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DMD as a mitochondrial myopathy  

Characterised as the most severe and aggressive form of all the muscular dystrophies, Duchenne Muscular Dystrophy 

(DMD) results from a gene mutation at position 21 on the X chromosome  and consequently,  absent expression of the 

cytoskeletal protein dystrophin [1]. The loss of dystrophin expression from skeletal muscle and neuronal tissue in which it is 

normally present as part of a transmembrane protein complex, induces chronic and progressive skeletal muscle wasting 

which is fatal in all cases. The accepted aetiology of the disease is intimately linked to the cytostructural role of dystrophin in 

providing stability to the sarcolemma, particularly during contraction; regulating the proper expression of components of the 

sarcolemmal Dystrophin Protein Complex (DPC); and, consequently, maintaining appropriate homeostatic transmembrane 

ion gradients and cell signalling functionality [2-4]. It is widely reported in the literature that the secondary molecular 

mechanisms ultimately leading to muscle degradation include abnormal calcium (Ca2+) homeostasis [5,6];  [Ca2+]-induced 

necrosis [7]; mitochondrial dysfunction and cellular energy perturbations [8-12]; and satellite cell (stem cells that repair 

damaged skeletal muscle) exhaustion [13,14]. As skeletal muscle regeneration fails to match degeneration rates and 

inflammatory activity persists, skeletal muscle becomes infiltrated with fat and connective tissue which limits function and 

leads to the loss of ambulation in the teenage years [15,16]. Ultimately fibrosis of the diaphragm and heart ensues causing 

respiratory dysfunction, cardiomyopathy and death by the third decade of life [17,18].  

Both historically [19] and again more recently [20], DMD has been regarded as a disease of impaired myofibre energy 

homeostasis, which is at the very least a contributor to, if not an aetiological promoter of, dystrophinopathy. Cellular energy 

(ATP) homeostasis is rigorously maintained by a vast and intricate network of metabolic pathways within skeletal muscle, 

and dysregulation has a variety of detrimental consequences. These include: impaired force production leading to weakness 

and exercise tolerance; impaired intracellular Ca2+ buffering leading to loss of homeostasis and Ca2+-induced degeneration, 

necrosis and apoptosis; reduced protein synthesis alongside increased macroautophagy leading to the loss of muscle mass; 

and reduced satellite cell activation, replication, migration and differentiation leading to a markedly decreased capacity for 

regeneration of damaged muscle fibres.  In dystrophin-deficient skeletal muscle from human DMD patients as well as from 

the genetically homologous mdx mouse model of the disease [21,22], a myriad of metabolic deficits encompassing the 

enzymes of glycolysis [23-27], the purine nucleotide cycle (PNC) [28,29], and the mitochondrial Tricarboxylic Acid (TCA) 

cycle [27,30] and Electron Transport Chain (ETC) [10,12,31] have been consistently reported (see Table 1). These both 

individually and collectively, contribute to this loss of energy homeostasis.  

During metabolic stress, a cell signalling cascade is initiated in skeletal muscle which inhibits protein synthesis and 

promotes muscle catabolism via autophagy. As such, ATP utilization is spared and metabolites stored within skeletal muscle 

tissue are made available to metabolism to increase ATP synthesis and restore energy homeostasis [32]. This is achieved 

predominantly through the activation of adenosine monophosphate (AMP)-activated protein kinase (AMPK) which is 
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phosphorylated by rising AMP levels. AMPK activation also promotes mitochondrial biogenesis and targeted destruction of 

dysfunctional mitochondria (mitophagy), thereby increasing the viable mitochondrial pool and ATP synthesis [33]. It has 

been established that AMPK activation is increased in dystrophin-deficient skeletal muscle [34], highlighting in the first 

instance, that acute metabolic stress signals are switched on. However, mdx skeletal muscle seems to benefit from the 

additive effects of pharmacological AMPK activation [34], suggesting in the second instance that endogenous molecular 

adaptations to the AMPK-mediated metabolic stress response are insufficient and that therapeutically targeting metabolism 

amplification is beneficial. Importantly, while AMPK activation successfully induces beneficial adaptations in dystrophin-

deficient muscle that are seemingly specific to utrophin upregulation and slow fibre type induction, it fails to appropriately 

increase oxidative ATP production at the mitochondrial level [34] and autophagic activity [34,35].  

Due to the strong and multifaceted allosteric regulation of metabolism by associated up- and down-stream products and 

reactants, one broken link in the metabolic chain induces deleterious consequences at multiple levels spanning the entire 

metabolic system – thus pinpointing the precise defect becomes difficult. Indeed, the only established physical link between 

the dystrophin protein and the metabolic pathways is via neuronal nitric oxide synthase (nNOS). nNOS normally co-localises 

with dystrophin at the sub-sarcolemma [36,37] and dystrophin-deficiency results in the secondary loss of nNOS [38] and 

consequently, the capacity for endogenous skeletal muscle NO production. As both nNOS and nNOS-generated NO are 

strong regulators of glucose uptake and flux through the glycolytic enzyme cascade (particularly during muscle contraction) 

[39,40], it is logical that reduced substrate availability is a precursor to energy system de-regulation and non-responsiveness 

to metabolic stress signalling in dystrophin-deficient fibres. However, normal basal glucose uptake has been reported in 

human DMD muscle [41-43] and we have most recently demonstrated a higher contraction-induced glucose uptake in mdx 

muscle per unit of force produced [44]. This is despite glycolytic enzyme activities and intermediates being constitutively 

reduced, and glycogen content being higher in dystrophin-deficient muscle.  Thus the metabolic deficit appears related to 

the utilisation of energy substrates rather than their availability. Since defects in fat oxidation have also been reported 

[41,45-50], the data strongly suggests a fundamental defect at the mitochondrial level that induces deregulation of all 

metabolic systems.  

Mitochondrial dysfunction in dystrophic skeletal muscle is well documented and a key contributor to the reductions (up to 

50%) in resting ATP content [8,12,51-61]. In addition to various functional and structural mitopathic features (summarised in 

Table 1), impaired handling of mitochondrial substrates including pyruvate [10-12,27,31,46,62-66], malate [10,12,31,63-65] 

and glutamate [10,12,66,67] have been consistently reported, and produce lower oxidation rates compared to healthy 

controls. Each of these substrates drives NADH production in the first instance, followed by NADH-mediated electron flow 

and proton flux at Complex I of the ETC. Addition of succinate, on the other hand, has been shown to either restore 

[27,31,68,69] or at least partially restore oxidation rates to near control levels [10,12,63,64]. Succinate drives Complex II 

metabolism via the FADH2 that it generates, effectively bypassing Complex I. This is a widely reported feature of dystrophin-

deficient muscle metabolism and as published by us recently, strongly indicates that the metabolic deficit may be located at 

Complex I of the ETC [12]. Depressed Complex I function [70] and concomitant reductions in ATP concentration [71] is also 

a feature of dystrophin-deficient human and mdx mouse brain – this is clinically important as Ca2+-induced damage is not a 

feature of dystrophin-deficient neurons as per the skeletal musculature, suggesting that mitochondrial deficits are 

independent of the Ca2+-related pathology.  
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Table 1. The metabolic deficits of dystrophin-deficient skeletal muscle. 

 Defect Description DMD Model References 

Macronutrient 

uptake & availability 

Normal basal glucose uptake (GLUT 1) Human DMD & mdx mouse 
[41-43] 

 

Reduced contraction-induced glucose uptake 

(GLUT 4) 
mdx mouse [44] 

Reduced glucose content Human DMD & mdx mouse [41-43] 

Glycolysis 

Reduction in glycolytic intermediates  Human DMD [25] 

Reduced activity & sensitivity of glycolytic enzymes Human DMD & mdx mouse [23-26,55,72-74] 

Reduced allosteric modulation of regulatory PFK 

function 
Human DMD & mdx mouse [55,72] 

Reduced by-products of anaerobic metabolism & 

sarcoplasmic acidification 
Human DMD & mdx mouse [8,41,75] 

Glycogen storage & 

utilisation 

Increased glycogen content Human DMD & mdx mouse [76-78] 

Reduced glycogenolytic enzyme function Human DMD & mdx mouse [23-26,75,78-85] 

Fat oxidation 

Reduced substrate oxidation 
Human DMD patients & carriers; 

mdx mouse 
[41,45-50,86,87] 

Reduced total carnitine Human DMD [41,46,48-50,87] 

Reduced fatty acid transport into the mitochondria Human DMD [50] 

Creatine 

phosphagen 

system 

Reduced total creatine pool Human DMD & mdx mouse 
[41,42,51,56,57,59

,88-93] 

Reduced PCr/Pi ratio Human DMD [57,88,94] 

Reduced PCr/ATP ratio Human DMD [57,88,95] 

Reduced urinary Cr excretion (due to reduced Cr 

phosphorylation) 
Human DMD [96] 

Purine Nucleotide 

Cycle 

Reduced enzyme activities and/or content 

Increased purine degradation & loss 
Human DMD [29,58,97,98]  

Mitochondrial 

Function 

Depressed TCA enzyme activity 

Reduced respiratory rate 

Reduced ETC Complex expression, activity & 

efficiency 

Reduced performance/flexibility and coupling 

efficiency 

Isolated mitochondria, isolated 

fibres, whole muscle & cultured 

cells from human DMD patients & 

mdx mouse 

[9-

12,31,44,58,60,62-

66,68,69,79-

81,95,97-106] 

Mitochondrial 

structure & locale 

Reduced mass 

Reduced subsarcolemmal fraction 

Swollen morphology 

ETC Complex assembly 

Human DMD patients & carriers; 

mdx mouse 

[12,34,76,77,82,10

3,104,107-110] 

Overall cellular 

energy 

homeostasis 

50% reduction in resting ATP concentration Human DMD & mdx mouse [8,12,51-61] 

 
Abbreviations: GLUT1 = glucose transporter sub-type 1; GLUT4 = glucose transporter sub-type 4; G-6-P = glucose-6-phosphate; PFK = 
phosphofructokinase; PCr = phosphocreatine; Pi = inorganic phosphate; ATP = adenosine triphosphate; Cr = creatine; ETC = electron transport chain; TCA 
= tricarboxylic acid (cycle).  
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It is the working hypothesis of our group, that mitochondrial pathology forms the basis of DMD aetiology alongside 

dystrophin-deficiency [20] (Figure 1), such that much like the damage following eccentric muscle injury (Figure 1A), 

dystrophin-deficiency-mediated damage could be regulated if ATP availability was sufficient. Teamed with mitochondrial 

pathology, however, a “two-hit” scenario exacerbates muscle degeneration and wasting (Figure 1B). Indeed, DMD shares 

common metabolic and mitopathological features with various mitochondrial diseases and with aged skeletal muscle, 

including often comparable symptomology. In addition a more recent study has shown that mitochondrial dysfunction exists 

in “pre” dystrophin-deficient myoblasts prior to the typical cascade of events that are commonly believed to cause the 

progressive muscle degeneration and wasting evident in DMD [11]. Because skeletal muscle accounts for ∼40–50% of 

body weight and ∼30% of oxygen consumption at rest, it is an important regulator of overall metabolism. As such, 

mitochondrial deficits manifest vastly in the skeletal musculature and myopathy is thus characteristic of many mitochondrial 

diseases. Mitochondrial disease can arise from mutations in the maternally inherited mitochondrial DNA (mtDNA), and less 

commonly in the nuclear DNA. mtDNA resides in the matrix and encodes for the hydrogen pumping regions of the ETC 

Complexes, highlighting its integral role in the regulation of metabolism [111]. However due to its proximity to the respiratory 

chain, mtDNA is extremely vulnerable to mutation, most commonly by reactive oxygen species (ROS) produced by the 

respiratory Complexes [112,113]. Initially, this has minimal effect on mitochondrial function, until the number of mutant 

mtDNA outnumbers wild-type mtDNA. As mutant mtDNA accumulates, the bioenergetical capacity of the cell diminishes. 

Various diseases result from mtDNA mutations and manifest themselves as multisystemic pathology. These mitochondrial 

diseases share common features with DMD including varying levels of mental impairment, skeletal muscle weakness, 

cardiomyopathy and multisystem metabolic dysfunction [111,114]. Reduced activities of Complex I, III, IV and V of the ETC, 

increased ROS production and decreased ATP synthesis are common nuances of both mitochondrial diseases and 

DMD [114].  The fact that dystrophin is encoded and expressed normally in these diseases, but that they share clinical 

features with dystrophinopathy indicates the potential for a common disease origin that is not linked to dystrophin-deficiency, 

but rather the mitochondria. 

As the ETC complexes (excluding Complex II) are partially encoded by mtDNA and reports exist that describe 

mitochondrial dysfunction in DMD carriers that express dystrophin normally [115,116], maternal mtDNA mutations 

inheritance could be an origin of DMD-associated mitopathology. If not inherited, another likely origin is via the rapidly 

progressive accumulation of ROS-induced mutations similar to that which underscores senescence  [117]. Aging muscle 

shares many symptomatic characteristics of dystrophic muscle including fatigability, muscular weakness and mitochondrial 

dysfunction. In aged muscle, it appears that accumulation of mutant mtDNA leads to mitochondria with decreased oxidative 

capacity and ATP synthesis and elevated oxidative stress [111,118] which impairs muscular function and viability. Notably, 

the co-occurrence of mtDNA mutation in patients from DMD family pedigrees and/or with dystrophin gene abnormalities but 

normal dystrophin expression is increasingly observed [119-121]. This highlights a propensity for dystrophin and mtDNA 

gene mutations to co-exist. Further, missense mutations at exon 15 of the dystrophin gene in which dystrophin protein 

expression is normal, induces clinical symptomologies in human patients that are characteristic of metabolic disease and 

which include mitochondrial cytopathy [120]. Isolated cases of DMD in a human patient [122] and in GRMD dogs [123-125], 

in which a mild disease phenotype leads to a normal lifespan, at the very least highlights that the loss of dystrophin 

expression is not the sole contributor to the pathological deterioration of skeletal muscle in DMD. It seems that while indeed 

promoting sarcolemmal leakiness and skeletal muscle damage, dystrophin-deficiency can be effectively buffered by 

adaptive mechanisms in some instances. 
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Figure 1. The physiology of skeletal muscle damage and repair in healthy (A) and DMD (B) skeletal muscle. 

 

 
Schematic showing the normal physiological cascade induced by eccentric exercise-induced damage of healthy skeletal muscle (A). Eccentric damage 
causes membrane tears, Ca2+ influx from the extracellular space and increases in the intracellular Ca2+ concentration. Proteases and lipases activated by 
Ca2+, cause damage to the contractile apparatus, mitochondria, sarcoplasmic reticulum and the muscle membrane. Ca2+ uptake into the mitochondria 
stimulates oxidative phosphorylation and ATP production is increased to support ATP-fuelled Ca2+ extrusion pumps in the muscle membrane, sarcoplasmic 
reticulum and mitochondria, thus restoring intracellular Ca2+ homeostasis. ATP also fuels satellite cell replication and skeletal muscle repair, which is 
activated by the inflammatory response. In dystrophin-deficient skeletal muscle (B), the increased propensity for membrane rupture during eccentric 
contraction causes the same (but amplified) degenerative cascade. Teamed with mitochondrial dysfunction, however, the muscle has no defence against 
Ca2+ influx and a limited capacity for skeletal muscle repair due to the high metabolic nature of cell proliferation. The consequence is metabolic stress, 
muscle degeneration, insufficient repair of degeneration and muscle wasting. 
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Therapeutically targeting the mitochondria for the treatment of DMD: Insights from Idebenone  
 

Gene therapy represents the only potential cure for DMD. However, while exon skipping therapy has been successfully 

developed to restore dystrophin expression to ambulatory patients following missense mutation, appropriate curative 

therapies are not a mainstream treatment despite the dystrophin gene defect being identified some 20 years ago. Currently, 

DMD patients are treated somewhat successfully with corticosteroids, which while providing therapeutic value to the majority 

of sufferers, is not without serious side effects [126]. Thus, treatment protocols that reduce the severity and progression of 

muscle wasting must continue to be rigorously researched. Since dystrophin-deficient skeletal muscle is underscored by a 

reduced capacity for mitochondrial energy biosynthesis caused by an apparent deficit at Complex I, targeting the 

mitochondria for therapeutic intervention seems logical. Indeed, a solid body of literature has investigated the therapeutic 

potential of energy-promoting nutriceutical and metabogenic supplements for the treatment of DMD. Of these, the most 

promising is the synthetic Coenzyme Q10 (CoQ10) analogue, Idebenone, which has established therapeutic efficacy for the 

treatment of the Complex I-associated mitochondrial disease, Leber’s hereditary optic neuropathy (LHON) [127]. 

Idebenone (2,3-dimethoxy-5-methyl-6-(10-hydroxydecyl)-1,4-benzoquinone) is a short chain synthetic analogue of 

CoQ10 that has indications for the treatment of a variety of degenerative diseases associated with the vascular, central 

nervous and muscular systems. Like CoQ10, it has strong antioxidant properties and the capacity to improve mitochondrial 

respiratory chain function and cellular energy production [128]. However, Idebenone therapy has significant advantages 

over endogenous CoQ10 in that is has a lower molecular weight making it more readily incorporated into the mitochondrial 

membrane, as well as being able to positively compete with endogenous CoQ10 for protons and electrons [129]. Idebenone 

has been shown to facilitate the transfer of electrons in isolated mitochondria and avert electron leak from Complex I that 

would otherwise produce mitochondrial ROS [130], thus making it a strong regulator of mitochondrial ATP production 

capacity and oxidative stress buffering. In a recent study, Idebenone demonstrably restored electron transfer to Complex III 

in cells with genetically-induced Complex I dysfunction[131], highlighting that its primary benefit in DMD muscle could be to 

restore electron flow and ATP production by way of bypassing a defective Complex I (see Figure 2). 

Indeed, Idebenone has emerged in clinical (and pre-clinical) safety and efficacy studies as a worthy therapeutic 

candidate for the treatment of DMD. Following promising pre-clinical data  in the mdx mouse model in which protection from 

cardiomyopathy and improved voluntary running performance was a prominent feature of long-term treatment [143], 

Idebenone has been shown in clinical trials to improve respiratory function measures [132,133]. This suggests that 

Idebenone therapy affords benefit to core and limb skeletal musculature in addition to the respiratory and cardiac 

musculature, thus making it a promising therapeutic candidate for the treatment of DMD.  
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Figure 2. Schematic showing the potential of Idebenone to rescue abnormal energy production 
in mitochondria from dystrophin-deficient skeletal muscle.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
In healthy mitochondria, glycolytic, TCA and fat (β-)oxidation pathways feed primarily NADH to Complex I and to a lesser extent FADH2 to Complex II of the 
ETC. CoQ facilitates the transfer of electrons and proton pumping to establish the ∆Ψ and ATP production at Complex V (A). In DMD mitochondria, the 
delivery of reducing equivalents to the ETC is reduced (red dashed lines) and irrespective of this, Complex I dysfunction reduces ATP production at 
Complex V by up to 70% (B). Excessive mitochondrial ROS production is a consequence of this defect (B). Idebenone therapy rescues ATP production by 
effectively by-passing Complex I and facilitating electron exchange and proton pumping at Complex III. In the process of doing so, Idebenone elicits strong 
antioxidant potential by metabolising ROS to inert, non-reactive by-products.  
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Conclusions 
 

More than 50 years of basic and clinical research (in addition to the earliest observations of Meryon [134] and Duchenne 

[135] who initially documented the disease) highlights that gross metabolic impairment is an important yet often ignored 

feature of DMD-associated dystrophinopathy. We believe that mitochondrial dysfunction (specifically Complex I) is an 

aetiological modifier and promoter of the clinical progression of DMD, and that the mitochondria is a worthy candidate for 

therapeutic target. There is strong evidence that by-passing the Complex I deficit and stimulating Complex II (FADH2)-

dependent energy production with oral Idebenone therapy is efficacious both in animal models and human DMD patients. 

There are other obvious benefits of Idebenone therapy that relate to its strong antioxidant potential and membrane 

protective effects. It is thus our opinion that Idebenone represents a novel and clinically relevant therapy for the treatment of 

a key aetiological modifier of DMD. 
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