difference equation when sampled at discrete
intervals or by the second-order transfer function or 'filter', (the term used in engineering
terminology, by control system engineers), (cf. MacGregor [1987]).
(2) The initial parameter errors are assumed to be small in order to reduce the
sensitivity of the difference equation, describing the discrete dynamic control system, to
computer round off errors when conducting simulation experiments.
(3) The second-order model is capable of representing some dynamic systems with
dead time for some reasogable value ranges of X: and Y:'

Moreover, equation (5.5) reduces to that of Baxley's [1991] first-order dynamic
model, namely,

Y =8Y +0B"' X

which describes the first-order system with dead time (delay) when 82 =( and 61= 3.

The steady-state gain, 'g', of such a second-order discrete dynamic model is

given by
g= (0)0 - wl)/(l-ﬁl-ﬁz).
(Equation 10.2.5, page 346, Box and Jenkins [1970, 1976])
(1-8 B-5 B)Y = (w0 B)BX
=(1-S B)(1-S B)Y,
=(0,-0B)B"X
where

77




o, = [PG/(x - )){( (1-8 )T (1-5 )},
© =[PG/x -t JI{(S,+8 )(x -t )11 S (1+5 )T S (145 )},

(Palmor and Shinnar [1979]),

S1 =e 1,
52 _ e_”tZ,
=5, 48 = e e_ml,
82 =- S1XS2 =- e'(lhlﬂhz) and

PG represents the process gain, realised by the total effect in output caused by a unit
change in the input variable after the completion of the dynamic response (Baxley
[1991]).
Now,
0 =(0,-0)=[PG/, - T)l{(x,(1 - S)-5,(1 - S} -
[[PG/(z, - T)H(S, + S Xt - 1) + S (1+8)-18(1+3)}]
which on simplification, gives, for a critically damped system,
®=PG[1-S -5 +55]
=PG[1-(S,+8 )+5 5 ]
=PG[l- (¢ 1+ e e Y]
=PG[1-3 -3 ].

Therefore, the steady-state or system gain

g=(o - wl)/(l - 5l - 62) =PG[1- 81- 82]/[1- S - 82] = PQ@, the process gain.

Baxley [1991] used PG =1/1-6 and made PG = 1.0 by setting 8 = 0, meaning that
there are no carry-over effects (inertia) into the next observation and seemed to have
tackled the problem of feedback control .stability in a convincing manner in his

simulation studies for drifting processes. Kramer [1990}, derived expressions for the
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disturbance and output effect of control actions as functions of random shocks,
independent of the control scheme. Moreover, Kramer [1990] considered approaches for
reducing adjustment variability. Since interest here is in reducing the product variability
(control error standard deviation, CESTDDVN), at the output, it is worthwhile to
consider the critically damped behaviour of the second-order dynamic system for which
the time constants are real and equal thus ensuring closed-loop stability. Furthermore,
the steady-state gain of such a critically damped second-order system is shown to be
PG, the process gain itself.

An additional term in the parameter 3, (8,) of the second-order dynamic model
makes it possible to account for more of the process dynamics for both small and large
values of & and to represent the dynamic nature of the process more adequately. It is
easier to control a dead-time process having an additional dynamic lag rather than a
(pure) delay process (Chandra Prasad and Krishnaswamy [1975]). The additional term
Y . defines the input-output relationship in a better manner than the first-order dynamic
maodel.

For stability of the second-order dynamic model, the parameters 8l and 62 must
satisfy the following inequality conditions given by

5] + 52 <1
52 - 81 <1
-1< 62 <1.

The 'characteristic equation' for the second-order dynamic system is
(1-8,B-5 B') = 0. (5.6)
When the roots of this equation are real, that.is, when 812 + 4 52 = 0, the solution will be

the sum of two exponentials.
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The roots of the characteristic equation (5.6) determine the stability of the
second-order dynamic system. When these roots are real and positive, the step response,
which is the sum of two exponential terms, approaches its asymptote g, the steady-state
gain, without crossing it. When the roots are complex, as can be seen from the Figure
5.3, (Reproduced from Figure 10.5, page 344, Box and Jenkins [1970]), (Attachment
5.1), the step response of the output variable above the target value, which is a problem
in APC due to complex roots, overshoots the value g. From Figure 5.3, it can also be
seen that the system has no overshoot when the characteristic equation has real positive
roots. This explains the interest in the critically damped second-order discrete dynamic
model which ensures closed-loop (feedback control) stability. The focus on the critically
damped second-order dynamic model is one of many justifications for restricting
attention to such a special case. It is shown later in Chapter 9, how the advantages of
having an integral term in the stochastic feedback control algorithm (5.16) help
determine the damping of the feedback control loop and guards it and the controller
from the occurrence of over and under damped oscillations leading to an unstable
feedback loop.

It is known that for the critically damped second-order dynamic system, T =1,=1.80,
8 = 2¢" and
5 = e
As per Figures 5.2 and 5.3 (Attachment 5.1), the values of 61 and 62 should satisfy the
following equation (5.7) given by
2 < 81 <2,
-1 <62.<1. (5.7)

These are built into subsequent simulations.
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5.6 EXPRESSION FOR THE CONTROL ADJUSTMENT IN THE INPUT
VARIABLE OF A TIME SERIES CONTROLLER

An expression is derived for the feedback control adjustment required in the
input manipulated variable of a time series controller for a dynamic process with dead
time (delay). This expression is different from equation (5.5) which explains the
feedback control model. Figure 5.4 shows the feedback control scheme to compensate a
disturbance Z; by means of a time series controller. Baxley [1991] considered the dead
time equal to one period when deriving the feedback control equation. In this Section,
the feedback control (adjustment) algorithm is derived considering b periods of dead
time. It conforms to the minimum variance (mean square) control equation derived by
Kramer [1990] for a system in which adjustments to the input variable are made after

the process is observed and so their effects are first seen at the next observation (b = 0).

Disturbance Z ¢

Controlled Qutput

Process
X Y . :
Input * t+ Process to be t T set point
controlled
=7 +
Time Series =%+ Y,

m—xt— Controller

Figure 5.4 Feedback Control scheme to compensate disturbance Z, by a

Time Series Controller in the existence of Dynamics and Dead time

Using the same symbols and notation of Section 5.5,

(1-8B-8B)Y =0 B" X (5.5)
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Changes are made in the input X at times tt-1,t-2,---, immediately after
observing the disturbances Z,Z .7 - Because of this, a pulsed input results and the
level of X in the interval t to t+1 is denoted by X . For this pulsed input, assume that the
dynamic model which connects the input manipulated variable Xt+ and the controlled
output Y, is
Y=L (BIL (BB"X, (5.8)
where
Ll(B) is a polynomial in B of degree r,

LZ(B) is a polynomial in B of degree s and
b is the number of complete intervals of delay before an adjustment in the input X,
begins to affect the output Y .
The non-stationary disturbance is represented by the ARIMA (0,1,1) model
VZ = (I-G)B)at.
That is,

Z, =2, +a, -@a . (5.9
Zt measures the effect at the output of an unmobserved disturbance, that is, an
uncompensated non-stationary disturbance that reaches the output before it is possible
for the compensating control action to become effective. This causes the process to
wander off target and 1s defined as the deviation from the target that would occur if no
control action were taken. The effect of the disturbance would be cancelled if it were
possible to set

X,=-LBL, BZ,  b>-L.

*
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This control action is not realisable since (b+1) is positive; but, the minimum mean

square error of the deviation of the output from its target value can be obtained by

replacing Zﬁb+1 by its forecast estimate %, (b + 1) made at time t.

That is, by taking the minimum variance control action

X _=-L(B)L, '(B) ,(b+1).

The change or adjustment to be made in the input manipulated variable is then

x¢=-L (B)L, (B){2(b+1) - 2., (b + 1) }.

(5.10)

(5.11)

The error at the output or deviation from the target at time (t+b+1) is the forecast error

e (b+1} at lead time bt+1 for the Z disturbance.
That 1s,
e(b+]) =z - z(b+1)
made (b+1) steps ahead at time t.
The error observed at time t is
E=e, _1(b+l)
=2t~ Zipa (b +1).
z.(b+1)-2, (b + 1) canbe deduced from the observed error sequence

t’st-l ’gt-?.’- :

Here e(btl)and z,(b + 1) are linear functions of the {at}'s.

So,

=LBa,  *+ L3(B)al, where

t+b+1 b+1

L}(B) and L4(B) are operators in B which can be deduced from the relations
et_M(b+1) = {J:t(B)at and

5.(b+1) =L (B)a.

84




From these,
2(b+1) =L (BYL B, (b+])= {L,(BYL,(B)}e,
and
z{(b+1)={1-0)Y1- B)}a =L (B)ay.
Similarly, L,(B) is found by expressing the forgcast errors as a linear function of future
shocks (Box and Jenkins [page 128, 1970, 1976)).
Then,
L (B)=(i-3B-5B),
L,(B)=PG(1-3 -3),
L.(B)=(1-©)/(1-B)
and L4(B) =1+(1-®)B.
So, for a time series controller, when the disturbance is described by the ARIMA (0,1,1)
model and there are definite carry over effects, the adjustment (x) in the input
manipulated variable required to make the control and forecast error variances equal, is
given by
X, =-{L (B)L (B)(L(B)L (B)}e.
(Box and Jenkins [1970, 1976])
The control action in terms of the adjustment x, = x,, —X,. , to be made at time t is,
x = -{(L B)L,B)1-B)L(BL B)}e.
(Equation 12.2.8 page 435 Box and Jenkins {1970, 1976]).
This 'feedback control equation defines the adjustment to be made to the process
at time t which would produce the feedback control action yielding the smallest possible

mean square error since it exactly compensates the predicted deviation from target'

(page 213, Box and Jenkins [1968]).
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The above equation, on substituting in the expressions for L (B), L(B). L (B}

and L4(B) gives:-

___(1-8B-6,B)(1-6)
X" T pG(1-6,-8,)1+(1-9)B) &

(5.12)

where ®@ is the moving average (operator) parameter,
The control (forecast) errors which turn out to 'be the one-step ahead forecast errors are
measured in practice.
It is known that the (forecast) error ¢ at the output at time t is the forecast error at lead
time b+1 for the Z disturbance.
So,
£ = et‘b_l(b+l) =yatya (5.13)
For the ARIMA (0, 1, 1) model, the weights are w,=1and y =1-0, so

€= a[+(1-®)al_]

=(1+(1-0)B)a

and further from eqution (5.12),

____(1-8B-§,B)(1-0)
X7 PG(1-8, - 8,)1+(1- ©)B)

(1+(1-@)B)a, . (5.14)

Since (1-&)x100 per cent of the control error will affect the future process behaviour as
per the disturbance model, for a dead time b,
e=at (1-®)at‘b
=a[l +(1-©)B']
and so
a=e/[1+(1-©)B']. (5.15)

3

Therefore, the control adjustment equation for b periods of dead time is
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_(1-8B-5,B)(1-0) e

Xt =

PG(1-3, -5,) (1+(1-9)BY)
That is,
(I-6,B-4, BH(1-0)
X, +(1-xp = - £ e
t ° PG(1-6,-68,)
giving '
= (e —oe,, -5, )1-9) —(1-O)x,, - (5.16)

PG(l-6, -4,)
The control adjustment action given by equation (5.16) minimises the variance of the
output controlled variabie.

The equation (5.16) is in conformance with the feedback control action
adjustment equation of Kramer [1990] when the output variance is made equal to the
variance (cr:) of the random shocks, the a's, for achieving minimum variance or rﬁean
square control when b = 0. The control adjustment action is made up of the current
deviation (et) and the past adjustment action X (Kramer [1990]). It is observed also that
this is similar to the feedback control action adjustment equation for one period of dead
time derived by Baxley [1991] on taking a value 1 for b, the dead time and when there
are no carry-over effects for a 'standard' time series controller. On comparison with the
equation of Baxley [1991], it is found that the first term in equation (5.16) gives the
integral action and the second term, the dead time-compensator, developed by Smith
[1959] (Baxley [1991]).

Some simulation results of equation (5.16) for the control error standard
deviation (CESTDDVN), obtained when 8, =3, =0,PG=g =1 and b = | are shown in
Table 5.1. These results match closely with ‘that of Baxley's [1991] values for the time

series controller.
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Table 5.1 Simulation Results of equation (5.16)

8,= 6, =& = 0 (no carry-over effects), Dead Time, b= 1.0,

Controller Gain, CG = 1.0, Process Gain, PG = 1/(1-8) = 1.0

® (theta CESTDDVN Control error sigma(SE) (Baxley)
0.25 1.260 1.250
0.50 1.112 1.118
0.75 1.010 1.031

The control adjustment action given by equation (5.16) minimises the variance of the

output controlled variable.

5.7 TIME SERIES CONTROLLERS-FORECAST ERROR VARIANCE
FEATURE

The time series controller has the characteristic that its control error variance is
the (b+1) step-ahead forecast error variance. This is explained as follows.
The ARIMA (0,1,1) (Box and Jenkins [1970, 1976]) disturbance model is represented
by

©(B)Z = O(B)a

where
O(B) is the stationary autoregressive operator and
O(B) is the Moving average operator.

The one step-ahead forecast error for this model can be shown as

er(£) = zer — 2:(4) (5.17)
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where t represents the time at which the forecast is being made and £ , the leadtime, (the

time forecast in terms of the sample periods). That is, the forecast is made at origin t for

lead time # . In this equation (5.17), z is the effect of the disturbance at the origin t and
5, is an estimate of the expected value of the disturbance (Z) for any future time,

conditional upon the realisation of Z up to time t.

The forecast errors help determine the appropriate adjustment in the input
manipulated variable for returning the process to target by making the forecast and
control errors equal. The derivation of the expression for the control adjustment in the

input variable was shown in Section 5.6.
Although the forecasts are the same for all future sample points (values of / ),

the forecast error variance increases with £ . This can be seen by expressing the forecast
errors as a linear combination of future shocks

e(f) = Woarse T Wiamert W, a0 (5.18)
The forecast error variance is,

Varle(£)] = [1+(¢- (1-8)Jo, (5.19)

of the random component of the disturbance where £ is the same time forecast,
(defined above), in terms of the number of sample intervals into the future and 0':, the
variance of the random shocks.

So, the control error variance for the ARIMA (0,1,1) time series distutbance
model is
Var[e, (b+1)] = [1+b(1-8)Jo - (5.20)
This is the (b+1)-step-ahead forecast error variance. In this, the effect of dead time (b) is

to increase the control error variance by an amount which depends on ®, the moving
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average operator, also called the smoothing or time series constant. For slow drifts,
(values of ® closer to 1), the dead time causes only a small increase in the confrol error
variance, while for fast drifts, (values of ® closer to 0), the increase is large (Baxley
[1991]). For processes with fast drifts (explained in Section 6.7.2), since the effect of
dead time is more pronounced, it is important to reduce dead time achieved by
employing a dead-time compensator as shown in Section 4.5.

This particular characteristic regarding control error variance enables a time
series controller to provide an important baseline that can be used for studying the
particular class of controllers which require occasional adjustments. As mentioned
earlier, the controller's objective is to minimise the mean squared deviation from target
of the quality characteristic. This is accomplished by positioning the process in order to
exactly compensate for the forecasted deviation from target at the time when the current
adjustment will take effect, b+1 periods into the future. If this is done, then the deviation
from target or control error € is just the error from a forecast originating from b+1
periods in the past. As the level of the input manipulated variable at time (t), X, 1s
placed to compensate for the forecast, the adjustment or change x (thatis, X -X ) in
the input manipulated variable is calculated to compensate for the change in the forecast
from the previous sample period. This feature of a time series controller helps to know
the control error variance (b+1) step-ahead of the forecast error variance of a process

with b periods of dead time (time delay).
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5.8 ASSUMPTIONS IN THE FORMULATION (DESIGN) OF TIME SERIES
CONTROLLER PARAMETERS.

Before proceeding with further discussions, the following assumptions are made
in order to simplify the formulation (design) of the tuning parameter combinations for
the time series controller.

§)) There are only b full time periods of dead time (delay) and no fractional periods
of delay in the system. Any fractional periods of dead time will be rounded off to the
nearest integer.

(2)  There is no effect of additional noise on the input manipulated variable.

(3) There are no large observational errors in the measurement of the manipulated
variable and these uncorrelated errors, even if present, are assumed to be negligible
compared with the errors in forecasting or prediction. The measurement errors are
independent of the (conditional maximal) setting of the controller.

(G Continuous plant process production records are available so that it is possible to
obtain an approximate knowledge of the process and system behaviour under different
operating conditions.

(3) The present study is not for new or start-up processes or initial pilot-run
production schemes.

(6) There 1s no model error in the assumed process model.

5.9 TIME SERIES CONTROLLER PERFORMANCE MEASURES
5.9.1 Time Series Controller Tuning Parameter Combinations

The performance measures for a time,series controller are
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(1) CESTDDVN, control error standard deviation o, (expressed as multiples of G,
the standard deviation of the random noise component of process disturbance {at}),
CESTDDVN or 6. =0 /Ga, where o is the forecast error standard deviation and o, the
standard deviation of the random shocks.

(2)  The average number of sample periods between adjustments denoted by 'AT, the
sampling interval.

An optimal controller is one which for any adjustment interval (AI), the value of
1(=1-©®), a measure of the rate of drift of the process and transfer function gives the
lowest process vanability (CESTDDVN or GE) (Baxley [1991]). The controller gain
(CQ) is set equal to 1.0 in order to reduce the size of adjustment that will exactly
compensate for the forecast deviation from target (Baxley [1991]).

The parameters which determine the process simulation are
(1) b, the full number of periods of dead time
i) o= PG(1-5 -5.), a measure of the amount of process response carrying over into
additional sample periods and
(ii1) 1, 2 measure of the rate of drift of the process, called the IMA parameter (page
248, Baxley [1991]). Though, Baxley [1991] did not show the explicit relationship
between r and ©, it is shown in Section 6.7.3 that the values of the parameter 1 are
similar to the EWMA weights used for statistical process control.

It is proposed to determine these tuning parameter combinations, CESTDDVN
(crE) and Al, so as to eliminate over-control, characterised by more variable control

errors (Baxley [1991]).
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3.9.2 Need for Simulation Study of Statistical Process Control Algorithms for
Drifting Processes

In practice, it has been found that for many feedback control loops, the
performance improves significantly with a decrease in the sampling interval time.
Moreover, when there are delays, sampling at time periods which are much shorter than
the dead time, may result in little improvement in the performance of a time series
controller. The sampling time should be such that there will not be too many
adjustments in the process during the sampling time period. The sampling interval is
related to the type of process loop to be controlled and the process parameters, namely,
the time constant and dead time. Some feedback control loops respond faster to
adjustments than some other feedback loops. Due to this, the samples are required to be
taken at regular and faster intervals. A method to find the effects of sampling interval on
controller performance is to compare the various minimum output error variances at the
sampling instants for different intervals. In this method, the corresponding error
variances are not compared for different sampling intervals. Simulation is a method to
evaluate these variances at the intermediate times. In this context, a review of the
Simulation study of statistical process control algorithms for processes with drifis
{(Baxley [1991]) is given and some of the principles of this simulation methodology are
used to predict the performance of the time series controller (Chapter 6) at longer

sampling interval time periods.
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5.10 SIMULATION STUDY OF STATISTICAL PROCESS CONTROL
ALGORITHMS FOR PROCESSES WITH DRIFTS - A REVIEW

The study has been limited to six sets of the three parameters, (i) the dead time
(b), (ii) the inertia constant (8) and (iii) the moving average parameter @ (which is set to
match the IMA disturbance) for reasons (such as cost factors and dead time) explained
in the paper. Response surface experiments were run for the feedback control algorithms
on the six sets in order to determine optimal tuning parameter combinations. The two
responses of interest were the control error sigma (SE or O'E) and the adjustment
frequency (AF), the reciprocal of which is the average adjustment interval (Al). The
tuning parameters served as experimental factors. Each experiment consisted of a
simulation run of 2000 sample intervals. The experimental design used was Central
Composite Design with the relative spacing of star and factorial points set to give
uniform precision. Empirical models of the form given in the study (Baxley [1991])
were fitted to the data in each of the 12 experiments using least squares regression
analysis, Baxley [1991], used an optimisation procedure based on the Nelder-Mead
Simplex Search Algorithm (Nash [1979]) to find tuning parameter combinations giving
minimum control error sigma subject to an upper constraint on the adjustment frequency
and generated, by varying these constraints, a series of optimal parameter combinations
covering a range of adjustment intervals from 3 to 20. Then, an additional simulation
run of 10,000 sample periods was made for each optimal set of tuning parameters in
order to estimate more precisely the controller performance.

Baxley [1991] made a stepwise regression analysis on the simulated data. From
the analysis of variance (ANOVA) tables for (SE or O'E) and AF, Baxley [1991] found

the variability among the simulation runs to detect evidence for lack of fit. Contour plots

94




of Al = 1/AF and SE versus, the control parameter L (the number of multiples of Gy
used for the control limits) and CG (Control Gain) were drawn. A scatterplot of SE
versus Al for the extended runs at optimal settings (CG = 1.0) and ‘experimental data’
for other values of CG.

Baxley [1991] determined the 'form’ of the model by observing that for any
adjustment interval, the slope of the relationship between SE and Al varies with © in the
same manner as the fractional increase in SE caused by one period of dead time. As a
check for the model, Baxley [1991] compared the performance model predictions with
the work of Box, Jenkins and MacGregor [1974]. Baxley [1991] discussed also in detail

the simulation results for both the EWMA and the CUSUM controllers.

5.11 CONCLUSION

In this chapter, the characteristics, features and the criterion for a statistical
control algorithm for time series controllers were presented. An approximate feedback
control equation was derived and the time series controller performance measures
discussed in light of the statistical control algorithm developed for this controller. The
justification for considering a higher (second-order) dynamic model under critically
damped conditions was also given. The time series controller performance measures
were explained and also the tuning parameter combinations. A review of a simulation
study of statistical process control algorithms for drifting processes was given. The
(dead-time) simulation of the stochastic feedback control algorithm and EWMA process

control are explained in Chapter 6 and the simulation results discussed in Chapter 7.
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CHAPTER 6

SIMULATION AND PROCESS CONTROL

6.1 INTRODUCTION

The feedback control difference Equation (5.2) was derived in. Chapter 5 and the
expression (Equation 5.16) for the control adjustment in the input variable of a time
series controller in the existence of dynamics (inertia) and dead time (delay) given. A
brief review of the simulation study of statistical process control algorithms for drifting
processes by Baxley [1991] was also given. The principles of simulation methodology
to detenﬂine the performance measures of the time series controller, namely, control
error standard deviation (CESTDDVN) and the adjustment interval (Al) and EWMA

process control are discussed in this Chapter.

6.2 SIMULATION METHODOLOGY
The drifting behaviour of the process is simulated using a first order ARIMA
(0,1,1) model fed by standard normal shocks N(0,1). The shocks are obtained from a
random number generator with the seed based on the clock time in the computer. In this
method, two standard normal random variables, Z, and Z,, are plotted as a point in the
plane as shown in Figure 6.1 and represented in polar coordinates as
Z1=Bcos [ and

22=B sinﬁ
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Figure 6.1 Polar representation of a pair of standard normal variables.

It is known that B2 =7 12 + Z;_Z has a chi-square distribution with 2 degrees of
freedom. Thus, the radius, B, can be generated by use of the equation
12
B=(-2InR) °’
where R is a random number.
By the symmetry of the normal distribution, it seems reasonable to suppose that
the angle [ is uniformly distributed between 0 and 2~ radians. In addition, the radius B,
and the angle, B are mutually independent. Combining the above three equations gives a
direct method for generating two independent standard normal variates, Z, and Z,, from
two independent random numbers R1 and R2.
Zi=(21n RI)U2 cos (2m R2),
Z;=(-21n Rl)”2 sin (2 R2).
This method is used in the Fortran simulation programme to generate the
random shocks. The seed is based on the clo‘ck time in the computer to ensure complete

randomisation of the simulation runs. The rate of drift, r, of the process, from target is
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varied by giving different values to @ (0 < ® < 1). The property of the IMA (0,1,1)
model, that the forecasts for all future time is an exponentially weighted moving
average (EWMA) of current and past values of the disturbance z's (pages 106 and 145,
Box and Jenkins [1970, 1976]) is made use of to predict the future GMA, the geometric
moving average. An ARIMA (0,1,1) time series model is fitted to the variable quality
data by superimposing the one-step-ahead forecasts along with the control limits. The
forecast originating at any time t is a weighted average of the previous forecast (at time
t-1) and the current data. Box and Jenkins (page 128, [1970, 1976]) showed that, for a
lead time £, these forecasts estimate the process deviation from target without bias and
the forecast errors,
el(£) = zive— 2w

have a lower variance than those for any other statistic calculated from historical data.
The forecasts also help determine the appropriate adjustment for returning the process to
target. By making an adjustment at every sample point which exactly compensates for
the forecasted disturbance, the variance of the output controlled variable can be
minimised. The time series controller feedback contrel algorithm fits into this criterion
since it requires an adjustment for every sample and gives the minimum control error
variance as long as the dynamic model describing the process and the stochastic model
describing the disturbance are correct.

At first, the general control charting procedure is briefly explained which
provides the means of plotting the EWMA forecasts in a geometric moving average
(gma) or EWMA chart. The forecasts help in monitoring and regulating the process by
comparing the quality deviations from targe{, this is discussed in Section 6.5 as also is

the test of hypothesis aimed at ensuring that the mean is on target.
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0.3 CONTROL CHARTS AND STATISTICAL CONTROL
6.3.1 State of Statistical Control

The terms state of control and stable process were discussed in chapter 2.
Statistical control in relation to process control charts is explained in detail in this
Section.

A process is said to be in a state of statistical control when assignabie or special
causes of variation have been detected, identified and eliminated. It is of subsequent
interest to determine any change in the process, either in the mean level or in the
variation about the mean. Statistical control relates to the distribution of the
observations of the process and also to future observations which are expected to
possess the same statistical properties as past observations. When the process has been
operating with random fluctuations about a fixed mean, in a state of statistical control,
the general aim is to keep the process at this target level or to improve it by reducing the
overall variation about the required target. Control charts are used to detect changes

from a target level or changes in the variability of the process.

6.3.2 X Bar Control Chart and the Control Charting Procedure

Control charts are tools for process monitoring in industrial applications. One of

the standard tools in the process control environment is the Shewhart X chart. The X

chart uses the data to detect general or abrupt shifts in the mean level of the process. In

the X chart, small sample means of successive observations of the process quality data,

(that are assumed to be serially independent and approximately normally distributed),
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are plotted in time order. Chart construction generally presumes that the same number of
samples will be taken at each sampling in order to evaluate the mean and to assess the
state of the process. Previous process data are used to estimate the variance from which
the control chart limits (lines) are drawn +3c¢ (standard deviation) about the target T.
The performance characteristics of a product are the primary quality characteristics that
determine the product's performance in satisfying the customer's requirements. The
variation of a performance characteristic about its target value is referred to as
'performance variation’. The smaller the performance variation generally, the better is
the quality of the product. The central (target) line is a measure of the general level of
the process. The control limits help decide whether the process is operating in a state of
statistical control or not.

A statistically controlled process will oscillate fairly evenly about the mean with
a concentration of points in a one standard deviation band either side of the mean. So,
the process should be left alone unless a disturbance arising from a special cause is
detected by a hypothesis-testing type of procedure, making it also necessary to specify
the probability level to be used for such hypothesis testing. The response is then to look
for an assignable cause and to correct the process back to target by removing this. The
modus operandi to be followed if the assumption is made that the true process level is
not a constant and the common-cause variation and the process state of statistical
control follow only a stable or stationary model, is discussed in Chapter 8.

Consider a situation where the data is not normally distributed. In practice, there

are situations, in which non-normality is a characteristic of the observed process data.

¥

X charts are generally robust with respect to deviation from normality, although not

with respect to departures from the independent or uncorrelated data assumption. Hoerl

i
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and Palm (Hoerl and Palm [1992]) contended that all processes are autocorrelated,
depending on the sampling scheme used.

Lack of independence between successive observations in the form of
autocorrelation is an intrinsic part of the data structure in the continuous process
industries. The data is often similar to that arising from a first or second order
autoregressive process. The availability of autocorrelated data helps in predicting the
future observations accurately. If the autocorrelation estimates r, for lags k > 0 are not
significantly different from 0 or are small, (and damp out rapidly), then, the true level of
the process variable at any time t is assumed to be a constant.

Process data taken sequentially in time are likely to be serially correlated, (that
is, the data are not random; high values tend to follow high values, and low values
follow low values (Berthouex and Hunter [1983]). Generally, the effect of serial
correlation is to cause many false 'out-of-control signals', (explained shortly).

To cope with serial correlation, the original process data may be modelled by an
appropriate stochastic model. The residuals, (the difference between the predicted value
and the actual value of the next observation), from such a model are then uncorrelated.
The control charting methods of SPC can then be applied to the residuals (Montgomery
and Friedman, Keats and Hubele [1989]).

The Shewhart chart highlights special non-random causes affecting the process
mean by establishing limits on the sample averages. These causes may be identified by
the subgroup means falling outside the control limits or by runs (explained
subsequently) tests, (to detect early small shifts in the mean), applied to sequences of
plotted points. The control limits are defined*by a probabilistic statement of the form

UCL=K,cand LCL = Ki-a
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where K, and Ki- are the o and 1-a points of the distribution of the mean X. This

same principle is used to plot the EWMA forecasts from the data against two parallel
action lines in a geometric moving average control chart. In a feedback control scheme,
employing such a principle, the position of these limit lines is determined on (i) the
relative costs of adjustment and of being off-target, and (ii) by the degree of non-
stationarity of the process and not by questions of statistical significance. The relative
value of these costs is an important factor in deciciing the choice of a feedback control

scheme, which is discussed in Chapter 8.

6.3.3 The EWMA Chart

In the simulation study, the geometric moving average © is used for monitqring
by the EWMA chart and an appropriate alarm criteria based on the GMA (EWMA)
statistic for sounding the ‘out-of-control alarm signal’. The EWMA control limits give
an indication of how the forecast is significantly different from the target. When an
EWMA signal is obtained, appropriate corrective control action based on the forecast is
devised. This is explained in detail in Section 6.5. An alarm signal that indicates that the
process may be out of control is the appearance of a single last plotted point falling
beyond the 3o control limits. One of the purposes of the process control chart is to
monitor a stable operation and to reveal special or assignable causes. It will then be
sensible to react to process changes only when some monitoring criteria is established as
statistically significant. In practice, the alarm control signal that the process needs
immediate attention is aided by the use of 'runs' (short sequences of observations).

There are two possibilities for dealing with data that are serially correlated; one,

using original observations and suitably modifying the control limits and rules to

1
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account for the correct process "variance and another possibility is to model the
observations as a time series and plot the resulting residuals on a control chart. If the
observations have positive serial correlation, the variance of the process will be
underestimated. If the observations are negatively correlated, the resulting estimate of
the variation will be overestimated. It can be shown that for data from a first-order
autoregressive process, a negative lag-one correlation will decrease the variance of the
time series and also the average run length (explained in Chapter 8). A positive lag-one
correlation, while reducing the ARL as compared to a Normal process, would increase
the estimated variance over the true value. If this is ignored, such an action would result
in a control chart that has limits set too far from the mean and may fail to indicate
problems when they do truly exist. To analyse such a situation is to 'correct' the
estimated variance to account for autocorrelation and to use the correct value to compute
the moditied control limits (Berthouex [1989]). This is discussed in Section 8.4.

The test of hypothesis is discussed in the next Section before reverting to

EWMA forecasting in Section 6.5.

6.4 THE NULL HYPOTHESIS
The IMA property of the EWMA forecast is to (i) compare the quality deviations
from target, that is, the mean of the quality data GMA with the control limits (LCL and

UCL) and (ii) to adjust only when the GMA is beyond its limits. These limits are set at

LCL =-1.Gz (6.1)
and
UCL=L0G:; (6.2)




where Oz is the standard deviation of an estimate of the expected value of the

disturbance z for any future time, conditional upon the realisations of z up to time t.

The null hypothesis, denoted by Hj is that the (process) mean of the quality
variable is on target. The EWMA forecasts estimate the process deviation from target
and help determine the approximate adjustmeni for returning the process to target. The
test statistic, (which is a function of the observed random sample), is calculated from the
quality deviations from target and compared with the control limits for that statistic.
Under the null hypothesis of drifting behaviour and special causes, there is a probability
of the test statistic falling outside the critical region of the control limits. The rejection
of Hy would mean that there is evidence to suggest that the product mean is not on target
and lead to the acceptance of the alternative hypothesis, denoted by H,(mean not on
target). By not taking action when the process is out of control, leads to Type II error by
Judging the process to be in control when it is actually not.

The risk of committing a type II error is minimised in the following manner.
When a limit violation occurs, it is assumed that there is a need to correct a special
cause which is present in the process. The adjustment is then calculated to compensate
for the change in the forecast from the previous sample period. This approach seems to
be better than the hypothesis-testing Shewhart approach which is aimed at minimising
the risk of taking action when the process is in control, (explained below) (Baxley
[1991]). Since the test statistic falls inside the critical region, this hypothesis-testing
approach does not aid in providing an estimate of the new process level to calculate the
required adjustment. ‘

For a time series controller, a sample is taken and corrective action is initiated at

once, following an out-of-control alarm signal for level shifts in the mean of the quality
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data away from the target, in such a manner that returns the quality index back to target.
This is achieved for values of © closer to 0 and 1.0 for drifting processes and the
EWMA control limits L fixed by Equations (6.1) and (6.2) for controlling the average
number of sample periods. The term control is used here in the sense of the stationary or
iid variation about a target value (page 266, Box and Kramer [1992]) and embraces
Shewhart's [1931] definition of control to predict within limits, the future behaviour of a
process with the possibility of bringing the process into a state of statistical control by
adjustment (page 257, Box and Kramer [1992]). The adjustment interval (AI), the
control error standard deviation (CESTDDVN) GE (control error sigma) are obtained
from simulation results (see Attachment 6.1 for the Fortran F77L computer programme).
These are important to determine the time series controller performance measures. The
programme simulates a time series controller with a second-order plus dead time

dynarnic model and ARIMA (0,1,1) disturbance.

6.5 EWMA FORECASTING AND FEEDBACK CONTROL
The Equation (5.9) for the non-stationary disturbance represented by the
ARIMA (0,1,1) model is rewritten to give the following recursive formula for updating
a forecast of the process level
20) =0z1(D+(1-9)z. (6.3)
The current forecast Z:(£) of Equation (6.3) for lead time £ is re-expressed by making
successive substitutions for the previous forecasts to obtain
zi{f) = (1-0)(Z+ O Z1 + @2+...). 6.4)

The EWMA forecasts are a weighted average of the current and historical data, where

the weights are decreasing exponentially for the data further back in time and the




2
weights are, (1 - @),(1 - ©)0, (1 - ®)® - etc. which sum to unity since 0 < ® < 1, and

because of the fact that

x' = 1/(1-x), 0 <x< 1.

=M8

These weights are relatively heavy on recent data for fast drifts (explained in Section
6.7.2) but spread back in time for slow drifts as per Figure 6.2 (reproduced from Figure
4, page 256, Baxley [1991]) (Attachment 6.II). The control limits are set at multiples of

(usually 3 times) the standard deviation of im (4.

It is known that

s = ([1- O] [(1-©)(1+ @)])mca (page 262, Baxley [1991])

asymptotically converges to

172

[(1-8)/(1+ ®)] ©.,
after a small number of sample periods, t, since the last out-of-control signal (page 262,
Baxley [1991]). At this stage, it is assumed that the value of 0% in the situation when
there are no drifts will be the same when there are process drifts.
The control parameter L denotes the number of multiples of C. (notation SA in
the computer simulation) used for the control limits. The upper control limit and the
lower control limits are set at the values given by Equations (6.1) and (6.2).

The one step ahead forecasts are plotted about a target value T and refer to the

control lines drawn at a distance of £1.CZ> that is, iL\/ (1-©)/(1+©) o, above and

below the target. Such a plotting procedure provides timely warning of a deviation from
target and of the possible need for corrective feedback control action and may also

provide clues as to possible assignable causes of variation which may subsequently be
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eliminated or compensated for in order to improve the process. As long as the predicted
forecast falls within these control limits (and hence is considered close to the target), no
change is made in the process. Appropriate adjustment is made when a forecast crosses
the control limits. This 1s similar to keeping a Shewhart chart on the predicted deviation
from target one step ahead when the series of u.pcorrelated random shocks is a s.equence
of highly dependent random deviates about a fixed mean and has a tendency to drift.
These control limits are related to the cost of making a change relative to that of being
off-target and to the parameters of the non-stationary stochastic model. The minimum
mean square error forecast of the non-stationary stochastic model is the geometrically
(exponentially) weighted moving average of the previous observations. The geometric
moving average is the IMA parameter, ©, of the ARIMA (0,1,1) process. For a dynamic
system, where a cost is associated with making a change, we obtain the standard
Shewhart chart with different control limits which are not related to any tests of
significance and probabilities of being outside control limits. This control action is the
discrete (analogue of) integral control action which is accumulating the deviations from
target when action is being taken at every sampling or adjustment interval. This action is
equivalent to taking an exponentially weighted moving average of past disturbances
2,2y, 2y - (Box, Jenkins and MacGregor [1974]).

In the computer simulation, the quality deviations from target, that is, the mean
of the quality data gma (notation used in the computer simulation) are compared with
the control limits, UCL and LCL. Then, the required adjustment (dxt) in the input
manipulated variable X is calculated by means of the feedback control algorithm and the
necessary required corrective action is applied to compensate for the change in the

forecast from the previous sample period to return the quality index to target. From the
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simulation results, it is possible to know (i) when to make an adjustment to the process
and (ii) by how much to change the input variable so that the output quality variable is at
Or near target.

The output results of the simulation programme given in Tables 6.1 and 6.11,
titled "Time Series Controller Performance' (Attachments 6.II[ and 6.IV), show the
standard deviation of the control errors (CESTDDVN) and an average (MFREQ) for an
indicator variable (FREQ), which takes the value 1 for sample periods with an
adjustment and zero otherwise. The results are shown for values of ® of 0.05, 0.25 (fast
drifts) and 0.70, 0.75 and 0.95 (slow drifts) only. The tables can be used as ready
reckoner which give an idea of CESTDDVN for (some) known dynamics of a process
control system and a particular (regularly) occurring disturbance.

The performance of the time series controller measured by the control error
standard deviation (CESTDDVN) and the average adjustment interval, the mean Al
being equal to 1/MFREQ, (the mean adjustment frequency AF), are obtained from the
simulation results of the feedback control algorithm. Control error standard deviation

(CESTDDVN) = SE/SA (standard deviation of the forecast (control) error/standard
deviation of the random shocks G% ).
a

There is no prior work that needs to be done which estimates the control error
sigma CESTDDVN) or the adjustment interval (AI) when the disturbances follow an
ARIMA (0,1,1) process, (Baxley [1991]). Graphical plots (Figures 7.3 and 7.4)
{Attachments 7.VIII and 7.IX to Chapter 7), of the values of CESTDDVN versus Al and

® show the variation in CESTDDVN due to Al and the IMA parameter ®.

+
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6.6 A NOTE ON CONTROLLER GAIN (CG)

The reasons for setting the controller gain CG to 1.0, is discussed in brief in this
Section. The maximum value of the controller gain for stable operation of a (pure) delay
process is one (Chandra Prasad and Krishnaswamy [1975]). At this stage, it is
intuitively assumed that the tuning parameter for the time series controller is © only,
which depends on the rate of drift (r) of the process, (r being equal to 1-®). For making
such an assumption, inferences are drawn from Baxley's [1991] simulation study on the
behaviour of the EWMA and the CUSUM controllers for drifting processes. Baxley
[1991], from the contour plots of AI(=1/AF), and SE versus CG for the EWMA
controller, showed that for the Al contours, the control error sigma (SE) is lowest when
the controller gain is about 1.0. Baxley [1991] used the optimisation procedure based on
the Nelder-Mead Search algorithm (Nash [1979]) to find tuning parameter combinations
that gave a minimum SE subject to a constraint on the adjustment frequency. He found
from the sample results of these optimisations along with the results of additional
simulation runs of 10,000 sample periods that the optimum controller gain is near 1.0.
The adjustment control action exactly compensating for the forecasted deviation had a
strong appeal to Baxley [1991] to set CG to 1.0 for the zero dead time case. By drawing
a scatter plot of SE versus Al for these runs at optimal settings (CG = 1.0), Baxley
[1991] showed that the optimal controllers lie along the lower edge of the scatter plot.
For these reasons, it is assumed that this property of optimal controllers will also hold
good for a time series controller, being a MMSE controller. It is thus sufficient to
consider ® only as the tuning parameter for other cases of dead time (b = 1, 2). This is

also in view of the use of the EWMA forecasts which exhibit the IMA property.
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6.7 EXPERIMENTAL STRATEGY FOR SIMULATION
6.7.1 Review of Kramer and Baxley’s Results

The steps suggested by Baxley [1991] are followed for the experimental strategy
for conducting the simulation study. Without loss of generality, the first period response
to a unit step change (1) and the standard devifltion of the random shocks (0a) are set
equal to unity. The emphasis of this simulation study is on the control of quality indices
which are evaluated in the laboratory from the production samples. A sample interval
which is large in relation to the dynamic response PG(I-Sl-Bz)/(l-BIB-Bsz) of the
process to an adjustment, contributes to the costs of sampling and measurement. There
are also situations that result in delays when performing the laboratory measurement or
in which the effect of the control adjustment takes time in reaching the sample point.
With these facts in mind, the respective observations made by Kramer {1990] ‘and
Baxley [1991] in regard to the control of dynamic processes (in which there is no dead
time), and processes in which only dead time is present (and there are no dynamics) are
reviewed briefly.

Kramer [1990] studied the effects of dynamics (inertia), 3 on the adjustment
variance for a first order dynamic system in which the adjustments to the input variable
are made after the process is observed and so their effects are seen at the next
observation (meaning that the dead time is zero). Baxley [1991] in his simulation study,
gave some values of © and SE and 6 = 0 for the time series controller performance with
one dead time period and i = 1.0. The aim is to show that even with the combined
effects of both the dynamics (inertia) and the dead time, the time series controller still

gives MMSE control with (minimum) adjustments for slight increases in control error

sigma (CESTDDVN).
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Baxley [1991] observed that for a time series controller, the presence of dead
time means that the process disturbances must be forecasted farther ahead in order to
determine the best adjustment which results in a larger forecast error sigma and hence a
larger control error sigma. The penalty for having one period of dead time, for example,
in the feedback loop is seen to be more severe for processes with fast drifts, that is, for
processes for which the values of ® tend to zero. Baxley [1991] observed also that for
any adjustment interval, the slope of the relationship between SE and Al varies with ®
in the same manner as the fractional increase in SE caused by one period of dead time.
Both increase as the rate of drift of the process, r, increases, that is, as @ tends to zero.
Since the joint effects of both the dynamics, and the dead time, b, on the control error
standard deviation (CESTDDVN) for the time series controller are required, the
simulation study is conducted for values of ® ranging from 0 to 1 and these values of ©®
are repeated for b = 2.0. The reasons for limiting b to the values of 1 and 2 are given in
Chapter 7.

An advantage of conducting the simulation study is that the values of the output
variances (varCE) and control adjustment action variances (SDdxt) are directly obtained
from the simulation results. It obviates the need for developing complex expressions as
shown by Kramer [1990] for (constrained) variance control schemes.

Kramer [1990] and Baxley [1991] used the terms ‘monitoring interval’ and
‘adjustment interval’ in reference to their respective process regulation schemes and
simulation studies and so had specific intent. Kramer [1990] defined the monitoring
(‘sampling") interval as the multiple of the initial short base (unit) interval at which the
process is experimentally monitored. Baxley [1991] defined the average number of

sample periods (intervals) between adjustments as adjustment interval when the EWMA

[11




statistic violated the control limits for that statistic requiring an adjustment to be made
to the process. So, as per Baxley's [1991] definition, an adjustment interval is made up
of a number of sample intervals (periods). This means that the process is under constant
surveillance, the gma and the value of the adjustment calculated at each instant and
necessary adjustment made, if required, to the process when the gma crosses the control
limits. This is an advantage for monitoring the process clesely but may become costly if
the adjustments cannot be automated thus increasing the total cost of process regulation.
Another advantage of using the concept of the adjustment interval is that for the time
series controller, the sampling and control adjustment actions need not be done
separately or independent of each other, the adjustment being made as soon as an out-
of-control signal appears on the control chart, the required adjustment being known
from computing the feedback control algorithm. The use of Al presents an opportﬁnity
to sample the process at every instant of time, (at each iteration of the simulation run), if
a knowledge of the state of the process at every instant of time is required; but this may
not be necessary as the process may require to be sampled only when the process is out-
of-control in order to know the exact reason for such an out-of-control signal. This may
help in reducing the sampling cost and eventually the overall cost of regulation of the
process control scheme. While Kramer [1990] explained the effects of altering the
monitoring (sampling) interval on 8, Baxley [1991] showed the effect of ® on the
adjustment interval. Baxley's [1991] notation and meaning of Al are followed in order
to discuss the simulation results. The value of Al (the reciprocal of the mean frequency
MFREQ in the simulation programme) corresponds to the total number of sample

periods (intervals) with an adjustment, '
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6.7.2 Fast and Slow Drifts

It is known that ARIMA models can be used to characterise and forecast the
drifting behaviour of process disturbances and to describe the dynamic relationship
between the output controlled variable and the input manipulated variable. A process

with fast drifts is one where the true process level can move rapidly over the range equal

to the magnitude of the variance of the random shocks, N(0, &, 2) because of a relatively
large variance of the disturbance (Z). In such processes with fast drifts, the
factors/causes driving the process away from target are large relative to the sampling
and measurement errors (Baxley [1991]). One of the assumptions mentioned in Section
5.8 is that there are no large errors in measurement and in sampling errors that exist are
negligible when compared with the forecasting errors. The IMA parameter ® with
values from zero to 1, approaches zero for such processes. As ® approaches zero, the
process becomes less and less stable and closer and closer to a random walk. The
random walk is an IMA (0,1,1) process with ® = 0. On the other hand, processes with
slow drifts, that is, those processes with values of ® approaching I, have a small
variance of the shocks {and larger sampling and measurement errors), which can be
modeiled as IMA processes with @ approaching 1 (Baxley [1991]). As ® approaches
unity, the time series model representing the drifting disturbance (Equation 5.9),
behaves more and more like the stationary model. When ® = 1, (Equation 5.9) becomes
the stationary model where the errors are iid about a fixed mean. The rate of drift of the
process, r, away from the target for drifting processes is determined by the IMA
parameter ®@. Baxley [1991] described the rate of drift for the IMA (0,1,1) disturbance
model with the values of ® ranging from tilose approaching 0 and up to 0.25 as fast

drifts and for values of @ above 0.75 and approaching 1.0 as slow drifts (See Figure 6.2,
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reproduced from Figure 4, Page 256, Baxley [1991]) (Attachment 6.II). The same
principle is followed in our discussions. r is taken as the forecast weight (explained in
Section 6.5) of the gma plot in the simulation. The justification for use of these weights
in the simulation study are discussed by reviewing some of the earlier results available

in the literature in connection with EWMA control charting procedures.

6.7.3 Identification of the IMA Parameter, r =(1- ®), as EWMA Forecast Weight

It was mentioned in Section 6.5, that the one-step ahead EWMA forecast
weights are (1-@),@(1—@)),@(1-@)2,... etc which sum to unity. Baxley [1991] showed
that these weights are relatively heavy on recent data for fast drifts but spread further
back in time for slow drifts. These weights are identical to the rate of drift of the
process, r, which can be used to calculate the gma plots. In this context, it may be
appropriate to mention the following results available in relation to the EWMA
forecasts.
(i} The EWMA weighting constant determines the memory of the EWMA (gma)
statistic. That is, the EWMA constant determines the rate of decay of the weights. When
the process is under control, points plotted on the EWMA chart are equal in their
capability of detecting signals of departures from assumptions, (that the process is under
control), to points plotted on the Shewhart chart. Hunter [1986] suggested values of 0.2
t 0.1 for the weights based on similar experiences with econometric data.
{(11) Roberts [1959] and Crowder {1987] assumed that there were no drifts present in the
system and recommended the choice of ® (=1-r) (and also the control limits L) for
controlling the average number of sampleiperiods until an out-of-control signal for

specified level shifts in the mean of quality data away from target. Crowder [1987]
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showed that setting @ = 0.95 (and L = 2.5) resulted in an in-control average run length
of 379 and an ARL of 10.8 following a level shift of £ 1 5, (Baxley [1991]).
(iil) Berthouex [1989] suggested that the values of the weight (in the EWMA
calculation) in the range of 0.1 to 0.3 are useful in effectively smoothing the time series
while being responsive to the change. '
{(iv) Montgomery and Friedman (Keats and Hubele [1989]) recommended small values
of r (which they called a 'discount factor’), say, 0.05 < r < 0.20) to plot the geometric
moving average and the width of the control limits (L) in chart-sigma units as either 2.5
or 3.0.
(v) Harris and Ross {1991] quoted, (from the Tables for the EWMA given in Lucas and
Saccucci [1990]), that the value of the weight (which they called the 'smoothing
parameter’), required to implement the EWMA equal to 0.18, and the other parameter L,
(which they called the critical value for EWMA), equal to 3, closely match the average
run lengths for the cumulative sum procedures used to calculate the ARLs via Markov
chain considerations or via a Monte Carlo simulation.
(vi) Baxley [1991] gave a graphical representation of forecasting an IMA process and
showed that the forecast weights, (the rate of drift, r), increases for slow drifts and
decreases for fast drifts.

In view of the above with regard to the choice of the value for r, the simulation
run of 2000 sample periods (intervals) was conducted for:-
(i) values of @ for 0.25, 0.5, and 0.75, & = 0 and values of b = 1.0 and shown in
Table 5.1 confirms the agreement of our results with that of Baxley [1991].
(it) fast drifts (for values of ® = 0.05, 0.1, 0.15, 0.20 and 0.25), for moderate drifts

(for values of @ = 0.50, 0.55, 0.60, 0.65, 0.70) and for slow drifts (for values of ® =
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0.75, 0.80, 0.85, 0.90, 0.95) for 10,000 sample periods (intervals) for values of dead
time b = 1.0 and b = 2.0 in order to show that the time series controller still gives

minimum variance control under drifting process conditions with dead time.

6.7.4 Experimental Strategy - Continuation _

The standard deviation of random shocks (a) is set to be unity. Vander Wiel
and Vardeman [1992] opined that a process disturbance, if different from an IMA, will
result in poor performance of a feedback control algorithm formulated for an IMA
disturbance. It is likely that its performance may be worse with no feedback control if
the disturbance is really a moving average. The feedback control based on the IMA
disturbance model works whenever the variance of the error of the EWMA forecast of
the disturbance is (substantially) lower than the variance of the original disturbance
(Box and Kramer {1992]). So, the IMA parameter @ is set to match the disturbance.

Baxley {1991] used experimental design to find the control limits L and the
controller gain (CG) in his simulation studies. It is not required to run 'response surface
experiments’ on the sets of values of ®, 8 and b for the time series controller to
determine its optimal tuning parameter combinations. This is due to the facts that (i) the
controller gain (CG) is set to be 1.0, and (ii) the control limits given by Equations (6.1)
and (6.2) depend only in turn on ©. Yet, the control error sigma (CESTDDVN) and the
adjustment frequency (FREQ in the computer simulation) are maintained as the
responses of interest since, as noted earlier, in Section 5.9, CESTDDVN and Al, the
average number of sample periods (intervals) between adjustments, are the performance

measures for the time series controller. It*was mentioned in Section 6.7.1 that the

reciprocal of the average adjustment frequency (MFREQ in the computer simulation
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programme) is the adjustment interval (AI). A controller, to be optimal, should give the
lowest process variability (CESTDDVN) for (i) an average adjustment interval, (ii) the
value of r, the rate of the process drift and (iii) the process dynamic model (transfer
function). Instead of Baxley's [1991] analytical approach of using the Nelder-Mead
Simplex Search Algorithm (Nash [1979]) to find tuning parameter combinations that
give minimal control error sigma, the observation of Box and Jenkins ([1970, 1976]),
made in Section 5.6, that the values of the CESTDDVN's, given by the simulation runs
are the minimum variance of the output variable since the feedback control adjustment
action x, (dxt in the computer simulation) given by Equation (5.16) exactly compensates
for the forecasted disturbance, is recalled. The minimal CESTDDVN and the Al are
found directly from simulation results. Since these minimum variance controllers are
derived via simulation, it is possible to find adjustment intervals to minimise the sum of
the adjustment, (which includes the sampling cost) and off-target costs (explained in

Chapter 8 along with an outline of description of the regulation procedure).

6.8 CONCLUSION

The simulation methodology has been explained in this Chapter as also has the
control charting procedure and EWMA forecasting procedure. The simulation strategy
and the drifts (fast and slow drifts) have also been discussed with a review of Baxley’s

and Kramer’s results. The results of the simulation are discussed in Chapter 7.
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C
C

Attachment 6.1
FORTRAN F77L COMPUTER PROGRAMME

C #include <f77_{floatingpoint.h>

C FORTRAN PROGRAMME FOR SIMULATION OF A TIME SERIES

C CONTROLLER WITH A SECOND-ORDER PLUS DEAD TIME DYNAMIC
C MODEL (TRANSFER FUNCTION) AND ARIMA (0,1,1) DISTURBANCE
C THE GMA THETA IS CONSTRAINED TO BE THE SAME AS THETA FOR
C THE DISTURBANCE

C

C NOTATION

C

C RI - INDEPENDENT RANDOM NUMBER.

C

C R2 - ANOTHER INDEPENDENT RANDOM NUMBER

C

C o - SEED BASED ON THE CLOCK TIME IN COMPUTER

C

C rrand - RANDOM NUMBER GENERATOR

C

C Z1 - INDEPENDENT STANDARD NORMAL RANDOM VARIABLE
C

C 72 - ANOTHER INDEPENDENT STANDARD NORMAL VARIABLE
C

C | - ITERATION VARIABLE

C

C SPROC - STANDARD DEVIATION SET EQUAL TO 1.0

C

C ATAN- ARCTAN

C

C iter - NUMBER OF COMPUTER ITERATIONS

C

C iteron2 - iter/2

C

C x - VALUE OF INPUT MANIPULATIVE VARIABLE AT TIME t

C

C xtm! - VALUE OF x AT TIME t-1

C

C dxt - CONTROL ADJUSTMENT' REQUIRED IN THE INPUT

C MANIPULATED VARIABLE AT TIME t

C

C dxtmb- VALUE OF CONTROL ADJUSTMENT AT TIME t WITH DEAD TIME
C b

C

C Mdxt - MEAN OF dxt

C

C SDdxt - STANDARD DEVIATION OF dxt

C
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b - THE FULL (WHOLE) NUMBER OF PERIODS OF DEAD TIME

PG - PROCESS GAIN FOR THE CRITICALLY DAMPED CONDITION,
THE EVENTUAL EFFECT OF A UNIT CHANGE IN THE INPUT
VARIABLE AFTER THE COMPLETION OF THE DYNAMIC
RESPONSE

deltal ~-INERTIA CONSTANT GE-2LT?2

delta2 -INERTIA CONSTANTGE -1LT 1

w -PG*(1-deltal-delta2), MAGNITUDE OF THE DYNAMIC RESPONSE
TO A UNIT CHANGE IN THE FIRST PERIOD FOLLOWING DEAD
TIME SET EQUAL TO 1.0

w/(1-deltal *B-delta2*B*B)
-DYNAMIC RESPONSE OF THE PROCESS

CG  -CONTROLLER GAIN SET EQUAL TO 1.0

r - = (1-theta), A MEASURE OF THE RATE OF DRIFT OF THE
PROCESS

theta - INTEGRATED MOVING AVERAGE(IMA)PARAMETER 'theta!
e  -FORECAST ERROR
ME - MEAN OF FORECAST ERROR
SE - STANDARD DEVIATION OF FORECAST ERROR
A -RANDOM SHOCK NID(0, SA)
atml - VALUE OF RANDOM SHOCK {a} AT TIME t-1
AVMA- MEAN OF {a}
SA - STANDARD DEVIATION OF RANDOM SHOCK
CESTDDVN
- CONTROL ERROR STANDARD DEVIATION (EQUALS SE
OVER SA)
varCE - CONTROL ERROR VARIANCE

vardxt - VARIANCE OF THE CONTROL ADJUSTMENT (SDdxt**2)

gma - GEOMETRIC MOVING AVERAGE theta AT TIME t

i
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gmatm1
- gma at time t-1

z - DISTURBANCE AT TIME t

ztml - VALUE OF DISTURBANCE AT TIME t-1

v - VALUE OF OUTPUT OR CONTROLLED VARIABLE AT TIME t
ytml - VALUE OF y AT TIME t-1 |

thetal - IMA PARAMETER 'theta’ AT TIME t-1

FREQ - ADJUSTMENT FREQUENCY

MFREQ
- MEAN OF FREQ

AL - CONTROL PARAMETER = 3*SA

integer accrued, ieeer, under,inv,inx,over,under
character* 16 out

DIMENSION A(-10001:10001),e(-10001:10001),
dxt(-10001:10001),
x(-10001:10001),y(-10001:10001),
2(-10001:10001),FREQ(10000),gma(-10001:10001),
atm1(-10001:10001),ztm 1(-10001:10001),
gmatm1(-10001:10001),xtm3(-10001:10001),
xtm2(-10001:10001),

xtm1(-10001:10001),
ytm1(-10001:10001),ytm2(-10001:10001),
etm1(-10001:10001),
etm2(-10001:10001),dxtmb(-10001:10001)

R RRRRR

INTEGER j,iter,iteron2,b.recno, currec

REAL MFREQ,Mdxt,ME,SDE,SE,SDdxt,SDFREQ,FREQ,e,r, AVMA,SA q,
& PG, w,ATAN,rr vardxt,varCE,CESTDDVN

DATA  SPROC/1/,CG/1/,

atm1(0)/0/,2tm1(0)/0/,xtm1(0)/0/,

x(0)/0/,ytm1(0)/0/ ,etm1(0)/0/,etm2(0)/0/,
y(0)/0/,e(0)/0/,gma(0)/0/,2(0)/0/,gmatm1(0)/0/
dxt(0)/0/,ytm2(0)/0/,xtm2(0)/0/,xtm3(0)/0/,dxtmb(0)/0/

ISR

write(*,'(" this is unit 66")")
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open(1,file="file1 1.txt',access='sequential' status='unknown',
&torm="formatted")
0pen(2,ﬁ1&:=‘ﬁle22.txt',access='sequential',status=‘unkn0wn’,
&form="formatted')
open(3,file="file33.txt',access="sequential',status="unknown',
&form='"formatted")

open(4,file='file44.txt' access='sequential’,status="unknown’,
&form="formatted")
open(3,file="file55.txt',access='sequential’,status="unknowr’,
& form="formatted')

open(6,file="file66.txt' ,access="sequential’,status="unknown',
&form="formatted")

open(7,file='"file77 txt',access="sequential',status="unknown',
&form='formatted")

open(8,file='file88.xt' access='sequential’,status="unknown’,
&form="formatted")

¢ Number of iterations
iter=10000
¢ program to find the values of deltal and delta2
c LK
recno=(0
do 22 delta2= -0.99,1.01,0.01
do 21 deltal= -1.99,2.01,0.01
C = deltal **2+4*delta2
it ((deltal+delta2).It. 1.0.and.(delta2-deltal).lt. 1.0) then
if (C .gt. -0.01 .and. C .1t. 0.01)then
write(1,10) deltal,deita?
recno=recno+1
PG=1/(1-deltal-delta2)
if (PG .gt. 1.0 ) goto 22
endif
endif
10 FORMAT(2F30.15)
21 continue

22 continue
close(1)
open(l file="filel1.txt',access='sequential’,status="old,
& form="formatted' )

¢ Limit of steady-state gain for closed-loop stability, that is, g=1.0

¢ PG=g, for a critically damped second-order system

¢ g =w/(l-deltal-delta?)
w=1

do 20 theta=0.05,1.0,0.05
do 25 currec= 1, recno
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c

40

C

50

60

read(1,fimt=10,10stat=n) deltal,delta?
if(n.lt.0)goto 13

PG=1/(1-deltal-delta2)

if (PG .gt. 1.0) go to 25

if (theta .gt. 0.25 .and. theta .It. 0.50) go to 20

set value of q
r=1 - theta
q = sqrt{r/(1+theta))

Initialise arrays
Do 40 j=1,iter,1
atm1(j)=0
ztm1(j)=0
gmatm1(j)=0
xtm3(j)=0
xtm2(j)=0
xtm1(j)=0
ytm1(G)=0
ytm2(j)=0
etm1(j)=0
etm2(j)=0
dxt(j) =0
dxtmb(3)=0
continue

generate random normal numbers
iteron2 =iter/2
r =rand(0)
DO 50 j=1,iteron2
R1=RAND(®)
R2=RAND(0)
PI=4*ATAN(1.)
Z1=SQRT(-2*ALOG(R1))*COS(2*PI*R2)
Z2=SQRT(-2*ALOG(R1))*SIN(2*P[*R2)
A(2*¥j-1)=Z1*SPROC
A(2*))y=Z2*SPROC
CONTINUE

CALC MEAN AND STANDARD DEVIATION OF A(SA)
SUM OF ITER
MA=0
DO 60 j=6,ITER
MA=MA+A() ,
CONTINUE

DIVIDE BY (ITER-5)
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70

SRONONS!

80

AVMA=MA/(ITER-5)

SUM OF SQUARED DEVIATIONS FROM MEAN
SDA=0
DO 70 j=6,ITER
SDA=SDA+A()-AVMA)**2
CONTINUE

STANDARD DEVIATION...S"QR DIVDED BY ITER
SA=SQRT(SDA/(ITER-6)) '
set value of the control parameter, AL=3*SA
AL=3*SA
LCL=-AL*q*SA
UCL= AL*g*SA

b=1
compare quality deviations from target,that is,mean of quality
data gma(j) with control limits
calculate dxt(j) to compensate for change in forecast from previous
sample period

z(1)=a(l)

xtm1(1)=0
y(1)=deltal *ytm1(1)+delta2*ytm2(1)}+w*xtm2(1)
e(1=z(1)+y(1)

dxt(1)=-(1/w)*(r*e(1)-r*deltal *etm1(1)

& -r*delta2*etm2(1))-r*dxtmb(1)

x(1)=dxt(1)
gma(l)=r*e(1)

Z(2)=ztm1(2)+a(2)-theta*atm1(2)
y(2)=deltal *ytm1(2)+delta2*ytm2(2)+w*xtm2(2)
e(2=z(2)+y(2)

dxt(2)=-(1/w)*(r*e(2)-r*deltal *etm1(2)

& -r¥*delta2*etm2(2))-r*dxtmb(2)

x(2)=xtm1(2)+dxt(2)
gma(2)=r*e(2)+theta*gmatm1(2)

do 80 j=3,iter
z(j)=ztm1(j)+a(j)-theta*atm1(j)
gma(j)=r*e(j)+theta*gmatm1(j)
continue

do 90 j=3,iter

if (xtm2(j) .le. 1.E-37) then )
xtm2())=0

endif
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if (ytm1(j) .le. 1.E-37) then
ytml{j)=0
endif

if (ytm2(j} .le. 1.E-37) then
ytm2(j)=0
endif

if (v(j) .le. 1.E-37) then
y(§)=0
endif

if (etm1() .le. 1.E-37) then
etm1(j)=0
endif

if (etm2(j) .le. 1.E-37) then
etm2(j)=0
endif

it (dxtmb(3) .le. 1.E-37) then
dxtmb(j)=0
endif

y()=deltal *ytm1(j)+delta2 *ytm2(j}+w*xtm2(j)
e()=z()+y()

if (gma(j) .It. LCL .or. gma(j) .gt. UCL) then
dxt(j)=(-1/w)*(r*e(j)-r*deltal *etm1(})
& -r¥delta2*etm?2(j))-r*dxtmb()
X(=xtm1()+dxt(j)
gma(j)=0
freq(j)=1
else
dxt(j)=0
freq(j)=0
endif

x(j)=xtm1()+dxt())
atm1(j+1)=a(j)
gmatm1(j+1)=gma(j})
ztm1(j+1)=z(})
xtm?2(j+1)=xtm1(j)
xtm1(G+1)=x(j)
ytml1(+1)=y()
ytm2(j+1)=ytm1(j)
etm1(j+1)=e(j)
etm2(j+1)=etml(j)
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if (ytm1(j+1) .le. 1.E-37) then
ytm1(j+1)=0
endif

if (ytm2(j+1) .le. 1.E-37) then

ytm2(j+1)=0
endif

if (xtml1(j+1) .le. 1.E-37) then
xtmI(G+1)=0
endif

if (xtm2(j+1) .le. 1.E-37) then
xtm2(j+1)=0
endif

if (j .le. 25) then
WRITE(2,110) j.x(),xtm1(3),dxt(§),e().y()

110 FORMAT(I3,1X,F8.3,1X,F8.3,1X,FF8.3,1X,F8.3,1X,F8.3)
endif

90 continue

C CALC MEAN AND STANDARD DEVIATION (CESTDDVN)
C SUMOFITER
ME=0
Mdxt=0
MFREQ=0

DO 200 j=6,ITER
ME=ME+E(j)
Mdxt=Mdxt+dxt(j)
MFREQ=MFREQ+FREQ(})
200 CONTINUE

¢  DIVIDE BY (ITER-5)
ME=ME/(ITER-5)
Mdxt=Mdxt/(ITER-5)
MFREQ=MFREQ/(ITER-5)

C SUM OF SQUARED DEVIATIONS FROM MEAN
SDE=0
SDFREQ=0
SDdxt=0
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vardxt=0

DO 210 j=6,ITER
SDFREQ=SDFREQ+(FREQ(j)-MFREQ)**2
SDE=SDE+(E(j)-ME)**2
SDdxt=SDdxt+(dxt(j)-Mdxt)**2

210 CONTINUE

230

o o G 00

SE=0
varE=0
varCE=0
CESTDDVN=0

varE=(SDE/(ITER-6))
SE=SQRT(SDE/(ITER-6))
SDdxt=SQRT(SDdxt/(ITER-6))
SDFREQ=SQRT(SDFREQ/(ITER-6))
CESTDDVN=SE/SA
varCE=(CESTDDVN)**2
vardxt=(SDdxt)**2

WRITE(3,230) theta,deltal delta2, CESTDDVN,MFREQ
FORMAT(1X,F8.2,1X,F8.2,1X,F8.2,1F8.3,1X,F8.3)

if (r_infinity(se)) then
1iecer=ieee_{flags('clear’,'exception’,'all',out)
endif
if (r_quiet_nan(se)) then
print *, 'se bfore ', se
se=r_min_normal(se)
print *, 'se after ', se
ieeer=ieee_{flags('clear','exception’,'all’,out)
endif
accrued=ieece_flags('get','exception’, ", out)
if (accrued.ne.() then
print *, ' accrued’, accrued, ' SE ', se
inx=and(rshift(accrued, fp_inexact), 1)
div=and(rshift(accrued, fp_division), 1)
under=and(rshift(accrued, fp_underflow), 1)
over=and(rshift(accrued, fp_overflow), 1)
inv=and(rshift(accrued, fp_invalid), 1)
print *, "Highest priority exception is: ", out
print *, 'invalid divide overflo underflo inexact'
print '(518)', inv, div, over, under, inx
ieeer=ieee_flags('clear’,'exception’,'all',out)
endif ;

I3

WRITE(4,250) theta,deltal,delta2,b,AL,PG,CG,SA
250 FORMAT('theta="F8.2,1X,'deltal='"F8.2,1X,'delta2=",F8.2,1X

a
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&b="13,1X,AL="F8.2,1X,PG="F8.2,4X,'CG="F8.1,1 X,'SA='F8.2)

WRITE(4,*)VARIABLE j MEAN STD.DVN VARIANCE'
WRITE(4,*)) E 10000
WRITE(4,260) ME, CESTDDVN, varCE

260 FORMAT(15X,F8.3,5X,F8.3,5X F8.3)

WRITE(4,*) dxt 10000
WRITE(4,270) Mdxt, SDdxt,  vardxt
270 FORMAT(15X,F8.3,5X,F8.3,5X,F8.3)

WRITE(4,*) FREQ 10000

WRITE(4,280) MFREQ, SDFREQ
280 FORMAT (15X,F8.3,5X.F8.3)
b=2

C  compare quality deviations from target,that is,mean of quality

C data gma(j) with control limits

C  calculate dxt(j} to compensate for change in forecast from previous
¢ sample period

z(1)=a(1)
xtm1{1)=0
xtm2(1)=0
y(l)=deltal *ytm1(1)+delta2 *ytm2(1 Hw*xtm3(1)
e(l)=z(1)+y(1)
dxt(1)=-(1/w)*(r*e(1)-r*deltal *etm1(1)
& -r*delta2*etm2(1))-r*dxtmb(1)
x(1)=dxt(1)
gma(l)=r*e(1)

z(2)=ztm1(2)+a(2)-theta*atm1(2)
c xtm1(2)=0
C xtm2(2)=0
y(2)=deltal *ytm1(2)+delta2*ytm2(2)+w*xtm3(2)
e(2)=2(2)+y(2)
dxt(2)=-(1/w)*(r*e(2)-r*deltal *etm1(2)
& -r*delta2*etm2(2))-r*dxtmb(2)
X(2)=xtm1(2)+dxt(2)
gma(2)=r*e(2)+theta*gmatm1(2)

do 290 j=3 iter
z(1)=ztm1(j)+a(j)-theta*atm1(j)
gma(j)=r*e(j)+theta*gmatm1(j)
290 coutinue

do 300 j=3,iter

if (xtm3(j) .le. 1.E-37) then
Xtm3(j)=0
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endif
if (ytm1(j) .le. 1.E-20) then
ytm1()=0
endif
if (ytm2(3) .le. 1.E-20) then
ytm2(j)=0 .
endif
if (y(j) .le. 1.E-20) then
y(i)=0
endif
if (dxtmb(j) le. 1.E-37) then
dxtmb(j)=0
endif
if (etm1(j) .le. 1.E-37) then
etm1(j)=0
endif
if (etm2(3) .le. 1.E-37) then
etm2(j)=0
endif

y(j)=deltal *ytm1 (j)+delta2*ytm2(j)+w*xtm3(j)
e())=z()+y ()

if (gma(j) .It. LCL .or. gma(j) .gt. UCL) then
dxt(j)=-(1/w)*(r*e(j)-deltal *r*etm1(j)
& -r*delta2*etm2(j))-r*dxtmb(j)
X(jy=xtm1(jy+dxt(j)
gma(j)=0
freq(j)=1
else
dxt(j)=0
freq(j)=0
endif

x(jy=xtm1(§)+dxt(j)
atmI(j+1)=a(j)
gmatm]1(j+1)=gma(j)
ztm1(+1)=z(})
xtm3(j+1)=xtm2(j)
xtm2(j+1)=xtm1(j)
xtm1(+1)=x(j)
ytml1(+1)=y(j)
ytm2(j+1)=ytml()
etm1(j+1)=e(j)
etm2(j+1)=etmi(j)

if (ytm1(j+1} .le. 1.E-20) then
ytml(j+1)=0
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endif

if (ytm2(j+1) .le. 1.E-20) then

ytm2(j+1)=0

endif

if (xtm1(j+1} .le. 1.E-37) then

xtml1(j+1)=0

endif

if (xtm2(j+1) .le. 1.E-37) then

xtm2(j+1)=0

endif

if (xtm3(j+1) .le, 1.E-37) then

xtm3(j+1)=0

endif

if (x(j) .le. .LE-37) then
x(j)=0

endif

it (j .le. 25) then
WRITE(S,221) 1.x(),xtm1(),dxt(j),e(),¥()

221 FORMAT(IS,1X,F8.2,1X,F8.2,1X,F8.2,1X,F8.2,1X,F8.2)
endif

300 continue

C CALCULATE MEAN AND STANDARD DEVIATION (CESTDDVN)
C SUMOFITER
ME=0
Mdxt=0
MFREQ=0
DO 310 j=6,ITER
ME=ME+E(j)
Mdxt= Mdxt+dxt(j)
MFREQ=MFREQ+FREQ(j)
310  continue
C DIVIDE BY (ITER-5)
ME=ME/(ITER-5)
Mdxt=Mdxt/(ITER-5)
MFREQ=MFREQ/(ITER-5)
C SUM OF SQUARED DEVIATIONS FROM MEAN
SDE=0
SDFREQ=0
SDdxt=0
DO 320 j=6,ITER
SDFREQ=SDFREQ+(FREQ(J)-MFREQ)**2
SDE=SDE+(E(j)-ME)**2
SDdxt=Sddxt+(dxt(j)-Mdxt)**2 ,
320 CONTINUE

C STANDARD DEVIATION...S'QR DIVIDED BY ITER
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SE=0
varE=0
varCE=0
CESTDDVN=0
vardxt=0
varE=(SDE/(ITER-6))
SE=SQRT(SDE/ITER-6))
SDdxt=SQRT(SDdxt/(ITER-6))
SDFREQ=SQRT(SDFREQ/ (ITER-G))
CESTDDVN=SE/SA
varCE=(CESTDDVN)**2
vardxt=(SDdxt)**2

WRITE(7,231) theta,deltal,delta2, CESTDDVN MFREQ
231 FORMAT(1X,F8.2,1X,F8.2,1X,F8.2,1X,F8.3,1X F8.3)

WRITE(8,251) theta,deltal delta2,b AL,PG.CG.SA

251 FORMAT(theta=/F8.2,1X, deltal="F8.2,1X 'delta2=",| X, F8.2,
&1X,'b="13,1X,'AL=F8.2,1X,PG="F8.2,4X,'CG="F8.1,1X 'SA="
&F8.2)
WRITE(8,*yVARIABLE j MEAN STD.DVN VARIANCE'

WRITE(R,*)' E 10000

WRITE(8,261) ME, CESTDDVN,varCE
261 FORMAT(15X,F8.3,5X,F8.3,5X,F8.3)

WRITE(R,*) ' dxt 10000

WRITE(8,271) Mdxt, SDdxt, wvardxt
271 FORMAT(15X,F8.3,5X,F8.3,5X,F8.3)

WRITE(8,*)' FREQ 10000’
WRITE(8,281) MFREQ, SDFREQ

281 FORMAT(15X,F8.3,5X,F8.3)

25 CONTINUE

13 CLOSE(1)
open(1,file="filel1.txt',access='sequential',status="old",
&form="formatted")
continue

20 continue
end
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Attachment 6.111

Table 6.1 Time Series Controller Performance for ¢, = 1.0 and dead time b=1.0

theta
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05

deltal
-1.82
-1.81
-1.80
-1.79
-1.78
-1.73
-1.72
-1.71
-1.70
-1.66
-1.65
-1.64
-1.61
-1.60
-1.59
-1.56
-1.55
-1.52
-1.51
-1.50
-1.48
-1.47
-1.44
-1.43
-1.40
-1.37
-1.36
-1.34
-1.33
-1.31
-1.30
-1.28
-1.25
-1.23
-1.22
-1.20
-1.18
-1.17
-1.15
-1.13
-1.11
-1.10
-1.08

deltaz STDDVN MFREQ

-0.83
-0.82
-0.81
-0.80
-0.79
-0.75
-0.74
-0.73
-0.72
-0.69
-0.68
-0.67
-0.65
-0.64
-0.63
-0.61
-0.60
-0.58
-0.57
-0.56
-0.55
-0.54
-0.52
-0.51
-0.49
-0.47
-0.46
-0.45
-0.44
-0.43
-0.42
-0.41
-0.39
-0.38
-0.37
-0.36
-0.35
-0.34
-0.33
-0.32
-0.31
-0.30
-0.29

1.000
1.035
1.036
1.033
1.037
1.038
1.040
1.034
1.037
1.029
1.025
1.034
1.037
1.038
1.041
1.032
1.029
1.033

1.029

1.032
1.027
1.029
1.037
1.026
1.033
1.033
1.031
1.034
1.032
1.033
1.037
1.036
1.030
1.028
1.029
1.038
1.039
1.036
1.044
1.039
1.044
1.050
1.041

0.000
0.090
0.101
0.100
0.087
0.101
0.092
0.102
0.096
0.102
0.092
0.099
0.093
0.094
0.092
0.102
0.094
0.098
0.092
0.095
0.097
0.092
0.092
0.088
0.093
0.117
0.100
0.097
0.099
0.101
0.102
0.106
0.092
0.107
0.101
0.097
0.107
0.117
0.110
0.104
0.101
0.104
0.109
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theta
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05

deltal
-1.06
-1.04
-1.02
-1.00
-0.98
-0.96
-0.94
-0.92
-0.90
-0.89
-0.87
-0.85
-0.83
-0.82
-0.80
-0.78
-0.77
-0.75
-0.72
-0.70
-0.69
-0.67
-0.66
-0.64
-0.63
-0.60
-(.57
-0.56
-0.53
-0.52
-0.50
-0.49
-0.48
-0.45
-0.44
-0.41
-0.40
-0.39
-0.36
-0.35
-0.34
-0.30
-0.29
-0.28
-0.27
-0.22
-0.21

delta2 STDDVN MFREQ

-0.28
-0.27
-0.26
-0.25
-0.24
-0.23
-0.22
-0.21
-0.20
-0.20
-0.19
-0.18
-0.17
-0.17
-0.16
-0.15
-0.15
-0.14
-0.13
-0.12
-0.12
-0.11
-0.11
-0.10
-0.10
-0.09
-0.08
-0.08
-0.07
-0.07
-0.06
-0.06
-0.06
-0.05
-0.05
-0.04
-0.04
-0.04
-0.03
-0.03
-0.03
-0.02
-0.02
-0.02
-0.02
-0.01
-0.01

1.043
1.049
1.042
1.039
1.041
1.050
1.049
1.047
1.061
1.049
1.052
1.052
1.057
1.036
1.058
1.060
1.058
1.039
1.056
1.057
1.061
1.074
1.067
1.074
1.072
1.082
1.056
1.084
1.082
1.082
1.095
1.097
1.094
1.067
1.089
1.105
1.086
1.097
1.097
1.111
1.106
1.108
1.111
1.113
1.157
1.127
1.118

0.122
0.105
0.128
0.102
0.111
0.126
0.124
0.124
0.110
0.130
0.115
0.110
0.127
0.133
0.111
0.152
0.124
0.129
0.144
0.129
0.127
0.162
0.119
0.107
0.165
0.160
0.114
0.155
0.132
0.135
0.178
0.150
0.141
0.159
0.140
0.172
0.118
0.163
0.171
0.196
0.159
0.166
0.165
0.191
0.190
0.168
0.176
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theta
0.05
0.05
0.05
0.05
0.05
0.05
.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05

0.25
0.25
0.25
0.23
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25

deltal
-0.20
-0.19
-0.18
-0.10
-0.09
-0.08
-0.07
-0.06
-0.05
-0.04
-0.03
-0.02
-0.01
0.00

-1.82
-1.81
-1.80
-1.79
-1.78
-1.73
-1.72
-1.71
-1.70
-1.66
-1.65
-1.64
-1.61
-1.60
-1.59
-1.56
-1.55
-1.52
-1.51
-1.50
-1.48
-1.47
-1.44
-1.43
-1.40
-1.37
-1.36
-1.34
-1.33
-1.31
-1.30
-1.28

deltaZ STDDVN MFREQ

-0.01
-0.01
-0.01
0.00
0.00
.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00

-0.83
-0.82
-0.81
-0.80
-0.79
-0.75
-0.74
-0.73
-0.72
-0.69
-0.68
-0.67
-0.65
-0.64
-0.63
-0.61
-0.60
-0.58
-0.57
-0.56
-0.55
-0.54
-0.52
-0.51
-0.49
-0.47
-0.46
-0.45
-0.44
-0.43
-0.42
-0.41

1.127
1.137
1.153
1.139
1.160
1.158
1.168
1.179
1.175
1.174
1.172
1.158
1.186
1.217

1.018
1.012
1.010
1.010
1.011
1.013
1.010
1.012
1.012
1.008
1.014
1.006
1.006
1.019
1.011
1.018
1.015
1.008
1.012
1.010
1.017
1.011
1.016
1.011
1.012
1.016
1.014
1.017
1.020
1.013
1.022
1.017

0.196
0.181
0.152
0.199
0.209
0.199
0.185
0.195
0.202
0.180
0.190
0.221
0.176
0.224

0.086
0.026
0.030
0.031
0.031
0.032
0.024
0.039
0.028
0.028
0.026
0.033
0.028
0.050
(.025
0.030
0.034
0.030
0.034
0.037
0.034
0.035
0.039
0.028
0.042
0.031
0.028
0.033
0.038
0.037
0.032
0.039
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theta
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
(.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25

deltal
-1.25
-1.23
-1.22
-1.20
-1.18
-1.17
-1.15
-1.13
-1.11
-1.10
-1.08
-1.06
-1.04
-1.02
-1.00
-0.98
-0.96
-0.94
-0.92
-0.90
-0.89
-0.87
-0.85
-0.83
-0.82
-0.80
-0.78
-0.77
-0.75
-0.72
-0.70
-0.69
-0.67
-0.66
-0.64
-0.63
-0.60
-0.57
-0.56
-0.53
-0.52
-0.50
-0.49
-0.48
-(0.45
-0.44
-0.41

delta? STDDVN MFREQ

-0.39
-0.38
-0.37
-0.36
-0.35
-0.34
-0.33
-0.32
-0.31
-0.30
-0.29
-0.28
-0.27
-0.26
-0.25
-0.24
-0.23
-0.22
-0.21
-0.20
-0.20
-0.19
-0.18
-0.17
-0.17
-0.16
-0.15
-0.15
-0.14
-0.13
-0.12
-0.12
-0.11
-0.11
-0.10
-0.10
-0.09
-0.08
-0.08
-0.07
-0.07
-0.06
-0.06
-0.06
-0.05
-0.05
-0.04

1.018
1.011
1.019
1.022
1.018
1.021
1.015
1.012
1.015
1.016
1.012
1.020
1.021
1.023
1.030
1.029
1.021
1.026
1.017
1.038
1.024
1.023
1.041
1.021
1.031
1.030
1.037
1.026
1.034
1.027
1.027
1.048
1.039
1.035
1.042
1.047
1.032
1.030
1.039
1.046
1.059
1.049
1.045
1.045
1.060
1.049
1.062

0.038
0.029
0.054
0.032
0.045
0.034
0.033
0.042
0.037
0.039
0.048
0.053
0.046
0.050
0.050
0.037
0.051
0.038
0.041
0.041
0.037
0.061
0.065
0.030
0.060
0.037
0.032
0.041
0.046
0.056
0.062
0.034
0.062
0.048
0.065
0.051
0.064
0.048
0.066
0.061
0.056
0.038
0.052
0.066
0.059
0.068
0.060
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theta
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25

0.70
0.70
0.70
0.70
0.70
0.70
0.70
0.70
0.70
0.70
0.70
0.70
0.70
0.70
0.70
0.70
0.70
0.70
0.70
0.70
0.70

deltal
-0.40
-0.39
-0.36
-0.35
-0.34
-0.30
-0.29
-0.28
-0.27
-0.22
-0.21
-0.20
-0.19
-0.18
-0.10
-0.09
-0.08
-0.07
-0.06
-0.05
-0.04
-0.03
-0.02
-0.01
0.00

-1.82
-1.81
-1.80
-1.79
-1.78
-1.73
-1.72
-1.71
-1.70
-1.66
-1.65
-1.64
-1.61
-1.60
-1.59
-1.56
-1.55
-1.52
-1.51
-1.50
-1.48

delta? STDDVN MFREQ

-0.04
-0.04
-0.03
-0.03
-0.03
-0.02
-0.02
-0.02
-0.02
-0.01
-0.01
-0.01
-0.01
-0.01
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00

-0.83
-0.82
-0.81
-0.80
-0.79
-0.75
-0.74
-0.73
-0.72
-0.69
-0.68
-0.67
-0.65
-0.64
-0.63
-0.61
-0.60
-0.58
-0.57
-0.56
-0.55

1.059
1.046
1.065
1.076
1.055
1.069
1.078
1.056
1.073
1.080
1.061
1.070
1.088
1.082
1.109
1.075
1.081
1.108
1.102
1.097
1.129
1.114
1.135
1.100
1.099

1.001
1.000
1.000
1.000
1.001
1.002
1.000
1.001
1.000
1.000
1.000
1.003
1.004
1.000
1.001
1.001
1.000
1.001
1.000
1.000
1.000

0.056
0.081
0.039
0.074
0.066
0.072
0.073
0.056
0.075
0.102
0.078
0.072
0.085
0.080
0.061
0.074
0.090
0.108
0.086
0.100
0.111
0.074
0.105
0.111
0.085

0.017
0.001
0.000
0.000
0.000
0.001
0.001
0.001
0.000
0.000
0.000
0.000
0.001
0.001
0.001
0.000
0.000
0.001
0.000
0.000
0.001
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theta
0.70
0.70
0.70
0.70
0.70
0.70
0.70
0.70
0.70
0.70
0.70
0.70
0.70
0.70
0.70
0.70
0.70
0.70
0.70
0.70
0.70
0.70
0.70
(.70
0.70
0.70
0.70
0.70
0.70
0.70
0.70
0.70
0.70
0.70
0.70
0.70
0.70
0.70
0.70
0.70
0.70
0.70
0.70
0.70
0.70
0.70
0.70

deltal
-1.47
-1.44
-1.43
-1.40
-1.37
-1.36
-1.34
-1.33
-1.31
-1.30
-1.28
-1.25
-1.23
-1.22
-1.20
-1.18
-1.17
-1.15
-1.13
-1.11
-1.10
-1.08
-1.06
-1.04
-1.02
-1.00
-0.98
-0.96
-(.94
-0.92
-0.90
-0.89
-0.87
-0.85
-0.83
-0.82
-0.80
-(0.78
-0.77
-0.75
-0.72
-0.70
-0.69
-0.67
-0.66
-0.64
-0.63

delta2 STDDVN MFREQ

-0.54
-0.52
-0.51
-0.49
-0.47
-0.46
-0.45
-0.44
-0.43
-0.42
-0.41
-0.3%
-0.38
-0.37
-0.36
-0.35
-0.34
-0.33
-0.32
-0.31
-0.30
-0.29
-0.28
-0.27
-0.26
-0.25
-0.24
-0.23
-0.22
-0.21
-0.20
-0.20
-0.19
-0.18
-0.17
-0.17
-0.16
-0.15
-0.15
-0.14
-0.13
-0.12
-0.12
-0.11
-0.11
-0.10
-0.10

1.001
1.000
1.005
1.001
1.001
1.000
1.001
1.000
1.001
1.002
1.003
1.002
1.000
1.001
1.004
1.003
1.009
1.003
1.002
1.002
1.007
1.000
1.014
1.000
1.006
1.002
1.001
1.001
1.005
1.007
1.000
1.004
1.002
1.004
1.000
1.000
1.000
1.002
1.010
1.003
1.012
1.000
1.000
1.004
1.011
1.000
1.005

0.001
0.001
0.001
0.001
0.001
0.001
0.000
0.001
0.000
0.000
0.001
0.001
0.000
0.000
0.001
0.001
0.000
0.001
0.001
0.000
0.001
0.000
0.001
0.001
0.001
0.001
0.001
0.001
0.000
0.001
0.001
0.001
0.001
0.002
0.001
0.001
0.000
0.001
0.001
0.000
0.001
0.001
0.001
0.002
0.001
0.001
0.001
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theta
0.70
0.70
0.70
0.70
0.70
0.70
0.70
0.70
0.70
0.70
0.70
0.70
0.70
0.70
0.70
0.70
0.70
0.70
0.70
0.70
0.70
0.70
0.70
0.70
0.70
0.70
0.70
0.70
0.70
0.70
0.70
0.70
0.70
0.70
0.70
0.70

0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75

deltal
-0.60
-0.57
-0.56
-0.53
-0.52
-0.50
-0.49
-0.48
-0.45
-0.44
-0.41
-0.40
-0.39
-0.36
-0.35
-(0.34
-0.30
-0.29
-0.28
-0.27
-0.22
-0.21
-0.20
-0.19
-0.18
-0.10
-0.09
-0.08
-0.07
-0.06
-0.05
-0.04
-0.03
-0.02
-0.01
0.00

-1.82
-1.81
-1.80
-1.79
-1.78
-1.73
-1.72
-1.71
-1.70
-1.66

delta? STDDVN MFREQ

-0.09
-0.08
-0.08
-0.07
-0.07
-0.06
-0.06
-0.06
-0.05
-0.05
-0.04
-0.04
-0.04
-0.03
-0.03
-0.03
-0.02
-0.02
-0.02
-0.02
-0.01
-0.01
-0.01
-0.01
-0.01
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00

-0.83
-0.82
-0.81
-0.80
-0.79
-0.75
-0.74
-0.73
-0.72
-0.69

1.002
1.004
1.013
1.016
1.005
1.004
1.001
1.024
1.000
1.004
1.005
1.000
1.005
1.004
1.005
1.028
1.041
1.002
1.010
1.033
1.001
1.022
1.014
1.001
1.007
1.040
1.004
1.014
1.012
1.014
1.007
1.038
1.026
1.003
1.023
1.010

1.002
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000

0.001
0.001
0.000
0.003
0.001
0.002
0.001
0.001
0.000
0.002
0.003
0.001
0.006
0.001
0.002
0.001
0.001
0.001
0.003
0.002
0.001
0.001
0.014
0.002
0.005
0.002
0.002
0.009
0.014
0.013
0.005
0.001

0.021

0.001

0.036
0.001

0.019
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
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theta
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0,75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75

deltal
-1.65
-1.64
-1.61
-1.60
-1.59
-1.56
-1.55
-1.52
-1.51
-1.50
-1.48
-1.47
-1.44
-1.43
-1.40
-1.37
-1.36
-1.34
-1.33
-1.31
-1.30
-1.28
-1.25
-1.23
-1.22
-1.20
-1.18
-1.17
-1.15
-1.13
-1.11
-1.10
-1.08
-1.06
-1.04
-1.02
-1.00
-0.98
-0.96
-0.94
-0.92
-0.90
-0.89
-0.87
-0.85
-0.83
-0.82

delta2 STDDVN MFREQ

-0.68
-0.67
-0.65
-0.64
-0.63
-0.61
-0.60
-0.58
-0.57
-0.56
-0.55
-0.54
-0.52
-0.51
-0.4%
-0.47
-0.46
-0.45
-0.44
-0.43
-0.42
-0.41
-0.39
-0.38
-0.37
-0.36
-0.35
-0.34
-0.33
-0.32
-0.31
-0.30
-0.29
-0.28
-0.27
-0.26
-0.25
-0.24
-0.23
-0.22
-0.21
-0.20
-0.20
-0.19
-0.18
-0.17
-0.17

1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.002
1.000
1.000
1.600
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.001
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.001
1.000
1.004
1.000
1.000

0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.002
0.000
0.000
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theta
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75

deltal
-0.80
-0.78
-0.77
-0.75
-0.72
-0.70
-0.69
-0.67
-0.66
-0.64
-0.63
-(.60
-0.57
-0.56
-0.53
-0.52
-0.50
-0.49
-0.48
-0.45
-0.44
-0.41
-0.40
-0.39
-0.36
-0.35
-0.34
-0.30
-0.29
-0.28
-0.27
-0.22
-0.21
-0.20
-0.19
-0.18
-0.10
-0.0%
-0.08
-0.07
-0.06
-0.05
-0.04
-0.03
-0.02
-0.01

0.00

delta2 STDDVN MFREQ

-0.16
-0.15
-0.15
-0.14
-0.13
-0.12
-0.12
-0.11
-0.11
-0.10
-0.10
-0.09
-0.08
-0.08
-0.07
-0.07
-0.06
-0.06
-0.06
-0.05
-0.05
-0.04
-0.04
-0.04
-0.03
-0.03
-0.03
-0.02
-0.02
-0.02
-0.02
-0.01
-0.01
-0.01
-0.01
-0.01

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00
0.00

1.000
1.000
1.000
1.000
1.000
1.002
1.000
1.000
1.000
1.002
1.000
1.000
1.000
1.000
1.003
1.006
1.000
1.000
1.001
1.000
1.000
1.000
1.000
1.000
1.008
1.000
1.000
1.000
1.000
1.000
1.000
1.002
1.000
1.000
1.000
1.000
1.011
1.000
1.019
1.002
1.011
1.000
1.014
1.013
1.000
1.008
1.000

0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.001
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.004
0.000
0.001
0.000
0.001
0.000
0.000
0.002
0.000
0.001
0.000
0.003
0.000
0.000
0.001
0.000
0.002
0.000
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theta
0.95
0.95
0.95
0.95
0.95
0.95
0.95
0.95
0.95
0.95
0.95
0.95
0.95
0.95
0.95
0.95
0.95
0.95
0.95
0.95
0.95
0.95
0.95
0.95
0.95
0.95
0.95
0.95
0.95
0.95
0.95
0.95
0.95
0.95
0.95
0.95
0.95
0.95
0.95
0.95
0.95
0.95
0.95
0.95
0.95
0.95
0.95

deltal
-1.82
-1.81
-1.80
-1.79
-1.78
-1.73
-1.72
-1.71
-1.70
-1.66
-1.65
-1.64
-1.61
-1.60
-1.59
-1.56
-1.55
-1.52
-1.51
-1.50
-1.48
-1.47
-1.44
-1.43
-1.40
-1.37
-1.36
-1.34
-1.33
-1.31
-1.30
-1.28
-1.25
-1.23
-1.22
-1.20
-1.18
-1.17
-1.15
-1.13
-1.11
-1.10
-1.08
-1.06
-1.04
-1.02
-1.00

delta2 STDDVN MFREQ

-0.83
-0.82
-0.81
-0.80
-0.79
-0.75
-0.74
-0.73
-0.72
-0.69
-0.68
-0.67
-0.65
-0.64
-0.63
-0.61
-0.60
-0.58
-0.57
-0.56
-0.55
-0.54
-0.52
-0.51
-0.49
-0.47
-0.46
-0.45
-0.44
-0.43
-0.42
-0.41
-0.39
-0.38
-0.37
-0.36
-0.35
-0.34
-0.33
-0.32
-0.31
-0.30
-0.29
-0.28
-0.27
-0.26
-0.25

1.000
1.001
1.001
1.001
1.001
1.000
1.000
1.001
1.001
1.001
1.000
1.001
1.000
1.000
1.001
1.000
1.000
1.000
1.000
1.000
1.001
1.000
1.000
1.001
1.000
1.001
1.001
1.001
1.000
1.000
1.001
1.000
1.000
1.000
1.000
1.001
1.000
1.000
1.001
1.001
1.000
1.001
1.000
1.001
1.000
1.000
1.001

0.116
0.472
0.488
0.484
0.490
0.488
0.479
0.478
0.480
0.483
0.481
0.477
0.476
0.473
0.476
0.483
0.469
0.468
0.469
0.477
0.474
0.464
0.472
0.465
0.467
0.461
0.457
0.453
0.457
0.444
0.455
0.450
0.443
0.444
0.434
0.431
0.438
0.431
0.429
0.419
0.417
0.414
0.411
0.408
0.409
0.397
0.389
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theta
0.95
0.95
0.95
0.95
0.95
0.95
0.95
0.95
0.95
0.95
0.95
0.95
0.95
0.95
0.95
0.95
0.95
0.95
0.95
0.95
0.95
0.95
0.95
0.95
0.95
0.95
0.95
0.95
0.95
0.95
0.95
0.95
0.95
0.95
0.95
0.95
0.95
0.95
0.95
0.95
0.95
0.95
0.95
0.95
0.95
0.95
0.95

deltal
-0.98
-0.96
-0.94
-0.92
-0.90
-0.89
-0.87
-0.85
-0.83
-0.82
-0.80
-0.78
-0.77
-0.75
-0.72
-0.70
-(0.69
-0.67
-0.66
-0.64
-0.63
-0.60
-0.57
-0.56
-0.53
-0.52
-0.50
-0.49
~(.48
-0.45
-0.44
-0.41
-0.40
-0.39
-.36
-0.35
-0.34
-0.30
-0.29
-0.28
-0.27
-0.22
-0.21
-0.20
-0.19
-0.18
-0.10

delta2 STDDVN MFREQ

-0.24
-0.23
-0.22
-0.21
-0.20
-0.20
-0.19
-0.18
-0.17
-0.17
-0.16
-0.15
-0.15
-0.14
-0.13
-0.12
-0.12
-0.11
-0.11
-0.10
-0.10
-0.09
-0.08
-0.08
-0.07
-0.07
-0.06
-0.06
-0.06
-0.05
-0.05
-0.04
-0.04
-0.04
-0.03
-0.03
-0.03
-0.02
-0.02
-0.02
-0.02
-0.01
-0.01
-0.01
-0.01
-0.01

0.00

1.001
1.001
1.000
1.000
1.001
1.000
1.001
1.001
1.000
1.001
1.000
1.001
1.001
1.001
1.000
1.001
1.001
1.000
1.001
1.001
1.001
1.001
1.000
1.001
1.002
1.001
1.001
1.002
1.001
1.001
1.002
1.003
1.001
1.001
1.001
1.003
1.002
1.002
1.003
1.003
1.002
1.003
1.002
1.002
1.002
1.004
1.004

0.399
0.393
0.392
0.390
0.377
0.381
0.371
0.365
0.366
0.358
0.357
0.362
0.347
0.347
0.336
0.334
0.331
0.330
0.333
0.324
0.315
0319
0.310
0.303
0.297
0.286
0.281
0.283
0.283
0.271
0.270
0.262
0.245
0.243
0.249
0.237
0.233
0.227
0.221
0.218
0.213
0.207
0.196
0.191
0.191
0.186
0.187
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theta
0.95
0.95
0.95
0.95
0.95
0.95
0.95
0.95
0.95
0.95

deltal
-0.09
-0.08
-0.07
-(.06
-0.05
-0.04
-0.03
-0.02
-0.01

0.00

delta2 STDDVN MFREQ
0.00 1.003 0.154
0.00 1.003 ¢@.154
0.00 1.006 0.149
0.00 1.004 0.145
0.00 1.002 0.145
0.00 1.005 0.138
0.00 1.005 0.132
0.00 1.005 0.131
0.00 1.004 0.129
0.00 1.005 0.125
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Attachment 6.1V

Table 6. Time Series Controller Performance for o, =1.0 and dead time b =2.0

theta
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
(.05
0.05
0.05
.03
0.05
0.05
0.05
0.05
0.05
0.05
0.05

deltal
-1.82
-1.81
-1.80
-1.79
-1.78
-1.73
-1.72
-1.71
-1.70
-1.66
-1.65
-1.64
-1.61
-1.60
-1.59
-1.56
-1.55
-1.52
-1.51
-1.50
-1.48
-1.47
-1.44
-1.43
-1.40
-1.37
-1.36
-1.34
-1.33
-1.31
-1.30
-1.28
-1.25
-1.23
-1.22
-1.20
-1.18
-1.17
-1.15
-1.13
-1.11
-1.10
-1.08

delta2 STDDVN MFREQ

-0.33
-0.82
-0.81
-0.80
-0.79
-0.75
-0.74
-0.73
-0.72
-0.69
-0.68
-0.67
-0.65
-0.64
-0.63
-0.61
-0.60
-0.58
-0.57
-0.56
-0.55
-0.54
-0.52
-0.51
-0.49
-0.47
-0.46
-0.45
-0.44
-0.43
-0.42
-0.41
-0.39
-0.38
-0.37
-0.36
-0.35
-0.34
-0.33
-0.32
-0.31
-0.30
-0.29

1.514
1.549
1.543
1.517
1.552
1.518
1.555
1.547
1.539
[.556
1.545
1.536
1.541
1.533
1.561
1.532
1.540
1.519
1.524
1.538
1.516
1.507
1.523
1.523
1.618
1.537
1.552
1.553
1.551
1.565
1.574
1.542
1.588
1.525
1.523
1.580
1.557
1.577
1.549
1.540
1.531
1.592
1.601

0.019
0.021
0.022
0.020
0.020
0.023
0.023
0.020
0.021
0.018
0.020
0.019
0.021
0.021
0.020
0.018
0.020
0.019
0.018
0.020
0.020
0.017
0.017
0.020
0.019
0.018
0.020
0.019
0.018
0.020
0.020
0.019
0.017
0.018
0.018
0.019
0.017
0.018
0.020
0.018
0.019
0.020
0.018
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theta
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
(.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
(.05
0.05
0.05
0.05
0.05
0.5

deltal
-1.06
-1.04
-1.02
-1.00
-0.98
-0.96
-0.94
-0.92
-0.50
-0.89
-0.87
-0.85
-0.83
-(.82
-0.80
-0.78
-0.77
-0.75
-0.72
-0.70
-0.69
-0.67
-0.66
-0.64
-0.63
-0.60
-0.57
-0.56
-0.53
-0.52
-0.50
-0.49
-(.48
-0.45
-(.44
-0.41
-0.40
-0.39
-0.36
-0.35
-0.34
-0.30
-0.29
-0.28
-0.27
-0.22
-0.21

delta2 STDDVN MFREQ

-0.28
-0.27
-0.26
-0.25
-0.24
-0.23
-0.22
-0.21
-0.20
-0.20
-0.19
-0.18
-0.17
-0.17
-0.16
-0.15
-0.15
-0.14
-0.13
-0.12
-0.12
-0.11
-0.11
-0.10
-0.10
-0.09
-0.08
-0.08
-0.07
-0.07
-0.06
-0.06
-0.06
-0.05
-0.05
-0.04
-0.04
-0.04
-0.03
-0.03
-0.03
-0.02
-0.02
-0.02
-0.02
-0.01
-0.01

1.560
1.647
1.568
1.567
1.600
1.650
1.600
1.597
1.602
1.595
1.546
1.644
1.612
1.591
1.677
1.644
1.614
1.685
1.621
1.639
1.709
1.616
1.601
1.714
1.695
1.591
1.730
1.646
1.718
1.744
1.676
1.735
1.754
1.635
1.834
1.622
1.685
1.760
1.774
1.798
1.740
1.746
1.872
1.808
1.795
1.815
1.788

0.018
0.019
0.021
0.018
0.017
0.020
0.021
0.020
0.018
0.017
0.016
0.017
0.019
0.018
0.019
0.018
0.020
0.016
0.020
0.017
0.019
0.021
0.017
0.021
0.019
0.021
0.018
0.017
0.021
0.021
0.023
0.022
0.021
0.019
0.019
0.022
0.022
0.021
0.022
0.022
0.022
0.024
0.023
0.022
0.033
0.024
0.021
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theta
0.05
0.05
0.05
(.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05

0.25
0.25
(.25
0.25
0.25
0.25
0.25
0.25
(.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25

deltal
-0.20
-(.19
-0.18
-0.10
-0.09
-0.08
-0.07
-0.06
-0.05
-0.04
-0.03
-0.02
-0.01
0.00

-1.82
-1.81
-1.80
-1.79
-1.78
-1.73
-1.72
-1.71
-1.70
-1.66
-1.65
-1.64
-1.61
-1.60
-1.59
-1.56
-1.55
-1.52
-1.51
-1.50
-1.48
-1.47
-1.44
-1.43
-1.40
-1.37
-1.36
-1.34
-1.33
-1.31
-1.30
-1.28

delta2 STDDVN MFREQ

-0.01
-0.01
-0.01
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00

-0.83
-0.82
-0.81
-0.80
-0.79
-0.75
-0.74
-0.73
-0.72
-0.69
-0.68
-0.67
-0.65
-0.64
-0.63
-0.61
-0.60
-0.58
-0.57
-0.56
-0.55
-0.54
-0.52
-0.51
-0.49
-0.47
-0.46
-0.45
-0.44
-0.43
-0.42
-0.41

1.928
1.750
1.853
2.081
1.895
1.840
1.948
1.968
1.871
1.901
1.940
1.818
2.021
1.859

1.306
1.335
1.328
1.322
1.321
1.313
1.352
1.327
1.308
1.303
1.325
1.300
1.397
1.297
1.315
1.353
1.326
1.342
1.370
1.346
1.344
1.390
1.299
1.393
1.296
1.335
1.370
1.360
1.356
1.329
1.369
1.366

0.023
0.027
0.031
0.025
0.030
0.030
0.030
0.031
0.031
0.032
0.031
0.030
0.034
0.038

0.007
0.006
0.007
0.007
0.007
0.007
0.007
0.006
0.006
0.007
0.007
0.007
0.005
0.008
0.007
0.007
0.006
0.006
0.006
0.007
0.007
0.006
0.007
0.007
0.007
0.005
0.006
0.007
0.007
0.006
0.008
0.007
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theta
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25

deltal
-1.25
-1.23
-1.22
-1.20
-1.18
-1.17
-1.15
-1.13
-1.11
-1.10
-1.08
-1.06
-1.04
-1.02
-1.00
-0.98
-0.96
-0.94
-0.92
-0.90
-0.89
-0.87
-0.85
-0.83
-0.82
-0.80
-0.78
-0.77
=0.75
-0.72
-0.70
-0.69
-0.67
-0.66
-0.64
-0.63
-0.60
-0.57
-0.56
-0.53
-0.52
-(.50
-0.49
-0.48
-0.45
-0.44
-0.41

delta2 STDDVN MFREQ

-0.39
-0.38
-0.37
-0.36
-0.35
-0.34
-0.33
-0.32
-0.31
-0.30
-0.29
-0.28
-0.27
-0.26
-0.25
-0.24
-0.23
-0.22
-0.21
-0.20
-0.20
-0.19
-0.18
-0.17
-0.17
-0.16
-0.15
-0.15
-0.14
-0.13
-0.12
-0.12
-0.11
-0.11
-0.10
-0.10
-0.09
-0.08
-0.08
-0.07
-0.07
-0.06
-0.06
-0.06
-0.05
-0.05
-0.04

1.336
1.463
1.340
1.384
1.339
1.332
1.377
1.371
1.375
1.397
1.456
1.414
1.410
1.420
1.388
1.426
1.384
1.407
1.351
1.396
1.448
1.482
1.336
1.414
1.365
1.351
1.374
1.408
1.479
1.473
1.372
1.454
1.435
1.456
1.436
1.502
1.447
1.443
1.474
1.476
1.391
1.467
1.477
1.483
1.503
1.473
1.492

0.006
0.007
0.007
0.006
0.008
0.008
0.006
0.007
0.006
0.007
0.005
0.008
0.006
0.008
0.007
0.008
0.008
0.007
0.006
0.007
0.009
0.007
0.009
0.006
0.009
0.008
0.008
0.007
0.008
0.006
0.007
0.008
0.008
0.009
0.008
0.009
0.009
0.007
0.008
0.010
0.010
0.009
0.009
0.010
0.010
0.011
0.009
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theta
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
(.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25

0.70
0.70
0.70
(.70
0.70
0.70
0.70
0.70
0.70
0.70
0.70
0.70
0.70
0.70
0.70
0.70
0.70
0.70
0.70
0.70
0.70

deltal
-0.40
-0.39
-0.36
-0.35
-0.34
-0.30
-0.29
-0.28
-0.27
-0.22
-0.21
-0.20
-0.19
-0.18
-(.10
-0.09
-0.08
-0.07
-0.06
-0.05
-0.04
-(.03
-0.02
-0.01
0.00

-1.82
-1.81
-1.80
-1.79
-1.78
-1.73
-1.72
-1.71
-1.70
-1.66
-1.65
-1.64
-1.61
-1.60
-1.59
-1.56
-1.55
-1.52
-1.51
-1.50
-1.48

deltaz STDDVN MFREQ

-0.04
-0.04
-0.03
-0.03
-0.03
-0.02
-0.02
-0.02
-0.02
-0.01
-0.01
-0.01
-0.01
-0.01
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00

-0.83
-0.82
-0.81
-0.80
-0.79
-0.75
-0.74
-0.73
-0.72
-0.69
-0.68
-0.67
-0.65
-0.64
-0.63
-0.61
-0.60
-0.58
-0.57
-0.56
-0.55

1.518
1.414
1.548
1.523
1.519
1.587
1.490
1.552
1.635
1.550
1.559
1.611
1.593
1.488
1.555
1.649
1.658
1.610
1.696
1.694
1.562
1.672
1.674
1.625
1.570

1.055
1.061
1.054
1.068
1.066
1.065
1.077
1.079
1.076
1.067
1.065
1.072
1.081
1.057
1.109
1.042
1.106
1.071
1.064
1.098
1.061

0.010
0.010
0.010
0.013
0.011
0.0t
0.013
0.008
0.011
0.013
0.012
0.011
0.012
0.010
0.015
0.011
0.012
0.015
0.014
0.014
0.019
0.016
0.019
0.012
0.014

0.006
0.003
0.003
0.003
0.003
0.003
0.003
0.003
0.003
0.003
0.003
0.003
0.002
0.003
0.003
0.003
0.004
0.003
0.003
0.003
0.002
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theta
0.70
0.70
0.70
0.70
0.70
0.70
0.70
0.70
0.70
0.70
0.70
0.70
0.70
0.70
0.70
0.70
0.70
0.70
0.70
0.70
0.70
(.70
0.70
0.70
0.70
0.70
0.70
0.70
0.70
0.70
0.70
0.70
0.70
0.70
0.70
0.70
0.70
0.70
0.70
0.70
0.70
0.70
0.70
0.70
0.70
0.70
0.70

deital
-1.47
-1.44
-1.43
-1.40
-1.37
-1.36
-1.34
-1.33
-1.31
-1.30
-1.28
-1.25
-1.23
-1.22
-1.20
-1.18
-1.17
-1.15
-1.13
-1.11
-1.10
-1.08
-1.06
-1.04
-1.02
-1.00
-0.98
-0.96
-0.64
-0.92
-0.90
-0.89
-0.87
-0.85
-(.83
-0.82
-0.80
-0.78
-0.77
-0.75
-0.72
-0.70
-0.69
-0.67
-0.66
-0.64
-0.63

delta2 STDDVN MFREQ

-0.54
-0.52
-0.51
-0.49
-0.47
-0.46
-0.45
-0.44
-0.43
-0.42
-0.41
-0.39
-0.38
-0.37
-0.36
-0.35
-0.34
-0.33
-0.32
-0.31
-0.30
-0.29
-0.28
-0.27
-0.26
-0.25
-0.24
-0.23
-0.22
-0.21
-0.20
-0.20
-0.19
-0.18
-0.17
-0.17
-0.16
-0.15
-0.15
-0.14
-0.13
-0.12
-0.12
-0.11
-0.11
-0.10
-0.10

1.103
1.072
1.071
1.076
1.059
1.059
1.063
1.073
1.081
1.058
1.101
1.050
1.101
1.065
1.084
1.093
1.120
1.065
1.081
1.070
1.079
1.079
1.132
1.101
1.086
1.092
1.098
1.092
1.132
1.102
1.100
1.096
1.194
1.083
1.146
1.123
1.100
1.124
1.148
1.178
1.146
1.147
1.201
1.151
1.090
1.138
1.114

0.002
0.004
0.002
0.003
0.003
(.003
0.003
0.003
0.003
0.002
0.003
0.004
0.003
0.003
0.004
(.002
0.004
0.003
0.003
0.002
0.002
0.003
0.003
0.003
0.002
0.002
0.003
0.003
0.003
0.003
0.003
0.004
0.003
0.006
0.003
0.005
0.002
0.003
0.004
0.004
0.003
0.003
0.003
0.005
0.003
0.003
0.004
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theta
0.70
0.70
0.70
0.70
0.70
0.70
0.70
0.70
0.70
0.70
0.70
0.70
0.70
0.70
0.70
0.70
0.70
0.70
0.70
0.70
0.70
0.70
0.70
0.70
0.70
0.70
0.70
0.70
0.70
0.70
0.70
0.70
0.70
0.70
0.70
0.70

0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75

deltal
-0.60
-0.57
-0.56
-0.53
-0.52
-0.50
-0.49
-0.48
-0.45
-0.44
-0.41
-0.40
-(.39
-0.36
-0.35
-0.34
-0.30
-0.29
-0.28
-0.27
-0.22
-0.21
-0.20
-0.19
-0.18
-0.10
-0.09
-(.08
-0.07
-0.06
-0.05
-0.04
-0.03
-0.02
-0.01
0.00

-1.82
-1.81
-1.80
-1.79
-1.78
-1.73
-1.72
-1.71
-1.70
-1.66

delta2 STDDVN MFREQ

-0.09
-0.08
-0.08
-0.07
-0.07
-0.06
-0.06
-0.06
-0.05
-0.05
-0.04
-0.04
-0.04
-0.03
-0.03
-0.03
-0.02
-0.02
-0.02
-0.02
-0.01
-0.01
-0.01
-0.01
-0.01
0.00
0.00
.00
0.00
0.00
0.00
0.00
0.00
0.00
(.00
0.00

-0.83
-0.82
-0.81
-0.80
-0.79
-0.75
-0.74
-0.73
-0.72
-0.69

1.059
1.117
1.217
1.093
1.172
1.167
1.155
1.127
1.191
1.263
1.210
1.290
1.178
1.186
1.128
1.207
1.058
1.185
1.170
1.181
1.203
1.412
1.157
1.291
1.201
1.144
1.352
1.440
1.446
1.303
1.065
1.236
1.047
1.298
1.089
1.196

1.035
1.034
1.029
1.044
1.033
1.059
1.029
1.045
1.045
1.041

0.002
0.002
0.004
0.005
0.004
0.003
0.005
0.004
0.002
0.004
0.005
0.003
0.005
0.004
0.005
0.004
0.005
0.003
0.005
0.003
0.003
0.005
0.010
0.004
0.007
0.005
0.003
0.008
0.008
0.009
0.006
0.003
0.018
0.004
0.018
0.004

0.009
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
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theta
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0,75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75

deltal
-1.65
-1.64
-1.61
-1.60
-1.59
-1.56
-1.55
-1.52
-1.51
-1.50
-1.48
-1.47
-1.44
-1.43
-1.40
-1.37
-1.36
-1.34
-1.33
-1.31
-1.30
-1.28
-1.25
-1.23
-1.22
-1.20
-1.18
-1.17
-1.15
-1.13
-1.11
-1.10
-1.08
-1.06
-1.04
-1.02
-1.00
-(.98
-0.96
-0.94
-0.92
-0.90
-0.89
-0.87
-0.85
-0.83
-0.82

delta2 STDDVN MFREQ

-0.68
-0.67
-0.65
-0.64
-0.63
-0.61
-0.60
-0.58
-0.57
-0.56
-0.55
-0.54
-0.52
-0.51
-0.49
-0.47
-0.46
-0.45
-0.44
-0.43
-0.42
-0.41
-0.39
-0.38
-0.37
-0.36
-0.35
-0.34
-0.33
-0.32
-0.31
-0.30
-0.29
-0.28
-0.27
-0.26
-0.25
-0.24
-0.23
-0.22
-0.21
-0.20
-0.20
-0.19
-0.18
-0.17
-0.17

1.058
1.036
1.033
1.049
1.036
1.053
1.030
1.041
1.045
1.035
1.059
1.036
1.048
1.036
1.043
1.069
1.044
1.045
1.058
1.033
1.050
1.042
1.039
1.053
1.054
1.037
1.078
1.080
1.047
1.040
1.052
1.039
1.052
1.048
1.057
1.086
1.054
1.127
1.055
1.057
1.065
1.103
1.050
1.143
1.029
1.151
1.081

0.001
0.001
0.001
0.001
0.001
0.001
(.000
0.001
0.001
0.001
0.001
0.001
0.001
0.000
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.002
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001

0.001 .

0.001
0.001
0.001
0.001
0.003
0.001
0.001
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theta
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75

deltal
-0.80
-0.78
-0.77
-0.75
-0.72
-0.70
-0.69
-0.67
-0.66
-0.64
-0.63
-0.60
-0.57
-0.56
-0.53
-0.52
-0.50
-0.49
-0.48
-0.45
-0.44
-0.41
-0.40
-0.39
-0.36
-0.35
-0.34
-0.30
-0.29
-0.28
-0.27
-0.22
-0.21
-0.20
-0.19
-0.18
-0.10
-0.09
-0.08
~0.07
-0.06
-0.05
-0.04
-0.03
-0.02
-0.01

0.00

delta2 STDDVN MFREQ

-0.16
-0.15
-0.15
-0.14
-0.13
-0.12
-0.12
-0.11
-0.11
-0.10
-0.10
-0.09
-0.08
-0.08
-0.07
-0.07
-0.06
-0.06
-0.06
-0.05
-0.05
-0.04
-0.04
-0.04
-0.03
-0.03
-0.03
-0.02
-0.02
-0.02
-0.02
-0.01
-0.01
-0.01
-0.01
-0.01
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00

1.064
1.042
1.041
1.085
1.070
1.057
1.084
1.046
1.062
1.091
1.088
1.032
1.148
1.227
1.080
1.042
1.135
1.093
1.063
1.086
1.081
1.065
1.072
1.087
1.052
1.068
1.071
1.037
1.140
1.031
1.162
1.099
1.197
1.141
1.105
1.279
1.052
1.118
1.031
1.310
1.059
1.116
1.265
1.104
1.232
1.119
1.274

0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0,002
0.001
0.001
0.001
0.001
0.000
0.002
0.000
0.001
0.001
0.002
0.001
0.001
0.001
0.001
0.005
0.001
0.002
0.001
0.001
0.001
0.001
0.004
0.001
0.004
0.001
0.006
0.001
0.001
0.003
0.001
0.004
0.001
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theta
0.95
0.95
0.95
0.95
0.95
0.95
0.95
0.95
0.95
0.95
0.95
0.95
0.95
0.95
0.95
0.95
0.95
0.95
0.95
0.95
0.95
0.95
0.95
0.95
0.95
.95
0.95
0.95
0.95
0.95
0.95
0.95
0.95
0.95
0.95
0.95
0.95
0.95
0.95
0,95
0.95
0.95
0.95
0.95
0.95
0.95
0.95

deltal
-1.82
-1.81
-1.80
-1.7%
-1.78
-1.73
-1.72
-1.71
-1.70
-1.66
-1.65
-1.64
-1,61
-1.60
-1.59
-1.56
-1.55
-1.52
-1.51
-1.50
-1.48
-1.47
-1.44
-1.43
-1.40
-1.37
-1.36
-1.34
-1.33
-1.31
-1.30
-1.28
-1.25
-1.23
-1.22
-1.20
-1.18
-1.17
-1.15
-1.13
-1.11
-1.10
-1.08
-1.06
-1.04
-1.02
-1.00

delta2 STODVN MFREQ

-0.83
-0.82
-0.81
-0.80
-0.79
-0.75
-0.74
-0.73
-0.72
-0.69
-0.68
-0.67
-0.65
-0.64
-0.63
-0.61
-0.60
-0.58
-0.57
-0.56
-0.55
-0.54
-0.52
-0.51
-0.49
-0.47
-0.46
-0.45
-0.44
-0.43
-0.42
-0.41
-0.39
-0.38
-0.37
-0.36
-0.35
-0.34
-0.33
-0.32
-0.31
-0.30
-0.29
-0.28
-0.27
-0.26
-0.25

1.005
1.004
1.003
1.005
1.003
1.004
1.005
1.003
1.004
1.003
1.004
1.005
1.005
1.003
1.004
1.005
1.004
1.004
1.005
1.004
1.005
1.005
1.005
1.005
1.005
1.004
1.006
1.005
1.005
1.004
1.004
1.0G5
1.004
1.006
1.006
1.005
1.005
1.006
1.007
1.006
1.006
1.003
1.006
1.006
1.006
1.005
1.005

0.188
0.368
0.369
0.377
0.375
0.372
0.370
0.369
0.374
0.370
0372
0.365
0.360
0.366
0.374
0.367
0.367
0.362
0373
0.374
0.366
0.373
0.358
0.371
0.364
0.364
0.359
0.358
0.358
0.361
0.365
0.357
0.358
0.353
0.346
0.352
0.354
0.353
0.348
0.341
0.338
0.336
0.338
0.339
0.337
0.325
0.330

153




theta
0.95
0.95
0.95
0.95
0.95
0.95
0.95
0.95
0.95
0.95
0.95
0.95
0.95
0.95
0.95
0.95
0.95
0.95
0.95
0.95
0.95
0.95
0.95
0.95
0.95
0.95
(.95
0.95
0.95
0.95
0.95
0.95
0.95
0.95
0.95
0.95
0.95
0.95
0.95
0.95
0.95
0.95
0.95
0.95
0.95
0.95
0.95

deltal
-0.98
-0.96
-(0.94
-0.92
-0.90
-0.89
-0.87
-0.85
-0.83
-0.82
-0.80
-0.78
-0.77
-0.75
-0.72
-0.70
-0.69
-0.67
-0.66
-0.64
-0.63
-0.60
-0.57
-0.56
-0.53
-0.52
-0.50
-0.49
-0.48
-0.45
-0.44
-0.41
-0.40
-0.39
-0.36
-0.35
-0.34
-0.30
-0.29
-0.28
-0.27
-0.22
-0.21
-0.20
-0.19
-0.18
-0.10

delta2 STDDVN MFREQ

-0.24
-0.23
-0.22
-0.21
-0.20
-0.20
-0.19
-0.18
-0.17
-0.17
-0.16
-0.15
-0.15
-0.14
-0.13
-0.12
-0.12
-0.11
-0.11
-0.10
-0.10
-0.09
-0.08
-0.08
-0.07
-0.07
-0.06
-0.06
-0.06
-0.05
-0.05
-0.04
-0.04
-0.04
-0.03
-0.03
-0.03
-0.02
-0.02
-0.02
-0.02
-0.01
-0.01
-0.01
-0.01
-0.01

0.00

1.004
1.004
1.005
1.004
1.005
1.005
1.004
1.006
1.004
1.006
1.005
1.006
1.005
1.004
1.006
1.006
1.005
1.006
1.005
1.005
1.004
1.005
1.005
1.006
1.007
1.008
1.006
1.007
1.004
1.007
1.007
1.008
1.009
1.006
1.005
1.008
1.005
1.006
1.008
1.007
1.004
1.008
1.008
1.008
1.007
1.008

1.009 -

0.335
0.337
0.334
0.332
0.321
0.323
0.317
0.326
0.316
0.306
0.314
0.320
0.316
0.310
0.304
0.305
0310
0.295
0.303
0.299
0.303
0.294
0.298
0.288
0.286
0.277
0.278
0.278
0.281
0.274
0.270
0.256
0.251
0.257
0.250
0.250
0.243
0.240
0.238
0.238
0.229
0.232
0.220
0.217
0.216
0.224
0.202
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theta
0.95
0.95
0.95
0.95
0.95
0.95
0.95
0.95
0.95
0.95

deltal
-0.09
-0.08
-0.07
-0.06
-0.05
-0.04
-0.03
-0.02
-0.01
0.00

deltaz STDDVN MFREQ

0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00

1.009
1.008
1.012
1.009
1.009
1.010
1.011
1.008
1.009
1.008

0.201
0.197
0.184
0.191
0.187
0.178
0.178
0.171
0.179
0.169
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CHAPTER 7
TIME SERIES CONTROLLER PERFORMANCE

RESULTS - ANALYSIS AND DISCUSSION

’

7.1 INTRODUCTION

In this Chapter, the simulation results are used to analyse performance measures
of the time series controller. The effects of the rate of process drift, r, on the control
error standard deviation (CESTDDVN) are discussed for the Time Series Controller
presented in Chapter 6 which were obtained directly from simulation of the feedback
control algorithm. The results, with the adjustment intervals (Als), are given in Tables
7.1 and 7.V and in Tables 7.1 and 7.VI, the model and controller parameters for dead
time b = 1 and b = 2 respectively. The feedback (closed-loop) control stability,
adjustment and benefits and problems of using integral control, are briefly discussed in
Sections 7.2.3, 7.2.4 and 7.2.5. The effect of control limits on product variability and the
dependence of control action variance on dynamic parameters and process drift are
explained in Sections 7.3 and 7.4. Details on the constrained variance control scheme
are given in Table 7.IV and in Section 7.5. The effect of increase in dead time from b =
1 to b =2 on CESTDDVN and Al is discussed in Section 7.6. It is shown that the
EWMA has fairly good control of the process for values of ® in the interval, 0.75 +
0.05. An approximate probabilistic model for the situations in which the mean of the

product quality variable is on target and the mean not on target is given in Section 7.7.
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7.2 ANALYSIS OF SIMULATION RESULTS
7.2.1 Background of the Simulation

The main focus of the simulation is on studying the effect of the rate of drift on
control of a dynamic process with dead time. It was mentioned in Section 6.7, that what
is critical is the combined effects of the inertia and the dead time on the output control
error sigma (CESTDDVN). Although Baxley's [1991] feedback control strategies for
drifting processes, provided closer control to target with control error sigmas lower than
that obtained by Shewhart control charting procedures, they resulted in slight increases
mn control error sigmas (product variability) obtained through time series controllers but
required less frequent adjustments. The variance of the output variable obtained from
simulation of the feedback control algorithm (Equation (5.16)) is a minimum because of
the following observations made earlier in Section 5.6.
(1) The feedback control Equation (5.16) defines the adjustment to be made to the

process at time t which would produce the feedback control action compensating for the

forecasted disturbance and yielding the smallest possible mean square error' at the

output. In other words, the control adjustment action given by Equation (5.16)
minimises the variance of the output controlled variable.

(ii)  The Equation (5.16) reduces to that of the control adjustment equation of the
time series controller algorithm derived by Baxley [1991] when there are no carryover
effects of the process response into succeeding sample periods (the dynamics or inertia

& = 0). Baxley [1991] identified that the first term in his algorithm represented integral
action and the second term, the dead-time compensator developed by Smith [1959].
Palmor and Shinnar [page 15, 1979] observed that *the Smith predictor is a direct result

of minima] variance strategy and that minimal variance control for processes having
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dead times includes this type of dead-time compensation'. At this stage, an intuitive
conjecture, using this principle, is made that the inclusion of the dead-time
compensation term of either the Smith predictor type and/or the Dahlin's (on-line)
tuning parameter, (whose values range from 0 to 1), in a feedback controt algorithm will
also result in a minimum variance strategy for,processes with dead time. This draws on
the comparison made by Harris, MacGregor and Wright [1982] to the minimum
variance controller they derived for the process with dead time (for which the number of
whole periods of delay was equal to 2} and the Dahlin controller given in their paper.
The authors showed that the two controllers were identical upon setting the value of
Dahlin's parameter, (the discrete time constant of the closed-loop process), equal to @,
the IMA parameter in the stochastic disturbance model. They reconciled the different
approaches by noting that the TMA parameter ® provides information about the
magnitude of the closed-loop time constant'. Equation (5.16) is identical to Baxley’s
[1991] algorithm and includes both integral action and dead-time compensation terms
and the IMA parameter ®, (whose values range from 0 to 1), is set to take care of the
drift (r = - @) as well as Dahlin's parameter to compensate for the dead time. So, it
follows that the variance of the output product variable achieved by using Equation
(3.16) with integral action and dead-time compensation terms is a minimum. The dead-
time compensation term (seemingly) removes the delay from stability considerations
and definitely provides a stabilising effect on the feedback control system. These
principles are used for designing (formulating) the discrete (sampled data) time series
controller. Such a controller will maintain the mean of the process quality variable at or
near target and will allow for a (rapid) response to process disturbances without much

overcompensation or overcorrection.
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The CESTDDVN's (control error standard deviations) of the output variable
achieved are a minimum by appeal to an observation made by Box and Jenkins [1970,
1976] menticned above in (i) and in Chapter 6. Moreover, it has been pointed out that
Equation (5.16) contains integral action. The control obtained through the first term in
Equation (5.16) is the discrete analogue of [integral control’, a form of adjustment
employed in engineering or automatic process control. So, a minimum variance
controller built on this algorithm will be able to maintain the desired output variable at
or near a given set point (Palmor and Shinnor [1979]), thereby fulfilling one of the
eight* criteria specified as the requirements of a sampled data (discrete) controller
algorithm by Palmor and Shinnar [1979] in their paper (*Details of the criteria are given
in Chapter 9).

It is possible to show that the respense of the feedback control algofithm
(Equation 5.16) to a change in set point will be fast and smooth and will have no
overshoot by taking care of and considering the stability of the feedback control (closed-
loop) under critically damped conditions and by satisfying the stability conditions
(Equation 5.7) in the simulation of the feedback control algorithm. The feedback
(closed-loop) control stability is further discussed in Section 7.2.3. It will also give a
fairly good response even if there is a slight perturbation in the process parameters. See
Palmor and Shinnar (page 20, [1979]) for further information regarding characteristics
of good integral control.

The following facts also suppert the claim that the feedback control Equation
(5.16) provides minimum variance control and the necessary feedback for process

control adjustment,
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(i)  According to Astrom, [1970], Astrom and Wittenmark [1973], a moving average
process of order f has the property that its Autocorrelation Function (ACF) is zero
beyond the lag f The autocorrelation function of the output process variable Y, (=1
for the ARIMA (0,1,1) model considered in this thesis), was checked and it was found
that minimum variance control is obtained at the output for the control strategy adopted
by using Equation (5.16).

(iv)  Moreover, the effect of the feedback control provided by Equation (5.16) is that
the error in forecasting the deviation from target is the deviation itself and that the
EWMA Equation (5.17) produces a minimum mean squared error forecast since the
disturbance is represented by the (integrated moving average) IMA (0,1,1) time series
model Equation (5.9) (Muth [1960]).

) In feedback control, where the input is calculated (completely) from the oﬁtput,
the ‘cross-correlation’ technique is used for testing the presence of feedback. A
substantial and significant sample ‘cross-correlation’ .. (k) (between the ‘prewhitened’
input x; and the transformed output e;) at lag k = 0 would (actually) indicate the
presence of a feedback loop, where { x|} is a ‘white noise’ sequence with mean zero
and variance cx.z. A large (negative) cross-correlation at lag k = 0, calculated for the
feedback control algorithm and found to be significant gave the clue to the presence of

feedback. For more information on the cross-correlation technique, see Box and

MacGregor [1974].
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7.2.2 Simulation Methodology and EWMA Process Control

The satisfactory control of a process with time delay was made possible by (i)
the process output following the command input (signal) closely and remaining
unaffected by variations in the process parameters, (ii) the second-order dynamic model
(Equation 5.5) with time delay matched the process and was an adaptive model of the
process and (iii) as the feedback control system operated, the model tracked the
variations in the parameters of the process. Under steady state conditions, due to drifting
of the (sensitive) feedback control adjustment equation, a small mismatch between the
process and model did not significantly affect the operation of the feedback control
stability. This is important since closed-loop stability cannot be guaranteed when there
is process/model mismatch (page 1486, Harris and MacGregor [1987]). T eeciback

control (closed-loop) stability 1s discussed in the next Section.

7.2.3 Feedback (Closed - loop) Control Stability

Stability is the first and foremost problem to be faced. The values of 3,8,
generated by the computer through the FORTRAN programme, shown in Table 7.1
(Attachment 7.I) satisfy the (closed-loop) stability conditions given in Section 5.5

(Equation 5.7). It is possible to generate other sets of values of 3,,3, that also satisfy the

stability conditions. The Figure 7.1, (an inverted parabola (5,2 = -43,)), shows the

relationship between &, &, satisfying the inequality conditions for achieving stability.
The roots of the characteristic Equation (5.6) determine stability of the feedback

control system (described by Equation 5.5): It is interesting to note that the region for

values of &, from -2 to 0 and &, from -1 to O (in Figures 5.2 and 5.3) satisfying Equation
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Figure 7.1 Graph showing the relationship
between deltal and delta2

0 |

-0.2 -

delta?

(5.7) is the stable operation region without oscillation in the feedback control loop. This
is similar to the stability condition used by control engineers, that all the roots of the
characteristic equation of the closed loop transfer function* (dynamic) model of the
process must lie to the left of the imaginary axis on the s plane, as shown in Figure 7.2

(*Control engineers represent the process P(s) in terms of the Laplace operator 's' by a

-sTy
ge
(1+8T,)(1+5T,)

second-order model of the form P(s) = where g is the (steady-state)

gain of the process, T, T, are the time constants of the exponential (inertial) lags and Ty

is the time delay).

Imaginary
axis

S plane

Real axi

Figure 7.2 Stable Region in the S Plane
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There are some advantages and/or benefits that can be derived from using
Figures 5.2 and 5.3, such as employing the dynamic parameters §,, 8, in the stable
region and without overshoot of the output variable, as explained in Section 5.5. The
Routh test' is used by engineers in APC to determine if a control system is stable.
Routh’s stability criterion provides informatjon about the number of positive roots
without the need to actually solve a polynomial, it applies to polynomials with only a
finite number of terms. When this criterion is applied to a control system, information

about stability can be obtained (directly) from the coefficients only of the characteristic

equation which should be positive and real. However, Routh’s criterion does not give

the roots of the characteristic equation nor the degree of stability (that is, how far the

roots are from the imaginary axis), of the control system. Moreover, Routh’s test cannot

be applied to systems containing dead time and in these instances, control engineers

often make recourse to 'frequency response analysis'.

The points on the parabolic curve (8,2 = -43,) are real and equal. The portion of
this curve where the value of system/process gain (PG) ranges for values of (8, 85) from
(-2, -1), (for which PG = 1/4 = 0.25) and for values of (8,,3,), (0,0) (for which PG = 1)
is the stable region where the (feedback) control system can be operated without
oscillations in the feedback loop. In the portion to the right of this stable region, the
roots are still positive and equal but the process gain (PG) of the system for values of
(81,8;) from (0, 0) to (2, -1) range from 1 to . Interest is only in the positive values of
the process gain, PG less than or equal to 1 for satisfying the closed-loop stability
conditions. Values of PG, given by PG = 1/1-8,-8,, greater than ! are in the unstable

region as shown in Figures 5.2 and 5.3. Higher gains tend to drive the feedback control
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system unstable and cause oscillations in the feedback loop. For this reason, the values

of (8,,8,) are considered in the region (-2, -1) and (0, 0) and lying on the parabola

(8,2 = -48,) in order to satisfy the stability conditions. Thus, the upper stability limit of
the feedback (closed-loop) gain, g, (shown equal to the process gain, PG), cannot exceed
the value 1 without leading to undamped oscillations. This upper limit has been
explored in order to determine how stable and effective the time series controller built
on feedback control algorithm (Equation 5.16) wﬂl be when it is applied to control a
process.

This discussion, incidentally, provides justification, in a way, for restricting
attention, as a special case, to a “critically damped’ second-order system.

The issues and control problems arising out of ‘gain margin’ and *phase margin’
present in damped loops containing integrating or capacitive (that is, dynamic or
inertial) elements are not addressed in this thesis since the concept of gain and phase
margins are not particularly relevant to the process control practitioner. This is
especially so in the current situation where the thrust is directed towards controlling the
product quality of the output variable not withstanding other allied or connected issues
that may arise in synergising the techniques from both SPC and APC disciplines
without being unduly concerned about other problems of (automatic) process control
that may also arise in applying process control techniques from both areas

simultaneously.

7.2.4 Feedback Control Adjustment
The programme calculated the value of the required adjustment, given a small

increment in the input variable x,, (notation dxt in the simulation), for each sample
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interval, whenever the geometric moving average (gma) was less than LCL or greater
than UCL. During simulation runs, the values of x, (x at time t) (obtained from adding
the adjustment, the increment in x, and x,,(xtm1 in the computer simulation)) and the
gma were obtained at various sample intervals (instants of time). It was found that
whenever gma had a value lying between the control limits, no adjustment was needed,
(and hence no sampling was necessary), and so the increment in x, (the adjustment dxt)
was zero as also was the mean, though a time series controller calls for an adjustment
for every sample interval. Thus, by using the gma statistic in EWMA control for
monitoring, unnecessary adjustments are avoided and so too are the associated costs of
sampling and adjustment. As long as dxt was zero, then x, was equal to x,, On the other
hand, when the gma crossed either of the control limits, dxt had some significant value
and so a control adjustment action was required to be made for that particular sampling
interval. It was found also that the value of x, was zero even th;)ugh e; had some
significant value. This was due to the fact that the values for the term x,,,, for b= 1, 2,
namely, X, and X, ; were made equal to zero whenever their values were sufficiently
small. So, the value of x; becomes zero and so also dxt. The process then requires no
adjustment, the gma plot falls within the control limits and thus the process is in control.

Table 7.I1, titled, ‘Time series controller performance measures’ (Attachment
7.11), shows the values of the CESTDDVN and the adjustment interval (AI) (1/MFREQ)
for values of © ranging from 0.05 (fast drifts) to 0.95 (slow drifts). Values of ® from
0.30 to 0.65 were of less interest since only fast and slow process drifts are considered
for the ARIMA (0,1,1) disturbance model. Disturbances with ® closer to 0, may be
termed less noisy, while a value of ® ="0.7 denotes a fairly noisy non-stationary

disturbance. The simulation results indicate that the feedback control algorithm,
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Equation (5.16) holds potential in reducing product variability (control error sigma,
CESTDDVN). If the input to the system (SISO, single input - single output, considered
in this thesis), is zero, then the process described by Equation (5.5) will return to the
desired final state Y, = 0, due to the iterative nature of the feedback control algorithm
(5.16) even if no control is applied. There are,some benefits in applying this algorithm

for controlling product variability as will be shown subsequently.

7.2.5 Benefits and Limitations of Integral Control

Automatic process control (APC) techniques have been applied to process
variables such as feed rate, temperature, pressure, viscosity, etc. APC or engineering
process control techniques have been applied to product quality variables as well.
Conventional practices of engineering control use the potential for step changes to
justify an integral term in the controller algorithm to give (long-run) compensation for a
shift in the mean of the product quality variable.

Process regulation is an important function of a controller intended to keep the
output controlled variable at the desired set point by changing it as often as necessary.
Every process is subject to load variations. In a (well)-regulated feedback control loop,
the input manipulated variable will be driven to balance the load, as a consequence of
which, the load is usually measured by engineers in terms of the corresponding value of
the output controlled quality vartable.

The block diagram for the feedback control illustrated in Figure 5.1 (Section 5.4,
Chapter 5) assumed that the adjustment x, = f (e,e,|,...) can be written as a (linear)
function of past deviations from target which is appropriate if the costs of adjustment

and of sampling are negligible. This is likely to be the situation in process industries
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where the adjustments are automated and so the assumption of a linear function holds
good for the form of feedback control considered. This is evident from the feedback
control adjustment equation (Equation 5.16) for the adjustment x, which shows x, as a
(linear) function of the past deviations e,e,,... .

A controller with integral action changes the output variable as long as a
deviation from target or set point exists (page 15, Shinskey [1988]) and produces
slightly greater mean square error (MSE) at the oﬁtput than actually required. The rate
of change of the output (variable) with respect to time is proportional to the deviation.
As mentioned earlier in Section 5.5, the closed-loop gain must be 1 in order to sustain
oscillations in the feedback control (closed) loop.

A process variable that has a uniform ‘cycle’ and sustained oscillations does not
threaten the stability of the feedback control system. Under integral control; the
(feedback) closed-loop oscillates with uniform amplitude. The feedback loop tends to
oscillate at the period where the system gain is unity, the integral (also known as reset)
time, that is, the time constant (I) of the controller, then, affects only the period of
oscillation which increases with damping for a controller with integral action in a dead-
time loop. It can be shown that the ‘integral time’ (I,) for zero damping (which requires
a loop gain of 1.0), is 0.64PG T, where PG is the process gain and T, the dead time
(page 16, Shinskey [1988]). A process with a dead time of 1 minute would cycle with a
period of 4 minutes under integral control with oscillations sustained by an integral time
constant of about 0.64PG minutes. Control engineers endeavour constantly to have this
integral time as nearly equal to the process dead time as possible so that the process

variable can take the same path as the dead time. It is possible to achieve damping by
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reducing the closed-loop (feedback) gain and by increasing the integral time as will be
shown in Section 9.5.3.

Sampling actually improves control of a dead-time process that allows a
controller with integral action to approach best-possible performance (explained in
Section 9.7.1), if its sample interval*(or ‘scan, period’) is set equal to the process dead
time. This loop is even robust (also explained in Section 9.7.2), for increases that occur
in dead time as well, by setting the sample interval at the maximum expected dead time.
For this, the integral time should be set at the product value of PG and Al (sample
period). *Sample interval or scan period of a digital controller, (in process control
terminology), is the interval between executions of a digital controller operating
intermittently at regular intervals,

The integrating control action is successful in eliminating ‘offset’ (deviétion
obtained with proportional control) at the expense of reduced speed of response and
increasing the period of the feedback control loop with its phase lag. When integral time
is too long, the feedback loop is overdamped, leading to unstable conditions. Moreover,
integral mode slows and destabilises a (feedback control) loop (Shinskey [1988]).

Another limitation is that there may be a maximum integral (reset) rate which
cannot be exceeded without encountering stability difficulties and which saturates its
integral mode when the input exceeds the range of the input manipulated variable. This
condition is called ‘integral windup’ by engineers and results in overshoot before
control is restored. Overshoot can be avoided by setting the integral time higher than
that required for (load) regulation and can also be minimized by limiting the rate of set-

point changes (Shinskey [1988]). '
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During a step change (change from a steady level of zero by an instantaneous
change to a steady level of unity) of the input process variable, the closed-loop output is
serially independent when pure one-step minimum mean square control is used which is
often the practice in process control operations. A time delay of two time periods was
taken care of by considering dead time, b= 2.0, in the feedback control algorithm.

A dynamic element, such as integral, within the domain of (linear) controllers,
has both beneficial and undesirable properties. The selection of the control mode
requires a prior understanding of the benefits and drawbacks of the control mode. It may
once again be emphasised that since there are some criticisms and drawbacks in using
(pure) integral control such as integral wind-up and overshoot etc., the objective is in
reducing the CESTDDVN (product variability), of the outgoing product quality and so,

such criticisms can be put to rest.

7.2.6 Feedback Control Adjustment - Methodology

In practice, the mean square error (MSE) control adjustment algorithm is applied
for a trial period to the process whose product variability is required to be reduced.
EWMA charts are installed after observing changes in the process that could cause the
adjustment algorithm to underestimate (or overestimate) the required contro] adjustment
to make the product quality variable to be exactly on-target and making it possible to
realise a reduction in the output control error standard deviation (CESTDDVN). The
EWMA process monitoring system notifies, by means of out-of-control signals, the
shifts in the quality variable needed to maintain on-target performance. Further
reductions in product variability are possible by re-programming the closed-loop

control. When the cost of adjustment and cost of sampling are significant, and when the
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controller tuning appears/(happens) to be excessive or tight, the continuous feedback
can be temporarily removed or disconnected from the feedback loop and connected
again after a (fairly) short period of time. This course of action may be necessary to
prevent overcompensation of the output product variable which is characterised by more
variable control errors and more frequent adjustments. A minimum variance feedback
control algorithm will bring the process back to set point with less oscillatory behaviour
than usually experienced under manual control. It will help also in accomplishing set
point changes in a smooth and rapid manner (Shinskey [1988]). It is expected that the
time series controller designed and built on the principles enunciated in Sections 7.2.1
and 7.2.4 with dead-time compensation and integral action terms in Equation (5.16) will

also possess these characteristics.

7.2.7 Analysis of Simulation Results for Dead Time b =1

The mean (ME), and standard deviation of the control error, namely, the control
error standard deviation (CESTDDVN), and that of the adjustment, (Mdxt) and SDdxt
and the values of the process gain (PG) are shown in Table 7.1II (Attachment 7.100). In
monitoring a closed-loop process operating under a known control algorithm, the
'information’ about underlying changes in the process are reflected in the sequences of
control actions and the process output. This was found from the values of adjustment
(dxt) and adjustment variance (vardxt) from simulation results. The effect of control
actions needs to be taken into account by an effective process monitoring scheme.

This information is used to detect process changes by means of EWMA forecasts
and gma theta falling outside the control iimits. By virtue of the observations made
carlier in Section 7.2, a range of minimal control error sigmas {(CESTDDVN) are

]
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available for values of ® and hence the rate of drift, r = (1-0) in Table 7.1II. As the
process drift, r, decreases from fast drift, [that is, as the IMA parameter ® increases
from a value of zero, (random walk)], to slow drift, [that is, as © becomes closer to the
value of 0.70, a non-stationary disturbance], the CESTDDVNs also decrease to a value
which is close to 1.0 when @ = .75 +0.05, and the EWMA seems to have good control
of the process. Around this value of ®, EWMA forecasts are effective in controlling a

process. This inference is made possible because of the fact that the control error

sigma achieved in controlling a process with no dead time (and no carry over

effects) is 1.0 (page 286, Baxley [1991]). Since the CESTDDVN values, (close to the

value of 1.0), are obtained for the second-order dynamic process with dead time b = ],
2, it is possible to achieve good (feedback) control possessing features such as
(i} permissible gain of the feedback (closed) loop, (ii) stability of the feedback control
loop and (iii) precise regulation of loops contaz'ning; dead time, mentioned in Section
3.2. The range of control error sigmas (CESTDDVN) for corresponding values of ® and
the process drift, r can be used to formulate process regulation schemes. Whole periods
of dead time (b = 1, 2) are considered in this thesis for illustration and to avoid complex
controller algorithm whose dead-time compensator/Smith predictor changes with the
time delay. Hence, it is possible to estimate the best achievable performance when
measured by the variance of the output (mean square error), knowing the ratio of the
integer portion, (being b = 1 and 2), of the process time delay divided by the control
interval, (the Al values), obtained from the simulation results {Harris [1989]). These
values of @ and Al are used to formulate process regulation schemes in Chapter 8.

The control error sigma (SE) and adj}ustment frequency (AF) obtained by Baxley

[1991] for extended simulation runs with IMA parameter @ = 0.75 for
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(i) an EWMA controller are 1.15 and 0.035 for dead time b = 1.0 and controller gain

CG = 1.0 with no carry-over effects (for dynamics or inertia & = 0), and control limits
L=3.15 (page 278, Baxley [1991] and

(i1) for a CUSUM controller, the corresponding SE and AF values are 1.13 and 0.064
(page 280, Baxley [1991]) respectively for dead time b = 1.0 and CG = 1.04 again with
no carry-over effects and ‘h’ (the cusum controller tuning parameter which is analogous
to the spacing between control limits), equal to 3.98.

The simulation results obtained for the time series controller with IMA
parameter ® = (.75 for dead time b = 1.0, 8, =8, = 0 are CESTDDVN = 1.0 and AF =0
( Refer Table 7.11, Attachment 7.11).

The SE and AF obtained by Baxley [1991] with IMA parameter ® = 0,25 and
® = 0.50 are (1.77, 0.065) (L = 3.63) and (1.37, 0.059) (L = 3.12) for the EWMA
controller and (1.73, 0.105) (h = 3.64) and (1.48, 0.053) (h = 4.50) for the CUSUM
controller (extended) simulation runs respectively. The controller gain (CG) in these
situations were 0.83 and 0.85 for the EWMA controller and 0.77 and 0.85 obtained with
the CUSUM controller. The EWMA controller has no dead-time compensation term and
requires a controller gain below one in order to avoid over-control or overcompensation
of the output controlled variable. Again, this is one of the issues raised by Kramer (Box
and Kramer [1992]) which is taken care of, it is argued, by the time series controller
feedback control algorithm with integral and dead-time compensation terms (Equation
5.16).

The corresponding CESTDDVN and AF given by the time series controller are

1.099 and 0.085 for ® = 0.25, and 1.068 and 0.06 respectively for ® = 0.50 for inertia
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8 =0, (dead time, b = 1.0}. In fact, these CESTDDVN values are far below the SE
values (1.25 for ® = 0.25 and 1.118 for ® = 0.50) presented by Baxley (page 286,
[1991]) as indicated earlier in Table 5.1 (Chapter 5).

Hence, it can be concluded that the feedback control provided by the time series
controller adjustment Equation (5.16}) is superior in performance to the performance of
the EWMA and CUSUM controllers. The model and controller parameters are given in

Table 7.1II (Attachment 7.11I).

7.3 THE EFFECT OF CONTROL LIMITS ON PRODUCT VARIABILITY

In order to know the effect of the control limits L on varCE and vardxt due to
different monitoring intervals (Al's), the increase in varCE for different Al and L are
found from Table 7.IV (Attachment 7.IV). The choice of L is based on statistical
considerations which have been set to L = 3o, (3 times the standard deviation of the
random shocks). Lower CESTDDVN values for L = 3, is the result of more frequent
interventions with smaller adjustment intervals in order to return the process with fast
drifts to target. If the adjustments are made automatically, as in some chemical
processes involving small adjustment costs, and if the specification limits are narrow
relative to process variability, then it may be proper to set a low value for L to minimise
control error variability so that the production of off-quality material will be a minimal.
In this way, increase in product variability due to overcontrol can be avoided by
widening the control limits (increasing L). This is substantiated by Box, Jenkins and
MacGregor [1974] who showed that the motivation for increasing L is to reduce costs
when process adjustments are expensive. On the contrary, if automatic adjustments are

not possible and if specification limits are wide, then it may be proper to set L = 3 to
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minimise adjustment costs. Since the values of L in the simulation are around 3, which
in turn depends upon the nature of the drifts, the performance for values of L around 3
are similar to that of using a statistical process control strategy with an ARL of 400
under the assumption that the process is on target with no drifts (Baxley [1991]).

For a process with dynamic parameters &, 8, and process gain, PG, (defined in
Section 5.5, as 'the eventual effect of a unit change in the input manipulative variable
after the dynamic response has been completed'), the value of ®, ('the magnitude of the
response to a unit step change in the first period following the dead time"), is equal to

PG(1-8,-5;) = [1/{1-8,-8,)] [(1-8,-82)] = 1.
This shows that the response to a unit step change is total (100%) and completely
reflected in the process due to the dynamic parameters, 3,,8, and b, the dead time. The
dynamic parameters measure the carry-over of the exponential process response into
succeeding sample periods. If there are no dynamics in the system (8 is very nearly 0),

there are no carry over effects and so PG = o.

7.4 DEPENDENCE OF ADJUSTMENT VARIANCE ON DYNAMIC
PARAMETERS AND PROCESS DRIFT

In Section 5.5, the expressions for &; and 8, were shown for a 'critically damped'
second-order system to be & = 26-Ut ] 62 = -e-yT where 1 is the process time constant.
Since & = e-Ths &, and &, are functions of sampling interval T, the control adjustment
action variance (vardxt) depends on the rate of drift, r, and also on the inertial process
lags, 8, and &,.

The expected variance of control adjustment action (vardxt), (from the

expression for x,, Equation (5.16)) is evaluated by using the fact that minimum variance

4
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control generates deviations, e,, from target that are equivalent to the random shocks

{a).

That is,

(1-©)

2
=————(1-3,B-5,B
X PG(1-51—62)( 1B-0:5%)e,

4

The second term on the right is in the form of a general ARIMA(2,0,1) process.

It can be shown that the variance of this process is

_ (-8 o
(=-8-6)1+ 8- 8)(1+52) .

[Refer to Equation (3.2.28), page 62, Box and Jenkins [1970, 1976] which gives the
expression for the variance of the second-order Autoregressive process described by
Equation (3.2.17), page 58 in the above monograph].

So,

(1-©)(1-8,B-8,B%)
PG(1-5,-8,)

Var(x, )= Var[ at]

_ (1-5)(1-0)* o
PG2(1-81- 5:) (1= 6= &)1+ 6~ (1 + 5)

) (1-8,)r2
(1-8- 81+ 6= 6:)1+5,) )’

_ (1-8,)r2
(1-81—8)(1+8, - 8,)1+38,)°

(7.1)
because of the fact that 5, = 1.0, r = 1- ® and PG(1-3;-8,) = = 1.
Table 7.1V (Attachment 7.IV) shows the adjustment variance (vardxt) values for

values of dead time, b = 1 and for values of 3, and &, that satisfy stability conditions. It
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can be shown that the values of vardxt obtained from simulation of Equation (5.16)
compare reasonably well with the numerical values calculated from Equation (7.1)
above. Since 8, and 8, are functions of the monitoring (sampling) interval, the effect of
inertia may be reduced by lengthening the monitoring interval. The adjustment variance
is a minimum (0.003) for large monitoring intervals (52.6) such as for example, for
®=10.75,8,=-1.82 and §,=-0.83 and for dead time, b=1.0.

From Table 7.1V, it is observed also that for an increase in varCE and a
particular value of ®, large values of &, and 3, yield considerable reductions in the
adjustment control action variance (vardxt). The dependence on past control actions
increases as §; and d, get larger which is in agreement with the observation of Kramer
[page 157, 1990].

For varCE equal to 1.002 and @ = 0.70, the (longest) monitoring interval (58.8)
occurs when 8; = -1.82 and 3, = -0.83 When 87 and &7 are both equal to 0, the control
adjustment action (dxt) leads to an immediate adjustment in the coniroller set point and
there is no bias due to the process dynamics. Longer monitoring intervals are possible
as the bias due to the process dynamics is reduced. Plots of CESTDDVN and
Al = 1/MFREQ against ® for various values of the parameters §,and 8, and dead time
b =1 are shown in Figures 7.3 (Attachment 7.VIII) and 7.4 (Attachment 7.IX). From
Figure 7.3 for plots of ® versus CESTDDVN, it can be seen that as the values of &, 3,
approach 0, the plot becomes flatter and almost straight for §, 3, values equal to 0. The
peaks in Figure 7.4 for plots of ® versus Al are due to the process requiring
adjustments, (in fact, zero adjustments, dxt = 0), after long sampling periods, say, 500 or
even 1000 adjustment intervals for ® = 0.70 and 0.75. This is because the EWMA has a

fairly good control of the process around these ® values. It is shown also that the control

il
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adjustment action variance (vardxt) is a fraction of the adjustment variance obtained
when the control is minimum variance for large 8, and 8, and small values of r (large @
values). When r is small and the drifts are slow, long monitoring intervals can be
considered for increases in varCE leading to reductions in the control adjustment action
variance (vardxt). The amount of increase in CESTDDVN by extending Al’s is the
same irrespective of dead time as this does not contribute to increase in control error
sigma, this can be seen from the results.

Minimum variance control requires large alternating contrel actions to give
minimum output variance when &, and &, are large. The alternating character is
eliminated by allowing slight increases in output variance (varCE). Substantial
reductions in control action variance can be achieved for minor increases in output
variance by constraining gma theta. By means of this constraint, minimum variance (or
MMSE) control for minimising control actions was achieved independent of the

monitoring interval.

7.5 CONSTRAINED VARIANCE CONTROL
7.5.1 Constrained Minimum Variance Control and Control Action Variance

The objective 1n schemes that employ minimum variance control, is to find a
control scheme such that E(e,2) is minimised. The aim in constrained variance control
schemes is to find a control strategy that minimises gma theta subject to a constraint that
the calculated individual gmas are less than some limit, say L. where L denotes the
number of multiples of o, (. = 35,, 3 times the standard deviation of the rando;n

component of the disturbance) used for EWMA control limits. These control limits were

set as in Equations (6.1) and (6.2). As the control limits increase, more emphasis is
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placed on reducing the variance of control adjustment actions and less on the variance of
deviations from target or output variances, (also termed by Kramer as MSD, mean
squared deviation from target) (page 155, Kramer [1990]). Following the principle of
Baxley [1991] in the EWMA simulation programme (page 293, Baxley [1991]), the
gma theta is constrained to be the same as the IMA parameter theta, (the process drift, r,
being equal to 1-@), for the disturbance in the simulation of the stochastic feedback
control Equation (5.16), (Fortran 77L computer programme, Attachmant 6.I). Table
7.1V (Attachment 7.IV) shows that the constrained variance control scheme generates a
smaller control adjustment action variance (vardxt) than that would have been possible
by minimum variance control at the expense of a larger output variance (varCE). The
position of the control limits which determined the control scheme changed also with @
as can be seen from Equations (6.1) and (6.2). Table 7.1V is used to identify a range of L
that will yield an increase in varCE and the corresponding increase in control action
adjustment variance for a combination of ®, 8, and 8,. The constrained variance control
scheme is determined once a value of L is chosen, usually corresponding to a particular
increase in varCE. From Table 7.IV, it is found that the constrained control adjustment
action variance can be reduced by 0.7 % of the minimal variance control action
variance (namely 0), when a 0.2 % increase in varCE can be allowed in the final
product (for ® = 0.70, 8, =-1.82 and 3, = -0.83 for dead time, b =1.0). The value of L
corresponding to this scheme is between 3.04 and 2.97. It can be shown that substantial
reductions in vardxt could be achieved for, in some instances, with minor increases in
varCE by using a constrained control scheme. Tables 7.1V (Attachment 7.IV) and 7.VI
(Attachment 7.VI) give information on Als (adjustment intervals) for a certain reduction

in vardxt which will result in an increase in varCE. In some situations, there may be
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substantial increases in varCE due to the control scheme being based only on the
deviations associated with the Al’s. With higher Al’s, it is possible to have larger L and
hence the process is allowed to drift farther from target before an adjustment is made,

causing an increase in varCE.

7.6 EFFECT OF INCREASE IN DEAD TIME ON CONTROL ERROR
STANDARD DEVIATION (PRODUCT VARIABILITY) AND ADJUSTMENT
INTERVAL

Dead time and inertia have a bearing and influence on determining the
adjustment interval (Al) when a process is drifting. Tables 7.1I (Attachment 7.II) and
7.V (Attachment 7.V) are used for discussing the effect of increase in dead time from
b=1to b=2. For a set of values of 8, = -1, 3§, =-0.25 and ® = 0.05, the CESTDDVN
and Al from Table 7.II are 1.039 and 9.8. The corresponding values for dead time, b =2
from Table 7.V are 1.567 and 55.56. On comparing these sets of vahues, it is found that
for a process with the same parameters, 8, = -1, 8, = -0.25 and ®, the CESTDDVN has
increased from 1.039 to 1.567. However, the process gain is the same in both cases
showing that dead time does not contribute to the steady-state feedback control (closed-
loop) gain or process gain. This means that dead time offers no gain contribution.
However, it has increased CESTDDVN from 1.039 for b= 1 to a value of 1.567 for
b = 2. The corresponding adjustment intervals (Als) being, 9.8 for b = 1 and 55.56 for
b=2.

It can also be shown that the penalty for a process with dead time is more severe
when the process has fast drifts than when the drifts are slow. This can be seen by

considering the decrease in the rate of drift from r = 0.95(® = 0.05) to r =0.30
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(® = 0.70), the CESTDDVNSs achieved are near 1.0 and comparable to a process with no
dead time. As the drifts further decrease and become slow, the EWMA weights have
less effect on the forecasts and there is a slight increase in CESTDDVN,

The situation 1s similar with the adjustment intervals. In these situations, if the
control scheme is based only on the deviations associated with the adjustment intervals
{monitoring periods), there is an (substantial) increase in the output variance (varCE).
For a dead time, b = 1, the adjustment interval (Al) is 0 for §, =-1.82, 6,=-0.83 and
® = 0.05. On comparing these sets of values, it is found that for a process with the same
parameters, &; =-1.82, 8, =-0.83 and @, the Al has increased from 0 to 52.63 for
b =2.0. Again, as the drifts decrease and reach about (0.30) (® = 0.70), the EWMA has
effective control of the process and the process requires no adjustment (Al = 0). As the
drifts decrease still further and the process becomes almost stationary, larger adjustment
intervals are required to bring the already stationary process back to control. The AT’s
decrease from large values for a process with fast drift to a process with slow drift, as
also do the CESTDDVN’s. It is observed from Table 7.IV (Attachment 7.IV) that for
longer adjustment (monitoring) intervals, both the output variance (varCE) and the
control action (adjustment) variance (vardxt) are large. It is required to know how
sensitive the simulation results are to the assumptions made in deriving the feedback
control algorithm. It may be a maiter of surprise to note that small values of
CESTDDVN could be associated with large Al'’s.

[t can be seen that the output vartance (varCE) depends on the IMA parameter ©
and in turn, the rate of drift of the process, r, whereas the control action (adjustment)
variance (vardxt) depends on the process dynamics parameters as well as the process

drift, r, as shown in Section 7.4. It is shown that as & gets larger and the parameters (3,,
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d,,b) remain constant, changes in the monitoring interval (Al) have a smaller effect on
the output variance when © is near the value of 1.0 (slow drifts), (for example, 0.95, that
is, when the process is tending to become stationary), than when it takes smaller values
such as 0.05 (fast drifts) (random walk). From Table 7.11 (Attachment 7.II), it can be
seen that for values of r = 0.95, 0.25, the Al's are 0 and 1.62. As r decreases from 0.95 to
0.05, the Al increases from 0 to 8.62 showing that larger adjustment intervals are
required for controlling slow drifts and smaller Al's are required for fast drifts and it is
comparatively easier to control fast drifts than slow drifts. This might be expected since
when the process drifts are slow, the disturbance is almost stationary and it may be
practically possible and sufficient to adjust a process which is already nearly under

control after a long adjustment interval.

7.7 PROBABILITY MODEL FOR FEEDBACK CONTROL ADJUSTMENT

A probability model for feedback control adjustment (x) in the input
manipulated variable is given in this Section. After making an adjustment, the
CESTDDVN of the output quality variable is checked for any off-quality product and if
the product is within specification limits, the process is continued. Otherwise, a sample
is taken based on the number of AP's from the simulation results and the process
adjusted.

The test for feedback control is that an adjustment is either made or not
following the gma theta falling outside the control limits L given by Equations 6.1 and
6.2. The input control adjustment is assumed to be say ‘o units of adjustment made at a
certain instant in a process under observation and control. Also, depending on the

amount of feedback, the adjustment quantity changes and differs from the previous one.
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Here, the feedback is characterisc‘:'d by two probabilities. Firstly, the probability that an
adjustment will make the mean of the output variable on target conditional upon it being
not currently on target and secondly, the probability that there will not be an adjustment
that will make the output variable move away from target conditional upon it already
being on target.

Let p = Pr(Adjustment /Mean Not On Target), i.e., Pr (A/MNOT), where A denotes an
adjustment requirement.

Let g = Pr(No Adjustment/Mean On Target), i.e., P(ANA/MOT), where NA denotes the
stage of the process requiring no adjustment.

Clearly, ptq=1

The units of adjustment is characterised by o, where

o. = Pr(MNOT), that is, Pr(Mean Not On Target).

The ideal situation will be when the adjustment units, o = 0.

p and q are the properties of adjustment applied to the feedback, mean not on target
(MNOT) and mean on target (MOT) respectively and o units of adjustment is an
adjustment measure.

The larger the deviation (the error), the greater is the opportunity for feedback control to
adjust the process and so, the feedback will be associated with a larger o level.

The basic feedback control adjustment is shown in Figure 7.5.

If the adjustment is not complete, there will be out of control signals again appearing on
the EWMA chart.

Interest is focused on:-

(1 The required adjustment, that is a, to avoid out of control signals and further

adjustment;
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(ii) ~ The values of p and q for the required feedback control adjustment.

Yes
b Test for \ Mean Not Adjust
rocess out of On Target /process
control
Signals No

Do not adjust
process

Figure 7.5 Basic probability test for feedback adjustment

A basic probability model is developed in which either an adjustment is not
made or made depending upon the process conditions, that is, either the process is in
control or out of control, identified by out of control signals. If an adjustment is
required, the process is not in control and the mean of the product quality variable is not
at or near target.
Then, the probability that a feedback control with « units of adjustment will bring the
mean closer to target is given by

Pr(No Adjustment) =Pr(NA/MOT)Pr(MOT) + Pe{NA/MNOT)Pr{MNOT)

=q(1-0) + (I-p)a. (7.2)
Pr{Adjustment) = Pr{A/MOT)Pr(MOT) + Pr(A/MNOT)Pr(MNOT)
= (1-g)(1-a) + pa. (7.3)

It is obvious that Pr(No Adjustment) + Pr(Adjustment) = 1
Having adjusted or not adjusted the process, a new feedback control is imminent

depending on the position of the product mean from the target. In the case of no

I3
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adjustment, the appropriate o value, is given by PeMNOT/No Adjustment); that is from
Equation (7.2),

[Pr(NA / MNOT)][Pr(MNOT)]

Pr(MNOT/NA) = DrNA)
T

-_ {d-pe
q(1-a)+(1-pl

(7.4)

Using Equation (7.4), the approximate value of o for the situations when the mean is
not on target and hence requires adjustment is given by

Pr(MNOT)  Pr{Adjustment/ MNOT)Pr(MNOT)
Pr{ Adjustment) Pr{ Adjustment)

- pa
(1-q)(1-o)+pat

(7.5)

Equations (7.4) and (7.5) provide the appropriate measures of the probability of
the mean not on target situations which would apply to further adjustments when the
mean is either on target or not on target. Equations (7.3), (7.4) and (7.5) provide the
basis for probabilistic expressions of interest in an adjustment situation.

An expression for a likelihood estimate of the parameters «, p and q is not
warranted or required to be developed at this stage since the feedback control
adjustment requires that the adjustment o units exactly compensates for the deviation
from target and the disturbance bringing the mean closer to or on target and the process
under control. Alternatively, the parameters a, p and q can be approximately estimated
for a process based upon a batch of test data collected on a sample test of the process,
noting the number of times the process has to be adjusted for ‘mean not on target’
situations. A mathematical expression for the likelihood of the observations can then be

maximised with respect to the parameters o, p and q to provide a maximum likelihood
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estimate of these parameters. If the value of o is found to be high, meaning that the
probability of the mean of the product quality variable is not on target consistently for a
considerably long time, requiring frequent adjustments, then, the production process
would likely be investigated to identify and correct the underlying problem:.

Knowing the required adjustment (x,) from the algorithm (or  in the probability
model), in the input manipulated variable, the probability of the mean not on target and

hence requiring adjustment can be calculated by applying Equation (7.3).

7.8 REGRESSION ANALYSIS
A simple regression analysis was performed on the simulation results for control
error standard deviation (CESTDDVN) and its dependence on the parameters ©, &, and
d,. Table 7.VII (Attachment 7.VII) shows the coefficients of the fitted model for
CESTDDVN and Table 7.VIII, the analysis of variance. The linear regression model is
appropriate for the values of the control error standard deviation (CESTDDVN)
obtained via simulation. The coefficients of the dynamic process parameters ©, 8, and 3,
are significantly different from 0. A value of 71.1% for the residual sum of squares
(adjusted) suggests that 71% of the total vanability in the observed response
(CESTDDVN) is explained by the model thus indicating a good fit. It can be seen that
there is no strong evidence of lack of fit for the model for CESTDDVN.
| The adjustment interval changes also depending on the values of the dynamic
parameters 6, and &, and on the value of the IMA parameter @ for fast and slow process
drifts. The actual regression analysis for Al shows a varying non-linear relationship with

the process parameters and indicates onlyj a value of 35% for the residual sum of
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squares. For these reasons, the regression analysis results are not pursued for the

adjustment interval (AI).

7.9 DISCUSSION OF SIMULATION RESULTS

The characteristics of the simulation change when the rate of drift either
increases or decreases or when there is a change in dead time or in the dynamic
properties of the process. From simulation of the stochastic feedback control algorithm
(Equation 5.16), the amount of control adjustment action, the frequency of adjustment
(MFREQ) and Al, the adjustment interval (Al = 1/MFREQ), can be found as also can
the output control error sigma for a particular rate of drift (r).

A dead-time compensation scheme which provides a process gain (PG) in the
Jeedback path whose value depends on both the process oulput and model has been
devised. This scheme is suited to use in situations where the process dead time results
from a measurement device in a laboratory and is a kmown quantity. A process control
approach to product quality based on discrete laboratory data has the potential for
improvements (in product quality). A practical control strategy would then be (i) based
on the use of quality control laboratory analyses and (ii) based on a time series analysis
of plant data collected from a designed closed-loop experiment and using the laboratory
data to update the set point of the minimum variance time series controller to verify the
quality of outgoing product.

The intelligent use of any control algorithm is an iterative process which
depends upon the skill and judgement of the designer. Most controller designs involve
compromises and intelligent choices. For successful use of complex algorithms, it is

imperative that results are presented to the designer in such a way that they are assisted
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in making compromises intelligently. This allows for more efficient use of the
designer's judgement and experience. Competent use of modern control theory involves
the use of principles of interactive trial and error that can be successfully utilised to
improve practical controller design. Algorithms derived from stochastic optimal control
theory have the potential for efficient control and modermn control methods are useful
tools in an iterative design method. Stochastic (optimal) design algorithms provide
valuable clues as to the controller structure and an understanding of the controller
design. These clues lead to controller designs which appear to be better than those
obtained by conventional approaches. If proper account is taken of stability (as done in
this formulation), the resuiting design will lead to (efficient) controllers that are not
sensitive to the dynamic model (exact form of the transfer function) of the process or to
small perturbations in its parameters. Practical control strategies result from emplc;ying
an appropriate model for the process dynamics (such as the second-order model
considered) and disturbances (ARIMA (0,1,1)).

It has been reported in the literature that the performance of (optimal) algorithms
for sampled data controllers appear to be sensitive to the structure of the disturbance but
do not seem to be sensitive to the parameters of the (noise) model. The dynamics may
be known from earlier experimental and theoretical work. In these cases, the suggested
second-order model can be used with appropriate dynamic parameters set to their pre-
determined values since {optimal) algorithms appear also to be sensitive to small
deviations between the real process model and the medel used for controller design,
Process dead time can be determined from the process step response under manual

control. The control algorithm thus derived has not only desirable properties (integral
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control and adequate dead-time compensation) but is also practically ‘robust’ in nature
to the basic assumptions made in developing the control algorithm.

It may be difficult to obtain satisfactory control due to process characteristics
and the control system’s inability to operate in a proper manner. Some of these
difficulties may be overcome by (i) a thorough analysis of the process and periodical
inspection of the output controlled product variable, (ii) a tabulation of various rates and
magnitudes of load changes, (change in process conditions requiring a change in the
average value of the input manipulated variable to maintain the output controlled
variable at the desired value or target), (iii) a study of the degree of the process lags,
(retardation or delay in response of output controlled variable at point of measurement
to a change in value of input manipulated variable), and (iv) an observation of the
relation among these factors. It may be also difficult at times to assign a proper
relationship between the output controlled variable and the state of balance of a process
which may not be satisfactory even though there is satisfactory control of that (output)
controlled variable. Under these circumstances, it is important to control directly from
the final output product in order to eliminate the possibility of any variance between the
controlled variable and the control conditions of a process. It may be difficult to
maintain the balance of a process when the load or any of the uncontroiled variables
associated with the process are subject to frequent and fast changes. The deviation of the
controlled variable is in direct proportion to the rate of the changes. In practice, it is
found that it is often necessary to add a controller to the changing variable in order to
eliminate its effect on the control of the main process variable. For example, in large
(ceramic) kilns and furnaces, it is necessary to control the pressure in the furnace in

order that the furnace temperature may be sufficiently stabilised.
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Maximum efforts should be made to eliminate the effect of supply variations and
disturbances. It is possible to improve the control of a process by making minor
alterations or by redesigning to obtain smaller lag due to the inertial characteristics of
the process or shorter dead time. The process improvement may be handicapped unless
these steps are undertaken with careful consideration of the effects of dynamic process
reactions. By a re-arrangement of the supply medium, it may sometimes be possible to
reduce transfer lag, caused by large temperature or pressure differences.

The most serious lag in automatic control, namely, the dead time, must be kept
to a minimum in the controlled system. This type of lag should be investigated to

determine if it can be reduced or eliminated.

7.10 CONCLUSION

The effects of the rate of process drift, r, on the control error standard deviation
(CESTDDVN) have been discussed in this Chapter. The simulation results were
analysed and the performance measures of the time series controller discussed. The
combined effects of the process dynamics and dead time on CESTDDVN and Al were
explained for b = 1 and the effect of increase in dead time from b =1to b =2 on
CESTDDVN and Al The benefits and limitations of integral control were briefly
discussed along with details of a constrained variance control scheme. It was shown that
the EWMA has fairly good control of the process for values of @ in the interval 0.75 +

0.05. An outline of a process regulation scheme is given in Chapter 8
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Attachment 7.1

Table 7.1 Values of 8, and 5, for a second-order dynamic system satisfying feedback
control stability under critically damped conditions

8] 82 61 82 8! 52 8l 82
2.00 -1.00 1.55 -0.61 1.16 -0.34 -0.72 -0.13
1.99 -1.00 -1.55 060 , -1.15 -0.33 0.71 -0.13
1.98 -0.99 1.54 -0.60 1.14 -0.33 -0.70 -0.12
1.97 -0.98 -1.52 -0.58 -1.13 -0.32 -0.69 -0.12
1.96 -0.97 1.51 -0.58 1.12 032 0.68 -0.12
1.95 -0.96 -1.51 -0.57 -1.11 -0.31 -0.67 -0.11
1.94 -0.95 1.50 -0.57 1.10 -0.31 -0.66 -0.11
1.93 -0.94 -1.50 -0.56 -1.10 -0.30 0.65 -0.11
1.92 -0.93 1.49 -0.56 1.09 -0.30 -0.64 -0.10
1.91 -0.92 -1.48 -0.55 -1.08 -0.29 -0.63 -0.10
1.90 -0.91 1.47 .0.55 1.07 -0.29 0.62 -0.10
1.89 -0.90 -1.47 -0.54 -1.06 -0.28 -0.60 -0.09

-1.82 -0.83 1.46 -0.54 1.05 -0.28 0.59 -0.09
1.81 -0.83 -1.44 -0.52 -1.04 -0.27 -0.57 -0.08
-1.81 -0.82 1.43 -0.52 1.03 -0.27 -0.56 -0.08
1.80 -0.82 -1.43 -0.51 -1.02 -0.26 0.55 -0.08
-1.80 -0.81 1.42 -0.51 1.01 -0.26 -0.53 -0.07
1.79 -0.81 -1.40 -0.49 -1.00 -0.25 -0.52 -0.07
-1.79 -0.80 1.39 -0.49 0.99 -0.25 0.51 -0.07
1.78 -0.80 -1.37 -0.47 -0.98 -0.24 -0.50 -0.06
-1.78 -0.79 1.36 -0.47 0.97 -0.24 -0.49 -0.06
1.77 -0.79 -1.36 -0.46 -0.96 -0.23 -0.48 -0.06
-1.73 -0.75 1.35 -0.46 0.95 -0.23 0.47 -0.06
1.72 -0.75 -1.34 -0.45 -0.94 -0.22 -0.45 -0.05
-1.72 -0.74 1.33 -0.45 0.93 -0.22 -0.44 -0.05
1.71 -0.74 -1.33 -0.44 -0.92 -0.21 0.43 -0.05
-1.71 -0.73 1.32 -0.44 0.91 -0.21 -0.41 -0.04
1.70 -0.73 -1.31 -0.43 -0.90 -0.20 -0.40 -0.04
-1.70 -0.72 1.30 -0.43 -0.89 -0.20 -0.39 -0.04
1.69 -0.72 -1.30 -0.42 0.88 -0.20 0.38 -0.04
-1.66 -0.69 1.29 -0.42 -0.87 -0.19 -0.36 -0.03
1.65 -0.69 -1.28 -0.41 0.86 -0.19 -0.35 -0.03
-1.65 -0.68 1.27 -0.41 -0.85 -0.18 -0.34 0.03
1.64 -0.68 -1.25 -0.39 0.84 -0.18 0.33 -0.03
-1.64 -0.67 1.24 -0.39 -0.83 -0.17 -0.30 -0.02
1.63 -0.67 -1.23 -0.38, -0.82 -0.17 -0.29 -0.02
-1.61 -0.65 1.22 -0.38 0.81 0.17 -0.28 -0.02
1.60 -0.65 -1.22 -0.37 -0.80 0.16 027 -0.02

-1.60 -0.64 1.21 -0.37 0.79 -0.16 0.26 -0.02
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1.59
-1.59
1.58
-1.56

-0.64
-0.63
-0.63
-0.61

-1.20
1.19
-1.18
1.17

-0.18

0.17
-0.10
-0.09
-0.08
-0.07
-0.06
-0.05
-0.04
~0.03
-0.02
-0.01

0.00

-0.36
-0.36
-0.35
-0.35

-0.01
-0.01
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
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-0.78
-0.77

0.76
-0.75

8,

-0.15
-0.15
-0.15
-0.14

-0.22
-0.21
-0.20
-0.19

-0.01
-0.01
-0.01
-0.01




b=1.0
® r=1-0
0.05 0.95
0.10 0.90
0.15 0.85
0.20 0.80
0.25 0.75
0.70 0.30
0.75 0.25
0.80 0.20
0.95 0.05
0.05 0.95
0.10 0.90
0.15 0.85
0.20 0.80
0.25 0.75
0.70 0.30
0.75 0.25
0.80 0.20
0.95 0.05
0.05 0.95
0.10 0.90
0.15 0.85
0.20 0.80
0.25 0.75
0.70 0.30
0.75 0.25
0.80 0.20
0.95 0.05
0.05 0.95
0.10 0.90
0.15 0.85
0.20 0.80
0.25 0.75
0.70 0.30
0.75 0.25
0.80 0.20

(.95 0.05

-1.82
-1.82
-1.82
-1.82
-1.82
-1.82
-1.82
-1.82
-1.82

-1.00
-1.00
-1.00
-1.00
-1.00
-1.00
-1.00
-1.00
-1.00

-0.27
-0.27
-0.27
-0.27
-0.27
-0.27
-0.27
-0.27
-0.27

-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10

-0.83
-0.83
-0.83
-0.83
-0.83
-0.83
-0.83
-0.83
-0.83

-0.25
-0.25
-0.25
-0.25
-0.25
-0.25
-0.25
-0.25
-0.25

-0.02
-0.02
-0.02
-0.02
-0.02
-0.02
-0.02
-0.02
-0.02

0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00

8,-8,

0.99

0.99

0.99
0.99
0.99
0.99
0.99
0.99
0.99

0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75

0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25

0.10
0.10
(.10
0.10
0.10
0.10
0.10
0.10
0.10
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MFREQ

0.000
0.186
0.181
0.172
0.086
0.017
0.019
0.001
0.116

0.102
0.094
0.066
0.066
0.050
0.001
0.000
0.500
0.389

0.190
0.164
0.105
0.086
0.075
0.002
0.000
0.480
0213

0.199
0.138
0.120
0.089
0.061
0.002
0.002
0.355
0.187
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Al=
1/MFQ
0.000
5.370
5.520
5.810
11.62
58.82
52.63
1000
8.620

9.800
10.63
15.15
15.15
20.00
1000
0.000
2.000
2.570

5.260
6.090
9.520
11.62
13.33
500.0
0.000
2.080
4.690

5.020
7.240
8.330
11.23
16.39
500.0
500.0
2.810
5.340

CESTDDVN

1.000
1.046
1.040
1.035
1.018
1.001
1.002
1.000
1.000

1.039
1.030
1.033
1.026
1.030
1.002
1.000
1.007
1.001

1.157
1.083
1.089
1.082
1.073
1.033
1.000
1.012
1.002

1.139
1.134
1.115
1.146
1.109
1.040
1.011
1.022
1.004




0.05
0.10
0.15
0.20
0.25
0.70
0.75
0.80
0.90
0.95

0.95
0.90
0.85
0.80
0.75
0.30
0.25
0.20
0.10
0.05

0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00

8

0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00

82'81

0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
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MFREQ Al=
1/MFQ

0.224 4.460
0.127 7.870
0.162 6.170
0.118 8.470
0.085 11.76
0.001 1000
0.000 0.000
0.000 0.000
0.121 8.260
0.125 8.000

CESTDDVN

1.217
1.202
1.165
1.161
1.099
1.010
1.000
1.000
1.010
1.005
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Table 7.1II Model and Controller Parameters

Model parameters

Controller parameters

Second order model with dead time b= 1.0

theta = 0.05 deltal = -1.82 delta2 = -0.83

PG=027CG=1.0

VARIABLE j(No.of uns) MEAN STD.DVN

Control error (E) 10000 -0.012 1.000

Adjustment (dxt) 10000 0.000  0.000

FREQ 10000 0.000  0.000

theta = 0.05 deltal = -1.00 delta2 = -0.25 PG=044CG=1.0
VARIABLE j (No.of runs) MEAN STD.DVN

Control error (E) 10000 0.138  1.039

Adjustment (dxt) 10000 -0.072 0.450

FREQ 10000 0.102  0.303

theta = 0.05 deltal =-0.27 delta2 =-0.02 PG=0.78CG=1.0
VARIABLE j (No.of runs) MEAN STD.DVN

Control error (E) 10000 0311  1.157

Adjustment (dxt) 10000 -0.096 0.558

FREQ 10000 0.190  0.393

theta = 0.05 deltal = -0.10 delta2 = 0.00 PG=091CG=1.0
VARIABLE j (No.of ins) MEAN STD.DVN

Control error (E) 10000 0.371 1.139

Adjustment (dxt) 10000 -0.088 0.522

FREQ 10000 0.199  0.399

theta = 0.05 deltal = 0.00 delta2 = 0.00 PG=1.00CG=1.0
VARIABLE j (No.of runs) MEAN STD.DVN

Control error (E) 10000 0.447 1.217

Adjustment (dxt) 10000 -0.100 0.568

FREQ 10000 0.224  0.417

theta = 0.25 deltal = -1.82 delta2 = -0.83 PG=027CG=1.0
VARIABLE j (No.of runs) MEAN STD.DVN

Control error (E) 10000 0.033 1.018

Adjustment (dxt) 10000 -0.074 0.404

FREQ 10000 0.086 0.280

theta = .25 deltal = -1.00 delta2 = -0.25 PG=044CG=1.0
VARIABLE j(No.of runs) MEAN STD.DVN

Control error (E) 10000 0.104 * 1.030

Adjustment (dxt) 10000 -0.027 0.248

FREQ 10000 0.050 0.217
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theta = 0.25 deltal =-0.27 delta2 = -0.02

PG=078CG=1.0

VARIABLE j (No.of runs) MEAN STD.DVN

Control error (E) 10000 0.272  1.073

Adjustment (dxt} 10000 -0.025 0.256

FREQ 10000 0.075 0.264

theta = 0.25 deltal = -0.10 delta2 = 0.00 PG=091CG=1.0
VARIABLE Jj (No.of runs) MEAN STD.DVN

Control error (E) 10000 0.361 1.109

Adjustment (dxt) 10000 -0.020 0.226

FREQ 10000 0.061 0240

theta = 0.25 deltal = 0.00 delta2 = 0.00 PG=100CG=1.0
VARIABLE j (No.of runs) MEAN STD.DVN

Control error (E) 10000 0.332 1.099

Adjustment (dxt} 10000 -0.022 0.242

FREQ 10000 0.085 0.279

theta = 0.70 deltal = -1.82 delta2 = -0.83 PG=027CG=1.0
VARIABLE j (No.of runs) MEAN STD.DVN

Control error (E) 10000 -0.003 1.001

Adjustment (dxt) 10000 -0.006 0.082

FREQ 10000 0.017  0.128

theta = 0.70 deltal =-1.00 delta? = -0.25 PG=044CG=1.0
VARIABLE j No.ofruns) MEAN STD.DVN

Control error (E) 10000 0.073  1.002

Adjustment (dxt) 10000 0.000  0.008

FREQ 0.001 0.024

theta = 0.70 deltal = -0.27 delta2 = -0.02 PG=0.78CG=1.0
VARIABLE j (No.of runs) MEAN STD.DVN

Control error (E) 10000 0.230 1.033

Adjustment {dxt) 10000 0.000 0.014

FREQ 10000 0.002  0.045

theta = 0.70 deltal = -0.10 delta2 = 0.00 PG=091CG=1.0
VARIABLE j (No.of runs) MEAN STD.DVN

Control error (E) 10000 0.200 1.040

Adjustment (dxt) 10000 0.000 0.014

FREQ 0.002 0.042

theta = 0.70 deltal = 0.00 delta2 = 0.00 PG=1.00CG=1.0
VARIABLE j (No.of runs) MEAN STD.DVN

Control error (E) 10000 0.081 1.010

Adjustment (dxt) 10000 0.000 0.011

FREQ 10000 0.001  0.033
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theta = 0.75 deltal = -1.82 delta? = -0.83

VARIABLE j (No.of runs) MEAN
Control error (E) 10000 0.029
Adjustment (dxt) 10000 -0.004
FREQ 10000 0.019

STD.DVN
1.002
0.058
0.135

PG=027CG=1.0

theta = (.75 deltal =-1.00 delta2 = -0.25

VARIABLE j (No.of runs) MEAN
Control error (E) 10000 -0.002
Adjustment {dxt) 10000 0.000
FREQ 10000 0.000

STD.DVN
1.000
0.000
0.000

PG=044CG=1.0

theta = 0.75 deltal =-0.27 delta2 = -0.02

VARIABLE J (No.of runs) MEAN
Control error (E) 10000 0.002
Adjustment (dxt) 16000 0.000
FREQ 10000 0.000

STD.DVN
1.000
0.004
0.010

PG=0.78CG=1.0

theta = 0.75 deltal = -0.10 delta2 = 0,00

STD.DVN
1.011
0.009
0.040

PG=91CG=1.0

STD.DVN
1.000
0.000
0.000

PG=1.00CG=1.0

STD.DVN
1.000
0.031
0.320

PG=027CG=1.0

STD.DVN
1.001

0.488

PG=044CG=1.0

VARIABLE j (No.of runs) MEAN
Control error (E) 10000 0.093
Adjustment (dxt) 10000 0.000
FREQ 10000 0.002
theta = 0.75 deltal = 0.00 delta2 = 0.00
VARIABLE j (No.of runs) MEAN
Control error (E) 10000 0.014
Adjustment (dxt) 10000 0.000
FREQ 10000 0.000
theta = 0.95 deltal = -1.82 delta2 = -0.83
VARIABLE j (No.of runs) MEAN
Control error (E) 10000 -0.009
Adjustment (dxt) 10000 -0.006
FREQ 10000 0.116
theta = 0.95 deltal = -1.00 delta2 = -0.25
VARIABLE j (No.of runs) MEAN
Control error (E) 10000 0.021
Adjustment (dxt) -0.011 0.039
FREQ 10000 0.389
theta = 0.95 deltal = -0.27 delta2 = -0.02
VARIABLE j (No.of runs) MEAN
Control error (E) 10000 0.086
Adjustment (dxt) 10000 -0.002
FREQ 10000 0.213

STD.DVN
1.002
0.024
0.410

PG=0.78CG=1.0
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Attachment 7.1V
Table 7.IV Constrained Variance Control Scheme
theta = 0.05 deltal =-1.82delta2 =-0.83b=1.0 AL =3.02 SA=1.01
VARIABLE VARIANCE
Control error (E) 1.000
Adjustment (dxt) (0.000

FREQ O(MFREQ) Al=0

theta = 0.05 deltal=-1.00 delta2 =-0.25 b= 1.0 AL =302 SA=1.01
VARIABLE VARIANCE Increase in varCE Increase in vardxt
Control error (E) 1.079 7.90%

Adjustment (dxt) 0.203 20.30%

FREQ 0.102(MFREQ) Al=1/MFREQ = 9.80

theta = 0.05 deltal =-0.27 delta2 =-0.02b=1.0 AL =3.00 SA=1.00
VARIABLE VARIANCE Increase in varCE Increase in vardxt
Control error (E) 1.338 24.00%

Adjustment (dxt) 0.311 53.2%

FREQ 0.19%(MFREQ) Al = I/MFREQ =5.26

theta = 0.05 deltal =-0.10 delta2 =0.00 b= 1.0 AL=2.97 SA =0.99
VARIABLE VARIANCE Decrease in varCE  Decrease in vardxt
Control error (E) 1.298 2.98%

Adjustment (dxt) 0.273 12.22%

FREQ 0.199(MFREQ) Al =1/MFREQ =5.03

theta = 0.05 deltal = 0.00 delta2 =0.00 b= 1.0 AL=3.00 SA=1.00
VARIABLE VARIANCE Increase in varCE Increase in vardxt
Control error (E) 1.480 14.02%

Adjustment (dxt) 0.323 18.32%

FREQ 0.224(MFREQ) Al =1/MFREQ = 4.46

theta = 0.25 deltal =-1.82 delta2=-083b=1.0 AL =3.00 SA=1.00
VARIABLE VARIANCE Increase in varCE Increase in vardxt
Control error (E) 1.036 14.02%

Adjustment (dxt) 0.163 18.32%

FREQ 0.086(MFREQ) Al =1/MFREQ = 11.63

theta = 0.25 deltal=-1.00 delta2 =-0.25b=1.0 AL =298 SA =0.99
VARIABLE VARIANCE Increase in varCE Increase in vardxt
Control error (E) 1.061 2.41%

Adjustment (dxt) 0.062 61.96%

FREQ 0.05(MFREQ) Al=I/MFREQ = 20.00
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theta= 0.25 deltal =-027 delta2=-0.02b=1.0 AL =3.03 SA=1.01

VARIABLE VARIANCE Increase in varCE Increase in vardxt
Control error (E)} 1.152 8.57%

Adjustment (dxt) 0.066 6.45%

FREQ 0.075(MFREQ) Al =1/MFREQ = 13.33

theta=0.25 deltal =-0.10delta2 =0.00b=1.0 AL =2.98 SA =0.99
VARIABLE VARIANCE Increase in varCE Decrease in vardxt
Control error (E) 1.229 6.68%

Adjustment (dxt) 0.051 22.72%

FREQ 0.061(MFREQ) Al =1/MFREQ = 16.39

theta=0.25 deltal = 0.00 delta2 =0.00b=1.0  AL=3.02 SA =1.01
VARIABLE VARIANCE Decrease in varCE ~ Increase in vardxt
Control error (E) 1.208 1.71%

Adjustment (dxt) 0.059 15.69%

FREQ 0.085(MFREQ) Al=1/MFREQ = [1.76

theta=0.70 deltal =-1.82 delta2 =-0.83b=1.0 AL =3.00 SA=1.00
VARIABLE VARIANCE Decrease in varCE  Decrease in vardxt
Control error (E) 1.002 17.05%

Adjustment (dxt) 0.007 88.14%

FREQ 0.017(MFREQ) Al = 1/MFREQ = 58.82

theta = 0.70 deltal =-1.00 delta2 =-0.25b=1.0 AL =3.00 SA=1.00
VARIABLE VARIANCE Increase in varCE Decrease in vardxt
Control error (E) 1.004 0.19%

Adjustment (dxt) 0.000 100%

FREQ 0.001(MFREQ) Al =1000.00

theta = 0.70 deltal = -0.27 delta2 =-0.02b=1.0 AL =2.99 SA =1.00
VARIABLE VARIANCE Increase in varCE ~ Change in vardxt
Control error (E) 1.067 6.27%

Adjustment (dxt) 0.000 Nil

FREQ 0.002(MFREQ) Al =500.00

theta = 0.70 deltal =-0.10 delta2 =0.00 b= 1.0 AL=3.02 SA=1.01
VARIABLE VARIANCE Increase in varCE Change in vardxt
Control error (E) 1.081 1.31%

Adjustment (dxt) 0.000 Nil

FREQ 0.002(MFREQ) Al =500.00

theta = (.70 deltal = 0.00 delta2 = 0.00 b=1.0 AL =300 SA=1.00
VARIABLE VARIANCE Decrease in varCE ~ Change in vardxt
Control error (E) 1.020 ‘5.64%

Adjustment {(dxt) 0.000 Nil

FREQ 0.001 (MFREQ) Al=1000.00
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theta = 0.75 deltal =-1.82 delta2 =-0.83 b= 1.0 AL =3.01 SA=1.00

VARIABLE VARIANCE Decrease in varCE  Increase in vardxt
Centrol error (E) 1.005 1.47%

Adjustment (dxt) 0.003 0.3%

FREQ 0.019(MFREQ) Al =1/0.019 = 52.63

theta = 0.75 deltal =-1.00 delta2 =-025b=1.0 AL =2.98 SA =0.99
VARIABLE VARIANCE Decrease in varCE ~ Decrease in vardxt
Control error (E) 1.000 0.49%

Adjustment (dxt) 0.000 0.30%

FREQ 0.000(MFREQ) Al =0.00

theta = 0.75 deltal =-0.27 delta2 =-0.02b=1.0 AL =3.01 SA =1.00
VARIABLE VARIANCE Change in varCE Change in vardxt
Control error (E) 1.000 Nil

Adjustment (dxt) 0.000 Nil

FREQ 0.000(MFREQ) Al=0.00

theta = 0.75 deltal =-0.10 delta2 = 0.00 b= 1.0 AL =298 SA =099
VARIABLE VARIANCE Increase in varCE Change in vardxt
Control error (E) 1.023 2.30%

Adjustment (dxt) ~ 0.000 NII

FREQ 0.002 (MFREQ) Al'=500.00

theta = 0.75 deltal = 0.00 delta2 =0.00 b= 1.0 AL =298 SA=0.99
VARIABLE VARIANCE Decrease in varCE ~ Change in vardxt
Control error (E) 1.000 2.24%

Adjustment (dxt) 0.000 Nil

FREQ 0.000 (MFREQ) Al=0.00

theta = 0.95 deltal =-1.82 delta2 =-0.83 b= 1.0 AL =299 SA=1.00
VARIABLE VARIANCE Decrease in varCE ~ Change in vardxt
Control error (E) 1.000 Nil

Adjustment (dxt) 0.001 0.10%

FREQ 0.116 (MFREQ) Al=1/0.116 =8.62

theta = 0.95 deltal =-1.00 delta2 =-0.25b=1.0 AL=2.99 SA=1.00
VARIABLE VARIANCE Increase in varCE Increase in vardxt
Control error (E) 1.001 0.10%

Adjustment (dxt) 0.002 100.00%

FREQ 0.389 (MFREQ) Al =1/0.389 =2.57

theta = 0.95 deltal =-0.27 delta2 =-0.02b=1.0 AL =3.04 SA =1.01
VARIABLE VARIANCE ,Increase in varCE Decrease in vardxt
Control error (E) 1.003 0.19%

Adjustment (dxt) 0.001 50.00%

FREQ 0.213 (MFREQ) Al=1/0.213 =4.69
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theta = 0.95 deltal =-0.10 delta2 = 0.00 b= 1.0 AL =298 SA =0.99

VARIABLE VARIANCE Increase in varCE Decrease in vardxt
Control error (E) 1.007 0.39%

Adjustment (dxt) (.000 100.00%

FREQ 0.187 (MFREQ) Al=1/0.187=5.34

theta = 0.95 deltal = 0.00 delta2 =0.00 b= 1.0 AL =298 SA=0.99
VARIABLE VARIANCE Increase in varCE ~ Change in vardxt
Control error (E) 1.009 0.19%

Adjustment (dxt) 0.000 Nil

FREQ 0.125 (MFREQ) Al=1/0.125=8.00
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0.05
0.10
0.15
0.20
0.25
0.70
0.75
0.80
0.95

0.05
0.10
0.15
0.20
0.25
0.70
0.75
0.80
0.95

0.05
0.10
.15
0.20
0.25
0.70
0.75
0.80
0.95

0.05
0.10
0.15
0.20
0.25
0.70
0.75
0.80
0.95

b=2.0

=1-0

0.95
0.90
0.85
0.80
0.75
0.30
0.25
0.20
0.05

0.95
0.90
0.85
0.80
0.75
0.30
0.25
0.20
0.05

0.95
0.90
0.85
0.80
0.75
0.30
0.25
0.20
0.05

0.95
0.90
0.85
0.80
0.75
(.30
0.25
0.20
0.05

-1.82
-1.82
-1.82
-1.82
-1.82
-1.82
-1.82
-1.82
-1.82

-1.00
-1.00
-1.00
-1.00
-1.00
-1.00
-1.00
-1.00
-1.00

-0.27
-0.27
-0.27
-0.27
-0.27
-0.27
-0.27
-0.27
-0.27

-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10

8,

-0.83
-0.83
-0.83
-0.83
-0.83
-0.83
-0.83
-0.83
-0.83

-0.25
-0.25
-0.25
-0.25
-0.25
-0.25
-0.25
-0.25
-0.25

-0.02
-0.02
-0.02

-0.02

-0.02
-0.02
-0.02
-0.02
-0.02

0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00

62-8,

0.99
0.99

0.99"

0.99
0.99
0.99
0.99
0.99
0.99

0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75

0.25
0.25
0.25
0.25
0.25
(.25
0.25
0.25

0.25

0.10
0.10
0.10
0.10
0.10
0.10
0.10
0.10
0.10
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MFREQ Al=
1/MFQ
0.019 52.63
0.016 62.50
0.013 76.92
0.009 111.1
0.007 142.8
0.006 166.6
0.009 111.1
0.001 1000
0.188 5.319
0.018 55.55
0.014 71.42
0.010 100.0
0.009 111.1
0.007 142.8
0.002 500.0
0.001 1000
0.375 2.666
0.330 3.030
0.033 30.30
0.017 58.82
0.016 62.50
0.014 71.42
0.011 90.90
0.003 333.3
0.001 1000
0.331 3,021
0229 4.366
0.025 40.00
0.024 41.66
0.021 47.61
0.026 38.46
0.015 66.66
0.005 200.0
0.004 250.0
(.289 3.460
0.202 4.950

Attachment 7.V
Table 7.V Time Series Controller Performance Measures for ©, §,, 8, and dead time

CESTDDVN

1.514
1.440
1.433
1.352
1.306
1.055
1.035
1.023
1.003

1.567
1.532
1.425
1.479
1.388
1.092
1.054
1.040
1.005

1.795
1.712
1.675
1.543
1.635
1.181
1.162
1.049
1.004

2.081
1.857
1.923
1.686
1.555
1.144
1.052
1.053
1.009




0.05
0.10
0.15
0.20
0.25
0.70
0.75
0.80
0.95

0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
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MFREQ

0.038
0.033
0.025
0.023
0.014
0.004
0.001
0.000
0.169

Al=
1/MFQ
26.30
30.30
40.00
43.47
71.42
250.0
1000

0.000
5.916

CESTDDVN

1.859
1916
1.836
1.630
1.570
1.196
1.274
1.064
1.008




Attachment 7.VI
Table7.VI Model and Controller parameters

Model parameters Controller parameters

Second order model with dead time b =2.0
theta = 0.05 deltal = -1.82 delta2 = -0.83 AL =3.02PG=0.27CG=1.0 SA = 1.01

VARIABLE j(No.of runs) MEAN STD.DVN  VARIANCE

Control error (E) 10000 0.454 1.514 2.292

Adjustment (dxt) 10000 -0.013 0.438 0.191

FREQ 10000 0.019 0.137 Al=1/0.019 =52.63

theta = 0.05 deltal = -1.00 delta2 =-0.25 AL =3.02PG=0.44 CG=1.0 SA = 1.01
VARIABLE j(No.of runs) MEAN STD.DVN  VARIANCE

Control error (E) 10000 0.829 1.567 2.457

Adjustment (dxt) 10000 -0.012 0.382 0.146

FREQ 10000 0.018 0.132 AI=1/0.018 =55.55

theta = 0.05 deltal = -0.27 delta2 = -0.02 AL = 3.00PG = 0.78 CG=1.0 SA = 1.00
VARIABLE j(No.of runs) MEAN STD.DVN  VARIANCE

Control error (E) 10000 1.069 1.795 3222

Adjustment (dxt) 10000 -0.033 0.509 0.259

FREQ 10000 0.031 0.177 AI=1/0.031=30.30

theta = 0.05 deltal = -0.10delta2 = 0.00 AL =2.97 PG=0.91CG=1.0 SA =0.99
VARIABLE j(No.ofruns) MEAN STD.DVN VARIANCE

Control error (E) 10000 1.222 2.081 4.329

Adjustment (dxt) 10000 -0.028 0.453 0.206

FREQ 10000 0.025 0.155 AI=1/0.025=40

theta = 0.05 deltal = 0.00 delta2 = 0.00 AL=3.00 PG=1.00CG=1.0SA=1.00
VARIABLE J(No.of runs) MEAN STD.DVN  VARIANCE

Control error (E) 10000 1.002 1.859 3.457

Adjustment (dxt) 10000 -0.041 0.460 0.211

FREQ 10000 0.038 0.191 Al=1/0.038 =26.31

theta = 0.25 deltal =-1.82 delta2 =-0.83 AL =3.00PG=0.27 CG = 1.0 SA =1.00
VARIABLE j(No.of runs) MEAN STD.DVN  VARIANCE

Control error (E) 10000 0.281 1.306 1.705

Adjustment (dxt) 10000 -0.006 0.202 0.041

FREQ 10000 0.007 0.084 Al=1/0.007=142.86

theta = 0.25 deltal = -1.00 delta2 = -0.25 AL =2.98 PG=0.44 CG=1.0 SA =0.99
VARIABLE j(No.of runs) MEANSTD.DVN  VARIANCE

Control error (E) 10000 0.449 "1.388 1.926

Adjustment (dxt) 10000 -0.008 0.241 0.058

FREQ 100600 0.007 0.083 AI=1/0.007 = 142.86
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theta = 0.25 deltal =-0.27 delta2 =-0.02 AL =3.03PG=0.78 CG = 1.0 SA = 1.01

VARIABLE Jj(No.of runs) MEAN STD.DVN  VARIANCE

Control error (E) 10000 0.810 1.635 2.672

Adjustment (dxt) 10000 -0.011 0.240 0.058

FREQ 10000 0.011 0.104 AI=1/0.011=90.90

theta = 0.25 deltal = -0.10delta2 = 0.00 AL =298 PG=0.91CG = 1.0 SA =0.99
VARIABLE j(No.of runs) MEAN STD.DVN  VARIANCE

Control error (E) 106000 0.489 1.555 2419

Adjustment (dxt) 10000 -0.019 0.250 0.062

FREQ 10000 0.015 0.123 AI=1/0.015=66.66

theta = 0.25 deltal = 0.00 delta2 = 0.00 ALL=3.02 PG=100CG=1.0SA=1.01
VARIABLE j(No.of runs) MEAN STD.DVN  VARIANCE

Control error (E) 10000 0.450 1.570 2.465

Adjustment (dxt) 10000 -0.017 0.239 0.057

FREQ 10000 0.014 0.118 AI=1/0.014=71.42

theta = 0.70 deltal = -1.82 delta2 = -0.83 AL =3.00 PG=027CG=1.0SA=1.00
VARIABLE j(No.of runs) MEAN STD.DVN  VARIANCE

Control error (E) 10000 0.027 1.055 1.114

Adjustment (dxt) 10000 -0.005 0.087 0.008

FREQ 10000 0.006 0.079 AlI=1/0.006=166.66

theta = 0.70 deltal = -1.00 delta2 = -0.25 AL =3.00PG =0.44 CG= 1.0 SA = 1.00
VARIABLE j(No.of runs) MEAN STD.DVN  VARIANCE

Control error (E) 10000 0.311 1.092 1.192

Adjustment (dxt) 10000 0.000 0.041 0.002

FREQ 10000 0.002 0.047 AI=1/0.002 =500

theta = 0.70 deltal =-0.27 delta2 =-0.02 AL=2.99PG =078 CG=1.0 SA=1.00
VARIABLE j(No.of runs) MEAN STD.DVN  VARIANCE

Control error (E}) 10000 0.598 1.181 1.394

Adjustment (dxt) 10000 -0.001 0.046 0.002

FREQ 10000 0.001 0.056 Al=1/0.001=333.33

theta = 0.70 deltal = -0.10 delta2 = 0.00 AL =3.02 PG=0.91CG=1.0SA=1.01
VARIABLE j(No.of runs) MEAN STD.DVN  VARIANCE

Control error (E) 10000 0.308 1.144 1.309

Adjustment (dxt) 10000 -0.002 0.052 0.003

FREQ 10000 0.005 0.068 AI=1/0.005=200

theta = 0.70 deltal = 0.00 delta2 = 0.00 AL =3.00 PG=1.00CG=1.0 SA=1.00
VARIABLE j(No.of runs) MEAN STD.DVN  VARIANCE

Control error (E) 10000 2.144 '1.196 1.429

Adjustment (dxt) 10000 0.000 0.036 0.001

FREQ 10000 0.004 0.060 AI =250
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theta = 0.75 deltal = -1.82 delta2 =-0.83 AL =3.01 PG=0.27CG = 1.0 SA = 1.00

VARIABLE J(No.of runs) MEAN STD.DVN  VARIANCE

Control error (E) 10000 -0.010 1.035 1.071

Adjustment (dxt) 10000 -0.007 0.081 0.007

FREQ 10000 0.009 0.095 AI=1/0.009=111.11

theta = 0.75 deltal =-1.00 delta2 =-0.25 AL =2.98 PG =0.44 CG = 1.0 SA = 0.99
VARIABLE j(No.of runs) MEAN STD.DVN  VARIANCE

Control error (E) 10000 0.165 1.054 1.110

Adjustment (dxt) 10000 0.000 0.021 0.000

FREQ 10000 0.001 0.030 AI=1000

theta = 0.75 deltal =-0.27 delta2 = -0.02 AL =3.01 PG=0.78 CG = 1.0 SA = 1.00
VARIABLE Jj(No.of runs) MEAN STD.DVN  VARIANCE

Control error (E) 10000 0.841 1.162 1.349

Adjustment {dxt) 10000 0.000 0.024 0.001

FREQ 10000 0.001 0.037 AI=1000

theta = 0.75 deltal =-0.10 delta2 = 0.00 AL =2.98 PG=091CG=1.0 SA=0.99
VARIABLE j(No.ofruns) MEAN STD.DVN  VARIANCE

Control error (E) 10000 0.131 1.052 1.106

Adjustment (dxt) 10000 -0.002 0.040 0.002

FREQ 10000 0.004 0.064 AI=1/004=250

theta = 0.75 deltal = 0.00 delta2 = 0.00 AL =2.98 PG=1.00 CG=1.0 SA = 0.99
VARIABLE Jj(No.of runsy MEAN STD.DVN  VARIANCE

Control error (E) 10000 0.910 1.274 1.622

Adjustment (dxt) 10000 0.000 0.025 0.001

FREQ 10000 0.001 0.036 AlI=1000

theta = 0.95 deltal = -1.82 delta2 =-0.83 AL =2.99PG =027 CG=1.0 SA = 1.00
VARIABLE Jj(No.of runs) MEAN STD.DVN  VARIANCE

Control error (E) 10000 0.066 1.005 1.011

Adjustment (dxt) 10000 -0.001 0.031 0.001

FREQ 10000 0.188 0.391 AI=1/0.188=5.319

theta = 0.95 deltal =-1.00 delta2 =-0.25 AL=2.99PG =044 CG=1.0 SA =1.00
VARIABLE j(No.of runs) MEAN STD.DVN  VARIANCE

Control error (E) 10000 0.265 1.005 1.010

Adjustment (dxt) 10000 0.000 0.028 0.001

FREQ 10000 0.330 0470 AI=1/033=3.03

theta = 0.95 deltal = -0.27 delta2 = -0.02 AL =3.04 PG=0.78 CG=1.0 SA = 1.01
VARIABLE j(No.of runs} MEAN STD.DVN  VARIANCE

Control error (E) 10000 0.830 '1.004 1.008

Adjustment (dxt) 10000 0.000 0.017 0.000

FREQ 10000 0.229 0.420 AlI=1/0.229=4366
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theta = 0.95 deltal =-0.10 delta2 = 0.00 AL =2.98 PG =0.91CG = 1.0 SA = 0.99

VARIABLE j(No.ofruns) MEAN STD.DVN  VARIANCE

Control error (E) 10000 1.007 1.009 1.018

Adjustment (dxt) 10000 0.000 0.015 0.000

FREQ 10000 0.202 0402 Al=5

theta = 0.95 deltal = 0.00 delta2 = 0.00 AL =2.98 PG =1.00 CG = 1.0 SA = 0.99
VARIABLE j(No.of runs) MEAN STD.DVN  VARIANCE

Control error (E) 10000 1.193 1.008 1.017

Adjustment (dxt) 10000 0.000 0.011 0.000

FREQ 10000 0.169 0.375 AI=359
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Tabie 7.VII  Regression Coefficients for CESTDDVN  Attachment 7.VII

Predictor ~ Coefficients  Std.deviation t-ratio p VIF
Constant 1.10440 0.00150 738.26 0.000

Cl{theta) -0.074723  0.001536 -48.64 0.000 1.0
C2(deltal) 0.081039  0.003233 25.07 0.000 14.8
C3(delta2) -0.115836  0.006953 -16.66 0.000 14.8

Standard error in CESTDDVN (s) = 0.01809  R-square = 71.2%
R-square(adjusted) = 71.1%

The regression equation is
C4=1.10-0.0747C1 +0.0810C2-0.116 C3

Table 7.VIII Analysis of Variance for CESTDDVN

Analysis of Variance (ANOVA) Table for Control error standard deviation

SOURCE DF Sum Sq. Mean Sq F-ratio P
Regression 3 1.25505 0.41835 1278.51 0.000
Error 1552 0.50784 0.00033

Total 1555 1.76289

SOURCE DF  SEQSS

Cl(theta) 1 0.77445

C2(deltal) 1 0.38978

C3(delta2) 1 0.09082

Lack of fit test

Overall lack of fit test s significant at P = 0.000
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Attachment 7.1X

Figure 7.4 Graph of theta versus Al for various delta values for dead time b = 1.0
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CHAPTER 8

PROCESS REGULATION SCHEME - AN OUTLINE

8.1 INTRODUCTION

In Chapter 5, it was mentioned that .the time series controller given by the
feedback control adjustment Equation (5.16) is the discrete equivalent of a properly
tuned integral controller. This equation defines the adjustment to be made to the process
at time t which would produce the feedback control action compensating for the
forecasted disturbance yielding the smallest possible mean square error (variance). In
other words, the control adjustment action given by Equation (5.16) minimizes the
variance of the output controlled variable. A feedback control scheme employing a
MMSE (or minimum variance) controller would minimize the overall cost iflit is
assumed that (1) the off-target cost is the only cost and (if) the cost is a quadratic
function of the output deviation from the target (Box and Kramer [1992]) So, the time
series controller based on Equation (5.16) would minimize the mean overall cost of the
feedback control scheme if the cost of being off-target is assumed to be proportional to
the square of the deviation from target and that c;ther variable costs, (given below), are
negligible.

Minimum variance control that can be achieved with feedback control schemes
will be minimum cost schemes if based on the assumption that an off-target cost is an
associated cost for the deviation of the output quality characteristic being away from the
desired target. This assumption is possible since the minimization of the mean square
error at the output is equivalent to minimiza;tion of the quadratic off-target cost (Kramer

[1990D). However, there are other variable costs such as (i) the cost of adjustment and




(ii) the cost associated with the frequency of sampling to examine the process, called the
monitoring or 'observation cost. The resulting minimum-cost feedback adjustment
schemes have then to be formulated in a different manner from the minimum cost
schemes based on the minimization of the mean square error at the output. This is due to
the fact that the cost of the feedback control scheme changes as the objectives of the
scheme are changed to minimize the deviation and also to adjust the process (Box and
Kramer [1992]). With this as our objective, an outline of a process regulation scheme is
given when there are (i) off-target costs, and (ii) adjustment costs (which include

sampling costs} in a stochastically controlled process employing feedback control.

8.2 REVIEW AND BACKGROUND OF THE PROCESS REGULATION
SCHEME FORMULATION

Box and Jenkins [1963] evaluated the performance of an EWMA controller using
the mass production of ball bearings as an example. The diameter of the bearings was
chosen by them as a quality index and they considered the fact that an adjustment to the
machine requiring an interruption of production resulted in an adjustment cost. They
assumed that the diameters deviated from target according to an IMA (0,1,1) process
and that there was no delay (dead time) in realising the adjustments. The cost of being
off-target was also assumed, by them, to be proportional to the square of the deviation.
The IMA parameter, ®, was chosen to generate the forecast errors. Box and Jenkins
[1963] showed that the sum of the adjustment and off-target costs could be minimized
with an appropriate choice of EWMA control limits (L). For certain values of & and L,
they calculated the expected run length between adjustments and the mean square

deviation from target. From these run lengths, the values of L and the control error
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standard deviation were calculated for values of @ ranging from zero to one. Box and
Jenkins [1970, 1976] further described an approach to the formulation of feedback
control schemes assuming that the sampling interval had been decided earlier before
designing the scheme.

Box, Jenkins and MacGregor [1974] showed that a control strategy comparing
the EWMA to a set of fixed limits is optimal when the adjustment cost is significant
when compared with off-target cost. They calculated the effect, of changing the EWMA,
on average adjustment interval and the control error variance when dead time is not
present. Kramer [1990], considering only quadratic off-target cost for adjustments made
without delay, developed minimal cost process regulation schemes for the case of fixed
monitoring and adjustment costs. For a dynamic system without delay (dead time), the
adjustment cost can be proportional to the square of the required adjustment, which
Kramer [1990] also considered. An outline of a process regulation scheme using the
feed back control algorithm derived in Chapter 5 is formulated in this Chapter.

In their monograph, Box and Jenkins [1970, 1976] developed the MMSE
controller with fixed sampling interval. However, in practice, it is often possible and
desirable to change the sampling interval. Abraham and Box [1979] suggested a method
to carry out pilot runs from a process to determine its dynamic and stochastic
characteristics with a short sampling interval. They used the information obtained to
develop an optimal feedback control scheme. Some of these principles are followed in

developing an approximate feedback control cost model in this thesis.

-
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8.3 DEAD TIME AND FEEDBACK CONTROL SCHEME

It is generally assumed, inl controiling a process by applying SPC techniques, that
(i) the true process level is a constant and (ii) the common-cause variation and the
process state of statistical control follow only a (stable or) stationary model. If this
assumption proves to be incorrect, then, there may be slight amounts of autocorrelations
in the process level affecting the run-length and the control chart limits (Harrison and
Ross [1991]). This is frequently the scenario in the continuous process industries, where
the true process level is not constant due to process drifts. Feedback control can be an
approach to compensate for the drifts in these circumstances, If the autocorrelations are
large and persistent, then, a feedback control approach may be more appropriate than a
SPC approach to control the process. Feedback control can compensate only for the
predictable component of the uncompensated process output (MacGregor [1992]). So,
the effectiveness of feedback control will depend on how much it will be possible to
compensate the output. Thus a situation arises when a decision must be taken as when to
use SPC and APC. This depends upon the process level remaining constant or where
there are changes in the process due to some significance in the autocorrelation
estimates of the process data. In the final analysis, a suggestion is made that integrates
both the SPC and APC procedures by judicial use of techniques from both the
disciplines as may be considered necessary by current process control conditions.

The EWMA forecasts of the (simulated) data have been plotted against two
parallel action lines in a geometric moving average (gma) control chart. In a feedback
control scheme, the position of these control limits is determined on the basis of'- (i) the
relative costs of adjustment and of being"off-target, and (ii) by the degree of non-

stationarity of the process. The relative value of these costs is an important factor in
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deciding the optimal choice of a feedback control scheme. A procedure, to reduce the
cost of the scheme, is to lengthen the sampling (monitoring) interval. This procedure
may be less satisfactory in that it may increase slightly the mean square error due to
dynamics (inertia}) of the system (page 261, Box and Kramer [1692]). Since an
assumption was made to represent a complex dynamic process by a second-order
dynamic model, the focus is currently on the influence and effects of dead time on a
feedback control scheme.

For ARIMA (transfer function) models with b > 0 periods of delay, minimum
mean square action yields a process output that becomes a moving average of

ag,at-1,...ag-p (page 279, Vander Wiel and Vardeman [1992]) Due to delay, the process

deviation is a moving average time series model of order b-1. For b>2, the adjacent
values of the process output will be autocorrelated. When the delay exceeds one period,
this autocorrelation will still be present, regardless of the feedback control scheme.
There will not be any significant autocorrelations beyond lag 2 (MacGregor [1992]).
The geometric moving average (gma) ® was used for monitoring and sounding the out-
of-control signal based on this gma statistic. The process with dead time will still be in
statistical control though the observations may be serially independent (Koty and
Johnson [1985]). The Shewhart chart helps to monitor stable operation due to common
causes and to reveal special causes. So, only when it is possible to establish some
statistically significant monitoring criterion, will it be proper to react to process
changes. A suitable feedback control scheme should then be specifically designed and
used to regulate (adjust) the process (Box and Kramer [1992]). This is to avoid a (pure)

feedback control adjustment scheme only from obtaining a large mean square error,

However, it is possible to obtain the residual sequence a,. which can be used for
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process monitoring even with dead time (in the feedback control loop). Having taken
care of both the system dynamics and dead time, the discussion is focused on

developing an approximate feedback control scheme.

8.4 FEEDBACK CONTROL PROCESS REGULATION SCHEME
8.4.1 Average Run Length and Control Procedure

The "average run length' (ARL) measures the performance of a control procedure.
A percentage point of the run length distribution can also be an appropriate measure in
some applications. The average run length is the mean number of points plotted on a
control chart before signalling. control action. This number should be large for a stable
process and the average quality of the process output should be acceptable to both the
manufacturer and the consumer. The ARL should be small if there is a shift in the ﬁem.

For a (frequently sampled) continuous industrial process, ARL is the average
number of sample intervals from the time a shift in the mean occurs until the control
chart signals it. Disturbances interrupt stable periods of operation of a manufacturing
process and result in drifting behaviour of the process and shifis the output mean from
target. Due to this, the product quality data does not fit in with this characterisation for
measuring the performance of a control procedure using ARL (Baxley [1991]).

The ARIMA (0,1,1) model characterised the disturbance. The objective in
process regulation schemes is to regulate a process and not to discover the cause of
disturbance. So, stochastic process control by the ARIMA model approach is preferable
to the ARL and Shewhart process control approach. Also, a first order autoregressive
integrated moving average model is an appropriate choice since the disturbance model

exhibits (charaterises) the correlation structure of the data. A process control EWMA
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chart scheme was formulated based on this modelling procedure. Box and Jenkins
[1970, 1976] showed fhat, the residuals for a correctly identified and fitted model, form
an independent identically distributed (i.i.d.) sequence. Special causes were identified
and associated with temporary deviations from the modelled process as leading to
departures from the stochastic time series medel. This was indicated by the outliers

(independent observations) in the error sequence {e;} of the deviations from target. An
adjustment control action is triggered when some function of the e's exceeds certain

boundary values. Special causes were highlighted by applying Shewhart control
charting techniques to the residual series for a properly tuned feedback control systen.
For information on identifying the model parameters by an examination of the
correlation structure of the residuals from a fitted ARIMA model, reference may be
made to Box and Jenkins [1970, 1976].

In relation to performance measurement, it is required that a control procedure
must have a large ARL when the process is in control and a small ARL otherwise. The
run length of a control procedure is the mean of the number of samples required before a
process gives an out-of-control signal. An out-of-control signal indicates that a shift in
the mean is likely to have occurred and that control action should be taken to find and
correct the assignable or special cause of this shift in the mean (Woodall [1985)).

Attempting to adjust a process for slight shift in the mean leads to over-
correction and introduces additional variability into the process. The average run length
should be large if the process is stable and if the average outgoing product quality level
(AOQL) is acceptable. The ARL should be small if the mean has shifted to a particular

Il

quality level (Devore [1982]) and remains (steady) for a certain time. It is considered
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disadvantageous for a control procedure to have low ARL values for shifts in the mean
that are not of much significance.

A method to construct ‘modified’ control limits is described in Western Electric
Company's handbook [1956] when the product specification limits are wide compared
to the process standard deviation. The modified control limits obtained according to this
method are wider than Shewhart chart limits. However, the use of modified control
limits are acceptable only when some shift in the mean can occur without a significant
increase in the percentage of products that are non-conforming to product specifications.
Hill [1956] pointed out that the calculations of the modified control limits for a
Shewhart chart may contain all values of the shift in the mean for which the percentage
non-conforming product is between two specified (probabiiity) values, measured in
units of the standard error of the sample mean. These calculations depend on the
probability distribution of the quality characteristic and may result in a control region
too large and contain shifts in the mean that have to be detected quickly and corrected.

The underlying principle in quality control is that not only should the product
meet specifications but that the quality characteristic is concentrated as closely as
possible about the desired target value. The basic idea is that the process should be so
controlled that if the process mean shifis to within 3o of specification limits, then this
shift should be detected immediately. This means that the shifted mean should be three
standard errors beyond the control action limits (Wetherill and Rowlands [1991]).

In relation to the modified control limits, if the time series model has been
correctly identified, then, the sample means will appear to be independent identically
distributed variables. This once again emphasises the need for identifying correctly the

time series model.
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8.4.2 Sample Size

The choice of'a particular control procedure out of a number of feedback control
procedures depends on the selection of in-control and out-of-control regions. The effect
of an in-control region increases as the sample size increases. So, it is better to have a
large sample size. A typical value for the component parts manufacturing industries is
for the samples to be taken in groups of size 4 and 1 in the process industries (Wetheril
and Rowlands [1991]). The ability of a process cbntrol chart to signal trouble depends
on the sampling plan used. In general, it is preferable to sample less frequently in order
to eliminate extreme autocorreleration and thus provide a tool for assessing the process
behaviour over a long time period. By careful selection of sampling and subgrouping, it
may be possible to control the sources of variation that may show as special causes
based on 'the control limits or the in control length’ (ARL) (Hoerl and Palm [1992]).
Using this principle, Wheeler [1991] generalised the concept of rational subgrouping as
'rational sampling'. A sampling scheme is rational when all of the ranges (moving or
sub-group) are generated by the same common cause system and so have a consistent
interpretation. The connection between sample size and the in control length is
illustrated by the following example.

The in-control run length may be the statistic used to describe the performance of

an X chart. By considering the problem of model identification described in Box and

Jenkins [1970, 1976], it can be shown for an AR(1) process P, = OL|k|, given estimates I

of the theoretical autocorrelations P that | r | =2/s/N. It can also be shown that a large

sample N 2 100 observations is required to tdentify a small lag 1 autocorrelation of

p = 0.2 that has a significant effect on the in-control run length.
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8.5 COST MODEL

Abraham and Box [1979] meodified the approach to the design of feedback
control scheme of Box and Jenkins [1970, 1976] in which the monitoring interval had
been decided prior to the design of the scheme. In their paper, Abraham and Box {1979]
derived general results for the (‘new’ sampled) process and the parameters of the new
process, (the term referred by the authors to the resulting process after sampling), when
the disturbance (process)

V'Z=(1-0B-.0B%,

is sampled at sampling (integer) interval (h) subject to conditions (i) h>q-d and (ii)q>d
without considering delay in the system. The authors showed also, by imposing an
additional restriction (h > b, the delay (dead time) in the system), that the sampling
interval obtained is optimum even when there is whole or fractional periods of delay in
effecting the adjustments after sampling. The sampling interval was obtained by
assuming a certain class of stochastic disturbance models and a specified cost function.
They considered a second order moving average process as a special case and illustrated
it with a numerical example.

The method of Abraham and Box [1979] is modified to show that the use of
sampling periods (adjustment intervals, Als) obtained directly from simulation of
stochastic feedback control algorithm (5.16), still lead to minimum cost control schemes
even with time delay (dead time) in the system. This is due to the fact that these
adjustment intervals (Als) are for minimum mean square error (variance) (MMSE)
control for the second-order dynamic model with delay, considered in this thesis. By
assuming an adequate ‘transfer function; (dynamic second-order) noise model’ to

describe the process and the disturbance (noise), the effect of ‘model misspecification’
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(on optimization, a problem encountered by the authors), is minimized. The disturbance
model considered is the ARIMA (0,1,1) and it is shown that the derived cost model

leads to a minimum cost regulation scheme.

Notation
Al > b, dead time in whole periods of delay,
C, is the cost associated with being off-target (off—farget cost),
Ca is the cost of sampling and adjustment,
C= Ct/Cal is assumed to be known,
0-; is the variance of the observed error from the target corresponding to the sampling
interval (Al).

Consider a cost function of the form

F*(AD) = C(a, /5 ) + C (1/AD. (8.1)

An economical sampling interval will be the value of Al that makes the above cost
function a minimum.

It is assumed that the system has no dead time, (b = 0), and that the disturbance
Zt is an integrated moving average process of order 1 given by

VZ =(1-8B)a,

[ d=q =1 for first-order ARIMA(0,1,1) disturbance process.]

Sampling and adjustment, (because the time series controller requires an

adjustment for every sample), is done with an adjustment (sampling) interval such that

Al>0andg=d=1. ’




Then, the resulting process v, and a,,, the random shocks which are assumed
to be Ny, gil) with variance % is given by
VM, = (1-©uBy)ay, (8.2)
where V,= (l-BM) = (I-BA]), Vv, being a differencing operator associated with the
adjustment (sampling) interval Al and © , the IMA parameter for the new process M.
Let y (Al) be the variance of v .M and

¥, (Al be the first lag autocovariance of v .M.

Abraham and Box [1979] used the following Lemma from the monograph, ‘The
Statistical Analysis of Time Series’, of Anderson [1971] to obtain (a) the result given in

equation (8.2) and (b} to obtain also expressions for the variance, Y, (Al} and ¥, (Al), the
first lag autocovariance of VMMr.

Lemma. “Given any arbitrary covariance or correlation sequence with only a finite
number of non-zero elements, there is a finite moving average process corresponding to
the sequence” (Anderson [1971] - Abraham and Box [1979]).

(a) Proof of Equation (8.2):

I_BA[
1-B

VMlVI: =( )(I_B)Zt

= [(1+B+...+B*“")].[(1-®B)a‘ ]. (8.3)
This is written as
VaM, =a + via et a8 -

Let y, (Al) denote kth lag autocovariance of V.M,

.

Then it is enough to show that (i) 71(AD) # 0 and (ii) 7,,, (A]) =0 forall k > 0.
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Now,

VaMiisgar = 8egsgar T Y13 g T Y @ Lgealal - (8.4)
Since g=d=1, wusing k=0 in equation (84), it can be scen that
7, (A= E(V, MV, M, ) #0, where E denotes the expected value.

It is obvious that (1+k)AI > Al for all values of k > 1 in order to show that
Vi (AD = 0 forallk= 1.

It 1s known that since sampling and adjustment is done with an adjustment (sampling)
interval Al > (g-d = 1-1=) 0 and so (Al)x(d) + (g-d) > (ADx(d) + Al > (ADx(d) + k(AD)
forall k > 1 (page 7, Abraham and Box [1979]).

Now, using the fact that y (A1) = 0 and 5, (a1) = o forallk > | and the Lemma, the
result of equation (8.2) follows.

(b) Expressions for the variance, y (Al) and v, (AD), the first lag autocovariance of

‘VMMI.
With d = 1 in equation (8.2) and using equation (8.3), it can be shown that
VM, =2 +(1-0)a, +. . +1-0)a, +(1-O)a,  +.+3, .., )+ (-O)a, .
Hence,
Yo(AD =[1+(1-0)’ +.+.(1-0) +(Al-1) (1-0)* +(®)]c..
Now

71 {AD = E(V MV M) = (@0} = -00,

a

and after some tedious algebraic manipulations,

YolAD +27,(AD)  AI(1-0)’
n(Aan e

(8.5)
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For a first order moving average process with parameters ©,, and 63, it can
also be shown that
2
(A} = -04C%a ,

and

2
7o(Al}+2y(AD =_(1—@1“)

8.6
v1(AD) G (8.6)

Hence from equations (8.5) and (8.6), the following relations connecting the

parameters of the processes, Z, and M, are obtained:

AL(1-0)/0=(1-0 )10

or
[(1-©, )/AT] =[(1-©) /0] ], (8.7)
and
s =@ X@e,)
or

2 2
[®Ap’®] =[cs£i /GM ]. (8.8)
The variance of the error g, in the output at time t is given by
oot =0u [1+(b/ADI-0,)]- (8.9)
When b =0, €, p the observed error from target at time t is the one-step ahead forecast

2 2
ITOT aare,,and hencec = o, -
' g

Using this, Equation (8.1} is simplified and a cost function considered,

F(A) = C(o, /o) + (L/AD), (8.10)

where C=C/C,.
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The equation for the cost function that includes fractional periods of delay, (equation
5.4, page 6, Abraham and Box [1979]), is modified for whole periods of delay to give
the cost function corresponding to Equation (8.7).

G(AD) = C(s, ‘To (1 + (1-8 ) (b/AD)] + (1/AD). (8.11)
So, equation (8.11) becomes, on using equations (8.7) and (8.8),

G(Al) = C(a, /s )+ (L/AT) + C(o, o )b(1-8) (s o, ).

That is,

G(AD = C(s, /6 ) + (I/AT+C(H(1-8)) (8.12)

_F(AD +k,

where k = C(b)(1- @)2, a known constant, since the dead time, b, the rate of drift

r = (1-®) and information about C, which will always be available, are known
quantities. The mintmization of G(AI) and F(AI) are equivalent and hence the sampling
period (adjustment interval) obtained will definitely provide minimum cost control
schemes even when there is a delay in the system.

A similar result is obtained by Abraham and Box [1979] for a general case and a second
order disturbance process.

The function F(AI) given by Equation (8.9) when written as a function of @ o1 becomes
2 2
F1(@aD =C(©/0,) + [(1-9)/(1-0, ) K©, /©). (8.13)
After locating e, which minimizes Equation (8.13), a corresponding control scheme

can be obtained using Equations (8.7) and (8.8) and the control adjustment equation
(5.16) derived in Chapter 5. In this case, since the disturbance is described by the
ARIMA(0,1,1) model and the IMA parameter @ is the tuning parameter for the time

series controller, ® and ®,; are the same. Hence the resulting cost regulation scheme




depends only on the ratio of C, that is on C, the off-target cost and C,, the sampling and
adjustment cost and the process drift r = (1-®) as shown subsequently.

As mentioned earlier, the value of the adjustment interval obtained from the
simulation is used to sample the process, and immediately an adjustment is made. The
geometric moving average (gma) theta determines the instant at which compensatory

action is to be taken depending on the EWMA control limit lines L given by Equations

(6.1) and (6.2), L = J_r3a“}(1‘®%1 @) Where © is the IMA parameter of the

stochastic disturbance and o,, the standard deviation of the random shocks

{a,}N(0,0) . Adjustments, when needed, are made to bring the mean of the output
quality variable close to the target value.
The control limits are determined by the relative costs R, and by the degree of non-
stationarity of the process,
R,=(C,CH/(1-0)
where C, is the cost per unit adjustment interval (Al),
C =k

where
k, = reprocessing or processing cost in terms of material cost per hour (C,)(deviation
from target, A)’, since as the deviation (A) from target increases, it will reach a point at
which the manufactured material must be discarded or reprocessed at a cost C,. For
compensating a non-stationary disturbance, the only cost is that of being off-target (Box
and Kramer [1992]).

The process is sampled and adjusted ‘regularly at the Als (sample periods given

by simulation), resulting in substantial cost C, for adjusting the process.
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Overall cost C per unit time,
C = (ADSa + k(o)
where
Al is the number of sample periods required to make an adjustment,
$a, the cost per unit Al

When a digital computer is used to execute the single integral mode control
equations, an (approximate rule) for the lower limit- on the adjustment interval (sampling
period, T) for integral control is

T>1,
where 1, is the integral time constant of the controller (Deshpande and Ash [1981]).

It is sometimes difficult to judge the costs directly since different kinds of cost
models may be appropriate for various circumstances. One approach is to draw a list
of options from which the choice among minimum-cost schemes should be made
empirically by balancing the advantage of longer ARL’s against the consequential
increase in the mean squared error about the target. Such a table is provided by Box

in his paper published in 1991 (Box [1991b]).

8.6 PROCESS REGULATION SCHEMES

The choice of feedback control process regulation schemes depends on ‘how
capable’ the ‘controlled process’ was of providing quality products within
manufacturing specifications. If the process capability index was high, then, a
moderate increase in the control error deviation (product variability) might be
tolerated if this action resulted in savings i‘n sampling and adjustment costs. Table

8.1 shows the adjustment interval (AI) and the corresponding CESTDDVN for some
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alternative schemes using combinations of L = 2.98, 3.0 and 3.04. These schemes are
denoted by A, B, ...0.

Table 8.1 Alternative Process Regulation Schemes

Control Limits L{= 3 a5 )

298 3.0 3.04

Scheme AI CESTDDVN ISTD.  Scheme AI CESTDDVN. ISTD  Scheme Al CESTDDVN ISTD.

A 1099 1.022 - F 100 1033 - K 20 1025 -
(©=0.10, 8,=-1.51,5,=-0.57) (©=0.055,=-1.79, 5,=-0.80) (© =0.15,5,~-1.44, §,=-0.52)
B 1052 1.032 098 G 90  1.058 242 L 1220 1.032 0.68
(® =005, §,=-1.50,8,=-0.56) (®=0.05, 5,=-0.80, 8,=-0.16) (@ =0.10, 3,=-1.22, ,=-037)
o 820 1.043 1.066 H 526 1157 936 M 1235 1.037 0.48
(©=0.05,8,=-1.06,8,=-0.28) (©=0.05,5,=-0.27, 5,=-0.02) (® =0.10, 5,=-1.06, 5,= -0.28)
D 510 1127 805 I 502 1158 009 N 952  1.08% 501
(©=0.05, 5,=-0.20, 8,= -0.01) (©=0.05, 5,=-0.08, 5,=-0.00) (®=0.15, ,=-0.27, §,=-0.02)
E 568 1186 524 I 446 1217 509 O 694 1119 2.75
(©=0.05,8=-0.01,5=0.00) (©=005,5=0.00,8,=000) (©=0.10,5=-1.06,5=-0.28)

Lis, 3.010 3.000 3.009

The alternative schemes are: (i) Scheme B: To set L = 2.98 and adjust process at
10.5 sample periods, with an increase in CESTDDVN (ISTD.) of 0.98 or (ii) Scheme E:
Adjust process at 5.7 sample periods and ISTD of 5.24 or (jii) Scheme J: by setting
L = 3.0 and adjusting the process at 4.46 sample periods, the same ISTD. (5.09) could

be achieved with an Al of 4.5.
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These schemes are based on how much the CESTDDVN would need to increase to
achieve the adva.ntagei of taking samples and making adjustments less frequently.
This approach avoids the direct assignment of values to costs C, (cost of adjustment
and sampling) and C, (cost of being off-target). The table shows for various values of
the standardised action limit, L/, = 3.010, 3.000, 3.009 and the adjustment interval
(AI), the percent of increase in CESTDDVN (ISTD.) with respect to ¢, and Al. The
IMA parameter value ® which determines the‘ process drift and the dynamic

parameters d,, 8, are given below the scheme.

8.7 COMPARISON OF CONTROL SCHEMES

Table 8.2 Control Schemes for Fast and Slow Drifts

M4 Rate of drift  Adj. Interval  Control Adj. Var.of adj. Cost
& r=[-@ Al dxt vardst F=Cl(o, 0. +b(1-8)?] + 1/Al

=C[1+b(1-®)] + I/AI

0.05 0.95(Fast) 10.52 -0.092 0.266 0.59

0.95 0.05(Slow) 8.62 -0.006 0.001 (.616

C(oaf/a,) is taken as C itself since from Equation (8.8), 6,76} = 1 and as

mentioned in Section 8.5, the tuning parameter @ is the same as @, .

8.8 CONCLUSION

’

A brief review and background of process regulation were given in this

Chapter. The effect of dead time on feedback control and feedback control process
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regulation schemes was explained. It was shown that the cost regulation scheme is a
minimum for a process with delay and an approximate cost model was presented.
Some process regulation schemes and comparisons were also given. Controller

performance and application to product quality control are discussed in Chapter 9.
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CHAPTER 9
CONTROLLER PERFORMANCE AND PRODUCT

QUALITY CONTROL

9.1 INTRODUCTION

In this Chapter, we explain briefly the terms performance and robustness as
applied to a process controller. The characteristics and requirements of a controller are
also given as too is a brief description of the working of a direct digital (discrete)
feedback controller along with the means to obtain damping in the feedback control
loop. These explanations are given to complete the discussion on controllers and the

economic benefits of process control application to product quality.

9.2 CHARACTERISTICS REQUIREMENTS OF CONTROLLERS
9.2.1 Dynamic Optimization

Various management objectives are described by profit maximization, loss
minimization or by optimization or minimization of other functions. Process dynamics
are ignored in steady state optimization of industrial processes. In these processes, a
reference value (set point) is set in the various control systems to hold the process
variables within the desired limits. Dynamic optimization considers the dynamic
behaviour of the process by manipulating the inputs during non-stationary conditions,
By considering a second-order dynamic model and simulation of the feedback control
algorithm that minimized the variance at the .output, dynamic optimization under non-

stationary conditions has been achieved in this thesis
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9.2.2 Controllers Requirements

An industrial process control system, regardless of the control structure or
algorithm used, must be robust; that is, it must function reasonably despite process
and/or modelling errors over the full range of process operations.

Thg controller required for a particular, application depends upon the objectives
the process control system and the dynamic process model (transfer function). The
preferred controller for a specific task depends on the type of process to be controlled
and the relative importance of “performance’ and ‘robustness’ (explained subsequently).
The response of the controller and the system depend upon the process disturbances. A
detailed model of any industrial process is likely to be complicated, therefore, the
control system engineer faces a situation in which a control system must be formulated
(designed) on the basis of a simplified description (model). In this regard, it is often
better to work with an 'acceptable' solution than to be unable to find the 'perfect

solution’'.

9.3 FEEDBACK CONTROL SYSTEMS

The performance of a feedback control system employing mechanical, hydraulic
or pneumatic elements is measured quantitatively by the root mean square (rms) error. It
is the ratio of the rms ‘error’ to the rms input (signal). In many control applications, it is
essential that the desired output be obtained instantaneously in time. In a control
problem, a satisfactory (linear) phase shift, (explained in Section 3.6.1), may be the
cause of excessive error. The purpose of feedback compensation is to alter the

performance of a system so that the resulting error will fall within specifications. The
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desired output (signal) is frequently instantaneously equal to the input (signal) and

imposes a severe specification on the control system design.

9.4 SAMPLED-DATA FEEDBACK CONTROL SYSTEMS AND DIGITAL
CONTROLLERS
9.4.1 Sampled-Data Feedback Control Systems

A discrete ('sampled-data’) system was defined in Section 3.5.3 as one of those
'purely digital systems where the input and the output are described only at the sampling
instants' (Marshall [1979]). A sampled-data (discrete) system is a control system in
which the data appear at one or more points as a sequence of numbers. An analogue
system is one in which the data are everywhere known or specified at all instants of time
and the variables are continuous functions of time. If the system includes elerﬁents
which feed the output (dependent variables) back to the input (independent v?riables)
and if' a sampling operation is included, the system is referred to as a 'sampled-data

(discrete) feedback control system'.

9.4.2 Digital Controllers

Some of the salient features of a sampled-data system are discussed in this
Section. The digital controller is a computer that accepts a sequence of numbers at its
input, processes it in accordance with some logical programme, (usually linearly) to
produce an output. The output (number) sequence is reconstructed into a command
signal and the resultant sequence is applied to the controlled element. By properly
designing the (linear) computer programmeé of the digital controller, the system can be

stabilized and its dynamic performance made to conform to rigid specifications. It is
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possible to implement it by means of digital computer techniques or its equivalent as a
mixture of analogue and digital components or wholly by an analogue computer. If the
process programmed in the computer is linear, it can be expressed in terms of a
recursion formula (or equation) which is transformed into a generating function. The
sampling periods are equal for all the samplers in a (linear) sampled-data dynamical
system.

Sampled-data (discrete) systems are often subjected to random disturbances. Any
compensating device preceded by (synchronous) samplers is referred to as a digital
controller. A process control system requires the storage of only a finite number of input
and output samples. A pure regulator (controller) system has a fixed reference or set
point and the only dynamic effect is the resuft of disturbances. In regulator system-
design, the input in the form of disturbances has an influence in the controller design. In
a stable digital system, the reference input is assumed to be a constant and if the system
is linear, only that component of the output caused by the disturbance need be
considered since it can be superimposed on any other outputs produced by other
SOurces.

One of the advantages of digital controllers is that they can be applied to systems
with large time constants. A control programme from the digital computer could be used
to compute commands to the plant at sampling points. The exact form of the digital

controller depends upon the required application.
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9.4.3 Principle of Operation of Discrete Digital Feedback Controllers

With a basic idea of sampled data (discrete) systems and digital controllets as
background, the principle of operation of discrete digital feedback controllers is
explained briefly in this Section.

The characteristics of the discrete (sampled data) digital feedback controller loop
determine how well the process can be controlled and what controller settings are
required to produce minimum output variance of the product. The conditions of uniform
oscillation of a feedback control loop serve as a convenient reference on which rules for
controller adjustment can be based. It is known that the tendency towards oscillation is
one of the characteristics of a feedback control loop. So, the feedback control loop as
well as the feedback controller should be guarded from the occurrence of over and under

damped oscillations which may lead to an unstable feedback control loop.

9.5 MEANS TO ACHIEVE DAMPING IN A FEEDBACK CONTROL LOOP

The integral action term in the control adjustment equation (5.16), determines the
damping of the feedback control loop. The period and the integral time required for
damping are established by the process characteristics. Minimizing the integral error
ensures damping of the feedback control loop. The minimum integral (absolute) error,
(IAE), for (integral) control of dead time is achieved by setting the integral time
constant of the feedback control loop, I = 1.6PGT,, where T, is the time delay (dead
time) (Shinskey [1988]). Under integral (floating) control, the feedback control loop
tends to oscillate with uniform amplitude and at the period where, the (pure) steady-state
gain is unity. For an (integral) time constant equal to the dead time, the period of

oscillation changes to about half of the original period. Increases in the (integral) time




constant contribute more (phase) lag to the feedback control loop and extends the period
of oscillation of the feedback control loop. There must be a rise in integral time constant
so that the controller can then contribute less (phase) lag. Since the controller algorithm
also plays a part in the stable functioning of a feedback control loop, some of the

requirements of a sampled data controller algorithm are discussed in the next Section.

9.6 REQUIREMENTS OF A SAMPLED - DATA CONTROLLER ALGORITHM

(i) The first and foremost requirement of a controller is that it must be able
to maintain the desired output variable at a given set point.

(ii)  The set point changes should be fast and smooth.

(iii)  The algorithm must lead to stable overall control and converge fast on
the desired steady state, thus ensuring asymptotic stability and
satisfactory performance for different types of disturbances that could
arise.

(iv)  The controller should be designable with a minimum of information with
respect to the nature of the inputs and the structure of the system. This is
because of the fact that optimal algorithms, by their nature, tend to be
(very) sensitive to both the structure and the exact values of the
parameters of the model describing the process.

v) The controller must be reasonably insensitive to changes in system
limits. This means that it must be stable and perform well over a
reasonable range of system parameters.

(vi) It is preferable to avoid excessive control actions.

(Palmor and Shinnar [1979])
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The performance of the computer-controlled algorithm depends not only on the
tuning constants but also on the sampling period (adjustment interval). It is reported in
control engineering literature that although a second-order (conventional) control
system is stable for all values of the (controller) gain, it is likely that computer control
of the same system can give unstable response for some specific combinations of the
gain and the sampling period.. This is one of the main reasons to consider the critically

damped behaviour of the second-order model in Section 5.5, Chapters.

9.7 CONTROLLER PERFORMANCE AND LIMITATIONS
9.7.1 Performance

Performance, an important characteristic of a controller, refers to how closely the
unit holds the output controlled variable to set point in the face of disturbances.l The
nature of the process, particularly its dead time, determines the best performance
achievable by a feedback controller. One way of improving control performance is to
reduce dead time in the closed-loop. Performance depends not only on the controller.
but on the tuning as well. Tuning rules are affected by the process being controlled.
When an input change is encountered, the output controlled variable moves away from
the set point along a trajectory (path) determined by the disturbance and the lags in the
path between the input and the output controlled variable. Concurrently, the controller
output changes according to its algorithm and tuning parameters. However, the
controlled variable cannot respond to the controller until the dead time in the feedback
control loop lapses. Once a controller is tuned for a given performance, a change in the
process gain or dead time could bring the léop to the limit of its stability (that is in the

meaning of an undamped oscillation). The smallest change in any process parameter
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capable of bringing the loop to this poir_lt is the 'robustness index'. The robustness of the
Dahlin's controller, can be improved by setting its dead time relative to machine speed.
Sampling, it is believed, produces a phase lag equal to half of that produced by the same
dead time in digital controllers.

The performance of a controller is usually referred to by a performance index.
Desborough and Harris [1992] introduced a ‘normalized performance index’ to
characterize the performance of feedback control schemes. A method is outlined in their
paper to estimate the index from routine closed-loop process data using linear regression

methods.

9.7.2 Robustness

Robustness of a process control loop is that quality that keeps its closed-loop
(feedback) stable following variations in process parameters. A ‘robust’ control loop is
one that performs well even in the presence of moderate changes in process parameters.
Changes in dead time and gain make a controller reach instability. It is known that
sustained undamped oscillations in a control loop represents the limit of stability. This
can be brought about by increasing the steady-state gain of a process that reduces the
damping of the control loop. The increase in gain required to bring the loop to the limit
of stability is a measure of robustness.

The performance of a feedback controller in responding to load changes is at the
cost of reduced robustness. Processes having lags (like inertia) form more robust
feedback control loops with PID controllers. A process lag, however, requires derivative
control action to attain a level of performarice that returns the feedback control loop to

essentially the same level of robustness as a (pure) dead-time process. There is a trade-
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off between robustness and performance. The process dead time determines the best
performance achievable by a feedback controller. For a feedback controller that is not
robust enough but provides an acceptable performance, the recourse is to go in for self-
tuning by adapting the controller settings to follow variations in the process parameters
in order to keep high performance. An advantage of discrete (sampled-data) model-
based controllers is increased robustness that results from sampling the process at slow
intervals, (slower sampling).

Robustness can be improved by detuning a controller, but its performance is
decreased at the same time. Performance and robustness are inversely related. Lowering
the controller gain and slower sampling, improve robustness at the cost of performance.
The highest performance also brings with it the lowest robustness. So, high-performance
controllers should be capable of on-line self-tuning; i.e. they should be adaptive in

nature.

9.7.3 Performance Limitations

An (optimal) controller design depends (i} in defining the input and disturbance
to the system in statistical terms and (ii) on a performance criteria such as the mean
square error. The mean square error for stochastic (signals) is an example of a quality
measure for the performance of a process control system. The mean square error is
identically equal to the value of the autocorrelation function of the error at zero shift, (a
parallel change in slope of the input-output curve). An attempt to predict the future
value of a stochastic (signal) by means of a (linear) system leads to a definite
performance limitation in the sense that' the mean square error cannot be made

(indefinitely) small. Even when the system is adjusted for minimum mean square error,
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there is a lower limit below which this error cannot be reduced. Imposing a requirement
for prediction on a linear system that operates only on present and past information,
limits the performance that can be achieved. Disturbance (noise) makes it impossible for
a linear system to establish equality between the ideal output and the actual output. A
time delay (dead time) must be regarded as a fundamental factor in limiting the
performance that may be achieved with a linear system. In many industrial processes. it
is difficult to properly tune standard regulators (controllers). It becomes necessary to use
sophisticated controllers when long delays or time constants are present, especially in

complex systems and when the minimum output variance conditions are imposed.

9.8 ECONOMIC BENEFITS OF PROCESS CONTROL APPLICATION
9.8.1 Engineering Control Application to Product Quality

To control the quality of a product at the output, the set point of a product-quality
controller is adjusted so that the product remains within its specification limits
following expected load changes or disturbances. In product quality control, the
product-quality set point is adjusted away from the specification limit in proportion to
the peak deviation expected to be yielded by the controlier. Again, the adjustment is in a
direction that increases operating costs. Deviation in the 'safe' direction increase
operating costs in proportion to the deviation. The quality-controller's set point is
positioned relative to the specification limit so that the limit will not be violated for
most upsets (load changes). Since the average output product quality will be equal to the
set point, the product will be more expensive to make than if the set point were
positioned exactly at the specification limit. Excess manufacturing cost is proportional

to the difference between the set point and the specification limit and so, proportional to
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the peak deviation expected. By limiting the peak deviation, excess manufacturing cost
and product quality are controlled in engineering control. Peak deviation of the
controlled variable from set point is significant when excessive deviation will cause an
incident such as rejecting a product due to failure to meet the specification.

Process control provides operating conditions under which a process will
function safely, productively and profitably. Ineffective control can be costly in causing,
amongst other things, plant shutdown, in consuming resources excessively, in allowing
off-specification product to be made, and in unnecessarily reducing the produvtion rate.
For a particular control loop, it is often possible to relate operating cost to deviation of
the output controlled variable. In product-quality control loop, it is not surprising that
the cost function is (usually) found to be different on opposite sides of set point; i.e. it is
possible to have both both possitive and negative cost functions.

Process operators frequently place a large margin between the measured quality

of a product and its specification to counteract the changes in economic performance

when a product specification is violated. It will cost more to produce higher-quality
product. Maximum profit can be realized when product quality meets the specifications
exactly; but variations in product quality are not equally acceptable on both sides of the
specification. As a consequence, the quality set-point must be positioned far enough,
without excessive operating costs, on the most acceptable side of the specification. The
operating cost can be reduced by better control and smaller variation in quality, allowing
the set point to be moved to closer the specification. The deviation between the output
controlled variable and its set point can be related (linearly) to operating cost. Overshoot

of the output controlled variable can be mitimised by limiting the rate of the set-point
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changes that are likely to be introduced by the operator during the course of plant
operation and process control.

Integration of deviation (error) over time could be equated to accumulated
(excess) operating cost. Under such circumstances, the control objective would be to
minimize integrated error®. This criterion coyld be applied to control the quality of a
product flowing into a storage tank, for example. This can be achieved by keeping the
integrated error as low as possible and the quality of the product closer to the set point.
(*Integrated error can be estimated from the feedback control algorithm equation (5.16),
being equal to (e-8,,-0:¢,,)). It is a function of the change required in the input
manipulated variable and the setting of the integral mode of the (time series) controller.
Integrated error can be significant in product-quality loops, where it may represent
excessive operating cost such as product giveaway. Lag-dominant dynamics, (similar to
the second-order dynamic model with two exponential terms), characterize, most of the
important plant loops such as product quality. For these processes, the integral error,

(explained in Section 7.2.5) varies linearly with time.

9.8.2 Statistical Application to Product Quality Control

For the sample values of a product variable whose measurements are normally
distributed, its mean will equal the set point if the integral of the error approaches zero
over a period of time. In minimizing the deviation of the output controlled variable, the
standard deviation is a transformation of that deviation over a statistically significant
number of samples or time of operation. The economic incentive behind the standard -
deviation criterion is that this criterion estifnates the percentage of time the controlled

variable violates the specification based on a normal distribution. If samples of an
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output controlled variable that is ‘cycling’ uniformly are averaged over a complete cycle
to form a subgroup, then the mean of subgroups will lie on the set point and their
standard deviation will approach zero (if there are no disturbances in the feedback
control system).

The assignment of subgroup size should reflect the capacity of a process to
absorb variations in product quality. The method used to average samples also needs to
be selected to match the characteristics of the process. If the product is segregated into

lots, then, the samples should be segregated into the same lots and averaged equally.

9.9 COMPUTER CONTROL IMPLEMENTATION ON A PROCESS LOOP

A brief description of implementing computer control on a a typical process loop
is given in this Section. Consider the implementation of computer control on a single-
loop process control system. The single-loop system is a quality control loop currently
working on (conventional) control mode. The controller of this loop is the Integral type.
It is desired to place this loop under computer control, utilizing the discrete equivalent
of the integral controller. A suitable measuring device, strategically placed in the
process control system, measures some required characteristic of the output quality
process variable and converts it into an (electrical) signal. The integral controller
compares this signal with the desired value, set point. If an error exists, the controller
outputs a feedback signal which manipulates an input adjustment to eliminate the error.

In computer control, the electrical signal is transmitted to the control computer
terminals which represent one of the analogue-to digital (A/D) converter channels. The
computer hardware design is such that it 'can access the discrete output of the A/D

converter. The discrete output from the computer is converted to a continuous signal, on
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demand, by one of the digital-to-analogue (D/A) converter channels. The D/A output is
available at the analogue output terminals of the computer. The control computer is
instructed to sample the A/D channel every T seconds, T being the sampling period. The
computer programme operates on this measurement, representing the value of the
measured variable at the sampling instant. For this purpose, the computer uses the
discrete equivalent of the controller adjustment equation and computes the desired
control-algorithm output. The computer is then instructed to forward this output to the
D/A converter and to the compensating (correcting) device. This procedure is repeated
every T seconds to achieve closed-loop computer control.

The benefit of computer application to process control is the facility to
implement control strategies that might not be practical with analogue hardware.
Development of such strategies requires the analysis of computer-control loops to

determine their stability characteristics.

9.10 MODEL BASED CONTROLLERS

The question arises whether integral control is the best control mode in
application to product quality control. Easily controllable processes can justify the use
of integral control. It is essential, in practice, to have integral action to control difficuit
processes. Integral action control mode is, in actuality, time constant just like the time
constants in a process, but they bear no resemblance to dead time that exists in the
process or plant.

A feedback control system that is modelled after the process, called a ‘model-
based’ controller has a feature that critical démping can be achieved with a loop gain of

1.0. This is accomplished by the simultaneous feedback of controller output through the
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process and controller. If both signals arrive at the integral (summing) junction
downstream (of the integral block or mode) with the same amplitude at the same time,
they will cancel, avoiding further changes in output. This avoids oscillation even in spite
of achieving a loop gain of 1.0. The controlier output follows the load with open-loop
response. Both set point and load responses are ideal for a (pure) dead-time process. A
model-based controller provides good feedback control of a dead-time process, called
‘dead-beat’ response (a loop gain of 1.0). Model-based controllers are superior to PID
controllers in performance for processes in which dead time has a dominating effect on
the process characteristics and behaviour when a process is subject to different loads and
disturbances. Model-based controllers perform well on a dead time process, but do not
possess much robustness. A practical application of the model-based controller principle
is to control a sugarcane crushing mill. Details of the model-based control of sugarcane
crushing mill can be found in the guest editorial by Bob Bitmedd, Process & Control
Engineering Journal (1994), Volume 47, No.10, 65-66 and that of an integral controller

application for control of dye concentration in Buckley [1960].

9.11 CONCLUSION

The performance, limitations and robustness and the function of a controller were
explained in this Chapter. The characteristics and requirements of a feedback controller
were also given. The working of a direct digital sampled data (discrete) feedback

controller and a model-based controller was described in brief.
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CHAPTER 10

CONCLUSION

10.1 BACKGROUND AND METHODOLOGY

This thesis has considered feedback control (closed-loop) stability problems
from the automatic process control point of view and application of process control
techniques at the interface of SPC and APC. A detailed review of the literature on
stochastic-dynamic process control has been given. The thesis has focused attention on
bringing together contributions made in the analysis of closed-loop dynamic-stochastic
systems, assessment of control loop performance, on-line process control together with
the work done separately by control engineers on automatic process control.

The issues connected with statistical process monitoring and feedback control
adjustment, namely, feedback (closed-loop) stability, controller limitations. dead-time
compensation and process dynamics in achieving minimum variance control have been
discussed.

A second-order dynamic model was considered to account for process dynamics
and an expression was derived for the input adjustment required that will exactly
compensate the output deviation. The feedback control algorithm was simulated and the
simulation results were discussed. It was shown that it is possible to achieve integral
control and dead-time compensation in the presence of dead time in a dynamic process.
The performance of the time series controller was shown to be better than that of the
EWMA and CUSUM controllers. The results demonstrate that minimum mean square

error (variance) control can be achieved in ‘practice and that the product variability can
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be minimised at the output. An outline of a process regulation scheme was given and
also an application of model-based control to product quality.

This thesis has shown that an approachable solution to the commonly occurring
product quality control problem is possible by properly making use of SPC techniques
such as EWMA forecasting, time series modelling and the APC techniques of dead-time
compensation and process regulation. The results of this research show that by knowing
the input feedback control adjustment, its variance and adjustment interval (Al), it is
possible to devise suitable process regulation schemes. By means of the methods
proposed, it is possible to take a different approach to solve the commonly occurring
product quality control problem. It has widely made use of the operating principles of
controllers, basic principles of feedback control stability and stochastic time series
ARIMA models. The application of techniques such as control charting and process
regulation have been shown to mix and blend together at the interface of the two process
control methodologies. It is hoped that the issues raised and the solutions offered will
further kindle interest and offer scope to enhance the work that is currently under way
by the scientific and technical communities to integrate SPC and APC.

Optimization under non-stationary conditions has been achieved by considering
the dynamic behaviour of the process and by manipulating the input during non-
stationary conditions. The solution to the problems of statistical monitoring and
feedback adjustment connected with feedback (closed loop) stability, controller
performance and robustness and adequate dead-time compensation to achieve minimum
variance control, were found by the application of both the process control techniques.
The IMA parameter, ©, set to match the disturbance, was suggested also as an on-line

tuning parameter to compensate for the dead time. As the magnitude of the random
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shocks through the system change, so also does the nature of the disturbance and the
process drifts. As the IMA parameter ® changes, the process adjusts itself, and (in a
way), adapts to the new (random shocks) conditions. So, in a way, adaptive (self-tuning)
control has been achieved in an indirect manner. The performance of the time series
controller was shown to be superior to that of the EWMA and CUSUM controllers and
provides minimum variance control even in the face of dead time and dynamics and
provides adequate dead-time compensation with the controller gain (CG) set to 1. By
exploiting a time series controller’s one-step ahead forecasting feature and considering
closed-loop (feedback) stability and dead-time compensation, this thesis takes one step
further from the articles/papers that have appeared recently in relation to statistical
process monitoring and feedback adjustment, ASPC and discussion on integrating SPC
and APC.

Demonstration of an application to an actual control design problem has not
been done because the objective of this thesis has been to find solutions to issues
connected with statistical and feedback control adjustment at the interface of SPC and

APC.

10.2 FURTHER SCOPE FOR RESEARCH

Dead time was considered as whole periods. It is possible to consider fractional
dead time periods also and processes in which dead time is more dominant (called,
dead-time dominant processes) than the inertial (called lag-dominant) characteristic
processes. The thesis considered jumps in the mean (step shifts) taken care of by the
EWMA control limits. It is possible to consider also ramping shifts in the mean in

which there is a slow and gradual increase and decrease in the mean value and square
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impulses in which there is a sudden upward step increase to a new value for a time and
then a decrease in the mean value. Another area of interest is the disturbance level and
its cyclical variations. A single-input, single-output (SISO) system was considered in
this thesis. It is possible also to consider more than one input and the effect of the
change in one of the input variables on the output. The effect of reducing, if not possible
to eliminate completely, the dead time, by an appropriate control strategy that gives
good performance and at the same time takes care of the controller robustness can also
be considered with a view to an improvement in performance. Apart from imposing
feedback control stability conditions, the conditions for achieving (minimal) controller
robustness without sacrificing performance can also be considered. The dead-beat
response of a model-based controller under critically damped conditions can also be

exploited to the advantage of the process control industry.
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