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Abstract

Nonlinear singular partial differential equations arise naturally when

studying models from such areas as Riemannian geometry, applied

probability, mathematical physics and biology.

The purpose of this thesis is to develop analytical methods to investi-

gate a large class of nonlinear elliptic PDEs underlying models from

physical and biological sciences. These methods advance the knowl-

edge of qualitative properties of the solutions to equations of the form

∆u = f(x, u) where Ω is a smooth domain in RN (bounded or pos-

sibly unbounded) with compact (possibly empty) boundary ∂Ω. A

non-negative solution of the above equation subject to the singular

boundary condition u(x) → ∞ as dist(x, ∂Ω) → 0 (if Ω 6≡ RN), or

u(x) →∞ as |x| → ∞ (if Ω = RN) is called a blow-up or large solu-

tion; in the latter case the solution is called an entire large solution.

Issues such as existence, uniqueness and asymptotic behavior of blow-

up solutions are the main questions addressed and resolved in this dis-

sertation. The study of similar equations with homogeneous Dirichlet

boundary conditions, along with that of ODEs, supplies basic tools

for the theory of blow-up. The treatment is based on devices used in

Nonlinear Analysis such as the maximum principle and the method

of sub and super-solutions, which is one of the main tools for find-

ing solutions to boundary value problems. The existence of blow-up

solutions is examined not only for semilinear elliptic equations, but

also for systems of elliptic equations in RN and for singular mixed

boundary value problems. Such a study is motivated by applications

in various fields and stimulated by very recent trends in research at

the international level.
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The influence of the nonlinear term f(x, u) on the uniqueness and

asymptotics of the blow-up solution is very delicate and still eludes

researchers, despite a very extensive literature on the subject. This

challenge is met in a general setting capable of modelling competition

near the boundary (that is, 0 · ∞ near ∂Ω), which is very suitable to

applications in population dynamics. As a special feature, we develop

innovative methods linking, for the first time, the topic of blow-up

in PDEs with regular variation theory (or Karamata’s theory) arising

in applied probability. This interplay between PDEs and probability

theory plays a crucial role in proving the uniqueness of the blow-up

solution in a setting that removes previous restrictions imposed in the

literature. Moreover, we unveil the intricate pattern of the blow-up

solution near the boundary by establishing the two-term asymptotic

expansion of the solution and its variation speed (in terms of Kara-

mata’s theory).

The study of singular phenomena is significant because computer

modelling is usually inefficient in the presence of singularities or fast

oscillation of functions. Using the asymptotic methods developed by

this thesis one can find the appropriate functions modelling the sin-

gular phenomenon. The research outcomes prove to be of significance

through their potential applications in population dynamics, Rieman-

nian geometry and mathematical physics.
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• Ĉırstea, F.-C. and V. Rădulescu, Boundary blow-up in nonlinear el-

liptic equations of Bieberbach–Rademacher type, submitted for pub-

lication to Transactions of the American Mathematical Society.
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Notation

RN : Euclidian N -space, N ≥ 2, with points x = (x1, . . . , xN), xi ∈ R (real

numbers); |x| =
(∑N

i=1 x
2
i

)1/2

.

∂Ω: boundary of Ω; Ω = closure of Ω = Ω ∪ ∂Ω.

ω ⊂⊂ Ω: ω is an open set strongly included in Ω, i.e., ω is compact and ω ⊂ Ω.

∇u = (∂u/∂x1, . . . , ∂u/∂xN)=gradient of u.

β = (β1, . . . , βN), βi = integer ≥ 0; we define

Dβu =
∂|β|u

∂xβ1

1 · · · ∂xβN

N

, where |β| =
N∑
i=1

βi is a multi-index.

∆u =
∑N

i=1 ∂
2u/∂x2

i= Laplacian of u.

C(Ω) (C(Ω)): the set of continuous functions on Ω (Ω).

Ck(Ω): the set of functions having all derivatives of order ≤ k continuous in

Ω (k = integer ≥ 0); C∞(Ω) = ∩k≥0C
k(Ω).

Ck(Ω): the set of functions in Ck(Ω) all of whose derivatives of order ≤ k

have continuous extensions to Ω; C∞(Ω) = ∩k≥0C
k(Ω).

suppu: the support of u, the closure of the set on which u 6= 0.

Cc(Ω): the set of continuous functions with compact support in Ω.

Ck
c (Ω) = Ck(Ω) ∩ Cc(Ω), where k = integer or k = ∞.

C0,µ(Ω) =

{
u ∈ C(Ω) : sup

x,y∈Ω

|u(x)− u(y)|
|x− y|µ

}
with 0 < µ < 1.

Ck,µ(Ω) = {u ∈ Ck(Ω) : Dju ∈ C0,µ(Ω) ∀j, |j| ≤ k}.

Lp(Ω) =

{
u is measurable on Ω :

∫
Ω

|u(x)|p dx <∞
}

, 1 ≤ p <∞.

L∞(Ω) = {u is measurable on Ω : |u(x)| ≤ C a.e. in Ω, for some C > 0}.
W 1,p, W 1,p

0 , H1 = W 1,2, H1
0 = W 1,2

0 , Hm = Wm,2 Sobolev spaces.



Chapter 1

Introduction
“Nothing happens unless first a dream.” (Carl Sandburg)

1.1 Background

A great number of processes in the applied sciences are modelled by nonlinear

partial differential equations (PDEs). Many interesting phenomena arise due to

the nonlinearity of the problems. The desire to describe and predict such phenom-

ena continues to produce a profound impact on research objectives in both pure

and applied mathematics. This has strongly influenced the development of the

modern theory of partial differential equations (Gilbarg and Trudinger (1983)),

as well as that of the calculus of variations, nonlinear functional analysis (Brezis

(1983)) and numerical analysis (see for example Brezis and Browder (1998)).

A very remarkable property of nonlinear problems is the possibility of the

eventual occurrence of singularities. For instance, they can arise through the

boundary conditions (blow-up on the boundary) or through the singularities con-

tained in the coefficients/nonlinearities of the problem. A broad spectrum of

nonlinear problems underlying models from the physical and biological sciences

leads to the study of nonlinear PDEs with singular boundary conditions.

The study of singular PDEs, and specifically boundary blow-up problems, has

attracted considerable attention starting with the pioneering work of Bieberbach

(1916). This interest has been reignited in the last decades from the need to give

rigorous answers to important questions of the nonlinear world.

1



1.1 Background

Several models of stochastic control problems involving constraints on the

state of the system can be converted to nonlinear second-order elliptic equations

with singular boundary conditions via a dynamic programming approach (Lasry

and Lions (1989)). Singular boundary conditions may be encountered and be

of fundamental use to more general quasilinear elliptic equations such as: the

Hamilton-Jacobi-Bellman equations, first-order Hamilton-Jacobi equations, and

Monge-Ampère equations (see, e.g., Brezis (1984), Castillo and Albornoz (2003),

Crandall and Lions (1987), Trudinger (1986), Urbas (1998, 1999)).

Existence, uniqueness and rate explosion on the boundary for a class of quasi-

linear elliptic equations are given by Bandle and Giarrusso (1996), Diaz et al.

(1996). Gradient bounds and existence were obtained in Lasry and Lions (1989).

Local gradient estimates are also provided by Gilbarg and Trudinger (1983), Lasry

and Lions (1989), Castillo and Albornoz (2003).

There have been a number of studies that give a rigorous mathematical treat-

ment of the dynamics of some population models (Du and Huang (1999)) includ-

ing the predator-prey model (Dancer and Du (2002)) and the competition model

(Du (2002a,b)). These works have argued that the qualitative properties of the

solutions for singular elliptic PDEs play a crucial role in the understanding of the

dynamic behavior for various population models (see also Du (2003)).

In this dissertation, the main concern lies in the theory of blow-up for vari-

ous classes of semilinear elliptic equations which allow for competition near the

boundary. Innovative methods are advanced to settle very challenging questions

that have not yet been answered despite vigorous investigation. These methods,

which have not been previously exploited in the literature, will contribute to the

understanding of the blow-up phenomenon in a general setting. The objectives

are principally determined by the latest developments and/or by the theoretical

and practical motivation of the equations dealt with.

Singular boundary conditions for semilinear elliptic equations of the form

∆u = f(x, u) in Ω, (1.1)

where Ω is a domain in RN , arise naturally when studying models from Rieman-

nian geometry (Bieberbach (1916), Loewner and Nirenberg (1974)), mathematical

physics (Rademacher (1943)), applied probability (le Gall (1994), Dynkin (1991)),
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1.1 Background

and population dynamics (Du and Huang (1999), Garćıa-Melián et al. (2001)).

Suitable choices of the nonlinear term meet the need of various applications: the

equilibrium of a charged gas in a container (Rademacher (1943)), PDEs invariant

under conformal or projective transformations (Loewner and Nirenberg (1974)),

or related questions to the classical Thomas-Fermi equations (Robinson (1971)).

A non-negative solution of (1.1), subject to the singular boundary condition

u(x) → ∞ as dist(x, ∂Ω) → 0 if Ω 6≡ RN is a bounded/unbounded domain with

compact boundary ∂Ω, or u(x) → ∞ as |x| → ∞ if Ω = RN , is called a blow-

up or large solution; in the latter case the solution is referred to as an entire

large solution. We adhere to the definition of a large solution which includes the

non-negativity property of the solution as it appears, for instance, in Bandle and

Marcus (1992a,b), Marcus (1992). If the set of positive solutions P of (1.1) is not

empty, then a solution U will be called a maximal solution if it dominates every

function in P (see Bandle and Marcus (1992b)).

The most relevant literature regarding the blow-up theory for nonlinear elliptic

equations (semilinear, in particular) is reviewed in what follows. When Ω has a

compact boundary, the focus falls mostly on the case that ∂Ω is smooth (at least

C2); it will only be specified if less boundary regularity is involved.

The review refers to the topic of large solutions for scalar equations (§1.2) as

well as for systems of equations (§1.3), while §1.2 is organized around the main

themes of subsequent research on the subject. One may wish to examine, in as

general a framework as possible, three basic questions (McKenna et al. (1997)):

1. Does a large solution exist?

2. Is such a solution unique?

3. How does blow-up occur at the boundary?

Another area of study refers to the existence of multiple blow-up solutions

(initiated by McKenna et al. (1997) for the p-Laplacian). There is relatively little

information in the literature on the multiplicity of blow-up solutions (whose def-

inition, in this context, does not require non-negative solutions). On the grounds

that this issue goes beyond the scope of this thesis, the literature related to it is

omitted.
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1.2 Large Solutions for Scalar Equations

1.2 Large Solutions for Scalar Equations

1.2.1 Existence

The question of existence of large solutions to equations of the form ∆u = f(u) in

a bounded domain Ω was first addressed by Keller (1957) and Osserman (1957),

who arrived at the same conclusion independently. As a main finding, they proved

that, subject to some regularity assumptions and restrictions on the growth of

f(u), the positive solutions, u, are uniformly bounded from above on compact

subsets of Ω. When f is locally Lipschitz continuous and non-decreasing on

[0,∞) with f(0) ≥ 0, then they provide a necessary and sufficient condition for

the existence of large solutions, namely∫ ∞
1

dt√
F (t)

<∞, where F (t) =

∫ t

0

f(s) ds. (1.2)

Classical examples of nonlinearities satisfying (1.2) are: f(u) = eu and f(u) =

up (p > 1). There exists an intensive study of their corresponding blow-up models:

(a) The exponential model

∆u = eu in Ω ⊂ RN (N ≥ 2) (1.3)

originally analyzed by Bieberbach (1916) (N = 2) and Rademacher (1943)

(N = 3), but considered later in papers such as Lazer and McKenna (1993,

1994) and Bandle (2003).

(b) The power model

∆u = up in Ω ⊂ RN , where p > 1. (1.4)

The special case p = (N +2)/(N −2) (where N > 2) arising in Riemannian

geometry has been studied by Loewner and Nirenberg (1974); their results

have been extended by Bandle and Marcus (1992a) for any p > 1.

Matero (1996) extends previous results of Bandle and Essén (1994) on the

existence/uniqueness of large solutions for (1.3) and (1.4) to the case of domains

with a uniform interior and exterior cone condition. By constructing suitable

4



1.2 Large Solutions for Scalar Equations

barriers in a cone, Matero obtains uniform a priori lower and upper bounds for

the growth of the solutions and their gradient near ∂Ω. As an application, a

boundary blow-up solution in a two-dimensional domain with fractal boundary,

called the von Koch snowflake domain, is constructed.

The understanding of models like (1.3) and (1.4) permitted a later develop-

ment of the blow-up theory for nonlinear elliptic equations (Bandle et al. (1994),

Bandle et al. (1997), Bandle and Porru (1994), Du and Huang (1999), Marcus

(1992), Marcus and Véron (1997), Ratto et al. (1994)).

Current research focuses on developing new methods to investigate the qual-

itative properties of the blow-up solutions. The simple replication of previous

ideas does not work when dealing with a more general setting.

The qualitative study of the large solutions to equations of the form

∆u = f(x, u) in Ω ⊂ RN , (1.5)

brings significant new challenges. This study necessitates a careful analysis of the

terms involved in the nonlinearity of f(x, u). The researchers have investigated

problems which combine an absorption term f(u) with a weight function b(x).

Cheng and Ni (1992) demonstrated that the equation

∆u = b(x)up in Ω ⊂ RN , p > 1, (1.6)

considered in a bounded domain Ω, has a large solution assuming that the smooth

function b ≥ 0 is positive on ∂Ω. This result was extended by Marcus (1992) to

nonlinearities of the form b(x)f(u) with b as before and f satisfying the Keller–

Osserman growth condition (1.2). The existence of the maximal solution U of

(1.6) in RN has been established by Cheng and Ni (1992), provided that at

least a positive entire solution (that is, defined in RN) exists and RN may be

approximated by an increasing sequence of smooth bounded sub-domains (Ωn)n≥1

such that b is positive on ∂Ωn. Moreover, U is the unique entire large solution if,

in addition, for some l > 2 there are two positive constants C1, C2 such that

C1b(x) ≤ |x|−l ≤ C2b(x) for large |x|. (1.7)

A question that received less attention is whether the above results remain

valid under a more general condition on b which allows it to vanish on large
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1.2 Large Solutions for Scalar Equations

parts of Ω as well as on ∂Ω (resp., at infinity) if the domain is bounded (resp.,

unbounded). Among the papers studying this question are Bandle and Marcus

(1992b), Marcus (1992), Lair and Wood (1999).

Bandle and Marcus (1992b) treat the equation (1.6) where b(x) may vanish

at a finite number of points in Ω and (if Ω is an outer domain) it may tend

to zero at infinity or be unbounded. When b(x) = |x|ν the radially symmetric

large solutions in a ball or the complement of a ball are analyzed by studying

the corresponding system of ordinary differential equations in the phase plane

(obtained after an Emden transformation); to this system the standard results

concerning perturbed linear systems (see Hartman (1982)) can be applied. The

existence (as well as uniqueness and behavior at the boundary/at infinity) of large

solutions in general domains is also procured.

One limitation of the methods given by a number of papers is that they apply

when b > 0 on ∂Ω or in a neighborhood of infinity (Cheng and Ni (1992), Bandle

and Marcus (1992b), Marcus (1992)). Although more general nonlinear terms

are involved in Bandle and Marcus (1992a) and Lazer and McKenna (1994), b

is bounded and bounded away from zero. To remove such a restriction on b

unfortunately results in mathematical difficulty.

In §2.1 of Chapter 2 we deal with this issue for elliptic equations of the form

∆u = b(x)f(u) in Ω, (1.8)

where b is a smooth non-negative function. The existence of large solutions

on bounded domains is established under general assumptions on f , while b(x)

vanishes in Ω in a certain way namely, which holds if b > 0 on ∂Ω. By suitably

adjusting the vanishing condition on b when Ω is an unbounded domain (possibly,

RN) we obtain the existence of a maximal classical solution U of (1.8). Under an

additional assumption on b, which is weaker than (1.7) and allows b to vanish at

infinity, the maximal solution U is found to be a large solution.

The task of permitting b to be zero on some regions of the domain becomes

more important and difficult as the accuracy of the mathematical model describ-

ing the real phenomenon increases. This objective is pursued, for instance, in

the context of mathematical biology (see e.g., López-Gómez (2000), Du and Ma

(2002), Du (2003)).
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1.2 Large Solutions for Scalar Equations

PDEs arising in Mathematical Biology

A problem of interest in the study of population biology of one species is

Fisher’s equation, which was also investigated by Kolmogorov et al. (1937). As-

suming that

(a) the species disperse randomly in a bounded environment;

(b) the reproduction of the species follows logistic growth;

(c) the boundary of the environment is hostile to the species;

(d) the diffusion does not depend on the space variable,

then the concentration of the species or the population density satisfies a reaction-

diffusion equation, called Fisher’s equation after Fisher (1937), subject to initial

and boundary conditions (Oruganti et al. (2002)). The stationary version of

Fisher’s equation is referred to as the diffusive logistic equation. Great attention

has been given to this equation and to its more general form{
∆u+ au = b(x)up in Ω ⊆ RN ,

u = 0 on ∂Ω,
(1.9)

where p > 1 and a ∈ R is a parameter. This equation is a basic population

model (Hess (1991)). Many studies related to (1.9) have assumed that the smooth

function b is positive and bounded away from zero (cf. Garćıa-Melián et al. (1998)

and López-Gómez (2000)). In this case (1.9), known as the logistic equation, has

been proposed as a model for the population density of a steady-state single

species when the domain is surrounded by inhospitable areas (Murray (1993)).

It is known that when b ∈ C0,µ(Ω) is positive, then (1.9) has a unique positive

solution if and only if a > λ1(Ω), where λ1(Ω) denotes the first eigenvalue of{
−∆u = λu in Ω,

u = 0 on ∂Ω.
(1.10)

Not until recently has the case been tackled when b(x) vanishes on some sub-

domain of Ω corresponding to the general problem when the species u is free from

crowding effects on some sub-domain of Ω (Brezis and Oswald (1986), Alama and

Tarantello (1996), Ambrosetti and Gámez (1997), Dancer (1996), Garćıa-Melián

et al. (1998), López-Gómez (2000), Dancer et al. (2003)). Equation (1.9) has also
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1.2 Large Solutions for Scalar Equations

been considered in the context of the prescribed curvature problem on compact

manifolds (Kazdan and Warner (1975), Ouyang (1992), and del Pino (1994)).

In mathematical biology, when b is positive on a proper sub-domain Ω′ ⊂
Ω
′ ⊂ Ω and b = 0 on Ω \ Ω′, Ω represents the region inhabited by the species u,

a measures its birth rate, while b(x) denotes the capacity of Ω′ to support the

species u (Garćıa-Melián et al. (1998)). Since the unknown u corresponds to the

density of the population, only positive solutions of this problem are of interest.

Studies such as Brezis and Oswald (1986), Fraile et al. (1996), Ouyang (1992),

Dancer (1996) demonstrate that (1.9) admits positive solutions if and only if

λ1(Ω) < a < λ1(Ω \ Ω′),

where λ1(Ω \ Ω′) stands for the first Dirichlet eigenvalue of (−∆) in Ω \ Ω′;

moreover, for a in the above range, (1.9) admits a unique positive solution ua;

a 7→ ua is a continuous map from (λ1(Ω), λ1(Ω\Ω′)) to C2,µ(Ω), and ‖ua‖L∞ →∞
as a↗ λ1(Ω \Ω′). For the study of related problems in the whole space we refer

to Du (2003) and the references therein.

As mentioned in Garćıa-Melián et al. (2001), the understanding of the asymp-

totics for the logistic equation leads naturally to the study of large solutions. The

exact pointwise growth of the positive solutions as a approaches the upper bound

λ1(Ω \ Ω′) is ascertained by Garćıa-Melián et al. (1998): the solutions grow to

infinity uniformly on compact subsets of Ω \ Ω′ and they stabilize in Ω′ to the

minimal solution of the boundary blow-up problem{
∆u+ au = b(x)up in Ω′,

u = ∞ on ∂Ω′,
(1.11)

being a = λ1(Ω \ Ω′) and b ≡ 0 on ∂Ω′ in this precise case.

The main feature of (1.11) is that b vanishes on the whole boundary of the

domain. The appearance of a vanishing weight b(x) induces a new phenomenon.

The critical combination, manifested near the boundary, between the explosive

absorption term up and vanishing b(x) greatly influences the qualitative properties

of the blow-up solutions.

Demonstration of the existence of a minimal/maximal large solution for equa-

tions of the type (1.11) is carried out by Garćıa-Melián et al. (2001). They also
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1.2 Large Solutions for Scalar Equations

find the existence of (at least) a classical C2,µ(Ω′)-solution blowing-up on ∂Ω′ for

a class of perturbed problems, where the perturbation is of a lower order than up

at infinity.

The understanding of various models in population dynamics (Du and Huang

(1999), Dancer and Du (2002), Du and Guo (2003), Du (2003)) is based on the

study of nonlinear elliptic problems of a singular nature which may also exhibit

the Neumann/Robin boundary condition. The logistic equation in Du and Huang

(1999) features an infinite Dirichlet boundary condition on the interior boundary

of the domain (where b vanishes), while a Dirichlet or Neumann/Robin boundary

condition is assumed on the exterior boundary.

Garćıa-Melián et al. (2001) and Du and Huang (1999), while considering the

competing case 0 · ∞ near the boundary where blow-up arises, restrict b(x) to

be positive in the domain. The above studies establish the existence of the min-

imal/maximal blow-up solution for any a ∈ R. In order to see how the situation

changes if b is allowed to vanish on a proper subset of the domain and how

nonlinearities other than up (p > 1) interact with b(x) raises further difficulties.

The source of such questions is the work Alama and Tarantello (1996), which

contains an exhaustive study of the positive solutions to the logistic problem{
∆u+ au = b(x)f(u) in Ω,

u = 0 on ∂Ω,
(1.12)

for a wide class of functions f (including f(u) = up with p > 1), where a is a real

parameter and the potential b vanishes in Ω.

López-Gómez (2000) gives the existence of regular and large solutions for a

class of nonlinear elliptic boundary value problems of logistic-type, where the non-

negative function b can vanish on a finite number of smooth interior sub-domains

Ωi, i ∈ {1, . . . , r}. Let σ1 ≤ σ2 ≤ . . . ≤ σr denote the principal eigenvalues of the

Laplace operator with Dirichlet boundary conditions in Ωi. López-Gómez (2000)

shows that if σi ≤ a < σi+1, then there exist positive solutions of the elliptic

problem (1.12) in Ω \∪ik=1Ωk going to infinity on ∂(∪ik=1Ωk), while they satisfy a

Dirichlet boundary condition on the rest of the boundary.

In Chapter 3 we establish a necessary and sufficient condition for the existence

of large solutions of logistic-type equations, where b ≥ 0 on Ω is zero on a sub-
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domain whose boundary is not necessarily smooth. We distinguish between the

case of a complete blow-up on the boundary (§3.1) and a partial boundary blow-

up (e.g., on an interior boundary) coupled with a Dirichlet, Neumann or Robin

boundary condition on the rest of the boundary (e.g., on the exterior boundary)

(§3.2 and §3.3).

1.2.2 Uniqueness

The subject of boundary blow-up originated with the work of Bieberbach (1916)

for the semilinear elliptic equation

∆u = eu in Ω ⊂ R2, (1.13)

where Ω is a smooth bounded domain. Problems of this type arise in Riemannian

geometry; if a Riemannian metric of the form |ds|2 = e2u(x)|dx|2 has constant

Gaussian curvature −c2, then ∆u = c2e2u. Bieberbach showed that there exists

a unique large solution of (1.13) such that

u(x)− log(d(x)−2) is bounded as d(x) := dist (x, ∂Ω) → 0.

Motivated by a problem from mathematical physics, Rademacher (1943) contin-

ued this study on smooth bounded domains in R3. Later, Lazer and McKenna

(1993) generalized the results of Bieberbach (1916) and Rademacher (1943) for

bounded domains in RN satisfying a uniform external sphere condition and for

nonlinearities of the type b(x)eu, where b is continuous and positive on Ω.

The issues of uniqueness and asymptotic behavior of the large solutions near

the boundary were first linked by Loewner and Nirenberg (1974). Their philoso-

phy of getting the uniqueness by proving that any large solution blows-up on the

boundary at the same rate, has been successfully applied for many classes of prob-

lems. Initially, this idea has been investigated in connection with problems from

Riemannian geometry. In dimension N ≥ 3, the notion of Gaussian curvature has

to be replaced by scalar curvature. If a metric of the form |ds|2 = u(x)4/(N−2)|dx|2

has constant scalar curvature −c2, then u satisfies

∆u =
(N − 2)c2

4(N − 1)
u

N+2
N−2 in Ω. (1.14)
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Loewner and Nirenberg (1974) described the precise asymptotic behavior at the

boundary of large solutions to (1.14) and used this result in order to establish the

uniqueness of the solution. Their main result is derived under the assumption

that ∂Ω consists of the disjoint union of finitely compact C∞ manifolds, each

having codimension less than N/2 + 1. More precisely, the uniqueness of a large

solution is a consequence of the fact that every large solution u satisfies

u(x) = Γ(d(x)) + o(Γ(d(x))) as d(x) → 0, (1.15)

where Γ is defined by

Γ(t) =

[
ct√

N(N − 1)

]−(N−2)/2

, for all t > 0. (1.16)

Kondrat’ev and Nikishkin (1990) found the leading term of the asymptotic

expansion near the boundary of a large solution to Lu = up (p > 1) in Ω, where

∂Ω is a C2-manifold and L is a more general second order elliptic operator than

∆. As a corollary, the uniqueness of the large solution is obtained when p ≥ 3.

Dynkin (1991) showed that there exist certain relations between hitting prob-

abilities for some Markov processes called superdiffusions and maximal solutions

of ∆u = up, 1 < p ≤ 2. By means of a probabilistic representation, le Gall (1994)

proved a uniqueness result in domains with non-smooth boundary when p = 2.

The asymptotic behavior of large solutions near the boundary and the unique-

ness of such solutions can be obtained by suitable comparison with singular ODEs

(Bandle and Marcus (1992a), Lazer and McKenna (1994)). The approach in these

works applies to equations of the form

∆u = f(u) in Ω ⊂ RN a bounded domain, (1.17)

for a general class of nonlinearities (including f(u) = up for any p > 1 and

f(u) = eu). Bandle and Marcus (1992a) prove that when f ∈ C1[0,∞) is a

positive and non-decreasing function on (0,∞) with f(0) = 0 and

∃µ > 0 and s0 ≥ 1 such that f(τs) ≤ τµ+1f(s) ∀τ ∈ (0, 1) ∀s ≥ s0/τ, (1.18)

then any large solution of (1.17) has the same blow-up rate near ∂Ω:

lim
d(x)→0

u(x)

Z(d(x))
= 1, (1.19)
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where Z is a chosen solution of the singular ordinary differential equation{
Z ′′(r) = f(Z(r)), r ∈ (0, δ), for some δ > 0,

Z(r) →∞ as r → 0+.
(1.20)

If, in addition, f(τs) ≤ τf(s), for all τ ∈ (0, 1) and s > 0, then uniqueness of

the large solution occurs. Lazer and McKenna (1994) consider the case when

the C1-function f is either defined and positive on R or is defined on [a0,∞)

with f(a0) = 0 and f(s) > 0 for s > a0. Their analysis is performed on domains

satisfying both a uniform internal sphere condition and a uniform external sphere

condition with the same constant R1 > 0. They give conditions for which all large

solutions of (1.17) fulfill the stronger asymptotic behavior

lim
d(x)→0

[u(x)− Z(d(x))] = 0, for any Z satisfying (1.20). (1.21)

Namely, f is non-decreasing on its domain and f ′ is non-decreasing on some

neighborhood of infinity such that lims→∞ f
′(s)/

√
F (s) = ∞, where F is an anti-

derivative of f . The existence and uniqueness of large solutions is also ensured.

Whilst the papers by Bandle and Marcus (1992a), Lazer and McKenna (1994)

are important contributions to the understanding of the existence, uniqueness

and asymptotic behavior of large solutions to (1.17), their methods have certain

limitations. For instance, apart from examples such as f(u) = up (p > 1) or

f(u) = eu, it is quite involved to compute a solution of the singular ODE equa-

tion (1.20) (chosen in Bandle and Marcus (1992a) as
∫∞
Z(t)

[
√

2F (s)]−1/2 ds = t).

Computationally speaking, a much more convenient formula is desirable. On the

other hand, when f(u) = up (p > 1), the variation speed of the large solution u

of (1.17) is dramatically changed from that corresponding to f(u) = eu. This can

be seen from the fact that in the former situation,

lim
d(x)→0

u(x)

[d(x)]2/(1−p)
=

[
p− 1√
2(p+ 1)

]2/(1−p)

, (1.22)

while in the latter case, the blow-up rate of u is much slower, as shown by

lim
d(x)→0

u(x)

ln[d(x)]−2
= 1. (1.23)
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Thus, a better understanding of the blow-up phenomenon might be possible by

treating power-like nonlinearities separately from those of the exponential type.

Recent trends in research support this viewpoint in the context of mathematical

biology, where f(u) = up (p > 1) is of special interest.

The focus of much of the recent literature (Du and Huang (1999), Garćıa-

Melián et al. (2001), Du and Guo (2003), López-Gómez (2003), Du (2004)) is on

the qualitative properties of the large solutions to equations such as

∆u+ au = b(x)up in Ω ⊂ RN is a bounded domain, (1.24)

where a ∈ R is a parameter, b ∈ C0,µ(Ω), 0 < µ < 1, is a non-negative function,

as well as to the boundary value problem{
∆u+ au = b(x)up in Ω,

Bu = 0 on ΓB := ∂Ω \ Γ∞,
(1.25)

where Γ∞ is a non-empty open and closed subset of ∂Ω (Γ∞ 6= ∂Ω) and B denotes

any of the Dirichlet, Neumann or Robin boundary operators. A non-negative

solution of (1.25) satisfying u(x) → ∞ as x → Γ∞ is called a large solution of

(1.25).

The above works have the merit of considering the case when the function b

in (1.24) and (1.25) is identically zero on the boundary where the blow-up occurs

(that is, on Γ∞, where we understand Γ∞ = ∂Ω for (1.24)). This is a natural

restriction inherited from the logistic equation (see (1.11)).

Determining the effect of the competition 0 · ∞ between b(x) and up on the

behavior of the large solution near Γ∞ raises new and interesting challenges in

the study of nonlinear PDEs. This issue has only partially been resolved at the

cost of imposing a certain decay rate on b(x) near Γ∞.

Du and Huang (1999), Garćıa-Melián et al. (2001) show that if

lim
d(x,Γ∞)→0

b(x)

d(x,Γ∞)α
= β, for some constants α ≥ 0 and β > 0, (1.26)

and b > 0 in Ω \ Γ∞, then (1.24) and (1.25) admit a unique large solution ua,

for each a ∈ R. The advantage of (1.26) is that it helps determine the dominant

term in (1.24) near Γ∞. Based on this, suitable upper and lower solutions near
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the boundary are built. Using a local argument and some comparison criteria it

is found that the singular character of any large solution u at Γ∞ is governed by

a uniform rate of explosion, namely

lim
d(x,Γ∞)→0

u(x)

[d(x,Γ∞)](α+2)/(1−p) =

[
(α+ 2)(α+ p+ 1)

β(p− 1)2

]1/(p−1)

. (1.27)

Further improvements of this result are given by Du and Guo (2003) and López-

Gómez (2003). Local blow-up estimates are deduced by López-Gómez (2003) and

Du (2004), whose argument relies on the construction of a family of lower/upper

solutions on small annuli with partial boundary blow-up. Du (2004) demonstrates

that if B is an open ball in RN such that x∗ ∈ Γ∞ ∩ B and

lim sup
x→x∗,x∈Ω

b(x)

d(x,Γ∞)α
≤ β, for some constants α ≥ 0 and β > 0, (1.28)

then, for any positive solution of (1.24) in Ω ∩ B, subject to u|Γ∞∩B = ∞,

lim inf
x→x∗,x∈Cx∗,ω

u(x)

[d(x,Γ∞)](α+2)/(1−p) ≥
[
(α+ 2)(α+ p+ 1)

β(p− 1)2

]1/(p−1)

, (1.29)

holds for all ω ∈ (0, π/2), where nx∗ is the outward unit normal of ∂Ω at x∗ and

Cx∗,ω = {x ∈ Ω : angle(x− x∗,−nx∗) ≤ π/2− ω}.

When “lim sup” and “≤” in (1.28) are replaced by “lim inf” and “≥”, then one

must change these accordingly in (1.29). These local estimates, together with an

iteration technique due to Safonov (reproduced by Kim (2002)), are utilized by

Du (2004) to relax the uniqueness condition (1.26) to

β1d(x,Γ∞)α ≤ b(x) ≤ β2d(x,Γ∞)α for x ∈ Ω, d(x,Γ∞) ≤ δ, (1.30)

where δ > 0, β2 ≥ β1 > 0 and α ≥ 0 are constants.

The above mentioned papers advance knowledge on the uniqueness and asymp-

totics of the large solution in the particular setting f(u) = up (p > 1) and b(x)

which is positive in Ω \ Γ∞ and satisfies either (1.26) or (1.30). Their methods

take full advantage of the interaction between up and b(x), which helps to deter-

mine the dominant term of (1.24) near Γ∞. It is demanding, however, to find
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1.2 Large Solutions for Scalar Equations

the corresponding dominant term when nonlinearities of f other than the super-

linear powers compete with a non-negative function b whose behavior near Γ∞ is

not necessarily ruled by (1.30). Thus, to discover the qualitative behavior of the

large solutions in a more general framework involving competition 0 ·∞ near the

boundary requires new and effective tools.

The techniques introduced in Chapters 4 and 5, which rely crucially on regu-

lar variation theory (§4.1) and its extensions (§5.3.2), will be used to answer the

proposed challenge. The uniqueness and blow-up rate of the large solution will

be uncovered for nonlinearities varying regularly (as a power function) (Chapter 4

and §5.2 of Chapter 5) as well as rapidly (as an exponential one) (§5.3 of Chap-

ter 5). Note that the decay rate of b(x) at the boundary Γ∞ is not required to

satisfy (1.26) (that is, β can be zero or infinity, for any α > 0). Local blow-up

estimates are also provided, which in the particular case of (1.28) refine the find-

ings of Du (2004) and López-Gómez (2003) by dropping the restriction x ∈ Cx∗,ω
in (1.29).

1.2.3 Asymptotic Behavior

Motivated by a close relationship to the uniqueness issue, the asymptotic behavior

of the large solutions for equations such as ∆u = f(u) in Ω has been of interest

in a series of papers (for example Bandle and Essén (1994); Bandle and Marcus

(1992a, 1995, 1998); del Pino and Letelier (2002); Greco and Porru (1997); Lazer

and McKenna (1994)).

The first order approximation turns out to be independent of the geometry of

the domain Ω, depending only on the distance function to the boundary d(x) =

dist(x, ∂Ω). The first term in the asymptotic expansion of the large solution near

the boundary for the exponential or power model, namely (1.3) or (1.4), is given

by (1.23) or (1.22). The second order effects were first addressed by Lazer and

McKenna (1994), who found that for power nonlinearities f(t) = tp with p > 3

u(x)− [γd(x)]2/(1−p) = 0, where γ =
p− 1√
2(p+ 1)

,

while for the exponential function f(t) = et,

lim
d(x)→0

(
u(x)− ln

2

[d(x)]2

)
= 0.
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1.2 Large Solutions for Scalar Equations

Secondary effects in the asymptotic behavior of large solutions were also studied

in Bandle and Marcus (1998), Greco and Porru (1997) under various general

assumptions on f . The role of the boundary curvature has been underscored by

Bandle and Marcus (1998) for balls and annuli, under weak assumptions on the

nonlinearity f . Further extensions of these results to arbitrary bounded smooth

domains can be found in Bandle (2003), del Pino and Letelier (2002) for equations

with power nonlinearities and in Bandle (2003) for the exponential nonlinearity.

Based on suitable upper and lower solutions constructed in del Pino and

Letelier (2002) and on estimates in Bandle and Marcus (1998), it is proved by

Bandle (2003) that for f(t) = tp (p > 1)

u(x) = [γd(x)]2/(1−p)
(

1 +
(N − 1)H(σ(x))

p+ 3
d(x) + o(d(x))

)
as x→ ∂Ω, (1.31)

and for f(t) = et

u(x) = ln
2

[d(x)]2
+ (N − 1)H(σ(x))d(x) + o(d(x)) as x→ ∂Ω. (1.32)

In the above, σ(x) denotes the projection of x to ∂Ω, while H(σ) stands for the

mean curvature of ∂Ω at σ. The asymptotic expansion (1.31) corresponding to

general domains is given by del Pino and Letelier (2002) in the case 1 < p < 3.

The uniqueness and explosion rate of the large solution in domains exhibiting a

corner has been treated in more generality by Marcus and Véron (1997).

Secondary effects in the blow-up behavior of the solution on arbitrary smooth

domains and for a general class of nonlinearities f (including the power and

exponential cases) are provided by Bandle and Marcus (2004).

This well developed and focused line of inquiry on the asymptotic expansion

of the large solution to ∆u = f(u) in a smooth bounded domain Ω proves the

dependence of the second explosive term on the curvature of the boundary. How-

ever, it is worth investigating whether the same phenomenon manifests itself when

a non-negative potential b(x), identically zero on the boundary ∂Ω, competes to

f(u). In this generality, the query raises significant difficulties even when a first

order approximation of the blow-up at the boundary is required (see §1.2.2).

A positive but partial answer to the above question has been given by Garćıa-

Melián et al. (2001), who establish the two-term asymptotic expansion of the
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1.2 Large Solutions for Scalar Equations

large solution to the logistic equation

∆u+ au = b(x)up in Ω ⊂ RN ,

where Ω is a bounded domain, p > 1 and a is a real parameter (more generally,

a is a smooth function on Ω). Here b ∈ C0,µ(Ω) is positive in Ω, but vanishes on

∂Ω as follows

b(x) = C0[d(x)]
α(1 + C1d(x) + o(d(x)) as d(x) → 0, (1.33)

for some constants C0, α > 0 and C1 ∈ R. They then prove that the second

approximation of the explosion rate of the solution involves both the distance

function and the mean curvature H of ∂Ω, namely

u(x) = [γ̃d(x)]
α+2
1−p (1 +B(σ(x))d(x) + o(d(x))) as x→ ∂Ω, (1.34)

where γ̃ =
(

(p−1)2C0

(α+2)(α+p+1)

)1/(α+2)

and

B(σ(x)) =
(N − 1)H(σ(x))− C1(α+ p+ 1)/(p− 1)

α+ p+ 3
.

Drawing a parallel between Bandle (2003) and Garćıa-Melián et al. (2001), the

asymptotic expansion (1.34) can be seen as a refinement of (1.31), since the latter

could be recovered if one forced (C0, α, C1) = (1, 0, 0) in (1.33).

While the influence of the curvature of the boundary on the second term in the

expansion of the large solution for ∆u = b(x)f(u) in Ω has been demonstrated

when no competition near the boundary arises, the picture is far from being

understood otherwise. Could this influence be broken when the decay rate of b

is other than that in (1.33) or maybe when f(u) is not up (p > 1)? It is not yet

known how to estimate the second explosive term in the expansion of the solution

when f is as general as possible and b vanishes on ∂Ω without satisfying (1.33).

This query is investigated in Chapter 4 by employing regular variation theory.

It is shown that the competition between f(u) and b(x) plays a significant role in

eliminating the connection between the second term in the asymptotic expansion

of the large solution and the curvature of the boundary. For instance, this happens

when f(u) is still up but b(x) vanishes on the boundary at a different rate than that

in (1.33), alternatively if (1.33) is preserved when f(u) varies regularly without

being exactly up.
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1.3 Large Solutions for Systems of Equations

The existence or otherwise of solutions for semilinear elliptic systems of the form{
∆u+ f(x, u, v) = 0, x ∈ RN ,

∆v + g(x, u, v) = 0, x ∈ RN ,
(1.35)

has recently been the subject of much investigation (for example, Mitidieri et al.

(1995), Mitidieri (1996), de Figueiredo and Yang (1998), Qi (1998), Serrin and

Zou (1996, 1998a,b), Yarur (1998)). The case f(u, v) = vp and g(u, v) = uq

(p, q > 0) in (1.35), that is {
∆u+ vp = 0, x ∈ RN ,

∆v + uq = 0, x ∈ RN ,
(1.36)

can be thought of as an extension of the Lane–Emden equation ∆w + wp = 0 in

RN . When the pair (p, q) is above the critical hyperbola

1/(p+ 1) + 1/(q + 1) ≤ (N − 2)/N,

then (1.36) admits infinitely many positive radial solutions (u, v) which tend to

(0, 0) as |x| → ∞, which are called ground states (see Serrin and Zou (1998b)).

This kind of behavior at infinity has been studied in the above cited papers.

Yarur (1998) studies the following system{
∆u+ α(|x|)f(v) = 0, x ∈ RN \ {0},

∆v + β(|x|)g(u) = 0, x ∈ RN \ {0},
(1.37)

where f and g are increasing Lipschitz continuous on R with f(0) = g(0) = 0

and α, β are non-negative C1 functions on R+ (no smoothness at zero for (α, β)

is required). She proves the existence of a curve of positive radially symmetric

continuous/singular ground states for (1.37) and shows that these curves depend

on the conditions imposed on the functions f , g, α and β.

While the above papers contribute to the understanding of the nonlinear mech-

anism of the system leading to ground states, little is known so far about the

conditions which favor a singular behavior of solutions at infinity.

A solution (u, v) of (1.35) is called an entire large solution if it is a classical

solution of (1.35) on RN such that u(x) →∞ and v(x) →∞ as |x| → ∞.
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1.3 Large Solutions for Systems of Equations

Despite a long history on the topic of blow-up in elliptic equations, only very

recently has this been considered for systems of equations (see for example Lair

and Shaker (2000), Yang (2003a,b)).

A major complication when dealing with systems of equations is the lack

of a maximum principle. More exactly, although the general theory for second

and higher order elliptic equations has much in common there is also a crucial

difference. For second order elliptic equations there exists a so-called maximum

principle, which has proved a decisive instrument in providing a priori estimates

and existence results. The validity of the maximum principle is restricted to

second order, scalar, elliptic operators and does not extend in any natural way

to systems of second order operators or to higher order scalar equations.

To counter this fact, a common feature appears in the study of elliptic systems:

the assumption of radial symmetry on the domain and coefficients. This scenario

is favorable to reducing the problem to the study of radially symmetric solutions

for ordinary differential equations (ODEs).

Lair and Shaker (2000) focus on the existence of positive radial solutions of{
∆u = α(x)vp in RN ,

∆v = β(x)uq in RN ,
(1.38)

where p, q > 0 and α, β ∈ C0,µ
loc (RN) (0 < µ < 1) are non-negative and radially

symmetric functions. Whether these entire solutions are large or bounded de-

pends closely on the nonlinear part of the system, a phenomenon that resembles

that noticed by Yarur (1998) in the context of ground states. More exactly, cf.

Yarur (1998) if (f(v), g(u)) = (vp, uq) in (1.37) and α, β satisfy∫ ∞
rα(r) dr = ∞ and

∫ ∞
rβ(r) dr = ∞, (1.39)

then positive radially symmetric solutions of (1.37) turn out to be ground states.

The existence of a solution, near zero, to the Cauchy problem needs∫
0

rα(r) dr <∞ and

∫
0

rβ(r) dr <∞. (1.40)
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1.3 Large Solutions for Systems of Equations

Lair and Shaker (2000) show that if 0 < p, q ≤ 1, then for any pair (a, b) ∈
R+×R+ there exists an entire radial solution of (1.38) with central values (a, b).

Thus, R+ × R+ = Z, where

Z =

{
(a, b) ∈ R+ × R+

∣∣∣∣∣ (∃) an entire radial solution of (1.38)

such that (u(0), v(0)) = (a, b)

}
. (1.41)

Moreover, all positive entire radial solutions are large when∫ ∞
0

rα(r) dr = ∞ and

∫ ∞
0

rβ(r) dr = ∞, (1.42)

while they (all of them) become bounded provided that∫ ∞
0

rα(r) dr <∞ and

∫ ∞
0

rβ(r) dr <∞. (1.43)

Condition (1.42) can be seen as a reflection of the one found by Lair and Wood

(2000) in the scalar case; the existence of entire large solutions to

∆u = α(x)up in RN , (1.44)

in the sub-linear case (0 < p ≤ 1) holds if and only if α satisfies (1.42) (see also

Lair (2003) where α is not necessarily radial). In the sub-linear case, there are no

large solutions for (1.44) on bounded domains, as the Keller–Osserman condition

(1.2) fails; for the existence of large solutions to be restored we need p > 1.

Lair and Shaker (2000) prove that, in comparison to the case 0 < p, q ≤ 1, the

super-linear case 1 < p, q < ∞ for (1.38) brings significant changes. Precisely, if

(1.43) holds, then Z becomes a closed bounded convex subset of R+ × R+ and

any entire radial solution (u, v) of (1.38) is large provided that

(u(0), v(0)) ∈ {(a, b) ∈ ∂Z| a > 0 and b > 0}.

Lair and Shaker (2000) do not treat the case when 0 < p < 1 and 1 < q <∞.

More generally, it is desirable to understand what kind of relationship between f

and g is conducive to large/bounded entire solutions for systems such as (1.35).

The above questions will be addressed in §2.2 of Chapter 2, where more general

nonlinearities are considered in (1.38). The growth rate of the nonlinearities

(individually and combined) will determine the structure of Z in (1.41). The

existence of entire large solutions, known from §2.1 to occur in the scalar case

under growth conditions of Keller–Osserman type, will manifest to systems, too.
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1.4 Outline of the Thesis

This dissertation is mostly devoted to the study of large solutions for semilinear

elliptic equations of the form

∆u = f(x, u) in Ω ⊂ RN , (1.45)

where Ω is a bounded/unbounded domain with compact boundary or the whole

space. More precisely, the thesis develops innovative analytical methods to in-

vestigate the qualitative aspects of the blow-up phenomenon in (1.45) arising on

the boundary or at infinity. In the latter situation the results play an important

role in dealing with semilinear elliptic systems such as{
∆u = f1(x, v) in RN ,

∆v = f2(x, u) in RN .
(1.46)

The purpose of Chapter 2 is two-fold. First, to establish the existence of large

solutions to (1.45) when f(x, u) is in the form of b(x)f(u), where b is a non-

negative smooth function, while f ∈ C1[0,∞) is positive and non-decreasing on

(0,∞) such that f(0) = 0 and (1.2) holds (see §2.1). Second, to determine the

existence of positive radial entire solutions of (1.46) and classify them either as

bounded or large depending on the nonlinear mechanism of (1.46). Under some

symmetry assumptions, methods are given to analyze two possible scenarios for

nonlinearities f1 and f2. ODEs techniques are used jointly with the findings of

§2.1 to extend and complement previous results of Lair and Shaker (2000).

Chapter 3 is dedicated to the existence of large solutions to (1.45) in a bounded

domain, where f(x, u) = b(x)f(u)−au (see §3.1). Here a is a real parameter and

b is a non-negative function on Ω that vanishes on a connected subset Ω0 ⊂ Ω and

is positive otherwise in Ω. The analysis includes the critical case when b is non-

negative (possibly, identically zero) on ∂Ω. A necessary and sufficient condition

for the existence of large solutions is provided in terms of the first Dirichlet

eigenvalue of the Laplace operator on the zero set of b. The assumptions on f

are inspired by Alama and Tarantello (1996) who give a corresponding result for

the Dirichlet boundary value problem (1.12). In §3.2 we prove the existence of

the minimal/maximal positive solution to the above equation in Ω \ Ω0, subject
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1.4 Outline of the Thesis

to a Dirichlet, Neumann or Robin boundary condition on ∂Ω and u = ∞ on ∂Ω0.

Using a novel approach, the degenerate situation when b may vanish on Ω \Ω0 is

further discussed under more general conditions on f (see §3.3).

The main aim of Chapters 4 and 5 is to resolve the issues of uniqueness and

two-term asymptotic expansion of the large solution near the boundary to the

problems studied in Chapter 3. The generality of the framework, coupled with

the competition case 0 ·∞ assumed near the boundary, requires the development

of new and effective methods. This need is met in both Chapters 4 and 5, where

innovative methods are advanced by establishing inter-disciplinary connections

with applied probability. For the first time in this context the regular varia-

tion theory (initiated by Karamata and outlined in §4.1) and its extensions due

de Haan (presented in §5.3.2) are to be used.

The crucial step advanced in Chapter 4, where regular variation theory is

at the fore, is the analysis of the competition between b(x) and f(u) through

their variation speed. Karamata’s theory, used jointly with a local argument

near the boundary, helps determine the blow-up rate of the large solution when

previous restrictions in the literature on the decay rate of b are removed and f

is varying regularly at ∞ (imitating a super-linear power). Relying essentially

on Karamata’s theory, we attest significant changes in the two-term asymptotic

expansion of the large solution; in particular, the influence of the curvature of

the boundary on the second explosive term (known in the non-competing case)

ceases in the competing case even if f(u) = up, p > 1.

The objective of Chapter 5 is dual: first, to refine the uniqueness results given

in Chapter 4 by modifying an iterative technique due to Safonov (see §5.2); and

second, to establish the uniqueness and blow-up rate of the large solution in the

competing case when f varies rapidly at ∞ (covering exponential models, see

§5.3). In both sections, local estimates of the blow-up rate are derived, which

improve the findings of López-Gómez (2003) and Du (2004) even for the special

classes considered there. The innovative approach presented in §5.3 stresses the

interplay between the blow-up topic in PDEs and de Haan’s theory in applied

probability. The main results on the asymptotic behavior also shed a new light

on the non-competing case analyzed by Bandle and Marcus (1992a), Lazer and

McKenna (1994).
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Chapter 2

Large and Entire Large Solutions
“Hold yourself responsible for a higher standard than anybody else
expects of you.” (Henry Ward Beecher)

2.1 Large Solutions for Elliptic Equations

2.1.1 Introduction

We consider the following semilinear elliptic equation{
∆u = p(x)f(u) in Ω ,

u ≥ 0, u 6≡ 0 in Ω ,
(2.1)

where Ω ⊂ RN (N ≥ 3) is a smooth domain (bounded or possibly unbounded)

with compact (possibly empty) boundary. We assume throughout this section

that p is a non-negative function such that p ∈ C0,α(Ω) if Ω is bounded, and

p ∈ C0,α
loc (Ω), otherwise. The nonlinearity f is assumed to fulfill

f ∈ C1[0,∞), f ′ ≥ 0, f(0) = 0 and f > 0 on (0,∞) (2.2)

and the Keller–Osserman condition (see Keller (1957); Osserman (1957))∫ ∞
1

dt√
2F (t)

<∞ , where F (t) =

∫ t

0

f(s) ds. (2.3)

The main purpose of section 2.1 is to find properties of large solutions of (2.1),

that is solutions u satisfying u(x) → ∞ as dist (x, ∂Ω) → 0 (if Ω 6≡ RN), or

u(x) → ∞ as |x| → ∞ (if Ω = RN). In the latter case the solution is called an

entire large solution.
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Problems of the type (2.1) were originally studied in a celebrated paper by

Loewner and Nirenberg (1974). Their work deals with partial differential equa-

tions having a “partial conformal invariance” and is motivated by a concrete

problem arising in Riemannian Geometry. More precisely, Loewner and Niren-

berg proved the remarkable result that (2.1) has a maximal solution, provided

that Ω 6= RN , p ≡ Const. > 0 in Ω and f(u) = u(N+2)/(N−2).

In Bandle and Marcus (1992a) and Marcus (1992), problem (2.1) is considered

in the special case when Ω is bounded and p > 0 in Ω. More precisely, Bandle

and Marcus described the precise asymptotic behavior of large solutions near the

boundary and established the uniqueness of such solutions, while Marcus obtained

existence results for large solutions.

The first main result of this section is an existence theorem for large solutions

when Ω is bounded (see Theorem 1 in Ĉırstea and Rădulescu (2002a)).

Theorem 2.1.1. Suppose that Ω is bounded and p satisfies

for all x0 ∈ Ω with p(x0) = 0, there is a domain Ω0 3 x0 such that

Ω0 ⊂ Ω and p > 0 on ∂Ω0.

}
(2.4)

Then problem (2.1) has a positive large solution.

Remark 2.1.1. Condition (2.4) is weaker than the requirement that p > 0 on ∂Ω.

Indeed, the continuity of p, the compactness of ∂Ω and the positivity of p on

∂Ω imply the existence of some δ > 0 such that p > 0 in Ωδ, where

Ωδ := {x ∈ Ω; dist (x, ∂Ω) ≤ δ}.

Therefore, all the zeros of p are included in Ω0 = Ω \ Ωδ ⊂⊂ Ω. Hence p > 0 on

∂Ω0, so that (2.4) is fulfilled.

Remark 2.1.2. Theorem 2.1.1 generalizes Theorem 3.1 in Marcus (1992) and

Lemma 2.6 in Cheng and Ni (1992), where it is assumed that p > 0 on ∂Ω.

The rest of section 2.1 is organized as follows. Subsection 2.1.2 comprises

a result that will be repeatedly used, namely Theorem 2.1.2, whose statement

can be found in Marcus (1992). The proof of Theorem 2.1.1 is given in §2.1.3.

In §2.1.4 and §2.1.5 we make use of Theorem 2.1.1 to find and describe the
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behavior on the boundary and at infinity of the maximal solution to problem

(2.1), where Ω is an unbounded domain, possibly RN (Theorems 2.1.7 and 2.1.10).

For the significance of such a study we refer to Dynkin (1991), where it is shown

that there exist certain relations between hitting probabilities for superdiffusions

and maximal solutions of (2.1) with f(u) = uγ, 1 < γ ≤ 2. Subsection 2.1.4

gives a necessary condition for the existence of entire large solutions to (2.1) (see

Theorem 2.1.9).

2.1.2 Boundary Value Problems

The following result, which is mentioned without proof in Marcus (1992), will be

applied several times in this section. For the sake of completeness we give here a

proof of this theorem (see Theorem 5 in Ĉırstea and Rădulescu (2002a)).

Theorem 2.1.2. Let Ω be a bounded domain. Assume that p ∈ C0,α(Ω) is a

non-negative function, f satisfies (2.2) and g : ∂Ω → (0,∞) is continuous, then

the boundary value problem
∆u = p(x)f(u), in Ω

u = g, on ∂Ω

u ≥ 0, u 6≡ 0, in Ω

(2.5)

has a unique classical solution, which is positive.

Proof. We first observe that the function u+(x) = n is a super-solution of problem

(2.5), provided that n is sufficiently large. To find a positive sub-solution, we look

for an arbitrary positive solution to the following auxiliary problem

∆v = Φ(r) in A(r, r) = {x ∈ RN ; r < |x| < r} (2.6)

where

r = inf {τ > 0; ∂B(0, τ) ∩ Ω 6= ∅}, r = sup {τ > 0; ∂B(0, τ) ∩ Ω 6= ∅}

Φ(r) = max
|x|=r

p(x) for any r ∈ [r, r].

The function

v(r) = 1 +

∫ r

r

σ1−N
(∫ σ

0

τN−1Φ(τ) dτ

)
dσ, r ≤ r ≤ r
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verifies equation (2.6). The assumptions on f and g imply that

g0 := min
∂Ω

g > 0 and lim
z↘0

∫ g0

z

dt

f(t)
= ∞.

This will be used to justify the existence of a positive number c such that

max
∂Ω

v =

∫ g0

c

dt

f(t)
. (2.7)

Next, we define the function u− such that

v(x) =

∫ u−(x)

c

dt

f(t)
, ∀x ∈ Ω. (2.8)

It turns out that u− is a positive sub-solution of problem (2.5). Indeed, we have

u− ∈ C2(Ω) ∩ C(Ω) and u− ≥ c in Ω.

On the one hand, from (2.6), (2.8) and (2.2) it follows that

p(x) ≤ ∆v(x) =
1

f(u−(x))
∆u−(x) +

(
1

f

)′
(u−(x))|∇u−(x)|2

≤ 1

f(u−(x))
∆u−(x) in Ω,

which yields

∆u−(x) ≥ p(x)f(u−(x)) in Ω.

On the other hand, taking into account (2.7) and (2.8), we find

u−(x) ≤ g(x) ∀x ∈ ∂Ω.

So, we have proved that u− is a positive sub-solution to problem (2.5), therefore,

this problem has at least a positive solution u. Furthermore, taking into account

the regularity of p and f , a standard boot-strap argument based on Schauder and

Hölder regularity shows that u ∈ C2(Ω) ∩ C(Ω).

Let us now assume that u1 and u2 are arbitrary solutions of (2.5). In order

to prove the uniqueness, it is enough to show that u1 ≥ u2 in Ω. Denote

ω := {x ∈ Ω; u1(x) < u2(x)}
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and suppose that ω 6= ∅. Then the function ũ = u1 − u2 satisfies{
∆ũ = p(x)(f(u1)− f(u2)), in ω

ũ = 0, on ∂ω .
(2.9)

Since f is non-decreasing and p ≥ 0, it follows by (2.9) that ũ is a super-harmonic

function in ω which vanishes on ∂ω. Thus, by the maximum principle, either

ũ ≡ 0 or ũ > 0 in ω, which yields a contradiction. Thus u1 ≥ u2 in Ω.

We give in what follows an alternative proof for the uniqueness. Let u1, u2

be two arbitrary solutions of problem (2.5). As above, it is enough to show that

u1 ≥ u2 in Ω. Fix ε > 0. We claim that

u2(x) ≤ u1(x) + ε(1 + |x|2)−1/2 for any x ∈ Ω. (2.10)

Suppose the contrary. Since (2.10) is obviously fulfilled on ∂Ω, we deduce that

max
x∈Ω

{
u2(x)− u1(x)− ε(1 + |x|2)−1/2

}
is achieved in Ω. At that point we have

0 ≥ ∆
(
u2(x)− u1(x)− ε(1 + |x|2)−1/2

)
= p(x) (f(u2(x))− f(u1(x)))− ε∆(1 + |x|2)−1/2

= p(x) (f(u2(x))− f(u1(x))) + ε(N − 3)(1 + |x|2)−3/2

+ 3 ε(1 + |x|2)−5/2 > 0 ,

which is a contradiction. Since ε > 0 is chosen arbitrarily, inequality (2.10)

implies that u2 ≤ u1 in Ω.

We point out that the hypothesis that f is differentiable at the origin is

essential in order to find a positive solution to problem (2.5). Indeed, consider

Ω = B1, and f(u) = u(β−2)/β, where β > 2. Choose p ≡ 1 and g ≡ C on ∂B1,

where C = (β2 + (N − 2)β)
−β/2

. For this choice of Ω, p, f and g, the function

u(r) = Crβ, 0 ≤ r ≤ 1, is the unique solution of problem (2.5), but u(0) = 0.

Under the hypotheses on f made in the statement of Theorem 2.1.2, except

f is of class C1 at the origin (but f ∈ C0,α at u = 0), problem (2.5) has a unique

solution which may vanish in Ω. For this purpose it is sufficient to choose, as a

sub-solution in the above proof, the function u− = 0.
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Proposition 2.1.3. Let Ω = B(0, R) for some R > 0 and let p be radially

symmetric in Ω, then (2.1), subject to the Dirichlet boundary condition

u = c (const.) > 0 on ∂Ω, (2.11)

has a unique solution uc, which, moreover, is positive and radially symmetric.

Proof. By Theorem 2.1.2, problem (2.1)+(2.11) has a unique solution uc, which

is positive. If uc were not radially symmetric, then a different solution could be

obtained by rotating it, which would contradict the uniqueness of the solution.

Remark 2.1.3. Any possible large solution of (2.1) is positive in Ω, whenever Ω is

a bounded domain or the whole space.

Indeed, assume that u(x0) = 0 for some x0 ∈ Ω. Since u is a large solution

we can find a smooth domain ω ⊂⊂ Ω such that x0 ∈ ω and u > 0 on ∂ω. Thus,

by Theorem 2.1.2, the problem
∆ζ = p(x)f(ζ) in ω,

ζ = u on ∂ω,

ζ ≥ 0 in ω

has a unique solution, which is positive. By uniqueness, ζ = u in ω, which is a

contradiction. This shows that any large solution of (2.1) cannot vanish in Ω.

2.1.3 Existence Results on Bounded Domains

We assume that Ω is bounded throughout §2.1.3. By Keller (1957) and Osserman

(1957), problem (2.1) with p ≡ 1 has large solutions if and only if f fulfills (2.3).

Next we infer that (2.3) is necessary for the existence of large solutions to (2.1).

Lemma 2.1.4. If (2.2) holds, then the Keller–Osserman condition (2.3) is nec-

essary for the existence of large solutions of (2.1).

Proof. Suppose, a priori, that (2.1) has a large solution u∞. For any n ≥ 1,

consider the problem 
∆u = ‖p‖∞f(u) in Ω,

u = n on ∂Ω,

u ≥ 0 in Ω.
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By Theorem 2.1.2, this problem has a unique solution, say un, which is positive

in Ω. By the maximum principle

0 < un ≤ un+1 ≤ u∞ in Ω, ∀n ≥ 1.

Thus, for every x ∈ Ω, it makes sense to define u(x) = limn→∞ un(x). Since (un)

is uniformly bounded on every compact set ω ⊂⊂ Ω, standard elliptic regularity

implies that u is a large solution of the problem ∆u = ‖p‖∞f(u) in Ω.

Example 2.1.1. Typical nonlinearities satisfying (2.2) and (2.3) are:

i) f(u) = eu − 1;
ii) f(u) = up, p > 1;
iii) f(u) = u[ln(u+ 1)]p, p > 2.

For nonlinearities, as in the above example, the following result holds (Lemma 1

in Ĉırstea and Rădulescu (2002a)).

Lemma 2.1.5. Assume that conditions (2.2) and (2.3) are fulfilled, then∫ ∞
1

dt

f(t)
<∞ . (2.12)

Proof. Fix R > 0 and denote B = B(0, R). By Theorem 2.1.2, the boundary

value problem 
∆un = f(un), in B

un = n, on ∂B

un ≥ 0, un 6≡ 0, in B

(2.13)

has a unique positive solution. Since f is non-decreasing, it follows by the maxi-

mum principle that un(x) increases with n, for any fixed x ∈ B.

We first claim that (un) is uniformly bounded in every compact sub-domain

of B. Indeed, let K ⊂ B be any compact set and d := dist (K, ∂B), then

0 < d ≤ dist (x, ∂B), ∀x ∈ K. (2.14)

By Proposition 1 of Bandle and Marcus (1992a), there exists a continuous, non-

increasing function µ : R+ → R+ such that

un(x) ≤ µ(dist (x, ∂B)), ∀x ∈ K.
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2.1 Large Solutions for Elliptic Equations

The claim now follows from (2.14). Thus, for every x ∈ B we can define

u(x) := lim
n→∞

un(x).

We next show that u is a classical large solution of

∆u = f(u) in B. (2.15)

Fix x0 ∈ B and let r > 0 be such that B(x0, r) ⊂ B. Let Ψ ∈ C∞(B) be such

that Ψ ≡ 1 in B(x0, r/2) and Ψ ≡ 0 in B \B(x0, r). We have

∆(Ψun) = 2∇Ψ · ∇un + pn,

where pn = un∆Ψ + Ψ∆un. Since (un) is uniformly bounded on B(x0, r) and

f is non-decreasing on [0,∞), it follows that ‖pn‖∞ ≤ C, where C is a con-

stant independent of n. From now on, using the same argument given in the

proof of Lemma 3 in Lair and Shaker (1997), we find that (un) converges in

C 2,α(B(x0, r1)), for some r1 > 0. Since x0 ∈ B is arbitrary, this shows that

u ∈ C2(B) and u is a positive solution of (2.15). Moreover, by the Gidas–Ni–

Nirenberg Theorem, u is radially symmetric in B, namely u(x) = u(r), r = |x|,
and u satisfies in the r variable the equation

u′′(r) +
N − 1

r
u′(r) = f(u(r)), 0 < r < R.

This equation can be rewritten as follows

(rN−1u′(r))′ = rN−1f(u(r)), 0 < r < R. (2.16)

Integrating (2.16) from 0 to r we obtain

u′(r) = r1−N
∫ r

0

sN−1f(u(s)) ds, 0 < r < R.

Hence u is a non-decreasing function and

u′(r) ≤ r1−Nf(u(r))

∫ r

0

sN−1 ds =
r

N
f(u(r)), 0 < r < R. (2.17)

Similarly, un is non-decreasing on (0, R), for any n ≥ 1.
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In order to show that u is a large solution of (2.15), it remains to prove that

u(r) → ∞ as r ↗ R. Assume the contrary, then there exists C > 0 such that

u(r) < C for all 0 ≤ r < R. Let N1 ≥ 2C be fixed. The monotonicity of uN1 and

the fact that uN1(r) → N1 as r ↗ R imply the existence of some r1 ∈ (0, R) such

that C ≤ uN1(r), for r ∈ [r1, R). Hence

C ≤ uN1(r) ≤ uN1+1(r) ≤ · · · ≤ un(r) ≤ un+1(r) ≤ · · · ∀n ≥ N1, ∀r ∈ [r1, R).

Passing to the limit as n→∞, we obtain u(r) ≥ C for all r ∈ [r1, R), which is a

contradiction.

Integrating (2.17) on (0, r) and taking r ↗ R we find∫ ∞
u(0)

1

f(t)
dt ≤ R2

2N
.

The conclusion of Lemma 2.1.5 is therefore proved.

Proof of Theorem 2.1.1. By Theorem 2.1.2, the boundary value problem
∆vn = p(x)f(vn), in Ω

vn = n, on ∂Ω

vn ≥ 0, vn 6≡ 0, in Ω

(2.18)

has a unique positive solution, for any n ≥ 1.

We now claim that

(a) for all x0 ∈ Ω there exist an open set O ⊂⊂ Ω containing x0 and M0 =

M0(x0) > 0 such that vn ≤M0 in O, for any n ≥ 1;

(b) limx→∂Ω v(x) = ∞, where v(x) = limn→∞ vn(x).

We first remark that the sequence (vn) is non-decreasing. Indeed, by Theo-

rem 2.1.2, the boundary value problem
∆ζ = ‖p‖∞f(ζ), in Ω

ζ = 1, on ∂Ω

ζ > 0, in Ω
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has a unique solution. Then, by the maximum principle,

0 < ζ ≤ v1 ≤ · · · ≤ vn ≤ · · · in Ω . (2.19)

We also observe that (a) and (b) are sufficient to conclude the proof. In fact,

assertion (a) shows that the sequence (vn) is uniformly bounded on every compact

subset of Ω. Standard elliptic regularity arguments (see the proof of Lemma 3

in Lair and Shaker (1997)) show that v is a solution of problem (2.1). Then, by

(2.19) and (b), it follows that v is the desired solution.

To prove (a) we distinguish two cases :

Case 2.1.1. p(x0) > 0.

By the continuity of p, there exists a ball B = B(x0, r) ⊂⊂ Ω such that

m0 := min {p(x); x ∈ B} > 0.

Let w be a positive solution of problem{
∆w = m0f(w), in B

w(x) →∞, as x→ ∂B.
(2.20)

The existence of w follows by Theorem III in Keller (1957). By the maximum

principle it follows that vn ≤ w in B. Furthermore, w is bounded in B(x0, r/2).

Setting M0 = sup
O

w, where O = B(x0, r/2), we obtain (a).

Case 2.1.2. p(x0) = 0.

Our hypothesis (2.4) and the boundedness of Ω imply the existence of a do-

main O ⊂⊂ Ω which contains x0 such that p > 0 on ∂O. The case 2.1.1 shows

that for any x ∈ ∂O there exist a ball B(x, rx) strictly contained in Ω and a

constant Mx > 0 such that vn ≤ Mx on B(x, rx/2), for any n ≥ 1. Since ∂O is

compact, it follows that it may be covered by a finite number of such balls, say

B(xi, rxi
/2), i = 1, · · · , k0. Setting M0 = max {Mx1 , · · · ,Mxk0

} we have vn ≤M0

on ∂O, for any n ≥ 1. By the maximum principle we obtain vn ≤ M0 in O and

(a) follows.

Let us now consider the problem
−∆z = p(x) in Ω,

z = 0 on ∂Ω,

z ≥ 0, z 6≡ 0 in Ω.

(2.21)
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From Theorem 1 in Brezis and Oswald (1986) we infer that (2.21) has a unique

solution. Moreover, by the maximum principle, this solution is positive in Ω.

We first observe that for proving (b) it is sufficient to show that∫ ∞
v(x)

dt

f(t)
≤ z(x) for any x ∈ Ω. (2.22)

By Lemma 1, the left hand-side of (2.22) is well defined in Ω. Fix ε > 0. Since

vn = n on ∂Ω, there is n1 = n1(ε) such that∫ ∞
vn(x)

dt

f(t)
≤ ε(1+R2)−1/2 ≤ z(x)+ε(1+|x|2)−1/2 ∀x ∈ ∂Ω , ∀n ≥ n1 , (2.23)

where R > 0 is chosen so that Ω ⊂ B(0, R).

In order to prove (2.22), it is enough to show that∫ ∞
vn(x)

dt

f(t)
≤ z(x) + ε(1 + |x|2)−1/2 ∀x ∈ Ω , ∀n ≥ n1. (2.24)

Indeed, putting n → ∞ in (2.24) we deduce (2.22), since ε > 0 is arbitrarily

chosen. Assume now, by contradiction, that (2.24) fails, then

max
x∈Ω

{∫ ∞
vn(x)

dt

f(t)
− z(x)− ε(1 + |x|2)−1/2

}
> 0.

Using (2.23) we see that the point where the maximum is achieved must lie in Ω.

At this point, say x0, we have

0 ≥ ∆

(∫ ∞
vn(x)

dt

f(t)
− z(x)− ε(1 + |x|2)−1/2

)
|x=x0

=

(
− 1

f(vn)
∆vn −

(
1

f

)′
(vn) · |∇vn|2 −∆z(x)− ε∆(1 + |x|2)−1/2

)
|x=x0

=

(
−p(x)−

(
1

f

)′
(vn) · |∇vn|2 + p(x)− ε∆(1 + |x|2)−1/2

)
|x=x0

=

(
−
(

1

f

)′
(vn) · |∇vn|2 + ε(N − 3)(1 + |x|2)−3/2 + 3 ε(1 + |x|2)−5/2

)
|x=x0

> 0.

This contradiction shows that inequality (2.24) holds. This completes the proof

of Theorem 2.1.1.
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Corollary 2.1.6. Let Ω = B(0, R) for some R > 0. If p is radially symmetric

in Ω and p |∂Ω > 0, then there exists a radial large solution of (2.1).

Proof. The large solution constructed in the proof of Theorem 2.1.1 will be radi-

ally symmetric by virtue of Proposition 2.1.3.

2.1.4 Existence of Entire Large Solutions

Our next purpose is to prove the existence of an entire maximal solution for (2.1),

under more general hypotheses than in Cheng and Ni (1992). They investigate

the structure of all positive solutions of (2.1) in the special case when f(u) = uγ,

γ > 1; they also establish the existence of the maximal classical solution U of

(2.1), under the hypotheses that this equation possesses at least a positive entire

solution and there is a sequence of smooth bounded domains (Ωn)n≥1 such that,

for any n ≥ 1,

Ωn ⊆ Ωn+1, RN = ∪∞n=1Ωn, p > 0 on ∂Ωn. (2.25)

Cheng and Ni (1992) prove that the maximal solution U is the unique entire large

solution of problem (2.1), under the additional restriction that for some l > 2

there exist two positive constants C1, C2 such that

C1p(x) ≤ |x|−l ≤ C2p(x) for large |x| . (2.26)

Our result in the case Ω = RN is the following (Theorem 2 in Ĉırstea and

Rădulescu (2002a)).

Theorem 2.1.7. Assume that Ω = RN and problem (2.1) has at least a solution.

Suppose that p satisfies the condition

There exists a sequence of smooth bounded domains (Ωn)n≥1, where

Ωn ⊂ Ωn+1, RN = ∪∞n=1Ωn, and (2.4) holds in Ωn, for any n ≥ 1.

}
(2.27)

Then there exists a maximal classical solution U of (2.1).

If p verifies the additional condition∫ ∞
0

rΦ(r) dr <∞ , where Φ(r) = max {p(x) : |x| = r}, (2.28)

then U is an entire large solution.
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By Remark 2.1.1, it follows that condition (2.27) (resp., (2.28)) is weaker than

the assumption (2.25) (resp., (2.26)) imposed by Cheng and Ni (1992).

Remark 2.1.4. If p is radially symmetric in RN and not identically zero at infinity,

then (2.27) is fulfilled.

Indeed, we can find an increasing sequence of positive numbers (Rn)n≥1 such

that Rn →∞ and p > 0 on ∂B(0, Rn), for any n ≥ 1, therefore, (p1)
′ is satisfied

on Ωn = B(0, Rn).

We provide below an example of p ≥ 0 that vanishes in every neighborhood

of infinity, while hypotheses (2.27) and (2.28) are fulfilled.

Example 2.1.2. Let p be given by

p(r) = 0 for r = |x| ∈ [n− 1/3, n+ 1/3], n ≥ 1;

p(r) > 0 in R+ \
∞⋃
n=1

[n− 1/3, n+ 1/3];

p ∈ C1[0,∞) and max
r∈[n,n+1]

p(r) =
2

n2(2n+ 1)
.

Of course, (2.27) is fulfilled by choosing Ωn = B(0, n + 1/2). On the other

hand, condition (2.28) is also satisfied since∫ ∞
1

rΦ(r) dr =
∞∑
n=1

∫ n+1

n

rp(r) dr

≤
∞∑
n=1

∫ n+1

n

2

n2(2n+ 1)
r dr =

∞∑
n=1

1

n2
=
π2

6
<∞.

Proof of Theorem 2.1.7. By Theorem 2.1.1, the boundary value problem
∆vn = p(x)f(vn), in Ωn

vn(x) →∞ , as x→ ∂Ωn

vn > 0 , in Ωn

(2.29)

has a solution. Since Ωn ⊂ Ωn+1 we can apply, for each n ≥ 1, the maximum

principle (in the same manner as in the uniqueness proof of Theorem 2.1.2) to

find vn ≥ vn+1 in Ωn. Since RN = ∪∞n=1Ωn and Ωn ⊂ Ωn+1, it follows that for

every x0 ∈ RN there exists n0 = n0(x0) such that x0 ∈ Ωn for all n ≥ n0. By the
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monotonicity of the sequence (vn(x0))n≥n0 we can define U(x0) = limn→∞ vn(x0).

By applying the standard bootstrap argument (see Theorem 1 in Lair and Shaker

(1996)) we find that U ∈ C2,α
loc (RN) and ∆U = p(x)f(U) in Ω.

We now prove that U is the maximal solution of problem (2.1). Indeed, let

u be an arbitrary solution of (2.1). Applying again the maximum principle we

obtain vn ≥ u in Ωn, for all n ≥ 1. By the definition of U , we have U ≥ u in RN .

We point out that U is independent of the choice of the sequence of domains

Ωn and the number of solutions of problem (2.29). This follows easily by the

uniqueness of the maximal solution.

We suppose, in addition, that p satisfies (2.28) and we shall prove that U

blows-up at infinity. To this aim, it is sufficient to find a positive function w ∈
C(RN) such that U ≥ w in RN and w(x) →∞ as |x| → ∞.

We first observe that (2.28) implies that

K =

∫ ∞
0

r1−N
(∫ r

0

σN−1Φ(σ) dσ

)
dr <∞. (2.30)

Indeed, for all R > 0 we have∫ R

0

r1−N
(∫ r

0

σN−1Φ(σ) dσ

)
dr =

1

2−N

∫ R

0

d

dr
(r2−N)

(∫ r

0

σN−1Φ(σ) dσ

)
dr

=
R2−N

2−N

∫ R

0

σN−1Φ(σ) dσ

− 1

2−N

∫ R

0

rΦ(r) dr

≤ 1

N − 2

∫ ∞
0

rΦ(r) dr <∞.

Using (2.30) and the maximum principle we obtain that the problem{
−∆z = Φ(r), r = |x| <∞,

z(x) → 0 as |x| → ∞

has a unique positive radial solution, which is given by

z(r) = K −
∫ r

0

σ1−N
(∫ σ

0

τN−1Φ(τ) dτ

)
dσ, ∀r ≥ 0.
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Let w be the positive function defined implicitly by

z(x) =

∫ ∞
w(x)

dt

f(t)
, ∀x ∈ RN . (2.31)

Assumption (2.2) and L’Hospital rule yield

lim
t↘0

f(t)

t
= lim

t↘0
f ′(t) = f ′(0) ∈ [0,∞) ,

which implies the existence of some δ > 0 such that

f(t)

t
< f ′(0) + 1 for all 0 < t < δ.

Thus, for every s ∈ (0, δ), we have∫ δ

s

dt

f(t)
>

1

f ′(0) + 1

∫ δ

s

dt

t
=

1

f ′(0) + 1
(ln δ − ln s).

It follows that lims↘0

∫ δ
s

dt
f(t)

= ∞, which provides the possibility to define w as

in (2.31).

We claim that w ≤ vn in Ωn for all n ≥ 1. Obviously this inequality is true

on ∂Ωn. Using the same arguments as in the proof of the inequality (2.10) (with

Ω replaced by Ωn) we obtain that for any ε > 0 and n ≥ 1 we have

w(x) ≤ vn(x) + ε(1 + |x|2)−1/2 in Ωn

and the claim follows. Consequently, U ≥ w in RN and, by (2.31), w(x) →∞ as

|x| → ∞. This completes the proof of Theorem 2.1.7.

Corollary 2.1.8. Let Ω ≡ RN . Assume that p is radially symmetric in RN ,

not identically zero at infinity such that (2.28) is fulfilled, then (2.1) has a radial

entire large solution.

Proof. By Remark 2.1.4 and Corollary 2.1.6, the entire large solution constructed

as in the proof of Theorem 2.1.7 will be radially symmetric.
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2.1.4.1 A Necessary Condition

By Lemma 2.1.5 we know that if (2.2) and (2.3) are satisfied then (2.12) holds. We

establish here that (2.12) is a necessary condition for the existence of entire large

solutions to (2.1) when p satisfies (2.28) (cf. Theorem 4 in Ĉırstea and Rădulescu

(2002a)). Note that f is not assumed to satisfy (2.3), while the regularity we

impose on p is weaker than before.

Theorem 2.1.9. Assume that p ∈ C(RN) is a non-negative and non-trivial func-

tion which fulfills (2.28). Let f be a function satisfying (2.2), then condition∫ ∞
1

dt

f(t)
<∞ (2.32)

is necessary for the existence of entire large solutions to (2.1).

Proof. Let u be an entire large solution of problem (2.1). Define

ū(r) =
1

ωNrN−1

∫
|x|=r

(∫ u(x)

a

dt

f(t)

)
dS =

1

ωN

∫
|ξ|=1

(∫ u(rξ)

a

dt

f(t)

)
dS,

where ωN denotes the surface area of the unit sphere in RN and a is chosen such

that a ∈ (0, u0), where u0 = infRN u > 0. By the divergence theorem we have

ū′(r) =
1

ωN

∫
|ξ|=1

1

f(u(rξ))
∇u(rξ) · ξ dS =

1

ωNrN

∫
|y|=r

1

f(u(y))
∇u(y) · y dS

=
1

ωNrN

∫
|y|=r

∇

(∫ u(y)

a

dt

f(t)

)
· y dS =

1

ωNrN−1

∫
|y|=r

∂

∂ν

(∫ u(y)

a

dt

f(t)

)
dS

=
1

ωNrN−1

∫
B(0,r)

∆

(∫ u(x)

a

dt

f(t)

)
dx.

Since u is a positive classical solution it follows that

|ū′(r)| ≤ Cr → 0 as r → 0 .

On the other hand, we have

ωN
(
RN−1ū′(R)− rN−1ū′(r)

)
=

∫
D

∆

(∫ u(x)

a

1

f(t)
dt

)
dx

=

∫ R

r

(∫
|x|=z

∆

(∫ u(x)

a

dt

f(t)

)
dS

)
dz,
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where D := {x ∈ RN : r < |x| < R}. Dividing by R − r and letting R → r, we

arrive at

ωN(rN−1ū′(r))′ =

∫
|x|=r

∆

(∫ u(x)

a

dt

f(t)

)
dS =

∫
|x|=r

div

(
1

f(u(x))
∇u(x)

)
dS

=

∫
|x|=r

[(
1

f

)′
(u(x)) · |∇u(x)|2 +

1

f(u(x))
∆u(x)

]
dS

≤
∫
|x|=r

p(x)f(u(x))

f(u(x))
dS ≤ ωNr

N−1Φ(r).

Integrating the above inequality, we get

ū(r) ≤ ū(0) +

∫ r

0

σ1−N
(∫ σ

0

τN−1Φ(τ) dτ

)
dσ ∀r ≥ 0. (2.33)

Since (2.28) implies (2.30), we have

ū(r) ≤ ū(0) +K ∀r ≥ 0.

Thus ū is bounded and assuming that (2.32) is not fulfilled it follows that u

cannot be a large solution.

2.1.5 Existence Results on Unbounded Domains Ω 6= RN

We now consider the case in which Ω is unbounded, but Ω 6= RN ; we say that a

large solution u of (2.1) is regular if u tends to zero at infinity. Theorem 3.1 of

Marcus (1992) gives the existence of regular large solutions to problem (2.1) by

assuming that there exist γ > 1 and β > 0 such that

lim inf
t→0

f(t)t−γ > 0 and lim inf
|x|→∞

p(x)|x|β > 0.

The large solution constructed in Marcus (1992) is the smallest large solution

of problem (2.1). In the next result we show that problem (2.1) admits a max-

imal classical solution U and that U blows-up at infinity if Ω = RN \ B(0, R)

(Theorem 3 in Ĉırstea and Rădulescu (2002a)).

Theorem 2.1.10. Suppose that Ω 6= RN is unbounded and that problem (2.1)

has at least a solution. Assume that p satisfies condition (2.27) in Ω, then there

exists a maximal classical solution U of problem (2.1).
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If Ω = RN \ B(0, R) and p satisfies the additional condition (2.28), with

Φ(r) = 0 for r ∈ [0, R], then the maximal solution U is a large solution that

blows-up at infinity.

Remark 2.1.5. By Theorem 2.1.10 and the result of Marcus, in the case Ω =

RN \ B(0, R), problem (2.1) admits large solutions tending to zero or to infinity

as |x| → ∞ (regular or normal large solutions).

Proof of Theorem 2.1.10. We argue in a similar manner as in the proof of Theo-

rem 2.1.7, but with some changes due to the fact that Ω 6= RN .

Let (Ωn)n≥1 be the sequence of bounded smooth domains given by condition

(2.27). For n ≥ 1 fixed, let vn be a positive solution of problem (2.29) and recall

that vn ≥ vn+1 in Ωn. Set U(x) = limn→∞ vn(x), for every x ∈ Ω. With the same

arguments as in Theorem 2.1.7 we find U is a classical solution to (2.1) and U is

the maximal solution. Hence the first part of Theorem 2.1.10 is proved.

For the second part, in which Ω = RN \ B(0, R), we suppose (2.28) with

Φ(r) = 0 for r ∈ [0, R]. To prove that U is a normal large solution it is enough

to show the existence of a positive function w ∈ C(RN \B(0, R)) such that{
w ≤ U in RN \B(0, R),

w(x) →∞ as |x| → ∞ and as |x| ↘ R.

We proceed as in the proof of Theorem 2.1.7, but z is now the unique positive

radial solution of 
−∆z = Φ(r), if |x| = r > R

z(x) → 0 as |x| → ∞

z(x) → 0 as |x| ↘ R.

The uniqueness of z follows by the maximum principle. Moreover,

z(r) =

(
1

RN−2
− 1

rN−2

)∫ ∞
R

σ1−N
(∫ σ

0

τN−1Φ(τ) dτ

)
dσ

− 1

RN−2

∫ r

R

σ1−N
(∫ σ

0

τN−1Φ(τ) dτ

)
dσ.

This completes the proof.
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2.2 Entire Large Solutions for Elliptic Systems

The results of this section are included in Ĉırstea and Rădulescu (2002b).

2.2.1 Introduction

Consider the following semilinear elliptic system{
∆u = p(x)g(v) in RN ,

∆v = q(x)f(u) in RN ,
(2.34)

where N ≥ 3 and p, q ∈ C0,α
loc (RN) (0 < α < 1) are non-negative and radially

symmetric functions. Throughout section 2.2 we assume that f, g ∈ C0,β
loc [0,∞)

(0 < β < 1) are positive and non-decreasing on (0,∞).

We are concerned here with the existence of positive entire large solutions of

(2.34), that is positive classical solutions which satisfy u(x) →∞ and v(x) →∞
as |x| → ∞. Set R+ = (0,∞) and define

G =

{
(a, b) ∈ R+ × R+

∣∣∣∣∣ (∃) an entire radial solution of (2.34)

so that (u(0), v(0)) = (a, b)

}
. (2.35)

The case of pure powers in the nonlinearities was treated by Lair and Shaker

(2000). They proved that G = R+ × R+ if f(t) = tγ and g(t) = tθ for t ≥ 0 with

0 < γ, θ ≤ 1. Moreover, they established that all positive entire radial solutions

of (2.34) are large provided that∫ ∞
0

tp(t) dt = ∞,

∫ ∞
0

tq(t) dt = ∞. (2.36)

If, in turn ∫ ∞
0

tp(t) dt <∞,

∫ ∞
0

tq(t) dt <∞ (2.37)

then all positive entire radial solutions of (2.34) are bounded.

When both γ and θ are greater than 1 and (2.37) is satisfied, then the structure

of G changes from R+ × R+ to a closed bounded convex subset of R+ × R+ (cf.

Lair and Shaker (2000)). The existence of entire large solutions is also proven.
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2.2.2 Main Results

Our purpose is to generalize the above results to a larger class of systems.

We establish whether the entire radial solutions of (2.34) are bounded or large

based on the behavior of f and g at infinity, combined with (2.36) or (2.37). In

Theorem 2.2.1 we analyse the case when f and g are related by (2.38), while in

Theorem 2.2.2 we assume that f, g ∈ C1[0,∞) satisfy (2.39) and (2.40).

2.2.2.1 First Scenario: Theorem 2.2.1

We first consider the situation that g ◦ f has a sub-linear growth and obtain the

following (Theorem 1 in Ĉırstea and Rădulescu (2002b)).

Theorem 2.2.1. Assume that

lim
t→∞

g(cf(t))

t
= 0 for all c > 0, (2.38)

then G = R+ × R+. Moreover, the following hold:

i) If p and q satisfy (2.36), then all positive entire radial solutions of (2.34)

are large.

ii) If p and q satisfy (2.37), then all positive entire radial solutions of (2.34)

are bounded.

Furthermore, if f, g are locally Lipschitz continuous on (0,∞) and (u, v),

(ũ, ṽ) denote two positive entire radial solutions of (2.34), then there exists

a positive constant C such that for all r ∈ [0,∞)

max {|u(r)− ũ(r)|, |v(r)− ṽ(r)|} ≤ C max {|u(0)− ũ(0)|, |v(0)− ṽ(0)|}.

Remark 2.2.1. This result improves Theorem 1 in Lair and Shaker (2000), where

f(t) = tγ and g(t) = tθ for t ≥ 0 with 0 < γ, θ < 1. Note that even in this case

(2.38) is more relaxed, as it allows a combination of super-linear and sub-linear

powers in the nonlinearities as long as γθ < 1.
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2.2.2.2 Second Scenario: Theorem 2.2.2

If f and g satisfy the stronger regularity f, g ∈ C1[0,∞), then we drop the

assumption (2.38) and require, in turn,

f(0) = g(0) = 0, lim inf
u→∞

f(u)

g(u)
=: σ > 0 (2.39)

and the Keller–Osserman condition∫ ∞
1

dt√
G(t)

<∞, where G(t) =

∫ t

0

g(s) ds. (2.40)

By (2.39) and (2.40) we see that f satisfies condition (2.40), too.

For the significance of (2.40) in the study of large solutions to the scalar case,

we refer to §2.1.3.

Set η = min {p, q}. If η is not identically zero at infinity and assumption

(2.37) holds, then we prove

Property 1. G 6= ∅ (see Lemma 2.2.5).

Property 2. G is bounded (see Lemma 2.2.7).

Property 3. F (G) ⊂ G (see Lemma 2.2.8), where

F (G) = {(a, b) ∈ ∂G | a > 0 and b > 0}.

For (c, d) ∈ (R+ × R+) \ G, define

Rc,d = sup

{
r > 0

∣∣∣∣∣ (∃) a radial solution of (2.34) in B(0, r)

so that (u(0), v(0)) = (c, d)

}
. (2.41)

Property 4. 0 < Rc,d < ∞ provided that ν = max {p(0), q(0)} > 0 (see

Lemma 2.2.9).

Our main result in this case is (see Theorem 2 in Ĉırstea and Rădulescu

(2002b)):

Theorem 2.2.2. Let f, g ∈ C1[0,∞) satisfy (2.39) and (2.40). Assume that

(2.37) holds, η is not identically zero at infinity and ν > 0, then any entire radial

solution (u, v) of (2.34) with (u(0), v(0)) ∈ F (G) is large.
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Remark 2.2.2. We generalize Theorem 3 in Lair and Shaker (2000), where f(t) =

tγ and g(t) = tθ with γ, θ > 1.

Remark 2.2.3. We point out that the behavior of f and g at infinity plays a crucial

role in the existence of entire large solutions of (2.34). More precisely, if (2.37)

holds then G, defined by (2.35), is R+ × R+ in the framework of Theorem 2.2.1,

where all entire radial solutions are bounded, in contrast to Theorem 2.2.2 where

G is bounded and the existence of entire large solutions is ensured.

The rest of the section 2.2 is organized as follows. In §2.2.3 we present some

auxiliary results. Subsection 2.2.4 comprises the proof of Theorem 2.2.1, while

§2.2.5 gives the proof of Theorem 2.2.2 along with that of Properties 1–4.

2.2.3 Preliminary Results

A condition equivalent to (2.36) is given below (cf. Lemma 2 in Ĉırstea and

Rădulescu (2002b)).

Lemma 2.2.3. Condition (2.36) holds if and only if

lim
r→∞

A(r) = lim
r→∞

B(r) = ∞

where

A(r) ≡
∫ r

0

t1−N
∫ t

0

sN−1p(s) ds dt,

B(r) ≡
∫ r

0

t1−N
∫ t

0

sN−1q(s) ds dt, ∀r > 0.

Proof. Indeed, for any r > 0

A(r) =
1

N − 2

[∫ r

0

tp(t) dt− 1

rN−2

∫ r

0

tN−1p(t) dt

]
≤ 1

N − 2

∫ r

0

tp(t) dt.

(2.42)

On the other hand,∫ r

0

tp(t) dt− 1

rN−2

∫ r

0

tN−1p(t) dt =
1

rN−2

∫ r

0

(
rN−2 − tN−2

)
tp(t) dt

≥ 1

rN−2

[
rN−2 −

(r
2

)N−2
] ∫ r/2

0

tp(t) dt.
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This combined with (2.42) yields

1

N − 2

∫ r

0

tp(t) dt ≥ A(r) ≥ 1

N − 2

[
1−

(
1

2

)N−2
]∫ r/2

0

tp(t) dt.

Our conclusion follows now by letting r →∞.

If (2.37) holds, then a continuous dependence on the initial data is valid

for bounded positive entire radial solutions of (2.34) (Lemma 3 in Ĉırstea and

Rădulescu (2002b)).

Lemma 2.2.4. Assume that condition (2.37) holds. Let f and g be locally Lip-

schitz continuous functions on (0,∞). If (u, v) and (ũ, ṽ) denote two bounded

positive entire radial solutions of (2.34), then there exists a positive constant C

such that for all r ∈ [0,∞)

max {|u(r)− ũ(r)|, |v(r)− ṽ(r)|} ≤ C max {|u(0)− ũ(0)|, |v(0)− ṽ(0)|}.

Proof. We first see that radial solutions of (2.34) are solutions of the ordinary

differential equations system
u′′(r) +

N − 1

r
u′(r) = p(r) g(v(r)), r > 0

v′′(r) +
N − 1

r
v′(r) = q(r) f(u(r)), r > 0.

(2.43)

Define K = max {|u(0) − ũ(0)|, |v(0) − ṽ(0)|}. Integrating the first equation of

(2.43), we get

u′(r)− ũ′(r) = r1−N
∫ r

0

sN−1p(s)(g(v(s))− g(ṽ(s))) ds.

Hence

|u(r)− ũ(r)| ≤ K +

∫ r

0

t1−N
∫ t

0

sN−1p(s)|g(v(s))− g(ṽ(s))| ds dt. (2.44)

Since (u, v) and (ũ, ṽ) are bounded entire radial solutions of (2.34) we have

|g(v(r))− g(ṽ(r))| ≤ m|v(r)− ṽ(r)| for any r ∈ [0,∞)

|f(u(r))− f(ũ(r))| ≤ m|u(r)− ũ(r)| for any r ∈ [0,∞),
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where m denotes a Lipschitz constant for both functions f and g. Therefore,

using (2.44) we find

|u(r)− ũ(r)| ≤ K +m

∫ r

0

t1−N
∫ t

0

sN−1p(s)|v(s)− ṽ(s)| ds dt. (2.45)

Arguing as above, but now with the second equation of (2.43), we obtain

|v(r)− ṽ(r)| ≤ K +m

∫ r

0

t1−N
∫ t

0

sN−1q(s)|u(s)− ũ(s)| ds dt. (2.46)

Define

X(r) = K +m

∫ r

0

t1−N
∫ t

0

sN−1p(s)|v(s)− ṽ(s)| ds dt.

Y (r) = K +m

∫ r

0

t1−N
∫ t

0

sN−1q(s)|u(s)− ũ(s)| ds dt.

It is clear that X and Y are non-decreasing functions with X(0) = Y (0) = K.

By a simple calculation together with (2.45) and (2.46) we obtain

(rN−1X ′)′(r) = mrN−1p(r)|v(r)− ṽ(r)| ≤ mrN−1p(r)Y (r)

(rN−1Y ′)′(r) = mrN−1q(r)|u(r)− ũ(r)| ≤ mrN−1q(r)X(r).
(2.47)

Since Y is non-decreasing, we have

X(r) ≤ K +mY (r)A(r) ≤ K +
m

N − 2
Y (r)

∫ r

0

tp(t) dt

≤ K +mCpY (r)

(2.48)

where Cp = (1/(N − 2))
∫∞

0
tp(t) dt. Using (2.48) in the second inequality of

(2.47) we find

(rN−1Y ′)′(r) ≤ mrN−1q(r)(K +mCpY (r)).

Integrating twice this inequality from 0 to r, we obtain

Y (r) ≤ K(1 +mCq) +
m2

N − 2
Cp

∫ r

0

tq(t)Y (t) dt,

where Cq = (1/(N − 2))
∫∞

0
tq(t) dt. From Gronwall’s inequality, we deduce

Y (r) ≤ K(1 +mCq)e
m2

N−2
Cp

R r
0 tq(t) dt ≤ K(1 +mCq)e

m2CpCq

and similarly for X. The conclusion now follows from the above inequality, (2.45)

and (2.46).
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2.2.4 Proof of Theorem 2.2.1

Since the radial solutions of (2.34) are solutions of the ordinary differential equa-

tions system (2.43) it follows that the radial solutions of (2.34) with u(0) = a > 0,

v(0) = b > 0 satisfy

u(r) = a+

∫ r

0

t1−N
∫ t

0

sN−1p(s) g(v(s)) ds dt, r ≥ 0. (2.49)

v(r) = b+

∫ r

0

t1−N
∫ t

0

sN−1q(s) f(u(s)) ds dt, r ≥ 0. (2.50)

Define v0(r) = b for all r ≥ 0. Let (uk)k≥1 and (vk)k≥1 be two sequences of

functions given by

uk(r) = a+

∫ r

0

t1−N
∫ t

0

sN−1p(s) g(vk−1(s)) ds dt, r ≥ 0.

vk(r) = b+

∫ r

0

t1−N
∫ t

0

sN−1q(s) f(uk(s)) ds dt, r ≥ 0.

Since v1(r) ≥ b, we find u2(r) ≥ u1(r) for all r ≥ 0. This implies v2(r) ≥ v1(r)

which further produces u3(r) ≥ u2(r) for all r ≥ 0. Proceeding at the same

manner we conclude that

uk(r) ≤ uk+1(r) and vk(r) ≤ vk+1(r), ∀r ≥ 0 and k ≥ 1.

We now prove that the non-decreasing sequences (uk(r))k≥1 and (vk(r))k≥1

are bounded from above on bounded sets. Indeed, we have

uk(r) ≤ uk+1(r) ≤ a+ g(vk(r))A(r), ∀r ≥ 0 (2.51)

and

vk(r) ≤ b+ f (uk(r))B(r), ∀r ≥ 0. (2.52)

Let R > 0 be arbitrary. By (2.51) and (2.52) we find

uk(R) ≤ a+ g (b+ f (uk(R))B(R))A(R), ∀k ≥ 1

or, equivalently,

1 ≤ a

uk(R)
+
g (b+ f (uk(R))B(R))

uk(R)
A(R), ∀k ≥ 1. (2.53)
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By the monotonicity of (uk(R))k≥1, there exists limk→∞ uk(R) := L(R). We claim

that L(R) is finite. Assume the contrary, then, by taking k → ∞ in (2.53) and

using (2.38) we obtain a contradiction. Since u′k(r), v
′
k(r) ≥ 0 we get that the

map (0,∞) 3 R→ L(R) is non-decreasing on (0,∞) and

uk(r) ≤ uk(R) ≤ L(R), ∀r ∈ [0, R], ∀k ≥ 1. (2.54)

vk(r) ≤ b+ f (L(R))B(R), ∀r ∈ [0, R], ∀k ≥ 1. (2.55)

It follows that there exists limR→∞ L(R) = L ∈ (0,∞] and the sequences (uk(r))k≥1,

(vk(r))k≥1 are bounded above on bounded sets. Thus, we can define

u(r) := lim
k→∞

uk(r) and v(r) := lim
k→∞

vk(r) for all r ≥ 0.

By standard elliptic regularity theory we obtain that (u, v) is a positive entire

solution of (2.34) with u(0) = a and v(0) = b.

We now assume that, in addition, condition (2.37) is fulfilled. According to

Lemma 2.2.3 we have that limr→∞A(r) = A < ∞ and limr→∞B(r) = B < ∞.

Passing to the limit as k →∞ in (2.53) we find

1 ≤ a

L(R)
+
g (b+ f (L(R))B(R))

L(R)
A(R) ≤ a

L(R)
+
g(b+ f (L(R))B)

L(R)
A.

Letting R → ∞ and using (2.38) we deduce L < ∞. Thus, taking into account

(2.54) and (2.55), we obtain

uk(r) ≤ L and vk(r) ≤ b+ f(L)B, ∀r ≥ 0, ∀k ≥ 1.

So, we have found upper bounds for (uk(r))k≥1 and (vk(r))k≥1 which are indepen-

dent of r. Thus, the solution (u, v) is bounded from above. This shows that any

solution of (2.49) and (2.50) will be bounded from above provided (2.37) holds.

Thus, we can apply Lemma 2.2.4 to achieve the second assertion of ii).

Let us now drop the condition (2.37) and assume that (2.36) is fulfilled. In

this case, Lemma 2.2.3 tells us that limr→∞A(r) = limr→∞B(r) = ∞. Let (u, v)

be an entire positive radial solution of (2.34). Using (2.49) and (2.50) we obtain

u(r) ≥ a+ g(b)A(r), ∀r ≥ 0.

v(r) ≥ b+ f(a)B(r), ∀r ≥ 0.

Taking r → ∞ we get that (u, v) is an entire large solution. This concludes the

proof of Theorem 2.2.1.
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Examples

We now give some examples of nonlinearities f and g which satisfy the as-

sumptions of Theorem 2.2.1 (see Dalmasso (2000)).

1. Let

f(t) =
l∑

j=1

ajt
γj , g(t) =

m∑
k=1

bkt
θj for t > 0

with aj, bk, γj, θk > 0 and f(t) = g(t) = 0 for t ≤ 0. Assume that γθ < 1,

where

γ = max
1≤j≤l

γj, θ = max
1≤k≤m

θk.

2. Let

f(t) = (1 + t2)γ/2 and g(t) = (1 + t2)θ/2 for t ∈ R

with γ, θ > 0 and γθ < 1.

3. Let

f(t) =

{
tγ if 0 ≤ t ≤ 1,

tθ if t ≥ 1,

and

g(t) =

{
tθ if 0 ≤ t ≤ 1,

tγ if t ≥ 1,

with γ, θ > 0, γθ < 1 and f(t) = g(t) = 0 for t ≤ 0.

4. Let g(t) = t for t ∈ R, f(t) = 0 for t ≤ 0 and

f(t) = t

(
− ln

((
2

π

)
arctan t

))γ
for t > 0

where γ ∈ (0, 1/2).

2.2.5 Proof of Theorem 2.2.2

Let f, g ∈ C1[0,∞) satisfy (2.39) and (2.40). Suppose that η is not identically

zero at infinity and (2.37) holds. We first give the proofs of Properties 1–4 (see

Lemmas 4–7 in Ĉırstea and Rădulescu (2002b)) which are the main tools used to

deduce Theorem 2.2.2.
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Lemma 2.2.5. G 6= ∅.

Proof. By Corollary 2.1.8, the problem

∆ψ = (p+ q)(x)(f + g)(ψ) in RN ,

has a positive radial entire large solution. Since ψ is radial, we have

ψ(r) = ψ(0) +

∫ r

0

t1−N
∫ t

0

sN−1(p+ q)(s)(f + g)(ψ(s)) ds dt, ∀r ≥ 0.

We claim that (0, ψ(0)]× (0, ψ(0)] ⊆ G. To prove this, fix 0 < a, b ≤ ψ(0) and let

v0(r) ≡ b for all r ≥ 0. Define the sequences (uk)k≥1 and (vk)k≥1 by

uk(r) = a+

∫ r

0

t1−N
∫ t

0

sN−1p(s)g(vk−1(s)) ds dt, ∀r ∈ [0,∞), ∀k ≥ 1, (2.56)

vk(r) = b+

∫ r

0

t1−N
∫ t

0

sN−1q(s)f(uk(s)) ds dt, ∀r ∈ [0,∞), ∀k ≥ 1.(2.57)

We first see that v0 ≤ v1 which produces u1 ≤ u2. Consequently, v1 ≤ v2 which

further yields u2 ≤ u3. With the same arguments, we obtain that (uk) and (vk)

are non-decreasing sequences. Since ψ′(r) ≥ 0 and b = v0 ≤ ψ(0) ≤ ψ(r) for all

r ≥ 0 we find

u1(r) ≤ a+

∫ r

0

t1−N
∫ t

0

sN−1p(s)g(ψ(s)) ds dt

≤ ψ(0) +

∫ r

0

t1−N
∫ t

0

sN−1(p+ q)(s)(f + g)(ψ(s)) ds dt = ψ(r).

Thus u1 ≤ ψ. It follows that

v1(r) ≤ b+

∫ r

0

t1−N
∫ t

0

sN−1q(s)f(ψ(s)) ds dt

≤ ψ(0) +

∫ r

0

t1−N
∫ t

0

sN−1(p+ q)(s)(f + g)(ψ(s)) ds dt = ψ(r).

Similar arguments show that

uk(r) ≤ ψ(r) and vk(r) ≤ ψ(r) ∀r ∈ [0,∞), ∀k ≥ 1.

Thus, (uk) and (vk) converge and (u, v) = limk→∞(uk, vk) is an entire radial

solution of (2.34) such that (u(0), v(0)) = (a, b). This completes the proof.
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An easy consequence of the above result is

Corollary 2.2.6. If (a, b) ∈ G, then (0, a]× (0, b] ⊆ G.

Proof. Indeed, the process used before can be repeated by taking

uk(r) = a0 +

∫ r

0

t1−N
∫ t

0

sN−1p(s)g(vk−1(s)) ds dt, ∀r ∈ [0,∞), ∀k ≥ 1,

vk(r) = b0 +

∫ r

0

t1−N
∫ t

0

sN−1q(s)f(uk(s)) ds dt, ∀r ∈ [0,∞), ∀k ≥ 1,

where 0 < a0 ≤ a, 0 < b0 ≤ b and v0(r) ≡ b0 for all r ≥ 0.

Letting (U, V ) be the entire radial solution of (2.34) with central values (a, b)

we obtain as in Lemma 2.2.5,

uk(r) ≤ uk+1(r) ≤ U(r), ∀r ∈ [0,∞), ∀k ≥ 1,

vk(r) ≤ vk+1(r) ≤ V (r), ∀r ∈ [0,∞), ∀k ≥ 1.

Set (u, v) = limk→∞(uk, vk). We see that u ≤ U , v ≤ V on [0,∞) and (u, v) is

an entire radial solution of (2.34) with central values (a0, b0). This shows that

(a0, b0) ∈ G, so that our assertion is proved.

Lemma 2.2.7. G is bounded.

Proof. Set 0 < λ < min {σ, 1} and let δ = δ(λ) be large enough so that

f(t) ≥ λg(t), ∀t ≥ δ. (2.58)

Since η is radially symmetric and not identically zero at infinity, we can assume

η > 0 on ∂B(0, R) for some R > 0. Corollary 2.1.6 ensures the existence of a

positive large solution ζ of the problem

∆ζ = λη(x)g

(
ζ

2

)
in B(0, R).

Arguing by contradiction, let us assume that G is not bounded, then, there exists

(a, b) ∈ G such that a+b > max {2δ, ζ(0)}. Let (u, v) be the entire radial solution

of (2.34) such that (u(0), v(0)) = (a, b). Since u(x) + v(x) ≥ a + b > 2δ for all

x ∈ RN , by (2.58), we find

f(u(x)) ≥ f

(
u(x) + v(x)

2

)
≥ λg

(
u(x) + v(x)

2

)
if u(x) ≥ v(x)
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and

g(v(x)) ≥ g

(
u(x) + v(x)

2

)
≥ λg

(
u(x) + v(x)

2

)
if v(x) ≥ u(x).

It follows that

∆(u+ v) = p(x)g(v) + q(x)f(u) ≥ η(x)(g(v) + f(u))

≥ λη(x)g

(
u+ v

2

)
in RN .

On the other hand, ζ(x) →∞ as |x| → R and u, v ∈ C2(B(0, R)). Thus, by the

maximum principle, we conclude that u+v ≤ ζ in B(0, R). But this is impossible

since u(0) + v(0) = a+ b > ζ(0).

Lemma 2.2.8. F (G) ⊂ G.

Proof. Let (a, b) ∈ F (G). We claim that (a − 1/n0, b − 1/n0) ∈ G provided

n0 ≥ 1 is large enough so that min {a, b} > 1/n0. Indeed, if this is not true, by

Corollary 2.2.6

D :=

[
a− 1

n0

,∞
)
×
[
b− 1

n0

,∞
)
⊆ (R+ × R+) \ G.

So, we can find a small ball B centered in (a, b) such that B ⊂⊂ D, i.e., B∩G = ∅,
but this will contradict the choice of (a, b). Consequently, there exists (un0 , vn0)

an entire radial solution of (2.34) such that (un0(0), vn0(0)) = (a−1/n0, b−1/n0).

Thus, for any n ≥ n0, we can define

un(r) = a− 1

n
+

∫ r

0

t1−N
∫ t

0

sN−1p(s)g(vn(s)) ds dt, r ≥ 0,

vn(r) = b− 1

n
+

∫ r

0

t1−N
∫ t

0

sN−1q(s)f(un(s)) ds dt, r ≥ 0.

Using Corollary 2.2.6 once more, we conclude that (un)n≥n0 and (vn)n≥n0 are non-

decreasing sequences. We now prove that (un) and (vn) converge on RN . To this

aim, let x0 ∈ RN be arbitrary, but η is not identically zero at infinity so that, for

some R0 > 0, we have η > 0 on ∂B(0, R0) and x0 ∈ B(0, R0).

Since σ = lim infu→∞
f(u)
g(u)

> 0, we find τ ∈ (0, 1) such that

f(t) ≥ τg(t), ∀t ≥ a+ b

2
− 1

n0

.
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Therefore, on the set where un ≥ vn, we have

f(un) ≥ f

(
un + vn

2

)
≥ τg

(
un + vn

2

)
.

Similarly, on the set where un ≤ vn, we have

g(vn) ≥ g

(
un + vn

2

)
≥ τg

(
un + vn

2

)
.

It follows that, for any x ∈ RN ,

∆(un + vn) = p(x)g(vn) + q(x)f(un) ≥ η(x)[g(vn) + f(un)]

≥ τη(x)g

(
un + vn

2

)
.

On the other hand, by Corollary 2.1.6, there exists a positive large solution of

∆ζ = τη(x)g

(
ζ

2

)
in B(0, R0).

The maximum principle yields un+vn ≤ ζ in B(0, R0). So, it makes sense to define

(u(x0), v(x0)) = limn→∞(un(x0), vn(x0)). Since x0 is arbitrary, the functions u, v

exist on RN . Hence (u, v) is an entire radial solution of (2.34) with central values

(a, b), i.e., (a, b) ∈ G.

Lemma 2.2.9. If, in addition, ν = max {p(0), q(0)} > 0, then 0 < Rc,d < ∞
where Rc,d is defined by (2.41).

Proof. Since ν > 0 and p, q ∈ C[0,∞), there exists ε > 0 such that (p+ q)(r) > 0

for all 0 ≤ r < ε. Let 0 < R < ε be arbitrary. By Corollary 2.1.6, there exists a

positive radial large solution of the problem

∆ψR = (p+ q)(x)(f + g)(ψR) in B(0, R).

Moreover, for any 0 ≤ r < R,

ψR(r) = ψR(0) +

∫ r

0

t1−N
∫ t

0

sN−1(p+ q)(s)(f + g)(ψR(s)) ds dt.

It is clear that ψ′R(r) ≥ 0. Thus, we find

ψ′R(r) = r1−N
∫ r

0

sN−1(p+ q)(s)(f + g)(ψR(s)) ds ≤ C(f + g)(ψR(r))
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where C > 0 is a positive constant such that
∫ ε

0
(p+ q)(s) ds ≤ C.

Since f + g satisfies (2.2) and (2.3), we may then invoke Lemma 2.1.5 to

conclude ∫ ∞
1

dt

(f + g)(t)
<∞.

Therefore, we get

− d

dr

∫ ∞
ψR(r)

ds

(f + g)(s)
=

ψ′R(r)

(f + g)(ψR(r))
≤ C for any 0 < r < R.

Integrating from 0 to R and recalling that ψR(r) →∞ as r ↗ R, we obtain∫ ∞
ψR(0)

ds

(f + g)(s)
≤ CR.

Letting R↘ 0 we conclude that

lim
R↘0

∫ ∞
ψR(0)

ds

(f + g)(s)
= 0.

This implies that ψR(0) → ∞ as R ↘ 0. So, there exists 0 < R̃ < ε such that

0 < c, d ≤ ψR̃(0). Set

uk(r) = c+

∫ r

0

t1−N
∫ t

0

sN−1p(s)g(vk−1(s)) ds dt, ∀r ∈ [0,∞), ∀k ≥ 1 (2.59)

vk(r) = d+

∫ r

0

t1−N
∫ t

0

sN−1q(s)f(uk(s)) ds dt, ∀r ∈ [0,∞), ∀k ≥ 1 (2.60)

where v0(r) = d for all r ∈ [0,∞). As in Lemma 2.2.5, we find that (uk) resp.,

(vk) are non-decreasing and

uk(r) ≤ ψR̃(r) and vk(r) ≤ ψR̃(r), ∀r ∈ [0, R̃), ∀k ≥ 1.

Thus, for any r ∈ [0, R̃), there exists (u(r), v(r)) = limk→∞(uk(r), vk(r)) which

is, moreover, a radial solution of (2.34) in B(0, R̃) such that (u(0), v(0)) = (c, d).

This shows that Rc,d ≥ R̃ > 0. By the definition of Rc,d we also derive

lim
r↗Rc,d

u(r) = ∞ and lim
r↗Rc,d

v(r) = ∞. (2.61)

On the other hand, since (c, d) 6∈ G, we conclude that Rc,d is finite.
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Proof of Theorem 2.2.2 completed.

Let (a, b) ∈ F (G) be arbitrary. By Lemma 2.2.8, (a, b) ∈ G so that we can define

(U, V ) an entire radial solution of (2.34) with (U(0), V (0)) = (a, b). Obviously,

for any n ≥ 1, (a+ 1/n, b+ 1/n) ∈ (R+×R+) \ G. By Lemma 2.2.9, Ra+1/n,b+1/n

(in short, Rn) defined by (2.41) is a positive number. Let (Un, Vn) be the radial

solution of (2.34) in B(0, Rn) with the central values (a+ 1/n, b+ 1/n). Thus,

Un(r) = a+
1

n
+

∫ r

0

t1−N
∫ t

0

sN−1p(s)g(Vn(s)) ds dt, ∀r ∈ [0, Rn), (2.62)

Vn(r) = b+
1

n
+

∫ r

0

t1−N
∫ t

0

sN−1q(s)f(Un(s)) ds dt, ∀r ∈ [0, Rn). (2.63)

In view of (2.61) we have

lim
r↗Rn

Un(r) = ∞ and lim
r↗Rn

Vn(r) = ∞, ∀n ≥ 1.

We claim that (Rn)n≥1 is a non-decreasing sequence. Indeed, if (uk), (vk) denote

the sequences of functions defined by (2.59) and (2.60) with c = a + 1/(n + 1)

and d = b+ 1/(n+ 1), then

uk(r) ≤ uk+1(r) ≤ Un(r), , ∀r ∈ [0, Rn), ∀k ≥ 1

vk(r) ≤ vk+1(r) ≤ Vn(r), ∀r ∈ [0, Rn), ∀k ≥ 1.
(2.64)

This implies that (uk(r))k≥1 and (vk(r))k≥1 converge for any r ∈ [0, Rn). More-

over, (Un+1, Vn+1) = limk→∞(uk, vk) is a radial solution of (2.34) in B(0, Rn) with

central values (a+ 1/(n+ 1), b+ 1/(n+ 1)). By the definition of Rn+1, it follows

that Rn+1 ≥ Rn for any n ≥ 1.

Set R := limn→∞Rn and let 0 ≤ r < R be arbitrary, then, there exists

n1 = n1(r) such that r < Rn for all n ≥ n1. From (2.64) we see that Un+1 ≤ Un

(resp., Vn+1 ≤ Vn) on [0, Rn) for all n ≥ 1. So, there exists limn→∞(Un(r), Vn(r))

which, by (2.62) and (2.63), is a radial solution of (2.34) in B(0, R) with central

values (a, b). Consequently,

lim
n→∞

Un(r) = U(r) and lim
n→∞

Vn(r) = V (r) for any r ∈ [0, R). (2.65)

Since U ′n(r) ≥ 0, from (2.63) we find

Vn(r) ≤ b+
1

n
+ f(Un(r))

∫ ∞
0

t1−N
∫ t

0

sN−1q(s) ds dt.
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This yields

Vn(r) ≤ C1Un(r) + C2f(Un(r)) (2.66)

where C1 is an upper bound of (V (0) + 1/n)/(U(0) + 1/n) and

C2 =

∫ ∞
0

t1−N
∫ t

0

sN−1q(s) ds dt ≤ 1

N − 2

∫ ∞
0

sq(s) ds <∞.

Define h(t) = g(C1t + C2f(t)) for t ≥ 0. It is easy to check that h satisfies (2.2)

and (2.3). So, by Lemma 2.1.5 we can define

Γ(s) =

∫ ∞
s

dt

h(t)
, for all s > 0.

But Un verifies

∆Un = p(x)g(Vn)

which combined with (2.66) implies

∆Un ≤ p(x)h(Un).

A simple calculation shows that

∆Γ(Un) = Γ′(Un)∆Un + Γ′′(Un)|∇Un|2 =
−1

h(Un)
∆Un +

h′(Un)

[h(Un)]2
|∇Un|2

≥ −1

h(Un)
p(r)h(Un) = −p(r)

which we rewrite as(
rN−1 d

dr
Γ(Un)

)′
≥ −rN−1p(r) for any 0 < r < Rn.

Fix 0 < r < R. Then r < Rn for all n ≥ n1 provided n1 is large enough.

Integrating the above inequality over [0, r], we get

d

dr
Γ(Un) ≥ −r1−N

∫ r

0

sN−1p(s) ds.

Integrating this new inequality over [r, Rn] we obtain

−Γ(Un(r)) ≥ −
∫ Rn

r

t1−N
∫ t

0

sN−1p(s) ds dt, ∀n ≥ n1,
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since Un(r) →∞ as r ↗ Rn implies Γ(Un(r)) → 0 as r ↗ Rn. Therefore,

Γ(Un(r)) ≤
∫ Rn

r

t1−N
∫ t

0

sN−1p(s) ds dt, ∀n ≥ n1.

Letting n→∞ and using (2.65) we find

Γ(U(r)) ≤
∫ R

r

t1−N
∫ t

0

sN−1p(s) ds dt,

or, equivalently

U(r) ≥ Γ−1

(∫ R

r

t1−N
∫ t

0

sN−1p(s) ds dt

)
.

Passing to the limit as r ↗ R and using lims↘0 Γ−1(s) = ∞ we deduce

lim
r↗R

U(r) ≥ lim
r↗R

Γ−1

(∫ R

r

t1−N
∫ t

0

sN−1p(s) ds dt

)
= ∞.

But (U, V ) is an entire solution so that we conclude thatR = ∞ and limr→∞ U(r) =

∞. Since (2.37) holds and V ′(r) ≥ 0 we find

U(r) ≤ a+ g(V (r))

∫ ∞
0

t1−N
∫ t

0

sN−1p(s) ds dt

≤ a+ g(V (r))
1

N − 2

∫ ∞
0

tp(t) dt, ∀r ≥ 0.

We deduce limr→∞ V (r) = ∞, otherwise we obtain that limr→∞ U(r) is finite,

a contradiction. Consequently, (U, V ) is an entire large solution of (2.34). This

concludes our proof.
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Chapter 3

Large Solutions for Logistic-type
Equations: Existence
“Man’s mind stretched to a new idea never goes back to its original
dimensions.” (Oliver Wendell Holmes)

The next chapters deal with the qualitative properties of the large solutions to

semilinear elliptic equations of the type (2.1) on a smooth bounded domain, where

a linear perturbation is introduced. We are interested in equations of the form

∆u+ au = b(x)f(u) in Ω, (3.1)

where b(x) ≥ 0 will, in particular, satisfy (2.4). The zero set of b(x) is specified

to be the closure of an interior sub-domain Ω0 such that b is positive on Ω \ Ω0.

The purpose of this chapter is to analyze the effect of the linear perturbation

on the existence of large solutions. Section §3.1 is dedicated to the situation of

a complete boundary blow-up. In §3.2 and §3.3 the definition of a large solution

is given for boundary value problems to accommodate the case when blow-up

occurs partially on the boundary and a Dirichlet, Neumann or Robin boundary

condition arises on some other parts of the boundary of the domain. Among

the new tools used in Chapter 2 distinguish some comparison principles and a

result due to Alama and Tarantello (1996) about an equivalent condition for the

existence of positive solutions of (3.1), subject to u = 0 on ∂Ω. Each section

is structured such that to allow, as much as possible, an independent reading.

Thus, some comparison principles are given in different places in a form which

serves the purpose and then refined when the need arises.
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3.1 Pure Boundary Blow-up Problems

3.1.1 Introduction

Consider the semilinear elliptic equation

∆u+ au = b(x)f(u) in Ω, (3.2)

where Ω is a smooth bounded domain in RN (N ≥ 3), a is a real parameter and

b ∈ C0,µ(Ω), 0 < µ < 1, satisfies b ≥ 0 and b 6≡ 0 in Ω.

Let Ω0 denote the interior of the set where b vanishes in Ω, that is

Ω0 := int {x ∈ Ω : b(x) = 0}. (3.3)

Suppose, throughout §3.1, that Ω0 is connected, Ω0 ⊂ Ω and b > 0 on Ω \ Ω0.

Assume that f ∈ C1[0,∞) satisfies

f ≥ 0 and f(u)/u is increasing on (0,∞). (3.4)

Following Alama and Tarantello (1996), define by H∞ the Dirichlet Lapla-

cian on the set Ω0 ⊂ Ω as the unique self-adjoint operator associated with the

quadratic form ξ(u) =
∫

Ω
|∇u|2 dx with form domain

H1
D(Ω0) = {u ∈ H1

0 (Ω) : u(x) = 0 for a.e. x ∈ Ω \ Ω0}.

If ∂Ω0 satisfies an exterior cone condition, then H1
D(Ω0) coincides with H1

0 (Ω0)

and H∞ is the classical Laplace operator with Dirichlet condition on ∂Ω0.

Let λ∞,1 be the first Dirichlet eigenvalue of H∞ in Ω0 (λ∞,1 = +∞ if Ω0 = ∅).
Define µ0 := limu↘0 f(u)/u and µ∞ := limu→∞ f(u)/u.

The results of Alama and Tarantello rely on the existence of a principal eigen-

value for the operator −∆ + µb in the limiting cases µ = µ0 and µ = µ∞.

Denote by λ1(µ0) (resp., λ1(µ∞)) the first eigenvalue of Hµ0 = −∆ + µ0b (resp.,

Hµ∞ = −∆ + µ∞b) in H1
0 (Ω). Recall that λ1(+∞) = λ∞,1.

Theorem A (bis) of Alama and Tarantello (1996) (see also del Pino (1994),

Umezu and Taira (1999)) asserts that problem (3.2) subject to the Dirichlet

boundary condition

u = 0 on ∂Ω (3.5)

has a positive solution ua if and only if a ∈ (λ1(µ0), λ1(µ∞)). Moreover, ua is the

unique positive solution for (3.2)+(3.5).
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Notation 1. We denote by (Ea) the combination of (3.2)+(3.5).

The main goal of section 3.1 is to give a corresponding necessary and sufficient

condition, but for the existence of large (or blow-up) solutions of (3.2). We say

that a solution u of (3.2) is large if u ≥ 0 in Ω and u(x) →∞ as dist (x, ∂Ω) → 0.

3.1.2 Existence of Large Solutions

Recall that when a ≡ 0, b ≡ 1 and f is assumed to fulfill (2.2) (which is weaker

than (3.4)), then the Keller–Osserman condition (2.3), namely∫ ∞
1

dt√
2F (t)

<∞ , where F (t) =

∫ t

0

f(s) ds (3.6)

is necessary and sufficient for the existence of large solutions to (3.2). Moreover,

Remark 3.1.2 in §3.1.5 shows that if (3.4) holds, then (3.2) can have large solutions

only if (3.6) is fulfilled. In this context, we find the maximal interval for the

parameter a that ensures the existence of large solutions to problem (3.2).

Our main result of section 3.1 is the following (see Theorem 1.1 in Ĉırstea

and Rădulescu (2003b)).

Theorem 3.1.1. Assume that f satisfies conditions (3.4) and (3.6). Then prob-

lem (3.2) possesses large solutions if and only if a ∈ (−∞, λ∞,1). Moreover, in

this case, any large solution is positive.

We point out that the framework of Theorem 3.1.1 includes the case when b

vanishes at some points on ∂Ω, or even if b ≡ 0 on ∂Ω.

The above result also applies to problems on Riemannian manifolds if ∆ is

replaced by the Laplace–Beltrami operator

∆B =
1√
c

∂

∂xi

(√
c aij(x)

∂

∂xi

)
, c := det (aij) ,

with respect to the metric ds2 = cij dxidxj, where (cij) is the inverse of (aij).

In this case Theorem 3.1.1 applies to concrete problems arising in Riemannian

geometry. For instance, (cf. Loewner and Nirenberg (1974)) if Ω is replaced by

the standard N–sphere (SN , g0), ∆ is the Laplace-Beltrami operator ∆g0 , a =
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N(N − 2)/4, and f(u) = (N − 2)/[4(N − 1)]u(N+2)/(N−2), we find the prescribing

scalar curvature equation on SN .

The structure of section 3.1 is as follows. In §3.1.3 we establish a strong max-

imum principle based on an improved form of Theorem 2.1.2. Subsection 3.1.4

comprises a comparison principle, while §3.1.5 is concerned with the Keller–

Osserman condition. The proof of Theorem 3.1.1 is given in §3.1.6.

3.1.3 A Strong Maximum Principle

We present here a refined form of Theorem 2.1.2 (see Theorem A.1 in Ĉırstea and

Rădulescu (2002c)).

Theorem 3.1.2. Let Ω ⊂ RN be a smooth bounded domain. Assume that 0 6≡ p ∈
C0,µ(Ω) is non-negative and f ∈ C1[0,∞) is a positive, non-decreasing function

on (0,∞) such that f(0) = 0. If 0 6≡ Φ ∈ C0,µ(∂Ω) is non-negative, then the

boundary value problem 
∆u = p(x)f(u) in Ω,

u = Φ on ∂Ω,

u ≥ 0 in Ω,

(3.7)

has a unique classical solution, which is positive in Ω.

Remark 3.1.1. The conclusion of Theorem 3.1.2 has been established by Theo-

rem 2.1.2 when Φ is assumed to be positive on ∂Ω. Our approach for proving

the positivity of the solution was essentially based on this assumption and it fails

when the zero set of Φ is non-empty.

Under the same assumptions on p and f as in Theorem 3.1.2, we have

Corollary 3.1.3 (Strong maximum principle). Let Ω be a non-empty domain

in RN . If u is a non-negative classical solution of the equation ∆u = p(x)f(u) in

Ω, then the following alternative holds: either u ≡ 0 in Ω or u is positive in Ω.

Proof. If u 6≡ 0 in Ω, then there exists x0 ∈ Ω such that u(x0) > 0. We claim

that u > 0 in Ω. Arguing by contradiction, let us assume that u(x1) = 0 for
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some x1 ∈ Ω. Let ω ⊂⊂ Ω be a smooth bounded domain such that x1 ∈ ω and

x0 ∈ ∂ω. Set p0 := 1 + supω p > 0 and consider the problem
∆v = p0f(v) in ω,

v = u 6≡ 0 on ∂ω,

v ≥ 0 in ω.

(3.8)

By Theorem 3.1.2, this problem has a unique solution v0, which is positive in

ω. It is clear that 0 (resp., u) is a sub-solution (resp., super-solution) for (3.8).

So, there exists a solution v1 of (3.8) satisfying 0 ≤ v1 ≤ u. By uniqueness, we

deduce v1 = v0 > 0 in ω. Hence, u ≥ v0 > 0 in ω, but this is impossible since

u(x1) = 0.

Corollary 3.1.4. Let Ω ⊂ RN be a smooth bounded domain. If u1 is a non-

negative classical solution of the equation ∆u + au = p(x)f(u) in Ω such that

u1 6≡ 0 on ∂Ω, then u1 is positive in Ω.

Proof. Let Φ ∈ C0,µ(∂Ω) be such that Φ 6≡ 0 and 0 ≤ Φ ≤ u1 on ∂Ω. Consider

the problem 
∆u = |a|u+ ‖p‖∞f(u) in Ω,

u = Φ on ∂Ω,

u ≥ 0 in Ω.

(3.9)

By Theorem 3.1.2, this problem has a unique solution, say u0, which is positive

in Ω. But u1 is a super-solution for problem (3.9), so u1 ≥ u0 > 0 in Ω and the

claim is proved.

Proof of Theorem 3.1.2. We first observe that u− = 0 is a sub-solution of (3.7),

while u+ = n is a super-solution of (3.7) if n is large enough. Hence problem (3.7)

has at least a solution uΦ.

Taking into account the regularity of p and f , a standard boot-strap argument

based on Schauder and Hölder regularity shows that uΦ ∈ C2(Ω) ∩ C(Ω). The

fact that uΦ is the unique classical solution to (3.7) follows in the same way as in

Theorem 2.1.2.

In what follows we give two proofs for the positivity of uΦ: the first one relies

essentially on Theorem 1.20 in Dı́az (1985), while the second proof offers a much

easier and direct approach.
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First proof. Set M := maxΩ p. Let u∗ be the unique non-negative classical solu-

tion of the problem {
∆u∗ = Mf(u∗) in Ω,

u∗ = Φ on ∂Ω.

To conclude that uΦ > 0 in Ω it is enough to show that uΦ ≥ u∗ > 0 in Ω. Since

f ∈ C1[0,∞), we have

lim
u→0+

u2

F (u)
= lim

u→0+

2u

f(u)
=

2

f ′(0)
> 0 (3.10)

which implies that
∫ 1

0+
du√
F (u)

= ∞. By applying Theorem 1.20 in Dı́az (1985),

we conclude that u∗ > 0 in Ω.

We now prove that uΦ ≥ u∗ in Ω. To this aim, fix ε > 0. We claim that

u∗(x) ≤ uΦ(x) + ε(1 + |x|2)−1/2 for any x ∈ Ω. (3.11)

Assume the contrary. Since u∗ |∂Ω = uΦ |∂Ω = Φ we infer that

max
x∈Ω

{u∗(x)− uΦ(x)− ε(1 + |x|2)−1/2}

is achieved in Ω. At that point we have

0 ≥ ∆
(
u∗(x)− uΦ(x)− ε(1 + |x|2)−1/2

)
= Mf(u∗(x))− p(x)f(uΦ(x))− ε∆(1 + |x|2)−1/2

≥ p(x) (f(u∗(x))− f(uΦ(x))) + ε(N − 3)(1 + |x|2)−3/2

+ 3 ε(1 + |x|2)−5/2 > 0 ,

which is a contradiction. Since ε > 0 is chosen arbitrarily, inequality (3.11)

implies that uΦ ≥ u∗ in Ω.

Second proof. Since Φ 6≡ 0, there exists x0 ∈ Ω such that uΦ(x0) > 0. To

conclude that uΦ > 0 in Ω it is sufficient to prove that uΦ > 0 on B(x0; r)

where r = dist (x0, ∂Ω). Without loss of generality, we can assume that x0 = 0.

By the continuity of uΦ, there exists r ∈ (0, r) such that uΦ(x) > 0 for all x with

|x| ≤ r. So, min|x|=r uΦ(x) =: ρ > 0. We define

M := max
Ω

p, η :=

∫ ρ+1

ρ

dt

f(t)
and ν(ε) :=

∫ ρ+1

ε

dt

f(t)
for 0 < ε < ρ.
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It remains to show that uΦ > 0 in A(r, r), where

A(r, r) := {x ∈ RN : r < |x| < r}.

To this aim, we need the following lemma (see Lemma A.1 in Ĉırstea and Rădulescu

(2002c)).

Lemma 3.1.5. For ε > 0 small enough, the problem
−∆v = M in A(r, r),

v(x) = η as |x| = r,

v(x) = ν(ε) as |x| = r,

(3.12)

has a unique solution, which is increasing in A(r, r).

Proof. By the maximum principle, the problem (3.12) has a unique solution.

Moreover, v is radially symmetric in A(r, r), namely v(x) = v(r), r = |x|. The

function v satisfies

v′′(r) +
N − 1

r
v′(r) = −M, r < r < r.

Integrating this relation twice, we find

v(r) = −M

2N
r2 − C1

N − 2
r2−N + C2, r < r < r,

where C1 and C2 are real constants. The boundary conditions v(r) = η and

v(r) = ν(ε) imply that

C1 =

(
ν(ε)− η +

M

2N
(r2 − r2)

)
N − 2

r2−N − r2−N .

From (3.10) we deduce ν(ε) →∞ as ε→ 0. Thus, taking ε > 0 sufficiently small,

C1 becomes large enough to ensure that v′(r) > 0 for all r ∈ (r, r).

Set ε > 0 sufficiently small such that the conclusion of Lemma 3.1.5 holds.

Let u be the function defined implicitly as follows∫ ρ+1

u(x)+ε

dt

f(t)
= v(x) for all x ∈ A(r, r). (3.13)
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It is easy to check that
∆u ≥Mf(u+ ε) ≥ p(x)f(u) in A(r, r),

u(x) = ρ− ε < uΦ(x) as |x| = r,

u(x) = 0 ≤ uΦ(x) as |x| = r.

Using the maximum principle (as in the proof of (3.11)) we get u ≤ uΦ in A(r, r).

By (3.13) and Lemma 3.1.5 we infer that u decreases in A(r, r). Thus, u > 0 in

A(r, r). This completes the proof of Theorem 3.1.2.

The positiveness of the solution in Theorem 3.1.2 follows essentially by the

assumption that f ∈ C1 on [0,∞). We show in what follows that if f is not

differentiable at the origin, then problem (3.7) has a unique solution that is not

necessarily positive in Ω. However, in this case, the positiveness of the solution

may depend on c and on the geometry of Ω. Indeed, let us consider the problem
∆u =

√
u in Ω ,

u ≥ 0 in Ω ,

u = c on ∂Ω,

(3.14)

where c > 0 is a constant.

To justify the uniqueness, let u1, u2 be two solutions of (3.14). It is sufficient

to show that u1 ≤ u2 in Ω. Set

ω = {x ∈ Ω; u1(x) > u2(x)}

and assume that ω 6= ∅, then

∆(u1 − u2) =
√
u1 −

√
u2 > 0 in ω

and u1 − u2 = 0 on ∂ω. The maximum principle implies that u1 − u2 ≤ 0 in ω,

which yields a contradiction.

The existence of a solution follows after observing that u− = 0 (resp. u+ = c)

is a sub-solution (resp. super-solution) for our problem.

The following example illustrates that in certain situations the unique solution

of the problem (3.14) may vanish.
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Example 3.1.1. Set Ω = B(0, 1) ⊂ RN and w(x) = a|x|4. If c ≤ 1/(4N + 8)2,

let us choose a so that c ≤ a ≤ 1/(4N + 8)2. It follows that{
∆w = (4N + 8)a|x|2 ≤

√
a|x|2 =

√
w in Ω ,

w = a ≥ c on ∂Ω.

This means that w is a super-solution of (3.14). Since w(0) = 0 then, necessarily,

u(0) = 0.

The next example shows that in some cases, depending on c and on diam Ω,

the unique solution of (3.14) is positive.

Example 3.1.2. Suppose that Ω can be included in a ball B(x0, R) with R ≤
Rc := 2 4

√
c
√
N + 2. Define w(x) = a|x−x0|4, where a is chosen so that

√
c/R2 ≥

√
a ≥ 1/(4N + 8), then w satisfies{

∆w = (4N + 8)a|x− x0|2 ≥
√
a|x− x0|2 =

√
w in Ω ,

w = a|x− x0|4 ≤ c on ∂Ω

which shows that w is a sub-solution of (3.14). We conclude that u(x) ≥ w(x) > 0,

for any x ∈ Ω\{x0}.
If diam Ω < 2R ≤ 2Rc, there exist two points x0 and x1 such that Ω can be in-

cluded in each of the balls B(x0, R) and B(x1, R). Using the previous conclusion,

we have

u(x) ≥ amax{|x− x0|4, |x− x1|4} ≥ a

∣∣∣∣x1 − x0

2

∣∣∣∣4 > 0.

Choosing a = c/R4, |x1 − x0| = 2R− diam Ω and R = Rc, we find

u(x) ≥ c

R4

(
2R− diam Ω

2

)4

= c

(
1− diam Ω

2R

)4

> 0, ∀x ∈ Ω.

3.1.4 A Comparison Principle

We give a comparison principle (see Lemma 1 in Ĉırstea and Rădulescu (2003b)),

which plays an important role in the proof of Theorem 3.1.1.

Lemma 3.1.6. Let ω ⊂ RN be a smooth bounded domain. Assume that f is con-

tinuous on (0,∞), f(u)/u is increasing on (0,∞), and p, q, r are C0,µ-functions
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on ω such that r ≥ 0 and p > 0 in ω. Let u1, u2 ∈ C2(ω) be positive functions

such that

∆u1 + qu1 − pf(u1) + r ≤ 0 ≤ ∆u2 + qu2 − pf(u2) + r in ω (3.15)

lim supdist (x,∂ω)→0(u2 − u1)(x) ≤ 0, (3.16)

then u1 ≥ u2 in ω.

Proof. We use the same method as in the proof of Lemma 1.1 in Marcus and

Véron (1997) (see also Lemma 2.1 in Du and Huang (1999)), that goes back to

Benguria et al. (1981).

By (3.15) we obtain, for any non-negative function φ ∈ H1(ω) with compact

support in ω,∫
ω

(∇u1 · ∇φ− qu1φ+ pf(u1)φ− rφ) dx

≥ 0 ≥
∫
ω

(∇u2 · ∇φ− qu2φ+ pf(u2)φ− rφ) dx .

(3.17)

Let ε1 > ε2 > 0 and denote

ω(ε1, ε2) = {x ∈ ω : u2(x) + ε2 > u1(x) + ε1}

vi = (ui + εi)
−1
(
(u2 + ε2)

2 − (u1 + ε1)
2
)+
, i = 1, 2.

Notice that vi ∈ H1(ω) and, by (3.16), it has compact support in ω. Using (3.17)

with φ = vi and taking into account that vi vanishes outside ω(ε1, ε2), we find∫
ω(ε1, ε2)

(∇u1 · ∇v1 −∇u2 · ∇v2) dx ≥
∫
ω(ε1, ε2)

p(f(u2)v2 − f(u1)v1) dx

+

∫
ω(ε1, ε2)

q(u1v1 − u2v2) dx+

∫
ω(ε1, ε2)

r(v1 − v2) dx .

(3.18)

A simple computation shows that the integral in the left-hand side of (3.18) equals

−
∫
ω(ε1, ε2)

(∣∣∣∣∇u2 −
u2 + ε2

u1 + ε1

∇u1

∣∣∣∣2 +

∣∣∣∣∇u1 −
u1 + ε1

u2 + ε2

∇u2

∣∣∣∣2
)
dx ≤ 0 .

Passing to the limit as 0 < ε2 < ε1 → 0, the first term on the right hand-side of

(3.18) converges to ∫
ω(0, 0)

p

(
f(u2)

u2

− f(u1)

u1

)
(u2

2 − u2
1) dx ,
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the second term goes to 0, while the third one converges to∫
ω(0, 0)

r(u2 − u1)
2(u2 + u1)

u1u2

dx ≥ 0 .

Hence we avoid a contradiction only in the case when ω(0, 0) has measure 0,

which means that u1 ≥ u2 on ω.

3.1.5 On the Keller–Osserman Condition

Remark 3.1.2. If (3.4) holds, then problem (3.2) can have large solutions only if

f satisfies the Keller–Osserman condition (3.6).

Proof. Suppose, a priori, that problem (3.2) has a large solution u∞. Set f̃(u) =

|a|u + ‖b‖∞f(u) for u ≥ 0. Notice that f̃ ∈ C1[0,∞) satisfies (2.2). For any

n ≥ 1, consider the problem 
∆u = f̃(u) in Ω ,

u = n on ∂Ω ,

u ≥ 0 in Ω .

By Theorem 3.1.2, this problem has a unique solution, say un, which is positive

in Ω. Applying Lemma 3.1.6 for q ≡ −|a|, p ≡ ‖b‖∞, r ≡ 0 and ω = Ω, we obtain

0 < un ≤ un+1 ≤ u∞ in Ω, ∀n ≥ 1.

Thus, for every x ∈ Ω, we can define ū(x) = limn→∞ un(x). Moreover, since (un)

is uniformly bounded on every compact subset of Ω, standard elliptic regularity

arguments show that ū is a positive large solution of the problem ∆u = f̃(u).

It follows that f̃ satisfies the Keller–Osserman condition (3.6). Then, by (3.4),

µ∞ := limu→∞ f(u)/u > 0 which yields limu→∞ f̃(u)/f(u) = |a|/µ∞+‖b‖∞ <∞.

Consequently, our claim follows.

Remark 3.1.3. If f satisfies (3.4) and (3.6), then

µ∞ := lim
u→∞

f(u)

u
= lim

u→∞
f ′(u) = ∞.

Indeed, by l’Hospital’s rule, limu→∞ F (u)/u2 = µ∞/2. But, by (3.6), we deduce

µ∞ = ∞. Then, by (3.4) we find f ′(u) ≥ f(u)/u for any u > 0, which shows that

limu→∞ f
′(u) = ∞.
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Nonlinearities f as in Remark 3.1.3 are illustrated by

(i) f(u) = eu − 1; f(u) = eu ln(u+ 1); f(u) = ee
u − e;

(ii) f(u) = up, f(u) = up ln(u+ 1) with p > 1;

(iii) f(u) = u[ln (u+ 1)]p with p > 2.

We shall provide an equivalent criterion to the Keller–Osserman condition

(3.6). To this aim, a significant role is played by the set G defined by

G =

g
∣∣∣∣∣∣
g ∈ C2(0, δ), for some δ > 0, g′′ > 0 on (0, δ),

lim
t↘0

g(t) = ∞ and there exists lim
t↘0

g′(t)/g′′(t)

 . (3.19)

Note that G 6≡ ∅. We see, for example, that eΘ ⊂ G where

Θ =

{
θ : θ ∈ C2(0,∞), θ is convex on (0,∞) and lim

t↘0
θ(t) = ∞

}
.

Obviously, Θ 6≡ ∅. Let θ ∈ Θ be arbitrary. Since θ′ is non-decreasing on (0,∞)

and limt↘0 θ(t) = ∞, it follows that limt↘0 θ
′(t) = −∞, then,∣∣∣∣ θ′(t)

(θ′(t))2 + θ′′(t)

∣∣∣∣ ≤ 1

|θ′(t)|
→ 0 as t↘ 0,

which proves that eθ ∈ G.

Remark 3.1.4. We have lim
t↘0

g(t)/g′′(t) = lim
t↘0

g′(t)/g′′(t) = 0, for any g ∈ G.

Indeed, let g ∈ G be arbitrary, then

lim
t↘0

g′(t) = −∞, lim
t↘0

ln g(t) = ∞ and lim
t↘0

ln |g′(t)| = ∞. (3.20)

L’Hospital’s rule and (3.20) imply that limt↘0 g(t)/g
′(t) = limt↘0 g

′(t)/g′′(t) = 0.

Notation 2. We denote by (3.4’) the case when (3.4) is fulfilled and there exists

limu→∞(F/f)′(u) := γ.

We see that when (3.4’) is satisfied, then γ ≥ 0; if, in addition, (3.6) holds,

then γ ≤ 1/2 (cf. Lemma 4.1 in Ĉırstea and Rădulescu (2002c)).

Lemma 3.1.7. If (3.4’) is satisfied, then the following hold:
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(i) γ ≥ 0;

(ii) γ ≤ 1/2 provided that (3.6) is also fulfilled.

Proof. (i) If we suppose that γ < 0, then there exists s1 > 0 such that (F/f)′(u) ≤
γ/2 < 0 for any u ≥ s1. Integrating this inequality over (s1,∞), we obtain a

contradiction. Thus, γ ≥ 0.

(ii) Let (3.6) be satisfied. By the definition of γ, limu→∞
F (u)f ′(u)
f2(u)

= 1− γ.

By Remark 3.1.3 and L’Hospital’s rule, we obtain

lim
u→∞

F (u)

f 2(u)

∞
∞= lim

u→∞

1

2f ′(u)
= 0

and

0 ≤ lim
u→∞

√
F (u)/f(u)∫∞
u

ds√
F (s)

0
0= −1

2
+ lim

u→∞

F (u)f ′(u)

f 2(u)
=

1

2
− γ. (3.21)

This concludes the proof.

Next, we use the class G introduced by (3.19) to deduce an equivalent condition

to (3.6) (cf. Lemma 4.2 in Ĉırstea and Rădulescu (2002c)).

Lemma 3.1.8. If (3.4’) is satisfied, then the Keller–Osserman growth condition

(3.6) holds if and only if

lim
t↘0

tf(g(t))

g′′(t)
= ∞, for some function g ∈ G . (3.22)

A. Necessary condition. Since (3.6) holds, we can define a positive function g as

follows∫ ∞
g(t)

ds√
F (s)

= tϑ for all t > 0, where ϑ ∈ (3/2,∞) is arbitrary. (3.23)

Obviously, g ∈ C2(0,∞) and limt↘0 g(t) = ∞.

We show that g ∈ G satisfies (3.22). We divide our argument into three steps:

Step 3.1.1. limt↘0 g
′(t)t1−2ϑ/f(g(t)) = ϑ(γ − 1/2).
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We derive twice relation (3.23) and obtain

g′(t) = −ϑtϑ−1
√
F (g(t)) (3.24)

respectively

g′′(t) =
ϑ− 1

t
g′(t) +

ϑ2

2
t2ϑ−2f(g(t))

=
ϑ2

2
t2ϑ−2f(g(t))

(
2(ϑ− 1)

ϑ2

g′(t)

t2ϑ−1f(g(t))
+ 1

)
.

(3.25)

By (3.21) and (3.24), we find

lim
t↘0

g′(t)

t2ϑ−1f(g(t))
= lim

t↘0

−ϑtϑ−1
√
F (g(t))

t2ϑ−1f(g(t))
= lim

t↘0
−ϑ
√
F (g(t))/f(g(t))∫∞

g(t)
ds√
F (s)

= lim
u→∞

−ϑ
√
F (u)/f(u)∫∞
u

ds√
F (s)

= ϑ

(
γ − 1

2

)
.

Step 3.1.2. g′′ > 0 on (0, δ) for δ small enough.

Since γ ≥ 0, by Step 3.1.1, we get

lim
t↘0

2(ϑ− 1)

ϑ2

g′(t)

t2ϑ−1f(g(t))
=

2(ϑ− 1)

ϑ

(
γ − 1

2

)
≥ 1

ϑ
− 1 > −1. (3.26)

In view of (3.25), the assertion of this step follows.

Step 3.1.3. limt↘0 g
′(t)/g′′(t) = 0 and limt↘0 tf(g(t))/g′′(t) = ∞.

Using (3.25) and (3.26), we obtain

lim
t↘0

g′(t)

g′′(t)
= lim

t↘0

2t

ϑ2

g′(t)

t2ϑ−1f(g(t))

1
2(ϑ−1)
ϑ2

g′(t)
t2ϑ−1f(g(t))

+ 1
= 0.

For any t ∈ (0, δ) (δ > 0 as in Step 3.1.2), we infer that

tf(g(t))

g′′(t)
=

tf(g(t))
ϑ−1
t
g′(t) + ϑ2

2
t2ϑ−2f(g(t))

≥ tf(g(t))
ϑ2

2
t2ϑ−2f(g(t))

=
2

ϑ2t2ϑ−3
.

Sending t to 0, the claim of Step 3.1.3 is proved.

B. Sufficient condition. Choose g ∈ G so that (3.22) is fulfilled. We have

lim
t↘0

(g′(t))2

F (g(t))
= 2 lim

t↘0

g′′(t)

f(g(t))
= 0.
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We choose δ > 0 small enough such that g′(s) < 0 and g′′(s) > 0 for all s ∈ (0, δ).

It follows that∫ ∞
g(δ)

dt√
F (t)

= lim
t↘0

∫ g(t)

g(δ)

ds√
F (s)

= lim
t↘0

∫ δ

t

−g′(s) ds√
F (g(s))

≤ δ sup
t∈(0,δ)

−g′(t)√
F (g(t))

<∞.

Hence, the growth condition (3.6) holds.

3.1.6 Proof of the Main Result

A. Necessary condition. Let u∞ be a large solution of problem (3.2). We claim

that u∞ is positive. Indeed, since u∞(x) → ∞ as dist (x, ∂Ω) → 0, there exists

a smooth open set ω ⊂⊂ Ω such that u∞ > 0 on Ω \ ω. So, it is enough to

show that u∞ > 0 in ω. To this aim, set M0 := 1 + supω b > 0 and consider the

problem 
∆u = |a|u+M0f(u) in ω ,

u = u∞ on ∂ω ,

u ≥ 0 in ω .

(3.27)

By Theorem 3.1.2, this problem has a unique solution u0 and, moreover, u0 > 0

in ω. Since u∞ is a super-solution for problem (3.27), we infer that u∞ ≥ u0 > 0

in ω. This shows that any large solution of (3.2) is positive.

Suppose that λ∞,1 is finite. Arguing by contradiction, let us assume that

a ≥ λ∞,1. Set λ ∈ (λ1(µ0), λ∞,1) and denote by uλ the unique positive solution

of problem (Ea) with a = λ. We have
∆(Mu∞) + λ∞,1(Mu∞) ≤ b(x)f(Mu∞) in Ω ,

Mu∞ = ∞ on ∂Ω ,

Mu∞ ≥ uλ in Ω ,

whereM := max {maxΩ uλ/minΩ u∞; 1}. By the sub and super-solutions method,

we conclude that problem (Ea) with a = λ∞,1 has at least a positive solu-

tion (between uλ and Mu∞). But this is a contradiction. So, necessarily, a ∈
(−∞, λ∞,1).
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3.1 Pure Boundary Blow-up Problems

B. Sufficient condition. This will be proved with the aid of several results (see

Lemmas 2 and 3 in Ĉırstea and Rădulescu (2003b)). In the rest of §3.1.6 we

assume that f satisfies (3.4) and (3.6).

Lemma 3.1.9. Let ω be a smooth bounded domain in RN . Assume that p, q, r are

C0,µ-functions on ω such that r ≥ 0 and p > 0 in ω, then, for any non-negative

function 0 6≡ Φ ∈ C0,µ(∂ω), the boundary value problem
∆u+ q(x)u = p(x)f(u)− r(x) in ω,

u > 0 in ω,

u = Φ on ∂ω,

(3.28)

has a unique solution.

Proof. By Lemma 3.1.6, problem (3.28) has at most one solution. The existence

of a positive solution will be obtained by device of sub and super-solutions.

Set m := infω p > 0. Define f̄(u) = mf(u)− ‖q‖∞ u− r̄, where r̄ := supω r +

1 > 0. Let t0 be the unique positive solution of the equation f̄(u) = 0. By

Remark 3.1.3, we infer that limu→∞ f̄(u)/f(u) = m > 0. Combining this with

(3.6), we conclude that the function ϕ(w) = f̄(w+ t0) defined for w ≥ 0 satisfies

the assumptions of Theorem III in Keller (1957). It follows that there exists a

positive large solution for the equation ∆w = ϕ(w) in ω. Thus the function

ū(x) = w(x) + t0, for all x ∈ ω, is a positive large solution of the problem

∆u+ ‖q‖∞ u = mf(u)− r̄ in ω. (3.29)

By Theorem 3.1.2, the boundary value problem
∆u = ‖q‖∞ u+ ‖p‖∞ f(u) in ω,

u > 0 in ω,

u = Φ on ∂ω,

has a unique classical solution u. By Lemma 3.1.6, we find u ≤ u in ω and u

(resp., u) is a positive sub-solution (resp., super-solution) of problem (3.28). It

follows that (3.28) has a unique solution.

Under the assumptions of Lemma 3.1.9, we obtain the following result that

generalizes Lemma 1.3 in Marcus and Véron (1997).
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Corollary 3.1.10. There exists a positive large solution of the problem

∆u+ q(x)u = p(x)f(u)− r(x) in ω. (3.30)

Proof. Set Φ = n and let un be the unique solution of (3.28). By Lemma 3.1.6,

un ≤ un+1 ≤ u in ω, where u denotes a large solution of (3.29). It follows that

limn→∞ un(x) = u∞(x) exists and is a positive large solution of (3.30). Further-

more, every positive large solution of (3.30) dominates u∞, that is the solution

u∞ is the minimal large solution. This follows from the definition of u∞ and

Lemma 3.1.6.

Lemma 3.1.11. If 0 6≡ Φ ∈ C0,µ(∂Ω) is a non-negative function and b > 0 on

∂Ω, then the boundary value problem
∆u+ au = b(x)f(u) in Ω,

u > 0 in Ω,

u = Φ on ∂Ω,

(3.31)

has a solution if and only if a ∈ (−∞, λ∞,1). Moreover, in this case, the solution

is unique.

Proof. The first part follows with the same arguments as in the proof of Theo-

rem 3.1.1 (necessary condition).

For the sufficient condition, fix a < λ∞,1 and let λ∞,1 > λ∗ > max {a, λ1(µ0)}.
Let u∗ be the unique positive solution of (Ea) with a = λ∗.

Let Ω i (i = 1, 2) be sub-domains of Ω such that Ω0 ⊂⊂ Ω1 ⊂⊂ Ω2 ⊂⊂ Ω

and Ω \ Ω1 is smooth. We define u+ ∈ C2(Ω) a positive function in Ω such that

u+ ≡ u∞ on Ω\Ω2 and u+ ≡ u∗ on Ω1. Here u∞ denotes a positive large solution

of (3.30) for p(x) = b(x), r(x) = 0, q(x) = a and ω = Ω \Ω1. Using Remark 3.1.3

and the fact that b0 := infΩ2\Ω1 b > 0, it is easy to check that if C > 0 is large

enough, then vΦ = Cu+ satisfies
∆vΦ + avΦ ≤ b(x)f(vΦ) in Ω,

vΦ = ∞ on ∂Ω,

vΦ ≥ max
∂Ω

Φ in Ω.
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By Theorem 3.1.2, there exists a unique classical solution vΦ of the problem
∆vΦ = |a|vΦ + ‖b‖∞ f(vΦ) in Ω,

vΦ > 0 in Ω,

vΦ = Φ on ∂Ω.

It is clear that vΦ is a positive sub-solution of (3.31) and vΦ ≤ max∂Ω Φ ≤ vΦ in

Ω. Therefore, by the sub and super-solutions method, problem (3.31) has at least

a solution vΦ between vΦ and vΦ. Next, the uniqueness of solution to (3.31) can

be obtained by using essentially the same technique as in Theorem 1 of Brezis

and Oswald (1986) or Appendix II of Brezis and Kamin (1992).

Proof of Theorem 3.1.1 completed. Fix a < λ∞,1. Two cases may occur:

Case 3.1.1. b > 0 on ∂Ω.

Denote by vn the unique solution of (3.31) with Φ ≡ n. For Φ ≡ 1, set v := vΦ

and V := vΦ, where vΦ and vΦ are defined in the proof of Lemma 3.1.11. The sub

and super-solutions method, together with the uniqueness of solution of (3.31),

shows that v ≤ vn ≤ vn+1 ≤ V in Ω. Hence, v∞(x) := limn→∞ vn(x) exists and it

is a large solution of (3.2).

Case 3.1.2. b ≥ 0 on ∂Ω.

Let zn (n ≥ 1) be the unique solution of (3.28) for p ≡ b+ 1/n, r ≡ 0, q ≡ a,

Φ ≡ n and ω = Ω. By Lemma 3.1.6, (zn) is non-decreasing. Moreover, (zn)

is uniformly bounded on every compact subdomain of Ω. Indeed, if K ⊂ Ω is

an arbitrary compact set, then d := dist (K, ∂Ω) > 0. Choose δ ∈ (0, d) small

enough so that Ω0 ⊂ Cδ, where

Cδ = {x ∈ Ω : dist (x, ∂Ω) > δ}.

Since b > 0 on ∂Cδ, Case 3.1.1 allows us to define z+ as a large solution of (3.2)

for Ω = Cδ. Using Lemma 3.1.6 for p ≡ b + 1/n, r ≡ 0, q ≡ a and ω = Cδ, we

obtain zn ≤ z+ in Cδ, for all n ≥ 1. So, (zn) is uniformly bounded on K. By

the monotonicity of (zn), we conclude that zn → z in L∞loc(Ω). Finally, standard

elliptic regularity arguments lead to zn → z in C2,α
loc (Ω). This completes the proof

of Theorem 3.1.1.
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3.2 Mixed Boundary Value Problems

3.2.1 Introduction

Let Ω be a smooth bounded domain in RN (N ≥ 3). We denote by B either the

Dirichlet boundary operator Du := u or the Neumann/Robin boundary operator

Ru = ∂u
∂ν

+ β(x)u. Here ν is the outward unit normal to ∂Ω and β ≥ 0 is in

C1,µ(∂Ω), 0 < µ < 1.

Our main aim of section 3.2 is to study the existence of large solutions to the

boundary value problem{
∆u+ au = b(x)f(u) in Ω \ Ω0 ,

Bu = 0 on ∂Ω,
(3.32)

where a is a real parameter, b ∈ C0,µ(Ω) is non-negative and f ∈ C1[0,∞).

By a large solution of (3.32) we mean any non-negative C2(Ω \ Ω0)-solution

of (3.32) that satisfies u(x) →∞ as x ∈ Ω \ Ω0 and d(x) := dist (x,Ω0) → 0.

Let Ω0 (given by (3.3)) be non-empty, connected and with smooth boundary.

We assume, throughout section 3.2, that Ω0 ⊂ Ω and b > 0 on Ω \ Ω0.

The existence and uniqueness of large solutions of (3.32) has been recently

treated by Du and Huang (1999) in the particular case f(u) = up (p > 1).

Our purpose is to extend the existence result in Du and Huang (1999) to the

case of much more general nonlinearities of Keller–Osserman type.

Note that the Robin condition R = 0 relates essentially to heat flow problems

in a body with constant temperature in the surrounding medium. More generally,

if α and β are smooth functions on ∂Ω such that α, β ≥ 0, α + β > 0, then the

boundary condition Bu = α∂u
∂ν

+ βu = 0 represents the exchange of heat at the

surface of the reactant by Newtonian cooling. Moreover, the boundary condition

Bu = 0 is called isothermal (Dirichlet) condition if α ≡ 0, and it becomes an

adiabatic (Neumann) condition if β ≡ 0. An intuitive meaning of the condition

α + β > 0 on ∂Ω is that, for the diffusion process described by problem (3.2),

either the reflection phenomenon or the absorption phenomenon may occur at

each point of the boundary.
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3.2.2 Existence of Large Solutions

The main result of section 3.2 establishes the existence of large solutions to (3.32)

when f satisfies (3.6) and (3.4’) (in Notation 2). More exactly, we have (see

Theorem 1.2 in Ĉırstea and Rădulescu (2002c)):

Theorem 3.2.1. Let (3.4’) and (3.6) hold, then, for any a ∈ R, problem (3.32)

has a minimal (resp., maximal) large solution Ua (resp., Ua).

Remark 3.2.1. This result generalizes Theorem 2.4 in Du and Huang (1999),

where f(u) = up with p > 1.

The rest of section 3.2 is organized as follows. In §3.2.3 we give a compar-

ison principle, which extends the previous result of §3.1.4 to the case of mixed

boundary value problems. Subsection 3.2.4 proves the existence and uniqueness

of positive solutions to (3.32), subject to a non-homogeneous Dirichlet boundary

condition on ∂Ω0. The proof of Theorem 3.2.1 is presented in §3.2.5.

3.2.3 A Comparison Principle

The next result (see Lemma 2.3 in Ĉırstea and Rădulescu (2002c)) extends

Lemma 2.1 in Du and Huang (1999).

Lemma 3.2.2. Assume that ω ⊂⊂ Ω and p ∈ C0,µ(Ω \ ω) is a positive function

in Ω \ ω. If u1, u2 ∈ C2(Ω \ ω) are positive functions in Ω \ ω and

∆u1 + au1 − p(x)f(u1) ≤ 0 ≤ ∆u2 + au2 − p(x)f(u2) in Ω \ ω (3.33)

Bu1 ≥ 0 ≥ Bu2 on ∂Ω ; lim sup
dist (x,∂ω)→0

(u2 − u1)(x) ≤ 0 , (3.34)

then u1 ≥ u2 on Ω \ ω.

Proof. We distinguish 2 cases:

Case 3.2.1. B = D.

The assertion is an easy consequence of Lemma 3.1.6.

Case 3.2.2. B = R.
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Let φ1, φ2 be two non-negative C2-functions on Ω \ ω vanishing near ∂ω.

Multiplying in (3.33) the first inequality (resp., the second one) by φ1 (resp., φ2)

and applying integration by parts, together with (3.34), we deduce

−
∫

eΩ(∇u2 · ∇φ2 −∇u1 · ∇φ1) dx−
∫
∂Ω

β(x)(u2φ2 − u1φ1) dS(x)

≥
∫

eΩ p(x)(f(u2)φ2 − f(u1)φ1) dx+ a

∫
eΩ(u1φ1 − u2φ2) dx,

(3.35)

where Ω̃ := Ω \ ω. Let ε1 > ε2 > 0 and denote

Ω+(ε1, ε2) = {x ∈ Ω̃ : u2(x) + ε2 > u1(x) + ε1}.

vi = (ui + εi)
−1
(
(u2 + ε2)

2 − (u1 + ε1)
2
)+
, i = 1, 2.

Since vi can be approximated closely in the H1 ∩ L∞-topology on Ω \ ω by non-

negative C2-functions vanishing near ∂ω, it follows that (3.35) holds for vi taking

place of φi. Since vi vanishes outside the set Ω+(ε1, ε2), relation (3.35) becomes

−
∫

Ω+(ε1, ε2)

(∇u2 · ∇v2 −∇u1 · ∇v1) dx−
∫
∂Ω

β(x)(u2v2 − u1v1) dS(x)

≥
∫

Ω+(ε1, ε2)

p(x)(f(u2)v2 − f(u1)v1) dx+ a

∫
Ω+(ε1, ε2)

(u1v1 − u2v2) dx.

(3.36)

As ε1 → 0 (recall that ε1 > ε2 > 0) the second term on the left hand-side of

(3.36) converges to 0. From now on, the course of the proof is the same as in

Lemma 3.1.6. This completes the proof.

3.2.4 Auxiliary Results

In what follows we establish the existence of positive solutions to (3.32), subject

to a non-homogeneous Dirichlet boundary condition on ∂Ω0 (see Lemma 5.1 in

Ĉırstea and Rădulescu (2002c)).

Lemma 3.2.3. If (3.4) and (3.6) hold, then for any positive function Φ ∈ C2,µ(∂Ω0)

and a ∈ R the problem
∆u+ au = b(x)f(u) in Ω \ Ω0 ,

Bu = 0 on ∂Ω ,

u = Φ on ∂Ω0 ,

(3.37)

has a unique positive solution.
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Proof. By Lemma 3.2.2, (3.37) has at most a positive solution. To prove the

existence of a positive solution to (3.37), we shall use the sub and super-solutions

method.

Let ω ⊂⊂ Ω0 be such that the first Dirichlet eigenvalue of (−∆) in the smooth

domain Ω0 \ ω is greater than a. Let p ∈ C0,µ(Ω) be such that p(x) = b(x) for

x ∈ Ω \ Ω0, p(x) = 0 for x ∈ Ω0 \ ω and p(x) > 0 for x ∈ ω. By virtue of

Lemma 3.1.11, problem {
∆u+ au = p(x)f(u) in Ω,

u = 1 on ∂Ω,

has a unique positive solution u1.

We choose Ω1 and Ω2 two sub-domains of Ω so that Ω0 ⊂⊂ Ω1 ⊂⊂ Ω2 ⊂⊂ Ω.

Define u∗ ∈ C2(Ω \ Ω0) so that u∗ ≡ 1 on Ω \ Ω2, u
∗ ≡ u1 on Ω1 \ Ω0 and

m∗ := minΩ\Ω0
u∗ > 0.

Claim 3.2.1. For ` ≥ 1 large enough, `u∗ is a super-solution for problem (3.37).

We first observe that for x ∈ Ω1 \ Ω0 and ` ≥ 1,

−∆(`u∗) = `au1 − `p(x)f(u1) ≥ a(`u∗)− b(x)f(`u∗). (3.38)

Denote by M∗ := supΩ\Ω1
(au∗+∆u∗) and b0 := minΩ\Ω1

b > 0. By Remark 3.1.3,

there exists `1 ≥ 1 such that f(`m∗) ≥ `M∗/b0 for all ` ≥ `1.

For x ∈ Ω \ Ω1 and ` ≥ `1 we have

b(x)f(`u∗) ≥ b0f(`m∗) ≥ `(au∗ + ∆u∗)

which can be rewritten as

−∆(`u∗) ≥ a(`u∗)− b(x)f(`u∗) for x ∈ Ω \ Ω1 and ` ≥ `1. (3.39)

By (3.38) and (3.39), it follows that

−∆(`u∗) ≥ a(`u∗)− b(x)f(`u∗) in Ω \ Ω0, for any ` ≥ `1.

On the other hand,

B(`u∗) ≥ `min {1, min
x∈∂Ω

β(x)} ≥ 0 on ∂Ω, for every ` > 0.
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By taking ` ≥ max {max∂Ω0 Φ/m∗; `1}, the claim follows.

Set b := supΩ b. By Theorem 3.1.2, the boundary value problem
∆u∗ = bf(u∗) + |a|u∗ in Ω \ Ω0 ,

u∗ = 0 on ∂Ω ,

u∗ = Φ on ∂Ω0 ,

(3.40)

has a unique non-negative solution, which is positive in Ω \ Ω0. Since u∗ = 0 on

∂Ω, we get Ru∗ = ∂u∗
∂ν

≤ 0 on ∂Ω. It is easy to see that u∗ is a sub-solution of

(3.37) and u∗ ≤ `u∗ in Ω \Ω0 for ` large enough. The conclusion of Lemma 3.2.3

follows now by the sub and super-solutions method.

Corollary 3.2.4. If Ω0 is replaced by Ωm := {x ∈ Ω : d(x) < 1/m} (m ≥ 1 is

large), then the statement of Lemma 3.2.3 holds.

Proof. The construction of the sub-solution is made as before, while the super-

solution can be chosen any number ` ≥ 1 large enough.

3.2.5 Proof of the Main Result

The proof of Theorem 3.2.1 will be divided into two steps:

Step 3.2.1. Existence of the minimal large solution of (3.32).

For any n ≥ 1, let un be the unique positive solution of problem (3.37) with

Φ ≡ n. By Lemma 3.2.2, un(x) increases with n for all x ∈ Ω \ Ω0.

Next, we prove that the pointwise limit of (un(x))n exists, for each x ∈ Ω \Ω0

(see Lemma 5.2 in Ĉırstea and Rădulescu (2002c)).

Lemma 3.2.5. The sequence (un(x))n is bounded from above by some function

V (x) that is uniformly bounded on all compact subsets of Ω \ Ω0.

Proof. Let b∗ be a C2-function on Ω \ Ω0 such that

0 < b∗(x) ≤ b(x) ∀x ∈ Ω \ Ω0.

For x bounded away from ∂Ω0 is not a problem to find such a function b∗. For x

satisfying 0 < d(x) < δ with δ > 0 small such that x→ d(x) is a C2-function, we

can take

b∗(x) =

∫ d(x)

0

∫ t

0

[ min
d(z)≥s

b(z)] ds dt.

80



3.2 Mixed Boundary Value Problems

Let g ∈ G be a function such that (3.22) holds. The existence of g is guaranteed

by Lemma 3.1.8. Since b∗(x) → 0 as d(x) ↘ 0, we deduce, by Remark 3.1.4 and

(3.4), the existence of some δ > 0 such that

b∗(x)f(g(b∗(x))ξ)

g′′(b∗(x)) ξ
> sup

Ω\Ω0

|∇b∗|2 +
g′(b∗(x))

g′′(b∗(x))
inf

Ω\Ω0

(∆b∗) + a
g(b∗(x))

g′′(b∗(x))

for all x ∈ Ω with 0 < d(x) < δ and ξ > 1. Here, δ > 0 is taken sufficiently small

so that g′(b∗(x)) < 0 and g′′(b∗(x)) > 0 for all x with 0 < d(x) < δ.

For n0 ≥ 1 fixed, define V ∗ as follows

(i) V ∗(x) = un0(x) + 1 for x ∈ Ω and near ∂Ω;

(ii) V ∗(x) = g(b∗(x)) for x satisfying 0 < d(x) < δ;

(iii) V ∗ ∈ C2(Ω \ Ω0) is positive on Ω \ Ω0.

We show that for ξ > 1 large enough the upper bound of the sequence (un(x))n

can be taken as V (x) = ξV ∗(x). We see that

BV (x) = ξBV ∗(x) ≥ ξmin {1, β(x)} ≥ 0, ∀x ∈ ∂Ω

and

lim
d(x)↘0

[un(x)− V (x)] = −∞ < 0.

Thus, to conclude that un(x) ≤ V (x) for all x ∈ Ω \ Ω0 it is sufficient to show,

by virtue of Lemma 3.2.2, that

−∆V (x) ≥ aV (x)− b(x)f(V (x)), ∀x ∈ Ω \ Ω0. (3.41)

For x ∈ Ω satisfying 0 < d(x) < δ and ξ > 1, we have

−∆V − aV + b(x)f(V ) = −ξ∆g(b∗(x))− a ξg(b∗(x)) + b(x)f(g(b∗(x))ξ)

≥ ξg′′(b∗(x))

(
− g′(b∗(x))

g′′(b∗(x))
∆b∗(x)− |∇b∗(x)|2

−a g(b∗(x))

g′′(b∗(x))
+ b∗(x)

f(g(b∗(x))ξ)

g′′(b∗(x)) ξ

)
> 0.

For x ∈ Ω satisfying d(x) ≥ δ, we get

−∆V − aV + b(x)f(V ) = ξ

(
−∆V ∗(x)− aV ∗(x) + b(x)

f(ξV ∗(x))

ξ

)
≥ 0
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for ξ sufficiently large. In the last inequality, we have used (iii) and Remark 3.1.3.

It follows that (3.41) is fulfilled provided that ξ is large enough. This finishes the

proof of the lemma.

By Lemma 3.2.5, Ua(x) ≡ limn→∞ un(x) exists, for any x ∈ Ω\Ω0. Moreover,

Ua is a positive large solution of (3.32). Using Lemma 3.2.2 once more, we infer

that any large solution u of (3.32) satisfies u ≥ un on Ω\Ω0, for all n ≥ 1. Hence,

Ua is the minimal large solution of (3.32).

Step 3.2.2. Existence of the maximal large solution of (3.32).

We show that if in (3.32) we replace Ω0 by Ωm, defined in Corollary 3.2.4,

then the new problem has a minimal large solution (cf. Lemma 5.3 in Ĉırstea

and Rădulescu (2002c)).

Lemma 3.2.6. Problem (3.32) with Ω0 replaced by Ωm has a minimal large so-

lution provided that (3.4) and (3.6) are fulfilled.

Proof. The argument used here (much easier, since b > 0 on Ω \ Ωm) is similar

to that in Step 3.2.1. The only difference which appears in the proof (except the

replacement of Ω0 by Ωm) is related to the construction of V ∗(x) for x near ∂Ωm.

Here, instead of Lemma 3.1.8 we use Theorem 3.1.1 which says that, for any

a ∈ R, there exists a positive large solution ua,∞ of problem (3.2) in the domain

Ω \ Ωm. We define V ∗(x) = ua,∞(x) for x ∈ Ω \ Ωm and near ∂Ωm.

For ξ > 1 and x ∈ Ω \ Ωm near ∂Ωm, we have

−∆V (x)− aV (x) + b(x)f(V (x)) = −ξ∆V ∗(x)− aξV ∗(x) + b(x)f(ξV ∗(x))

= b(x)[f(ξV ∗(x))− ξf(V ∗(x)] ≥ 0.

This completes the proof.

Let vm be the minimal large solution for the problem considered in the state-

ment of Lemma 3.2.6. By Lemma 3.2.2, vm ≥ vm+1 ≥ u on Ω \ Ωm, where u

is any large solution of (3.32). Hence, Ua(x) := limm→∞ vm(x) ≥ u(x). A reg-

ularity and compactness argument shows that Ua is a positive large solution of

(3.32). Consequently, Ua is the maximal large solution. This concludes the proof

of Theorem 3.2.1.
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3.3 Degenerate Mixed Boundary Value Prob-

lems

3.3.1 Existence of Large Solutions

Let Ω ⊂ RN (N ≥ 3) be a smooth bounded domain. As in §3.2, B denotes

either the Dirichlet boundary operator Du := u or the Neumann/Robin boundary

operator Ru = ∂u
∂ν

+ β(x)u, where ν is the outward unit normal to ∂Ω and β ≥ 0

is in C1,µ(∂Ω), µ ∈ (0, 1).

Let b ∈ C0,µ(Ω) satisfy b ≥ 0, b 6≡ 0 in Ω. Set Ω0,b := {x ∈ Ω : b(x) = 0}.
We assume that Ω0,b = D0∪D1, where D0 6= ∅ is a closed set such that Ω\D0

is connected with the smooth boundary, and D1 ⊂⊂ Ω \D0 is a connected set.

Suppose that b > 0 on ∂Ω if B = R and ∂D1 satisfies the exterior cone

condition (possibly, D1 = ∅). Let λ∞,1(D1) be the first Dirichlet eigenvalue of

(−∆) in H1
0 (D1). Set λ∞,1(D1) = ∞ if D1 = ∅.

The purpose of section §3.3 is to prove the existence of large solutions for the

degenerate boundary value problem{
∆u+ au = b(x)f(u) in Ω \D0,

Bu = 0 on ∂Ω,
(3.42)

that is, non-negative C2(Ω \D0)-solutions of (3.42) that satisfy

u(x) →∞ as x ∈ Ω \D0 and d(x) := dist (x,D0) → 0.

The degenerate character of (3.42) refers to the fact that b may vanish in Ω \D0.

We state below the main result of §3.3 (see Theorem 1.1 in Ĉırstea and

Rădulescu (2004)).

Theorem 3.3.1. Let (3.4) and (3.6) hold. If (3.42) has a large solution, then

a < λ∞,1(D1). Furthermore, for any a < λ∞,1(D1), there exists a minimal (resp.,

maximal) large solution of (3.42).

Remark 3.3.1. Theorem 3.3.1 improves Theorem 3.2.1 where we assume that

b > 0 on Ω \D0 and the additional hypothesis limu→∞(F/f)′(u) = γ is required.

Moreover, in the case B = D, we remove the assumption b > 0 on ∂Ω, which is

made in Theorem 3.2.1 and in Du and Huang (1999).
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3.3 Degenerate Mixed Boundary Value Problems

In §3.3.2 we extend the comparison principles given by Lemmas 3.1.6 and 3.2.2

by treating the degenerate case for b. We conclude §3.3 by proving Theorem 3.3.1.

3.3.2 Comparison Principles

In Lemmas 3.3.2 and 3.3.3 (cf. (Ĉırstea and Rădulescu, 2004, Lemmas 2.1 and

2.2)) we assume that f is continuous on (0,∞) and f(u)
u

is increasing for u > 0.

Lemma 3.3.2. Let D ⊂ RN be a bounded domain and 0 6≡ p ∈ C(D) be a

non-negative function. If u1, u2 ∈ C2(D) are positive such that

∆u1 + au1 − p(x)f(u1) ≤ 0 ≤ ∆u2 + au2 − p(x)f(u2) in D, (3.43)

lim sup
dist(x,∂D)→0

(u2 − u1)(x) ≤ 0

then u1 ≥ u2 on D.

Proof. We use here some ideas and approximation techniques introduced by Mar-

cus and Véron (1997). Set

O = {x ∈ D : u1(x) < u2(x)}.

Of course, u1 ≥ u2 on D is equivalent to O = ∅.
Let φ1, φ2 be two non-negative C2-functions on D vanishing near ∂D.

Using (3.43), we have

a

∫
D

(u2φ2 − u1φ1) dx ≥
∫
D

(∇u2 · ∇φ2 −∇u1 · ∇φ1) dx

+

∫
D

p(x)(f(u2)φ2 − f(u1)φ1) dx.

(3.44)

Fix ε > 0. Set

Dε = {x ∈ D : u2(x) > u1(x) + ε}

vi = (ui + 2ε/i)−1((u2 + ε)2 − (u1 + 2ε)2)+ for i = 1, 2.

We see that vi ∈ H1(D) and it vanishes outside the set Dε. We have Dε ⊂⊂ D

since lim supdist(x,∂D)→0(u2 − u1)(x) ≤ 0. Hence, vi can be approximated closely
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3.3 Degenerate Mixed Boundary Value Problems

in the H1 ∩ L∞ topology on D by non-negative C2 functions vanishing near ∂D.

It follows that (3.44) holds with vi instead of φi. Precisely, (3.44) becomes

a

∫
Dε

(u2v2 − u1v1) dx ≥
∫
Dε

(∇u2 · ∇v2 −∇u1 · ∇v1) dx

+

∫
Dε

p(x)(f(u2)v2 − f(u1)v1) dx.

(3.45)

Let τ ∈ (0, 1) be arbitrary. For any ε ∈ (0, τ), we have

0 ≤
∫
Dε

(u2v2 − u1v1) dx =

∫
Dτ

(u2v2 − u1v1) dx

+

∫
Dε\Dτ

(u2v2 − u1v1) dx.
(3.46)

But Dτ ⊂ D yields maxDτ
u2 = Md <∞ and minDτ

u1 = md > 0. Thus, for any

x ∈ Dτ , we obtain

0 <
u2

u2 + ε
− u1

u1 + 2ε
≤ 1− md

md + 2ε
=

2ε

md + 2ε
→ 0 as ε→ 0.

Consequently,

u2

u2 + ε
− u1

u1 + 2ε
→ 0 as ε→ 0 uniformly on Dτ .

It follows that

0 ≤
∫
Dτ

(u2v2 − u1v1) dx

≤ (Md + 1)2

∫
Dτ

(
u2

u2 + ε
− u1

u1 + 2ε

)
dx→ 0 as ε→ 0.

(3.47)

We see that u2 ∈ (u1 + ε, u1 + τ ] on Dε \Dτ . Thus, for each x ∈ Dε \Dτ , we have

0 < u2v2 − u1v1 =

(
2ε

u1 + 2ε
− ε

u2 + ε

)
[(u2 + ε)2 − (u1 + 2ε)2]

≤ 2ε

u1 + 2ε
[2(u1 + ε)(τ − ε) + τ 2 − ε2]

≤ 2ε

[
2(τ − ε) +

τ 2 − ε2

2ε

]
< 5τ 2.

From this we deduce

lim sup
ε→0

∫
Dε\Dτ

(u2v2 − u1v1) dx ≤ 5τ 2|D|.
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3.3 Degenerate Mixed Boundary Value Problems

Using (3.46) and (3.47), we infer that

0 ≤ lim inf
ε→0

∫
Dε

(u2v2 − u1v1) dx ≤ lim sup
ε→0

∫
Dε

(u2v2 − u1v1) dx ≤ 5τ 2|D|.

Since τ > 0 is arbitrary, we conclude that

lim
ε→0

∫
Dε

(u2v2 − u1v1) dx = 0.

Assume by contradiction that O 6= ∅. Let x0 ∈ O be arbitrary. Since O is open,

there exists a small closed ball B = B(x0) centred at x0 such that B ⊂ O. Thus,

for each y ∈ B, u1(y) < u2(y). By the continuity of ui, minB(u2− u1) = mB > 0.

It follows that B ⊂ Dε, for each ε ∈ (0,mB). It is easy to check that

∇u2 · ∇v2 −∇u1 · ∇v1 =

∣∣∣∣ 1

u2 + ε
∇u2 −

1

u1 + 2ε
∇u1

∣∣∣∣2
× [(u2 + ε)2 + (u1 + 2ε)2] ≥ 0 on Dε.

On the other hand, f(t)/(t+ ε) is increasing on (0,∞). Hence,

f(u1)

u1 + 2ε
<
f(u1 + ε)

u1 + 2ε
<

f(u2)

u2 + ε
on Dε,

which yields f(u2)v2 − f(u1)v1 > 0 on Dε.

Thus, all the integrands in the right-hand side of (3.45) are non-negative. So,

for each ε ∈ (0,mB), we have

a

∫
Dε

(u2v2 − u1v1) dx ≥
∫
B

(∇u2 · ∇v2 −∇u1 · ∇v1) dx

+

∫
B

p(x)(f(u2)v2 − f(u1)v1) dx ≥ 0.

Letting ε↘ 0, we obtain

∇u2(x)

u2(x)
=
∇u1(x)

u1(x)
and p(x) = 0, for each x ∈ B 3 x0.

Since x0 ∈ O is arbitrary, we infer that

∇(lnu2 − lnu1) = 0 and p ≡ 0 on O.

But p 6≡ 0 in D so that O 6= D. In other words, ∂O ∩ D 6= ∅. Let z ∈ ∂O ∩ D
and C be a domain included in O such that z ∈ ∂C. Hence u1(z) = u2(z) and

∇(lnu2− lnu1) ≡ 0 on C, that is, u2/u1 = Const. > 0 on C. By the continuity of

ui, we conclude that u1 = u2 on C. This contradicts C ⊆ O.
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3.3 Degenerate Mixed Boundary Value Problems

Lemma 3.3.3. Let ω ⊂⊂ Ω and 0 6≡ p ∈ C(Ω \ ω) be a non-negative function.

If u1, u2 ∈ C2(Ω \ ω) are positive functions in Ω \ ω such that

lim sup
dist (x,∂ω)→0

(u2 − u1)(x) ≤ 0

∆u1 + au1 − p(x)f(u1) ≤ 0 ≤ ∆u2 + au2 − p(x)f(u2) in Ω \ ω (3.48){
either Bu1 ≥ Bu2 on ∂Ω if B = D,

or Bu1 ≥ 0 ≥ Bu2 on ∂Ω if B = R,
(3.49)

then u1 ≥ u2 on Ω \ ω.

Proof. If B = D, then the assertion follows by Lemma 3.3.2.

Suppose that B = R. Set D := Ω \ ω and define O as in the proof of

Lemma 3.3.2. Assume by contradiction that O = ∅.
Let φ1, φ2 be two non-negative C2-functions on Ω\ω vanishing near ∂ω. Using

(3.48) and (3.49), we find

a

∫
D

(u2φ2 − u1φ1) dx ≥
∫
∂Ω

β (u2φ2 − u1φ1) dS +

∫
D

(∇u2 · ∇φ2 −∇u1 · ∇φ1) dx

+

∫
D

p (f(u2)φ2 − f(u1)φ1) dx.

For ε > 0 arbitrary, let Dε and vi be defined as in the proof of Lemma 3.3.2.

It follows that

a

∫
Dε

(u2v2 − u1v1) dx ≥
∫
∂Ω

β (u2v2 − u1v1) dS +

∫
Dε

(∇u2 · ∇v2 −∇u1 · ∇v1) dx

+

∫
Dε

p (f(u2)v2 − f(u1)v1) dx.

Let τ ∈ (0, 1) be arbitrary. Set

Gτ = {x ∈ Dτ : dist(x, ∂Ω) ≥ τ},

Lτ = {x ∈ Ω : dist(x, ∂Ω) < τ},

Kετ = {x ∈ Dε : dist(x, ∂Ω) < τ}.

For any ε ∈ (0, τ), we have

0 ≤
∫
Dε

(u2v2 − u1v1) dx ≤
∫
Kετ

(u2v2 − u1v1) dx+

∫
Gτ

(u2v2 − u1v1) dx

+

∫
Dε\Dτ

(u2v2 − u1v1) dx.
(3.50)
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As in Lemma 3.3.2, we obtain

u2

u2 + ε
− u1

u1 + 2ε
→ 0 as ε→ 0 uniformly on Gτ .

We also deduce

lim
ε→0

∫
Gτ

(u2v2 − u1v1) dx = 0 (see (3.47))

and

lim sup
ε→0

∫
Dε\Dτ

(u2v2 − u1v1) dx ≤ 5τ 2|D|.

Note that ∫
Kετ

(u2v2 − u1v1) dx ≤ 2 max
x∈Lτ

(u2(x) + 1)2|Lτ |.

By (3.50), we find

0 ≤ lim inf
ε→0

∫
Dε

(u2v2 − u1v1) dx ≤ lim sup
ε→0

∫
Dε

(u2v2 − u1v1) dx

≤ 2 max
x∈Lτ

(u2 + 1)2|Lτ |+ 5τ 2|D|.

Since |D| <∞ and |Lτ | → 0 as τ → 0, we regain

lim
ε→0

∫
Dε

(u2v2 − u1v1) dx = 0.

The same argument used before leads to a contradiction.

3.3.3 Proof of the Main Result

Lemma 3.3.4. Assume that (3.4) and (3.6) hold. If 0 6≡ Φ ∈ C2,µ(∂D0) is a

non-negative function, then
∆u+ au = b(x)f(u) in Ω \D0,

Bu = 0 on ∂Ω,

u = Φ on ∂D0

(3.51)

has a positive solution if and only if a < λ∞,1(D1); in this case, the solution is

unique.
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Proof. Let Ω̃ be a smooth sub-domain of Ω \ D0 such that b > 0 on ∂Ω̃ and

D1 ⊂ Ω̃. If uB is a positive solution of (3.51), then it satisfies{
∆u+ au = b(x)f(u) in Ω̃,

u = uB on ∂Ω̃.

By Lemma 3.1.11, we conclude that a ∈ (−∞, λ∞,1(D1)).

Fix a ∈ (−∞, λ∞,1(D1)). Let v∞ be a large solution of ∆u + au = b(x)f(u)

in Ω \D0 (see Theorem 3.1.1). Let δ > 0 be small such that

b > 0 on T2δ := {x ∈ Ω : dist (x, ∂Ω) < 2δ}.

Set

Cδ = {y ∈ RN : dist (y, ∂Ω) < δ}.

Let p ∈ C0,µ(Cδ) be such that p > 0 on Cδ \ Ω, p = 0 on T τ and 0 < p ≤ b on

T δ \T τ . We choose τ ∈ (0, δ) such that a is less than the first Dirichlet eigenvalue

of (−∆) in Tτ .

Let u∗ be the unique positive solution of{
∆u+ au = p(x)f(u) in Cδ

u = 1 on ∂Cδ.

We define 0 < u+ ∈ C2(Ω \D0) such that
u+ = v∞ on Ω \ (Tδ ∪D0)

u+ = 1 on T δ/2 if B = R

u+ = u∗ on T δ/2 if B = D.

For ξ > 1 large, we show that ũ = ξu+ is a positive super-solution of (3.51).

Clearly, ũ = ∞ on ∂D0 and Bũ ≥ 0 on ∂Ω. By (3.4), we find

∆ũ+ aũ− b(x)f(ũ) ≤ 0 on Ω \ (Tδ ∪D0), ∀ξ > 1.

If B = D, then

∆ũ+ aũ− b(x)f(ũ) ≤ ξ∆u∗ + aξu∗ − p(x)f(ξu∗) ≤ 0 on Tδ/2, ∀ξ > 1.
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3.3 Degenerate Mixed Boundary Value Problems

If B = R (resp., B = D) then minT δ
b > 0 (resp., infTδ\Tδ/2

b > 0). Since

limt→∞ f(t)/t = ∞, for ξ > 1 large we have

∆ũ+ aũ− b(x)f(ũ) = ξ(∆u+ + au+ − b(x)f(ξu+)/ξ)

≤ 0 on Tδ (resp., Tδ \ Tδ/2) when B = R (resp., B = D).

The sub-supersolutions method and the strong maximum principle (see Corol-

lary 3.1.4) yield the existence of a positive solution of (3.51). The uniqueness

follows by Lemma 3.3.3.

Proof of Theorem 3.3.1 concluded. If (3.42) has a large solution then, by the

strong maximum principle, it is positive. By the assumption D1 ⊂ Ω \ D0 and

Lemma 3.1.11, we get a < λ∞,1(D1).

Fix a < λ∞,1(D1) and let un (n ≥ 1) be the unique positive solution of (3.51)

with Φ ≡ n. By Lemma 3.3.3, un ≤ un+1 ≤ ũ on Ω \D0. Thus (un) converges to

the minimal large solution of (3.42).

Define Ωm = {x ∈ Ω : d(x) ≤ 1/m} for m ≥ m1, where m1 > 0 is large so

that b > 0 on Ωm1 \D0. Let vm be the minimal large solution of (3.42) with D0

replaced by Ωm. By Lemma 3.3.3, vm ≥ vm+1 ≥ u on Ω\Ωm, where u is any large

solution of (3.42). This, together with a regularity and compactness argument,

shows that the pointwise limit of (vm) is the maximal large solution of (3.42).
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Chapter 4

Large Solutions for Logistic-type
Equations: Uniqueness
“Proof is the idol before whom the pure mathematician tortures himself.”
(Sir Arthur Eddington)

Chapter 3 establishes that the existence of large solutions of (3.1) holds if and only

if the parameter a is suitably connected to the zero set of b(x) in Ω. The growth

rate of f at infinity of Keller–Osserman type covers a large array of nonlinearities.

The delicate issues of uniqueness and asymptotic behavior of the large solu-

tion near the boundary are investigated in Chapters 4 and 5. To resolve them,

Chapter 4 concentrates on the case that f varies regularly at∞ like a super-linear

power. The originality of this chapter is to bring together regular variation the-

ory in applied probability (see §4.1) and the blow-up theory in elliptic equations.

Using this interplay, we succeed in getting a computationally convenient estimate

of the blow-up rate when competition near the boundary is involved through a

weight b(x) vanishing on ∂Ω. The decay rate of b(x) is controlled via a ratio,

whose limit is finite when the distance to the boundary approaches zero. This

condition allows for various vanishing rates at the boundary, which will be char-

acterized in terms of regular variation theory. In addition, a new phenomenon

will be revealed in regard to the two-term asymptotic expansion of the large so-

lution. Namely, its dependence on the curvature of the boundary occurring in

the non-competing case (and also in a specific competing case) is destroyed by a

critical combination between the decay rate of b(x) and the variation of f at ∞.
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4.1 Preliminaries: Regular Variation Theory

4.1 Preliminaries: Regular Variation Theory

Regular variation theory was instituted by Karamata (1930, 1933) and subse-

quently developed by himself and many others. Although Karamata originally

introduced his theory in order to use it in Tauberian theorems, regularly vary-

ing functions have been subsequently applied in several branches of Analysis:

Abelian theorems (asymptotics of series and integrals—Fourier ones in particu-

lar), analytic (entire) functions, analytic number theory, etc. The great potential

of regular variation for probability theory and its applications was realised by

Feller (1971) and also stimulated by de Haan (1970). The first monograph on

regularly varying functions is that of Seneta (1976), while the theory and var-

ious applications of the subject are presented in the comprehensive treatise of

Bingham et al. (1987).

We give a brief account of the definitions and properties of regularly varying

functions involved in this thesis (see Bingham et al. (1987) or Seneta (1976)).

Definition 4.1.1. A positive measurable function Z defined on [A,∞), for some

A > 0, is called regularly varying (at infinity) with index q ∈ R, written Z ∈ RVq,
provided that

lim
u→∞

Z(ξu)

Z(u)
= ξq, for all ξ > 0.

When the index q is zero, we say that the function is slowly varying.

Remark 4.1.1. Let Z : [A,∞) → (0,∞) be a measurable function, then

(i) Z is regularly varying if and only if limu→∞ Z(ξu)/Z(u) is finite and positive

for each ξ in a set S ⊂ (0,∞) of positive measure (cf. Lemma 1.6 and

Theorem 1.3 in Seneta (1976)).

(ii) The transformation Z(u) = uqL(u) reduces regular variation to slow varia-

tion. Indeed, limu→∞ Z(ξu)/Z(u) = uq if and only if limu→∞ L(ξu)/L(u) =

1, for every ξ > 0.

Example 4.1.1. Any measurable function on [A,∞) which has a positive limit

at infinity is slowly varying. The logarithm log u, its iterates log log u (= log2 u),

logm u (= log logm−1 u) and powers of logm u are non-trivial examples of slowly
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varying functions. Non-logarithmic examples are given by exp {(log u)/ log log u}
and exp {(log u)α1(log2 u)

α2 . . . (logm u)
αm}, where αi ∈ (0, 1).

For details on Propositions 4.1.1–4.1.5, we refer to Bingham et al. (1987) (p.

6, 12, 14, 16, 28, 30).

Proposition 4.1.1 (Uniform Convergence Theorem). If L is a slowly vary-

ing function, then the convergence L(ξu)/L(u) → 1 as u → ∞ holds uniformly

on each compact ξ-set in (0,∞).

Proposition 4.1.2 (Representation Theorem). The function L(u) is slowly

varying if and only if it can be written in the form

L(u) = M(u)exp

{∫ u

B

y(t)

t
dt

}
(u ≥ B) (4.1)

for some B > A, where y ∈ C[B,∞) satisfies limu→∞ y(u) = 0 and M(u) is

measurable on [B,∞) such that limu→∞M(u) := M̂ ∈ (0,∞).

The Karamata representation (4.1) is non-unique because we can adjust one of

M(u), y(u) and suitably modify the other. Thus, the function y may be assumed

arbitrarily smooth, but the smoothness properties of M(u) can ultimately reach

those of L(u). If M(u) is replaced by its limit at infinity M̂ > 0, then the new

function, say L̂(u), is referred to as a normalized slowly varying function. Notice

that L̂ ∈ C1[B,∞) and y(u) = uL̂′(u)/L̂(u), for each u ≥ B.

In general, a function Ẑ(u) defined for u > B is called a normalized regularly

varying function of index q if it is C1 and satisfies

lim
u→∞

uẐ ′(u)

Z(u)
= q.

We use NRVq to denote the set of all normalized regularly varying functions

of index q, that is

NRVq =
{
Z ∈ RVq : Z(u)u−q is a normalized slowly varying function

}
. (4.2)
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Remark 4.1.2. For any Z ∈ RVq there exists Ẑ ∈ NRVq such that Ẑ(u)/Z(u) → 1

as u → ∞. Indeed, L(u) := Z(u)/uq is slowly varying so that, by Proposi-

tion 4.1.2, it can be represented as in (4.1). We define L̂(u) as above with M̂

instead of M(u). Then Ẑ(u) = uqL̂(u) satisfies

Ẑ ∈ C1, lim
u→∞

Ẑ(u)

Z(u)
= 1, lim

u→∞

uẐ ′(u)

Ẑ(u)
= q + lim

u→∞

uL̂′(u)

L̂(u)
= q.

Proposition 4.1.3 (Elementary properties of slowly varying functions).

If L is slowly varying, then we have:

(i) For any α > 0, uαL(u) →∞, u−αL(u) → 0 as u→∞.

(ii) (L(u))α varies slowly for every α ∈ R.

(iii) If L1 varies slowly, so do L(u)L1(u) and L(u) + L1(u).

From Proposition 4.1.3 (i) and Remark 4.1.1 (ii), limu→∞ Z(u) = ∞ (resp.,

0) for any function Z ∈ RVq with q > 0 (resp., q < 0).

Remark 4.1.3. Note that the behavior at infinity of a slowly varying function

cannot be predicted. For instance,

L(u) = exp
{
(log u)1/2 cos((log u)1/2)

}
exhibits infinite oscillation in the sense that

lim inf
u→∞

L(u) = 0 and lim sup
u→∞

L(u) = ∞.

Proposition 4.1.4 (Karamata’s Theorem; direct half). Let Z ∈ RVq be

locally bounded in [A,∞), then

(i) for any j ≥ −(q + 1),

lim
u→∞

uj+1Z(u)∫ u
A
xjZ(x) dx

= j + q + 1. (4.3)

(ii) for any j < −(q + 1) (and for j = −(q + 1) if
∫∞

x−(q+1)Z(x) dx <∞)

lim
u→∞

uj+1Z(u)∫∞
u
xjZ(x) dx

= −(j + q + 1). (4.4)
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Proposition 4.1.5 (Karamata’s Theorem; converse half). Let Z be positive

and locally integrable in [A,∞).

(i) If (4.3) holds for some j > −(q + 1), then Z ∈ RVq.

(ii) If (4.4) is satisfied for some j < −(q + 1), then Z ∈ RVq.

If H is a non-decreasing function on R, then we define (as in Resnick (1987))

the (left continuous) inverse of H by

H←(y) = inf{s : H(s) ≥ y}.

Proposition 4.1.6 (Proposition 0.8 in Resnick (1987)). We have

(i) If Z ∈ RVq, then limu→∞ logZ(u)/ log u = q.

(ii) If Z1 ∈ RVq1 and Z2 ∈ RVq2 with limu→∞ Z2(u) = ∞, then

Z1 ◦ Z2 ∈ RVq1q2 .

(iii) Suppose Z is non-decreasing, Z(∞) = ∞, and Z ∈ RVq, 0 < q <∞, then

Z← ∈ RV1/q.

(iv) Suppose Z1, Z2 are non-decreasing and q-varying, 0 < q < ∞, then, for

c ∈ (0,∞) we have

lim
u→∞

Z1(u)

Z2(u)
= c if and only if lim

u→∞

Z←1 (u)

Z←2 (u)
= c−1/q.

The next result shows that any function Z varying regularly with non-zero

index is asymptotic to a monotone function.

Proposition 4.1.7 (Theorem 1.5.3 in Bingham et al. (1987)). Let Z ∈ RVq
and choose B ≥ 0 so that Z is locally bounded on [B,∞). If q > 0, then

(i) Z(u) := sup{Z(y) : B ≤ y ≤ u} ∼ Z(u) as u→∞,

(ii) Z(u) := inf{Z(y) : y ≥ u} ∼ Z(u) as u→∞.
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If q < 0, then

sup{Z(y) : y ≥ u} ∼ Z(u) as u→∞,

inf{Z(y) : B ≤ y ≤ u} ∼ Z(u) as u→∞.

We give the definitions of Γ and Π-varying functions, which are extensions of

regular variation due to de Haan (1970); for more details see §5.3.2 of Chapter 5.

Definition 4.1.2 (p. 26 in Resnick (1987)). A non-decreasing function U is Γ-

varying at∞ (written U ∈ Γ) if U is defined on an interval (A,∞), limx→∞ U(x) =

∞ and there exists g : (A,∞) → (0,∞) such that

lim
y→∞

U(y + λg(y))

U(y)
= eλ, ∀λ ∈ R.

Definition 4.1.3 (p. 27 in Resnick (1987)). A non-negative, non-decreasing

function V defined on a semi-infinite interval (z,∞) is Π-varying (written V ∈ Π)

if there exists a function α(u) > 0 such that for λ > 0

lim
u→∞

V (λu)− V (u)

α(u)
= log λ. (4.5)

The functions g(·) and α(·) are called auxiliary functions ; they are unique up

to asymptotic equivalence.

A convenient relationship between Π and Γ is provided below.

Proposition 4.1.8 (Proposition 0.9 in Resnick (1987)). The following hold:

(a) If U ∈ Γ with auxiliary function χ, then U← ∈ Π with auxiliary function

α(u) = χ ◦ U←(u).

(b) If V ∈ Π with auxiliary function α(·), then V ← ∈ Γ with auxiliary function

χ(u) = α ◦ V ←(u).
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4.2 Pure Boundary Blow-up Problems

4.2.1 Introduction

Our major goal here is to advance innovative methods to study the uniqueness

and asymptotic behavior of large solutions of the problem (3.2) considered in

§3.1.1.

We open up a new line of research to obtain the blow-up rate of the large

solution and to gain insight into the two-term asymptotic expansion of the large

solution near ∂Ω. Our approach relies essentially on regular variation theory not

only in the statement but in the proof as well. This enables us to obtain significant

information about the qualitative behavior of the large solution to (3.2) in a

general setting that removes previous restrictions imposed in the literature.

We point out that, despite a long history and intense research on the topic

of large solutions, regular variation theory arising in probability theory has not

been exploited before in this context.

Let Ω ⊂ RN (N ≥ 3) be a smooth bounded domain. Consider the semilinear

elliptic equation

∆u+ au = b(x)f(u) in Ω, (4.6)

where a is a real parameter and b ∈ C0,µ(Ω), for some µ ∈ (0, 1), such that b ≥ 0,

b 6≡ 0 in Ω. Suppose that f ∈ C1[0,∞) satisfies (3.4), that is

f ≥ 0 and f(u)/u is increasing on (0,∞). (4.7)

Let Ω0 denote the interior of the zero set of b in Ω, namely:

Ω0 := int {x ∈ Ω : b(x) = 0}.

We assume, throughout, that ∂Ω0 satisfies the exterior cone condition (possibly,

Ω0 = ∅), Ω0 is connected, Ω0 ⊂ Ω and b > 0 on Ω \ Ω0. Let λ∞,1 be the first

Dirichlet eigenvalue of (−∆) in H1
0 (Ω0) (with λ∞,1 = +∞ if Ω0 = ∅).

We recall that by a large (or blow-up) solution of (4.6) we mean a C2(Ω)-

solution u of (4.6) such that u ≥ 0 in Ω and u(x) →∞ as d(x) := dist (x, ∂Ω) → 0.
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As in Ĉırstea (2002), we denote by K the set of all positive, non-decreasing

C1-functions k defined on (0, ν), for some ν > 0, which satisfy

lim
t→0+

∫ t
0
k(s) ds

k(t)
= `0 and lim

t→0+

(∫ t
0
k(s) ds

k(t)

)′
= `1. (4.8)

We have `0 = 0 and `1 ∈ [0, 1], for every k ∈ K. Thus, K = K(01] ∪K0, where

K(01] = {k ∈ K : 0 < `1 ≤ 1} and K0 = {k ∈ K : `1 = 0}.

The exact characterization of K(01] and K0 will be provided in §4.2.4.

Some simple examples of k ∈ K are:

(i) k(t) = tα with α > 0, where `1 = 1/(1 + α).

(ii) k(t) = exp(−1/tα) with α > 0, where `1 = 0.

(iii) k(t) = 1/ ln(1/tα) with α > 0, where `1 = 1.

4.2.2 Main Results

We first establish the uniqueness and blow-up rate of the large solution of (4.6)

(see Theorem 1.1 in Ĉırstea and Rădulescu (2005)).

Theorem 4.2.1. Let (4.7) hold and f ∈ RVρ+1 with ρ > 0. Suppose there exists

k ∈ K such that

b(x) = k2(d) + o(k2(d)) as d(x) → 0, (4.9)

then, for any a ∈ (−∞, λ∞,1), (4.6) admits a unique large solution ua. Moreover,

the asymptotic behavior is given by

ua(x) = [2(2 + `1ρ)/ρ
2]1/ρ ϕ(d) + o(ϕ(d)) as d(x) → 0, (4.10)

where ϕ is defined by

f(ϕ(t))

ϕ(t)
=

1(∫ t
0
k(s) ds

)2 , for t > 0 small. (4.11)

Remark 4.2.1. This result generalizes Theorem 1 in Ĉırstea (2002), where the

case f(u) = uρ+1 has been treated.
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In the setting of Theorem 4.2.1, let r(t) satisfy limt↘0

(∫ t
0
k(s) ds

)2

r(t) = 1

and f̂(u) be chosen such that limu→∞ f̂(u)/f(u) = 1 and j(u) = f̂(u)/u is non-

decreasing for u > 0 large. Then, limt↘0 ϕ(t)/ϕ̂(t) = 1, where ϕ is defined by

(4.11) and ϕ̂(t) = j←(r(t)) for t > 0 small.

The behavior of ϕ(t) for small t > 0 will be described in §4.2.4. In particular,

if k ∈ K with `1 6= 0, then ϕ(1/u) ∈ RV2/(ρ`1). In contrast, if k ∈ K with `1 = 0,

then ϕ(1/u) 6∈ RVq, for all q ∈ R (see Remark 4.2.8).

Remark 4.2.2. The asymptotic behavior of the unique large solution ua can also

be expressed as follows (cf. Theorem 1 in Ĉırstea and Rădulescu (2002d))

ua(x) = ξ0h(d) + o(h(d)) as d(x) → 0, (4.12)

where ξ0 =
(

2+`1ρ
2+ρ

)1/ρ

and h is given by

∫ ∞
h(t)

ds√
2F (s)

=

∫ t

0

k(s) ds, for t > 0 small. (4.13)

The next objective is to find the two-term blow-up rate of ua when (4.9) is

replaced by

b(x) = k2(d)(1 + c̃dθ + o(dθ)) as d(x) → 0, (4.14)

where θ > 0, c̃ ∈ R are constants. To simplify the exposition, we assume that

f ′ ∈ RVρ (ρ > 0), which is equivalent to f(u) being of the form

f(u) = Cuρ+1exp

{∫ u

B

φ(t)

t
dt

}
, ∀u ≥ B, (4.15)

for some constants B, C > 0, where φ ∈ C[B,∞) satisfies limu→∞ φ(u) = 0. In

this case, f(u)/u is increasing on [B,∞) provided that B is large enough.

We prove that the two-term asymptotic expansion of ua near ∂Ω depends on

the chosen subclass for k ∈ K and the additional hypotheses on f (by means of

φ in (4.15)).
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Let −ρ− 2 < η ≤ 0 and τ, ζ > 0. We define

Fρη = {f ′ ∈ RVρ (ρ > 0) : either φ ∈ RVη or − φ ∈ RVη} ,

Fρ0,τ = {f ∈ Fρ0 : lim
u→∞

(lnu)τφ(u) = `? ∈ R},

K(01],τ =

{
k ∈ K(01] : lim

t↘0
(− ln t)τ

[(∫ t
0
k(s) ds

k(t)

)′
− `1

]
:= L] ∈ R

}
,

K0,ζ =

{
k ∈ K0 : lim

t↘0

1

tζ

(∫ t
0
k(s) ds

k(t)

)′
:= L? ∈ R

}
.

Further on in section 4.2, η, τ and ζ are understood to be in the above range.

The next result is a consequence of Theorem 1 in Ĉırstea and Rădulescu

(2003a) and Proposition 4.2.11.

Theorem 4.2.2. Suppose (4.7), (4.14) with k ∈ K0,ζ, and one of the following

growth conditions at infinity:

(i) f(u) = Cuρ+1 in a neighborhood of infinity (i.e., φ ≡ 0 in (4.15));

(ii) f ∈ Fρη with η 6= 0;

(iii) f ∈ Fρ0,τ1 with τ1 = $/ζ, where $ = min{θ, ζ}.

For any a ∈ (−∞, λ∞,1), the two-term blow-up rate of ua is then

ua(x) = ξ0h(d)(1 + χd$ + o(d$)) as d(x) ↘ 0 (4.16)

where h is given by (4.13), ξ0 = [2/(2 + ρ)]1/ρ and

χ =


L?
2

Heaviside(θ − ζ)− c̃

ρ
Heaviside(ζ − θ) := χ1 if (i) or (ii) holds,

χ1 −
`?

ρ

[
ρζL?

2(1 + ζ)

]τ1 ( 1

ρ+ 2
+ ln ξ0

)
if f obeys (iii).

The situation corresponding to k ∈ K(01] is treated below (see Theorem 1.3

in Ĉırstea and Rădulescu (2005)).
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Theorem 4.2.3. Suppose (4.7), (4.14) with k ∈ K(01],τ , and one of the following

conditions:

(i) f ∈ Fρη with ηL] 6= 0;

(ii) f ∈ Fρ0,τ with [`?(`1 − 1)]2 + L2
] 6= 0.

For any a ∈ (−∞, λ∞,1), the two-term blow-up rate of ua is then

ua(x) = ξ0h(d)[1 + χ̃ (− ln d)−τ + o((− ln d)−τ )] as d(x) ↘ 0, (4.17)

where h is given by (4.13), ξ0 = [(2 + `1ρ)/(2 + ρ)]1/ρ and

χ̃ =


L]

2 + ρ`1
:= χ2 if (i) holds,

χ2 −
`?

ρ

(
ρ`1
2

)τ [
2(1− `1)

(ρ+ 2)(ρ`1 + 2)
+ ln ξ0

]
if f obeys (ii).

(4.18)

Remark 4.2.3. Note that Theorems 4.2.2 and 4.2.3 distinguish from Theorem 1 in

Garćıa-Melián et al. (2001), which treats the particular case f(u) = up (p > 1),

Ω0 = ∅, k(t) =
√
C0tγ (C0, γ > 0) and θ = 1 in (4.14). The second term in the

asymptotic expansion of ua near ∂Ω involves, in Garćıa-Melián et al. (2001), both

the distance function d(x) and the mean curvature of ∂Ω.

Theorem 4.2.2 admits the case f(u) = up assuming that k ∈ K0,ζ , while the

alternative (ii) of Theorem 4.2.3 includes the case k(t) =
√
C0tγ (when L] = 0)

provided that f ∈ Fρ0,τ with `? 6= 0. Relations (4.16) and (4.17) show how

dramatically the two-term asymptotic expansion of ua changes from the result

in Garćıa-Melián et al. (2001). Our approach is completely different from that

in Bandle and Essén (1994); Bandle and Marcus (1992a); Garćıa-Melián et al.

(2001); Lazer and McKenna (1994), as we essentially use Karamata’s theory.

We point out that the general asymptotic results stated in the above theorems

do not involve the difference or the quotient of u(x) and ψ(d(x)), as established

in Bandle and Marcus (1992a), Bieberbach (1916), Lazer and McKenna (1994),

Rademacher (1943) for a = 0 and b = 1, where ψ is a large solution of

ψ′′(r) = f(ψ(r)) on (0,∞) .
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The rest of the section 4.2 is organized as follows. In §4.2.3 we prove some

auxiliary results which will be repeatedly invoked. In §4.2.4 we characterize the

class K as well as its subclasses K0,ζ and K(01],τ that appear in Theorems 4.2.2

and 4.2.3. The uniqueness of the large solution of (4.6) will be proved in §4.2.5.

We provide two proofs of Theorem 4.2.1: the first one follows the pattern in

Ĉırstea (2002) (where f(u) = uρ+1) and Ĉırstea and Rădulescu (2002d) (where

f ′ ∈ RVρ), while the second one is useful to our next purpose. The asymptotic

expansion of the large solution given by Theorems 4.2.2 and 4.2.3 will be analyzed

in §4.2.6.

4.2.3 Auxiliary Results

Based on regular variation theory, we first prove two lemmas that have been

only stated in Ĉırstea and Rădulescu (2003a). The results of §4.2.3, with the

exception of Lemma 4.2.6 appearing in Ĉırstea and Rădulescu (2003a), have

been incorporated in Ĉırstea and Rădulescu (2005).

Remark 4.2.4. If f ∈ RVρ+1 (ρ > 0) is continuous, then

Ξ(u) :=

√
F (u)

f(u)
∫∞
u

[F (s)]−1/2 ds
→ ρ

2(ρ+ 2)
as u→∞, (4.19)

where F stands for an antiderivative of f . Indeed, by Proposition 4.1.4, we have

lim
u→∞

F (u)

uf(u)
=

1

ρ+ 2
and lim

u→∞

u[F (u)]−1/2∫∞
u

[F (s)]−1/2 ds
=
ρ

2
. (4.20)

Lemma 4.2.4 (Properties of h). If f ∈ RVρ+1 (ρ > 0) is continuous and

k ∈ K, then h defined by (4.13) is a C2-function satisfying the following:

(i) lim
t↘0

h′′(t)

k2(t)f(ξh(t))
=

2 + ρ`1
ξρ+1(2 + ρ)

, for each ξ > 0;

(ii) lim
t↘0

h(t)h′′(t)

[h′(t)]2
=

2 + ρ`1
2

and lim
t↘0

ln k(t)

lnh(t)
=
ρ(`1 − 1)

2
;

(iii) lim
t↘0

h′(t)

th′′(t)
= − ρ`1

2 + ρ`1
and lim

t↘0

h(t)

t2h′′(t)
=

ρ2`21
2(2 + ρ`1)

;

(iv) lim
t↘0

h(t)

th′(t)
= lim

t↘0

ln t

lnh(t)
= −ρ`1

2
;
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(v) lim
t↘0

tjh(t) = ∞, for all j > 0, provided that k ∈ K0. If, in addition, k ∈ K0,ζ

then lim
t↘0

1

−ζtζ lnh(t)
= lim

t↘0

h′(t)

tζ+1h′′(t)
=

−ρL?
2(ζ + 1)

.

Proof. By (4.13), the function h ∈ C2(0, ν), for some ν > 0, and limt↘0 h(t) = ∞.

For any t ∈ (0, ν), we have h′(t) = −k(t)
√

2F (h(t)) and

h′′(t) = k2(t)f(h(t))

{
1 + 2Ξ(h(t))

[(∫ t
0
k(s) ds

k(t)

)′
− 1

]}
. (4.21)

Using Remark 4.2.4 and f ∈ RVρ+1, we reach (i).

(ii). By (i) and (4.20), we get

lim
t↘0

h(t)h′′(t)

[h′(t)]2
= lim

t↘0

h′′(t)

k2(t)f(h(t))

h(t)f(h(t))

2F (h(t))
=

2 + ρ`1
2

, (4.22)

respectively

lim
t↘0

k′(t)

k(t)

h(t)

h′(t)
= lim

t↘0

h(t)f(h(t))

F (h(t))

−
(∫ t

0
k(s) ds

)
k2(t)/k′(t)

Ξ(h(t)) =
ρ(`1 − 1)

2
. (4.23)

(iii). Using (i) and Remark 4.2.4, we find

lim
t↘0

h′(t)

th′′(t)
=
−2(2 + ρ)

2 + ρ`1
lim
t↘0

∫ t
0
k(s) ds

tk(t)
Ξ(h(t)) =

−ρ`1
2 + ρ`1

,

which, together with (4.22), implies that

lim
t↘0

h(t)

t2h′′(t)
= lim

t↘0

h(t)h′′(t)

[h′(t)]2

[
h′(t)

th′′(t)

]2

=
ρ2`21

2(2 + ρ`1)
.

(iv). If `1 6= 0, then by (iii), we have

lim
t↘0

h(t)

th′(t)
= lim

t↘0

h(t)

t2h′′(t)

th′′(t)

h′(t)
=
−ρ`1

2
.

If `1 = 0, then we derive

lim
t↘0

k(t)

tk′(t)
= lim

t↘0

k2(t)

k′(t)
(∫ t

0
k(s) ds

) ∫ t0 k(s) ds
tk(t)

= 0. (4.24)

This and (4.23) yield limt↘0
h(t)
th′(t)

= 0, which concludes (iv).
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(v). If k ∈ K0, then using (iv), we obtain limt↘0 ln[tjh(t)] = ∞, for all j > 0.

Suppose k ∈ K0,ζ , for some ζ > 0. Then, limt↘0

R t
0 k(s) ds

tζ+1k(t)
= L?

ζ+1
and

L?
ζ + 1

= lim
t↘0

∫ t
0
k(s) ds

tζ+1k(t)

k2(t)/k′(t)(∫ t
0
k(s) ds

) = lim
t↘0

k(t)

tζ+1k′(t)
=
−1

ζ
lim
t↘0

1

tζ ln k(t)
. (4.25)

By (4.22), (4.23) and (4.25), we deduce

lim
t↘0

h′(t)

tζ+1h′′(t)
= lim

t↘0

h(t)

h′(t)tζ+1
= lim

t↘0

k′(t)h(t)

k(t)h′(t)

k(t)

tζ+1k′(t)
=

−ρL?
2(ζ + 1)

.

This completes the proof of the lemma.

Let τ > 0 be arbitrary and let f be as in Remark 4.2.4. For u > 0 sufficiently

large, we define

T1,τ (u) =

[
ρ

2(ρ+ 2)
− Ξ(u)

]
(lnu)τ and T2,τ (u) =

[
f(ξ0u)

ξ0f(u)
− ξρ0

]
(lnu)τ . (4.26)

Remark 4.2.5. When f(u) = Cuρ+1, we have T1,τ (u) = T2,τ (u) = 0.

Lemma 4.2.5. Let f ∈ Fρη (where −ρ− 2 < η ≤ 0). The following hold:

(i) If f ∈ Fρ0,τ , then

lim
u→∞

T1,τ (u) =
−`?

(ρ+ 2)2
and lim

u→∞
T2,τ (u) = ξρ0`

? ln ξ0.

(ii) If f ∈ Fρη with η 6= 0, then

lim
u→∞

T1,τ (u) = lim
u→∞

T2,τ (u) = 0.

Proof. Using the second limit in (4.20), we obtain

lim
u→∞

T1,τ (u) =
ρ

2
lim
u→∞

ρ
2(ρ+2)

∫∞
u

[F (s)]−1/2 ds−
√
F (u)/f(u)

u[F (u)]−1/2 (lnu)−τ
.

By L’Hospital’s rule, we arrive at

lim
u→∞

T1,τ (u) = lim
u→∞

[
ρ+ 1

ρ+ 2
− F (u)f ′(u)

f 2(u)

]
(lnu)τ := lim

u→∞
Q1,τ (u).
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A simple calculation shows that, for u > 0 large,

Q1,τ (u) =
(lnu)τ

ρ+ 2

[
ρ+ 1− uf ′(u)

f(u)

]
+
uf ′(u)

f(u)

[
1

ρ+ 2
− F (u)

uf(u)

]
(lnu)τ

=:
1

ρ+ 2
Q2,τ (u) +

uf ′(u)

f(u)
Q3,τ (u).

Since (4.15) holds with φ ∈ RVη or −φ ∈ RVη, we can assume B > 0 such that

φ 6= 0 on [B,∞). For any u > B, we have Q2,τ (u) = −φ(u)(lnu)τ and

Q3,τ (u) = C̃
(lnu)τ

uf(u)
+

∫ u
B
f(s)φ(s) ds

(ρ+ 2)uf(u)φ(u)
φ(u)(lnu)τ ,

where C̃ ∈ R is a constant. Since either fφ ∈ RVρ+η+1 or −fφ ∈ RVρ+η+1, by

Proposition 4.1.4,

lim
u→∞

uf(u)φ(u)∫ u
B
f(x)φ(x) dx

= ρ+ η + 2.

If (i) holds, then limu→∞Q2,τ (u) = −`? and limu→∞Q3,τ (u) = `?(ρ+ 2)−2. Thus,

lim
u→∞

T1,τ (u) = lim
u→∞

Q1,τ (u) = −`?/(ρ+ 2)2.

If (ii) holds, then by Proposition 4.1.3, limu→∞(lnu)τφ(u) = 0. It follows that

lim
u→∞

Q2,τ (u) = lim
u→∞

Q3,τ (u) = 0

which yields limu→∞ T1,τ (u) = 0. Note that the proof is finished if ξ0 = 1, since

T2,τ (u) = 0 for each u > 0.

Arguing by contradiction, let us suppose that ξ0 6= 1, then, by (4.15),

T2,τ (u) = ξρ0

[
exp

{∫ ξ0u

u

φ(t)

t
dt

}
− 1

]
(lnu)τ , ∀u > B/ξ0.

But, limu→∞ φ(us)/s = 0, uniformly with respect to s ∈ [ξ0, 1]. So

lim
u→∞

∫ ξ0u

u

φ(t)

t
dt = lim

u→∞

∫ ξ0

1

φ(su)

s
ds = 0

which leads to

lim
u→∞

T2,τ (u) = ξρ0 lim
u→∞

(∫ ξ0u

u

φ(t)

t
dt

)
(lnu)τ .
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If (i) occurs, then by Proposition 4.1.1, we have

lim
u→∞

T2,τ (u) = ξρ0 lim
u→∞

(lnu)τφ(u)

∫ ξ0

1

φ(tu)

φ(u)

dt

t
= ξρ0`

? ln ξ0.

If (ii) occurs, then by Proposition 4.1.3, we infer that

lim
u→∞

T2,τ (u) =
−ξρ0
τ

lim
u→∞

[φ(ξ0u)− φ(u)] (lnu)τ+1 = 0.

The proof of Lemma 4.2.5 is now complete.

Lemma 4.2.6. Under the assumptions of Theorem 4.2.2, we have

I(t) := t−$
(

1− k2(t)f(ξ0h(t))

ξ0h′′(t)

)
→ ρχ+ c̃Heaviside (ζ − θ) as t↘ 0. (4.27)

Proof. From (4.21), I(t) = k2(t)f(h(t))
h′′(t)

∑3
j=1 Ij(t), for t > 0 small, where

I1(t) := 2
Ξ(h(t))

t$

(∫ t
0
k(s) ds

k(t)

)′
→ ρL?

ρ+ 2
Heaviside (θ − ζ) as t↘ 0,

I2(t) = 2
T1,τ1(h(t))

[tζ lnh(t)]τ1
and I3(t) = − T2,τ1(h(t))

[tζ lnh(t)]τ1
.

Case (i) or (ii) of Theorem 4.2.2. By Lemmas 4.2.4 and 4.2.5, we have

limt↘0 I2(t) = limt↘0 I3(t) = 0. Thus, we arrive at

lim
t↘0

I(t) =
ρL?
2

Heaviside (θ − ζ) =: ρχ+ c̃Heaviside (ζ − θ).

Case (iii) of Theorem 4.2.2. Using again Lemmas 4.2.4 and 4.2.5, we find

lim
t↘0

I2(t) = − 2`?

(ρ+ 2)2

[
ρζL?

2(ζ + 1)

]τ1
, lim

t↘0
I3(t) = −ξρ0`? ln ξ0

[
ρζL?

2(ζ + 1)

]τ1
.

It follows that

lim
t↘0

I(t) =
ρL?
2

Heaviside (θ − ζ)− `?
[

ρζL?
2(ζ + 1)

]τ1 ( 1

ρ+ 2
+ ln ξ0

)
=: ρχ+ c̃Heaviside (ζ − θ).

This concludes the proof.
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Lemma 4.2.7. Under the assumptions of Theorem 4.2.3, we have

H(t) := (− ln t)τ
(

1− k2(t)f(ξ0h(t))

ξ0h′′(t)

)
→ ρχ̃ as t↘ 0, (4.28)

where χ̃ is defined by (4.18).

Proof. Using (4.21), we write H(t) = k2(t)f(h(t))
h′′(t)

∑3
i=1 Hi(t), for t > 0 small, where

H1(t) := 2Ξ(h(t))(− ln t)τ

[(∫ t
0
k(s) ds

k(t)

)′
− `1

]
,

H2(t) := 2(1− `1)

(
− ln t

lnh(t)

)τ
T1,τ (h(t))

H3(t) := −
(
− ln t

lnh(t)

)τ
T2,τ (h(t)).

By Remark 4.2.4, we find limt↘0 H1(t) = ρL]/(ρ+ 2).

Case (i) of Theorem 4.2.3. By Lemmas 4.2.4 and 4.2.5, it turns out that

lim
t↘0

H2(t) = lim
t↘0

H3(t) = 0 and lim
t↘0

H(t) =
ρL]

2 + ρ`1
=: ρχ̃.

Case (ii) of Theorem 4.2.3. By Lemmas 4.2.4 and 4.2.5, we get

lim
t↘0

H2(t) =
−2(1− `1)`

?

(ρ+ 2)2

(
ρ`1
2

)τ
and lim

t↘0
H3(t) =

−`?(2 + ρ`1)

(2 + ρ)

(
ρ`1
2

)τ
ln ξ0.

Thus, we arrive at

lim
t↘0

H(t) =
ρL]

2 + ρ`1
− `?

(
ρ`1
2

)τ [
2(1− `1)

(ρ+ 2)(2 + ρ`1)
+ ln ξ0

]
=: ρχ̃.

This finishes the proof.

4.2.4 Characterization of K and its Subclasses

The results of §4.2.4 have been included in Ĉırstea and Rădulescu (2005).

Definition 4.1.1 extends to regular variation at the origin. We say that Z is reg-

ularly varying (on the right) at the origin with index q (and write, Z ∈ RVq(0+))

if Z(1/u) ∈ RV−q. Moreover, by Z ∈ NRVq(0+) we mean that Z(1/u) ∈ NRV−q.
The meaning of NRVq is given by (4.2).
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Proposition 4.2.8. We have k ∈ K(01] if and only if k is non-decreasing near

the origin and k belongs to NRVα(0+) for some α ≥ 0 (where α = 1/`1 − 1).

Proof. If k ∈ K(01], then from the definition

lim
t→0+

∫ t
0
k(s)ds

k(t)

/
t = lim

t→0+

(∫ t
0
k(s)ds

k(t)

)′
= `1,

which implies that

lim
u→∞

u d
du
k(1/u)

k(1/u)
= lim

t→0+

−tk′(t)
k(t)

=
`1 − 1

`1
.

Thus k(1/u) belongs to NRV1−1/`1 . Conversely, if k belongs to NRVα(0+) with

α ≥ 0, then k is a positive C1-function on some interval (0, ν) and

lim
t→0+

tk′(t)

k(t)
= α. (4.29)

By Proposition 4.1.4, we deduce

lim
t→0+

∫ t
0
k(s) ds

tk(t)
= lim

u→∞

∫∞
u
x−2k(1/x)dx

u−1k(1/u)
=

1

1 + α
. (4.30)

Combining (4.29) and (4.30), we get limt→0+

(∫ t
0
k(s) ds/k(t)

)′
= 1/(1 + α). If,

in addition, k is non-decreasing near 0, then k ∈ K with `1 = 1/(1 + α). Note

that by (4.29), k is increasing near the origin if α > 0; however, when k is slowly

varying at 0, then we cannot draw any conclusion about the monotonicity of k

near the origin (see Remark 4.1.3).

Remark 4.2.6. By Propositions 4.2.8 and 4.1.2, we deduce k ∈ K(01] if and only

k is of the form

k(t) = c0t
α exp

{∫ c1

t

E(y)

y
dy

}
(0 < t < c1), for some 0 ≤ α(= 1/`1−1) (4.31)

where c0, c1 > 0 are constants, E ∈ C[0, c1) with E(0) = 0 and (only for `1 = 1)

E(t) ≤ α.

Proposition 4.2.9. We have k ∈ K(01],τ if and only if k is of the form (4.31)

where, in addition,

lim
t↘0

(− ln t)τE(t) = `] ∈ R with `] = (1 + α)2L]. (4.32)
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Proof. Suppose k satisfies (4.31) and (4.32). A simple calculation leads to

lim
t↘0

(− ln t)τ
[
1− `1
`1

− tk′(t)

k(t)

]
= lim

t↘0
(− ln t)τE(t) = `]. (4.33)

By L’Hospital’s rule, we find

lim
t↘0

(− ln t)τ

[
`1 −

∫ t
0
k(s) ds

tk(t)

]
= lim

t↘0

(`1 − 1) + `1tk
′(t)/k(t)

(− ln t)−τ
[
1 + tk′(t)

k(t)
− τ

ln t

]
= −`21 lim

t↘0
(− ln t)τ

[
1− `1
`1

− tk′(t)

k(t)

]
=

−`]
(α+ 1)2

.

(4.34)

We see that, for each t > 0 small,(∫ t
0
k(s) ds

k(t)

)′
− `1 =

tk′(t)

k(t)

[
`1 −

∫ t
0
k(s) ds

tk(t)

]
+ `1

[
1− `1
`1

− tk′(t)

k(t)

]
. (4.35)

By (4.33)–(4.35), we infer that k ∈ K(01],τ with L] = `]/(1 + α)2.

Conversely, if k ∈ K(01],τ , then k is of the form (4.31). Moreover, we have

lim
t↘0

(− ln t)τ

(∫ t
0
k(s) ds

tk(t)
− `1

)
= lim

t↘0

(∫ t
0
k(s) ds/k(t)

)′
− `1

(− ln t)−τ
(
1− τ

ln t

) = L]. (4.36)

By (4.35) and (4.36), we deduce

L] = −αL] +
1

α+ 1
lim
t↘0

(− ln t)τE(t).

Consequently, limt↘0(− ln t)τE(t) = (1 + α)2L]. Hence, (4.32) holds.

Proposition 4.2.10. We have k ∈ K0 if and only if k is of the form

k(t) = d0

(
exp

{
−
∫ d1

t

dx

xW(x)

})′
(0 < t < d1), (4.37)

where d0, d1 > 0 are constants and 0 < W ∈ C1(0, d1) satisfies

lim
t↘0

W(t) = lim
t↘0

tW′(t) = 0. (4.38)
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Proof. If k ∈ K0, then we set

W(t) =

∫ t
0
k(s) ds

tk(t)
, for t ∈ (0, d1). (4.39)

Hence, limt↘0 W(t) = 0 and, for t > 0 small,

tW′(t) =

(∫ t
0
k(s) ds

k(t)

)′
−
∫ t

0
k(s) ds

tk(t)
.

It follows that limt↘0 tW
′(t) = 0. By (4.39), we find∫ d1

t

dx

xW(x)
= ln

(∫ d1

0

k(s) ds

)
− ln

(∫ t

0

k(s) ds

)
, t ∈ (0, d1)

which proves (4.37). Conversely, if (4.37) holds, then limt↘0

∫ d1
t

dx
xW(x)

= ∞ and∫ t

0

k(s) ds = d0 exp

{
−
∫ d1

t

dx

xW(x)

}
= tk(t)W(t), t ∈ (0, d1). (4.40)

This, together with (4.38), shows that k ∈ K0.

Proposition 4.2.11. We have k ∈ K0,ζ if and only if k is of the form (4.37)

where, in addition,

lim
t↘0

t1−ζW′(t) = −`? with − `? = ζL?/(1 + ζ). (4.41)

Proof. If k ∈ K0,ζ , then (4.37) and (4.40) are fulfilled. Therefore,

L? = lim
t↘0

(tW(t))′

tζ
= lim

t↘0

W(t) + tW′(t)

tζ
and

L?
ζ + 1

= lim
t↘0

∫ t
0
k(s) ds

k(t)tζ+1
= lim

t↘0

W(t)

tζ
,

from which (4.41) follows. Conversely, if (4.37) and (4.41) are satisfied, then

limt↘0 W(t)/tζ = −`?/ζ. By (4.40), we infer that

1

tζ

(∫ t
0
k(s) ds

k(t)

)′
=

1

tζ
(W(t) + tW′(t)) → −`?(ζ + 1)

ζ
as t↘ 0.

Thus, k ∈ K0,ζ with L? = −`?(ζ + 1)/ζ.

110



4.2 Pure Boundary Blow-up Problems

Remark 4.2.7. If k ∈ K0 or k ∈ K(01],τ with (1− `1)
2 + L2

] 6= 0, then

lim
t↘0

k′(t)

k(t)tθ−1
= ∞, for every θ > 0. (4.42)

Indeed, if k ∈ K0, then limt↘0
tk′(t)
k(t)

= ∞. Assuming that k ∈ K(01],τ , we deduce

(4.42) from (4.29) when `1 6= 1, otherwise from (4.32) when L] 6= 0 since

lim
t↘0

k′(t)

k(t)tθ−1
= lim

t↘0
−E(t)t−θ = −L] lim

t↘0

t−θ

(− ln t)τ
= ∞.

Remark 4.2.8. Under the assumptions of Theorem 4.2.1, we have

(a) Suppose limt↘0

(∫ t
0
k(s) ds

)2

r(t) = 1 and let f̂(u) be chosen such that

limu→∞ f̂(u)/f(u) = 1 and j(u) := f̂(u)/u is non-decreasing for u > 0

large. Then limt↘0 ϕ̂(t)/ϕ(t) = 1, where ϕ̂(t) := j←(r(t)), for t > 0 small,

and ϕ(t) is defined by (4.11).

(b) If k ∈ K with `1 6= 0, then ϕ(1/u) ∈ RV2/(ρ`1).

(c) If k ∈ K0, then ϕ(1/u) is Γ-varying at u = ∞ with auxiliary function

ρu2
∫ 1/u

0
k(s) ds

2k(1/u)
.

(d) lim
t↘0

ϕ(t)

h(t)
=

(
2(ρ+ 2)

ρ2

)−1/ρ

, where h(t) is given by (4.13).

Indeed, we have (f(u)/u)← ∈ RV1/ρ and limu→∞(f(u)/u)←/j←(u) = 1 (use

Proposition 4.1.6). Then, by Proposition 4.1.1 we deduce (a). We see that (b) fol-

lows by Proposition 4.1.6 since
(∫ 1/u

0
k(s) ds

)−2

∈ RV2/`1 (cf. Proposition 4.2.8)

and f(u)/u ∈ RVρ. If k ∈ K0, then by Proposition 4.2.10 and (Resnick, 1987,

p. 106), we get
(∫ 1/u

0
k(s) ds

)−2

is Γ-varying at u = ∞ with auxiliary function

uW(1/u)/2. By (Resnick, 1987, p. 36), we conclude (c). Notice that

Y (u) :=

(∫ ∞
u

[2F (s)]−1/2 ds

)−2

∈ RVρ

and Y (h(t)) =
(∫ t

0
k(s) ds

)−2

for t > 0 small. Using Remark 4.2.4, we find

limu→∞ f(u)/[uY (u)] = 2(ρ+ 2)/ρ2. By Proposition 4.1.6, we get (d).
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4.2.5 Uniqueness of the Large Solution

4.2.5.1 Proof of Theorem 4.2.1: First Approach

Since f ∈ RVρ+1, by Proposition 4.1.3 we obtain limu→∞ f(u)/uq = ∞, for each

q ∈ (1, ρ + 1). Thus, (3.6) is fulfilled. By Theorem 3.1.1, (4.6) possesses large

solutions if and only if a ∈ (−∞, λ∞,1).

Fix a < λ∞,1. If we prove that (4.12) holds for an arbitrary large solution ua

of (4.6), then we can deduce the uniqueness.

Indeed, if u1 and u2 are two arbitrary large solutions of (4.6), then (4.12)

implies that limd(x)→0+ u1(x)/u2(x) = 1. Hence, for any ε ∈ (0, 1), there exists

δ = δ(ε) > 0 such that

(1− ε)u2(x) ≤ u1(x) ≤ (1 + ε)u2(x), ∀x ∈ Ω with 0 < d(x) ≤ δ. (4.43)

Choosing eventually a smaller δ > 0, we can assume that Ω0 ⊂ Cδ, where

Cδ := {x ∈ Ω : d(x) > δ}.

We see that u1 is a positive solution of the boundary value problem

∆u+ au = b(x)f(u) in Cδ, u = u1 on ∂Cδ. (4.44)

By (4.7) and (4.43), φ− = (1 − ε)u2 (resp., φ+ = (1 + ε)u2) is a positive sub-

solution (resp., super-solution) of (4.44). By the sub and super-solutions method,

(4.44) has a positive solution φ1 satisfying φ− ≤ φ1 ≤ φ+ in Cδ. Since b > 0 on

Cδ \ Ω0, by Lemma 3.1.11, we know that (4.44) has a unique positive solution,

i.e., u1 ≡ φ1 in Cδ. This yields

(1− ε)u2(x) ≤ u1(x) ≤ (1 + ε)u2(x) in Cδ,

so that (4.43) holds in Ω. Passing to the limit ε→ 0+, we conclude that u1 ≡ u2.

Proof of (4.12). Fix ε ∈ (0, 1/2). Since (4.9) holds, we take δ > 0 such that

(i) d(x) is a C2-function on the set {x ∈ Ω : d(x) < 2δ};

(ii) k is non-decreasing on (0, 2δ);

(iii) (1− ε) < b(x)/k2(d(x)) < (1 + ε), for each x ∈ Ω with 0 < d(x) < 2δ;
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(iv) h′′(t) > 0, for each t ∈ (0, 2δ) (cf. Lemma 4.2.4).

Let σ ∈ (0, δ) be arbitrary. Set ξ± =
[

2+`1ρ
(1∓2ε)(2+ρ)

]1/ρ
and define{

v+
σ (x) = h(d(x)− σ)ξ+, ∀x ∈ Ω with σ < d(x) < 2δ,

v−σ (x) = h(d(x) + σ)ξ−, ∀x ∈ Ω with d(x) + σ < 2δ.

Using (i)-(iv), when σ < d(x) < 2δ we obtain (since |∇d(x)| ≡ 1)

∆v+
σ + av+

σ − b(x)f(v+
σ ) ≤ ξ+h′′(d− σ)

(
h′(d− σ)

h′′(d− σ)
∆d(x) + a

h(d− σ)

h′′(d− σ)
+ 1

−(1− ε)
k2(d− σ)f(h(d− σ)ξ+)

h′′(d− σ)ξ+

)
.

Similarly, when d(x) + σ < 2δ we find

∆v−σ + av−σ − b(x)f(v−σ ) ≥ ξ−h′′(d+ σ)

(
h′(d+ σ)

h′′(d+ σ)
∆d(x) + a

h(d+ σ)

h′′(d+ σ)
+ 1

−(1 + ε)
k2(d+ σ)f(h(d+ σ)ξ−)

h′′(d+ σ)ξ−

)
.

Thus, by Lemma 4.2.4, we can diminish δ > 0 such that{
∆v+

σ (x) + av+
σ (x)− b(x)f(v+

σ (x)) ≤ 0 ∀x with σ < d(x) < 2δ;

∆v−σ (x) + av−σ (x)− b(x)f(v−σ (x)) ≥ 0 ∀x with d(x) + σ < 2δ.

Let Ω1 and Ω2 be smooth bounded domains such that Ω ⊂⊂ Ω1 ⊂⊂ Ω2 and

the first Dirichlet eigenvalue of (−∆) in the domain Ω1 \Ω is greater than a. Let

p ∈ C0,µ(Ω2) satisfy 0 < p(x) ≤ b(x) for x ∈ Ω \ Cδ, p = 0 on Ω1 \ Ω and p > 0

on Ω2 \ Ω1. By Theorem 3.1.1, we can take w a positive large solution of

∆w + aw = p(x)f(w) in Ω2 \ Cδ.

Let ua be an arbitrary large solution of (4.6). Then v := ua + w satisfies

∆v + av − b(x)f(v) ≤ 0 in Ω \ Cδ.

Since v|∂Ω = ∞ > v−σ|∂Ω and v|∂Cδ
= ∞ > v−σ|∂Cδ

, by Lemma 3.1.6 we get

ua + w ≥ v−σ on Ω \ Cδ. (4.45)
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Similarly,

v+
σ + w ≥ ua on Cσ \ Cδ. (4.46)

Letting σ → 0 in (4.45) and (4.46), we deduce

h(d(x))ξ+ + 2w ≥ ua + w ≥ h(d(x))ξ−, ∀x ∈ Ω \ Cδ.

Since w is uniformly bounded on ∂Ω, we have

ξ− ≤ lim inf
d(x)→0

ua(x)

h(d(x))
≤ lim sup

d(x)→0

ua(x)

h(d(x))
≤ ξ+.

Letting ε → 0+ we obtain (4.12). By Remark 4.2.8 (d), we reach (4.10). This

concludes the proof of Theorem 4.2.1.

4.2.5.2 Proof of Theorem 4.2.1: Second Approach

By Theorem 3.1.1, (4.6) admits large solutions if and only if a ∈ (−∞, λ∞,1).

Cf. Remark 4.2.8 (d), to prove (4.10) it is enough to show (4.12).

Fix a < λ∞,1 and let ua denote an arbitrary large solution of (4.6).

Let ε ∈ (0, 1/2) be arbitrary. We choose δ > 0 such that

(i) d(x) is a C2 function on the set {x ∈ Ω : d(x) < δ};

(ii) k is non-decreasing on (0, δ);

(iii) 1− ε < b(x)/k2(d(x)) < 1 + ε, for each x ∈ Ω with 0 < d(x) < δ;

(iv) h′(t) < 0 and h′′(t) > 0, for each t ∈ (0, δ) (cf. Lemma 4.2.4).

Define ξ± =
[

2+`1ρ
(1∓2ε)(2+ρ)

]1/ρ
and u±(x) = ξ±h(d(x)), for any x with d(x) ∈ (0, δ).

The proof of (4.12) will be divided into three steps:

Step 4.2.1. There exists δ1 ∈ (0, δ) small such that{
∆u+ + au+ − (1− ε)k2(d)f(u+) ≤ 0, ∀x with d(x) ∈ (0, δ1)

∆u− + au− − (1 + ε)k2(d)f(u−) ≥ 0, ∀x with d(x) ∈ (0, δ1).
(4.47)
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Indeed, for every x ∈ Ω with 0 < d(x) < δ, we have

∆u± + au± − (1∓ ε)k2(d)f(u±)

= ξ±h′′(d)

(
1 + a

h(d)

h′′(d)
+ ∆d

h′(d)

h′′(d)
− (1∓ ε)

k2(d)f(u±)

ξ±h′′(d)

)
=: ξ±h′′(d)B±(d).

(4.48)

By Lemma 4.2.4, we deduce limd↘0B
±(d) = ∓ε/(1∓ 2ε), which proves (4.47).

Step 4.2.2. There exists M+, δ+ > 0 such that

ua(x) ≤ u+(x) +M+, ∀x ∈ Ω with 0 < d < δ+.

For x ∈ Ω with d(x) ∈ (0, δ1), we define Ψx(u) = au−b(x)f(u) for each u > 0.

By Lemma 4.2.4, we deduce

lim
d(x)↘0

b(x)f(u+(x))

u+(x)
= lim

d↘0

k2(d)f(u+)

ξ+h′′(d)

h′′(d)

h(d)
= ∞. (4.49)

From this and (4.7), we infer that there exists δ2 ∈ (0, δ1) such that, for any x

with 0 < d(x) < δ2, we have

u 7−→ Ψx(u) is decreasing on some interval (ux,∞) with 0 < ux < u+(x).

Hence, for each M > 0, we have

Ψx(u
+(x) +M) ≤ Ψx(u

+(x)), ∀x ∈ Ω with 0 < d(x) < δ2. (4.50)

Fix σ ∈ (0, δ2/4) and set Nσ := {x ∈ Ω : σ < d(x) < δ2/2}.
We define u∗σ(x) = u+(d − σ, s) +M+, where (d, s) are the local coordinates

of x ∈ Nσ. We choose M+ > 0 large enough such that

u∗σ(δ2/2, s) = u+(δ2/2− σ, s) +M+ ≥ ua(δ2/2, s), ∀σ ∈ (0, δ2/4), ∀s ∈ ∂Ω.

By (ii), (iii), (4.47) and (4.50), we obtain

−∆u∗σ(x) ≥ au+(d− σ, s)− (1− ε)k2(d− σ)f(u+(d− σ, s))

≥ au+(d− σ, s)− b(x)f(u+(d− σ, s))

≥ a(u+(d− σ, s) +M+)− b(x)f(u+(d− σ, s) +M+)

= au∗σ(x)− b(x)f(u∗σ(x)) in Nσ.
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So, uniformly with respect to σ, we have

∆u∗σ(x) + au∗σ(x) ≤ b(x)f(u∗σ(x)) in Nσ. (4.51)

Since u∗σ(x) → ∞ as d ↘ σ, from Lemma 3.1.6, we get ua ≤ u∗σ in Nσ, for

every σ ∈ (0, δ2/4). Letting σ ↘ 0, we achieve the assertion of Step 4.2.2 (with

δ+ ∈ (0, δ2/2) arbitrarily chosen).

Step 4.2.3. There exists M−, δ− > 0 such that

ua(x) ≥ u−(x)−M−, ∀x = (d, s) ∈ Ω with 0 < d < δ−. (4.52)

For every r ∈ (0, δ), define Ωr = {x ∈ Ω : 0 < d(x) < r}.
Fix σ ∈ (0, δ2/4). We define v∗σ(x) = λu−(d + σ, s) for x = (d, s) ∈ Ωδ2/2,

where λ ∈ (0, 1) is chosen small enough such that

v∗σ(δ2/4, s) = λu−(δ2/4 + σ, s) ≤ ua(δ2/4, s), ∀σ ∈ (0, δ2/4), ∀s ∈ ∂Ω. (4.53)

Notice that lim supd↘0(v
∗
σ−ua)(x) = −∞. By (ii), (iii), (4.47) and (4.7), we have

∆v∗σ(x) + av∗σ(x) = λ(∆u−(d+ σ, s) + au−(d+ σ, s))

≥ λ(1 + ε)k2(d+ σ)f(u−(d+ σ, s))

≥ (1 + ε)k2(d)f(λu−(d+ σ, s))

≥ b(x)f(v∗σ(x)), ∀x = (d, s) ∈ Ωδ2/4.

By Lemma 3.3.2, we derive v∗σ ≤ ua in Ωδ2/4. Letting σ ↘ 0, we get

λu−(x) ≤ ua(x), ∀x ∈ Ωδ2/4. (4.54)

By Lemma 4.2.4, limd↘0 k
2(d)f(λ2u−)/u− = ∞. Thus, there exists δ̃ ∈ (0, δ2/4)

such that

k2(d)f(λ2u−)/u− ≥ λ2|a|, ∀x ∈ Ω with 0 < d ≤ δ̃. (4.55)

Choose δ∗ ∈ (0, δ̃), sufficiently close to δ̃, such that

h(δ∗)/h(δ̃) < 1 + λ. (4.56)
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For each σ ∈ (0, δ̃ − δ∗), we define zσ(x) = u−(d + σ, s) − (1 − λ)u−(δ∗, s),

where x = (d, s) ∈ Ωδ∗ . We prove that zσ is positive in Ωδ∗ and

∆zσ + azσ ≥ b(x)f(zσ) in Ωδ∗ . (4.57)

By (iv), u−(x) decreases with d when d < δ̃. This and (4.56) imply that

1 + λ >
u−(δ∗, s)

u−(δ̃, s)
≥ u−(δ∗, s)

u−(d+ σ, s)
, ∀x = (d, s) ∈ Ωδ∗ . (4.58)

Hence, for each x ∈ Ωδ∗ ,

zσ(x) = u−(d+ σ, s)

(
1− (1− λ)u−(δ∗, s)

u−(d+ σ, s)

)
≥ λ2u−(d+ σ, s) > 0. (4.59)

By (4.47), (ii) and (iii), we see that (4.57) follows if

(1 + ε)k2(d+ σ)
[
f(u−(d+ σ, s))− f(zσ(d, s))

]
≥ a(1− λ)u−(δ∗, s). (4.60)

for all (d, s) ∈ Ωδ∗ . The Lagrange mean value theorem and (4.7) show that

f(u−(d+ σ, s))− f(zσ(d, s)) ≥ (1− λ)u−(δ∗, s)f(zσ(x))/zσ(x) (4.61)

which, combined with (4.55) and (4.59), proves (4.60).

Notice that lim supd↘0(zσ − ua)(x) = −∞. By (4.54), we have

zσ(x) = u−(δ∗ + σ, s)− (1− λ)u−(δ∗, s) ≤ λu−(δ∗, s) ≤ ua(x), ∀x = (δ∗, s) ∈ Ω.

By Lemma 3.3.2, zσ ≤ ua in Ωδ∗ , for every σ ∈ (0, δ̃ − δ∗). Letting σ ↘ 0, we

conclude Step 4.2.3. Thus, by Steps 4.2.2 and 4.2.3, we have

ξ− ≤ lim inf
d(x)↘0

ua(x)

h(d(x))
≤ lim sup

d(x)↘0

ua(x)

h(d(x))
≤ ξ+.

Taking ε→ 0, we obtain (4.12).

Let u1 and u2 be two large solutions of (4.6). By (4.12), limd(x)→0
u1(x)
u2(x)

= 1.

Let ε > 0 be arbitrary and set (1 + ε)ui = wi, i = 1, 2. We obtain −∆wi − awi + b(x)f(wi) ≥ 0 in Ω

lim
d(x)→0

(u1 − w2)(x) = lim
d(x)→0

(u2 − w1)(x) = −∞.

Therefore, by Lemma 3.3.2, we infer that

u1 ≤ (1 + ε)u2 in Ω and u2 ≤ (1 + ε)u1 in Ω.

Letting ε→ 0, we get u1 = u2 in Ω. This ends the proof of Theorem 4.2.1.
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4.2.6 Asymptotic Expansion of the Large Solution

4.2.6.1 Proof of Theorem 4.2.2

For a < λ∞,1 fixed, let ua be the unique large solution of (4.6).

Fix ε ∈ (0, 1/2) and choose δ > 0 such that (i), (ii), (iv) from §4.2.5.2 hold.

By (4.14) and Remark 4.2.7, we can diminish δ > 0 such that{
1 + (c̃− ε)dθ < b(x)/k2(d) < 1 + (c̃+ ε)dθ, ∀x ∈ Ω with d ∈ (0, δ),

k2(t)
[
1 + (c̃− ε)tθ

]
is increasing on (0, δ).

(4.62)

Set χ±ε = χ± ε [1 + Heaviside (ζ − θ)]/ρ and define

u±(x) = ξ0h(d)(1 + χ±ε d
$), with d ∈ (0, δ).

Thus, for small δ > 0, u±(x) > 0 for each x ∈ Ω with d ∈ (0, δ).

By the Lagrange mean value theorem, we obtain

f(u±(x)) = f(ξ0h(d)) + ξ0χ
±
ε d

$h(d)f ′(Υ±(d)),

where Υ±(d) = ξ0h(d)(1 + λ±(d)χ±ε d
$), for some λ±(d) ∈ [0, 1].

As f ∈ RVρ+1, using Proposition 4.1.1 we deduce

lim
d↘0

f(Υ±(d))

f(ξ0h(d))
= lim

d↘0

f(u±(d))

f(ξ0h(d))
= 1. (4.63)

Step 4.2.4. There exists δ1 ∈ (0, δ) so that{
∆u+ + au+ − k2(d)[1 + (c̃− ε)dθ]f(u+) ≤ 0, ∀x ∈ Ω with d < δ1,

∆u− + au− − k2(d)[1 + (c̃+ ε)dθ]f(u−) ≥ 0, ∀x ∈ Ω with d < δ1.
(4.64)

Indeed, for every x ∈ Ω with d ∈ (0, δ), we have

∆u± + au± − k2(d)
[
1 + (c̃∓ ε)dθ

]
f(u±) = ξ0d

$h′′(d)S±(d), (4.65)

where

S±(d) :=
χ±ε h(d)

d2h′′(d)

(
$($ − 1) + ad2 +$d∆d

)
+

ah(d)

d$h′′(d)

+
h′(d)

d1+ζh′′(d)

(
d1+ζχ±ε ∆d+ 2$χ±ε d

ζ + d1+ζ−$∆d
)

+
3∑
j=1

S±j (d) + I(d).

118



4.2 Pure Boundary Blow-up Problems

For brevity, I(d) is defined by (4.27) and

S±1 (d) := (−c̃± ε)dθ−$
k2(d)f(ξ0h(d))

ξ0h′′(d)
,

S±2 (d) := χ±ε

(
1− k2(d)h(d)f ′(Υ±(d))

h′′(d)

)
,

S±3 (d) := (−c̃± ε)χ±ε d
θ k

2(d)h(d)f ′(Υ±(d))

h′′(d)
.

By Lemma 4.2.4, we have

lim
d↘0

S±1 (d) = (−c̃± ε)Heaviside (ζ − θ).

Using (4.63), we deduce

lim
d↘0

k2(d)h(d)f ′(Υ±(d))

h′′(d)
= lim

d↘0

Υ±(d)f ′(Υ±(d))

f(Υ±(d))

k2(d)f(ξ0h(d))

ξ0h′′(d)
= ρ+ 1.

Consequently, we have limd↘0 S±2 (d) = −ρχ±ε and limd↘0 S±3 (d) = 0.

Using Lemmas 4.2.4 and 4.2.6, we get

lim
d↘0

S+(d) = −ε < 0 and lim
d↘0

S−(d) = ε > 0.

From this and (4.65), we conclude Step 4.2.4.

Step 4.2.5. There exists M+, δ+ > 0 such that

ua(x) ≤ u+(x) +M+, ∀x ∈ Ω with 0 < d < δ+.

We only recover (4.51), the rest being similar to the proof of Step 4.2.2 in

Theorem 4.2.1. Indeed, by (4.64), (4.62) and (4.50), we obtain

−∆u∗σ(x) ≥ au+(d− σ, s)− [1 + (c̃− ε)(d− σ)θ]k2(d− σ)f(u+(d− σ, s))

≥ au+(d− σ, s)− [1 + (c̃− ε)dθ]k2(d)f(u+(d− σ, s))

≥ au+(d− σ, s)− b(x)f(u+(d− σ, s))

≥ a(u+(d− σ, s) +M+)− b(x)f(u+(d− σ, s) +M+)

= au∗σ(x)− b(x)f(u∗σ(x)) in Nσ.

Step 4.2.6. There exists M−, δ− > 0 such that

ua(x) ≥ u−(x)−M−, ∀x ∈ Ω with 0 < d < δ−.
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We proceed in the same way as for proving (4.52). To recover (4.54) (with

λ given by (4.53)), we show that ∆v∗σ + av∗σ ≥ b(x)f(v∗σ) in Ωδ2/4. Indeed, using

(4.62), (4.64) and (4.7), we find

∆v∗σ(x) + av∗σ(x) = λ(∆u−(d+ σ, s) + au−(d+ σ, s))

≥ λk2(d+ σ)[1 + (c̃+ ε)(d+ σ)θ]f(u−(d+ σ, s))

≥ k2(d)[1 + (c̃+ ε)dθ]f(λu−(d+ σ, s))

≥ b(x)f(v∗σ(x)), ∀x = (d, s) ∈ Ωδ2/4.

Since limd↘0 k
2(d)f(λ2u−(x))/u−(x) = ∞, there is δ̃ ∈ (0, δ2/4) such that

k2(d)[1 + (c̃+ ε)dθ]f(λ2u−)/u− ≥ λ2|a|, ∀x ∈ Ω with 0 < d ≤ δ̃. (4.66)

By Lemma 4.2.4, we infer that u−(x) decreases with d when d ∈ (0, δ̃) (if neces-

sary, δ̃ > 0 is decreased). Choose δ∗ ∈ (0, δ̃) close enough to δ̃ such that

h(δ∗)(1 + χ−ε δ
$
∗ )

h(δ̃)(1 + χ−ε δ̃
$)

< 1 + λ. (4.67)

Hence, we regain (4.58), (4.59) and (4.61).

By (4.62) and (4.64), we see that (4.57) follows if

k2(d+ σ)[1 + (c̃+ ε)(d+ σ)θ]
[
f(u−(d+ σ, s))− f(zσ(d, s))

]
≥ a(1− λ)u−(δ∗, s), ∀(d, s) ∈ Ωδ∗ .

(4.68)

Using (4.61), together with (4.66) and (4.59), we arrive at (4.68). The remaining

argument of Step 4.2.3 applies here so that the claim of Step 4.2.6 is proved.

By Steps 4.2.5 and 4.2.6, we get
χ+
ε ≥

[
−1 +

ua(x)

ξ0h(d)

]
d−$ − M+

ξ0d$h(d)
, ∀x ∈ Ω with d ∈ (0, δ+)

χ−ε ≤
[
−1 +

ua(x)

ξ0h(d)

]
d−$ +

M−

ξ0d$h(d)
, ∀x ∈ Ω with d ∈ (0, δ−).

Passing to the limit as d→ 0 and using Lemma 4.2.4, we obtain

χ−ε ≤ lim inf
d→0

[
−1 +

ua(x)

ξ0h(d)

]
d−$ ≤ lim sup

d→0

[
−1 +

ua(x)

ξ0h(d)

]
d−$ ≤ χ+

ε .

Letting ε→ 0, we conclude the proof of Theorem 4.2.2.
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4.2.6.2 Proof of Theorem 4.2.3

Let ua denote the unique large solution of (4.6) corresponding to a < λ∞,1.

Fix ε ∈ (0, 1/2) and choose δ > 0 small as in §4.2.6.1.

Set χ±ε = χ̃± ε and define

u±(x) = ξ0h(d)
[
1 + χ±ε (− ln d)−τ

]
for x ∈ Ω with d ∈ (0, δ).

We can assume u±(x) > 0 for every x ∈ Ω with d(x) ∈ (0, δ).

By the Lagrange mean value theorem, we obtain

f(u±(x)) = f(ξ0h(d)) + ξ0χ
±
ε

h(d)

(− ln d)τ
f ′(Ψ±(d)),

where Ψ±(d) = ξ0h(d) [1 + χ±ε λ
±(d)(− ln d)−τ ] , for some λ±(d) ∈ [0, 1].

Since f(u)/uρ+1 is slowly varying, by Proposition 4.1.1 we find

lim
d↘0

f(Ψ±(d))

f(ξ0h(d))
= lim

d↘0

f(u±(d))

f(ξ0h(d))
= 1. (4.69)

Step 4.2.7. There exists δ1 ∈ (0, δ) so that{
∆u+ + au+ − k2(d)[1 + (c̃− ε)dθ]f(u+) ≤ 0, ∀x ∈ Ω with d < δ1,

∆u− + au− − k2(d)[1 + (c̃+ ε)dθ]f(u−) ≥ 0, ∀x ∈ Ω with d < δ1.
(4.70)

For every x ∈ Ω with d ∈ (0, δ), we have

∆u± + au± − k2(d)
[
1 + (c̃∓ ε)dθ

]
f(u±) = ξ0

h′′(d)

(− ln d)τ
J±(d) (4.71)

where we denote

J±(d) =

[
(−c̃± ε)dθ(− ln d)τ

k2(d)f(ξ0h(d))

ξ0h′′(d)
+ a

h(d)

h′′(d)

(
χ±ε + (− ln d)τ

)
+

τχ±ε h(d)

d2h′′(d) ln d

(
1 +

τ + 1

ln d
− d∆d

)
+

h′(d)

dh′′(d)

(
d(− ln d)τ∆d− 2τχ±ε

ln d

)
+(−c̃± ε)χ±ε d

θ k
2(d)h(d)f ′(Ψ±(d))

h′′(d)
+ χ±ε ∆d

h′(d)

h′′(d)
+ H(d) + J±1 (d)

]
.

Here H is defined by (4.28), while

J±1 (d) := χ±ε

(
1− k2(d)h(d)f ′(Ψ±(d))

h′′(d)

)
.
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By Lemma 4.2.4 and (4.69), we infer that

lim
d↘0

k2(d)h(d)f ′(Ψ±(d))

h′′(d)
= lim

d↘0

Ψ±(d)f ′(Ψ±(d))

f(Ψ±(d))

k2(d)f(ξ0h(d))

ξ0h′′(d)
= ρ+ 1.

This implies that

lim
d↘0

J±1 (d) = −ρχ±ε := −ρ(χ̃± ε).

By Lemmas 4.2.4 and 4.2.7, we get limd↘0 J+(d) = −ρε < 0 and limd↘0 J−(d) =

ρε > 0. Therefore, by (4.71) we conclude (4.70).

Step 4.2.8. There exists M+, δ+ > 0 such that

ua(x) ≤ u+(x) +M+, ∀x ∈ Ω with 0 < d < δ+.

The claim follows in the same way as for Step 4.2.5 of Theorem 4.2.2.

Step 4.2.9. There exists M−, δ− > 0 such that

ua(x) ≥ u−(x)−M−, ∀x ∈ Ω with 0 < d < δ−.

The proof goes exactly as in Step 4.2.6, except that δ∗ ∈ (0, δ̃) is chosen

sufficiently close to δ̃ such that

h(δ∗)(1 + χ−ε (− ln δ∗)
−τ )

h(δ̃)(1 + χ−ε (− ln δ̃)−τ )
< 1 + λ. (4.72)

The reasoning for Step 4.2.6 applies now with (4.72) instead of (4.67).

By Steps 4.2.8 and 4.2.9, it follows that
χ+
ε ≥

[
−1 +

ua(x)

ξ0h(d)

]
(− ln d)τ − M+(− ln d)τ

ξ0h(d)
, ∀x ∈ Ω with d < δ+

χ−ε ≤
[
−1 +

ua(x)

ξ0h(d)

]
(− ln d)τ +

M−(− ln d)τ

ξ0h(d)
, ∀x ∈ Ω with d < δ−.

(4.73)

Using Lemma 4.2.4, we have

lim
t↘0

(− ln t)τ

h(t)
= lim

t↘0

(
− ln t

lnh(t)

)τ
(lnh(t))τ

h(t)
=

(
ρ`1
2

)τ
lim
u→∞

(lnu)τ

u
= 0.

Passing to the limit d↘ 0 in (4.73), we obtain
lim inf
d↘0

[
−1 +

ua(x)

ξ0h(d)

]
(− ln d)τ ≥ χ−ε := χ̃− ε

lim sup
d↘0

[
−1 +

ua(x)

ξ0h(d)

]
(− ln d)τ ≤ χ+

ε := χ̃+ ε.

By sending ε to 0, the proof of Theorem 4.2.3 is finished.
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4.3 Degenerate Mixed Boundary Value Prob-

lems

4.3.1 Introduction

Let Ω ⊂ RN (N ≥ 3) be a smooth bounded domain. As in §3.3, B denotes

either the Dirichlet boundary operator Du := u or the Neumann/Robin boundary

operator Ru = ∂u
∂ν

+ β(x)u, where ν is the outward unit normal to ∂Ω and β ≥ 0

is in C1,µ(∂Ω) with µ ∈ (0, 1).

We are here concerned with the uniqueness of the large solutions for the de-

generate boundary value problem (3.42) considered in §3.3, namely{
∆u+ au = b(x)f(u) in Ω \D0,

Bu = 0 on ∂Ω.
(4.74)

Recall that non-negative C2(Ω \D0)-solutions of (4.74) that satisfy

u(x) →∞ as x ∈ Ω \D0 and d(x) := dist (x,D0) → 0

are referred to as large solutions of (4.74).

For the reader’s convenience, we restate the assumptions on b made in §3.3.1.

Let b ∈ C0,µ(Ω) satisfy b ≥ 0, b 6≡ 0 in Ω. Set Ω0,b := {x ∈ Ω : b(x) = 0}.
We assume that Ω0,b = D0∪D1, where D0 6= ∅ is a closed set such that Ω\D0

is connected with smooth boundary, and D1 ⊂⊂ Ω \D0 is a connected set.

Suppose that b > 0 on ∂Ω if B = R and ∂D1 satisfies the exterior cone

condition (possibly, D1 = ∅). Let λ∞,1(D1) be the first Dirichlet eigenvalue of

(−∆) in H1
0 (D1). Set λ∞,1(D1) = ∞ if D1 = ∅.

The purpose of this section is to show that the main results of §4.2 that apply

to (4.6) remain, in fact, valid for the problem (4.74).

We only illustrate this point by giving the result that corresponds to The-

orem 4.2.1. In §4.3.2 we assert that if f ∈ RVρ+1 (ρ > 0) satisfies (4.7) and

(4.9) holds with d(x) := dist (x,D0), then (4.74) has a unique large solution for

any a < λ∞,1(D1) (see Theorem 4.3.1). The blow-up rate and variation speed of

the large solution are also provided. The proof of Theorem 4.3.1 is presented in

§4.3.3. Since the asymptotic behavior of the large solution near the boundary is
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found using a local argument, one can easily formulate Theorems 4.2.2 and 4.2.3

for (4.74) instead of (4.6).

4.3.2 Uniqueness of the Large Solution

The main result of section 4.3 is the following (see Theorem 1.3 in Ĉırstea and

Rădulescu (2004) when f ′ ∈ RVρ).

Theorem 4.3.1. Let (4.7) hold and f ∈ RVρ+1 (ρ > 0). Assume that there exists

k ∈ K such that

lim
d(x)→0

b(x)

k2(d)
= 1, where d(x) := dist (x,D0). (4.75)

Then, for any a < λ∞,1(D1), (4.74) has a unique large solution ua. Moreover,

lim
d(x)→0

ua(x)

h(d(x))
= ξ0, (4.76)

where ξ0 =
(

2+`1ρ
2+ρ

)1/ρ

and h is given by (4.13).

If `1 6= 0, then h(1/u) ∈ RV2/(ρ`1), i.e., there exists L(u) ∈ RV0, such that

lim
d(x)↘0

ua(x)[d(x)]
2

ρ`1L(1/d(x)) = 1, ∀a < λ∞,1(D1). (4.77)

If `1 = 0, then h(1/u) is Γ-varying at u = ∞ with auxiliary function

g(u) =
ρu2

∫ 1/u

0
k(s) ds

2k(1/u)
.

If, in addition, u(
∫ 1/u

0
k(s) ds)/k(1/u) ∈ RVj (j ≤ 0), then there exists T ∈

RV−2/ρ and R ∈ RV−j such that

lim
d(x)↘0

ua(x)T (eR(1/d(x))) = 1, ∀a < λ∞,1(D1). (4.78)

Remark 4.3.1. Note that k ∈ K0 satisfies u(
∫ 1/u

0
k(s) ds)/k(1/u) ∈ RVj (j ≤ 0),

if and only if k is of the form

k(t) =
d0

tW(t)
exp

{
−
∫ d1

t

dx

xW(x)

}
, (0 < t < d1),

where d0, d1 are positive constants, while W is a positive C1-function on (0, d1)

such that (4.38) holds and W(1/u) ∈ RVj (cf. Proposition 4.2.10). Moreover, if

W(1/u) ∈ NRVj with j < 0, then (4.38) is automatically fulfilled.

124



4.3 Degenerate Mixed Boundary Value Problems

4.3.3 Proof of Theorem 4.3.1

By Theorem 3.3.1, (4.74) admits large solutions if and only if a < λ∞,1(D1).

We now prove that (4.76) holds for any large solution of (4.74).

Fix ε ∈ (0, 1/2). Let δ > 0 be small such that

(i) dist (x, ∂D0) is a C2-function on {x ∈ Ω \D0 : dist (x, ∂D0) < 2δ};

(ii) k is non-decreasing on (0, 2δ);

(iii) b(x)/k2(d(x)) ∈ (1− ε, 1 + ε), for each x ∈ Ω with d(x) ∈ (0, 2δ);

(iv) h′′(t) > 0, for each t ∈ (0, 2δ) (see Lemma 4.2.4).

Let σ ∈ (0, δ) be arbitrary. Set ξ± =
[

2+`1ρ
(1∓2ε)(2+ρ)

]1/ρ
and define{

v+
σ (x) = ξ+h(d(x)− σ), ∀x with d(x) ∈ (σ, 2δ)

v−σ (x) = ξ−h(d(x) + σ), ∀x with d(x) + σ < 2δ.

As in §4.2.5.1, we can diminish δ > 0 such that{
∆v+

σ + av+
σ − b(x)f(v+

σ ) ≤ 0, ∀x ∈ Ω \D0 with σ < d(x) < 2δ

∆v−σ + av−σ − b(x)f(v−σ ) ≥ 0, ∀x ∈ Ω \D0 with d(x) + σ < 2δ.

Define Ωδ = {x ∈ Ω : d(x) < δ}. Let ω ⊂⊂ D0 be such that a is less than

the first Dirichlet eigenvalue of (−∆) in the smooth domain D̃ := int (D0 \ ω).

Let p ∈ C0,µ(Ωδ) satisfy 0 < p ≤ b on Ωδ \D0, p ≡ 0 on D0 \ ω and p > 0 in

ω. By Theorem 3.1.1, there exists a large solution of ∆w+aw = p(x)f(w) in Ωδ.

Let ua be an arbitrary large solution of (4.74). Then v := ua + w satisfies

∆v + av− b(x)f(v) ≤ 0 in Ωδ \D0. Lemma 3.3.3 yields ua +w ≥ v−σ on Ωδ \D0.

Similarly, v+
σ + w ≥ ua on Ωδ \ Ωσ. Letting σ → 0, we find

h(d)ξ+ + 2w ≥ ua + w ≥ h(d)ξ− on Ωδ \D0.

It follows that

ξ− ≤ lim inf
d(x)↘0

ua(x)

h(d(x))
≤ lim sup

d(x)↘0

ua(x)

h(d(x))
≤ ξ+.

Letting ε→ 0, we reach (4.76).
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4.3 Degenerate Mixed Boundary Value Problems

Let u1 and u2 be two arbitrary large solutions of (4.74). For any ε > 0, define

ũi = (1 + ε)ui, i = 1, 2. Using (4.76), we get

lim
d(x)↘0

u1(x)− ũ2(x)

h(d(x))
= lim

d(x)↘0

u2(x)− ũ1(x))

h(d(x))
= −εξ0,

which implies that limd(x)↘0[u1(x) − ũ2(x)] = limd(x)↘0[u2(x) − ũ1(x)] = −∞.

Using (4.7), we find ∆ũi ≤ b(x)f(ũi) − aũi on Ω \D0. Since Bũi = Bui = 0 on

∂Ω, by Lemma 3.3.3 we deduce u1 ≤ ũ2 on Ω\D0 and u2 ≤ ũ1 on Ω\D0. Letting

ε→ 0, we conclude the uniqueness of the large solution of (4.74).

By Remark 4.2.8, it only remains to prove (4.78) provided that k ∈ K0 satisfies

u(
∫ 1/u

0
k(s) ds)/k(1/u) ∈ RVj (j ≤ 0).

Define U1(u) = 1/
∫∞
u

[2F (s)]−1/2 ds for u > 0 and U2(u) = 1/
∫ 1/u

0
k(s) ds, for

u > 0 sufficiently large. We see that U1 : (0,∞) → (0,∞) is a C1-increasing and

bijective function. Thus, for each y > 0, U←1 (y) = inf{s : U1(s) ≥ y} coincides

with the inverse function of U1 at y. Hence, h(1/u) = U←1 (U2(u)) for u > 0 large

enough. Clearly, limu→∞ U1(u) = limu→∞ U2(u) = ∞ and U1(u) ∈ RVρ/2. Thus,

U←1 ∈ RV2/ρ, cf. Proposition 4.1.6.

Since W(1/u) = u(
∫ 1/u

0
k(s) ds)/k(1/u) ∈ RVj, we obtain R(u) := lnU2(u) ∈

RV−j. We let T (u) = 1/[ξ0U
←
1 (u)] for u > 0, which concludes (4.78).
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Chapter 5

Further Uniqueness Results on
Logistic-type Equations
“Real success is finding your lifework in the work that you love.” (David
McCullough)

In Chapter 4 we established the uniqueness and asymptotics of the large solutions

for elliptic problems such as (3.1) with either complete boundary blow-up or

mixed boundary conditions; the analysis applies when the variation of f at infinity

is regular of index greater than 1 and the decay rate of b is expressed in terms of

a ratio whose limit near the boundary is finite.

The objective of Chapter 5 is to relax the vanishing condition imposed on b

near the boundary by allowing the above ratio to be bounded and bounded away

from zero. This question will be treated for nonlinearities of f(u) whose variation

at infinity is regular (as in Chapter 4, see §5.2) as well as rapid (see §5.3).

The feature of §5.2 is to prove the uniqueness of the large solution without

determining precisely its blow-up rate. The argument, which refines that of Chap-

ter 4, relies as a novelty on local blow-up estimates jointly with a modified version

of Safonov’s iteration technique. The uniqueness of the large solution when the

variation of f(u) becomes rapid, thus loosing its regular character, is examined

in §5.3. In contrast to §5.2, the asymptotic behavior of any large solution can be

described using a different approach based on de Haan theory that extends regu-

lar variation theory. The variation speed of the large solution is demonstrated to

slow down significantly when the variation of f(u) changes from regular to rapid.
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5.1 Introduction

5.1 Introduction

Let Ω ⊂ RN (N ≥ 2) be a smooth bounded domain and Γ∞ be a non-empty

open and closed subset of ∂Ω (possibly, Γ∞ = ∂Ω). Set ΓB := ∂Ω \ Γ∞ when

Γ∞ 6= ∂Ω. We denote by B either the Dirichlet boundary operator Du = u or

the Neumann/Robin boundary operator Ru = ∂u
∂ν

+β(x)u. Here ν is the outward

unit normal to ∂Ω and β ≥ 0 is in C1,µ(∂Ω), 0 < µ < 1.

We are interested in the uniqueness and asymptotic behavior of the large

solutions to the equation

−∆u = au− b(x)f(u) in Ω, (5.1)

if Γ∞ = ∂Ω, and to the boundary value problem{
−∆u = au− b(x)f(u) in Ω,

Bu = 0 on ΓB,
(5.2)

if Γ∞ 6= ∂Ω, where f ∈ C[0,∞) is locally Lipschitz, a ∈ R is a parameter and

b ∈ C0,µ(Ω) is non-negative.

A C2(Ω)-solution of (5.1) and C2(Ω ∪ ΓB)-solution of (5.2), respectively sat-

isfying u(x) ≥ 0 in Ω and u(x) →∞ as dist (x,Γ∞) → 0 is called a large solution

of (5.1) and (5.2), respectively.

Set Ω0,b := {x ∈ Ω : b(x) = 0} and denote by Ω0 the interior of Ω0,b.

We assume, throughout this chapter, that ∂Ω0 satisfies the exterior cone con-

dition (possibly, Ω0 = ∅), Ω0 is connected, Ω0 ⊂ Ω and b > 0 on Ω \ Ω0. If

Γ∞ 6= ∂Ω, then we require b > 0 on ΓB if B = R. Note that we allow b ≥ 0 on

Γ∞ as well as on ΓB when B = D.

Let λ∞,1 be the first Dirichlet eigenvalue of (−∆) in Ω0 (λ∞,1 = ∞ if Ω0 = ∅).
Assume that f satisfies

f ≥ 0 is locally Lipschitz continuous and f(u)/u is increasing on (0,∞). (5.3)

Then, necessarily f(0) = 0, and by the strong maximum principle, any non-

negative classical solution of (5.1) or (5.2) is positive in Ω unless it is identically

zero. Consequently, any large solution of (5.1) or (5.2) is positive.

128



5.2 Case I: Regularly Varying Nonlinearities

By using an iteration technique due to Safonov, Du (2004) shows that for the

special case f(u) = up (p > 1), (5.1) or (5.2) (when B = D) has a unique large

solution provided that, for some constant α ≥ 0,

0 < lim inf
d(x,Γ∞)→0

b(x)

d(x,Γ∞)α
and lim sup

d(x,Γ∞)→0

b(x)

d(x,Γ∞)α
<∞. (5.4)

The main purpose of this chapter is two-fold: to establish the uniqueness and

blow-up rate of the large solution of (5.1) and (5.2) for a more general version of

(5.4) assuming that

(a) f varies regularly at infinity of index greater than 1 (in §5.2) (thus covered

by Karamata’s theory), in the spirit of Chapter 4;

(b) f varies rapidly (at infinity) with index ∞ (in §5.3), that is

lim
u→∞

f(λu)

f(u)
=


∞, if λ > 1

1, if λ = 1

0, if 0 < λ < 1.

To achieve these aims we need techniques beyond those of Chapter 4. The

approach we put forward will deepen the interplay between the blow-up topic

in PDEs and the extensions of regular variation theory in applied probability

(Resnick (1987)).

5.2 Case I: Regularly Varying Nonlinearities

5.2.1 Main Results

As in §4.2, K comprises all positive, non-decreasing C1-functions k defined on

(0, ν), for some ν > 0, which satisfy

lim
t→0+

∫ t
0
k(s) ds

k(t)
= `0 and lim

t→0+

(∫ t
0
k(s) ds

k(t)

)′
= `1.

Our first result shows that the uniqueness assertion of Theorems 4.2.1 and

4.3.1 is valid when the assumptions on b are weakened. More precisely, we have

(see Theorem 1.1 in Ĉırstea and Du (2005)).
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5.2 Case I: Regularly Varying Nonlinearities

Theorem 5.2.1. Let (5.3) hold and f ∈ RVρ+1 with ρ > 0. Assume that for each

connected open and closed subset, say Γc∞, of Γ∞ there exists k ∈ K such that

0 < lim inf
d(x)→0

b(x)

k2(d(x))
and lim sup

d(x)→0

b(x)

k2(d(x))
<∞, where d(x) := d(x,Γc∞), (5.5)

then (5.1) (resp., (5.2)) has a unique large solution for any a < λ∞,1.

Remark 5.2.1. We note that this result improves Theorem 3.2 in Du (2004), where

f(u) = uρ+1, b > 0 on Ω \ Γ∞, Bu = u on ΓB and k(t) = tα, α ≥ 0.

Next we provide the blow-up rate of ua when (5.5) is replaced by (5.6) below

(cf. Theorem 1.2 in Ĉırstea and Du (2005)).

Theorem 5.2.2. Let (5.3) hold and f ∈ RVρ+1, for some ρ > 0. Suppose that

for each connected open and closed subset Γc∞ of Γ∞ there exists k ∈ K and a

positive continuous function c(x) on Γ∞ such that

lim
x→y∈Γc

∞

b(x)

k2(d(x))
= c(y), uniformly for y ∈ Γc∞ (where d(x) = d(x,Γc∞)). (5.6)

Suppose that a ∈ (−∞, λ∞,1). Then the blow-up rate of the unique blow-up solu-

tion ua of problem (5.1) (resp., (5.2)) is given by

lim
x→y∈Γc

∞

ua(x)

Ψ(d(x))
=

(
2 + ρ`1
2c(y)

) 1
ρ

, uniformly for y ∈ Γc∞ (5.7)

where Ψ is uniquely determined by∫ ∞
Ψ(t)

dy√
yf(y)

=

∫ t

0

k(s) ds, ∀t ∈ (0, τ), for τ > 0 small enough. (5.8)

The behavior of Ψ(t) for small t > 0 will be described in §5.2.2. In particular,

if k has corresponding `1 6= 0, then Ψ(1/u) is a function in RV2/(ρ`1).

Remark 5.2.2. If f(u) = up (p > 1), then we get Ψ(t) =
(
p−1
2

∫ t
0
k(s) ds

)2/(1−p)
.

Remark 5.2.3. If we see c ∈ C(Γ∞) as extended by continuity to a positive

function on Ω, then (5.6) and (5.7) are equivalent to, respectively,

lim
d(x,Γc

∞)→0

b(x)

c(x)k2(d(x))
= 1, (5.9)

and

lim
d(x,Γc

∞)→0

ua(x)

Ψ(d(x))[c(x)]−1/ρ
=

(
2 + ρ`1

2

)1/ρ

. (5.10)
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5.2 Case I: Regularly Varying Nonlinearities

Remark 5.2.4. Theorem 5.2.2 improves Theorems 4.2.1 and 4.3.1, where the pos-

itive function c(y) in (5.6) and (5.7) is required to be a positive constant.

The blow-up rate is local in nature. We demonstrate this point by considering

the positive solutions to the problem{
−∆u = au− b(x)f(u) in Ω ∩ B,

u = ∞ on Γ∞ ∩ B,
(5.11)

where B denotes an open ball in RN such that Γ∞ ∩ B 6= ∅.

The following results (see Theorems 1.3 and 1.4 in Ĉırstea and Du (2005))

will also be used in the proof of Theorem 5.2.1.

Theorem 5.2.3. Let (5.3) hold and f ∈ RVρ+1 (ρ > 0). Suppose that x∗ ∈ Γ∞∩B
and there exists k ∈ K such that

lim sup
x→x∗, x∈Ω

b(x)

k2(d(x,Γ∞))
≤ c∗, for some constant c∗ > 0. (5.12)

Then, any positive solution U of (5.11) satisfies

lim inf
x→x∗, x∈Ω

U(x)

Ψ(d(x,Γ∞))
≥
(

2 + ρ`1
2c∗

) 1
ρ

, (5.13)

where Ψ is given by (5.8).

Theorem 5.2.4. Let (5.3) hold and f ∈ RVρ+1 (ρ > 0). Suppose that x∗ ∈ Γ∞∩B
and there exists k ∈ K such that

lim inf
x→x∗, x∈Ω

b(x)

k2(d(x,Γ∞))
≥ d∗, for some constant d∗ > 0, (5.14)

then, any positive solution U of (5.11) satisfies

lim sup
x→x∗, x∈Ω

U(x)

Ψ(d(x,Γ∞))
≤
(

2 + ρ`1
2d∗

) 1
ρ

, (5.15)

with Ψ given by (5.8).
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5.2 Case I: Regularly Varying Nonlinearities

Corollary 5.2.5. Let (5.3) hold and f ∈ RVρ+1 (ρ > 0). Suppose that x∗ ∈ Γ∞∩B
and there exists k ∈ K such that

lim
x→x∗, x∈Ω

b(x)

k2(d(x,Γ∞))
= c∗, for some constant c∗ > 0, (5.16)

then any positive solution of (5.11) satisfies

lim
x→x∗, x∈Ω

u(x)

Ψ(d(x,Γ∞))
=

(
2 + ρ`1

2c∗

) 1
ρ

, (5.17)

where Ψ is given by (5.8).

Remark 5.2.5. The above local estimates improve the corresponding ones in Du

(2004) even for the special function classes considered there. In Du (2004) (moti-

vated by López-Gómez (2003)) for the particular case f(u) = uρ+1 and k(t) = tα,

it is proved that the limits in (5.13) and (5.15) hold under the extra restriction

x ∈ Cx∗,ω = {x ∈ Ω : angle(x− x∗,−nx∗) ≤ π/2− ω}, ∀ω ∈ (0, π/2), (5.18)

where nx∗ is the outward unit normal of ∂Ω at x∗.

The rest of §5.2 is organized as follows. In §5.2.2, we describe the behavior of

the function Ψ(t) used in our main results. The proof of Theorem 5.2.2 is given in

§5.2.3. By invoking Theorem 5.2.2, we prove Theorems 5.2.3 and 5.2.4 in §5.2.4

and §5.2.5, respectively. In §5.2.6 we provide the proof of Theorem 5.2.1, where

Theorems 5.2.2–5.2.4 and a variant of Safonov’s iteration technique are employed.

5.2.2 A Preliminary Result

The following result (see Proposition 2.8 in Ĉırstea and Du (2005)) comprises the

properties of the function Ψ that plays an important role in our main results. We

deduce these properties by invoking regular variation theory (see §4.1).

Proposition 5.2.6 (Properties of Ψ). Suppose that f ∈ RVρ+1 (ρ > 0) is

continuous and k ∈ K, then the function Ψ = Ψf , given by (5.8), is well defined.

Moreover, Ψ ∈ C1(0, τ) satisfies limt→0+ Ψ(t) = ∞ and
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5.2 Case I: Regularly Varying Nonlinearities

(i) Ψ(1/u) belongs to RV2/(ρ`1) if `1 6= 0; if `1 = 0, then Ψ(1/u) is Γ-varying at

u = ∞ with auxiliary function χ(u) = ρuW(1/u)/2, where

W(1/u) =
u
∫ 1/u

0
k(s) ds

k(1/u)
;

(ii) lim
t→0+

Ψf (t)

Ψg(t)
= 1 if lim

u→∞

g(u)

f(u)
= 1;

(iii) lim
t→0+

Ψ(t)

Ψ′(t)
= 0;

(iv) lim
t→0+

f(Ψ(t))

Ψ(t)

(∫ t

0

k(s) ds

)2

=
4

ρ2
;

(v) lim
t→0+

t2k2(t)f(Ψ(t))

Ψ(t)
=

4

`21ρ
2

if `1 6= 0.

If we assume further that f ∈ NRVρ+1, then Ψ is C2 and

(vi) lim
t→0+

Ψ′(t)

Ψ′′(t)
= lim

t→0+

Ψ(t)

Ψ′′(t)
= 0;

(vii) lim
t→0+

Ψ′′(t)

k2(t)f(Ψ(t))
= lim

t→0+

Ψ′′(t)Ψ(t)

[Ψ′(t)]2
= 1 +

ρ`1
2

.

Proof. Since f ∈ RVρ+1, we see that limz→∞ z
1+r/

√
zf(z) = 0, for any r ∈

(0, ρ/2). This shows that, for some D1 > 0,

ς(x) :=

∫ ∞
x

dy√
yf(y)

<∞, ∀x > D1. (5.19)

Obviously, ς : (D1,∞) → (0, ς(D1)) is bijective and limt→0+

∫ t
0
k(s) ds = 0.

Hence, we can define Ψ(t) = ς−1(
∫ t

0
k(s) ds), for t ∈ (0, τ) if τ > 0 is chosen

small enough (ς−1 denotes the inverse of ς). Notice that limt→0+ Ψ(t) = ∞. The

fact that Ψ is C1 follows by direct differentiation (see below).

We define U1(u) = 1/ς(u) for u > D1, with ς given by (5.19). Set U1(u) =

U1(D1), ∀u ≤ D1. Obviously, U1 is increasing on (D1,∞) and, for each y >

U1(D1), U
←
1 (y) := inf {s : U1(s) ≥ y} coincides with the inverse of U1 at y.

Set U2(u) = 1/
∫ 1/u

0
k(s) ds for u ≥ 1/τ , where τ > 0 is chosen small enough

such that U2(1/τ) > U1(D1). Hence, Ψ(1/u) = U←1 (U2(u)) for u > 1/τ . Clearly,
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5.2 Case I: Regularly Varying Nonlinearities

limu→∞ U1(u) = limu→∞ U2(u) = ∞. Moreover, since f ∈ RVρ+1, [uf(u)]−1/2

belongs to RV−(1+ρ/2). By Proposition 4.1.4, ς(u) and u[uf(u)]−1/2 are regularly

varying functions with the same index −ρ/2. Therefore U1(u) ∈ RVρ/2.
Suppose that `1 6= 0. By Proposition 4.2.8, k(1/u) belongs to RV(`1−1)/`1 .

Thus, by Proposition 4.1.4, we deduce U2 ∈ RV1/`1 . Using Proposition 4.1.6, we

find U←1 ∈ RV2/ρ and U←1 ◦ U2 ∈ RV2/(ρ`1). Hence, Ψ(1/u) is in RV2/(ρ`1).

Assume that `1 = 0. Then, from Remark 4.2.8, U2(u) is Γ-varying at u = ∞

with auxiliary function uW(1/u) :=
u2
∫ 1/u

0
k(s) ds

k(1/u)
. Since U←1 (u) is monotone

at infinity and U←1 ∈ RV2/ρ, it follows that Ψ(1/u) is Γ-varying at u = ∞ with

auxiliary function ρuW(1/u)/2 (see (Resnick, 1987, p. 36)). This proves (i).

Suppose that g(u)/f(u) → 1 as u → ∞. Then g ∈ RVρ+1 and, for any given

small ε > 0, we can find small t0 > 0 such that

f [(1 + ε)y]/f(y) > (1 + ε)1+ρ/2, g(y) < (1 + ε)ρ/2f(y), ∀y > Ψg(t), ∀t ∈ (0, t0).

It follows that, for t ∈ (0, t0),∫ ∞
Ψf (t)

dy√
yf(y)

=

∫ ∞
Ψg(t)

dy√
yg(y)

>

∫ ∞
Ψg(t)

dy√
y(1 + ε)ρ/2f(y)

>

∫ ∞
Ψg(t)

dy√
y(1 + ε)−1f [(1 + ε)y]

=

∫ ∞
(1+ε)Ψg(t)

dz√
zf(z)

.

This implies that

Ψf (t) < (1 + ε)Ψg(t), ∀t ∈ (0, t0).

Similarly, we can show that there exists t1 > 0 such that

Ψg(t) < (1 + ε)Ψf (t), ∀t ∈ (0, t1).

Therefore, limt→0+ Ψg(t)/Ψf (t) = 1, which proves (ii).

By Proposition 4.1.4, we obtain

lim
u→∞

√
u√
f(u)

1∫∞
u

dy√
yf(y)

=
ρ

2

which, together with (5.8), yields

lim
t→0+

√
Ψ(t)√

f(Ψ(t))

1∫ t
0
k(s) ds

=
ρ

2
. (5.20)
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5.2 Case I: Regularly Varying Nonlinearities

Thus (iv) follows.

By differentiating (5.8), we find

Ψ′(t) = −k(t)
√

Ψ(t)
√
f(Ψ(t)), ∀t ∈ (0, τ). (5.21)

Hence, by (5.20) and (5.21)

lim
t→0+

Ψ(t)

Ψ′(t)
= − lim

t→0+

√
Ψ(t)

k(t)
√
f(Ψ(t))

= −ρ
2

lim
t→0+

∫ t
0
k(s) ds

k(t)
= 0. (5.22)

This proves (iii).

If `1 6= 0, then by (iv), we have

lim
t→0+

t2k2(t)f(Ψ(t))

Ψ(t)
= lim

t→0+

k2(t)t2(∫ t
0
k(s) ds

)2

(∫ t
0
k(s) ds

)2

f(Ψ(t))

Ψ(t)
=

4

ρ2`21
,

which proves (v).

We now assume that f ∈ NRVρ+1. This implies that

lim
t→0+

Ψ(t)f ′(Ψ(t))

f(Ψ(t))
= ρ+ 1.

By differentiating (5.21), we deduce

Ψ′′(t) = −k′(t)
√

Ψ(t)f(Ψ(t)) +
k2(t)

2
f(Ψ(t)) +

k2(t)

2
Ψ(t)f ′(Ψ(t))

= k2(t)f(Ψ(t))

[
− k

′(t)

k2(t)

√
Ψ(t)√

f(Ψ(t))
+

1

2
+

Ψ(t)f ′(Ψ(t))

2f(Ψ(t))

]
.

By (5.20), we obtain

lim
t→0+

k′(t)

k2(t)

√
Ψ(t)√

f(Ψ(t))
=
ρ

2
lim
t→0+

k′(t)

k2(t)

(∫ t

0

k(s) ds

)
=
ρ(1− `1)

2
.

Hence, in view of (5.21), we have

lim
t→0+

Ψ′′(t)

k2(t)f(Ψ(t))
= lim

t→0+

Ψ′′(t)Ψ(t)

[Ψ′(t)]2
= 1 +

ρ`1
2
,

and we conclude (vii).
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Using (vii) and (5.22), we infer that

lim
t→0+

Ψ′(t)

Ψ′′(t)
=

2

2 + ρ`1
lim
t→0+

Ψ(t)

Ψ′(t)
= 0. (5.23)

By (5.22) and (5.23), it follows that limt→0+ Ψ(t)/Ψ′′(t) = 0. This concludes (vi).

The proof of Proposition 5.2.6 is now complete.

Remark 5.2.6. Suppose that g and Ψg are as in (ii) of Proposition 5.2.6. Then,

Ψg(1/u) and Ψf (1/u) belong to RV2/(ρ`1) when `1 6= 0. If `1 = 0, then from con-

clusion (ii) and the definition of Γ-varying functions, both Ψg(1/u) and Ψf (1/u)

are Γ-varying at u = ∞ with the same auxiliary function χ(u) =
ρu2

∫ 1/u

0
k(s) ds

2k(1/u)
.

5.2.3 Proof of Theorem 5.2.2

5.2.3.1 A Comparison Principle

We start by recalling a comparison principle, which plays an important role in

the proof of Theorem 5.2.2, and will also be used in later sections.

Proposition 5.2.7. Let f be continuous on (0,∞) such that f(u)/u is increasing

for u > 0. Let 0 6≡ p ∈ C(Ω \ Γ∞) be a non-negative function. Assume that

u1, u2 ∈ C2(Ω \ Γ∞) are positive such that lim sup
d(x,Γ∞)→0

(u2 − u1)(x) ≤ 0

−∆u1 − au1 + p(x)f(u1) ≥ 0 ≥ −∆u2 − au2 + p(x)f(u2) in Ω.

When Γ∞ 6= ∂Ω, then we suppose, in addition, that

either Bu1 ≥ Bu2 on ΓB if B = D or Bu1 ≥ 0 ≥ Bu2 on ΓB if B = R,

then we have u1 ≥ u2 on Ω \ Γ∞.

Proof. When Γ∞ = ∂Ω, then Proposition 5.2.7 reduces to Lemma 3.3.2 (see also

Du and Guo (2003) for the version corresponding to the p-Laplacian). The proof

of Proposition 5.2.7 when Γ∞ 6= ∂Ω follows exactly as in Lemma 3.3.3.

Note that this proposition also follows from Lemma 2.3 in Du and Li (2002),

since by the maximum principle, u1 and u2 being positive and satisfying the

differential inequalities imply that a < λ∞,1.
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5.2.3.2 Preparation

From f ∈ RVρ+1 (ρ > 0) we find limu→∞ f(u)/uq = ∞, for every q ∈ (1, ρ + 1).

Hence f satisfies the Keller–Osserman condition (3.6).

By Theorem 3.1.1 if Γ∞ = ∂Ω or Theorem 3.3.1 if Γ∞ 6= ∂Ω, we conclude

that (5.1) (resp., (5.2)) possesses large solutions if and only if a < λ∞,1.

We fix a < λ∞,1. Let Γc∞ be an arbitrary connected open and closed subset of

Γ∞. In what follows we denote d(x) = d(x,Γc∞).

By the Dugunji extension theorem, we may assume that c(x) is a positive

continuous function on Ω. Given any small ε ∈ (0,minΩ c/4) we can find a

smooth function on Ω, say c̃(x), such that

|c̃(x)− c(x)| < ε/2, ∀x ∈ Ω. (5.24)

In view of (5.6), there exists δ0 = δ0(ε), which is independent of y, so that

c(y)− ε

2
<

b(x)

k2(d(x))
< c(y) +

ε

2
, ∀x ∈ Ω with |x− y| < δ0,∀y ∈ Γc∞. (5.25)

Since c ∈ C(Ω) is uniformly continuous, there exists δ ∈ (0, δ0/2) such that

|c(y)− c(x)| < ε/2, ∀x, y ∈ Ω with |x− y| < 2δ. (5.26)

Therefore,

c(x)− ε <
b(x)

k2(d(x))
< c(x) + ε, ∀x ∈ Ω with d(x) < 2δ. (5.27)

In what follows we will need properties (vi) and (vii) for Ψ in Proposition 5.2.6,

yet we only have f ∈ RVρ+1. To overcome this difficulty, we choose g ∈ NRVρ+1

such that g(u)/f(u) → 1 as u→∞; such g always exists (see Remark 4.1.2). We

then replace Ψf by Ψg and still denote it by Ψ. By Remark 5.2.6 and conclusion

(ii) in Proposition 5.2.6, we know that this does not change the validity of the

conclusions in Theorem 5.2.2.

We now diminish δ > 0 to ensure that

(i) d(x) is a C2-function on {x ∈ Ω : d(x) < 2δ};

(ii) k is non-decreasing on (0, 2δ);
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(iii) Ψ′′ is positive on (0, 2δ).

Set m := (1 + ρ`1/2)1/ρ. Let σ ∈ (0, δ) be arbitrary. We define{
v+
σ (x) = mΨ(d(x)− σ)[c̃(x)− 2ε]−1/ρ, ∀x ∈ Ω with σ < d(x) < 2δ;

v−σ (x) = mΨ(d(x) + σ)[c̃(x) + 2ε]−1/ρ, ∀x ∈ Ω with d(x) + σ < 2δ.
(5.28)

5.2.3.3 Upper and Lower Solutions Near the Boundary

We prove that by diminishing δ > 0 if necessary, we have{
−∆v+

σ − av+
σ + b(x)f(v+

σ ) ≥ 0, ∀x ∈ Ω with σ < d(x) < 2δ;

−∆v−σ − av−σ + b(x)f(v−σ ) ≤ 0, ∀x ∈ Ω with d(x) + σ < 2δ.
(5.29)

A simple calculation yields

∇v±σ (x) = mΨ′(d(x)∓ σ)[c̃(x)∓ 2ε]−
1
ρ∇d(x)

− m

ρ
Ψ(d(x)∓ σ)[c̃(x)∓ 2ε]−

1
ρ
−1∇c̃(x).

It follows that (using |∇d(x)| ≡ 1)

∆v±σ (x) = mΨ′′(d(x)∓ σ)[c̃(x)∓ 2ε]−
1
ρ + η±σ (x)Ψ′(d(x)∓ σ), (5.30)

where we denote

η±σ (x) =− 2m

ρ
[c̃(x)∓ 2ε]−

1
ρ
−1∇d(x) · ∇c̃(x) +m[c̃(x)∓ 2ε]−

1
ρ ∆d(x)

+
m(ρ+ 1)

ρ2

Ψ(d(x)∓ σ)

Ψ′(d(x)∓ σ)
[c̃(x)∓ 2ε]−

1
ρ
−2|∇c̃(x)|2

− m

ρ

Ψ(d(x)∓ σ)

Ψ′(d(x)∓ σ)
[c̃(x)∓ 2ε]−

1
ρ
−1∆c̃(x).

Using Proposition 5.2.6 (iii), we can find a constant C1 = C1(ε) > 0 such that{
|η+
σ (x)| ≤ C1, ∀x ∈ Ω with d(x) ∈ (σ, 2δ);

|η−σ (x)| ≤ C1, ∀x ∈ Ω with d(x) + σ < 2δ.
(5.31)

By (5.27), we obtain

b(x) > (c(x)− ε)k2(d(x)) ≥ (c(x)− ε)k2(d(x)− σ)

≥Mε(c̃(x)− 2ε)k2(d(x)− σ), ∀x ∈ Ω with σ < d(x) < 2δ,
(5.32)
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and

b(x) < (c(x) + ε)k2(d(x)) ≤ (c(x) + ε)k2(d(x) + σ)

≤ Nε(c̃(x) + 2ε)k2(d(x) + σ), ∀x ∈ Ω with d(x) + σ < 2δ,
(5.33)

where Mε := min
x∈Ω

(
c(x)− ε

c̃(x)− 2ε

)
and Nε := max

x∈Ω

(
c(x) + ε

c̃(x) + 2ε

)
. By (5.24), we have

Mε > 1 and Nε < 1.

Using (5.30), (5.32) and (5.33), we arrive at

−∆v+
σ − av+

σ + b(x)f(v+
σ ) ≥

{
Mε

k2(d− σ)

Ψ′′(d− σ)
[c̃(x)− 2ε]

1
ρ
+1f(v+

σ )−m

+Q+(d− σ)
}

Ψ′′(d− σ)[c̃(x)− 2ε]−
1
ρ

(5.34)

for all x ∈ Ω with σ < d(x) < 2δ. Similarly, we have

−∆v−σ − av−σ + b(x)f(v−σ ) ≤
{
Nε

k2(d+ σ)

Ψ′′(d+ σ)
[c̃(x) + 2ε]

1
ρ
+1f(v−σ )−m

+Q−(d+ σ)
}

Ψ′′(d+ σ)[c̃(x) + 2ε]−
1
ρ

(5.35)

for all x ∈ Ω with d(x) + σ < 2δ. In (5.34) and (5.35) we used the notation

Q±(d(x)∓ σ) = −η±σ (x)
Ψ′(d(x)∓ σ)

Ψ′′(d(x)∓ σ)
[c̃(x)∓ 2ε]

1
ρ − am

Ψ(d(x)∓ σ)

Ψ′′(d(x)∓ σ)
.

By (5.31) and Proposition 5.2.6 (vi), we have

lim
d(x)↘σ

Q+(d(x)− σ) = 0 and lim
d(x)+σ→0

Q−(d(x) + σ) = 0. (5.36)

Since f ∈ RVρ+1, we find Lf (z) := f(z)
zρ+1 is a slowly varying function.

We claim that

lim
d(x)↘σ

Lf (v
+
σ (x))

Lf (Ψ(d(x)− σ))
= 1 and lim

d(x)+σ→0

Lf (v
−
σ (x))

Lf (Ψ(d(x) + σ))
= 1. (5.37)

Using (5.24), together with ε ∈ (0,minΩ c/4), we find

ξ0(ε) := (max
Ω

c− ε)−
1
ρ < (c̃(x)− 2ε)−

1
ρ < ε−

1
ρ := ξ1(ε), ∀x ∈ Ω.

Since limt→0+ Ψ(t) = ∞ and, by Proposition 4.1.1, limu→∞
Lf (mξu)

Lf (u)
= 1, uniformly

with respect to ξ ∈ [ξ0(ε), ξ1(ε)] ⊂ (0,∞), it follows that

lim
d(x)↘σ

Lf (v
+
σ (x))

Lf (Ψ(d(x)− σ))
= lim

d(x)↘σ

Lf (mΨ(d(x)− σ)(c̃(x)− 2ε)−
1
ρ )

Lf (Ψ(d(x)− σ))
= 1.

139



5.2 Case I: Regularly Varying Nonlinearities

A similar argument can be used for the remaining limit in (5.37).

Since

f(v±σ (x)) = [v±σ (x)]ρ+1Lf (v
±
σ (x))

= mρ+1(c̃(x)∓ 2ε)−
ρ+1

ρ [Ψ(d(x)∓ σ)]ρ+1Lf (v
±
σ (x)),

using (5.37) and Proposition 5.2.6 (vii), we arrive at
lim

d(x)↘σ

k2(d(x)− σ)f(v+
σ (x))[c̃(x)− 2ε]

1
ρ
+1

Ψ′′(d(x)− σ)
= m;

lim
d(x)+σ→0

k2(d(x) + σ)f(v−σ (x))[c̃(x) + 2ε]
1
ρ
+1

Ψ′′(d(x) + σ)
= m.

(5.38)

The inequalities in (5.29) now follow from (5.34)–(5.36) and (5.38).

5.2.3.4 Asymptotic Behavior of the Large Solution

Let ζ > 0 be small such that a is less than the first eigenvalue of (−∆) in the

domain Eζ := {x ∈ RN \ Ω : d(x) < ζ}. Set Iδ = {x ∈ Ω : d(x) < δ}.
Define Ω1 = E2ζ ∪ {x ∈ Ω : d(x) < δ}, where δ > 0 is as in (5.29).

Let p ∈ C0,µ(Ω1) be such that 0 < p(x) ≤ b(x) for x ∈ Ω with d(x) ≤ δ, p = 0

in Eζ and p > 0 in E2ζ \ Eζ .

Denote by w a large solution of −∆u = au − p(x)f(u) in Ω1. The existence

of w is given by Theorem 3.1.1. Note that w is uniformly bounded on Γc∞ and

w = ∞ on ∂Iδ ∩ Ω.

Let ua be an arbitrary large solution of (5.1) (resp., (5.2)). By (5.29) and

(5.3), we find
−∆(ua + w)− a(ua + w) + b(x)f(ua + w) ≥ 0 in Iδ

−∆v−σ − av−σ + b(x)f(v−σ ) ≤ 0 in Iδ

(ua + w)|∂Iδ = ∞ > v−σ |∂Iδ

and 
−∆(v+

σ + w)− a(v+
σ + w) + b(x)f(v+

σ + w) ≥ 0 in Iδ \ Iσ
−∆ua − aua + b(x)f(ua) = 0 in Iδ \ Iσ
(v+
σ + w)|∂(Iδ\Iσ) = ∞ > ua|∂(Iδ\Iσ).
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By Proposition 5.2.7, we get{
ua + w ≥ v−σ in Iδ,

v+
σ + w ≥ ua in Iδ \ Iσ.

Letting σ → 0, we arrive at{
ua + w ≥ mΨ(d(x))[c̃(x) + 2ε]−

1
ρ , ∀x ∈ Ω with 0 < d(x) < δ

mΨ(d(x))[c̃(x)− 2ε]−
1
ρ + w ≥ ua, ∀x ∈ Ω with 0 < d(x) < δ.

Since |c̃(x)− c(x)| ≤ ε, we deduce

mΨ(d(x))[c(x) + 3ε]−
1
ρ − w(x) ≤ ua(x) ≤ mΨ(d(x))[c(x)− 3ε]−

1
ρ + w(x)

for all x ∈ Ω with 0 < d(x) < δ. It follows that

m[c(y) + 3ε]−
1
ρ ≤ lim inf

x→y∈Γc
∞

ua(x)

Ψ(d(x))
≤ lim sup

x→y∈Γc
∞

ua(x)

Ψ(d(x))
≤ m[c(y)− 3ε]−

1
ρ

uniformly for y ∈ Γc∞. Recall that ε ∈ (0,minΩ c/4) is arbitrary. Hence, passing

to the limit ε→ 0, we find

lim
x→y∈Γc

∞

ua(x)

Ψ(d(x))
= m[c(y)]−

1
ρ uniformly for y ∈ Γc∞,

which proves (5.7).

5.2.3.5 Uniqueness of the Large Solution

Let u1 and u2 be two large solutions of (5.1) (resp., (5.2)). By the asymptotic be-

havior (5.7) we deduce limd(x,Γ∞)→0
u1(x)
u2(x)

= 1. The uniqueness conclusion follows

from this and Proposition 5.2.7 using a standard argument.

Indeed, for θ > 0 arbitrary, set (1 + θ)ui = wi, i = 1, 2. We obtain −∆wi − awi + b(x)f(wi) ≥ 0 in Ω

lim
d(x,Γ∞)→0

(u1 − w2)(x) = lim
d(x,Γ∞)→0

(u2 − w1)(x) = −∞.

If Γ∞ 6= ∂Ω, then Bwi = 0 on ΓB. Therefore, by Proposition 5.2.7, we infer that

u1 ≤ (1 + θ)u2 in Ω and u2 ≤ (1 + θ)u1 in Ω.

Passing to the limit θ → 0, we get u1 = u2 on Ω. This completes the proof of

Theorem 5.2.2.

141



5.2 Case I: Regularly Varying Nonlinearities

5.2.4 Proof of Theorem 5.2.3

Let ε > 0 be fixed. We denote by Γ∗∞ the unique connected open and closed

subset of Γ∞ that contains x∗. By (5.12) we can assume that

0 < b(x) ≤ (c∗ + ε)k2(d(x,Γ∗∞)), ∀x ∈ Br0(x∗) ∩ Ω

for some r0 > 0 small enough such that

Br0(x∗) := {x ∈ RN : |x− x∗| < r0} ⊂ B and Br0(x∗) ∩ ∂Ω ⊆ Γ∗∞. (5.39)

Let O1 and O2 be two smooth domains such that O1 ⊂⊂ O2 ⊂⊂ Br0(x∗) and

O1∩Ω = I∗ ⊂ Γ∗∞ with x∗ belonging to the interior of I∗, namely, O1 is outside Ω

but its boundary and ∂Ω has a common part I∗ which contains x∗ in its interior.

Set D∗ = O2 \ O1.

By Lemma 3.3.4 and Theorem 5.2.2, the boundary value problem{
−∆u = au− (c∗ + ε)k2(d(x, ∂O1))f(u) in D∗,

u = 0 on ∂O2,
(5.40)

subject to u = n ≥ 1 (resp., u = ∞) on ∂O1 has a unique positive solution wn

(resp., W ). Moreover, we have

lim
d(x,∂O1)→0

W (x)

Ψ(d(x, ∂O1))
=

(
2 + ρ`1

2(c∗ + ε)

) 1
ρ

. (5.41)

Notice that d(x, ∂O1) ≥ d(x,Γ∗∞), for each x ∈ D∗ ∩ Ω. Hence, for all n ≥ 1,
−∆wn ≤ awn − b(x)f(wn) in D∗ ∩ Ω,

wn = 0 on ∂O2,

U |D∗∩Γ∗∞
= ∞ > wn|D∗∩Γ∗∞

.

Using Proposition 5.2.7, we infer that{
wn ≤ wn+1 ≤ W in D∗, ∀n ≥ 1,

wn ≤ U in D∗ ∩ Ω, ∀n ≥ 1.
(5.42)

Here U denotes an arbitrary positive solution of (5.11). Standard regularity

arguments show that w∞ defined by w∞(x) := limn→∞wn(x), ∀x ∈ D∗, is a
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positive solution of (5.40) satisfying w∞ = ∞ on ∂O1. It follows that w∞ ≡ W

in D∗. By (5.42), we obtain U ≥ W in D∗ ∩ Ω. Hence,

U(x)

Ψ(d(x,Γ∗∞))
≥ W (x)

Ψ(d(x,Γ∗∞))
, ∀x ∈ D∗ ∩ Ω.

By our choice of O1, d(x, ∂O1) = d(x,Γ∗∞) if x ∈ Ω is sufficiently close to x∗.

Hence, letting x→ x∗ and using (5.41), we find

lim inf
x→x∗, x∈Ω

U(x)

Ψ(d(x,Γ∞))
≥
(

2 + ρ`1
2(c∗ + ε)

) 1
ρ

.

Since ε > 0 is arbitrary, we conclude (5.13) by letting ε→ 0.

5.2.5 Proof of Theorem 5.2.4

Let ε ∈ (0, d∗) be arbitrary and Γ∗∞ be the same as in the proof of Theorem 5.2.3.

By (5.14), we can choose r0 > 0 small such that (5.39) holds and

b(x) ≥ (d∗ − ε)k2(d(x,Γ∗∞)), ∀x ∈ Br0(x∗) ∩ Ω.

Let V be a smooth domain such that V ⊂ Ω ∩ Br0(x∗) and I∗ := ∂V ∩ Γ∗∞

contains x∗ in its interior.

For n ≥ 1, set Vn = {x ∈ V : 1/n < d(x, ∂V )}. Obviously, V = ∪∞n=1Vn.

Let Z be the unique positive solution (see Theorem 5.2.2) of

−∆u = au− (d∗ − ε)k2(d(x, ∂V ))f(u) in V (5.43)

subject to u = ∞ on ∂V . Let Zn be the unique positive solution of the above

problem with V replaced by Vn. By Theorem 5.2.2, we have

lim
d(x,∂V )→0

Z(x)

Ψ(d(x, ∂V ))
=

(
2 + ρ`1

2(d∗ − ε)

) 1
ρ

. (5.44)

Clearly d(x, ∂Vn) ≤ d(x, ∂Vn+1) ≤ d(x,Γ∗∞) for each x ∈ Vn, and{
−∆Zn ≥ aZn − b(x)f(Zn) in Vn, ∀n ≥ 1,

Zn|∂Vn = ∞ > U |∂Vn , ∀n ≥ 1.
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By Proposition 5.2.7, we deduce{
Zn ≥ Zn+1 in Vn, ∀n ≥ 1,

Zn ≥ U in Vn, ∀n ≥ 1,
(5.45)

where U is an arbitrary positive solution of (5.11). For each x ∈ V , there exists

an integer m(x) ≥ 1 such that x ∈ Vn, for each n ≥ m(x). By virtue of (5.45),

Z∞(x) = limn→∞ Zn(x) is well defined. Standard regularity arguments imply

that Z∞ is a positive solution of (5.43) in V satisfying Z∞ = ∞ on ∂V . Since

there is only one such solution we conclude that Z∞ ≡ Z in V . It follows that

U(x)

Ψ(d(x,Γ∗∞))
≤ Z(x)

Ψ(d(x,Γ∗∞))
, ∀x ∈ V.

Since d(x, ∂V ) = d(x,Γ∗∞) if x ∈ V is close to x∗, letting x→ x∗ and using (5.44),

we obtain

lim sup
x→x∗, x∈Ω

U(x)

Ψ(d(x,Γ∞))
≤
(

2 + ρ`1
2(d∗ − ε)

) 1
ρ

.

Passing to the limit ε→ 0, we arrive at (5.15). This finishes the proof.

5.2.6 Proof of Theorem 5.2.1

Suppose by contradiction that (5.1) (resp., (5.2)) has two distinct large solutions

U1 and U2. We observe that there exist some constants 0 < γ1 < γ2 and δ+ > 0

such that, for each connected open and closed subset Γc∞ of Γ∞,

γ1Ψ(d(x)) ≤ U1(x), U2(x) ≤ γ2Ψ(d(x)), ∀x ∈ Ω with d(x) < δ+, (5.46)

where d(x) := d(x,Γc∞). Indeed, by (5.5), there exist some constants 0 < β1 < β2

such that, for any x∗ ∈ Γc∞,

lim sup
x→x∗, x∈Ω

b(x)

k2(d(x))
≤ β2, lim inf

x→x∗, x∈Ω

b(x)

k2(d(x))
≥ β1.

Applying Theorems 5.2.3 and 5.2.4, we see that Ui (i = 1, 2) satisfies

lim sup
x→x∗,x∈Ω

Ui(x)

Ψ(d(x))
≤
(

2 + ρ`1
2β1

) 1
ρ

, lim inf
x→x∗,x∈Ω

Ui(x)

Ψ(d(x))
≥
(

2 + ρ`1
2β2

) 1
ρ

.
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Since Γ∞ is compact, we deduce (5.46). By §5.2.3.5 in the proof of Theorem 5.2.2,

we must have lim supd(x)→0(U2/U1)(x) > 1 or lim infd(x)→0(U2/U1)(x) < 1.

We can assume, without loss of generality, that lim supd(x)→0(U2/U1)(x) > 1.

Hence, there exist a constant ε0 > 0 and a sequence (xn)n≥1 ⊂ Ω such that

d(xn) → 0 as n→∞ and U2(xn) > (1 + ε0)U1(xn), ∀n ≥ 1. (5.47)

A key step in our proof is the following result, which is the key to Safonov’s

iteration technique.

Proposition 5.2.8. There exist some constants θ# > 1 and δ# ∈ (0, δ+/2) such

that for any x̃ ∈ Ω satisfying

d(x̃) ≤ δ# and U2(x̃) > (1 + ε̃)U1(x̃) with ε̃ ≥ ε0 (5.48)

we can find ỹ ∈ Ω with the property

|x̃− ỹ| < d(x̃) and U2(ỹ) > θ#(1 + ε̃)U1(ỹ).

Suppose, for the moment, that the above result is proved. By (5.46), we have

U2(x)

U1(x)
≤ γ2

γ1

, for any x ∈ Ω with d(x,Γc∞) ≤ δ#. (5.49)

Since θ# > 1, we can choose a large integer m ≥ 2 such that θm#(1 + ε0) >

γ2/γ1. By (5.47), we can select n ≥ 1 such that 2md(xn) < δ#. By applying

Proposition 5.2.8 with x̃ = xn and ε̃ = ε0, we obtain ỹ = z1 satisfying

|z1 − xn| < d(xn) and U2(z1) > θ#(1 + ε0)U1(z1). (5.50)

We see that d(z1) ≤ 2d(xn) ≤ 2md(xn) < δ#. So, by (5.50) we can invoke again

Proposition 5.2.8 with x̃ = z1 and 1 + ε̃ = θ#(1 + ε0). Thus, we get z2 ∈ Ω such

that

|z2 − z1| < d(z1) and U2(z2) > θ2
#(1 + ε0)U1(z2).

Clearly, d(z2) ≤ 2d(z1) ≤ 22d(xn) < δ#. We can reiterate this process until we

obtain zm ∈ Ω that fulfills

|zm − zm−1| < d(zm−1) and U2(zm) > θm#(1 + ε0)U1(zm).
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5.2 Case I: Regularly Varying Nonlinearities

Hence, we found zm ∈ Ω such that

d(zm) ≤ 2md(xn) < δ# and (U2/U1)(zm) > γ2/γ1.

This contradiction with (5.49) proves the assertion of Theorem 5.2.1.

Proof of Proposition 5.2.8. We define θ# as follows

θ# =


1 +

ε0β1

16Nρ`21γ2

(γ1

3

)ρ+1

(3ρ`1/2 − 1)2 if `1 6= 0,

1 +
ρε0β1

32Nγ2

(γ1

3

)ρ+1

if `1 = 0.
(5.51)

Recall that Ψ is decreasing on (0, τ) for τ > 0 small and limt→0+ Ψ(t) = ∞.

Hence, Ψ−1 : (Ψ(τ),∞) → (0, τ) is decreasing, too. For t > 0 near the origin, set

M(t) = Ψ−1
( 1

3t

)
−Ψ−1

(1

t

)
. (5.52)

Claim 5.2.1. There exists τ# > 0 small such that, for any t ∈ (0, τ#), we have

t k2(Ψ−1(1/t))f
(γ1

3t

)
[M(t)]2 ≥ 32Nγ2

ρε0β1

(θ# − 1). (5.53)

By (5.51), we have

32Nγ2

ρε0β1

(θ# − 1) =


(γ1

3

)ρ+1 2

`21ρ
2
(3ρ`1/2 − 1)2 if `1 6= 0,(γ1

3

)ρ+1

, if `1 = 0.

We now divide the proof of (5.53) into two cases:

Case 5.2.1. k ∈ K with `1 6= 0.

By Proposition 5.2.6 (v), we have

lim
t→0+

t k2(Ψ−1(1/t)) f(1/t)[Ψ−1(1/t)]2 =
4

ρ2`21
. (5.54)

By Proposition 5.2.6 (i), Ψ∗(u) := Ψ(1/u) belongs to RV2/(ρ`1). By Proposi-

tion 4.1.6, we infer that Ψ−1
∗ ∈ RVρ`1/2. Since Ψ−1

∗ (u) = 1/Ψ−1(u), we deduce

lim
t→0+

Ψ−1(1/(3t))

Ψ−1(1/t)
= 3ρ`1/2. (5.55)
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By (5.52), (5.54) and (5.55), we arrive at

lim
t→0+

t k2(Ψ−1(1/t)) f
(γ1

3t

)
[M(t)]2 =

(γ1

3

)ρ+1 4

`21ρ
2
(3ρ`1/2 − 1)2,

which proves (5.53).

Case 5.2.2. k ∈ K with `1 = 0.

By Proposition 5.2.6 (i), Ψ∗(u) := Ψ(1/u) is Γ-varying at u = ∞ with aux-

iliary function χ(u) = ρuW(1/u)/2. Applying Proposition 4.1.8, we find Ψ−1
∗

is Π-varying with auxiliary function χ(Ψ−1
∗ (u)). Since Ψ−1

∗ (u) = 1/Ψ−1(u), by

Definition 4.1.3 we have

lim
u→∞

Ψ−1(u)−Ψ−1(λu)
ρ
2
Ψ−1(λu)W(Ψ−1(u))

= log λ, ∀λ > 0. (5.56)

Hence by the definition of W and Proposition 5.2.6 (iv), we obtain

t k2(Ψ−1(1/t)) f(1/t)
[
W(Ψ−1(1/t))Ψ−1(1/t)

]2
= t f(1/t)

[∫ Ψ−1(1/t)

0

k(s) ds

]2

→ 4

ρ2
as t→ 0+.

(5.57)

Combining (5.56) and (5.57), we deduce

lim
t→0+

t k2(Ψ−1(1/t)) f
(γ1

3t

)
[M(t)]2

[
Ψ−1(1/t)

Ψ−1(1/(3t))

]2

=
(γ1

3

)ρ+1

(log 3)2.

Since Ψ−1(1/t) ≤ Ψ−1(1/(3t)), we conclude the proof of (5.53).

From (5.46) and Proposition 4.1.1, it follows that

lim
d(x)→0

Lf (U2(x))

Lf (U1(x))
= 1, where Lf (u) :=

f(u)

uρ+1
for u > 0. (5.58)

Using Proposition 5.2.6 (v), we have

lim
t→0+

Ψ(t)

k2(t)f(γ1Ψ(t))
=

1

γρ+1
1

lim
t→0+

Ψ(t)

k2(t)f(Ψ(t))
= 0. (5.59)

In view of (5.58) and (5.59), we can choose δ# ∈ (0,M(τ#)/2) small such that
Lf (U2(x))

Lf (U1(x))
≥ (1 + ε0)

−ρ/2, ∀x ∈ Ω with d(x) ≤ 2δ#

|a|γ2

(1 + ε0)

Ψ(t)

k2(t)f(γ1Ψ(t))
≤ ρε0β1

4
, ∀t ∈ (0, 2δ#).

(5.60)
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Let x̃ ∈ Ω satisfy (5.48). Since d(x̃) ≤ δ# < M(τ#)/2, the equation

Ψ−1

(
1

t

)
+ Ψ−1

(
1

3t

)
= 2d(x̃)

has a unique solution r ∈ (0, τ#). We define

S0 := {x ∈ Ω : U2(x) > (1 + ε̃)U1(x)} ∩Ber(x̃),
where

r̃ =
M(r)

2
=

1

2

[
Ψ−1

(
1

3r

)
−Ψ−1

(
1

r

)]
.

For each x ∈ Ber(x̃), we have

Ψ−1

(
1

r

)
≤ d(x) ≤ Ψ−1

(
1

3r

)
< Ψ−1

(
1

r

)
+ Ψ−1

(
1

3r

)
≤ 2δ# < δ+. (5.61)

Using (5.60), we obtain

f(U2(x))

(1 + ε̃)f(U1(x))
=

Uρ+1
2 Lf (U2(x))

(1 + ε̃)Uρ+1
1 Lf (U1(x))

≥ (1 + ε̃)ρ
Lf (U2(x))

Lf (U1(x))

≥ (1 + ε0)
ρ
2 ≥ 1 +

ρε0

2
, ∀x ∈ S0.

(5.62)

Using (5.46) and (5.61), we infer that, for any x ∈ Ber(x̃),
γ1

3r
≤ γ1Ψ(d(x)) ≤ Ui(x) ≤ γ2Ψ(d(x)) ≤ γ2

r
, i = 1, 2. (5.63)

By (5.5), (5.60), (5.62) and (5.63) we find

∆(U2 − (1 + ε̃)U1)

= −a(U2 − (1 + ε̃)U1) + b(x)[f(U2)− (1 + ε̃)f(U1)]

≥ −|a|U2 + (1 + ε̃)β1k
2(d(x))f(U1)

[
f(U2)

(1 + ε̃)f(U1)
− 1

]
≥ −|a|γ2Ψ(d(x)) + (1 + ε̃)β1k

2(d(x))f(γ1Ψ(d(x)))

[
f(U2)

(1 + ε̃)f(U1)
− 1

]
= (1 + ε̃)k2(d(x))f(γ1Ψ(d(x)))

{
β1

[
f(U2)

(1 + ε̃)f(U1)
− 1

]
− |a|γ2

(1 + ε̃)

Ψ(d(x))

k2(d(x))f(γ1Ψ(d(x)))

}
≥ (1 + ε̃)k2(Ψ−1(1/r))f

(γ1

3r

)[ρε0β1

2
− |a|γ2

(1 + ε0)

Ψ(d(x))

k2(d(x))f(γ1Ψ(d(x)))

]
≥ (1 + ε̃)

ρε0β1

4
k2(Ψ−1(1/r))f

(γ1

3r

)
, ∀x ∈ S0.
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For any x ∈ S0, we define

w(x) = (2N)−1(1 + ε̃)
ρε0β1

4
k2(Ψ−1(1/r))f

(γ1

3r

)
(r̃2 − |x− x̃|2).

Obviously, we have

∆w = −(1 + ε̃)
ρε0β1

4
k2(Ψ−1(1/r))f(γ1/(3r)) in S0.

Thus, we get

∆(U2 − (1 + ε̃)U1 + w) ≥ 0 in S0.

Applying the maximum principle for sub-harmonic functions, we have

U2(x̃)− (1 + ε̃)U1(x̃) + w(x̃) ≤ max
∂S0

(U2 − (1 + ε̃)U1 + w).

Note that max∂S0(U2− (1+ ε̃)U1 +w) cannot be achieved on ∂S0∩Ber(x̃). Indeed,

we see that

U2(y) = (1 + ε̃)U1(y), for each y ∈ ∂S0 ∩Ber(x̃).
This yields that

U2(y)− (1 + ε̃)U1(y) + w(y) = w(y) ≤ w(x̃)

< U2(x̃)− (1 + ε̃)U1(x̃) + w(x̃)

for each y ∈ ∂S0 ∩Ber(x̃). Therefore, we have

max
∂S0

(U2 − (1 + ε̃)U1 + w)

is reached at some point ỹ ∈ ∂S0 ∩ ∂Ber(x̃). It follows that

U2(ỹ)− (1 + ε̃)U1(ỹ) = U2(ỹ)− (1 + ε̃)U1(ỹ) + w(ỹ)

≥ U2(x̃)− (1 + ε̃)U1(x̃) + w(x̃) > w(x̃).
(5.64)

Since r < τ#, we use (5.61), (5.63) and (5.53) to obtain

w(x̃) =
1

2N
(1 + ε̃)

ρε0β1

4
(k2 ◦Ψ−1)

(
1

r

)
f
(γ1

3r

) [M(r)]2

4

≥ (θ# − 1)(1 + ε̃)γ2

r
= (θ# − 1)(1 + ε̃)γ2Ψ(Ψ−1(1/r))

≥ (θ# − 1)(1 + ε̃)γ2Ψ(d(ỹ))

≥ (θ# − 1)(1 + ε̃)U1(ỹ).

(5.65)

By (5.64) and (5.65), we obtain U2(ỹ) > θ#(1+ ε̃)U1(ỹ). Hence, ỹ ∈ ∂S0∩∂Ber(x̃)
has all the properties stated in Proposition 5.2.8. This concludes the proof of

Proposition 5.2.8 and Theorem 5.2.1.
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5.3 Case II: Rapidly Varying Nonlinearities

5.3.1 Introduction and Main Results

Bieberbach (1916) initiated the topic of large solutions for ∆u = eu in a smooth

bounded domain Ω ⊂ R2. He showed that there is a unique positive solution

u ∈ C2(Ω) such that u(x) − ln(d(x)−2) is bounded as d(x) = dist (x, ∂Ω) → 0.

Problems of this type arise in Riemannian geometry; if a Riemannian metric of

the form |ds|2 = e2u(x)|dx|2 has constant Gaussian curvature −c2, then ∆u =

c2e2u. Rademacher (1943) extended the result of Bieberbach on smooth bounded

domains in R3.

The goal of section 5.3 is to give the uniqueness and asymptotic behavior of

large solutions to (5.1) (resp., (5.2)) in the setting of §5.1 for a class of functions

f rapidly varying (at infinity) with index ∞, that is

lim
u→∞

f(λu)

f(u)
=


∞, if λ > 1

1, if λ = 1

0, if 0 < λ < 1.

We establish a subtle connection between the blow-up rate of the solution and

the rapid variation of f by using de Haan theory (see §5.3.2).

Among functions rapidly varying with index ∞ one can distinguish the proper

subclass of Γ-varying functions (cf. Proposition 3.10.3 in Bingham et al. (1987)).

For ease of reference, we restate here Definition 4.1.2 of Chapter 4.

Definition 5.3.1. A non-decreasing function f is Γ-varying at∞ (written f ∈ Γ)

if f is defined on some interval (D,∞) with D > 0, limu→∞ f(u) = ∞ and there

exists g : (D,∞) → (0,∞) (called an auxiliary function) such that

lim
y→∞

f(y + λg(y))

f(y)
= eλ, ∀λ ∈ R.

The auxiliary function g is unique up to asymptotic equivalence.

For a non-decreasing function H defined on R, we denote by H← the (left

continuous) inverse of H, that is

H←(y) = inf{s : H(s) ≥ y}.

Our first main result is the following (see Theorem 1.2 in Ĉırstea (2004b)).
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5.3 Case II: Rapidly Varying Nonlinearities

Theorem 5.3.1. Let (5.3) hold and f ∈ Γ with auxiliary function g. Assume

that for each connected open and closed subset Γc∞ of Γ∞ there exists k ∈ K with

`1 6= 0 such that (5.5) is fulfilled.

Then, for any a < λ∞,1, (5.1) (resp., (5.2)) has a unique large solution ua,

which satisfies

ua(x)

φ(d(x))
→ 1 as d(x) := dist (x,Γc∞) → 0, (5.66)

where φ is given by

φ(t) = ψ←(1/[tk(t)]2) for t > 0 small, (5.67)

and ψ is defined on some interval [α,∞) ⊂ (0,∞) by

ψ(u) = sup{f(y)/g(y) : α ≤ y ≤ u}, ∀u ≥ α. (5.68)

Corollary 5.3.2. If f(u) = ecu − 1 (c > 0) in Theorem 5.3.1, then the unique

large solution ua satisfies

lim
d(x)→0

ua(x)

ln d(x)
=
−2

c `1
.

Indeed, limt→0+ ln k(t)/ ln t = 1/`1 − 1 (cf. Proposition 4.2.8) and

lim
t→0+

φ(t)

ln t+ ln k(t)
=
−2

c
.

We point out that Theorem 5.3.1 does not concern the quotient of ua(x) and

Υ(d(x)), as established in Bandle and Marcus (1992a) (for a = 0 and b = 1),

where Υ is a chosen solution of the singular problem{
u′′(r) = f(u(r)) on (0, τ) for some τ > 0,

u(r) →∞ as r → 0+.

In contrast, the function φ in (5.66) does not have enough regularity to use it

directly in constructing upper and lower solutions near Γc∞. The idea is to build

smoother versions of φ which are asymptotically equivalent to φ at the origin.

This will be achieved in Lemmas 5.3.11 and 5.3.12 via de Haan theory.

We note an extreme variation phenomenon given that the solution ua blows-up

at Γ∞ in a slow fashion (cf. Remark 5.3.2), while f varies rapidly at infinity.
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The following results (see Ĉırstea (2004a)) reiterate the fact that the blow-up

rate is local in nature. We consider the positive solutions to the problem{
−∆u = au− b(x)f(u) in Ω ∩ B,

u = ∞ on Γ∞ ∩ B,
(5.69)

where B denotes an open ball in RN such that Γ∞ ∩ B 6= ∅.

Theorem 5.3.3. Let (5.3) hold and f ∈ Γ with auxiliary function g. Assume

that x∗ ∈ Γ∞ ∩ B and there exists k ∈ K with `1 6= 0 such that

lim sup
x→x∗, x∈Ω

b(x)

k2(d(x,Γ∞))
<∞, (5.70)

then, any positive solution U of (5.69) satisfies

lim inf
x→x∗, x∈Ω

U(x)

φ(d(x,Γ∞))
≥ 1, (5.71)

where φ is given by (5.67).

Theorem 5.3.4. Let (5.3) hold and f ∈ Γ with auxiliary function g. Suppose

that x∗ ∈ Γ∞ ∩ B and there exists k ∈ K with `1 6= 0 such that

lim inf
x→x∗, x∈Ω

b(x)

k2(d(x,Γ∞))
> 0, (5.72)

then, any positive solution U of (5.69) satisfies

lim sup
x→x∗, x∈Ω

U(x)

φ(d(x,Γ∞))
≤ 1, (5.73)

where φ is given by (5.67).

Combining Theorems 5.3.3 and 5.3.4, we obtain:

Corollary 5.3.5. Let (5.3) hold and f ∈ Γ with auxiliary function g. Suppose

that x∗ ∈ Γ∞ ∩ B and there exists k ∈ K with `1 6= 0 such that

0 < lim inf
x→x∗, x∈Ω

b(x)

k2(d(x,Γ∞))
and lim sup

x→x∗, x∈Ω

b(x)

k2(d(x,Γ∞))
<∞, (5.74)

then, any positive solution U of (5.69) satisfies

lim
x→x∗, x∈Ω

U(x)

φ(d(x,Γ∞))
= 1, (5.75)

with φ given by (5.67).
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Remark 5.3.1. The above local estimates differentiate from those of Theorems 5.2.3

and 5.2.4, where it is assumed that f ∈ RVρ+1 (ρ > 0) instead of f ∈ Γ.

The rest of section 5.3 is organized as follows. In §5.3.2 we gather some

results which are extensions of regular variation. Based on these, we construct

in §5.3.3 smoother versions of φ which are asymptotically equivalent to φ at the

origin. The proofs of Theorems 5.3.1, 5.3.3 and 5.3.4, respectively are presented

in §5.3.4–§5.3.6, respectively.

5.3.2 Preliminaries: Extensions of Regular Variation

We recall some concepts and results due to de Haan (1970, 1974, 1976) which ap-

pear in the extreme value theory (see Resnick (1987) or Bingham et al. (1987)).

For convenience, we include here Definition 4.1.3 and Proposition 4.1.8 of Chap-

ter 4.

Definition 5.3.2 (p. 27 in Resnick (1987)). A non-negative, non-decreasing

function V defined on (z,∞) is Π-varying (written V ∈ Π) if there exists a

function θ(u) > 0 (called an auxiliary function) such that

lim
u→∞

V (λu)− V (u)

θ(u)
= log λ, for λ > 0.

The auxiliary function θ is unique up to asymptotic equivalence.

Proposition 5.3.6 (Proposition 0.9 in Resnick (1987)). The following state-

ments hold:

1. If U ∈ Γ with auxiliary function χ, then U← ∈ Π with auxiliary function

θ(u) = χ ◦ U←(u).

2. If V ∈ Π with auxiliary function θ(u), then V ← ∈ Γ with auxiliary function

χ(u) = θ ◦ V ←(u).

Proposition 5.3.7 (Proposition 0.12 in Resnick (1987)). If V ∈ Π with

auxiliary function θ(u), then θ ∈ RV0.
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Proposition 5.3.8 (Proposition 0.15 in Resnick (1987)). We have V ∈ Π

if and only if

R(x) :=

∫ ∞
x

u−1V (du) =

∫ ∞
x

u−2V (u) du− x−1V (x)

is finite and −1 varying. In this case the auxiliary function θ satisfies

lim
u→∞

θ(u)

uR(u)
= 1

and we have the representation

V (x)− V (1) =

∫ x

1

R(u) du− xR(x) +K(1).

Proposition 5.3.9 (de Haan (1970) or p. 35 in Resnick (1987)). If V ∈ Π

is a monotone function, then V ∈ RV0 and V (u)/θ(u) → ∞, where θ(u) is the

auxiliary function of V .

Definition 5.3.3 (p. 33 in Resnick (1987)). If V1 ∈ Π with auxiliary function

θ(u), we say V1 and V2 are Π-equivalent (written V1
Π∼ V2) if

lim
u→∞

V1(u)− V2(u)

θ(u)
= c ∈ R.

In this case V2 ∈ Π with auxiliary function θ(u).

The next result shows that if V ∈ Π, then we may construct smoother versions

which are Π-equivalent to V .

Proposition 5.3.10 (Proposition 0.16 in Resnick (1987)). If V ∈ Π there

exists a continuous, strictly increasing V1
Π∼ V such that V1(u) > V (u) and

lim
u→∞

V1(u)− V (u)

θ(u)
= 1.

In fact, there exists a twice differentiable V2
Π∼ V with V2(u) > V (u) and

− 1

uV ′′2 (u)
∈ RV1, lim

u→∞

−uV ′′2 (u)

V ′2(u)
= 1.
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5.3.3 Auxiliary Results

We first build a C1-function which is asymptotically equivalent to φ at zero

(see Lemma 2.2 in Ĉırstea (2004b)). By f1(u) ∼ f2(u) as u → ∞ we mean

limu→∞ f1(u)/f2(u) = 1.

Lemma 5.3.11. If f ∈ Γ with auxiliary function g, then there exists a twice dif-

ferentiable V2
Π∼ f← with V2(u) > f←(u), V ′2 ∈ RV−1, limu→∞−uV ′′2 (u)/V ′2(u) =

1, and limu→∞ V2(u)/f
←(u) = 1. Furthermore, if f is continuous and increasing

on (D,∞), then limu→∞ f(V2(u))/u = C(Const.) > 0 and

(V2 ◦ (1/V ′2)
←)(u) ∼ ψ←(u) as u→∞, (5.76)

where ψ is defined by (5.68).

If f ∈ Γ and k ∈ K, set

χ(t) = (1/V ′2)
←(1/[tk(t)]2), for t > 0 small,

where V2 is from Lemma 5.3.11. Thus, under the assumptions of Theorem 5.3.1,

χ(t) is a C1-function such that (V2 ◦ χ)(t) ∼ φ(t) as t→ 0+.

Proof of Lemma 5.3.11. By Propositions 5.3.6 and 5.3.7, f← ∈ Π with auxiliary

function g ◦ f← ∈ RV0. Thus, by Proposition 5.3.10, there exists a twice differ-

entiable V2
Π∼ f← with V2(u) > f←(u), V ′2 ∈ RV−1, limu→∞−uV ′′2 (u)/V ′2(u) = 1.

Since V2 ∈ Π is increasing, by Proposition 5.3.9 we have

lim
u→∞

V2(u)

(g ◦ f←)(u)
= ∞ and V2 ∈ RV0.

Using V2
Π∼ f←, we deduce limu→∞ V2(u)/f

←(u) = 1.

Assuming that f is continuous and increasing on (D,∞), then f←(u) coincides

with f−1(u) (the inverse of f at u) for u > 0 large.

By V2
Π∼ f←, we have

lim
u→∞

V2(u)− f←(u)

(g ◦ f←)(u)
= c ∈ R.

By Definition 5.3.1, we get limu→∞ f(V2(u))/u = ec > 0. By (5.68), we infer that

(ψ ◦ f←)(u) = sup {z/(g ◦ f←)(z) : f(α) ≤ z ≤ u} (α > 0 is large)

155



5.3 Case II: Rapidly Varying Nonlinearities

so that, by Theorem 4.1.7, we deduce

ψ ◦ f← ∈ RV1 and (ψ ◦ f←)(u) ∼ u/(g ◦ f←)(u) as u→∞.

By the construction of V2 in (Resnick, 1987, p. 34) and Proposition 5.3.8, we

get limu→∞ uV
′
2(u)/(g ◦ f←)(u) = 1. Consequently,

(ψ ◦ f←)(u) ∼ 1/V ′2(u) as u→∞.

It follows that

(ψ ◦ f←)←(u) = (f ◦ ψ←)(u) ∼ (1/V ′2)
←(u) as u→∞.

By Proposition 4.1.1 and V2(u) ∼ f−1(u) as u→∞, we achieve (5.76).

Recall that Ẑ(u), defined for u > D, is a normalized regularly varying func-

tion of index q (in short, Ẑ ∈ NRVq) if Ẑ is a positive C1-function such that

limu→∞ uẐ
′(u)/Ẑ(u) = q. By Remark 4.1.2, for each Z ∈ RVq there exists

Ẑ ∈ NRVq such that Ẑ(u) ∼ Z(u) as u→∞.

We now refine Lemma 5.3.11 by constructing a C2-function which is equivalent

to φ at the origin (see Lemma 2.3 in Ĉırstea (2004b)).

Lemma 5.3.12. Suppose f ∈ Γ is continuous and increasing on some inter-

val (D,∞). If k ∈ K with `1 6= 0, then there exists χ̂ ∈ C2(0, τ) satisfying

limt→0+ χ̂(t)/χ(t) = 1 and the following:

(i) lim
t→0+

χ̂(t)

χ̂′(t)
= lim

t→0+

χ̂′(t)

χ̂′′(t)
= 0 and lim

t→0+

χ̂(t)χ̂′′(t)

[χ̂′(t)]2
=

2 + `1
2

;

(ii) lim
t→0+

P1(t) := lim
t→0+

V2(χ̂(t))

V ′2(χ̂(t))

χ̂(t)

[χ̂′(t)]2
= 0;

(iii) lim
t→0+

P2(t) := lim
t→0+

k2(t)(f ◦ V2)(χ̂(t))

χ̂′′(t)V ′2(χ̂(t))
=

C`21
2(2 + `1)

.

Proof. By Lemma 5.3.11, 1/V ′2(u) ∈ NRV1 so that (1/V ′2)
←(u) ∈ NRV1. Since

k ∈ K with `1 6= 0, we have k(1/u) ∈ NRV1−1/`1 (cf. Proposition 4.2.8). There-

fore, χ(1/u) ∈ NRV2/`1 . By Karamata’s Theorem (Proposition 4.1.5), we get
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d
du

[χ(1/u)] ∈ RV−1+2/`1 . Hence, −χ′(1/u) ∈ RV1+2/`1 . By Remark 4.1.2, there

exists χ̂ ∈ C2(0, τ) such that

−χ̂′(1/u) ∈ NRV1+2/`1 and χ̂′(1/u) ∼ χ′(1/u) as u→∞.

It follows that

lim
t→0+

χ̂′(t)

χ′(t)
= 1 = lim

t→0+

χ̂(t)

χ(t)
and lim

t→0+

tχ̂′′(t)

χ̂′(t)
= −

(
1 +

2

`1

)
.

Consequently, χ̂(1/u) ∈ NRV2/`1 (that is, limt→0+ tχ̂′(t)/χ(t) = −2/`1). Thus,

(i) follows. Moreover, we have

lim
t→0+

log χ̂(t)

log t
= −2/`1 and lim

t→0+

log(−χ̂′(t))
log t

= −
(

1 +
2

`1

)
.

Since limu→∞ log V ′2(u)/ log u = −1 and limu→∞ log V2(u)/ log u = 0, we find

limt→0+ logP1(t) = −∞. Thus, (ii) is derived.

Using V ′2 ∈ NRV−1 and limt→0+ χ̂(t)/χ(t) = 1, by Proposition 4.1.1, we get

t2k2(t)/V ′2(χ̂(t)) ∼ t2k2(t)/V ′2(χ(t)) = 1 as t→ 0+.

From this and Lemma 5.3.11, we infer that

lim
t→0+

P2(t) = lim
t→0+

χ̂(t)

t2χ̂′′(t)

(f ◦ V2)(χ̂(t))

χ̂(t)
=

C`21
2(2 + `1)

.

This concludes the proof.

Remark 5.3.2. If f ∈ Γ is continuous and increasing on (D,∞) and k ∈ K with

`1 6= 0, then by Lemmas 5.3.11 and 5.3.12, we have limt→0+(V2 ◦ χ̂)(t)/φ(t) = 1,

where φ is given by (5.67) and (V2 ◦ χ̂)(1/u) belongs to RV0.

5.3.4 Proof of Theorem 5.3.1

By Lemma 5.3.11, f(V2(u)) ∼ Cu as u→∞ and (V2(u))
q ∈ RV0, for any q ∈ R.

Thus, limu→∞ f(u)/u2 = ∞ so that the Keller–Osserman condition (3.6) holds.

Hence, (5.1) (resp., (5.2)) possesses large solutions if and only if a < λ∞,1 (see

Theorem 3.1.1 if Γ∞ = ∂Ω resp., Theorem 3.3.1 if Γ∞ 6= ∂Ω).
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Fix a < λ∞,1. Let Γc∞ be an arbitrary connected open and closed subset of

Γ∞. Set d(x) = dist(x,Γc∞).

By (5.5), there exist some positive constants γ−, γ+ and δ such that

γ− ≤ b(x)/k2(d(x)) ≤ γ+, for all x ∈ Ω with d(x) ≤ 2δ.

Choose β− ∈ (0, γ−/2) and β+ ∈ (2γ+,∞). We diminish δ > 0 such that:

(i) d(x) is a C2-function on {x ∈ Ω : d(x) < 2δ};

(ii) k is non-decreasing on (0, 2δ);

(iii) χ̂′′(t) > 0 on (0, 2δ), where χ̂ is provided by Lemma 5.3.12.

Let σ ∈ (0, δ) be arbitrary. With V2 given by Lemma 5.3.11, we define

u±σ (x) := V2(m(β∓)−1χ̂(d(x)∓ σ)) > 0, (5.77)

for each x ∈ Ω with σ/2 < d(x) ∓ σ/2 < 2δ − σ/2, where m := (C`1/2)−1 and

C > 0 is from Lemma 5.3.11. For brevity, we put

J±(x) := m(β∓)−1χ̂(d(x)∓ σ).

We prove that, by diminishing δ > 0, u+
σ and u−σ become upper and lower

solutions near the boundary:

±[−∆u±σ − au±σ + b(x)f(u±σ )] ≥ 0, (5.78)

for each x ∈ Ω with σ/2 < d(x)∓ σ/2 < 2δ − σ/2. One can see that

∆u±σ =m(β∓)−1χ̂′′(d(x)∓ σ)V ′2(J
±)

×
[
1 +

J±V ′′2 (J±)

V ′2(J
±)

[χ̂′]2

χ̂χ̂′′
(d(x)∓ σ) + ∆d(x)

χ̂′

χ̂′′
(d(x)∓ σ)

]
.

(5.79)

Denote S±(d∓ σ) the last factor in the right-hand side of (5.79). It follows that

±[−∆u±σ − au±σ + b(x)f(u±σ )] ≥ ±m(β∓)−1χ̂′′(d∓ σ)V ′2(J
±)K±(d∓ σ),

where we put

K±(d∓ σ) =
γ∓β∓
m

k2(d∓ σ)

χ̂′′(d∓ σ)

f(u±σ )

V ′2(J
±(x))

− a

m

β∓
χ̂′′(d∓ σ)

V2(J
±(x))

V ′2(J
±(x))

− S±(d∓ σ) =: T1(d∓ σ) + T2(d∓ σ)− S±(d∓ σ).
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By Lemmas 5.3.11 and 5.3.12, we deduce limd∓σ→0 T2(d∓ σ) = 0 and

lim
d∓σ→0

T1(d∓ σ) =
γ∓
β∓

`1
(2 + `1)

, lim
d∓σ→0

S±(d∓ σ) =
`1

2 + `1
.

Hence,

lim
d∓σ→0

K±(d∓ σ) =

(
γ∓
β∓

− 1

)
`1

2 + `1
.

This proves (5.78).

Proof of (5.66). Let ζ > 0 be small such that a is less than the first Dirichlet

eigenvalue of (−∆) in the domain Eζ := {x ∈ RN \ Ω : d(x) < ζ}.
For δ > 0 as in (5.78), set

Iδ = {x ∈ Ω : d(x) < δ} and Ω1 := E2ζ ∪ {x ∈ Ω : d(x) < δ}.

Let p ∈ C0,µ(Ω1) be such that 0 < p(x) ≤ b(x) for x ∈ Ω with d(x) ≤ δ, p = 0 in

Eζ and p > 0 in E2ζ \ Eζ . Denote by w a large solution of

−∆u = au− p(x)f(u) in Ω1.

Note that w is uniformly bounded on Γc∞ and w = ∞ on ∂Iδ ∩ Ω.

Let ua be an arbitrary large solution of (5.1) (resp., (5.2)). By (5.78) and

(5.3), we find
−∆(ua + w)− a(ua + w) + b(x)f(ua + w) ≥ 0 in Iδ,

−∆(u+
σ + w)− a(u+

σ + w) + b(x)f(u+
σ + w) ≥ 0 in Iδ \ Iσ,

(ua + w)|∂Iδ = ∞ > u−σ |∂Iδ and (u+
σ + w)|∂(Iδ\Iσ) = ∞ > ua|∂(Iδ\Iσ).

By Lemma 5.2.7, we get

ua + w ≥ u−σ in Iδ and u+
σ + w ≥ ua in Iδ \ Iσ.

Letting σ → 0, we arrive at

V2(m(β+)−1χ̂(d(x)))− w(x) ≤ ua ≤ V2(m(β−)−1χ̂(d(x))) + w(x),

for each x ∈ Ω with 0 < d(x) < δ. Since V2 ∈ RV0, by Proposition 4.1.1 we derive

1 ≤ lim inf
d(x)→0

ua(x)

V2(χ̂(d(x)))
≤ lim sup

d(x)→0

ua(x)

V2(χ̂(d(x)))
≤ 1.

By Remark 5.3.2, we conclude (5.66). The uniqueness of the large solution follows

now in a standard way (see §5.2.3.5).
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5.3.5 Proof of Theorem 5.3.3

Denote by Γ∗∞ the unique connected open and closed subset of Γ∞ that contains

x∗.

Since (5.70) holds, we can take c∗ ∈ R such that

c∗ > lim sup
x→x∗,x∈Ω

b(x)

k2(d(x,Γ∞))
.

Hence, we can assume that

0 < b(x) ≤ c∗ k
2(d(x,Γ∗∞)), ∀x ∈ Br0(x∗) ∩ Ω,

for some r0 > 0 small enough such that

Br0(x∗) := {x ∈ RN : |x− x∗| < r0} ⊂ B and Br0(x∗) ∩ ∂Ω ⊆ Γ∗∞. (5.80)

Let O1 and O2 be two smooth domains such that O1 ⊂⊂ O2 ⊂⊂ Br0(x∗) and

O1 ∩ Ω = I∗ ⊂ Γ∗∞ with x∗ belonging to the interior of I∗. In other words, O1

is outside Ω, but there is a part common to ∂O1 and ∂Ω, denoted by I∗, which

contains x∗ in its interior.

Set D∗ = O2 \ O1. By Lemma 3.3.4, the boundary value problem{
−∆u = au− c∗ k

2(d(x, ∂O1))f(u) in D∗

u = 0 on ∂O2

(5.81)

subject to u = n ≥ 1 on ∂O1 has a unique positive solution wn.

By Theorem 5.3.1, (5.81) subject to u = ∞ on ∂O1 has a unique positive, say

W , which satisfies

lim
d(x,∂O1)→0

W (x)

φ(d(x, ∂O1))
= 1. (5.82)

Notice that d(x, ∂O1) ≥ d(x,Γ∗∞), for each x ∈ D∗ ∩ Ω. Hence, for all n ≥ 1,
−∆wn ≤ awn − b(x)f(wn) in D∗ ∩ Ω,

wn = 0 on ∂O2,

U |D∗∩Γ∗∞
= ∞ > wn|D∗∩Γ∗∞

,

where U denotes an arbitrary positive solution of (5.69).
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By Proposition 5.2.7, we infer that{
wn ≤ wn+1 ≤ W in D∗, ∀n ≥ 1,

wn ≤ U in D∗ ∩ Ω, ∀n ≥ 1.
(5.83)

Standard regularity arguments show that w∞ defined by

w∞(x) := lim
n→∞

wn(x), ∀x ∈ D∗,

is a positive solution of (5.81) satisfying w∞ = ∞ on ∂O1. Hence,

w∞ ≡ W in D∗.

By (5.83), we obtain U ≥ W in D∗ ∩ Ω. It follows that

U(x)

φ(d(x,Γ∗∞))
≥ W (x)

φ(d(x,Γ∗∞))
, ∀x ∈ D∗ ∩ Ω. (5.84)

By our choice of O1, d(x, ∂O1) = d(x,Γ∗∞) if x ∈ Ω is sufficiently close to x∗.

Hence, letting x→ x∗ in (5.84) and using (5.82), we find

lim inf
x→x∗, x∈Ω

U(x)

φ(d(x,Γ∞))
≥ 1,

which concludes the proof.

5.3.6 Proof of Theorem 5.3.4

Let Γ∗∞ be the same as in the proof of Theorem 5.3.3. Since we assume (5.72),

we can take

0 < d∗ < lim inf
x→x∗,x∈Ω

b(x)

k2(d(x,Γ∞))

and find r0 > 0 small such that (5.80) holds and

b(x) ≥ d∗ k
2(d(x,Γ∗∞)), ∀x ∈ Br0(x∗) ∩ Ω.

Let Ω∗ be a smooth domain such that

Ω∗ ⊂ Ω ∩Br0(x∗) and I∗ := ∂Ω∗ ∩ Γ∗∞ contains x∗ in its interior. (5.85)

For n ≥ 1, set Ω∗,n = {x ∈ Ω∗ : 1/n < d(x, ∂Ω∗)}. Obviously, Ω∗ = ∪∞n=1Ω∗,n.
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By Theorem 5.3.1, there is a unique large solution Z∗ of the equation

−∆u = au− d∗k
2(d(x, ∂Ω∗))f(u) in Ω∗. (5.86)

Let Zn be the unique large solution of (5.86) with Ω∗ replaced by Ω∗,n.

Applying Theorem 5.3.1, we get

lim
d(x,∂Ω∗)→0

Z∗(x)

φ(d(x, ∂Ω∗))
= 1. (5.87)

Clearly d(x, ∂Ω∗,n) ≤ d(x, ∂Ω∗,n+1) ≤ d(x,Γ∗∞) for each x ∈ Ω∗,n, and{
−∆Zn ≥ aZn − b(x)f(Zn) in Ω∗,n, ∀n ≥ 1,

Zn|∂Ω∗,n = ∞ > U |∂Ω∗,n , ∀n ≥ 1.

By Proposition 5.2.7, we deduce{
Zn ≥ Zn+1 in Ω∗,n, ∀n ≥ 1,

Zn ≥ U in Ω∗,n, ∀n ≥ 1,
(5.88)

where U is an arbitrary positive solution of (5.69). For each x ∈ Ω∗, there

exists an integer m(x) ≥ 1 such that x ∈ Ω∗,n, for each n ≥ m(x). By (5.88),

Z∞(x) = limn→∞ Zn(x) is well defined. Standard regularity arguments imply

that Z∞ is a positive solution of (5.86) in Ω∗ satisfying Z∞ = ∞ on ∂Ω∗. Since

there is only one such solution, we conclude that

Z∞ ≡ Z∗ in Ω∗. (5.89)

By (5.88) and (5.89), it follows that

U(x)

φ(d(x,Γ∗∞))
≤ Z∗(x)

φ(d(x,Γ∗∞))
, ∀x ∈ Ω∗. (5.90)

By (5.85), we have d(x, ∂Ω∗) = d(x,Γ∗∞) if x ∈ Ω∗ is close to x∗. Thus, letting

x→ x∗ in (5.90) and using (5.87), we obtain

lim sup
x→x∗, x∈Ω

U(x)

φ(d(x,Γ∞))
≤ 1.

This finishes the proof.
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Ĉırstea, F.-C. and V. Rădulescu (2003a), ‘Asymptotics for the blow-up boundary

solution of the logistic equations with absorption’, C. R. Math. Acad. Sci. Paris

336(3), 231–236. 4.2.2, 4.2.3
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‘Pointwise growth and uniqueness of positive solutions for a class of sublinear

elliptic problems where bifurcation from infinity occurs’, Arch. Ration. Mech.

Anal. 145(3), 261–289. 1.2.1, 1.2.1
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