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Abstract

The huge demand of wireless communications has driven the require-

ment for highly-efficient multiple-access communications schemes that

can accommodate multiple simultaneous users, yet provide performance

similar to single-user systems. Recently, iterative multiuser detection

schemes have shown to provide this high level of performance at a

manageable level of complexity. This thesis is concerned with iterative

detection of two non-orthogonal asynchronous access schemes: code-

division multiple-access (CDMA); and interleave-division multiple-access

(IDMA).

A multi-rate IDMA system is developed where different users transmit

data at different rates. High-rate users support multiple sub-streams,

each coded as an IDMA layer. The iterative receiver treats each IDMA

layer as a virtual user. Variance transfer analysis is employed to analyse

the receiver performance, which is then optimised by developing a power

allocation strategy. Simulation results demonstrate that the performance

of this proposed system is close to the theoretical limit in a Rayleigh

flat-fading environment.

Next, receiver performance is optimised by forward error correction

code allocation. For multiuser systems with dynamic loads, new users are

allocated codes according to the existing system load in order to optimise

receiver convergence. Small multiuser systems have performances that

approach the theoretical single-user bound.

The Golden Code is a “perfect” space-time block-code for 2× 2

multiple-antenna (MIMO) systems. It can simultaneously achieve both

full-diversity and -rate. A MIMO-IDMA multiuser detector is developed

to extend the golden code scheme to the multiuser case. Decoding is

performed by an iterative receiver whose complexity is linear in the
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number of users. In a Rayleigh flat-fading environment, simulation

results show that the proposed scheme can outperform other common

MIMO schemes and approaches within 0.25dB of the single-user bound.

The application of iterative multiuser detection to underwater acous-

tic communications is considered next. Designing reliable communication

systems for the underwater acoustic channel has proven to be very chal-

lenging. A major channel impairment is the multipath interference

caused by multiple reflections of the acoustic signal from the water

surface and bottom. These reflections occur at small grazing angles and

with small reflection losses, causing both long delay spread and large

multipath amplitudes in the received signal.

The large delay-spread implies that single-carrier communication will

be plagued by inter-symbol interference (ISI) that spans many symbols.

As an alternative, multi-carrier modulation (MCM) has been proposed

to increase the symbol interval and thereby decrease the ISI span. We

combine Orthogonal Frequency-Division Multiplexing (OFDM), a low-

complexity spectrally-efficient MCM technique, with an IDMA overlay

to develop a multiple-access communications system that provides robust

performance in the presence of large time-delay spread and the other

impairments presented by the shallow water acoustic channel.

Finally, we consider multiuser communications in doubly-spread

underwater acoustic channels, where the relative motion between the

transmitter, receiver, and scattering objects imparts each path with a

unique Doppler shift. In this case, the orthogonality of OFDM is lost,

leading to subcarrier interference which greatly complicates optimal

data detection. Therefore, single-carrier system is considered with a

non-linear Kalman filter as equalizer. The doubly-selective channel is

modelled using basis expansion models (BEMs), a low-rank channel

model that exploits the inherent structure in the channel response. The

use of basis functions can turn a time-varying system identification

problem into a time-invariant one, thereby reducing the number of

parameters to estimate. The receiver uses a semi-blind iterative channel

estimation algorithm to estimate the channel parameters. Experimental

results demonstrate robust performance in underwater channels with

simultaneously large delay- and Doppler-spreads.
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Chapter 1

Introduction

The last two decades has witnessed a tremendous growth in wireless communications.

Cellar mobile telephony and data services, and wireless networking were once rare but

have become pervasive and an almost essential part of daily life. Future demand for

these wireless devices and services show no sign of abating. In addition to the traditional

network usage of wireless technology, the availability of low-cost wireless devices has

enabled many new wireless applications over recent years. One notable application is

distributed sensing, in which large numbers of inexpensive wireless nodes sense some

ongoing process and wirelessly communicate with each other and wired access points.

Environmental detection, surveillance, and health monitoring are just a few of the

numerous potential uses of distributed sensor networks.

A defining feature of wireless communications is that all devices must share the

electromagnetic spectrum in order to communicate with each other. Unlike in wired

communications, where each communication channel could conceivably have a physical

channel independent from all others, in wireless communication all channels come from a

common medium. The scarcity of radio spectrum resource requires wireless communica-

tion systems to reuse the frequency bands In order to achieve reliable communications,

some scheme must be developed for equitable sharing the usable frequencies. The issue

of a large number of users sharing a single allocated spectrum in order to communicate

is known as the multiple-access problem.

2
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1.1 Multiple-Access Schemes

In a multiuser communication system, a large number of users share a common multiple-

access channel to transmit information to a receiver. Multiple access systems generally

require that when different transmitting sources are sending messages simultaneously

through the same channel, the transmissions must be separated in some fashion so that

they do not interfere with one another. This is usually accomplished by making the

messages orthogonal to one another in the dimensions of frequency, time or code.

Frequency division multiple access (FDMA). In FDMA systems, the allocated fre-

quency band is divided into non-overlapping sub-channels. Each transmitting source

is assigned an individual sub-channel for data transmission, as shown in Figure 1.1a.

A disadvantage of FDMA is that the frequency spectrum may not be used efficiently

as no user can share the same frequency band at the same time and guard bands

have to be maintained between adjacent signals spectra to minimise cross talk

between sub-channels. FDMA also constrains the maximum bit rate per channel as

increasing the bit rate requires the allocation of more frequency channels to a user.

Time division multiple access (TDMA). In TDMA systems, each user is allocated a

unique cyclically repeating time slot within the channel. This allows a number of

users to access and share a common channel without interfering with each other.

Different users can transmit or receive messages, one after the next in the same

bandwidth but in different time slots, as shown in Figure 1.1b. A disadvantages of

TDMA is that it requires a significant amount of signal processing for synchronisation

as the transmission of all users must be exactly synchronised. Additionally, TDMA

needs guard times (the equivalent to guard bands in FDMA) between time intervals

to reduce the effects of clock instabilities and transmission time delay.

Code-division multiple access (CDMA). CDMA is a spread-spectrum technique where

the transmitted signal is spread over a wide frequency band, much wider that the

minimum bandwidth required to transmit the information being sent.

The most common form of CDMA is direct sequence (DS) CDMA where all users

share a common channel in time and frequency (Figure 1.1c). Each user modulates

its data with a unique spreading sequence (pseudo-random modulation), which

allows the users data to be distinguished at the receiver. In contrast to FDMA

and TDMA, where the users communication channels are separated in frequency
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or time, in a DS-CDMA system the users data are distinguished by the separation

(cross-correlation) between their spreading sequences.

Code
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Figure 1.1: Multiple-access techniques: (a) Frequency-division multiple access (FDMA); (b)
Time-division multiple access (TDMA); and (c) Code-division multiple access
(CDMA).

CDMA schemes have become a very popular method for multiple-access communica-

tions, and multiuser detection algorithms for CDMA receivers will be the focus of this

thesis. Since the users in a DS-CDMA system are distinguished by the separation (cross-

correlation) between their spreading sequences, we can categorise DS-CDMA schemes

according to the cross-correlation between users, i.e.,

• orthogonal signalling - where the cross-correlation between all users is zero; or

• non-orthogonal signalling - where the cross-correlation between users is non-zero.

Additionally, CDMA schemes can also be categorised according to the synchronism of

the users’ signals at the receiver, i.e.,

• synchronous schemes where the bit epochs of all the users are aligned at the receiver.

• asynchronous schemes where bit epochs of the users may be offset (not aligned) at

the receiver.

Asynchronous schemes are also non-orthogonal because there are no known sets of

spreading sequences that exhibit zero cross-correlation over a range of timing offsets.

In this thesis, we investigate asynchronous non-orthogonal CDMA schemes, and in

particular, Interleave Division Multiple Access (IDMA) which is a multiple-access scheme
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where users are separated by unique interleaver sequences (instead of unique spreading

sequences).

Iterative signal processing has proven to be an important technique in improving

the performance of receivers in communications systems. Iterative techniques can be

used to equalize inter-symbol interference channels (turbo equalization) and to resolve

multiple-access interference (MAI) in multiuser receivers (turbo multiuser-detection, or

turbo MUD). The origins of these techniques lie in error correction coding with the

concepts of concatenated coding [29] and turbo codes. A brief review of error correction

coding provides insight into the common building blocks of iterative processing.

1.2 Error Correction Coding

The approach to error correction coding taken by modern digital communication systems

started in the late 1940’s with the ground breaking work of Shannon [107], Hamming [38],

and Golay [34]. In his paper, Shannon developed the theoretical basis for coding which

has become known as information theory. By mathematically defining the entropy of

an information source and the capacity of a communications channel, he showed that it

was possible to achieve reliable communications over a noisy channel provided that the

source’s entropy is lower than the channel’s capacity. Shannon did not explicitly state

how channel capacity could be practically reached, only that it was attainable.

1.2.1 Block Codes

Hamming is generally credited with discovering the first error correcting code [68] when,

in 1946, he developed an algorithm that enabled early computers to correct isolated

errors detected in the input data. His method was to group the data into sets of four

information bits and then calculate three check bits which are a linearly combination of

the information bits, resulting in a seven bit code word. After reading in a code word,

the Hamming’s algorithm could detect errors and also determine the location of a single

error. Hence, the Hamming code was able to correct a single error in a block of seven

encoded bits.

While it was a major advancement, the Hamming code had a number of shortcomings.

Firstly, it was inefficient, requiring three check bits for every four data bits, and secondly, it
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only had the ability to correct a single error within the block. These issues were addressed

by Golay, who generalized Hamming’s construction, and in the process, discovered two

important codes: the binary Golay code; and ternary Golay code [137].

Reed-Muller (RM) codes [78] [99] were the next main class of linear block codes to be

discovered, and were an important development because they allowed more flexibility in

the size of the code word and the number of correctable errors per code word. They were

followed by the discovery of cyclic codes, first discovered by Prange [90]. Cyclic codes

are linear block codes that possess the additional property that any cyclic shift of a code

word is also a code word. The cyclic property adds considerable structure to the code,

which can be exploited by reduced complexity encoders and (more importantly) reduced

complexity decoders. Important cyclic codes include the binary BCH codes [14] [43], and

their non-binary extensions, the Reed and Solomon (RS) codes [100]. RS codes were a

major advancement because their non-binary nature allows for protection against bursts

of errors.

Although popular, block codes have two fundamental disadvantages: Firstly, their

frame-oriented nature means that the entire code word must be received before decoding

can be completed. This can introduce unacceptable latency into the system, particularly

when block lengths are large. Secondly, most algebraic-based decoders for block codes

work with hard-bit decisions, rather than with the unquantized, or “soft”, outputs of

the demodulator. With hard-decision decoding, the output of the channel is taken to be

binary, while with soft-decision decoding the channel output is continuous-valued [125].

In order to achieve the Shannon performance bound, a continuous-valued channel

output is required. Block codes can achieve good performance over relatively benign

channels, but they are generally power inefficient and have poor performance when the

signal-to-noise ratio (SNR) is low. This poor performance at low SNR is not a function of

the code itself, but is actually a function of the sub-optimality of hard-decision decoding.

It is possible to perform soft-decision decoding of block codes, although historically

soft-decision decoding has generally been regarded as too complex [125].

1.2.2 Convolutional Codes

Convolutional codes, introduced by Elias [26], avoid both main disadvantages of block

codes. Instead of segmenting data into distinct blocks, convolutional encoders add

redundancy to a continuous stream of input data by using linear shift registers. Each set
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of n output bits is a linear combination of the current set of m input bits and the bits

stored in the shift register. The total number of bits that each output depends on is called

the constraint length, L. The rate, Rc, of the convolutional encoder is the number of data

bits m taken in by the encoder in one coding interval, divided by the number of code

bits n output during the same interval, i.e., Rc = m/n. Just as the data is continuously

encoded, it can be continuously decoded with nominal latency. Additionally, the decoding

algorithms can make full use of soft-decision information from the demodulator.

The first practical decoding algorithm for convolutional codes was the sequential

decoder, introduced by Wozencraft and Reiffen [138]. However convolutional coding was

not widely used until the introduction of the Viterbi algorithm (VA) [129], which was the

first practical method for optimally (maximum likelihood) decoding convolutional codes.

de-interleaved data

1 2 3

7

4 5

8 9

6

interleaved data

1 2 3

7

4 5

8 9

6

Interleaver

De-Interleaver
-1

read

write

re
a
d

input data

1 2 3 4 5 6 87 9

w
ri
te

1 4 7 2 5 8 63 9

1 2 3 4 5 6 87 9

1 2 3

7

4 5

8 9

6

re
a
d

Step 1.
Input (write) sequence

Step 2.
Output (read) sequence

Interleaver Operation

De-Interleaver Operation

Step 1.
Input (write) sequence

Step 2.
Output (read) sequence

1 2 3

7

4 5

8 9

6

read

1 2 3

7

4 5

8 9

6

write

1 2 3

7

4 5

8 9

6

w
ri
te

Figure 1.2: Block interleaver and de-interleaver operation

One of the main disadvantages of convolutional codes is their susceptibility to burst

errors. This susceptibility can be mitigated by using an interleaver, which scrambles the

order of the code bits prior to transmission. A deinterleaver at the receiver places the
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received code bits back in the proper order after demodulation and prior to decoding. By

scrambling the order of the code bits at the transmitter, and then reversing the process

at the receiver, burst errors can be spread out so that they appear independent to the

decoder. The most common type of interleaver is the block interleaver (Figure 1.2),

which is simply an Mb×Nb bit array. Data is placed into the array column-wise and

then read out row-wise. A burst error of length up to Nb bits can be spread out by a

block interleaver such that only one error occurs every Mb bits. There are also many

other interleaver types [130].

1.2.3 Concatenated Codes
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Figure 1.3: Serial concatenated coding system. Optional interleaver and deinterleaver are
used for channels with very long error bursts.

Convolutional codes and Reed-Solomon (RS) codes have complimentary properties.

Convolutional codes are susceptible to burst errors, while RS codes can cope with burst

errors quite well [137]. By concatenating an RS code and a convolutional code in series,

Forney was able to take advantage of these complimentary properties and create an

efficient system design for power-limited channels [29].

Forney’s concatenated coding scheme is shown in Figure 1.3. Data is first encoded by

an RS outer encoder which then feeds an inner convolutional encoder. At the receiver,

the inner convolutional decoder cleans up the data received over the noisy channel. The

output of the convolutional decoder has a much improved SNR, but due to the nature

of convolutional codes, errors are typically grouped into bursts. The outer RS decoder

completes the decoding process by decoding data output from the convolutional decoder.
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Hence, each decoder works with the appropriate type of data—the convolutional decoder

works at low SNR with mostly independent errors, while the RS decoder works at high

SNR with mostly burst errors. For cases with very long error bursts, a block interleaver

can can be placed between the convolutional and RS encoders in order to spread long

error bursts across several RS code words [137].

1.2.4 Turbo Codes

Although considerable progress had been made in coding theory, there was still a

considerable gap between the performance of the best known codes and the theoretical

limit predicted by Shannon. This changed when Berrou, Glavieux, and Thitimajshima

[13] discovered turbo codes—a practical coding system that could approach Shannon’s

theoretical limit.

A turbo code is the parallel concatenation of two or more component codes. In

its original form, the constituent codes were recursive systematic convolutional (RSC)

codes [13], which are a subclass of convolutional codes. As shown in Figure 1.4a, two

rate Rc = 1/2 RSC encoders work on the input data in parallel, with the input data

interleaved before being fed into the lower encoder (Code 2 encoder). The encoders are

systematic (one of the outputs is the input itself) and receive the same input (although

in a different order), therefore, the systematic output of the Code 2 encoder is completely

redundant and does not need to be transmitted. The overall code rate of the parallel

concatenated code is Rc = 1/3, although higher code rates can be obtained by puncturing

(i.e., selectively removing) the parity output with a multiplexer (MUX) circuit [48].

Due to the presence of the interleaver, optimal (maximal likelihood) decoding of

turbo codes has prohibitive computational complexity. However, a suboptimal iterative

decoding algorithm was presented in [13] which provides good performance at much lower

complexity. The idea behind the decoding strategy is to break the overall decoding

problem into two smaller problems (decoding each of the constituent codes) with locally

optimal solutions and to share information in an iterative fashion. The decoder associated

with each of the constituent codes is modified so that it produces soft-outputs in the

form of a posteriori probabilities (APPs) of the data bits. The two decoders are cascaded

as shown in Figure 1.4b so that the Code 2 decoder receives the soft-output of the Code

1 decoder. At the end of the first iteration, the soft-output of the Code 2 decoder is fed

back to the upper decoder and used as a priori information during the next iteration.

Decoding continues in an iterative fashion until the desired performance is attained.
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However, iterative decoding obeys a law of diminishing returns and hence the incremental

gain of each additional iteration is less than that of the previous iteration. It is the

decoding method that gives turbo codes their name, since the feedback action of the

decoder is similar to that of a turbo-charged engine [125].

Simulation results for the original turbo code of [13] showed that a bit error rate of

10−5 could be achieved at an Eb/N0 ratio of just 0.7dB after 18 iterations of decoding, i.e.,

turbo codes could come within a 0.7dB of the Shannon limit. Other researchers began to

look at using other concatenation configurations and other types of component codes.

It was found that serial concatenated codes offer performance that is comparable to, or

even exceeds, that of parallel concatenated codes [11]. Additionally, it was found that the
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performance with convolutional component codes could be matched or exceeded with

block component codes [19] [94] [1]. As a result, it became clear that the real breakthrough

from the introduction of turbo codes, was not the code construction, but the method of

iterative decoding.
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1.3 Applications of Iterative Decoding

After the introduction of turbo codes, it was quickly recognized that the iterative

decoding method was suitable for many other applications, and could be used as a

general methodology for receiver design. Communication receivers typically consist of

a cascade of subsystems, each optimized to perform a single task. Examples of these

subsystems include equalizers, multiuser detectors, channel decoders, and source decoders.

Traditionally, the interface between subsystems involves the passing of hard-decisions

(e.g., bits) down the stages of the chain. Whenever hard-decisions are made, information is

lost and becomes unavailable to subsequent stages. Additionally, stages at the beginning
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of the processing chain do not benefit from information derived by stages further down the

chain. The interface between stages can be greatly improved by using the same strategy

devised to decode turbo codes. This general strategy of iterative feedback decoding or

detection is termed turbo processing [66].

Turbo processing frameworks are constructed using soft-input soft-output (SISO)

subsystems. A SISO subsystem receives soft-decision values as input and produces soft-

decision values as output. Soft-decision values are passed down the chain and refined by

subsequent stages. The soft-output of the final stage is then fed back to the first stage and

the next iteration of processing is initiated. Multiple iterations of turbo processing can be

performed, although, as with turbo codes, the incremental improvement in performance

diminishes with each additional iteration.

Turbo processing can be used to combine channel decoding with source decoding [36],

and channel decoding with symbol detection [66]. Other examples include:

Turbo equalization. This is a method of combining equalization with channel decoding

[23]. An equalizer is a subsystem that compensates for the intersymbol interference

(ISI) present in frequency selective channels. A frequency selective channel can be

described as a rate-one convolutional code defined over the field of real or complex

numbers. The combination of a convolutional channel code and ISI channel can

be viewed as a serial concatenation of two convolutional codes, which is a type of

serially concatenated turbo code, and can therefore can be decoded using the turbo

decoding algorithm.

Turbo multiuser detection. Here, the concept of turbo processing is applied to coded

multiple-access channels [44]. In a multiple-access channel, several users transmit at

the same time and frequency, producing multiple access interference (MAI), which

can be described as a form of time varying ISI. Thus, the multiple access channel

can be viewed as a rate-one convolutional code with time varying coefficients taken

over the field of real numbers. The combination of convolutional channel code and

MAI channel can also be viewed as a serial concatenation of two convolutional codes,

and is therefore suitable for turbo decoding.

1.4 Summary of Thesis Work

This thesis is concerned with two main topics related to iterative multiuser receivers.
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The first topic considers the optimisation of iteratively-decoded IDMA multiple-access

communications systems. Using variance-transfer charts to analyse the performance of

the iterative receiver, numerical methods are developed to maximise receiver performance

by optimally allocating transmit power, and also dynamically allocating FEC codes for

variable load systems. Optimal space-time coding (codes that provide both maximal

spatial-multiplexing and diversity) are also investigated, and an efficient iterative multiuser

receiver for the codes is developed.

The second topic considers the application of iteratively-decoded multiple-access

communications in underwater acoustic network. We develop novel iterative receiver

structures for underwater acoustic channels with delay-spread only, and with delay- and

Doppler-spread (doubly-spread). Adaptive channel estimation for the doubly-spread

channel is also developed.

1.4.1 Iterative Methods for Equalization and Multiuser Detection

An introduction and literature survey on applying the turbo principle to channel equal-

ization and multiuser detection is presented.

Turbo Equalization. Equalization is the process of compensating for the effects of

intersymbol interference (ISI) arising from the transmission of data over multipath

delay-spread channels. We discuss the application of the turbo decoding algorithm

to joint equalization and data detection.

Iterative Multiuser Detection. Multiuser detection (MUD) refers to the detection of

data from multiple sources transmitting in a non-orthogonal multiple-access channel.

For example, a CDMA system where users transmit using nonorthogonal spreading

codes. We discuss the application of the turbo decoding algorithm to multiuser

detection (MUD).

CDMA and IDMA. CDMA has become a widely used multiple-access technique. Re-

cently, a new multiple-access scheme, interleave division multiple access (IDMA)

has been proposed [85]. When used with low-complexity iterative receivers, IDMA

has been shown to outperform coded CDMA. In contrast to CDMA, which sepa-

rates users by specific spreading codes, IDMA separates users by unique interleaver

sequences. We provide detailed system models for the iterative decoding of CDMA

and IDMA systems.
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1.4.2 IDMA Performance Optimisation using Variance Transfer

Analysis

Variance Transfer (VT) charts [102] are used as a tool for analysing the iterative receiver

performance. VT charts track the variance of the estimation error in the soft estimates

that are exchanged between the multiuser detector (MUD) and the channel decoders,

providing a graphical representation of the receiver’s convergence process. Although

similar in concept to Extrinsic Information Transfer (EXIT) charts [115], VT charts

are better suited for analysing multiuser detectors. Using variance transfer analysis,

numerical methods are devised to optimise the receiver performance. Two multiuser

system scenarios are considered for optimisation:

Layered IDMA with Power Allocation. Firstly, the IDMA concept is extended to a

multi-rate system where different users transmit data at different rates and the

same low-complexity iterative receiver structure can still be used. High-rate users

are supported by breaking up the input data stream into multiple sub-streams.

An IDMA layer is created from each sub-stream, and the multiple layers are then

combined and the composite layered signal is transmitted from a single antenna.

The iterative receiver treats each IDMA layer as a virtual user.

Chayat et. al. [18] observed that the performance of an iterative receiver is improved

if different users transmit at different powers. This allows the iterative decoder to

operate in an “onion peeling” mode, where the higher-power layers converge first,

decreasing their contribution to the residual noise, and then the lower-power layers

converge. CDMA and IDMA systems utilising iterative receivers can exploit this

power allocation strategy to gain an improvement in performance.

To improve the performance of our layered IDMA scheme, we develop a simple power

allocation scheme, where the power levels for each IDMA layer are calculated using

Variance Transfer (VT) analysis and linear programming techniques. In a Rayleigh

flat-fading environment, simulation results demonstrate that the performance of

this proposed system is close to the theoretical limit.

FEC Code Allocation for Dynamic Loads. Secondly, we propose an alternative opti-

misation approach for inducing “onion peeling” operation in the iterative receiver.

Ten Brink [116] demonstrated that different FEC codes generate different variance

transfer characteristics within an iterative receiver. Therefore, as an alternative to
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manipulating transmit power, the judicious selection of FEC codes can also be used

to optimise receiver performance.

A simple FEC code allocation strategy for multiuser systems with dynamic loads is

devised. New users are allocated FEC codes according to the existing system load,

providing optimal system performance over a range of operating conditions. We

derive a numerical method for optimising performance based on FEC code allocation,

and present simulation results. For small multiuser systems, results demonstrate

that the performance of the proposed system approaches the theoretical single user

bound.

1.4.3 Optimal Space-Time Coding using the Golden Code

Multiple antenna systems (commonly referred MIMO systems) have proven to be an

effective method for realising high-rate reliable wireless communications. Generally

coding strategies for MIMO systems has focused on providing either higher-rate or

increased diversity over traditional single antenna systems. Layered space-time (BLAST)

coding schemes utilise spatial multiplexing to achieve high-throughput rates, but do not

provide any diversity gain. Orthogonal space time block coding (STBC) schemes provide

diversity gain, but generally have coding rates of 1/2 or less.

Linear dispersion (LD) codes are a generalised class of space-time codes that can

theoretically provide both diversity gain and high-rate [39]. Cyclic division algebra

techniques have provided the means for constructing LD codes that provide both full-

diversity and full-rate[105]. Space-time codes that achieve both full-diversity and -rate are

known as perfect codes. The golden code [7] is a perfect code for 2× 2 multiple-antenna

systems.

We extend the golden code (GC) system to the multiuser case, and develop a MIMO-

IDMA multiuser detector to decode LD codes. The performance of this GC-IDMA

scheme is compared against MIMO-IDMA schemes employing the Alamouti code and

V-BLAST, and also against the single-user bound. In a Rayleigh flat-fading environment,

simulation results show that GC-IDMA outperforms both Alamouti- and V-BLAST-

IDMA at moderate and high signal to noise ratios. For an Eb/N0 ratio of 8dB or greater,

the GC-IDMA scheme employing 16 users approaches within 0.25dB of the single-user

bound.
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1.4.4 Multiuser Communications for Underwater Acoustic Channels

We consider the application of multiuser communications to underwater sensor networks.

These networks enable a broad range of applications including environmental monitoring,

undersea exploration, assisted navigation, and distributed surveillance [2]. Reliable high-

performance sensor networks would need to be underpinned by a robust and efficient

multiple-access underwater communications scheme.

Transmission of acoustic waves is considered the most practical means of underwater

communications, as neither radio or optical systems have proved feasible. Radio systems

are not feasible because only radio waves in the extra-low frequency range (< 300Hz) are

capable of propagating any distance through conductive sea water. Optical systems are

also not suitable because optic waves, while not suffering as significantly from attenuation,

are severely affected by scattering and absorption [110]. However, designing reliable

underwater acoustic communications (UAC) systems has proven to be very challenging,

with the underwater acoustic channel being referred to as “quite possibly natures most

unforgiving wireless medium” [16].

Delay-spread underwater acoustic channels

One of the main channel impairments is multipath interference caused by multiple

reflections of the acoustic signal from the water surface and bottom. These reflections

occur at small grazing angles and with small reflection losses, causing both large delay-

spread and large multipath amplitudes to be present in the received signal [51].

Large delay-spread implies that single-carrier communication will be plagued by

inter-symbol interference (ISI) that spans many symbols. As an alternative, multi-

carrier modulation (MCM) has been proposed to increase the symbol interval and

thereby decrease the ISI span. In multi-carrier modulation, the data stream is split into

several substreams and transmitted, in parallel, on different subcarriers. This transforms

the inter-symbol interference (ISI)-inducing channel into a set of independent parallel

subchannels. The principle advantage of multi-carrier schemes, relative to single-carrier

schemes, is that they facilitate simple equalization of delay-spread channels. The is

significant as equalization of underwater acoustic channels is usually a complex task.

Orthogonal frequency division multiplexing (OFDM) [135], [20] is a practical MCM

scheme that uses the computationally-efficient fast Fourier transform (FFT) to transmit
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data in parallel over a large number of orthogonal subcarriers. Typically, the number of

subcarriers is chosen such that the symbol duration is large compared to the maximum

delay of the channel, reducing the effects of ISI. However, to completely avoid the effects

of ISI and thus, to maintain the orthogonality between the signals on the sub-carriers,

a cyclic prefix (called a guard interval) is inserted between adjacent OFDM symbols.

The guard time is chosen to be larger than the expected channel delay spread, such

that multipath components from one symbol cannot interfere with the next symbol

[28]. Maintaining subcarrier orthogonality eliminates intercarrier interference (ICI) and

therefore allow simple (low-complexity) data detection.

We combine Orthogonal Frequency Division Multiplexing (OFDM) with an IDMA

overlay to develop a multiple-access communications system that provides robust perfor-

mance in the presence of large time-delay spread and the other impairments presented

by the shallow water acoustic channel. The proposed OFDM-IDMA scheme utilises

a low-complexity iterative decoding algorithm based on the turbo-decoding concept.

The experimental results demonstrate that the OFDM-IDMA scheme provides robust

performance in delay-spread underwater acoustic environments.

Doubly-spread underwater acoustic channels

We extend the underwater acoustic channel to the doubly-spread case. The relative

motion between the transmitter, receiver, and scattering objects imparts each path

with a unique Doppler shift, so that multipath propagation also induces a frequency-

domain spreading effect on the information signal. Such channels are both delay- and

Doppler-spread (or equivalently, frequency- and time-selective), and are referred to as

“doubly-spread” or “doubly-selective”.

OFDM schemes have been successfully used for time-invariant and slowly time-varying

(TV) channels. But for doubly-spread (or rapidly TV) channels, using OFDM becomes

problematic. For time-invariant channels, the data stream can be split up and transmitted

in parallel on non-interfering subcarriers, with equalization being just a simple matter

of adjusting the gain and phase on each received subcarrier. This approach can be

easily extended to slowly TV channels, where a time-invariant channel is simulated by

choosing an OFDM symbol duration that is shorter than the coherence time of the

channel. However, this approach becomes impractical for rapidly TV channels. For

time-invariant or slowly TV channels, the loss in spectral efficiency due to the inclusion

of the guard intervals can be made small, since the channel delay spread (and hence the
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guard interval) is much smaller than the channel coherence time (and hence the OFDM

symbol length). But for rapidly TV channels, the OFDM symbol length would need

to be made extremely short, at which point the loss of spectral efficiency due to guard

insertion would be severe [104].

Therefore, we consider single-carrier system with adaptive channel-estimation for the

doubly-spread underwater channel. A single-carrier system with linear traversal equalizer

would face complexity issues due to the large number of equalizer taps required to

compensate for the long delay-spread. Instead, a Kalman filter (KF) is used as equalizer.

KF-based equalizers have been shown to perform significantly better than linear traversal

equalizers at a much lower complexity (fewer equalizer taps) [55], [101]. Moreover, the

state-space formulation of the Kalman equalizer is well suited for iterative receivers and

allows easy incorporation of soft (a-priori) information for channel-coded systems.

The doubly-selective channels are modeled using basis expansion models (BEMs). A

basis expansion model is a parsimonious (economical while accurate) low-rank channel

model that exploits the inherent structure in the channel response [32]. Modelling of

linear systems by basis functions can turn a time-varying system identification problem

into a time-invariant one, thereby reducing the number of channel parameters to estimate

and simplifying the equalization task.

The receiver uses a semi-blind iterative channel estimation algorithm to initially

estimate the channels using only the pilot sequences and then iteratively includes the

decoded data into the channel estimates to improve the estimation accuracy. Experimental

results show that the proposed system provides robust performance in doubly-spread

underwater acoustic environments.

1.5 Original Contributions

The original contributions of this research include:

• Simulation results illustrating the performance of the Golden Code over the wireless

channels with Doppler spread.

• A novel multiuser iterative receiver for linear dispersion codes developed specifically

for decoding the Golden Code.
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• A novel power allocation method for multirate IDMA systems, where the power

allocation is calculated using variance-transfer charts and linear programming.

• A novel FEC code allocation method to optimise multiuser system performance

over varying system loads.

• The novel application of OFDM-IDMA to underwater acoustic communications and

simulation results of the system performance.

• A novel iterative receiver for underwater acoustic communications for doubly-spread

underwater channels. The iterative receiver incorporates a non-linear Kalman filter

to perform joint decoding and channel equalization. Superimposed training is used

for channel estimation and the time-varying channels are modeled using low-rank

basis expansion models (BEMs).

These works were new when they were published or completed.

1.6 Thesis Outline

In this thesis, our goals are twofold. Firstly, we consider methods to multiuesr iterative

receiver performance using power allocation, FEC code allocation, and maximising

MIMO diversity through the use of perfect space-time codes. Secondly, we consider

the application of underwater acoustic communications and develop multiuser receiver

structures for channels with severe delay-spread and also doubly-spread. Therefore we

organise the rest of the thesis as follows

In Chapter 2, we provide an introduction and literature survey on turbo equalization

and turbo multiuser detection techniques. Detailed system models of iterative receivers

for CDMA and IDMA multiple-access systems are also presented.

In Chapter 3, we describe our method of selecting transmit power levels to optimise

the system performance. Next, we describe our method of assigning different FEC codes

to different users to optimise the multiuser receiver performance. Both methods use

variance transfer charts and linear programming.

In Chapter 4, we discuss MIMO systems and perfect space-time codes – codes that

maximise both diversity and coding-rate. We describe our new receiver structures for

decoding multiple perfect space-time codes.
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In Chapter 5, we describe propagation models and noise models to characterise the

underwater acoustic channel. Next, we describe a multiple-access system that combines

Orthogonal Frequency Division Multiplexing (OFDM) with an IDMA overlay to provide

robust performance in the presence of large time-delay spread and the other impairments

presented by the shallow water acoustic channel.

In Chapter 6, we extend our underwater channel model to include both delay- and

doppler-spread, so-called doubly-spread channel. Next, we describe our multiuser receiver

for doubly-spread channels. This is an iterative receiver that uses soft-input soft-output

Kalman filter as an adaptive MIMO equalizer. The time-varying characteristics of the

channel are modeled using low-rank basis expansion models.

In Chapter 7, we summarise the thesis work, state its major contributions, and finally

suggest some possible future directions

1.7 Related Publications

Part of the thesis work have been published in major conferences or journals related to

wireless communications or underwater acoustic oceanic communications. Below is an

incomplete list:

Related Publications of Chapter 3 include:

• L. Linton, P. Conder, and M. Faulkner, “Multi-Rate Communications Using Layered

Interleave-Division Multiple Access with Power Allocation,” 2009 IEEE Wireless

Communications and Networking Conference, WCNC 2009, 5-8 April 2009, Bu-

dapest, Hungary

• L. Linton, P. Conder, and M. Faulkner, “Improved Interleave-Division Multiple

Access (IDMA) Performance Using Dynamic FEC Code Allocation,” 2010 IEEE

Wireless Communications and Networking Conference, WCNC 2010, 18-21 April

2010, Sydney, Australia

Related Publications of Chapter 4 include:

• L. Linton, P. Conder, and M. Faulkner, “On the Performance of Golden Codes

in Rayleigh Fading Channels with Doppler Spread,” 1st International Conference
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on Signal Processing and Communication Systems, ICSPCS-2007 17-19 December

2007, Gold Coast, Australia

• L. Linton, P. Conder, and M. Faulkner, “Multiuser MIMO Communications using

Interleave-Division Multiple-Access and Golden Codes,” 2008 IEEE 67th Vehicular

Technology Conference: VTC2008-Spring 11-14 May 2008, Marina Bay, Singapore

Related Publications of Chapter 5 include:

• L. Linton, P. Conder, and M. Faulkner, “Multiuser Communications for Underwater

Acoustic Networks using MIMO-OFDM-IDMA,” 2nd International Conference on

Signal Processing and Communication Systems, ICSPCS-2008, 15-17 December

2008, Gold Coast, Australia

• L. Linton, P. Conder, and M. Faulkner, “Multiple-Access Communications for

Underwater Acoustic Sensor Networks using OFDM-IDMA,” MTS/IEEE Oceans

2009 Conference, 26-29 October 2009, Biloxi, Mississippi, USA

Related Publications of Chapter 6 include:

• L. Linton, P. Conder, and M. Faulkner, “Adaptive Multiuser Turbo Equaliza-

tion for Doubly-Spread Underwater Acoustic Channels” IEEE Journal of Oceanic

Engineering (submitted)



Chapter 2

Iterative Decoding for Equalization and

Multiuser Detection

In this chapter, the turbo decoding principle is applied to the communications problems

of channel equalization and multiuser detection. These fundamental techniques are the

basis for the research described in the the subsequent chapters of this thesis.

First, convolutional coding over an AWGN channel is introduced. Convolutional codes

are trellis-based (or state-machine based) codes that are commonly used for forward error

correction (FEC) and are also a fundamental building block of iterative communication

systems. An optimal decoding method for convolutional codes is the BCJR MAP

algorithm which decodes the transmitted data by estimating the most probable state

transitions of the encoder from the received (noisy) channel observations.

Next, the intersymbol interference (ISI) channel is presented. The traditional methods

of data protection used in FEC do not work well when the channel over which the data is

sent introduces additional distortions in the form of ISI. When the channel is bandlimited

of for other reasons is time-dispersive in nature, then the receiver will generally need to

compensate for the channel effects prior to employing a standard decoding algorithm for

the FEC. Such methods for channel compensation are typically referred to as channel

equalization .

One approach to the problem of coded transmission over an ISI channel is to consider

the channel as a rate-1 convolutional code and consequently the time dispersion of

the channel can be considered to be equivalent to the shift register elements of the

convolutional encoder. The FEC encoder of the transmitter and the ISI channel can then

22
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be thought of as an example of Forney’s serial concatenated coding scheme transmitting

over a memoryless AWGN channel.

However, when the super-trellis of the combined states of the FEC encoder and ISI

channel is constructed, it becomes apparent that the complexity of an optimal joint FEC

and channel trellis decoder would be excessive for practical implementations. Therefore,

suboptimal detection methods must be considered. For complexity reasons, the problems

of FEC decoding and channel equalization have traditionally been considered separately,

with limited interaction between the two blocks. As such, substantial performance

degradation is typically induced through the separation of these inherently dependent

tasks.

Recently, research in iterative methods for equalization, generally referred to as turbo

equalization, has enabled feasible approaches to jointly solving the equalization and

decoding tasks. As a result, the performance gap between optimal joint decoding and

equalization and that achievable through systems with practical complexity has been

narrowed in a manner similar to that of near Shannon-limit communications using turbo

codes [12].

Finally, multiuser detection (MUD) is described. Communication channels that

involve both forward error correction (FEC) coding and multiple-access signaling are of

increasing interest in applications such as cellular telephony, wireless computer networks,

and broadband local access. Optimal data detection and decoding in such channels

generally requires a level of computational complexity that is prohibitive for these types

of applications. Turbo multiuser detection (MUD) addresses this problem by applying

the turbo principle of iteration among constituent decision algorithms, with intermediate

exchanges of soft information (i.e., posterior probabilities) about tentative decisions.

Here this principle is applied by considering MUD (which exploits the multiple-access

signaling structure) and FEC decoding as the two constituent decision algorithms. The

resulting iteration between soft MUD and soft channel decoding yields good results. The

basic principles of MUD are presented and the basis for low-complexity turbo multiuser

detectors that require minimal increased complexity over that of the standard channel

decoder are also described. Turbo detection schemes for both CDMA (code-division

multiple-access) and IDMA (interleave-division multiple-access) schemes are discussed.



Iterative Decoding for Equalization and Multiuser Detection 24

2.1 Convolutional Coding for the Gaussian Channel

Convolutional codes are stream-oriented linear codes and are a building block of turbo

code, turbo equalization, and turbo multiuser detection schemes. A convolutional encoder

assigns code bits to an incoming information bit stream continuously, in a stream-oriented

fashion. The convolutional code is named after its encoding method of using modulo-2

convolutions to generate the redundant bits.

2.1.1 Convolutional Encoding

The role of the encoder is to take the binary data sequence to be transmitted as input

and produce an output that contains not only this data but also additional redundant

information that can be used to protect the data from the possibility of errors that might

occur in the data stream as a result of additive noise in the transmission or detection

errors at the receiver.

A convolutional encoder can be represented by a finite-state machine, taking in a

continuous stream of message bits and producing a continuous stream of output bits.

The encoder has a memory of the past inputs, which is held in the encoder state. The

output depends on the value of this state, as well as on the present message bits at the

input, but is completely unaffected by any subsequent message bits.

The encoder memory is generally implemented using a linear finite-state shift register

circuit where each shift register element represents a time delay of one unit. The bit at

the output of the shift register element at time i is the bit that was present at the input

of the element at time i− 1. The set of all the shift registers elements together holds the

encoder state. An encoder can have one or more shift registers, one or more inputs and

one or more outputs.

Consider the convolutional encoder of Figure 2.1a. The serial-to-parallel converter

splits the input message into vectors of m-bits length, i.e., d[i] =
[
d(1)[i], . . . , d(m)[i]

]T
.

At each state transition, i, the encoder receives a m-bit input vector and outputs a

n-bit coded vector, c[i] =
[
c(1)[i], . . . , c(n)[i]

]T
. The parallel-to-serial converter generates

the output coded bit stream by concatenating the coded vectors c[i] from each state

transition. The convolutional code is said to have rate Rc = m/n if, at each time instant

i, the convolutional encoder receives m input bits and produces n output bits.
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Figure 2.1: Convolutional encoder schematic block code, and example rate-1/2 encoder for
generator polynomial (1 +D2, 1 +D +D2).

Without loss of generality, we consider the case where the input to the convolutional

encoder is a single-bit vector, i.e., m = 1. For an input message of block length M ,

{d[i]}M−1
i=0 , the output coded message will have a block length of N = nM , i.e., {c[i]}N−1

i=0 .

Figure 2.1b shows an example binary convolutional encoder, where D represents the

delay elements (shift register elements), and ⊕ represents modulo-2 addition. At time

i the input to the encoder is one message bit d(1)[i] and the output is a two-bit vector,

c[i] = [ c(1)[i], c(2)[i] ]T ; thus the code rate is 1/2. The state of this encoder is given by

S = (s(1), s(2)), where s(1) ∈ {1, 0} and s(2) ∈ {1, 0} are the contents of the left-hand

register element and the right-hand register element, respectively. Thus the encoder can

be in one of four possible states, S0 = (0, 0), S1 = (0, 1), S2 = (1, 0), and S3 = (1, 1). As

there is only one input, the message d is simply given by [ d(1)[0], . . . , d(1)[M − 1] ], and

therefore the superscript (1) can be dropped.

For the example encoder shown in Figure 2.1b, the output bits c(1)[i] and c(2)[i] (at

time i) are computed as:

c(1)[i] = d[i]⊕ s(2)[i] and c(2)[i] = d[i]⊕ s(1)[i]⊕ s(2)[i] (2.1)

where ⊕ represents modulo-2 addition. The equations in (2.1) can be more concisely

represented by the generator polynomial (1 +D2, 1 +D +D2), where D is equivalent to

the discrete-time delay operator z−1.

Generally, convolutional coding schemes are designed so that the encoder starts from

a known initial state, and ends at a known termination state. For the example encoder

of Figure 2.1b, we assume that the two delay elements in the circuit are zero at the

beginning of the encoding process (time i = 0) and at the end (time i = M − 1). To

achieve the latter assumption, the last two input data bits, d[M − 2] and d[M − 1],
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must be zero, which implies a small rate loss. This loss can be controlled by using long

sequences (i.e., large values of M), or can be avoided by using tail-biting encoding [136]

[48].

Since a convolutional encoder can be thought of as a finite-state machine, the encoder

behaviour can be described by a state diagram which portrays the temporal relationships

between inputs, states and outputs. This representation is often helpful for both encoding

and decoding purposes. For an encoder with L memory elements (i.e., L shift register

elements), there are 2L encoder states in the state diagram. The state diagram in

Figure 2.2a provides a graphical representation of the state transitions of the encoder

in Figure 2.1b. Each of the four states is represented by a node. The edges between

nodes represent the possible state transitions. Each edge is labeled with the input bit

that produced the transition and the output bits generated.
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Figure 2.2: State diagram and trellis representations of the convolutional code of Figure 2.1b.
The trellis states correspond to the content of the delay elements as S0 = (0, 0),
S1 = (1, 0), S2 = (0, 1) and S3 = (1, 1).

Although the state diagram describes the convolutional encoder state and input-output

relationship completely, it does not provide a record of how the state has evolved with

time. For this we use a trellis diagram. Figure 2.2b shows the state diagram expanded in

time to produce a trellis segment. On the left each state is represented for time i and on

the right a copy of each state is represented for time i+ 1. The state transition edges

are joined from a state at time i to a state at time i+ 1 to show the changes with time.

Each path through the trellis is an evolution of the convolutional encoder for one of the

2M possible input streams. Consequently the set of codewords for a convolutional code

is the set of all possible paths through its trellis.
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This trellis representation enables optimal decoding of convolutional codes with

reasonable complexity. Each path in the trellis corresponds to a codeword, and so the

maximum likelihood (ML) decoder (which finds the most likely codeword) searches for

the most likely path in the trellis. Alternatively, each edge in the trellis can correspond

to a particular input: the bit-wise maximum a posteriori (MAP) decoder, which searches

for the maximum-probability input bit, calculates the probability of each trellis edge [48].

2.1.2 System Model
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Figure 2.3: System model for a coded transmission over a memoryless AWGN channel

Figure 2.3 shows the system model for a convolutional-coded transmission scheme.

The input data sequence d = [ d[0], d[1], . . . , d[M − 1] ]T is encoded by the convolutional

encoder (with rate Rc) generating a n-bit coded vector, c[i], for each data bit, d[i], i.e.,

c =
[
cT [0], cT [1], . . . , cT [M − 1]

]T
where c[i] =

[
c(1)[i], . . . , c(n)[i]

]T
(2.2)

The parallel-to-serial converter (P/S) concatenates M of the c[i] vectors to form a N -bit

frame. Hence, (2.2) can be restated as c = [ c[0], c[1], . . . , c[N − 1] ]T , where N is the

frame length (N = nM), and the elements of c are referred to as coded bits. The coded

bit sequence c is then BPSK modulated, producing the symbol sequence x, which is

defined as

x = [x[0], x[1], . . . , x[N − 1] ]T (N × 1 vector) (2.3)

where x[i] ∈ {+1,−1}. Finally, the sequence of BPSK symbols is transmitted over an

AWGN channel. The decoder receives a noisy version of the transmitted symbol sequence

from which to determine the message. The sequence of noise-corrupted symbols received

from the channel are denoted by

y = [ y[0], y[1], . . . , y[N − 1] ]T . (N × 1 vector) (2.4)
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The serial-to-parallel converter (S/P) divides the received symbol sequence into M vectors

of n-bits length, i.e.,

y =
[
yT [0], yT [1], . . . , yT [M − 1]

]T
where y[i] =

[
y(1)[i], . . . , y(n)[i]

]T
(2.5)

At each state transition, i, the MAP decoder receives a n-bit input vector y[i], and

outputs the message bit estimate d̂[i]. After M state transitions of the MAP decoder,

the estimated message sequence can be formed as d̂ = [ d̂[0], d̂[1], . . . , d̂[M − 1] ].

We consider the binary-input additive white Gaussian noise (BI-AWGN) channel,

which is both symmetric and memoryless. A binary-input channel is symmetric if both

input bits, {+1,−1}, are corrupted equally by the channel. A channel is considered

memoryless if the channel output at any time instant depends only on the input at that

time instant, and not on previously transmitted symbols. This property can be expressed

in terms of channel transition probabilities as

p(y | x) =
N−1∏
i=0

p(y[i] | x[i]) (2.6)

where x is the transmitted symbol sequence defined in (2.3), and y is the received symbol

sequence defined in (2.4). A memoryless channel is therefore completely described by its

input and output alphabets and the conditional probability distribution p(y | x) for each

input-output symbol pair.

The BI-AWGN channel of Figure 2.3 can be described by the equation

y[i] = h0x[i] + n[i] (2.7)

where x[i] ∈ {−1,+1} is the i-th transmitted symbol, y[i] is the i-th received symbol

and n[i] is the additive noise sampled from a Gaussian random variable with zero mean

and σ2 variance, i.e., n[i]∼N (0, σ2). The probability density function for n is

p(n) =
1√

2πσ2
exp

(
− n2

2σ2

)
, (2.8)

where exp( · ) is the exponential function. If the source is equiprobable then P (x[i] =

−1) = P (x[i] = +1), then we have for the BI-AWGN channel:

p(y[i] | x[i] = ± 1) =
1√

2πσ2
exp

(
− 1

2σ2
(y[i]∓h0)2

)
(2.9)
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2.1.3 Log Likelihood Ratios (LLRs)

When using probabilistic decoding methods (such as the BCJR algorithm) on binary

codes, the probabilities input and output from the decoder are often expressed in log

likelihood ratio (LLR) form.

For a binary variable x, the probabilities P (x = 1) given P (x = 0) are related since

P (x = 1) = 1− P (x = 0). Therefore only a single value is needed in order to represent

the set of probabilities for x. The log likelihood ratio (LLR) is used to represent the

probability metrics for a binary variable by a single value, and is given by

L(x) = log
P (x = 0)

P (x = 1)
(2.10)

The sign of L(x) provides a hard decision on x and the magnitude |L(x)| gives the

reliability of this decision. In iterative decoding, a posteriori probability (APP) LLRs

are commonly denoted Λ( · ), i.e., Λ(x) = Lapp(x). Similarly, extrinsic information LLRs

are commonly denoted λ( · ), i.e., λ(x) = Lext(x). LLRs can be translated back to

probabilities as follows:

P (x = 1) =
exp{−L(x)}

1 + exp{−L(x)}
=

1

2

{
1− tanh

(
L(x)

2

)}
(2.11)

and

P (x = 0) =
exp{L(x)}

1 + exp{L(x)}
=

1

2

{
1 + tanh

(
L(x)

2

)}
(2.12)

A benefit of the logarithmic representation of probabilities is that when probabilities

need to be multiplied, log-likelihood ratios need only be added; which can reduce

implementation complexity.

2.1.4 MAP Decoding using the BCJR Algorithm

The binary symbol MAP decoder will output the probability p(d[i] | y) that the message

bit d[i] was 0 or 1 given all the information from the received vector y and the structure

of the code. An efficient algorithm for performing MAP decoding using a trellis was first

proposed Bahl et al. in [6] and is called the BCJR algorithm after its authors.
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Since the convolutional encoder has memory, the codeword bit output at time i is

influenced by the codeword bits sent before it and may itself influence the codeword bits

sent after it. Thus all the bits in y may tell us something about the message bit at time

i. To incorporate the information from both the bits transmitted before time i and the

bits transmitted after time i, the BCJR decoding uses two passes through the trellis:

• a forward pass that provides the current message bit on the basis of only the

codeword bits that were transmitted before it; and

• a backward pass that predicts the current message bit on the basis of only the

codeword bits that were transmitted after it.

Since the message bits are the input to a binary convolutional encoder we can

determine which message bit was sent by finding out which state transition occurred.

We denote:

• S as the set of possible states,

• T + as the set of state transitions (Sr, Ss) that correspond to a 1 input bit,

• T − as the set of state transitions (Sr, Ss) that correspond to a 0 input bit, and

• T as the set of all valid state transitions (Sr, Ss), i.e., T = T + ∪ T −.

For example, the convolutional encoder in Figure 2.1b has S = {S0, S1, S2, S3},

T + = {(S0, S1), (S1, S3), (S2, S1), (S3, S3)}, (2.13)

T − = {(S0, S0), (S1, S2), (S2, S0), (S3, S2)}, and (2.14)

T = {(S0, S0), (S0, S1), (S1, S2), (S1, S3), (S2, S0), (S2, S1), (S3, S3), (S3, S2)}. (2.15)

The probability that d[i] was 1 is the probability that a state transition in the set T +

occurred at time i:

P (d[i] = 1 | y) =
∑

(Sr,Ss)∈T +

P (ψi = Sr, ψi+1 = Ss | y) (2.16)

where ψi is the variable for the state at time i, and S = {S0, S1, . . . , S(2L−1)} is the set

of possible values that the state can take. We represent by Sr and Ss the values of the

state at times i− 1 and time i respectively. Similarly, the probability that d[i] was 0 is
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the probability that a state transition in the set T − occurred at time i:

P (d[i] = 0 | y) =
∑

(Sr,Ss)∈T −
P (ψi = Sr, ψi+1 = Ss | y) (2.17)

For convenience, P (ψi = Sr) will be denoted as P (Sr), and P (ψi+1 = Ss) denoted as

P (Ss) when the context is clear.

Thus determining the message bit probabilities P (d[i] | y) requires that we determine

the probability of each state transition, P (Sr, Ss | y), given that we have only the received

vector y. Using Bayes’ rule we can rewrite P (Sr, Ss | y) as

P (Sr, Ss | y) =
p(Sr, Ss,y)

p(y)
(2.18)

Substituting (2.18) into equations (2.16) and (2.17), the log-likelihood ratio (LLR) for

bit d[i] can be defined as

Λ(d[i] | y) = log

∑
(Sr,Ss)∈T + p(Sr, Ss,y)∑
(Sr,Ss)∈T − p(Sr, Ss,y)

(2.19)

Note that the term p(y) in (2.18) cancels out when the ratio is taken, and therefore does

not need to be explicitly calculated.

To enable the efficient calculation of p(ψi, ψi+1,y), the received vector, y, is split into

three sets:

p(ψi, ψi+1,y) = p(ψi, ψi+1,y
−[i],y[i],y+[i]) (2.20)

where

• y−[i] represents the values received for the set of bits sent before time i;

• y[i] represents the values received for the set of bits sent at time i; and

• y+[i] represents the values received for the set of bits sent after time i.

The values received for the set of bits sent at time i, y[i], are written as a vector since

the convolutional code may output more than one codeword bit at each time point (i.e.,

n may be greater than 1).
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Applying Bayes’ rule again,

p(ψi, ψi+1,y) = p(ψi, ψi+1,y
−[i],y[i],y+[i])

= p(ψi,y
−[i]) p(ψi+1,y[i] | ψi,y−[i]) p(y+[i] | ψi, ψi+1,y

−[i],y[i])

Since a convolutional encoder has been used to generate the codeword bits, we know that

the codeword bits output at time i are completely determined by the state transition,

ψi (at time i) to ψi+1 (at time i + 1). Also, since we are considering a memoryless

channel, the channel output y[i] depends only on the transmitted codeword bit c[i] and

the channel noise at time i, and is not affected by anything previously or subsequently

transmitted through the channel. Putting these together, if we know the probability of

the state transition ψi to ψi+1 then the probability of y[i] is completely independent of

y+[i] and y−[i], and so

p(ψi+1,y[i] | ψi,y−[i]) = p(ψi+1,y[i] | ψi).

Similarly, if we know the probability of the encoder state at time i then the probability

of y+[i] is independent of both the past states and past outputs and so

p(y+[i] | ψi, ψi+1,y
−[i],y[i]) = p(y+[i] | ψi+1).

Thus finally

p(ψi, ψi+1,y) = p(ψi,y
−[i]) p(ψi+1,y[i] | ψi) p(y+[i] | ψi+1). (2.21)

The BCJR algorithm assigns a label to each term in (2.21), therefore (2.21) can be

restated as [48]

mi(ψi, ψi+1) = αi(ψi) γi(ψi, ψi+1) βi+1(ψi+1) (2.22)

where

mi(ψi, ψi+1) = p(ψi, ψi+1,y), (2.23)

αi(ψi) = p(ψi,y
−[i]), (2.24)

βi+1(ψi+1) = p(y+[i] | ψi+1), and (2.25)

γi(ψi, ψi+1) = p(ψi+1,y[i] | ψi). (2.26)
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Equation (2.22) shows that the probability of the state transition from state ψi at time i

to state ψi+1 at time i+ 1 is a function of three terms:

1. αi(ψi), which is the probability that the encoder is in state ψi at time i based on

what we know about y−[i],

2. βi+1(ψi+1), which is the probability that the encoder is in state ψi+1 at time i+ 1

based on what we know about y+[i], and

3. γi(ψi, ψi+1), which is the probability of a transition between the states ψi and ψi+1

based on what we know about y[i]

The calculation of the α values is called the forward recursion of the BCJR decoder,

while the β values are calculated in the backward recursion.

Applying Bayes’ rule to (2.26), γi(Sr, Ss) can be written as follows:

γi(Sr, Ss) = p(Ss,y[i] | Sr) = P (Ss | Sr) p(yi | Sr, Ss).

In this form it is easier to see that p(Ss,y[i] | Sr) has two parts.

• The first part, P (Sr | Ss), is the probability that the state of the encoder moves

to Ss at time i + 1 if it started in state Sr at time i. Since the encoder will have

moved from Sr to Ss for an input dr,s, we know that P (Ss | Sr) = P (d[i] = dr,s),

which is given by the probability distribution of the message source.

• The second part, p(y[i] | Sr, Ss), is the probability that y[i] was received given the

state transition Sr to Ss. Since this state transition produces the codeword bits

cr,s, the probability that y[i] is received is equal to the probability that the channel

turned cr,s into y[i], i.e., p(y[i] | Sr, Ss) = p(y[i] | c[i] = cr,s).

Thus γi(Sr, Ss) is a function of the source probability P (d[i] = dr,s) and the channel

transition probability p(y[i] | cr,s):

γi(Sr, Ss) = P (d[i] = dr,s) p(y[i] | cr,s) (2.27)

= P (d[i] = dr,s)
n∏
q=1

p(y(q)[i] | c(q)
r,s) (2.28)

Note that the transition probability γi(Sr, Ss) is zero if the index pair is not in T . The

channel transition probability is a function of the modulation and channel model. For
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the system model shown in Figure 2.3, i.e., BI-AWGN channel with BPSK modulation,

p(y(q)[i] | c(q)
r,s) =

1√
2πσ2

exp

{
− 1

2σ2
‖y(q)[i]− h0(2c(q)

r,s − 1)‖2

}
(2.29)

The key to the BCJR decoder is that the values of α and β can be calculated recursively.

Applying Bayes’ rule to (2.24), the following recursive form of α can be obtained:

αi(ψi) =
∑

ψi−1∈S

αi−1(ψi−1) γi−1(ψi−1, ψi) (2.30)

Thus, for the forward recursion, the probability that the encoder is in state ψi at time i

is the sum, over all of the states ψi−1 at time i− 1, of the probability that it is in state

ψi−1 times the probability of its moving from ψi−1 to ψi. The encoder starts in the zero

state and so at initialisation α0(S0) = 1 .

Similarly, by applying Bayes’ rule to (2.25), the following recursive form of β can be

obtained:

βi(ψi) =
∑

ψi+1∈S

βi+1(ψi+1) γi(ψi, ψi+1) (2.31)

For the backward recursion, the probability that the encoder is in state ψi at time i is the

sum, over all the states ψi+1 at time i+ 1, of the probability that it is in state ψi+1 times

the probability of its moving from ψi to ψi+1 If the encoder is terminated then it finishes

in the zero state and βM(S0) = 1. Alternatively, if the encoder has not been terminated,

β is initialised in such a way that every state is equally likely, i.e., βM(ψM) = 1/2L for

all ψM ∈ S.

The BCJR algorithm calculates the γ, α and β values and then puts them together

to find the state transition probabilities using (2.22). Therefore, the log-likelihood ratio

(LLR) for bit d[i], (2.19), becomes [48]

Λ(d[i] | y) = log

∑
(Sr,Ss)∈T + αi(Sr)γi(Sr, Ss)βi+1(Ss)∑
(Sr,Ss)∈T − αi(Sr)γi(Sr, Ss)βi+1(Ss)

(2.32)

The calculation of α and β involves multiplying together small numbers, and numerical

stability can become a problem. However, this can be avoided by normalizing α and β
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at each step so that they sum to unity, i.e.,

α′i(Sr) =
αi(Sr)∑

ψi∈S αi(ψi)
and β′i+1(Ss) =

βi+1(Ss)∑
ψi+1∈S βi+1(ψi+1)

. (2.33)

In summary, the BCJR algorithm consists of an initialization in (2.27), a forward

pass to calculate α in (2.30), a backward pass to calculate β in (2.31), the calculation of

each state probability using (2.22), and lastly, the calculation of message bit probabilities

(in LLR form) using (2.32).

The source message bit probabilities P (d[i]) are called the a priori probabilities for

d because they are known in advance before the BCJR decoder is run. The message

bit probabilities P (d[i] |y) output by the BCJR decoder are called the a posteriori

probabilities for d.

Matrix Formulation of the BCJR Algorithm

For notational purposes it is often convenient to express the BCJR algorithm in matrix

form. Denote the vectors of the forward and backward probabilities as:

αi =
[
αi(S0), αi(S1), · · · , αi(S(2L−1))

]T
, (|S|× 1 vector) (2.34)

βi =
[
βi(S0), βi(S1), · · · , βi(S(2L−1))

]T
. (|S|× 1 vector) (2.35)

Let Pi be the probability matrix with dimensions |S|× |S| defined as

{Pi}j,k = γi(Sj, Sk) (2.36)

where { · }j,k denotes the entry of a matrix in the j-th row and k-th column. Then the

forward recursion (2.30) can be expressed as

αi+1 = PT
i αi, i = 1, 2, . . . , N − 1, (2.37)

and the backward recursion (2.31) can be expressed as

βi = Piβi+1, i = N − 1, N − 2, . . . , 1. (2.38)
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To compute (2.32), we need to define two matrices describing transitions in the trellis.

Let matrices T(0) and T(1) be defined as

{T(0)}j,k =

1, if (Sj, Sk) is a state transition with dj,k = 0,

0, otherwise

{T(1)}j,k =

1, if (Sj, Sk) is a state transition with dj,k = 1,

0, otherwise

respectively. For example, for the trellis shown in Figure 2.2b,

T(0) =


1 0 0 0

0 0 1 0

1 0 0 0

0 0 1 0

 , and T(1) =


0 1 0 0

0 0 0 1

0 1 0 0

0 0 0 1

 . (2.39)

Then the a posteriori probabilities for d[i] in LLR form, (2.32), can be expressed as [77]:

Λ(d[i] | y) = log

[
αTi (T(1)�Pi)βi+1

αTi (T(0)�Pi)βi+1

]
, (2.40)

where � denotes the element-by-element product of two matrices (Hadamard product).

2.2 Intersymbol Interference (ISI) Channels

Traditional forward error correction (FEC) methods do not work well when the data

is transmitted over a channel that introduces additional distortions in the form of ISI.

When the channel is bandlimited or for other reasons is time-dispersive in nature, then

the receiver will generally need to compensate for the channel effects prior to employing

a standard decoding algorithm for the FEC. Such methods for channel compensation are

commonly referred to as channel equalization.

Given observations of the received data, the receiver must estimate the data that was

transmitted, using knowledge of how the channel has corrupted the data together with

the available redundancy that has been introduced to protect the data, in the form of

the FEC. While the FEC alone would protect the data from additive noise, when the

channel introduces intersymbol interfernce, adjacent channel symbols become smeared



Iterative Decoding for Equalization and Multiuser Detection 37

together, introducing additional dependencies among the transmitted channel symbols

which degrades the decoder performance.

Three receiver structures for the reception of signals from an intersymbol interference

channel are considered.

Optimal Receiver (Joint Equalization and Detection). To optimally estimate the data

that was transmitted, in terms of minimizing the bit error rate (BER), the receiver

must find the set of transmitted bits that are most probable, given knowledge of the

complex statistical relationship between the observations and the transmitted bits.

An optimal receiver takes into account the FEC, the interleaver, the symbol map-

ping, and knowledge of the channel. With so many factors involved, the resulting

statistical relationship becomes difficult to manage efficiently. Therefore, in most

practical applications, the optimal receiver is infeasible, as it essentially tries to fit

all the possible sequences of transmitted bits to the received data, a task whose

complexity grows exponentially in the length of the data transmitted.

Separate Equalization and Decoding. Traditionally, most practical receivers have been

designed is to first process the received observations to account for the effects of

the channel and then to make estimates of the transmitted channel symbols that

best fit the observed data. Generally, the problem of mitigating the effects of an

ISI channel on the transmitted data is called equalization or detection, while the

subsequent problem of recovering the data bits from the equalized symbol stream,

making use of the FEC, is called decoding.

In the traditional implementation of this separate equalization and decoding process,

the equalizer makes hard decisions as to which sequence of channel symbols were

transmitted and then maps these hard decisions into their constituent binary code

bits. These code bits are then processed by the FEC decoder. However, the process

of making hard decisions on the channel symbols destroys information relating to

how likely each of the possible channel symbols might have been. This additional

“soft” information can be converted into probabilities that each of the received code

bits takes on the value of zero or one. This form of soft information can be readily

exploited by a BER optimal decoding algorithm. Many practical systems use this

type of soft-input FEC decoding by passing soft information between an equalizer

and decoding algorithm.

Turbo Equalization. The remarkable performance of turbo codes demonstrated the

benefits of passing soft information in both directions between constituent processing
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blocks. Once the FEC decoding algorithm processes the soft information it can, in

turn, generate its own soft information indicating the relative likelihood of each of

the transmitted bits. This soft information from the decoder could then be taken into

account in the equalization process, creating a feedback loop between the equalizer

and decoder, through which each of the constituent algorithms communicates its

beliefs about the relative likelihood that each given bit takes on a particular value.

This process is often termed “belief propagation” or “message passing”. This

feedback loop structure essentially describes the process of turbo equalization.

In this and the subsequent two sections, an overview of receivers for intersymbol

interference channels, including turbo equalization are presented. The focus of this

discussion will be the system model shown in Figure 2.4, which contains a system

configuration for a digital transmitter as part of a communication link. These basic

elements are contained in most practical communication systems and are essential

components of a transmitter such that turbo equalization can be used in the receiver.

2.2.1 System Model

We consider the design of a communication system for ISI channels with the aim of

transmitting M data bits, {d[i]}M−1
i=0 , over the channel in a manner that enables the

receiver to correctly recover the original data stream with low probability of error.

Interleaverd[i]
FEC

Encoder
ISI

Channel

Symbol
Mapper

c[i] b[i] x[i] y[i]

Transmitter

Figure 2.4: Coded transmitter structure and signal model for an ISI channel

The transmitter structure for this system is shown in Figure 2.4. The FEC encoder

takes as in input the binary data sequence to be transmitted, {d[i]}M−1
i=0 , and produces

a longer sequence of N coded bits, {c[i]}N−1
i=0 . The coded sequence contains addition

redundant information that can be used to protect the data of interest in the event of

transmission errors. The rate of the code, Rc = M/N , specifies the amount of added

redundant information. In this section, we use the convolutional code given by the
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generator (1 + D2, 1 + D + D2) [59] from Figure 2.1b. This code has rate-1/2, and

therefore, M data bits d[i] are encoded to 2M code bits c[i].

During transmission, data errors may occur due to additive channel noise or receiver

detection error. The ability of the FEC code to correct these errors can be improved

by ensuring that the errors appear random and that long error bursts are are avoided.

This is achieved by using an interleaver to randomize the order of the code bits prior to

transmission. This process is completely reversible and is simply mirrored in the receiver.

The coded bit sequence {c[i]}N−1
i=0 is permutated into {b[i]}N−1

i=0 by the interleaver.

Finally, the mapper converts the permuted code bits b[i] into symbols or signal levels that

can be modulated for transmission over a passband channel. Generally, this is is achieved

by mapping a group of Q code bits onto a complex modulation waveform or channel

symbol, x[i]. For example, Q bits would map onto a (2Q)-QAM symbol. However in this

chapter, binary phase shift keying (BPSK) modulation is used, where Q = 1 and the

transmit pulse shape is modulated with either a +1 or −1, i.e., the bit b[i] ∈ {0, 1} is

mapped to a symbol x[i] as x[i] = (−1)b[i]. The series of transmit pulse shapes modulated

with the symbols {x[i]}N−1
i=0 is then transmitted over a linear time-invariant (LTI) channel

with known channel impulse response (CIR).

The transmitted symbols, which are distorted by the dispersive nature of the channel

and by additive white Gaussian noise (AWGN), are received by a coherent symbol-spaced

receiver front-end that has precise knowledge of the signal phase and symbol timing. The

received waveforms are passed through the receive filter, which is matched to the transmit

pulse shape and the CIR. Sampling the receive filter output produces the sequence of

samples {y[i]}N−1
i=0 given by

y[i] = v[i] + n[i] where v[i] =
L∑
l=0

hl x[i− l], i = 0, 1, . . . , N − 1 (2.41)

where the real-valued coefficients hl are the sampled values of the combined impulse

response of the transmit filter, the channel, and the receive filter. The response is assumed

to have a finite length of L+ 1, and hence, hl = 0 for l > L.

For BPSK modulation, the transmit symbols, x[i], and the (noise-free) channel

output, v[i], are real-valued. Therefore, assuming that the receive filter satisfies the

Nyquist criterion, the noise samples n[i] are independent and identically distributed

(i.i.d.) real-valued Gaussian noise samples, i.e., n[i]∼N (0, σ2), with p.d.f. described by

(2.8).
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h0

x[i]

y[i]

h1 h2

n[i]

v[i]

T T
x[i-1] x[i-2]

AWGN

Figure 2.5: Tapped delay line model of an ISI channel with memory L = 2 (and coefficients
h0 = 0.407, h1 = 0.815, and h2 = 0.407)

The discrete-time model of data transmission in a bandlimited additive noise channel

(2.41) can be represented by an equivalent tapped delay-line model. Figure 2.5 shows an

example tapped delay-line model for a three-tap ISI channel (L = 2) with coefficients

h0 = 0.407, h1 = 0.815, h2 = 0.407. These coefficients are assumed to be time-invariant

and known to the receiver. This example is from [92] and [53]. For channel shown in

Figure 2.5, the system model of (2.41) can be expressed in matrix form as

y = Hx + n, (2.42)

where channel matrix H is given by

H =



h0 0 0 0 0 · · · 0

h1 h0 0 0 0 · · · 0

h2 h1 h0 0 0 · · · 0

0 h2 h1 h0 0 · · · 0

. . . . . . . . .

0 0 . . . 0 h2 h1 h0


(N ×N matrix)

and vectors y, x, and n are given by

y = [ y[0], y[1], . . . , y[N − 1] ]T (N × 1 vector)

x = [x[0], x[1], . . . , x[N − 1] ]T (N × 1 vector)

n = [n[0], n[1], . . . , n[N − 1] ]T (N × 1 vector)
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2.2.2 Optimal Detection

An optimal receiver seeks to minimize the bit error rate (BER) by finding the set of

transmitted bits that are most probable, given knowledge of the complex statistical

relationship between the observations and the transmitted bits. Such a receiver takes into

account the FEC, the interleaver, the symbol mapping, and knowledge of the channel.

In the general case, the decision rule minimizing the bit error probability is based on the

maximization of the a posteriori probabilities (APP) of each data bit in the sequence, i.e.

d̂[i] = arg max
d∈{0,1}

P (d[i] = d | y), i = 0, 1, . . . ,M − 1 (2.43)

where d[i] is the data bit at time i, and y is the entire received symbol sequence [10].

Detection algorithms that implement the decision rule of (2.43) are commonly known as

maximum a posteriori probability (MAP) algorithms. By applying Bayes’ rule to (2.43),

the data bit estimates can be calculated as follows

P (d[i] = d | y) =
∑

d:d[i]=d

P (d | y) =
∑

d:d[i]=d

p(y | d)P (d)

p(y)
, d ∈ {0, 1} (2.44)

where P (d) is the a-priori probability of the sequence d, which can be used to include

knowledge about the source producing the bits d[i]. The data bits, d[i], are usually

assumed to be independent, and hence

P (d) =
M−1∏
i=0

P (d[i]). (2.45)

It then follow that (2.44) can be restated as

P (d[i] = d | y) =
∑

d:d[i]=d

p(y | d)

p(y)

M−1∏
j=0

P (d[j]), d ∈ {0, 1} (2.46)

In log-likelihood ratio (LLR) form, (2.46) can be written as

Λ(d[i] | y) = log

∑
d:d[i]=0 p(y | d)

∏M−1
j=0 P (d[j])∑

d:d[i]=1 p(y | d)
∏M−1

j=0 P (d[j])

= λ(d[i] | y) + λ(d[i]) (2.47)
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where λ(d[i] | y) is the extrinsic information about d[i] contained in y, defined as

λ(d[i] | y) = log

∑
d:d[i]=0 p(y | d)

∏M−1
j=1:j 6=i P (d[j])∑

d:d[i]=1 p(y | d)
∏M−1

j=1:j 6=i P (d[j])
, (2.48)

and λ(d[i]) is the a priori information about d[i], defined as

λ(d[i]) = log
P (d[i] = 0)

P (d[i] = 1)
. (2.49)

Extrinsic information plays an important role in the iterative detection schemes described

in later sections. Note that if the bits d[i] are assumed to be uniformly distributed (i.e.,

they take on the values 0 or 1 equally likely), then the a priori information (in LLR

form) is zero, i.e., λ(d[i]) = 0.

Using (2.47) to compute the a posteriori probabilities in LLR form, Λ(d[i] | y), the

MAP decision rule of (2.43) can be written in LLR form as

d̂[i] =

0, Λ(d[i] | y) ≥ 0

1, Λ(d[i] | y) < 0
i = 0, 1, . . . ,M − 1 (2.50)

The main difficulty with optimal joint MAP detection is the computational complexity

of computing p(y | d) in (2.44) and (2.47), which involves 2M terms and becomes

impractical for large block lengths M .

2.3 Separate Equalization and Decoding for ISI

Channels

Optimal joint equalization and decoding using the MAP algorithm is rarely used in

practice because of the computational complexity. The traditional approach to minimising

receiver complexity is to split the detection task into a number of separate subtasks.

First, the equalizer estimates the transmitted channel symbols. Then, the symbols are

demapped into their associated code bits, deinterleaved, and finally, decoded using a

BER optimal decoder for the FEC. This approach is shown in Figure 2.6.
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Deinterleaver FEC
Decoder

Equalizer/
Detector

Demapper
-1

or (b) soft information:...

y[i] d[i]

x[i] b[i] c[i](a) hard decisions:...

between stages, pass

L(b[i])L(x[i]) L(c[i])

Figure 2.6: Receiver with separate equalization and decoding stages, using (a) hard decisions
or (b) soft information between stages)

Traditionally, the equalizer generates hard decisions of the estimated symbols, i.e.,

x̂[i], which are then propagated through the demapper and deinterleaver, and presented

as hard inputs, ĉ[i], to the decoder. In this case, x̂[i], and ĉ[i] are from the same alphabet

as x[i] ∈ {−1,+1} and c[i] ∈ {0, 1}, respectively. However, instead of providing hard

decisions to the decoder, the equalizer can often provide the probabilities that x[i] takes

on a particular value from {−1,+1}. These probabilities convey more information to

the decoder than hard decisions, and generally lead to better receiver performance. The

principle of using probabilities (soft information) rather than hard decisions is generally

referred to as soft decoding.

The most commonly used soft information about the transmitted symbols, x[i], is the

a posteriori probabilities (APPs) in LLR form, Λ(x[i] | y). The concept of soft processing

is illustrated in the receiver block diagram of Figure 2.6, by the flow of soft information,

in LLR form Λ( · ), between signal blocks.

While APP information is a “side product” of the MAP symbol detector, it can also

be extracted from filter-based equalizers, but is generally more complicated [133], [121].

A common approach for filter-based equalizers is to assume that the estimation error,

ε[i] = x̂[i]− x[i], is Gaussian distributed with PDF p(ε[i]). This approach can apply to

other equalization algorithms producing estimates x̂[i] as well.

Various performance criteria have been used for equalizer design. Common techniques

include: zero-forcing equalizers that attempt to simply invert the channel; linear and

nonlinear equalizers based on minimizing a mean-squared error (MSE) metric; and symbol-

error-rate (SER) optimal equalizers that maximize the likelihood of the observations

given the channel and data model. In this chapter, two types of equalization algorithm

are considered: trellis-based MAP symbol detection (Section 2.3.1); and equalization

based on linear filtering (Section 2.3.2).
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2.3.1 Trellis-Based MAP Symbol Detection

A MAP symbol detector computes symbol estimates, x̂[i], using a decision rule based on

the maximization of the a posteriori probabilities (APP) of each individual symbol in

the sequence, i.e., for BPSK transmission,

x̂[i] = arg max
x∈{+1,−1}

P (x[i] = x | y), i = 0, 1, . . . , N − 1 (2.51)

where x[i] is the transmitted symbol at time i and y is the entire received sequence [10].

Note that the decision rule ignores the effect of the FEC code. MAP detection may

appear intractably complex because of the large number of probabilities to be computed

(c.f. (2.43)-(2.44)), however it can be performed efficiently using trellis-based methods.

Consider the tapped delay line model of the transmitter, channel, and receive filter

shown in Figure 2.5. Given that the tapped delay line contains L delay elements and

that the input symbols are BPSK modulated, x[i] ∈ {+1,−1}, the channel can be in one

of 2L states Sl, l = 0, 1, . . . , 2L− 1, corresponding to the 2L different possible contents of

the delay elements. The set of possible states is denoted S = {S0, S1, . . . , S(2L−1)}.

At each time instance i = 0, 1, . . . , N − 1 the state of the channel is a random variable

ψi ∈ S. If the channel is in state ψi at time i, then ψi+1 (the state at time i+ 1) can only

assume one of two values corresponding to a transmit symbol of x[i] = +1 or x[i] = −1

being input into the tapped delay line (channel model) at time i. This possible evolution

of states can be described using a trellis diagram. Figure 2.7a and Figure 2.7b show the

state and trellis diagrams, respectively, for the channel model of Figure 2.5. A branch of

the trellis is a four-tuple (Sr, Ss, xr,s, vr,s) such that state ψi+1 = Ss at time i+ 1 can be

reached from state ψi = Sr at time i with input x[i] = xr,s and output v[i] = vr,s, where

xr,s and vr,s are uniquely identified by the index pair (Sr, Ss). The output symbol v[i] at

time i is the noise-free output of the channel model, (2.41), given by

v[i] =
L∑
l=0

hl x[i− l].

The transitions from a state ψi = Sr at time i to a state ψi+1 = Ss at time i+1 are labeled

with the input/output pair xr,s/vr,s. The set of all index pairs (Sr, Ss) corresponding to

valid trellis branches (i.e. valid state transitions) is denoted T . The set T for the trellis
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in Figure 2.7b is

T = { (S0, S0), (S0, S1), (S1, S2), (S1, S3), (S2, S0), (S2, S1), (S3, S3), (S3, S2) }.

This trellis description can be used to efficiently compute the APPs, P (x[i] | y).
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Figure 2.7: State diagram and trellis representations of the channel in Figure 2.5. The states
S0 = (+1,+1), S1 = (−1,+1), S2 = (+1,−1), S3 = (−1,−1) are the possible
contents of the channel model delay elements.

The approach of separating the equalization and decoding tasks assumes that the

transmitted symbols, x[i], are i.d.d. random variables, ie

P (x) =
N−1∏
i=0

P (x[i]) (2.52)

and x[i] takes on values +1 and −1 equally for all i. With this assumption, the BCJR

algorithm (of Section 2.1.4) can be adapted to efficiently compute P (x[i] | y).

The probability that the transmitted sequence path in the trellis contained the branch

(Sr, Ss, xr,s, vr,s) at time i, i.e., P (ψi = Sr, ψi+1 = Ss | y) can be computed by the BCJR

algorithm[6], [97] based on the decomposition of the joint distribution p(ψi, ψi+1,y) given

by

p(ψi, ψi+1,y) = P (ψi, ψi+1 | y)p(y). (2.53)

The received signal sequence y in p(ψi, ψi+1,y) can be written as

p(ψi, ψi+1,y) = p(ψi, ψi+1, (y[0], . . . , y[i− 1]), y[i], (y[i+ 1], . . . , y[N − 1])), (2.54)
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and applying the chain rule for joint probabilities, i.e., P (a, b) = P (a)P (b|a), to (2.54)

produces the decomposition:

p(ψi, ψi+1,y) = p(ψi, y[0], . . . , y[i− 1])︸ ︷︷ ︸
αi(ψi)

p(ψi+1, y[i] |ψi)︸ ︷︷ ︸
γi(ψi,ψi+1)

p(y[i+ 1], . . . , y[N − 1] | ψi+1)︸ ︷︷ ︸
βi+1(ψi+1)

.

The term αi(ψ) can be computed using the recursion of (2.30) with the initial value

α0(ψ) = P (ψ0 = ψ), the distribution of the state at time i = 0. The term βi(ψ) can be

computed using the recursion (2.30) with the initial value βN(ψ) = 1 for all ψ ∈ S. The

term γi(ψi, ψi+1) can be decomposed into two parts:

γi(ψi, ψi+1) = P (ψi+1 | ψi)p(y[i] | ψi, ψi+1), (2.55)

where P (ψi+1 | ψi) = P (x[i] = xr,s), which is given by the probability of the message

source; and p(y[i] | ψi, ψi+1) = p(y[i] | v[i] = vr,s) is the channel transition probability,

i.e., the probability that the channel turned vr,s into y[i].

The transition probability γi(Sr, Ss) is zero if the index pair (Sr, Ss) is not in T . For

pairs (Sr, Ss) from T , γi(Sr, Ss) is a function of the source probability and the channel

transition probability, i.e.,

γi(Sr, Ss) =

P (x[i] = xr,s)p(y[i] | v[i] = vr,s), (Sr, Ss) ∈ T

0, (Sr, Ss) /∈ T
(2.56)

The symbols are assumed to be i.d.d. and hence P (x[i] = +1) = P (x[i]) = −1) = 1/2. For

the channel model of (2.41), i.e. y[i] = v[i]+n[i], and the assumption that n[i]∼N (0, σ2),

the channel transition probability is given by

p(y[i] | v[i]) =
1√

2πσ2
exp

{
− 1

2σ2
(y[i]− v[i])2

}
.

The BCJR algorithm calculates the α(ψi), γi(ψi, ψi+1), and βi+1(ψi) probabilities and

puts them together to obtain the state transition probability p(ψi, ψi+1,y). Therefore

the conditional LLR Λ(b[i] | y) of the code bit b[i] can be written as

Λ(b[i] | y) = log

∑
(Sr,Ss)∈T :xr,s=+1 αi(Sr)γi(Sr, Ss)βi+1(Ss)∑
(Sr,Ss)∈T :xr,s=−1 αi(Sr)γi(Sr, Ss)βi+1(Ss)

(2.57)
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Note that (2.57) includes the demapping operation x[i]→ b[i], where

Λ(b[i] | y) = log
P (b[i] = 0 | y)

P (b[i] = 1 | y)
= log

P (x[i] = +1 | y)

P (x[i] = −1 | y)

Finally, the code bit estimates b̂[i] are computed from the sign of Λ(b[i] | y) as in (2.50).

The BCJR algorithm for MAP equalization can be concisely described in terms of

matrix operations. For a trellis with a set of states S, denote the following vectors and

matrices:

• αi as the set of |S|× 1 vectors of the forward probabilities (αi(ψ) values), as defined

in (2.34);

• βi as the set of |S|× 1 vectors of backward probabilities (βi(ψ) values), as defined

in (2.35);

• Pi as the set of |S|× |S| probability matrices as defined in (2.36); and

• T(x) for x ∈ {+1,−1}, as the two |S|× |S| trellis transition matrices, defined as

{T(x)}j,k =

1, (Sj, Sk) is a branch with xj,k = x,

0, otherwise
(2.58)

For the trellis in Figure 2.7, the matrices T(+1) and T(−1) are defined as

T(+1) =


1 0 0 0

0 0 1 0

1 0 0 0

0 0 1 0

 , and T(−1) =


0 1 0 0

0 0 0 1

0 1 0 0

0 0 0 1

 .

Then the BCJR algorithm for MAP equalization can be expressed as shown in Table 2.1.

Note that the algorithm shown assumes that the channel is not in any predefined starting

or ending state, but can be readily modified to include defined starting and ending states.
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1. Initialization: calculate matrices Pi for i = 0, 1, . . . , N − 1, where

{Pi}r,s = γi(Sr, Ss) and

γi(Sr, Ss) =

P (x[i] = xr,s)p(y[i] | v[i] = vr,s), (Sr, Ss) ∈ T

0, (Sr, Ss) /∈ T .

2. Forward recursion: calculate vectors αi for i = 0, 1, . . . , N − 1, where

α0 = [ 1, 1, . . . , 1 ]T and

αi = PT
i−1αi−1, i = 1, 2, . . . , N − 1.

3. Backward recursion: calculate vectors βi for i = N,N − 1, . . . , 0, where

βN = [ 1, 1, . . . , 1 ]T and

βi = Piβi+1, i = N − 1, N − 2, . . . , 1.

4. Output: calculate code bit APPs in LLR form, Λ(b[i] | y), using

Λ(b[i] | y) = log

[
αTi (T(+1)�Pi)βi+1

αTi (T(−1)�Pi)βi+1

]
, i = 0, 1, . . . , N − 1.

Table 2.1: MAP equalization using the BCJR algorithm

In a practical implementation of the algorithm, a frequent re-normalization of the

vectors is necessary to avoid numerical underflow. That is, after each step in the recursion

to compute αi and βi, both vectors are normalized using (2.33).

2.3.2 Linear Equalization and Symbol Detection

The computational complexity of the trellis-based approaches is determined by the

number of trellis states, equal to 2QL, where Q is the number of bits mapped onto each

symbol and L is the number of delay elements in the tapped delay line channel model

(Figure 2.5). Therefore, the computational complexity of trellis-based equalization can

become prohibitive for large signal constellations or long channel-delay spreads.
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In contrast to trellis-based equalization, linear-filter-based approaches perform only

simple operations on the received symbols, which are applied sequentially to a subset

of the observed symbols. Consider the transmitted symbols in the interval {x[i −
δ], . . . , x[i], . . . , x[i+ δ]}, where, for example, δ = 6. This subset of transmitted symbols,

denoted xi is given by

xi = [x[i− 6], x[i− 5], . . . , x[i], . . . , x[i+ 6] ]T ((∆ + L)× 1 vector)

where ∆ + L = 2δ + 1, and L is the number of delay elements in the channel model. For

the 3-tap ISI channel model of Figure 2.5, L = 2 and hence ∆ = 11. The signal model

can be expressed as

yi = H̃xi + ni (2.59)

where channel matrix H̃ is given by

H̃ =



h2 h1 h0 0 0 · · · 0

0 h2 h1 h0 0 · · · 0
...

. . . . . . . . .
...

0 · · · 0 h2 h1 h0 0

0 · · · 0 0 h2 h1 h0


(∆× (∆ + L) matrix)

and received symbol vector, yi, and channel noise vector, ni, are given by

yi = [ y[i− 4], y[i− 3], . . . , y[i], . . . , y[i+ 6] ]T , (∆× 1 vector)

ni = [n[i− 4], n[i− 3], . . . , n[i], . . . , n[i+ 6] ]T , (∆× 1 vector)

respectively. Define vector wi as:

wi = [wδ, wδ−1, . . . , w0, . . . , w−δ+L ]T , (∆× 1 vector)

then the linear processing of yi to compute x̂[i] can be expressed with the linear (affine)

function

x̂[i] = wT
i yi + ai, (2.60)
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where vector wi ∈ R∆ and scalar ai ∈ R are the parameters subject to optimization. The

general form on the linear equalizer is shown in Figure 2.8.

w
d

y[i+ ]d

w
d-1

T T
y[i+ -1]d

x[i]

ai

w- +Ld

T
y[i- +L]d

w0

T
y[i]

Figure 2.8: Linear-filter-based equalizer

The zero-forcing (ZF) equalizer optimizes wi so that x̂[i] is recovered perfectly from

yi in the absence of noise. However, with noise present, an estimate x̂[i] = x[i] + wT
i ni

is obtained and the equalizer can suffer from severe “noise enhancement” if H̃ is ill

conditioned [92]. This effect can be avoided using linear minimum mean square error

(MMSE) estimation [87].

A linear MMSE estimator computes x̂[i] such that the mean squared error (MSE)

E{|x[i]− x̂[i] |2} is minimized, i.e., wi is computed such that

wi = arg min
w∈R∆

E{|x[i]−wTyi |2} (2.61)

where E{ · } denotes expectation. This is achieved by the affine model

x̂[i] = wT
i (yi − E{yi}) + E{x[i]}, (2.62)

where

wi = Cov{yi,yi}−1Cov{yi, x[i]}. (2.63)

Note that (2.62) is not purely linear because of the bias terms E{x[i]} and E{yi}. From

(2.59), the following statistics can be defined:

Cov{yi,yi} = σ2I∆ + H̃ Cov{xi,xi}H̃
T
, (2.64)

Cov{yi, x[i]} = H̃ Cov{xi, x[i]}, (2.65)

E{yi} = H̃ E{xi}, (2.66)
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where I∆ is the ∆×∆ identity matrix. Furthermore, assuming symbols x[i] are indepen-

dent, then

Cov{x[i], x[j]} = 0 for i 6= j (2.67)

and hence, covariance matrix Cov{xi,xi} is diagonal. Additionally,

Cov{xi, x[i]} = e Cov{x[i], x[i]} = e Var{x[i]} (2.68)

where

e = [ 01× δ, 1, 01× δ ]T ((∆ + L)× 1 vector)

Note that the element set to one in vector e corresponds to the x[i] element in vector xi.

Using these definitions, the MMSE linear equalizer of (2.62)-(2.63) can be restated as [53]

x̂[i] = wT
i (yi − H̃ E{xi}) + E{x[i]}, (2.69)

where

wi =
(
σ2I∆ + H̃ Cov{xi,xi}H̃

T
)−1

H̃e Var{x[i]}, (2.70)

and the remaining statistics, E{x[i]} and Cov{x[i], x[i]}, are obtained from the symbol a

priori probabilities, P (x[i]), using

E{x[i]} =
∑

x∈{+1,−1}

xP (x[i] = x), and (2.71)

Var{x[i]} =
∑

x∈{+1,−1}

|x− E(x[i])|2 P (x[i] = x). (2.72)

In turbo equalization configurations (described in later sections), the a priori probabilities,

P (x[i]), would be provided by the soft FEC decoder.

When a priori information is not available (for example, in non-iterative configura-

tions), then symbols x[i] are assumed to be i.d.d. and it follows that

E{x[i]} = 0, Var{x[i]} = 1, and Cov{xi,xi} = I(∆+L). (2.73)
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Substituting (2.73) into (2.69) and (2.69), the MMSE linear equalizer (for the case where

there is no a priori information about the symbols available) is given by [112] [92]

x̂[i] = wT
i yi, where wi =

(
σ2I∆ + H̃H̃

T
)−1

H̃e. (2.74)

The estimates x̂[i] are usually not in the symbol alphabet {+1, 1} and the decision

whether x̂[i] = +1 or x̂[i] = −1 is usually based on the estimation error ε[i] = x[i]− x̂[i].

Given the estimator (2.62)-(2.63), the p.d.f. of the estimation error, p(ε[i]), can be

assumed to be Gaussian and is given by [41]

p(ε[i]) =
1√

2πVar{ε[i]}
exp

{
ε2[i]

2Var{ε[i]}

}
,

where the mean and variance are given by

E{ε[i]} = 0, and Var{ε[i]} = Var{x[i]} −wT
i H̃e,

respectively. The hard decision of x̂[i] is the symbol x ∈ {+1,−1} that maximizes p(ε[i]),

which is the symbol x of closest distance to x̂[i], i.e.,

x̂[i] = arg min
x∈{+1,−1}

|x− x̂[i] |.

2.3.3 Trellis-Based MAP FEC Decoding

The symbol a posteriori probabilities in LLR form, Λ(x[i] | y) ), output from the

equalizer/detector are demapped and deinterleaved to form the code bit probabilities,

Λ(c[i] | y), input to the FEC decoder. In LLR form, the code bit probabilities Λ(c[i] | y)

can be converted back to probability form using

P (c[i] = 1 | y) =
1

2

{
1− tanh

(
Λ(c[i] | y)

2

)}
(2.75)

and

P (c[i] = 0 | y) =
1

2

{
1 + tanh

(
Λ(c[i] | y)

2

)}
. (2.76)
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The set of probabilities input to the FEC decoder is denoted p, where

p = [P (c[0] | y), P (c[1] | y), . . . , P (c[N − 2] | y), P (c[N − 1] | y) ]T (2.77)

Using these input probabilities, the decoder is tasked with decoding the FEC code,

which in this case, is a binary convolutional code. The BCJR algorithm operating on a

trellis description for the code can used here as an efficient MAP decoder for computing

estimates of the transmitted data bits, d̂[i]. In Section 2.1.4, the BCJR algorithm was

used as a MAP decoder for convolutional codes, but for case where channel observations

are used as input. In this section, the BCJR algorithm is modified for the case where

code bit probabilities are used as input.

Consider the convolutional encoder of Figure 2.1b and the corresponding trellis descrip-

tion of Figure 2.2b. The trellis branches are denoted by the tuple (Sr, Ss, dr,s, c
(1)
r,s , c

(2)
r,s ),

where dr,s is the input bit d[i] and (c
(1)
r,s , c

(2)
r,s ) are the two output bits (c(1)[i], c(2)[i])

belonging to the state transition (ψi = Sr, ψi+1 = Ss). The set T of valid transitions is

listed in (2.15).

The MAP decoder processes the N -bit block of coded bit probabilities in M state

transitions. Therefore, for notational convenience, the set of coded bit probabilities in

(2.77) can be restated as

p =
[
P (c(1)[0] | y), P (c(2)[0] | y), . . . , P (c(1)[M − 1] | y), P (c(2)[M − 1] | y)

]T
(2.78)

where there are two coded bits per state transition since the FEC encoder uses a rate-1/2

code, i.e., N = 2M for Rc = 1/2. The change in notation from (2.77) to (2.78) represents

the serial-to-parallel conversion process at the input of the MAP decoder (as shown, for

example, in Figure 2.3).

To apply the BCJR MAP algorithm from Section 2.1.4, the computation of the

transition probabilities, γi(ψi, ψi+1), must be modified to use code bit probabilities as

input (instead of channel observations). For probabilistic input, γi(ψi, ψi+1) is computed

as

γi(Sr, Ss) =

P (d[i] = dr,s)P (c(1)[i] = c
(1)
r,s | y)P (c(2)[i] = c

(2)
r,s | y), (Sr, Ss) ∈ T

0, (Sr, Ss) /∈ T
(2.79)
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where P (d[i] = 0) = P (d[i] = 1) = 1/2 from the assumption that the data bits, d[i], are

i.i.d. The code bit probabilities are computed from (2.75) and (2.76).

The matrices T(x) for x ∈ {0, 1} are defined as

{T(x)}j,k =

1, (Sj, Sk) is a branch with dj,k = x,

0, otherwise.
(2.80)

and the BCJR algorithm for MAP FEC decoding (with probabilistic input) can be

expressed as shown in Table 2.2. Note that the initialization of the αi and βi vectors

assumes that the encoder starts from state S0 at time i = 0 and terminates at state S0

at time i = M − 1.

When the soft FEC decoder is used in turbo equalization or turbo multiuser-detection

configurations (described in later sections), the decoder is required to compute the

code bit APPs, Λ(c[i] | p), in addition to the data bit APPs, Λ(d[i] | p). In turbo

configurations, the code bit APPs, Λ(c[i] | p), serve as a priori information for the

equalizer or multiuser detector algorithm. Code bit APPs can be computed using the

BCJR algorithm in Table 2.2 by changing the definitions of the T(x) matrices. For APPs

Λ(c(1)[i] | p), i = 0, 1, . . . ,M − 1 (in LLR from), matrices T(x) for x ∈ {0, 1} are defined

as

{T(x)}j,k =

1, (Sj, Sk) is a branch with c
(1)
j,k = x,

0, otherwise.
(2.81)

Similarly, for APPs Λ(c(2)[i] | p), i = 0, 1, . . . ,M − 1 (in LLR form), matrices T(x) for

x ∈ {0, 1} are defined as

{T(x)}j,k =

1, (Sj, Sk) is a branch with c
(2)
j,k = x,

0, otherwise.
(2.82)
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1. Initialization: calculate matrices Pi for i = 0, 1, . . . ,M − 1, where

{Pi}r,s = γi(Sr, Ss) and

γi(Sr, Ss) =

P (d[i] = dr,s)P (c(1)[i] = c
(1)
r,s | y)P (c(2)[i] = c

(2)
r,s | y), (Sr, Ss) ∈ T

0, (Sr, Ss) /∈ T

2. Forward recursion: calculate vectors αi for i = 0, 1, . . . ,M − 1, where

α0 = [ 1, 0, . . . , 0 ]T and

αi = PT
i−1αi−1, i = 1, 2, . . . ,M − 1.

3. Backward recursion: calculate vectors βi for i = M,M − 1, . . . , 1, where

βM = [ 1, 0, . . . , 0 ]T and

βi = Piβi+1, i = M − 1,M − 2, . . . , 1.

4. Output: calculate data bit APPs in LLR form, Λ(d[i] | p), using

Λ(d[i] | p) = log

[
αTi (T(0)�Pi)βi+1

αTi (T(1)�Pi)βi+1

]
, i = 0, 1, . . . ,M − 1.

where T(x) is defined in (2.80). Λ(c(1)[i] | p) and Λ(c(2)[i] | p) are

computed similarly, using T(x) defined in (2.81) and (2.82), respectively.

Table 2.2: MAP FEC decoding using the BCJR algorithm

2.3.4 System Performance

The performance of the separate equalization and decoding schemes is evaluated for the

ISI channel model of Figure 2.5. The schemes use an input data block length (M) of

512 bits with forward error correction performed by the rate-1/2 convolutional encoder

of Figure 2.1b, resulting in a coded block length (N) of 1024 bits. The coded bits are

scrambled using a random interleaver and mapped onto BPSK symbols. Figure 2.9

compares the receiver performance using the MAP symbol detector (‘MAP/APP Det.’)

of Section 2.3.1 and the MMSE linear equalizer (‘LMMSE Eq.’) of Section 2.3.2. In both
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cases, FEC decoding is performed using the BCJR algorithm of Section 2.3.3. The effect

of passing hard bit estimates and soft information from the equalizer to the decoder is

also compared.

It can be seen that MAP symbol detection (using the BCJR algorithm) provides

superior performance compared to the MMSE linear equalizer, but at the cost of additional

computational complexity. Note also that passing soft information between the equalizer

and decoder provides a 2dB gain in SNR compared to passing hard bit decisions.
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Figure 2.9: System performance of separate equalization and decoding schemes. Performance
of equalizer types (MAP symbol detection, and linear MMSE equalization) is
compared. System performance when passing hard estimates, and soft information,
from the equalizer to the decoder is also compared.

The performance of these separate equalization and decoding schemes is suboptimal

because of assumptions of independence in the derivation of the soft information ex-

changed. In particular, the computation of the APPs P (x[i] | y) assumes that all 2N

possible sequences {x[i]}N−1
i=0 are equally likely, i.e., P (x) = 1/2N (from the assumption

that symbols, x[i], are i.d.d). However, there are only 2M valid sequences of {x[i]}N−1
i=0 ,

each belonging to a particular input data sequence {d[i]}M−1
i=0 . Therefore, the equalizer
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performance would be significantly improved if the APPs were computed as

P (x[i] = x | y) =
∑

all 2M valid x:
x[i]=x

p(y | x)P (x)

p(y)
, (2.83)

where P (x) = 1/2M for valid x. However, this approach would require exhaustive search

methods, since trellis-based methods (such as the BCJR algorithm) could no longer be

used, and the resulting computational complexity would be prohibitive.

2.4 Turbo Equalization for ISI Channels

The MAP symbol detector computes symbol estimates using the MAP rule

x̂[i] = arg max
x∈{+1,−1}

P (x[i] = x | y), i = 0, 1, . . . , N − 1, (2.84)

where, using Bayes’ rule, the a posteriori probabilities can be computed from

P (x[i] = x | y) =
∑

x:x[i]=x

p(y | x)P (x), x ∈ {+1,−1}. (2.85)

Here p(y | x) is the likelihood function and P (x) is the a priori probability. Note that

the marginal probability, p(y), does not have to be included in this form of the equation.

Hence, MAP detection can be thought of as a process that takes a series of observations,

y, and bit-wise a priori probabilities, {P (x[i])}i, and computes bit-wise a posteriori

probabilities, {P (x[i] | y)}i, as shown in the block diagram model in Figure 2.10.

MAP Detector

a posteriori
probabilities

a priori
probabilities

observations

y

P( | )x y

P( )x

Likelihood
Calculation

Posterior
Calculation

P( | )y x

Figure 2.10: The MAP detection process in block diagram form, which takes a priori prob-
abilities and observations as input and produces a posteriori probabilities as
output
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In the BCJR equalization algorithm of Section 2.3.1, the a posteriori probabilities

are formed from the transition probabilities, γi(Sr, Ss), computed from (2.56), i.e.,

γi(Sr, Ss) = P (x[i] = xr,s)p(y[i] | v[i] = vr,s) (2.86)

where:

• p(y[i] | v[i] = vr,s) is the likelihood function, and can be interpreted as “local”

evidence about which branch in the trellis was traversed; and

• P (x[i] = xr,s) is the a priori information, which accounts for any prior knowledge

about the probability of trellis branch being traversed.

In the separate equalization and decoding strategy of Section 2.3, the equalizer does not

have any a priori information available, the symbols are assumed to be i.d.d (P (x[i] =

+1) = P (x[i]) = −1) = 1/2), and the transition probabilities, γi(Sr, Ss), are computed

solely from the observed data y[i]. However, the performance of the BCJR algorithm

can be greatly improved if good a priori information is available. In turbo equalization,

the a posteriori probabilities from the MAP FEC decoder are fed back and used as a

priori information by the MAP equalizer. This is performed in an iterative process where

the symbol and data bit estimates become more accurate as the quality of the a priori

information improves over a number of iterations.

MAP
Equalizer

channel
output

y[i]

MAP
FEC

Decoder

extrinsic
information

extrinsic
information

a priori probabilities
(intrinsic information)

a priori probabilities
(intrinsic information)

(code bit)
a posteriori
probabilities

a posteriori
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Deinterleaver

Interleaver

-1

L1(b[i]|y) l1(b[i]|y)

l2(b[i]|p)

l1(c[i]|y)

l2(c[i]|p)

L2(d[i]|p)

L2(c[i]|p)

hard
decision

d[i]
^

data bit
estimates

(data bit)
a posteriori
probabilities

Figure 2.11: Block diagram of a turbo equalization receiver.

When designing the feedback loop structure, it is important to consider the effect that

soft information generated from one bit in one of the constituent algorithms (equalizer

or decoder) will have on the other bits in the other constituent algorithm.
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When processing soft information input to the equalizer or the decoder, it is assumed

that the soft information about each bit (or channel symbol) is independent. This

assumption reduces the complexity of the equalizer and decoder algorithms. However, if

the decoder formulates its soft information about a given bit, based on soft information

provided to it from the equalizer about exactly the same bit, then the equalizer cannot

consider this information to be independent of its channel observations. In effect, this

would create a feedback loop in the overall process of length two: the equalizer informs

the decoder about a given bit; and then the decoder simply reiterates to the equalizer

what it already knows.

To avoid short cycles in the feedback, local minima, and limit cycle behavior in

the iterative process, when soft information is passed between constituent algorithms,

such information is never formed based on the information passed into the algorithm

concerning the same bit. Essentially, this amounts to the equalizer only telling the

decoder new information about a given bit based on information it gathered from distant

parts of the received signal. Similarly, the decoder only tells the equalizer information it

gathered from distant parts of the encoded bit stream. This consideration leads to the

concept of extrinsic and intrinsic information [53].

For the optimal receiver in Section 2.2.2, it was shown (from (2.47)-(2.49)) that the

a posteriori LLR, Λ(d[i] | y), can be separated into extrinsic LLR, λ(d[i] | y), and the

intrinsic (a priori) LLR, λ(d[i]). Also, that λ(d[i] | y) does not depend on λ(d[i]). In the

case of the (BCJR) MAP equalization algorithm, the same functional relation can be

applied to the output a posteriori LLRs in order to separate the two contributions. That

is, the a posteriori LLRs, Λ(b[i] | y), can be split into:

• extrinsic information, λ(b[i] | y) = Λ(b[i] | y)− λ(b[i]); and

• intrinsic information, λ(b[i]).

It is essential to the performance of turbo decoding algorithms that only extrinsic

information is passed between the constituent decoders.

The block diagram of a turbo equalization receiver is shown in Figure 2.11. The two

MAP algorithms form the core of the turbo equalizer. The MAP equalizer operates on

channel observations and a priori information about individual bits, while the MAP

FEC decoder operates on a priori information only. (In Figure 2.11, the observation

input of the MAP decoder is grounded to indicate that it is not used). Only the extrinsic

information is fed back in the iterative loop.
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1. Turbo equalizer inputs:

a) observation sequence, y = [ y[0], y[1], . . . , y[N − 1] ]T

b) channel coefficients, h0, h1, . . . , hL

2. Initialization: initialize the MAP equalizer a priori information to all

zeros, i.e., λ2(b | p) = [ 0N × 1 ]

3. Recursively compute (for a predetermined number of iterations):

Λ1(b | y) = MAP Equalizer( λ2(b | p) )

λ1(b | y) = Λ1(b | y)− λ2(b | p)

λ1(c | y) = Deinterleaver( λ1(b | y))

Λ2(c | p) = MAP FEC Decoder( λ1(c | y) )

λ2(c | p) = Λ2(c | p)− λ1(c | y)

λ2(b | p) = Interleaver( λ2(c | p) )

4. Turbo equalizer output: compute the data bit estimates, d̂[i], from the

probabilities, Λ2(d[i] | y), using:

d̂[i] = sgn (Λ2(d[i] | y)) , i = 0, 1, . . . ,M − 1

Table 2.3: Turbo equalization algorithm

The interleaver and deinterleaver are incorporated into the iterative loop to further

disperse the direct feedback effect. In particular, the BCJR algorithm creates output

that is locally highly-correlated, but the use of an interleaver can largely suppress the

correlations between neighboring symbols.

The operation of the turbo equalization receiver is shown in Table 2.3. The notation:

Λ1(b | y) = MAP Equalizer(λ2(b | p))

represents the generation of APP LLRs, Λ1(b | y), by the MAP Equalizer from observa-

tions, y, and a priori LLRs, λ2(b | p), using the BCJR algorithm described in Table 2.1.
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Similarly, the notation:

Λ2(c | p) = MAP FEC Decoder(λ1(c | y))

represents the generation of APP LLRs, Λ1(b | y), by the MAP FEC Decoder from the

a priori LLRs, λ2(c | y), using the BCJR algorithm described in Table 2.2.

While the turbo equalization algorithm presented is based on two MAP algorithms,

any pair of equalization and FEC decoding algorithms that make use of soft information

can be used as constituent algorithms in the turbo equalizer.

For example, the linear MMSE equalizer in Section 2.3.2 can use a priori information

about the transmitted symbol x[i] to compute symbol statistics E{x[i]} and Var{x[i]}
(using (2.71)-(2.72)) which are then incorporated into the MMSE filter, (2.69)-(2.70),

to compute symbol estimate, x̂[i], and APP LLR, Λ1(x[i] | y). As with the MAP

equalization algorithm, the APP LLR is computed the constraint that Λ1(x[i] | y) is not

a function of the a priori LLR, λ2(b[i] | p), at the same index i. This helps to avoid short

feedback cycles, and is equivalent to extracting only the extrinsic part of the information

in the iterative scheme [53]. Note also that there are several low-complexity alternatives

for re-estimating x̂[i], e.g. [53], [121], [122], [33], [120], [98], [139].

Figure 2.12 shows the performance of the turbo equalization scheme (of Figure 2.11

and Table 2.3) for the ISI channel model of Figure 2.5. The scheme is evaluated for an

input data block length (M) of 512 bits with forward error correction performed by the

rate-1/2 convolutional encoder of Figure 2.1b, resulting in a coded block length (N) of

1024 bits. The coded bits are scrambled using a random interleaver and mapped onto

BPSK symbols.

Figure 2.12a shows the effect of receiver iterations for a turbo equalizer using the

MAP symbol detector of Section 2.3.1, while Figure 2.12b shows the effect of receiver

iterations for a turbo equalizer using the MMSE linear equalizer of Section 2.3.2. In both

cases, FEC decoding is performed using the BCJR algorithm of Section 2.3.3. Note that

zero-iterations represents the first pass when there is no a-priori information available

for APP equalizer–this is equivalent to the separate equalization and decoding scheme

(with soft information) evaluated in Section 2.3.4. The ISI-free bound represents the

lower BER performance bound of the underlying rate-1/2 code used over an ISI-free

channel, i.e., the performance bound for the evaluated system.
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Turbo Equalization using MAP Symbol Detection
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Figure 2.12: Performance of turbo equalization after 0, 1, 2, and 10 iterations using: (a)
MAP symbol detection; and (b) linear MMSE equalization.
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Both schemes show significant BER performance gain over the iterations, with

performance approaching the ISI-free bound after 10 iterations. It is observed that turbo

equalization using MAP symbol detection provides superior performance compared to

the MMSE linear equalizer based scheme, but at the cost of additional computational

complexity. However, it is noted that for larger block lengths, M , the performance of

linear MMSE equalizer approaches that of the MAP detector [53], [121].

2.5 Code Division Multiple Access (CDMA) and

Multiuser Detection

For multiuser communications, CDMA is an attractive multiple-access technique that

has become widely used. Using the direct sequence spread-spectrum technique, each user

spreads its signal over the entire bandwith, such that when demodulating any particular

user’s data, the other users’ signals appear as pseudo white noise. A CDMA systems

are interference limited, meaning that multiple-access interference and intersymbol

interference (ISI) limit the system performance [127].

Multiuser detection (MUD) is the detection of data from multiple terminals in a

communication network when observed in a nonorthogonal multiplex, that is, when

derived from a nonorthogonal multiple-access channel. This situation may be the result

of system design, for example, in code-division multiple-access (CDMA) systems using

nonorthogonal spreading codes. It may also be the result of channel impairments in

orthogonally multiplexed systems, for example, in time-division multiple-access (TDMA)

wireless systems transmitting over multipath-fading delay-spread channels. Another

example is digital subscriber line (DSL) systems that are impaired by crosstalk and other

types of interference.

The fundamental concept of MUD is to make use of the known structure of all the

users’ transmitted signals, and the cross-correlations among these signals, in order to

improve the data detection process. Research has shown that the use of MUD can provide

significant performance advantages in interference-limited channels, and many advances

have been made in recent years [127], [134], [88], [102].

Optimal MUD techniques, based on maximum-likelihood (ML) or maximum a posteri-

ori probability (MAP) criteria, often achieve performance close to that of an interference-

free system. hat is free of interference. However, these methods have high computational
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complexity, particularly when compared with the processing resources available in most

communications receivers. As a result, considerably effort has been made to develop sub-

optimal low-complexity techniques that can achieve good performance. Linear multiuser

detection is a popular low-complexity technique that uses linear processing to suppress

interference, followed by simple quantization to perform data detection.

The computational complexity of optimal MUD techniques is further increased when

forward error correction (FEC) is considered in addition to nonorthogonal signaling.

In particular, the complexity of joint MUD and FEC decoding (based on ML or MAP

criteria) is prohibitively high. However, this combination can be considered as a serially

concatenated coding system, where the FEC code and multiple-access channel take the

roles of outer code and inner code, respectively [102]. This interpretation, provides the

basis for iterative MUD techniques to be developed using the turbo decoding concept

[12]. In these techniques, which are commonly known as turbo MUD [134], [88], the MUD

is used to provide tentative channel-symbol decisions to the FEC channel decoders, and

similarly, tentative channel-symbol decisions are produced by the channel decoders which

are fed back to the MUD. Several iterations between these two constituent processes

are made, with intermediate exchanges of soft channel symbol information. These turbo

MUD techniques have modest computational complexity, yet have been shown to provide

near-optimal performance.

2.5.1 Synchronous CDMA Signal Model

In CDMA systems, multiple users can share a common frequency band at the same time

by using different signature waveforms. Consider a CDMA channel that is shared by by

K simultaneous users. For simplicity, it is assumed that binary antipodal (BPSK) signals

are used to transmit the information from each user. The received signal, y(t), will

consist of the sum of antipodally modulated synchronous signature waveforms embedded

in additive white Gaussian noise:

y(t) =
K∑
k=1

Akbksk(t) + n(t), t ∈ [ 0, T ] (2.87)

where

• T is the symbol interval

• sk(t) is the deterministic signature waveform assigned to the k-th user.
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• Ak is the received amplitude of the k-th user’s signal. A2
k is referred to as the energy

of the k-th user.

• bk is the bit transmitted by the k-th user, bk ∈ {−1,+1}

• n(t) is a zero-mean white Gaussian noise (AWGN) process with power spectral

density σ2. This models noise sources that are unrelated to the transmitted signal,

including thermal noise.

Each user is assigned a signature waveform sk(t) of duration T . A signature waveform

may be expressed as

sk(t) =
L−1∑
n=0

ak(n)pc(t− nTc), t ∈ [ 0, T ] (2.88)

where {ak(n), 0 ≤ n ≤ L− 1} is a pseudo-noise (PN) code sequence consisting of L chips

that take values {± 1}, pc(t) is a pulse of duration Tc, and Tc is the chip interval. Thus,

there are L chips per symbol and T = LTc. The signature waveforms are assumed to

be zero outside the interval [0, T ], and therefore, there is no intersymbol interference.

Additionally, it is also assumed that all K signature waveforms have unit energy, i.e.,

‖sk‖2 =

∫ T

0

s2
k(t) dt = 1 (2.89)

The performance of various demodulation strategies depends on the signal-to-noise

ratios, Ak/σ, and on the similarity between the signature waveforms, quantified by their

cross-correlations, which for the synchronous case is defined as

ρij = ρij(0) =

∫ T

0

si(t)sj(t) dt. (2.90)

for the synchronous case.

2.5.2 Asynchronous CDMA Signal Model

In the synchronous model, bit epochs are aligned at the receiver. However, symbol-

synchronism is not necessary for CDMA to operate, and it is possible to let the users

transmit completely asynchronously. The asynchronous CDMA model is shown in

Figure 2.13 where time offsets are introduced to model the lack of alignment of the bit

epochs at the receiver: τk ∈ [0, T ), k = 1, . . . , K. The symbol epochs are defined with
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Figure 2.13: Asynchronous CDMA channel model and asynchronism modelling using time
offsets for 3 users (K = 3)

respect to an arbitrary origin (it is often advantageous to take τ1 = 0). Without loss of

generality, we assume that 0 ≤ τ1 ≤ τ2 ≤ · · · ≤ τK < T . Note that we still require the

symbol interval be identical for all users.

For the synchronous model it is sufficient to restrict attention to the received waveform

in an interval of length T , the bit duration. In the asynchronous case we must take into

account the fact that the users send a stream of bits. Without loss of generality, we

assume that all users transmit packets or frames of length N . Therefore the data block

for the k-th user is {bk[i]}N−1
i=0 Generalising (2.87) to the asynchronous case, the CDMA
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channel model now becomes

y(t) =
K∑
k=1

Ak

N−1∑
i=0

bk[i]sk(t− iT − τk) + σn(t), t ∈ [ 0, NT ], τk ∈ [ 0, T ) (2.91)

The synchronous channel corresponds to the special case of (2.91) where all the offsets

are identical, τk = 0 for 1 ≤ k ≤ K.

As with the synchronous channel, asynchronous channel performance depends on

the cross-correlation between the user signature waveforms. However for asynchronous

CDMA, the synchronous cross-correlation definition of (2.90) is not sufficient to determine

the performance, and two cross-correlations between every pair of signature waveforms

must be defined, as shown in Figure 2.14. Note that τ = |τk − τj|.
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Figure 2.14: Definition of asynchronous cross correlations (0 ≤ τj , τk < T )

For the case where τj < τk, the cross-correlations are defined as:

ρ
(0)
jk (τ) =

∫ T+τj

τk

sj(t− τj)sk(t− τk) dt (2.92)

ρ
(+1)
jk (τ) =

∫ τk

τj

sj(t− τj)sk(t+ T − τk) dt (2.93)

and ρ
(−1)
jk (τ) = 0. For the case where τj > τk, the cross-correlations are defined as:

ρ
(−1)
kj (τ) =

∫ T+τj

T+τk

sj(t− τj)sk(t− T − τk) dt (2.94)

ρ
(0)
jk (τ) =

∫ T+τk

τj

sj(t− τj)sk(t− τk) dt (2.95)

and ρ
(+1)
jk (τ) = 0. Note that the length of the integration interval is τ for ρ

(+1)
jk (τ) or

ρ
(−1)
kj (τ) and T − τ for ρ

(0)
jk (τ).
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2.5.3 Single-User Matched Filter Detector

The simplest approach to demodulate CDMA signals is the single-user matched filter

(MF). This is the demodulator that was first adopted in CDMA receivers, and is often

called the conventional detector. The matched filter is the optimal receiver for both

the single-user CDMA channel and the multiuser orthogonal CDMA channel. However

for the multiuser non-orthogonal CDMA channel, the performance of the matched

filter is degraded by multiple-access interference (interference from other users) and is

sub-optimal.

y [i]1

y [i]2

y [i]K

y(t)

Matched Filter

Sync 1

User 2

Sync 2

User K

Sync K

b [i]1

b [i]2

b [i]K

òy(t)s (t)dtK

òy(t)s (t)dt1

User 1

Matched Filter

òy(t)s (t)dt2

Matched Filter

Figure 2.15: Bank of single-user matched filters

In the conventional single-user detection, the receiver for each user consist of a

demodulator that correlates (or match filters) the received signal with the signature

sequence of the user and passes the correlator output to the detector, which makes a

decision based on the single correlator output. Thus, the conventional detector neglects

the presence of the other users of the channel or, equivalently, assumes that the aggregate

noise plus interference is white and Gaussian.

For the case of synchronous transmission, the output of the correlator for the k-th

user for the signal in i-th code bit interval, i.e., iT ≤ t ≤ (i+ 1)T is

yk ,
∫ (i+1)T

iT

y(t)sk(t− iT ) dt (2.96)

= Akbk[i] +
K∑
j=1
j 6=k

Ajρjk(0)bj[i] + nk[i] (2.97)
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where the noise component nk[i] is given as

nk[i] ,
∫ (i+1)T

iT

n(t)sk(t) dt (2.98)

If the signature sequences are orthogonal, the interference from the other users given by

the middle term in (2.97) vanishes and the conventional single-user detector is optimum.

On the other hand, if one or more of the other signature sequences are not orthogonal

to the k-th user signature sequence, the interference from the other users can become

excessive if the power levels of one or more of the other users is sufficiently larger that

the power level of the k-th user. This situation is generally called the near-far problem in

multiuser communications, and necessitates some form of power control for conventional

detection.

For synchronous transmission, (2.97) can also be expressed in discrete-time matrix

form:

y[i] = RAb[i] + n[i] (2.99)

where

y[i] = [ y1[i], y2[i], . . . , yK [i] ]T (K × 1 vector) (2.100)

A = diag{A1, A2, . . . , AK } (K ×K matrix) (2.101)

b[i] = [ b1[i], b2[i], . . . , bK [i] ]T (K × 1 vector) (2.102)

n[i] = [n1[i], n2[i], . . . , nK [i] ]T (K × 1 vector) (2.103)

and R is the K ×K cross-correlation matrix, defined as

{R}j,k = ρjk ,
∫ T

0

sj(t)sk(t) dt (2.104)

The diagonal elements of R are the autocorrelation factors, ρjj, and are equal to 1. For

the synchronous case, R is symmetric and the cross-correlation factors have the feature:

ρjk = ρkj.

In asynchronous transmission, the conventional detector is more vulnerable to interfer-

ence from other users. This is because it is not possible to design signature sequences for

any pair of users that are orthogonal for all time offsets. Consequently, interference from

other users is unavoidable in asynchronous transmission with the conventional single-user
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detection. In such a case, the near-far problem resulting from unequal power in the

signals transmitted by the various users is particularly serious. The practical solution

generally requires a power adjustment method that is controlled by the receiver via a

separate communications channel that all users are continuously monitoring. Another

option is to employ one of the multiuser detectors described in the following sections.

2.6 The Optimum Multiuser Receiver

The optimum receiver is defined as the receiver that selects the most probable sequence

of bits {bk[i], 0 ≤ i ≤ N − 1, 1 ≤ k ≤ K} given the received signal y(t) observed over

the time interval 0 ≤ t ≤ NT for synchronous transmission, or 0 ≤ t ≤ NT + 2T for

asynchronous transmission.

2.6.1 Synchronous Transmission

In synchronous transmission, each (user) interferer produces exactly one symbol which

interferes with the desired symbol. In additive white Gaussian noise, it is sufficient to

consider the signal received in one signal interval, iT ≤ t ≤ (i+ 1)T , and determine the

optimum receiver. Hence y(t) may be expressed as

y(t) =
K∑
k=1

Akbk[i]sk(t) + n(t), t ∈ [ iT, (i+ 1)T ]. (2.105)

The optimum maximum-likelihood receiver computes the likelihood function, L(b[i]),

for all 2K possible combinations of information sequence b[i] = [b1[i], b2[i], . . . , bK [i]]T ,

and then selects the sequence of b[i] that maximises L(b[i]). For synchronous CDMA,

L(b[i]) = f(y(t) | b[i]), and [127]

f(y(t) | b[i]) = exp

{
− 1

2σ2

∫ (i+1)T

iT

[ y(t)− x(t; b[i]) ]2 dt

}
, t ∈ [ iT, (i+ 1)T ]

(2.106)
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where

x(t; b[i]) =
K∑
k=1

bk[i]Aksk(t), t ∈ [ iT, (i+ 1)T ] (2.107)

Equivalently, the most likely b[i] also maximises [127]

Ω(b[i]) = 2

∫ (i+1)T

iT

[
K∑
k=1

Akbk[i]sk(t)

]
y(t) dt−

∫ (i+1)T

iT

[
K∑
k=1

Akbk[i]sk(t)

]2

dt

= 2bT [i]Ay[i]− bT [i]ARAb[i] (2.108)

The expression (2.108) shows that the dependence of the likelihood function of the

received signals is through the vector of matched filter outputs y[i], which is therefore a

sufficient statistic for demodulating the transmitted data.

There are 2K possible choices of the bits in the information sequences of the K users.

The optimum detector computes the correlation metrics for each sequence and selects

the sequence that yields the largest correlation metric. Therefore the optimum detector

has a complexity that grows exponentially with the number of users K.

2.6.2 Asynchronous Transmission

In this case, there are exactly two consecutive symbols from each interferer that overlap a

desired symbol. We assume that the receiver knows the received signal energies {A2
k} for

the K users and the transmission delays {τk}. We view the K-user N -frame asynchronous

channel as a (K ×N)-user asynchronous channel. Let us define bn, a KN -vector, with

components

bn =
[
bT [0], bT [1], . . . , bT [N − 1]

]T
(KN × 1 vector) (2.109)

and the KN -vector of matched-filter outputs yn,

yn =
[
yT [0], yT [1], . . . , yT [N − 1]

]T
(KN × 1 vector) (2.110)
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where y[i] = [ y1[i], y2[i], . . . , yK [i] ]T with components

yk[i] ,
∫ (i+1)T+τk

iT+τk

y(t)sk(t− iT − τk) dt 0 ≤ i ≤ N − 1 (2.111)

The integral (2.111) represents the outputs of the correlator or matched filter for the

k-th user in each of the signal intervals. This means that the yk[i] is the output of the

k-th matched filter applied to the signal in the interval [τk + iT, τk + (i+ 1)T ], that is,

the interval corresponding to bk[i].

Using vector notation, the K ×N correlator or matched filter outputs {yk[i]} can be

expressed in the form

yn = RnAnbn + nn (2.112)

with the following vector and matrix definitions: Rn is the asynchronous cross-correlation

matrix,

Rn =



R(0) R(−1) 0 0 · · · 0

R(1) R(0) R(−1) 0 · · · 0

0
. . . . . .

...
...

. . . . . . 0

0 · · · 0 R(1) R(0) R(−1)

0 · · · 0 0 R(1) R(0)


(KN ×KN matrix) (2.113)

where R(−1), R(0), and R(1) are K ×K matrices with elements

{R(−1)}j,k = ρ
(−1)
jk (τ), {R(0)}j,k = ρ

(0)
jk (τ), and {R(1)}j,k = ρ

(1)
jk (τ).

Note that the asynchronous cross-correlations, ρ
(−1)
jk (τ), ρ

(0)
jk (τ), and ρ

(1)
jk (τ), are defined

in (2.92)-(2.95). An is the diagonal matrix,

An =


A 0 · · · 0

0 A 0
...

...
. . .

...

0 0 · · · A

 (KN ×KN matrix) (2.114)
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where A is the K ×K diagonal matrix defined in (2.101), and nN is the vector,

nn =
[
nT [0], nT [1], · · · , nT [N − 1]

]T
(KN × 1 vector) (2.115)

For the asynchronous case, the maximum-likelihood receiver computes the likelihood

function L(bn) for all 2KN possible combinations of bn, and then selects the sequence

bn that maximises L(bn). For this case, L(bn) = f(y(t) | bn), and [127]

f(y(t) | bn) = exp

{
− 1

2σ2

∫ NT+2T

0

[ y(t)− x(t; bn) ]2 dt

}
, t ∈ [0, NT + 2T ] (2.116)

where

x(t; bn) =
K∑
k=1

N−1∑
i=0

bk[i]Aksk(t− iT − τk), t ∈ [0, NT + 2T ]. (2.117)

Equivalently, the most likely bn also maximises [127]

Ω(bn) = 2

∫ NT+2T

0

x(t; bn)y(t) dt−
∫ NT+2T

0

(x(t; bn) )2 dt

= 2bTnAnyn − bTnAnRnAnbn. (2.118)

Once more, the observations enter in the function to be maximised by jointly optimum

decisions on through the matched filter outputs. Therefore, yn is a sufficient statistic for

bn. The vector yn given by (2.112) constitutes a set of sufficient statistics for estimating

the transmitted bits bk[i].

If we adopt a block processing approach, the optimum ML detector must compute

2KN likelihood functions and select the K sequences of length N that corresponds to the

greatest likelihood value. Clearly such an approach is much too complex computationally

to be implemented in practice, especially when K and N are large. An alterative approach

is ML sequence estimation employing the Viterbi algorithm. In order to construct a

sequential-type detector, we make use of the fact that each transmitted symbol overlaps

at most with 2K − 2 symbols. Thus, a significant reduction in computational complexity

is obtained with respect to the block-size parameter N , but the exponential dependence

on K cannot be reduced. It is apparent that the optimum ML receiver employing the

Viterbi algorithm also involves such a high computational complexity that its practical
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use is limited. In the following sections, a number of suboptimum detectors whose

complexity grows linearly with K are considered.

2.7 Linear Multiuser Detectors

The matched filter (conventional detector) has a complexity that grows linearly with the

number of users, K. But susceptibility to MAI from non-orthogonal users means that the

matched filter may make errors even in the absence of noise. In contrast, the optimum

receiver demodulates the data error-free in the absence of noise, but has a computational

complexity that grows exponentially with the number of users, K. In this section, we

consider linear multiuser detectors with computational complexities that grow linearly

with K, but do not exhibit vulnerability to interference from other users.

2.7.1 Decorrelating Detector

Firstly, the case of symbol-synchronous transmission is considered. In this case, the

output of the K matched filters in the i-th code bit interval is represented by the received

signal vector, y[i], given by

y[i] = RAb[i] + n[i] (2.119)

where R, A, b[i], and n[i] are defined in (2.104), (2.101), (2.102), and (2.103), respectively.

Noise vector n[i] has a covariance

E{n[i]nT [i]} = σ2R. (2.120)

Since the noise is Gaussian, y[i] is described by a K-dimensional Gaussian PDF with

mean RAb[i] and covariance R. That is [93],

p(y[i] | b[i]) =
1√

(2πσ2)K det R
exp

{
− 1

2σ2
(y[i]−RAb[i])TR−1(y[i]−RAb[i])

}
(2.121)
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The best linear estimate of b[i], denoted by b0[i], is defined as the value of b[i] that

minimises the likelihood function

L(b[i]) = (y[i]−RAb[i])TR−1(y[i]−RAb[i]), (2.122)

and hence [69],

b0[i] = arg min
b[i]

(y[i]−RAb[i])TR−1(y[i]−RAb[i]). (2.123)

The result of this minimisation yields

b0[i] = A−1R−1y[i], (2.124)

and the ML estimates of the detected symbols, b̂k[i], is given by

b̂k[i] = sgn

(
1

Ak

{
R−1y[i]

}
k

)
= sgn

( {
R−1y[i]

}
k

)
for k = 1, . . . , K. (2.125)

Note that the estimate b0[i] is also the best linear estimate that maximises the likelihood

function given by (2.108). Since y[i] = RAb[i] + n[i], it follows from (2.124) that [69]

b0[i] = b[i] + A−1R−1n[i] (2.126)

Therefore, b0[i] is an unbiased estimate of b. The transformation R−1 has eliminated the

interference components between the users, and as a consequence, the near-far problem is

also eliminated. The decorrelating detector is so-called because the linear transformation

R−1 is used to tune out or decorrelate the multiuser interference. Figure 2.16 illustrates

the receiver structure. The symbol estimates b̂k[i] are obtained by performing the linear

transformation R−1 on the vector of matched filter outputs y[i], and therefore, the

computational complexity is linear in K.

In asynchronous transmission, the received signal at the output of the matched filters

is given by (2.112). The best linear estimate of bn, denoted by b0
n, is the value of bn

that minimises the likelihood function [93]

L(bn) = (yn −RnAnbn)TR−1
n (yn −RnAnbn) (2.127)
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Figure 2.16: Linear multiuser detector for synchronous CDMA systems

and hence,

b0
n = arg min

b[i]

(yn −RnAnbn)TR−1
n (yn −RnAnbn). (2.128)

The result of this minimisation yields [70]

b0
n = A−1

n R−1
n yn (2.129)

This is the ML estimate of bn and it is again obtained by performing a linear transfor-

mation of the outputs from the bank of correlators or matched filters. The estimate b0
n

is unbiased, and therefore the multiuser interference has been completely eliminated.

Therefore the linear decorrelating detector is effective in eliminating multiuser interference

for both synchronous and asynchronous transmissions.

2.7.2 Minimum Mean-Square-Error Detector

In the previous section, the decorrelating detector obtains the linear ML estimate of b[i]

by minimising the quadratic likelihood function of (2.122) for synchronous CDMA, or

(2.127) for asynchronous CDMA. This is achieved by applying the linear transformation

b0[i] = R−1y[i] to the outputs of the bank of correlators or matched filters, y[i].



Iterative Decoding for Equalization and Multiuser Detection 77

Another approach is to seek the linear transformation b0[i] = Wy[i], where the

matrix W is to be determined so as to minimise the mean square error (MSE) [93]:

MSE(b[i]) = E
{
A(b[i]− b0[i])TA(b[i]− b0[i])

}
= E

{
(Ab[i]−Wy[i])T (Ab[i]−Wy[i])

}
(2.130)

where the expectation is with respect to the data vector b[i] and the additive noise

n[i]. The optimum matrix W may be found by forcing the error (b[i]−Wy[i]) to be

orthogonal to the data vector y[i]. Thus

E
{

(Ab[i]−Wy[i])yT [i]
}

= 0

E
{
Ab[i]yT [i]

}
−WE

{
y[i]yT [i]

}
= 0 (2.131)

Consider the case of synchronous transmission. We have

E{Ab[i]yT [i]} = E{Ab[i]AbT [i]}RT = A2RT (2.132)

and

E{y[i]yT [i]} = E
{

(RAb[i] + n[i])(RAb[i] + n[i])T
}

= RA2RT + σ2RT (2.133)

By substituting (2.132) and (2.133) into (2.131) and solving for W. We obtain

W =
(
R + σ2A−2

)−1
(2.134)

Therefore, the minimum mean square error (MMSE) estimate of b[i] is [140] [73]

b0[i] = A−1
(
R + σ2A−2

)−1
y[i] (2.135)

and the estimated symbols are obtained by

b̂k[i] = sgn

(
1

Ak

{(
R + σ2A−2

)−1
}
k

)
= sgn

({(
R + σ2A−2

)−1
}
k

)
for k = 1, . . . , K (2.136)
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The MMSE criterion produces a biased estimate of b, hence there is some residual

multiuser interference. Note that in the high-SNR case when σ2 → 0, then

(
R + σ2A−2

)−1 → R−1 (2.137)

and the MMSE solution approaches the ML solution in (2.129). In this case, the MMSE

detector becomes equivalent to the decorrelator detector. On the other hand, in the

low-SNR case when σ2A−2 � R, then

(
R + σ2A−2

)−1 → σ−2A2 (2.138)

and the detector essentially ignores the interference from other users because the additive

noise is the dominant term . In this case the MMSE detector becomes equivalent to

the matched filter detector with amplitude scaling to compensate for the received power

levels. Figure 2.16 illustrates the receiver structure for linear MMSE detector.

Similarly, for asynchronous transmission, the matrix W is chosen so as to minimise

the mean square error (MSE):

MSE(bn) = E
{

(Anbn −Wyn)T (Anbn −Wyn)
}

(2.139)

In this case, the optimum choice of W is

W =
(
Rn + σ2A−2

n

)−1
(2.140)

and, hence the MMSE estimate of bn is [140] [73]

b0
n = A−1

n

(
Rn + σ2A−2

n

)−1
yn (2.141)

The output of the MMSE detector is then b̂n = sgn(b0
n).

2.8 Turbo Multiuser Detection for Synchronous CDMA

We consider a convolutionally coded synchronous real-valued CDMA system with K

users, employing normalised signature waveforms s1, s2, . . . , sK , and tranmitting through

an additive white Gaussian noise channel. The block diagram of the transmitter structure

for this system is shown in Figure 2.17. The binary data sequence {dk[i]}M−1
i=0 for user
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Figure 2.17: Coded CDMA Transmitter Structure

k, k = 1, . . . , K, is convolutionally encoded with code rate Rc, by the FEC encoder,

producing the code-bit sequence {ck[i]}N−1
i=0 for user k. A code-bit interleaver is used

to reduce the influence of the error bursts at the input of each channel decoder. The

interleaved code bits of the k-th user are BPSK modulated, yielding data symbols of

duration T . Each data symbol bk[i] is then spread by a signature waveform sk[t] and

transmitted through the channel.

The received continuous-time signal, y(t), can be written as

y(t) =
K∑
k=1

Ak

N−1∑
i=0

bk[i]sk(t− iT ) + n(t), (2.142)

where n(t) is a zero-mean white Gaussian noise process with power spectral density σ2,

and Ak is the amplitude of the k-th user.

The turbo receiver structure is shown in Figure 2.18. It consists of two stages: a

soft-input soft-output (SISO) multiuser detector, followed by K parallel single-user

MAP channel decoders. The two stages are separated by deinterleavers and interleavers.

The SISO multiuser detector computes the a posteriori log-likelihood ratio (LLR) of a

transmitted “+1” and a transmitted “-1” for every code bit of each user, i.e.,

Λ1(bk[i]) , log
P (bk[i] = +1 | y(t))

P (bk[i] = −1 | y(t))
, k = 1, . . . , K, i = 0, . . . , N − 1. (2.143)
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Using Bayes’ rule, (2.143) can be rewritten as

Λ1(bk[i]) , log
p(y(t) | bk[i] = +1)

p(y(t) | bk[i] = −1)︸ ︷︷ ︸
λ1(bk[i])

+ log
P (bk[i] = +1)

P (bk[i] = −1)︸ ︷︷ ︸
λ2(bk[i])

, (2.144)

where the second term in (2.144), denoted by λ2(bk[i]), represents the a priori LLR of

the code bit bk[i], which is computed by the MAP channel decoder of the k-th user in

the previous iteration, interleaved and then fed back to the SISO multiuser detector. For

the first iteration, assuming equally likely code bits (i.e., no prior information available),

we then have λ2(bk[i]) = 0 for 1 ≤ k ≤ K and 0 ≤ i < N . The first term in (2.144),

denoted by λ1(bk[i]), represents the extrinsic information delivered by the SISO multiuser

detector based on the received signal y(t), the structure of the multiuser signal given by

(2.142), the prior information about the code bits of all the other users, {λ2(bl[i])}i; l 6=k,
and the prior information about the code bits of the k-th user other than the i-th bit,

{λ2(bk[j])}j 6=i. The extrinsic information {λ1(bk[i])}i, of the k-th user, which is not

influenced by the a priori information {λ2(bk[i])}i provided by the MAP channel decoder,

is then reverse interleaved and fed into the k-th user’s channel decoder as the a priori

information in the next iteration.
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Figure 2.18: Coded CDMA Turbo Multiuser Receiver Structure

Denote the code-bit sequence of the k-th user after deinterleaving as {ck[i]}i. Based

on the prior information {λ1(ck[i])}i and the trellis structure of the channel code (i.e.,

the constraints imposed by the code), the k-th user’s MAP channel decoder computes
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the a posteriori LLR of each code bit,

Λ2(ck[i]) , log
P (ck[i] = +1 | {λ1(ck[i])}i ; code structure )

P (ck[i] = −1 | {λ1(ck[i])}i ; code structure )

= λ2(ck[i]) + λ1(ck[i]), (2.145)

for k = 1, . . . , K, and i = 0, . . . , N − 1. From (2.145), it can be seen that the output of

the MAP channel decoder is the sum of the prior information λ1(ck[i]) and the extrinsic

information λ2(ck[i]) delivered by the MAP channel decoder. This extrinsic information is

the information about the code bit ck[i] gathered from prior information about the other

code bits, {λ1(ck[j])}j 6=i, based on the trellis constraint of the code. The MAP channel

decoder also computes the a posteriori LLR of every information bit, which is used to

make a decision on the decoded bit at the last iteration. After interleaving, the extrinsic

information delivered by the K MAP channel decoders {λ2(bk[i])}i;k is then fed back to

the SISO multiuser detector, as the prior information about the code bits of all users, in

the next iteration. Note that at the first iteration, the extrinsic information quantities

{λ1(bk[i])}i;k and {λ2(bk[i])}i;k are statistically independent. But subsequently, since they

use the same information indirectly, they will become more and more correlated, which

will result in diminishing improvement through iteration.

2.8.1 Optimal SISO Multiuser Detector

For the synchronous CDMA system, a sufficient statistic for demodulating the i-th

code bits of the K users is given by the K-vector y[i] = [ y1[i], . . . , yK [i] ]T , whose k-th

component is the output of a filter matched to sk( · ) in the i-th code bit interval, i.e.,

(2.96). From Section 2.5.3, the sufficient statistic vector y[i] can be written as (2.99)

y[i] = RAb[i] + n[i], (2.146)

In what follows, the symbol index i is dropped whenever possible to simplify the

notation. Denote

B+
k , {(b1, . . . , bk−1,+1, bk+1, . . . , bK) : bj ∈ {+1,−1}} ,

B−k , {(b1, . . . , bk−1,−1, bk+1, . . . , bK) : bj ∈ {+1,−1}} ,
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From (2.146), the extrinsic information λ1(bk) delivered by the SISO multiuser detector

is then given by [134]

λ1(bk) , log
p(y | bk = +1)

p(y | bk = −1)

= log

∑
b∈B+

k

{
exp

{
− 1

2σ2 (y −RAb)TR−1(y −RAb)
}∏

j 6=k P (bj)
}

∑
b∈B−k

{
exp

{
− 1

2σ2 (y −RAb)TR−1(y −RAb)
}∏

j 6=k P (bj)
} (2.147)

where P (bj) , P (bj[i] = bj) for bj ∈ {+1,−1}. In (2.147), the summation in the

numerator is over all the 2K−1 possible vectors b in B+
k . Similarly, the summation in the

denominator is over all the 2K−1 possible vectors b in B−k .

In (2.147), the a priori probabilities of the code bits, P (bj), can be expressed in terms

of their LLRs λ2(bj[i]), as follows.

P (bj) , P (bj[i] = bj) for bj ∈ {+1,−1}

=
1

2

[
1 + bj tanh

(
λ2(bj[i])

2

)]
(2.148)

Substituting (2.148) into (2.147) and simplifying, we obtain [134]

λ1(bk[i]) =
2Akyk[i]

σ2

+ log

∑
b∈B+

k

{
exp

{ −1
2σ2 bTARAb

}∏
j 6=k

[
1 + bj tanh

(
Ajyj [i]

σ2

)] [
1 + bj tanh

(
λ2(bj [i])

2

)]}
∑

b∈B−k

{
exp

{ −1
2σ2 bTARAb

}∏
j 6=k

[
1 + bj tanh

(
Ajyj [i]

σ2

)] [
1 + bj tanh

(
λ2(bj [i])

2

)]}
(2.149)

It can be seen from (2.149) that the extrinsic information λ1(bk[i]) at the output of the

SISO multiuser detector consists of two parts; the first term contains the channel value

of the desired user yk[i] and the second term is the information extracted from the other

users’ channel values {yj[i]}j 6=k as well as their prior information {λ2(bj[i])}j 6=k.

2.8.2 Low-Complexity SISO Multiuser Detector

From (2.149), it is clear that the computational complexity of the optimal SISO multiuser

detector is exponential in terms of the number of users K, which is prohibitive for

channels with moderate to large numbers of users. In this section, a low-complexity SISO
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multiuser detector based on a novel technique of combined soft interference cancelation

and linear MMSE filtering proposed by Wang and Poor [133] is presented. The structure

of this low-complexity multiuser detector is shown in Figure 2.19.
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Figure 2.19: Low-complexity soft multiuser detector for synchronous CDMA

Soft Interference Cancellation and Instantaneous Linear MMSE Filtering

Based in the a priori LLR of the code bits of all users, {λ2(bk[i])}Kk=1, provided by the

MAP channel decoder from the previous iteration, we first form soft estimates of the

code bits of all the users (i.e., for k = 1, . . . , K) as

b̃k[i] , E{bk[i]} =
∑

b∈{+1,−1}

b P (bk[i] = b)

=
∑

b∈{+1,−1}

b

2

[
1 + b tanh

(
λ2(bk[i])

2

)]
(2.150)

= tanh

(
λ2(bk[i])

2

)
(2.151)

where (2.150) follows from (2.148). Define

b̃[i] ,
[
b̃1[i], b̃2[i], . . . , b̃K [i]

]T
(2.152)

b̃k[i] , b̃[i]− b̃k[i]ek

=
[
b̃1[i], . . . , b̃k−1[i], 0, b̃k+1[i], . . . , b̃K [i]

]T
(2.153)
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where ek denotes a K-vector of all zeros, except for the k-th element, which is 1. Therefore,

b̃k[i] is obtained from b̃[i] by setting the the k-th element to zero. For each user, a soft

interference cancellation is performed on the matched filter output y[i] in (2.146), to

obtain

yk[i] , y[i]−RAb̃k[i]

= RA
(
b[i]− b̃k[i]

)
+ n[i], k = 1, . . . , K (2.154)

Such a soft inference cancellation scheme was first proposed by Hagenauer [37]. Next,

in order to further suppress the residual interference in yk[i], an instantaneous linear

minimum mean-square error (MMSE) filter wk[i] is applied to yk[i] to obtain

zk[i] = wT
k [i]yk[i] (2.155)

where the filter wk[i] ∈ RK is chosen to minimise the mean-square error between the

code bit and the filter output zk[i]:

wk[i] = arg min
w∈RK

E
{(
bk[i]−wTyk[i]

)2
}

= arg min
w∈RK

wTE
{
yk[i]y

T
k [i]
}

w − 2wTE {bk[i]yk[i]} (2.156)

where using (2.154), we have

E{yk[i]yTk [i]} = RA Cov
{

b[i]− b̃k[i]
}

AR + σ2R (2.157)

and

E{bk[i]yk[i]} = RA E
{
bk[i]

(
b[i]− b̃k[i]

)}
= RAek (2.158)

Substituting (2.157) and (2.158) into (2.156), we have

wk[i] =
(
RVk[i]R + σ2R

)−1
RAek

= AkR
−1
(
Vk[i] + σ2R−1

)−1
ek (2.159)
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where Vk[i] is defined as

Vk[i] , ACov
{

b[i]− b̃k[i]
}

A

=
K∑
j=1
j 6=k

A2
j

(
1− b̃2

j [i]
)

eje
T
j + A2

keke
T
k . (2.160)

Substituting (2.154) and (2.159) into (2.155), we obtain [133]

zk[i] = Ake
T
k

(
Vk[i] + σ2R−1

)−1
(
R−1y[i]−Ab̃k[i]

)
. (2.161)

Note that the term R−1y[i] in (2.161) is the output of a linear decorrelating multiuser

detector (Section 2.7.1).

Gaussian Approximation of Linear MMSE Filter Output

The distribution of the residual interference plus noise at the output of a linear MMSE

multiuser detector is well approximated by a Gaussian distribution [89]. Therefore, the

output zk[i] of the instantaneous linear MMSE filter in (2.155) can be modelled as the

output of an equivalent additive white Gaussian noise channel having bk[i] as its input

symbol. This equivalent channel model can be represented as

zk[i] = µk[i]bk[i] + ηk[i], (2.162)

where µk[i] is the equivalent amplitude of the k-th user’s signal at the output and

ηk[i]∼N (0, ν2
k [i]) is a Gaussian noise sample. Using (2.154) and (2.155), the parameters

µk[i] and ν2
k [i] can be computed as follows,

µk[i] , E{zk[i]bk[i]}

= Ake
T
k

(
Vk[i] + σ2R−1

)−1
E
{
bk[i]A

(
b[i]− b̃k[i]

)
+ bk[i]n[i]

}
= A2

k

[(
Vk[i] + σ2R−1

)−1
]
k,k

(2.163)
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and

ν2
k [i] , Var{zk[i]} = E{z2

k[i]} − µ2
k[i]

= wT
k [i]E{yk[i]yTk [i]}wk[i]− µ2

k[i]

= µk[i]− µ2
k[i] (2.164)

where the expectation is taken with respect to the code bits of interfering users {bj [i]}j 6=k
and the channel noise vector n[i]. Using (2.154) and (2.154), the extrinsic information

delivered by the instantaneous linear MMSE filter is then [133]

λ1(bk[i]) , log
p(zk[i] | bk[i] = +1)

p(zk[i] | bk[i] = −1)

= −(zk[i]− µk[i])2

2ν2
k [i]

+
(zk[i] + µk[i])

2

2ν2
k [i]

=
2zk[i]

1− µk[i]
(2.165)

Recursive Procedure for Computing Soft Output

In order to form the extrinsic LLR λ1(bk[i]) at the instantaneous linear MMSE filter,

zk[i] and µk[i] must be computed first (2.165). From (2.161) and (2.163) the computation

of zk[i] and µk[i] involves inverting a K ×K matrix:

Φk[i] ,
(
Vk[i] + σ2R−1

)−1
. (2.166)

This matrix inversion, Φk[i], can computed efficiently using the following recursive

procedure. Define Ψ(0) , (1/σ2)R, and

Ψ(k) ,

(
σ2R−1 +

k∑
j=1

A2
j

(
1− b̃2

j [i]
)

eje
T
j

)−1

, k = 1, . . . , K. (2.167)

Using the matrix inversion lemma, Ψ(k) can be computed recursively as

Ψ(k) = Ψ(k−1) −

 1

A−2
k

(
1− b̃2

k[i]
)−1

{Ψ(k−1)}k,k

(Ψ(k−1)ek
) (

Ψ(k−1)ek
)T
,

k = 1, . . . , K. (2.168)
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Denote Ψ , Ψ(K). Using the definition of Vk[i] given by (2.160), we can then compute

Φk[i] from Ψ as follows [133]:

Φk[i] =
(
Ψ−1 + A2

kb̃
2
k[i]eke

T
k

)−1

= Ψ−

 1(
Akb̃k[i]

)−2

{Ψ}k,k

 (Ψek) (Ψek)
T , k = 1, . . . , K. (2.169)

Finally, the low-complexity SISO multiuser detection algorithm for synchronous CDMA

systems is summarised in Table 2.4.

1. Given the extrinsic information (in LLR form), {λ2(bk[i])}k, from the FEC

decoders, calculate the soft bit estimates (for k = 1, . . . , K) using:

b̃k[i] = tanh

(
1

2
λ2(bk[i]

)
,

b̃[i] =
[
b̃1[i], · · · , b̃K [i]

]T
b̃k[i] = b̃[i]− b̃k[i]ek

2. Using the recursive procedure of (2.167), (2.168), and (2.169), calculate

the matrix inversion:

Φ(k) = (Vk[i] + σ2R−1)−1, for k = 1, . . . , K,

3. Perform soft interference cancellation and linear MMSE filtering (for

k = 1, . . . , K) using:

zk[i] = Ake
T
kΦk[i]

(
R−1y[i]−Ab̃k[i]

)
4. Calculate the extrinsic information {λ1(bk[i])}k, for k = 1, . . . , K, using:

λ1(bk[i]) =
2zk[i]

1− µk[i]
where µk[i] = A2

k {Φk[i]}k,k

Table 2.4: Algorithm: Low-Complexity Soft MUD for Synchronous CDMA
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Figure 2.20: Performance of MMSE-based low-complexity turbo MUD: four users (K = 4),
equal power, equal cross-correlations (ρ = 0.7); each user employs a rate-1/2
constraint-length-5 convolutional code and length-128 interleaver.

Typical performance results show that near-interference-free performance can be

readily achieved when there is sufficient signal-to-noise ratio (SNR) for the initial SISO

MUD to gain useful information about the channel symbols. Figure 2.20 shows an

example of such a result in which there are K = 4 users with equal power and equal cross-

correlations of ρ = 0.7. Each user employs a rate-1/2, constraint-length-5 convolutional

code with a length-128 interleaver. Note that near-single-user performance is achieved

after only five iterations with very moderate SNR.

2.9 Turbo Multiuser Detection for CDMA with

Multipath Fading

In this section, the low complexity SISO multiuser detector for synchronous CDMA

systems (presented in Section 2.8.2) is extended to incorporate asynchronous CDMA

systems with multipath fading channels. This low-complexity SISO multiuser detector
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for asynchronous CDMA systems, which is also based on combined soft interference

cancelation and linear MMSE filtering, was proposed by Li, Wang, and Georghiades [57].

2.9.1 Signal Model and Sufficient Statistics

We consider a K-user asynchronous CDMA system transmitting over multipath fading

channels. The transmitted signal due to the k-th user is given by

xk(t) = Ak

N−1∑
i=0

bk[i]sk(t− iT ) (2.170)

where N is the number of data symbols per user per frame; T is the symbol interval;

Ak is the amplitude of the k-th user; bk[i] is i-th transmitted bit of the k-th user; and

{sk(t); 0 ≤ t ≤ T} is the normalised signature waveform of the k-th user. It is assumed

that sk(t) is supported only on the interval [0, T ] and has unit energy.

The k-th user’s signal xk(t) propagates through a multipath channel with impulse

response

hk(t) =
L∑
l=1

g′k,l(t)δ(t− τk,l) (2.171)

where L is the number of paths in the k-th user’s channel, and where g′k,l(t) and τk,l

are the complex fading process and the delay of the l-th path of the k-th user’s signal,

respectively. It is assumed that the fading processes are known to the receiver and do

not vary during one coded symbol interval, but may vary from symbol to symbol, i.e.,

g′k,l(t) = g′k,l(iT ) , gk,l[i] for iT ≤ t < (i+ 1)T

The received signal, y(t), is the superposition of the K users’ signals plus the additive

white Gaussian noise, given by

y(t) =
K∑
k=1

xk(t) ? hk(t) + n(t) (2.172)

=
K∑
k=1

Ak

N−1∑
i=0

bk[i]
L∑
l=1

gk,l[i]sk(t− iT − τk,l) + n(t) (2.173)

where n(t) is a zero-mean complex AWGN process with power spectral density σ2.
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From (2.102) and (2.109), denote

b[i] , [ b1[i], b2[i], . . . , bK [i] ]T and bn ,
[
bT [0], bT [1], . . . , bT [N − 1]

]T
.

Using the Cameron-Martin formula [87], the likelihood function of the received waveform

y(t) in (2.173) conditioned on all the transmitted symbols bn of all users can be written

as

L(y(t) | bn) = C exp

{
Ω(bn)

σ2

}
, −∞ < t <∞ (2.174)

where C is some positive scalar constant, and

Ω(bn) , 2R

{∫ ∞
−∞

S(t; bn)∗y(t) dt

}
−
∫ ∞
−∞
|S(t; bn)|2 dt (2.175)

and

S(t; bn) ,
K∑
k=1

Ak

N−1∑
i=0

bk[i]
L∑
l=1

gk,l[i]sk(t− iT − τk,l) (2.176)

The first integral in (2.175) can be expressed as [57]

∫ ∞
−∞

S(t; bn)∗y(t) dt ,
K∑
k=1

Ak

N−1∑
i=0

bk[i]

yk[i]︷ ︸︸ ︷
L∑
l=1

g∗k,l[i]

∫ ∞
−∞

y(t)sk(t− iT − τk,l) dt︸ ︷︷ ︸
yk,l[i]

(2.177)

Since the second integral in (2.175) does not depend on the received signal y(t), from

(2.177) it can be seen that the sufficient statistic for detecting the multiuser symbols

bn is {yk[i]}K; N−1
k=1;i=0 and that this sufficient statistic is obtained by passing the received

signal y(t) through a bank of K maximal-ratio multipath combiners, i.e., a Rake receiver

[91] (as shown in Figure 2.21).

Next, the expression for this sufficient statistic is restated in terms of the multiuser

channel parameters and transmitted symbols, which is fundamental to the development

of the SISO multiuser detector.

We assume that the multipath spread of any user’s channel is within one symbol

interval, that is, τk,l ∈ [0, T ) for k = 1, . . . , K and l = 1, . . . , L. Define the following
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Figure 2.21: CDMA Rake receiver for multipath fading channels

correlation of the delayed signalling waveforms:

ρ
(j)
(k,l)(k′,l′) ,

∫ ∞
−∞

sk(t− τk,l)sk′(t+ jT − τk′,l′) dt,

j ∈ J , 1 ≤ k, k′ ≤ K, 1 ≤ l, l′ ≤ L (2.178)

where J , {−1, 0,+1}. Since τk,l ≤ T and si,k(t) is nonzero only t ∈ [0, T ], it then

follows that ρ
(j)
(k,l)(k′,l′) = 0 for j /∈ {−1, 0,+1}. Now substituting (2.173) into (2.177), we

have

yk,l[i] =
N−1∑
i′=0

K∑
k′=1

Ak′bk′ [i
′]

L∑
l′=1

gk′,l′ [i
′]

∫ ∞
−∞

sk′(t− i′T − τk′,l′)sk(t− iT − τk,l) dt+ uk,l[i]

=
∑
j∈J

K∑
k′=1

Ak′bk′ [i+ j]
L∑
l′=1

gk′,l′ [i]ρ
(−j)
(k,l)(k′,l′) + uk,l[i] (2.179)

where {uk,l[i]} are zero-mean complex Gaussian random sequences, defined as

uk,l[i] =

∫ ∞
−∞

n(t)sk(t− iT − τk,l) dt (2.180)

with covariance

Cov {uk,l[i], uk′,l′ [i′]} = E
{
uk,l[i]u

∗
k′,l′ [i

′]
}

=

∫ ∞
−∞

sk(t− iT − τk,l)sk′(t′ − i′T − τk′,l′) dt

= ρ
(i−i′)
(k,l)(k′,l′) (2.181)
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Define the following quantities:

R
(j)
(k,k′) ,


ρ

(j)
(k,1)(k′,1) ρ

(j)
(k,1)(k′,2) · · · ρ

(j)
(k,1)(k′,L)

ρ
(j)
(k,2)(k′,1) ρ

(j)
(k,2)(k′,2) · · · ρ

(j)
(k,1)(k′,L)

...
...

...

ρ
(j)
(k,L)(k′,1) ρ

(j)
(k,L)(k′,2) · · · ρ

(j)
(k,L)(k′,L)

 (L×L−matrix)

R(j) ,


R

(j)
(1,1) R

(j)
(1,2) · · · R

(j)
(1,K)

R
(j)
(2,1) R

(j)
(2,2) · · · R

(j)
(2,K)

...
...

...

R
(j)
(K,1) R

(j)
(K,2) · · · R

(j)
(K,K)

 (KL×KL−matrix)

Υ[i] , [ y1,1[i], . . . , y1,L[i], . . . , yK,1[i], . . . , yK,L[i] ]T (KL× 1− vector)

u[i] , [u1,1[i], . . . , u1,L[i], . . . , uK,1[i], . . . , uK,L[i] ]T (KL× 1− vector)

gk[i] , [ gk,1[i], gk,2[i], . . . , gk,L[i] ]T (L× 1− vector)

G[i] , diag{g1[i],g2[i], . . . ,gK [i] } (KL×K −matrix)

A , diag {A1, A2, . . . , AK } (K ×K −matrix)

y[i] , [ y1[i], y2[i], . . . , yK [i] ]T (K × 1− vector)

The sufficient statistic of (2.179) can be rewritten in vector form as follows:

Υ[i] =
∑
j∈J

R(−j)G[i]A b[i+ j] + u[i]. (2.182)

From (2.180), the complex Gaussian vector sequence {u[i]} has the covariance matrix of

Cov{u[i],u[i+ j]} = E{u[i]uH [i+ j]}

= σ2R(−j). (2.183)

Substituting (2.182) into (2.177), the expression for the sufficient statistic y[i] is given by

y[i] = GH [i]Υ[i] =
∑
j∈J

H(−j)[i]A b[i+ j] + v[i] (2.184)
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where H(−j)[i] is defined as

H(−j)[i] = GH [i]R(−j)G[i], (2.185)

and v[i] is a sequence of zero-mean complex Gaussian vectors, defined as

v[i] = GH [i]u[i] (2.186)

and has the covariance matrix of

Cov{v[i],v[i+ j]} = E{v[i]vH [i+ j]}

= σ2GH [i]R(−j)G[i] , σ2H(−j)[i]. (2.187)

Note that ρ
(j)
(k,l)(k′,l′) = ρ

(−j)
(k′,l′)(k,l) by definition of (2.178). It then follows that R(−j) =

(R(j))T , and therefore, H(−j)[i] = (H(j)[i])H .

2.9.2 SISO Multiuser Detector in Multipath Fading Channels

The structure of the soft multiuser detector for multipath fading channels is shown in

Figure 2.22. First, the received signal y(t) is passed through a bank of K maximum-ratio

multipath combiners (i.e. Rake receivers) to obtain the sufficient statistic. Then, soft

interference cancellation is applied to the outputs of the combiners, followed by linear

MMSE filtering. Finally, the extrinsic information is computed from the MMSE filter

outputs.

Define the following quantities:

H[i] ,
[
H(1)[i], H(0)[i], H(−1)[i]

]
(K × 3K −matrix)

Aa , diag {A, A, A } (3K × 3K −matrix)

ba[i] ,
[
bT [i− 1], bT [i], bT [i+ 1]

]T
(3K × 1− vector)

We can then write (2.184) in matrix form as

y[i] = H[i]Aaba[i] + v[i] (2.188)

where by (2.187), v[i]∼Nc(0, σ2H(0)[i]).
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Figure 2.22: Low-complexity soft multiuser detector for asynchronous CDMA systems with
multipath fading channels

Based on the a priori LLR of the code bits of all users, {λ2(bk[i]}i;k provided by the

MAP channel decoder, we first form soft estimates of the user code bits:

b̃k[i] , tanh

(
1

2
λ2(bk[i])

)
, i = 0, . . . , N − 1; k = 1, . . . , K. (2.189)

Denote

b̃[i] ,
[
b̃1[i], b̃2[i], . . . , b̃K [i]

]T
(K × 1− vector) (2.190)

b̃a[i] =
[

b̃T [i− 1], b̃T [i], b̃T [i+ 1]
]T

(3K × 1− vector) (2.191)

b̃k[i] , b̃a[i]− b̃k[i]ek (3K × 1− vector) (2.192)

where ek denotes a 3K-vector of all zeroes, except for the (K + k)-th element, which is 1.

At the symbol time i, for each user, a soft interference cancellation is performed on

the received discrete-time signal y[i] in (2.188), to obtain

yk[i] , y[i]−H[i]Aab̃k[i] (2.193)

= H[i]Aa

(
ba[i]− b̃k[i]

)
+ v[i], k = 1, . . . , K (2.194)



Iterative Decoding for Equalization and Multiuser Detection 95

An instantaneous linear MMSE filter is then applied to yk[i], to obtain

zk[i] = wH
k [i]yk[i] (2.195)

where the filter wk[i] ∈ CK is chosen to minimize the mean-square error between the

code bit bk[i] and the filter output zk[i];

wk[i] = arg min
w∈CK

E
{∣∣bk[i]−wHyk[i]

∣∣2}
= arg min

w∈CK
wHE

{
yk[i]y

H
k [i]
}

w − 2R
[
wHE {bk[i]yk[i]}

]
(2.196)

where

E
{
yk[i]y

H
k [i]
}

= H[i]Aa∆k[i]AaH
H [i] + σ2H(0)[i], and (2.197)

E {bk[i]yk[i]} = H[i]Aaek = AkH[i]ek (2.198)

with

∆k[i] , Cov
{

br[i]− b̃k[i]
}

= diag {D[i− 1], Dk[i], D[i+ 1] }

and

Dk[i] , diag
{

1− b̃2
1[i], . . . , 1− b̃2

k−1[i], 1, 1− b̃2
k+1[i], . . . , 1− b̃2

K [i]
}

D[i+ j] , diag
{

1− b̃2
1[i+ j], 1− b̃2

2[i+ j], . . . , 1− b̃2
K [i+ j]

}
,

for j = −1,+1. The solution to (2.196) is given by [57]

wk[i] = Ak
(
H[i]Aa∆k[i]AaH

H [i] + σ2H[0][i]
)−1

H[i]ek (2.199)

As before, in order to form the LLR of the code bit bk[i], we approximate the instantaneous

linear MMSE filter output zk[i] in (2.195) as being Gaussian, i.e., zk[i]∼Nc(µk[i]bk[i], ν2
k [i]).

Conditioned on the code bit bk[i], the mean and variance of zk[i] are given, respectively

by

µk[i] , E {zk[i]bk[i]}

= eHk HH [i]
(
H[i]∆k[i]H

H [i] + σ2H(0)[i]
)−1

H[i]ek (2.200)



Iterative Decoding for Equalization and Multiuser Detection 96

and

νk[i] , Var {zk[i]} = E
{
|zk[i]|2

}
− µ2

k[i]

= wH
k E
{
yk[i]y

H
k [i]
}

wk − µ2
k[i]

= µk[i]− µ2
k[i] (2.201)

Therefore, the extrinsic information λ1(bk[i]) delivered by the instantaneous linear MMSE

filter is given by [57]

λ1[bk(i)] = −|zk[i]− µk[i]|
2

ν2
k [i]

+
|zk[i] + µk[i]|2

ν2
k [i]

=
4R{zk[i]}
1− µk[i]

(2.202)

Recursive Algorithm for Computing Soft Output

The extrinsic information can be computed efficiently by employing reduced-complexity

recursive techniques for performing matrix inversions. The K ×K matrix inversion,

Ψk[i] ,
(
H[i]∆k[i]H

H [i] + σ2H(0)[i]
)−1

, (2.203)

can be computed efficiently using the following procedure. Note that ∆k[i] can be written

as

∆k[i] = ∆[i] + b̃2
k[i]eke

T
k (2.204)

where

∆[i] = diag {D[i− 1], D[i], D[i+ 1] } (2.205)

and

D[i+ j] , diag
{

1− b̃2
1[i+ j], 1− b̃2

2[i+ j], . . . , 1− b̃2
K [i+ j]

}
,

for j = −1, 0,+1. Substituting (2.204) into (2.203), we have

Ψk[i] =
(
H[i]∆[i]HH [i] + σ2H(0)[i] + b̃2

k[i]{H[i]}(:,K+k){HH [i]}(:,K+k)

)−1

(2.206)
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where {H[i]}(:,K+k) denotes the (K + k)-th column of H[i]. Define

Ψ[i] ,
(
H[i]∆[i]HH [i] + σ2H(0)[i]

)−1
(2.207)

1. Given the extrinsic information (in LLR form), {λ2(bk[i])}i,k, from the

FEC decoders, calculate the soft bit estimates (for i = 0, . . . , N − 1 and

k = 1, . . . , K) using:

b̃k[i] = tanh

(
1

2
λ2(bk[i])

)
b̃[i] =

[
b̃1[i], b̃2[i], . . . , b̃K [i]

]T
b̃a[i] =

[
b̃T [i− 1], b̃T [i], b̃T [i+ 1]

]T
,

b̃k[i] = b̃a[i]− b̃k[i]ek

2. Using the recursive procedure of (2.207) and (2.208), calculate the matrix

inversions:

Ψk[i] ,
(
H[i]∆k[i]H

H [i] + σ2H(0)[i]
)−1

,

Φk[i] ,
(
H[i]Aa∆k[i]AaH

H [i] + σ2H(0)[i]
)−1

3. Perform soft interference cancellation and linear MMSE filtering (for

i = 0, . . . , N − 1 and k = 1, . . . , K) using:

yk[i] = y[i]−H[i]Aab̃k[i]

zk[i] = wH
k [i]yk[i] where wk[i] = AkΦk[i]H[i]ek

4. Calculate the extrinsic information {λ1(bk[i])}i,k, for i = 0, . . . , N − 1 and

k = 1, . . . , K, using:

λ1(bk[i]) =
4R{zk[i]}
1− µk[i]

where µk[i] = eHk HH [i]Ψk[i]H[i]ek

Table 2.5: Algorithm: Low-Complexity Soft MUD for Multipath Fading Channels
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Then by the matrix inversion lemma, (2.206) can be written as [57]

Ψk[i] = Ψ[i]−

(
1

b̃−2
k [i] + {HH [i]}(:,K+k)Ψ[i]{H[i]}(:,K+k)

)
·
(
Ψ[i]{H[i]}(:,K+k)

) (
Ψ[i]{H[i]}(:,K+k)

)H
, k = 1, . . . , K (2.208)

Equations (2.207) and (2.208) form the recursive procedure for computing Ψk[i] in (2.203).

Similarly, the recursive procedure can be easily adapted to compute the K ×K matrix

inversion Φk[i] where

Φk[i] ,
(
H[i]Aa∆k[i]AaH

H [i] + σ2H(0)[i]
)−1

. (2.209)

Finally, the SISO multiuser detection algorithm for asynchronous CDMA systems with

multipath fading channels is summarised in Table 2.5.

2.10 Interleave-Division Multiple Access (IDMA)

Recently, a new multiple access system, interleave division multiple access (IDMA) has

been proposed by Ping, Liu, Wu, and Leung [86], [85]. IDMA when used with low-

complexity iterative receivers has been shown to outperform coded CDMA. In contrast

to CDMA, which separates users by specific spreading codes, IDMA separates users by

unique interleaver sequences. IDMA can be regarded as a special case of chip interleaved

CDMA, and therefore inherits many advantages of CDMA including diversity against

fading, and mitigation of the worst-case other-cell user interference problem [74].

2.10.1 Transmitter Structure

Figure 2.23 shows the transmitter structure of the multiuser IDMA scheme with K

simultaneous users [85]. The input data sequence {dk[i]}M−1
i=0 of user-k is encoded by

the FEC encoder (with rate Rk) generating a coded sequence {ck[i]}N−1
i=0 , where N is

the frame length. The elements ck[i] are referred to as coded bits. Then {ck[i]}N−1
i=0

is permutated by the user-specific interleaver πk, producing {bk[i]}N−1
i=0 . Finally, the

interleaved coded bit sequence is BPSK modulated, producing {xk[i]}N−1
i=0 . The elements

xk[i] are referred to as chips in accordance with CDMA convention.
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Figure 2.23: IDMA Transmitter Structure and Signal Model

The interleaver sequence πk must be different for each user since IDMA system users

are distinguished soley by their interleaver sequence. The interleavers are assumed to be

generated randomly and independently. These interleavers disperse the coded sequences

so that the adjacent chips are approximately uncorrelated.

2.10.2 Iterative Receiver and Signal Model

We consider the case of a Rayleigh flat-fading channel. Each received sample can be

expressed as

y[i] =
K∑
k=1

hkxk[i] + n[i] (2.210)

where xk[i] is the i-th chip transmitted by user k, hk is the channel coefficient for user k,

and n[i] is additive noise sampled from a Gaussian random variable, i.e., n[i]∼N (0, σ2).

The joint multiple-access system with FEC coding in Figure 2.23 can be considered

as a serially concatenated coding system, in which the FEC code and the multiple-access

channel take the roles of the outer code and the inner code, respectively [102]. Using

this interpretation, an iterative receiver algorithm based on the turbo decoding concept

[12] can be developed. The receiver structure for the multiuser IDMA system is shown

in Figure 2.24. It consists of a soft-output elementary signal estimator (ESE) and K
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Figure 2.24: IDMA Multiuser Receiver Structure

single-user a posteriori probability FEC decoders (DECs). The two stages are separated

by interleavers and deinterleavers.

Using the received signal y[i], and the interleaved extrinsic log likelihood ratios (LLRs)

of the code bits of the K-users (from the K single-user DECs) as inputs, the soft-output

ESE calculates the a posteriori LLRs of the code bits of all K-users. These a posteriori

LLRs are then deinterleaved and fed to the DECs.

Using the deinterleaved extrinsic LLRs of the code bits from the soft-output ESE as

input, the DEC of the k-user calculates the a posteriori LLRs of the code bits, as well as

the LLRs of the information bits. These a posteriori LLRs are then interleaved and fed

back to the ESE.

This iterative decoding process is sub-optimal as the multiple access and FEC

coding constraints are considered separately, however this approach has greatly reduced

complexity compared to optimal detection approaches. Next, the receiver components

are described.

Elementary Signal Estimator (ESE)

The ESE is developed from [85]. At a given iteration, the ESE estimates the a posteriori

probabilities (in LLR form) of the code bits bk[i], which are denoted by Λ1(bk[i]),

Λ1(bk[i]) , log
P (bk[i] = 1 | y)

P (bk[i] = 0 | y)
, i = 0, . . . , N − 1, k = 1, . . . , K (2.211)
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Where y denotes the received signal vector, given by y = [ y[0], . . . , y[N − 1] ]T . Using

Bayes’ rule, (2.211) can be rewritten as

Λ1(bk[i]) = log
P (y | bk[i] = 1)

P (y | bk[i] = 0)︸ ︷︷ ︸
λ1(bk[i])

+ log
P (bk[i] = 1)

P (bk[i] = 0)︸ ︷︷ ︸
λ2(bk[i])

. (2.212)

The first term in (2.212), denoted by λ1(bk[i]), is the extrinsic information calculated

by the ESE. The second term, denoted by λ2(bk[i]), is the a priori probability (in LLR

form) of bk[i]. An estimate of the a priori probability is calculated by the DEC of the

k -th user at the previous iteration. At the first iteration, no prior information about the

code bits is available, therefore all bit values are assumed equiprobable and the a priori

LLR values are set to zero. Finally, the sequence of extrinsic information, {λ1(bk[i])}i, is

deinterleaved by the deinterleaver of the k -th user (producing {λ1(ck[i])}i) and fed into

the corresponding DEC as a priori information for the next iteration.

The computation of the extrinsic information for each user is now described in detail.

For a particular user, k, we can rewrite (2.210) as

y[i] = hkxk[i] + ζk[i] (2.213)

where ζk[i] is the distortion (comprising of AWGN channel noise and interference from

other users) contained in sample y[i] with respect to xk[i], and is given by

ζk[i] , y[i]− hkxk[i] =
K∑
j=1

(j 6=k)

hjxj[i] + n[i] (2.214)

From the central limit theorem, ζk[i] can be approximated as a Gaussian variable, and

y[i] can be characterised by a conditional Gaussian probability density function

P (y[i] | bk[i] = ± 1) =
1√

2πVar{ζk(i)}
exp

(
−(y[i]− (±hk + E{ζk[i]}))2

2Var{ζk[i]}

)
(2.215)

where E{ · } and Var{ · } denote expectation and variance, respectively. Using (2.213)-

(2.215), the chip-by-chip ESE detection algorithm for IDMA systems can be developed

as shown in Table 2.6.
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1. Given the extrinsic information (in LLR form), {λ2(bk[j])}k, from the FEC

decoders, calculate the soft bit statistics for each user (k = 1, . . . , K):

E{xk[i]} = tanh

(
1

2
λ2(bk[i])

)
,

Var{xk[i]} = 1− (E{xk[i]})2 ,

2. Calculate the received signal statistics:

E{y[i]} =
K∑
k=1

hkE{xk[i]},

Var{y[i]} =
K∑
k=1

|hk|2Var{xk[i]}+ σ2.

3. Calculate the estimated interference mean and variance for each user

(k = 1, . . . , K):

E{ζk[i]} = E{y[i]} − hkE{xk[i]},

Var{ζk[i]} = Var{y[i]} − |hk|2Var{xk[i]}

4. Perform soft interference cancellation for each user:

yk[i] = y[i]− E{ζk[i])}, k = 1, . . . , K

5. Calculate the extrinsic information, {λ1(bk[i])}k, using:

λ1(bk[i]) = 2hk ·
(

yk[i]

Var{ζk[i]}

)
, k = 1, . . . , K

Table 2.6: Algorithm: Soft Elementary Signal Estimator (ESE) MUD for IDMA
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Soft Channel Decoders (DEC)

The channel decoder for the k -th user estimates the a posteriori probabilities (APP) in

LLR form of the code bits, Λ2(ck[i]), which are given by

Λ2(ck[i]) , log
P (ck[i] = 1 | {λ1(ck[i])}i ; code structure )

P (ck[i] = 0 | {λ1(ck[i])}i ; code structure )
, (2.216)

= λ2(ck[i]) + λ1(ck[i]),

for i = 0, . . . , N − 1. These a posteriori probabilities are computed using the BCJR

algorithm [6] (from Section 2.3.3) based on the a priori information from the ESE,

{λ1(ck[i])}i, and knowledge of the code structure.

As in (2.212), Λ2(ck[i]) can be expressed as the sum of extrinsic information λ2(ck[i])

and a priori information λ1(ck[i]). The sequence of extrinsic information, {λ2(ck[i])}i, is

interleaved (producing {λ2(bk[i])}i) and fed back to the ESE as a priori information for

the next iteration.

Additionally, the DEC estimates the a posteriori LLRs of the information bits,

{Λ2(dk[i])}i, and at the final iteration, performs a hard decision on the information bits,

producing {d̂k[i]}i .

2.11 Conclusion

In this chapter, the iterative decoding principles from turbo coding were applied to

channel equalization and multiuser detection. The techniques presented will be the

basis for the work described in the following chapters. First, the BCJR MAP algorithm

was introduced for decoding convolutional codes over an AWGN channel. The BCJR

algorithm is a fundamental building block of turbo decoding schemes.

Next, the inter-symbol interference (ISI) channel was presented. For coded data

transmissions, the FEC encoder of the transmitter and the ISI channel can be modelled

as a serial concatenated coding scheme transmitting over a memoryless channel. This

model is similar to a standard serial encoder for turbo coding, and therefore, iterative

decoding techniques can be used at the receiver. Iterative decoding for ISI channels is

known as turbo equalization. Turbo equalization receiver structures were discussed and

performance results presented.



Iterative Decoding for Equalization and Multiuser Detection 104

Finally, the multiple-access channel and multiuser detection using iterative decoding

was presented. For coded data transmissions, the FEC encoder of the transmitter and the

MAI (multiple-access interference) channel can also be modelled as a serial concatenated

coding scheme, and therefore, iterative decoding techniques can be utilised. Iterative

decoding of multiple-access channels is commonly known as turbo MUD. Low-complexity

multiuser detectors for use in turbo MUD receivers were presented for synchronous

CDMA, asynchronous CDMA, and asynchronous IDMA systems.



Chapter 3

IDMA Performance Optimisation using

Variance Transfer Analysis

In this chapter, Variance Transfer (VT) charts are used to analyse and optimise iterative

receiver performance of a multiuser IDMA system. Introduced by Schlegel and Grant

[102], VT charts are similar in concept to Extrinsic Information Transfer (EXIT) charts

[115], but are better suited for analysing multiuser iterative receivers. VT Charts provide

a graphical interpretation of the reliability of information passed between the constituent

components of an iterative receiver. Once the VT characteristic curves have been

determined, receiver performance can be optimised by attempting to closely match the

VT characteristics of the multiuser detector (MUD) and the forward error correction

(FEC) channel decoders. The MUD VT characteristic can be manipulated by the selection

of multiuser detection algorithm and the number of simultaneous users (system load).

The FEC channel decoder VT characteristic can be manipulated by the selection of error

correction code.

Two multiuser system scenarios are considered for optimisation:

Layered IDMA with Power Allocation. Firstly, We extend the IDMA concept to a

multi-rate system where different users transmit data at different rates and the

same low-complexity iterative receiver structure can still be used. High-rate users

are supported by breaking up the input data stream into multiple sub-streams. An

IDMA layer is created from each sub-stream, and the multiple IDMA layers are then

combined and the composite layered signal is transmitted from a single antenna.

The iterative receiver treats each IDMA layer as a virtual user.

105
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Chayat et. al. [18] observed that the performance of an iterative receiver is improved

if different users transmit at different powers. This allows the iterative decoder

to operate in an “onion peeling” mode, where the higher-power layers converge

first, decreasing their contribution to the residual noise, and then the lower-power

layers converge. CDMA and IDMA systems utilising iterative receivers can exploit

this power allocation strategy to gain an improvement in performance. Caire

et. al. [17] have shown that this power optimisation problem can be solved by

optimising the partial loads, and developed simple optimisation methods based on

linear programming techniques. In [103], Schlegel et al. applied the work of [18] and

[17] to develop allocation schemes for iterative CDMA receivers that are based on

combined soft interference cancellation and MMSE filtering (i.e., CDMA multiuser

detector schemes of the type described in Section 2.8.2).

To improve the performance of our layered IDMA scheme, we develop a simple power

allocation scheme, where the power levels for each IDMA layer are calculated using

Variance Transfer (VT) analysis and linear programming techniques. In a Rayleigh

flat-fading environment, simulation results demonstrate that the performance of

this proposed system is close to the theoretical limit. This original contribution was

published in [63].

FEC Code Allocation for Dynamic Loads. Secondly, we propose an alternative opti-

misation approach for inducing “onion peeling” operation in the iterative receiver.

Ten Brink [116] demonstrated that different FEC codes generate different FEC

channel decoder VT characteristics. As an alternative to transmit power allocation,

the judicious selection of FEC codes can also be used to match the receiver VT

characteristics for optimal performance.

A simple FEC code allocation strategy for multiuser systems with dynamic loads

is devised. New users are allocated FEC codes according to the existing system

load, which allows the FEC decoder VT curve to dynamically match the MUD

VT curve as it changes with system load, providing optimal system performance

over a range of operating conditions. We derive a numerical method for optimising

performance based on FEC code allocation, and present simulation results. For

small multiuser systems, results demonstrate that the performance of the proposed

system approaches the theoretical single user bound. This original contribution was

published in [65].
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3.1 Variance Transfer Charts and Analysis

s
2

n

Elementary
Signal

Estimator user
k

dk[ i ]Soft FEC
Channel
Decoder

User k

ESE output
variance

l1(b )k[ i ] l1(c )k[ i ]

l2(b )k[ i ] l2(c )k[ i ]Interleaver

Deinterleaver

pk
-1

pk
g( )

var
dec

var
ese

var
dec

x (t) hK K

S

n(t)

Multiple Access Channel

y(t)

x (t) h1 1

x (t) h2 2

ESE input
variance

DEC output
variance

f( )

var
ese

DEC input
variancechannel

noise
variance

Figure 3.1: Variance transfer between constituent iterative receiver components

The Variance Transfer (VT) chart method [102] analyses the transfer functions of the

multiuser detector and the channel decoders in order to predict the behaviour of the

iterative receiver. Figure 3.1 shows the variance transfer paths for the IDMA iterative

receiver from Section 2.10.2. There are two VT functions:

• The ESE VT function is defined as the variance in the ESE output, varese, as a

function of the error variance in the soft-bit estimates from the FEC decoders,

vardec,k, and the channel noise variance, σ2
n, i.e., varese = f(vardec,k , σ

2
n)

• The FEC channel decoder (DEC) VT function is defined as the variance in the k-th

user DEC output, vardec,k, as a function of the estimation error variance from the

ESE, varese, i.e., vardec,k = g(varese)

3.1.1 ESE Variance Transfer Function

For our IDMA system, the multiuser interference is proportional to the system load,

β, and the variance of the estimation error, vardec,k. The system load is defined as the

ratio of users, K, to bandwidth expansion, R, (i.e. β = K/R), and the estimation error

variance is defined as

vardec,k = E
{

(ck[i]− ĉk[i])2} (3.1)

We first consider the case of equal power for all users, Pk = P . For this case, the

estimation error for all users will be equal, vardec,k = vardec. For the ESE, the expression
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for the residual multiple access interference plus channel noise at the input to the FEC

decoder is given by

varese( vardec ) =

(
K − 1

R

)
P vardec + σ2

n

= lim
K→∞

βP vardec + σ2
n (3.2)

where σ2
n is the channel noise, and the soft FEC decoder estimation error variance,

vardec , is the average power of the residual symbol interference. Therefore, given vardec ,

equation (3.2) describes the noise variance in the input signal to the FEC decoder for the

next iteration. Figure 3.2a shows the ESE VT function (3.2) for a typical IDMA system.
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decoder (for various 1/3-rate codes)

The more accurate the symbol estimates of the other interfering users, the smaller the

residual noise that the error control decoder has to overcome. But even if the interfering

symbols are known exactly, the FEC decoder still has to overcome the AWGN channel

noise.
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3.1.2 FEC Decoder Variance Transfer Function

At the input of the k-th soft FEC decoder, the input sequence has an additive Gaussian

noise distortion with associated variance varese per symbol. Therefore the decoder can

be analysed in the same manner as an AWGN channel. The output of the decoder are

the soft bit estimates, and the primary measure of their reliability is the variance vardec.

Unfortunately, no closed form expression exists for vardec as a function of varese other than

for very simple codes. The VT functions vardec = g(varese) are found using numerical

methods by simulating the input-output behaviour of the FEC code. Figure 3.2b shows

the VT functions for a repetition code, best known convolutional codes (with constraint

lengths, v, of 2, 3, and 4) [54], and a turbo code [12]. All the codes shown have a rate of

1/3.

3.1.3 Example Variance Transfer Chart
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Figure 3.3 shows a VT chart for our IDMA system with all users transmitting at

equal power, and a receiver Eb/N0 value of 10dB. Decoding starts at point (0) where
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the FEC decoders have to work with full interference and noise. After the first iteration,

the receiver reduces the interference by subtracting estimates of the interfering signals,

this leads to point (1). The vertical distance between point (0) and point (1) is the

resultant reduction in noise variance at the input of the soft-output FEC decoder. In the

next iteration, the noise variance can be further reduced to point (2), and so on, until

the iterations reach the intersection point between the two curves, point (12). At this

point virtually all the interference has been canceled, and only channel noise is left. The

performance of the individual decoders at this point is essentially that of the decoders in

Gaussian noise, and is known as the noise limitation fix point of the iterative decoder.

In Figure 3.3, note that along the iterative trajectory there is a section which forms a

narrow channel through which the trajectory progresses in small steps. This area is the

interference limitation. An increase in the system load, or reduction in Eb/N0 ratio will

create another intersection point between the two VT curves (within this interference

limitation region), and the variance will stop improving at this interference limitation fix

point, rather than at the noise limitation fix point. Under these conditions, the decoder

does not function due to an excessive system load. As the load decreases, or the Eb/N0

ratio increases, the channel opens up and convergence to the noise limitation fix point

is suddenly enabled. This effect happens at a sharp Eb/N0 threshold, and gives rise to

the abrupt, cliff-like behaviour of the error rate performance in iterative receivers. This

bound on the VT curve allows us to derive the optimal parameters for our IDMA system

in order to optimise system performance.

Figure 3.4 demonstrates the iterative receiver operating modes and the effect of

Eb/N0 on performance. Figure 3.4a shows the VT for an Eb/N0 of 1.5dB, the receiver

is interference limited and the BER performance is poor regardless of the number of

iterations. Figure 3.4b shows the VT for a slightly higher Eb/N0 of 3.0dB, here the

receiver is no longer interference limited, but “bottlenecked”. Convergence is slow and a

large number of iterations are required to achieve good BER performance. Figure 3.4c

shows that at the higher Eb/N0 of 4.5dB, the bottleneck region has been opened up

and convergence is achieved quickly with only a small number of iterations required to

achieve good BER performance. These operating regions are also reflected in the BER

graph in Figure 3.4d.
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3.2 Multi-Rate IDMA with Power Allocation

We extend the IDMA multiple-access system (from Section 2.10) to a multi-rate system

where different users transmit data at different rates and the same low-complexity

iterative receiver structure can still be used. High-rate users are supported by breaking

up the input data stream into multiple sub-streams. An IDMA layer is created from



IDMA Performance Optimisation using Variance Transfer Analysis 112

each sub-stream, and the multiple IDMA layers are then combined and the composite

layered signal is transmitted from a single antenna.
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Figure 3.5: Transmitter Structure for the Multi-Rate IDMA System

Figure 3.5 shows the transmitter structure for multi-rate users of the multiple-access

scheme. For the high-rate user, a serial-to-parallel converter breaks up the input data

stream is into J sub-streams. An IDMA layer is created from each sub-stream, and the

multiple layers are then combined and transmitted from a single antenna. Each layer

is of equal rate, but unequal power. In order to achieve optimal receiver performance,

transmit power is allocated to the various IDMA layers in accordance to the strategy

developed in Section 3.2.1.
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Figure 3.6: Receiver Structure for the Multi-Rate IDMA System

Figure 3.6 shows the receiver structure for the multi-rate IDMA system. The iterative

receiver operates as described in Section 2.10.2 and each IDMA layer is treated as a virtual

user. After the receiver has decoded the data for each virtual user, a parallel-to-serial
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converter recombines the IDMA layers into the appropriate high-rate streams for each

multi-rate user.

3.2.1 Transmit Power Allocation

Chayat et. al. [18], observed that differences in received power levels are beneficial to the

operation of the joint iterative decoder, and that in practice, only a few different power

levels are needed to achieve good performance.

We develop a power allocation scheme to improve the performance of our layered

IDMA system based on the methods from [102]. First, we extend the VT chart method

to the case of unequal received power levels. Denote σ2
ι as the error variance in the ESE

output, varese, at iteration ι. The residual interference and noise variance of an arbitrary

user, at iteration ι, is given by

σ2
ι =

1

R

K∑
k=1

Pk g

(
σ2
ι−1

Pk

)
+ σ2

n (3.3)

where g( · ) is VT function of the FEC decoder (Section 3.1.2). In the case where the

users are grouped into J power groups, we find

σ2
ι =

J∑
j=1

KjPj
R

g

(
σ2
ι−1

Pk

)
+ σ2

n (3.4)

where Kj, is the number of users in group j. Since different users now contribute with

different received power levels, we need to consider the average system load. The average

system load is defined as βav =
∑J

j=1 βjPj. We now obtain

σ2
ι = βav

∑ βjPj
βav

g

(
σ2
ι−1

Kj

)
+ σ2

n

= βav gav(σ
2
ι−1) + σ2

n (3.5)

where gav(σ
2
ι−1) is an average variance transfer function. It is obtained by weighing the

individual code VT functions by the weight factor βPj/βav (composed of their loads and

powers). Equation (3.5) can be visualised and charted in a similar manner as the equal

power case, where the FEC VT function of the code in the equal power case corresponds

to the composite FEC VT function gav( · ) in the unequal power levels case.
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If we assume that there are J different power levels, each with a partial load βj , then

the power levels can be optimised using numerical techniques. The number of levels J

is arbitrary and determines the complexity of the numerical method. Caire et. al. [17]

observed that the power optimisation problem can be solved by optimizing the partial

loads. This turns the optimisation into a well-known linear programming problem.

Using the residual recursive interference equation (3.4),

σ2
ι =

J∑
j=1

KjPj
R

g

(
σ2
ι−1

Pj

)
+ σ2

n = f(P, β, z = σ2
ι−1) (3.6)

where P = (P1, . . . , PJ), and β = (β1, . . . , βJ). The condition that the VT curves of the

FEC decoders and the ESE do not intersect can be reformulated as

f(P, β, z) < z; z ∈ [σ2
min,∞] (3.7)

where the lower limit σ2
min is an arbitrary limit dictated by some minimal performance

criterion. In this case we use the error probability of the lowest power level group as

the performance criterion. Given the power Pj and the error control codes used, we

can calculate the maximum tolerable error variance σ2
min and (3.7) ensures that no

intersection point exist for larger residual interference variances, therefore enforcing this

minimal performance criterion. This results in the following optimization problem:

minimise
J∑
j=1

βjPj subject to:


f(P,β, z) ≤ z − ε∑J

j−1 βj = β

βj ≥ 0

(3.8)

where z ∈ [σ2
min,∞]. The optimisation criterion in (3.8) minimises the average Eb/N0,

which is equivalent to optimising the system load of a given average Eb/N0. The parameter

ε controls the width of the convergence tunnel and ensures that there is a sufficient

opening for the iterations to proceed through. A wider convergence tunnel allows for

faster convergence, but at the cost of a decreased system load. Equation (3.8) becomes a

linear optimisation problem which can be solved by numerical techniques.

We consider the optimisation problem for a high-rate transmitter with 3 IDMA layers.

Figures 3.7a & 3.7b both show the VT charts for 3 equal-sized power groups. Figure 3.7a

uses a FEC code consisting of a 1/3-rate convolutional code serially concatenated with
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Figure 3.7: VT charts for layered-IDMA with power allocation using (a) convolutional code
FEC, and (b) turbo code FEC

a 1/6-rate repetition code. Figure 3.7b uses 1/3-rate turbo code concatenated with

a 1/6-rate repetition code. In both cases, the optimal power levels are found to be

P1 = 0.25×P, P2 = 0.50×P , and P3 = 1.00×P .

Note that the optimisation strategy does not take into account the physical constraints

of the transmitter power amplifier (e.g., power budget and dynamic range). However,

the optimisation results are pleasing in that the optimal power levels do not make any

untoward demands on the underlying physical hardware and the scheme could be readily

implemented using standard transmitter components.

3.2.2 Simulation Results

The simulations assume the receiver has perfect channel knowledge. The system is

evaluated for fast time-varying Rayleigh flat-fading channels where the individual user

channels are independent and uncorrelated.

Figure 3.8a compares the average bit error rate (BER) for 3 high-rate users after

12 receiver iterations versus the signal to noise ratio (SNR) Eb/N0 for layered-IDMA

with and without power allocation, and with 2 types of FEC code (convolutional code,
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and turbo code). For Eb/N0 values of 4 dB and greater we observe a performance

improvement of 0.5dB to 1.0dB for layered IDMA with power allocation when compared

to the equal power case. We also observe a modest improvement (of 0.25dB to 0.5dB)

when comparing IDMA with Turbo code FEC against IDMA with convolutional code

FEC.

Figure 3.8b compares the average bit error rate (BER) for 9 high-rate users after

12 receiver iterations versus the signal to noise ratio (SNR) Eb/N0 for layered-IDMA

with and without power allocation, and with 2 types of FEC code (convolutional code,

and turbo code). For Eb/N0 values of 4 dB and greater we observe a performance

improvement of 0.5dB to 1.0dB for layered IDMA with power allocation when compared

to the equal power case. We also observe minimal difference between IDMA with Turbo

code FEC against IDMA with convolutional code FEC.

3.3 FEC Allocation for Dynamic System Loads

From Figure 3.3 we observe that for good system performance, we need to match the

FEC decoder VT curve to ESE VT curve, such that the FEC decoder VT curve is always

above the ESE VT curve (maintaining an acceptable convergence tunnel width), and

only crossing the ESE VT curve at the noise limitation fix point. From Figure 3.2b we

observe that strong FEC codes are a good match for light system loads, and that weaker

FEC codes are a better match for heavier system loads.

We consider a system consisting of a number of persistent users (primary users) and a

number of intermittent users (secondary and tertiary users, where the tertiary users are

more sporadic that the secondary users). From our observations, we hypothesise that the

optimal FEC code allocation strategy is for assign strong FEC codes to primary users,

and increasingly weaker FEC codes to the secondary and tertiary users. The composite

FEC decoder VT function would be dominated by the strong codes at light loads, and

dominated by the weaker codes at heavy loads. We now develop optimisation techniques

to test our hypothesis

Caire et. al. [17] observed that the power optimisation problem can be solved by

optimising the partial loads, and developed simple optimisation methods based on well-

known linear programming techniques. This optimisation method splits the system

load into a number of sub-groups (or partial loads), where each sub-groups represents
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a different power level. These sub-groups can be optimised using numerical techniques.

The number of sub-groups (power levels) is arbitrary and determines the complexity of

the numerical method.

Adapting the optimisation techniques from [17], we develop a simple method for FEC

code allocation that optimises the overall system performance.

Denote σ2
ι as the error variance in the ESE output, varese, at iteration ι. The residual

interference and noise variance of an arbitrary user, at iteration ι, is given by

σ2
ι =

1

R

K∑
k=1

P gk

(
σ2
ι−1

Pk

)
+ σ2

n (3.9)

where gk( · ) is the VT function of the FEC decoder for user k (Section 3.1.2). In the

case where the users are grouped into J FEC code groups (each group uses a different

FEC code), we find

σ2
ι =

J∑
j=1

KjP

R
gj

(
σ2
ι−1

P

)
+ σ2

n (3.10)

where Kj, is the number of users in group j. Since different users now contribute with

different FEC code VT functions, we consider the average system load. The average

system load is defined as βav =
∑J

j=1 βjgj( · ). We now obtain

σ2
ι = βav

∑ βjP

βav
gj

(
σ2
ι−1

Kj

)
+ σ2

n

= βav gav(σ
2
ι−1) + σ2

n (3.11)

where gav(σ
2
ι−1) is the average VT function, which is obtained by weighing the individual

code VT functions by the weight factor βj/βav (composed of their loads). Equation (3.11)

can be graphed in a similar manner as the common FEC code case, where the FEC VT

function of the code in the common code case corresponds to the composite FEC VT

function gav( · ) in the multiple code groups case.

The residual recursive interference equation, (3.10), can be restated as

σ2
ι = f

(
g(
σ2
ι−1

P
), β, z = σ2

ι−1

)
(3.12)
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where g( · ) = (g1( · ), . . . , gJ( · )), and β = (β1, . . . , βJ). By choosing the maximum error

probability as the minimum performance criterion, the condition that the VT curves of

the FEC decoders and the ESE do not intersect can be reformulated as the following

linear optimisation problem:

minimise
J∑
j=1

βjPgj( · ) subject to:


f(g(

σ2
ι−1

P
), β, z) ≤ z − ε∑J

j=1 βj = β

βj ≥ 0

(3.13)

where z ∈ [σ2
min,∞], and σ2

min is the arbitrary lower limit dictated by the minimal

performance criterion. The optimisation criterion in (3.13) minimises the average Eb/N0,

which is equivalent to optimising the system load of a given average Eb/N0. The parameter

ε controls the width of the convergence tunnel and ensures that there is a sufficient

opening for the iterations to proceed through. A wider convergence tunnel allows for

faster convergence, but at the cost of a decreased system load. Equation (3.13) can be

solved by numerical techniques.

We consider the optimisation problem for an IDMA system with 8 primary users

(always present), 8 secondary users and 16 tertiary users (where the secondary and tertiary

users are intermittent users, the tertiary users are more sporadic than the secondary

users). To minimise the complexity of the optimisation problem, we consider an allocation

of 3 FEC codes (one code for each user group). Each of the following candidate codes are

considered for optimisation: convolutional codes with constraint lengths,v, of 2, 3, 4, 5,

and 6; and turbo codes with RSC encoders of constraint lengths 2 and 3. All candidate

codes are rate 1/3.

The optimal FEC code allocation for the three user groups are found to be turbo code

(with RSC encoders of constraint length 2) for the primary user group; convolutional

code with constraint length of 3 for the secondary user group; and convolutional code

code with constraint length of 2 for the tertiary user group.

We also consider the optimisation problem for an IDMA system where FEC code

allocation is not used, and all 32 users (8 primary, 8 secondary, and 16 tertiary) employ

the same FEC code. Using the same candidate group of codes, the optimal FEC code is

found to be the convolutional code with constraint length of 3.
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3.3.1 Simulation Results

The simulations assume the receiver has perfect channel knowledge. The system is

evaluated for fast time-varying Rayleigh flat-fading channels where the individual user

channels are independent and uncorrelated.

We consider the scenario of an IDMA system with up to 32 simultaneous users

(consisting of 8 primary users, which are always present; 8 secondary users; and 16

tertiary users, where the secondary and tertiary users are intermittent users, and the

tertiary users are more sporadic than the secondary users). We compare the performance

of a system employing FEC code allocation against a system using a common FEC code

for all users (in this latter case, the FEC code is a convolutional code with constraint

length of 3, which was found to be the optimal code for a 32-user system without code

allocation).

Figure 3.9a compares the average bit error rate (BER) for 9 users after 12 receiver

iterations versus the signal to noise ratio (SNR) Eb/N0 for an IDMA system with and

without FEC code allocation. For Eb/N0 values of 4 dB and greater we observe a

performance improvement of up 0.5dB to 0.8dB for IDMA with FEC code allocation

when compared to the standard FEC code case. We also observe that performance of

the IDMA system with FEC code allocation is generally within 0.5dB of the single user

bound.

Figure 3.9b compares the average BER for 16 and 32 users after 12 receiver iterations

versus the SNR Eb/N0 for an IDMA system with and without FEC code allocation. For

Eb/N0 values of 4 dB and greater, with 16 users, we observe a performance improvement

of approximately 0.5dB to 1.0dB for IDMA with FEC code allocation when compared to

the standard FEC code case. For 32 users, we observe a modest performance improvement

of approximately 0.3dB when comparing FEC code allocation against standard FEC

code case.

3.4 Conclusion

The analysis of iterative multiuser receiver performance using Variance Transfer (VT)

analysis has been presented. It was shown that receiver performance is optimal when

the VT characteristics of the constituent components are “matched”. Using linear

programming techniques, allocation schemes for transmitter power and FEC codes were
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developed to achieve optimal system performance. Two multiuser system scenarios were

considered for optimisation.

First, a multi-rate multiuser scheme using the layered-IDMA with power allocation

was presented and compared with a layered scheme without power allocation (equal

power). The layered IDMA scheme with power allocation was shown to provide superior

performance at moderate and high SNR levels while using the same low-complexity

iterative decoding receiver structure as the other IDMA schemes. In a Rayleigh flat-

fading environment, simulation results show that for Eb/N0 values of 6dB and greater,

the performance of layered IDMA system with power allocation is within 0.5dB of the

single user bound.

Second, an IDMA multiuser scheme employing FEC code allocation for dynamic

loads was presented and compared with a IDMA scheme without FEC code allocation

(all users employ the same FEC code). The IDMA scheme with FEC code allocation was

shown to provide superior performance at moderate and high SNR levels while using the

same low complexity iterative decoding receiver structure as the other IDMA schemes.

In a Rayleigh flat-fading environment, simulation results show that for Eb/N0 values of

6.5dB and greater, the performance of the IDMA system with FEC code allocation and

32 simultaneous users is within 0.7dB of the single user bound.



Chapter 4

Optimal Space-Time Coding using the

Golden Code

In recent years, multiple antenna systems (commonly referred to as multi-input multi-

output or MIMO systems) have proven to be an effective method for realising high-rate

reliable wireless communications. Research in MIMO systems has generally focused on

providing either higher-rate or increased diversity over traditional single antenna (SISO)

systems.

Foschini [30] introduced the layered space-time (BLAST) architecture where a high

throughput rate is achieved by using multiple transmit antennas to transmit multiple

independent data sub-streams in parallel. Multiple receive antennas and multi-user

detection algorithms are used at the receiver end to separate and decode the individual

sub-streams. Although providing high-rate, BLAST has the shortcoming that it does not

provide diversity gain as each data symbol is only transmitted once from one antenna.

Alamouti [3] introduced a simple orthogonal space time block code (STBC) that

provided diversity gain for 2× 1 and 2× 2 multi-antenna systems. This scheme was

generalised and extended by Tarokh et. al. [113] to include higher-dimension MIMO

systems, using real and complex orthogonal STBCs. Although providing diversity gain,

orthogonal STBCs have the shortcoming that (with the exception of a few sporadic

codes) the coding rate does not exceed 1/2.

A generalised class of space-time codes that encompassed both orthogonal STBCs and

BLAST architectures was proposed by Hassibi and Hochwald [39]. This generalised class

of codes, which are known as linear dispersion (LD) codes, are defined as codes that break

up the input data stream into sub-streams that are dispersed in linear combinations over

123
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space and time. Theoretically, LD codes can provide both diversity gain and high-rate.

In general, LD codes can outperform their orthogonal STBC and BLAST sub-classes.

Sethuraman et. al. [105] proposed a methodology for designing full-diversity high-rate

LD codes using cyclic division algebras. A division algebra is used to provide a structured

set of invertible matrices to construct LD space-time codes. Using this technique, Belfiore

et. al. [7] developed the Golden Code, a 2× 2 LD code that provides both diversity gain

and full-rate.

In the first part of this chapter, we investigate the effect of Doppler spread on the

performance of the 2× 2 Golden Code single-user system. Doppler spread is a measure of

spectral broadening caused by the relative motion between the transmitter and receiver

antennas or by the movement of reflecting objects in the channel. Doppler spread is an

important consideration in the design of mobile communication systems.

The decoding methodology for the Golden code is presented, followed by performance

comparisons with the Alamouti code and V-BLAST in Rayleigh fading environments

with Doppler spread. Simulation results show that the Golden Code outperforms both

the Alamouti code and V-BLAST at high SNR levels. For a symbol error rate of 10−4

the Eb/N0 requirement for the Golden code is 5dB less than the Alamouti code and

V-BLAST. This original contribution was published in [60].

The second part of this chapter considers the multiuser case, and we develop a MIMO

framework for IDMA that can provide both diversity gain and high-rate.

Recently multiuser MIMO-IDMA has been proposed [81], where IDMA has been

generalised to multiple antenna systems where users employ V-BLAST (vertical-encoded

layered space time) spatial multiplexing to achieve higher data rates. Decoding is still

performed by an iterative receiver whose complexity is linear in the number of users. We

further extend the MIMO-IDMA concept from IDMA with V-BLAST spatial multiplexing

to IDMA with linear dispersion (LD) codes.

In particular, we investigate the performance of the MIMO-IDMA using the Golden

Code. The Golden Code (GC), is 2× 2 LD code derived from cyclic division algebra

that provides both diversity gain and full-rate [7]. We compare the performance of this

GC-IDMA scheme against MIMO-IDMA schemes employing the Alamouti code and

V-BLAST, and also against the single-user bound. In a Rayleigh flat-fading environment,

simulation results show that GC-IDMA outperforms both Alamouti- and V-BLAST-

IDMA at moderate and high SNR levels. For signal to noise ratios of 8dB and greater,
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the GC-IDMA scheme employing 16 users approaches within 0.25dB of the single-user

bound. This original contribution was published in [62].

4.1 Single-User MIMO System Model

The system model for a multiple-antenna communications system with N transmit and

M receive antennas is shown in Figure 4.1.
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Figure 4.1: MIMO communications system model

If we assume a narrow-band flat-fading wireless channel which is constant for at least

P channel uses, then the transmitted and received signals are related by

y(i) =

√
ρ

N
Hx(i) + n(i) i = 1, 2, . . . , P (4.1)

where i is an individual channel use, and we define

y(i) =


y1(i)

y2(i)
...

yM(i)

 , x(i) =


x1(i)

x2(i)
...

xN(i)

 , n(i) =


n1(i)

n2(i)
...

nM(i)

 (4.2)

where y(i) is the M -dimensional vector of complex received signals during channel use

i, x(i) is the N -dimensional vector of complex transmitted signals, H is the M ×N
channel matrix, and n(i) is the M -dimensional vector of additive complex-Gaussian noise

(assumed to be zero-mean and unit-variance).
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If we assume that H, x(τ) and n(τ) are random and independent quantities, the

signal power normalisation
√
ρ/N ensures that ρ is the signal-to-noise ratio (SNR) at

each receive antenna, independently of N . It is assumed that the channel matrix is

known by the receiver.

We define the matrices Y, X, and V as:

Y =


yT (1)

yT (2)
...

yT (P )

 , X =


xT (1)

xT (2)
...

xT (P )

 , V =


nT (1)

nT (2)
...

nT (P )


where the superscript T denotes transpose. Equation (4.1) is usually more convenient in

its transposed form, i.e.,

Y =

√
ρ

N
XH + V (4.3)

where the transpose notation is omitted from H, and the channel matrix is simply

redefined to have dimension N ×M . Y is the P ×M received signal matrix, X is the

P ×N transmitted signal matrix, and n is the P ×M additive noise matrix. In matrices

Y, X, and V, time runs vertically and space runs horizontally.

4.2 Space-Time Coding and Linear Dispersion Codes

A space-time block code (STBC) is defined by a (P ×N) code matrix X, where N

denotes the number of transmit antennas or the spatial transmitter diversity order, and P

denotes the number of channel usages for transmitting a STBC codeword or the temporal

transmitter diversity order [113].

The STBC encoder takes as input a code vector, x, and transmits each row of symbols

as specified in X at P consecutive channel usages. At each channel usage, the symbols

contained in the N -dimensional row vector of X are transmitted through N transmitter

antennas simultaneously.
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As an example, consider the 2× 2 Alamouti STBC (ie., P = 2, N = 2). The Alamouti

STBC matrix X is defined by

X =

 x(1) x(2)

−x∗(2) x∗(1)

 (4.4)

where ( · )∗ denotes the complex conjugate operation. The input to this STBC is the

code vector x = [x(1), x(2) ]T . During the first channel use, the two symbols of the top

row of X, [x(1), x(2) ], are transmitted simultaneously from the two transmit antennas;

and during the second channel use, the symbols in the second row of X, [−x∗(2), x∗(1) ],

are transmitted.

A Linear Dispersion (LD) code is a general class of space time block code (STBC)

that breaks up the input data stream into sub-streams that are dispersed in linear

combinations over space and time. Specifically, a linear dispersion code is defined as:

X =

Q∑
q=1

(xqC
q + x∗qD

q) (4.5)

where the data sequence is broken up into Q sub-streams, x1, . . . , xQ are complex symbols

from an arbitrary constellation (typically r-PSK or r-QAM), and Cq and Dq are fixed

P ×N complex matrices. The code is completely determined by the set of dispersion

matrices {Cq, Dq}.

It is generally more convenient to decompose the complex scalar xq into its real and

imaginary components

xq = αq + jβq, q = 1, . . . , Q (4.6)

The LD code can then be redefined in terms of real and imaginary components as follows:

X =

Q∑
q=1

(αqA
q + jβqB

q) (4.7)

where Aq = Cq + Dq and Bq = Cq − Dq. The dispersion matrices {Aq, Bq} also

completely specify the code. LD codes include many commonly used ST codes including

the Alamouti Scheme and V-BLAST (Vertical-encoding spatial multiplexing).
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4.3 Decoding of Linear Dispersion Codes

This LD decoding method for the single-user case was developed from the framework

proposed by Hassibi and Hochwald [39]. An important property of LD codes (4.7) is

their linearity in the variables αq, βq, leading to efficient decoding schemes. To see this,

we substitute the LD code equation (4.7) into the received signal equation (4.3) which

forms the following block equation:

Y =

√
ρ

N
XH + V =

√
ρ

N

Q∑
q=1

(αqA
q + jβqB

q)H + V (4.8)

The matrices in (4.8) can be decomposed into their real and imaginary components to

obtain:

YR =

√
ρ

N

Q∑
q=1

[(Aq
RHR −Aq

IHI)αq + (−Bq
IHR −Bq

RHI)βq] + VR

YI =

√
ρ

N

Q∑
q=1

[(Aq
IHR −Aq

RHI)αq + (Bq
RHR −Bq

IHI)βq] + VI

where

YR = R{Y}, HR = R{H}, VR = R{V}, and

YI = I{Y}, HI = I{H}, VI = I{V}.

Where R{z} and I{z} denote the real and imaginary parts respectively of the complex

value z.

We denote the columns of YR, YI , HR, HI , VR and VI by ymR , ymI , hmR , hmI , nmR and

nmI respectively, and define:

Aq =

 Aq
R −Aq

I

Aq
I Aq

R

 , Bq =

 −Bq
I −Bq

R

Bq
R −Bq

I

 , hm =

 hmR

hmI

 (4.9)
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where m = 1, . . . ,M . The equations in YR and YI can be assembled to form the single

real system of equations 

y1
R

y1
I

...

yMR

yMI


=

√
ρ

N
H



α1

β1

...

αQ

βQ


+



n1
R

n1
I

...

nMR

nMI


(4.10)

where the equivalent 2MP × 2Q real channel matrix is given by:

H =


A1h1 B1h1 . . . AQh1 BQh1

...
...

...
...

...

A1hM B1hM . . . AQhM BQhM

 (4.11)

We now have a linear relation between the input vector x and the output vector y:

y =

√
ρ

N
Hx + n (4.12)

where the equivalent channel H is known to the receiver because the original channel

H, and the dispersion matrices are all known to the receiver. The receiver uses (4.11)

to find the equivalent channel. The system of equations between the transmitter and

receiver is not under-determined as long as Q ≤MP .

Any decoding scheme that can solve a well-conditioned system of linear equation

can be used for decoding of LD codes. Suitable decoding techniques include successive

nulling and canceling (as used for V-BLAST), and sphere decoding.

4.4 The Golden Code

Sethuraman et. al. [105] proposed a methodology for designing full-diversity high-rate

LD codes using cyclic division algebras. A division algebra is used to provide a structured

set of invertible matrices to construct LD space-time codes. In general, LD codes derived

from cyclic division algebra have been found to provide better performance than LD
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Figure 4.2: Diversity-Multiplexing Gain Tradeoff (M=2, N=2) [142] [83]

codes derived using the original information theoretic approach proposed by Hassibi and

Hochwald [39].

The Golden Code is a full-rate 2× 2 LD code and is defined as subset of the cyclic

division algebra (Q(i,
√

5), i) with centre Q(i) [7]. The 2× 2 Golden Code has the

structure:

X =
1√
5

 α{x(1) + x(2)θ} α{x(3) + x(4)θ}

jᾱ{x(3) + x(4)θ̄} ᾱ{x(1) + x(2)θ̄}

 (4.13)

where

θ =
1 +
√

5

2
, θ̄ =

1−
√

5

2
= (1− θ), α = j(1− θ), ᾱ = 1 + j(1− θ̄)

and j =
√
−1. In[114], Tarokh et. al. defined the rank criterion and determinant criterion

for designing ST codes. Oggier et. al. [82] extended this design criteria to include: (a) full

rate; (b) full diversity; (c) non-vanishing determinant for increasing spectral efficiency;

(d) good shaping of the constellation; and (e) uniform average transmitted energy per

antenna. ST Codes that meet all of these criteria are termed perfect space-time block
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codes. The Golden Code has been found to be the best perfect code for MIMO systems

with 2 transmit and 2 or more receive antennas.

Elia et. al. [25] have shown that the Golden code achieves the optimal diversity-

multiplexing tradeoff for a 2× 2 MIMO system. Zheng and Tse [142] developed a

simple characterisation of the optimal tradeoff between diversity and degrees of freedom

(multiplexing gain), and then used it to evaluate the performance of existing multiple

antenna schemes. The concept is that for a given MIMO channel, both diversity and

multiplexing gain can be simultaneously obtained, but there is a fundamental tradeoff

between how much of each type of gain any coding scheme achieve. For example, for a

particular coding scheme, increased spatial multiplexing gain comes at the cost of reduced

diversity gain. Figure 4.2 uses Zheng’s and Tse’s method to compare the Alamouti

STBC, V-BLAST and the Golden Code STBC.

From Figure 4.2 we see that neither the Alamouti STBC nor V-BLAST are optimal.

The Alamouti STBC does not provide full spatial-multiplexing gain, while V-BLAST

does not provide full diversity gain. The Golden Code however provides both the full

spatial-muliplexing gain and the full diversity gain available for a 2× 2 system.

4.5 Single-User System Performance

The simulations assume the receiver has perfect channel knowledge. The individual

channels in the channel matrix are uncorrelated, and the system does not use error

correction coding. The constellations of each of the coding schemes has been chosen to

ensure a common spectral efficiency of 8-bits per channel use. The V-BLAST and Golden

code simulations both use 16-QAM constellations, while the Alamouti code simulations

use 256-QAM (the higher-order constellation is required to compensate for the absence

of spatial multiplexing gain).

In Figure 4.3 we compare the performance of the Golden Code STBC against the

Alamouti code and V-BLAST in a Rayleigh flat-fading environment. The figure shows

the superior performance of the Golden code, particularly at higher SNR values. For a

symbol error rate of 10−4 the Eb/N0 requirement for the Golden code is 5dB less than

the Alamouti code and V-BLAST.

Figure 4.4a compares the performance of the Golden code over a range of Doppler

frequencies that would be typical in mobile communications scenarios. We observe
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Figure 4.3: Alamouti, V-BLAST and Golden Code Performance (M=2, N=2)

a performance degradation of approximately 2dB for every 5Hz increase in Doppler

frequency.

Figure 4.4b compares the Golden code performance against the Alamouti code at

selected Doppler frequencies. The performance degradation of approximately 2dB for

every 5Hz increase in Doppler frequency previously observed with the Golden code is also

observe with the Alamouti code. The 5dB performance advantage at high SNR levels of

the Golden code compared to the Alamouti code is maintained over the range of Doppler

frequencies investigated.

4.6 Multiuser MIMO System Model

4.6.1 Multiuser Transmitter Structure

Figure 4.5 shows the transmitter structure of the multiple-access IDMA scheme with

K simultaneous users. The input data sequence {dk[i]}i of user-k is encoded by the

FEC encoder generating a coded sequence {ck[i]}J−1
i=0 , where J is the frame length. Then

{ck[i]}J−1
i=0 is permutated by the interleaver πk, producing {bk[i]}J−1

i=0 . IDMA users are
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Figure 4.5: Transmitter structure for the multiuser MIMO-IDMA system

distinguished solely by their interleaver sequence, and therefore the interleaver πk must

be different for each user. Finally, the interleaved chip sequence, {bk[i]}J−1
i=0 , is QPSK-

modulated producing {xk[i]}i which is then space-time mapped as specified by the code

matrix, X. Three different STBC matrices are used in our simulations: the Alamouti

code (4.4), the Golden code (4.13), and V-BLAST. The STBC matrix for 2-transmit

antenna V-BLAST is X = [x(1), x(2) ]T .

4.6.2 Multiuser MIMO Signal Model

We develop the signal model for the MIMO-IDMA system by way of example. We assume

a flat-fading channel between each transmit and receive antenna pair. We also assume

that the fading remains constant over an entire signal frame, but may vary from one

frame to another.

Consider a single user (K = 1) STBC system with two transmit antennas (N = 2),

and M receiver antennas, employing the Alamouti code matrix, X, from (4.4), the

received signal at the m-th receiver antenna for this single user can be written as ym(1)

ym(2)

 =

 x(1) x(2)

−x∗(2) x∗(1)

  hm,1

hm,2

 +

 nm(1)

nm(2)

 (4.14)



Optimal Space-Time Coding using the Golden Code 135

where ym(p) is the received signal vector from channel usage p, hm,n is the complex

fading gain from the n-th transmitter antenna to the m-th receiver antenna, nm(p) is

the additive Gaussian noise samples from channel usage p, and m = 1, 2, . . . ,M .

Combining the channel matrix with the STBC code matrix X, (and conjugating ym[2]

to simplify notation), (4.14) can be written in the following alternative form

ym = Hm
1 x1 + nm (4.15)

where m = 1, 2, . . . ,M and we define

ym =

 ym(1)

ym(2)∗

 , Hm
1 =

 hm,1 hm,2

hm,2 hm,1

 , x1 =

 x(1)

x(2)

 , and nm =

 nm(1)

nm(2)∗


We see that Hm

1 combines information of the channel response related to the m-th receiver

antenna and the code constraint of the STBC, X.

By stacking the ym vectors from (4.15) for all M receiver antennas, the following

signal model is obtained

y =


y1

y2

...

yM

 =


H1

1

H2
1

...

HM
1


 x(1)

x(2)

 +


n1

n2

...

nM

 (4.16)

We now consider the multiuser case of a STBC system with K users, each employing

N transmitter antennas. At the receiver, M receiver antennas are employed. In this case,

the received signal can be written as
y1

y2

...

yM

 =
[

H1, H2, . . . , HK

]


x1

x2

...

xK

 +


n1

n2

...

nM

 (4.17)

where ym , [ ym(1), ym(2), . . . , ym(P ) ]T , m = 1, 2, . . . ,M , and contains the received

signal vectors from channel usages 1 to P , at the m-th antenna; Hk, k = 1, 2, . . . , K is
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the channel response matrix for the kth user; xk , [xk(1), xk(2), . . . , xk(N) ]T is the code

vector for the k -th user; and nm , [nm(1), nm(2), . . . , nm(P ) ]T contains the additive

Gaussian noise samples from channel usages 1 to P at the m-th receiver antenna.

In addition to the Alamouti code, we use this same methodology to develop signal

models for the Golden code and V-BLAST. For the Golden code case, signal vectors are

separated into their real and imaginary components. This method was first developed in

[79] and [67].

4.6.3 Multiuser Iterative Receiver Structure
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Figure 4.6: Receiver structure for the multiuser MIMO-IDMA system

The iterative receiver structure for the MIMO IDMA system is shown in Figure 4.6.

It consists of a soft-output multiuser detector (MUD) and K single users a posteriori

probability decoders (DECs). The two stages are separated by interleavers and deinter-

leavers. The soft-output MUD takes as input the received signals from the M receiver

antennas and the interleaved extrinsic log likelihood ratios (LLRs) of the code bits of all

users (which are fed back by the K single-user DECs), and computes as the output the a

posteriori LLRs of the code bits of all users. The DEC of kth users takes as input the

deinterleaved extrinsic LLRs of the code bits from the soft-output MUD and computes

as output the a posteriori LLRs of the code bits, as well as the LLRs of the information

bits.

At a given iteration, the MUD estimates the a posteriori LLRs of the code bits, i.e.,

Λ1(bk[i]) , log
P (bk[i] = 1 | y)

P (bk[i] = 0 | y)
, i = 0, . . . , J − 1, k = 1, . . . , K (4.18)
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where y denotes the received vectors from all M antennas. With Bayes’ rule, (4.18) can

be rewritten as

Λ1(bk[i]) = log
P (y | bk[i] = 1)

P (y | bk[i] = 0)︸ ︷︷ ︸
λ1(bk[i])

+ log
P (bk[i] = 1)

P (bk[i] = 0)︸ ︷︷ ︸
λ2(bk[i])

(4.19)

The first term in (4.19), denoted by λ1(bk[i]), is the extrinsic information calculated by

the MUD. The second term, denoted by λ2(bk[i]), is the a priori information (in LLR

form) of bk(i). An estimate of the a priori LLR is calculated by the DEC of the k -th

user at the previous iteration. At the first iteration, no prior information about the

code bits is available, therefore all bit values are assumed equiprobable and the a priori

LLR values are set to zero. Finally, the sequence of extrinsic information, {λ1(bk(i))}i, is

deinterleaved by the deinterleaver of the k -th user (producing {λ1(ck(i))}i) and fed into

the corresponding DEC as a priori information for the next iteration.

The channel decoder for the k -th user estimates the a posteriori probabilities (in LLR

form) of the code bits, i.e.,

Λ2(ck[i]) , log
P (ck[i] = 1 | {λ1(ck[i])}i ; code structure )

P (ck[i] = 0 | {λ1(ck[i])}i ; code structure )
, (4.20)

= λ2(ck[i]) + λ1(ck[i]).

These a posteriori probabilities are computed using the BCJR algorithm [6] based on the

a priori information from the MUD, {λ1(ck[i])}, and knowledge of the code structure.

Additionally, the DEC estimates the a posteriori LLRs of the information bits, {Λ2(dk[i])},
and at the final iteration, performs a hard decision on the information bits, producing

{d̂k[i])}.

4.7 Soft Multiuser Detector (MUD)

The MUD operation is now described in more detail. The MUD is developed largely

from the concepts described in [67].

First, the soft estimate x̃k(i) of the k -th users i -th code symbol xk(i) is calculated by

x̃k(i) , E{xk(i)} =
∑
x∈X

xP (xk(i) = x) (4.21)
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where X is the set of possible code symbols. At first iteration, all code symbols are

assumed to be equiprobable. In subsequent iterations, the probability P (xk(i) = x) is

computed from the extrinsic information provided by the DEC.

For our multi-user system, where each user employs multiple transmit antennas, we

use the concept of treating each transmit antenna as a virtual user. Therefore, for a

system with K -users, where each user employs N transmit antennas, there are (NK)

virtual users in the system. We define an (NK)-dimensional soft code vector

x̃ , [ x̃T1 , x̃T2 , . . . , x̃TK ]T

= [ x̃1(1), . . . , x̃1(N), x̃2(1), . . . , x̃2(N), . . . , x̃K(1), . . . , x̃K(n) ]T (4.22)

where every element in x̃ as a virtual user. We use the notation k(i) to index a virtual

user, and define

x̃k(i) , x̃− x̃k(i)ek(i) (4.23)

where ek(i) is an (NK)-vector of all zeros, except for the “1” value in the vector element

corresponding to the k(i)-th virtual user. That is, xk(i) is obtained from x by setting

the k(i)−th element to zero.

Subtracting the soft estimate of the interfering signals of the other virtual users from

the received signal y, we get

yk(i) , y −Hx̃k(i) = H[x− x̃k(i)] + n (4.24)

In order to further suppress the residual interference in yk(i), we apply an instantaneous

linear minimum mean square error (MMSE) filter to yk(i). The linear MMSE weight

vector wk(i) is chosen to minimise the mean square error between the transmitted symbol

xk(i) and the filter output x̂k(i) , wH
k (i)xk(i), (where ( · )H denotes the Hermitian

transpose operation), hence

wk(i) = arg min
w∈CMP

E
{
‖xk(i)−wHyk(i)‖2

}
= E

{
yk(i)y

H
k (i)

}−1
E {x∗k(i)yk(i)} (4.25)
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Using (4.24) and assuming that the symbol xk(i) is of unit energy, ie., ‖xk(i)‖2 = 1 and

E{nnH} = σ2I, where I is the identity matrix, we have

E{x∗k(i)yk(i)} = HE {x∗k(i)[x− x̃k(i)]} = Hek(i) (4.26)

E{yk(i)yHk (i)} = HVk(i)H
H + σ2I (4.27)

with

Vk(i) , Cov{x− x̃k(j)}

= diag{ 1− ‖x̃1(1)‖2, . . . , 1− ‖x̃1(N)‖2, . . . ,

1− ‖x̃k(i− 1)‖2, 1, 1− ‖x̃k(i+ 1)‖2,

. . . , 1− ‖x̃K(1)‖2, . . . , 1− ‖x̃K(N)‖2 }

(4.28)

Using equations (4.25) to (4.28), the instantaneous MMSE estimate for xk(i) is given by

xk(i) , wH
k (i)yk(i)

= eTk (i)HH
[
HVk(i)H

H + σ2I
]−1

yk(i) (4.29)

The instantaneous MMSE filter can be modeled by an equivalent additive white Gaussian

noise channel (with µk(i) mean and v2
k(i) variance) having xk(i) as its input symbol. The

output of this filter can then be written as

x̂k(i) = µk(i)xk(i) + ηk(i) (4.30)

with

µk(i) , E{x̂k(i)x∗k(i)}

=
{

HH
[
HVk(i)H

H + σ2I
]−1

H
}
k,k

(4.31)

and

v2
k(i) , Var{xk(i)} = µk(j)xk(i)− µ2

k(i) (4.32)

where { · }j,k denotes the matrix element at the j -th row and k -th column. Equations

(4.30) to (4.32) give the probability distribution of the code symbol x̂k(i), which is used

to calculate the a posteriori probability of the code bits.
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4.8 Multiuser System Performance

The simulations assume the receiver has perfect channel knowledge. The system is

evaluated for fast time-varying Rayleigh flat-fading channels where the individual channels

in the channel matrix are independent and uncorrelated. The transmitter FEC is a 1/2-

rate convolutional code serially concatenated with a 1/16-rate repetition code (producing

an overall code rate of R = 1/32). The transmitter generates QPSK symbols (before

space-time mapping)
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Figure 4.7: Alamouti-, V-BLAST- and GC-IDMA Performance

Figure 4.7 compares the bit error rate (BER) averaged over all (16) users after 10

receiver iterations versus the signal to noise ratio (SNR) Eb/N0 for IDMA with three

space-time coding schemes (the Golden code, the Alamouti code, and V-BLAST). For

BER of 10−5 or less, the Eb/N0 requirement for the Golden code is 1.5dB less than the

Alamouti code and 1dB less that V-BLAST.

Figure 4.8a compares the effect of the number of receiver iterations on BER for a

Golden code IDMA system with 16 simultaneous users. We observe receiver convergence

after 7 iterations for Eb/N0 values of 7dB or less, and convergence after 5 iterations for

Eb/N0 values greater than 7dB.
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Figure 4.8b compares the effect of the number of simultaneous users on the BER for

Golden Code IDMA. The performance is shown for 10 receiver iterations. We observe

almost identical performance for 1, 8 and 16 user systems over the simulated Eb/N0

range of 0dB to 10dB. For 24 and 32 user systems, we observe a slight degradation in

performance (compared to 16-users) of up to 1dB and 0.5dB for 24 and 32 user systems

respectively for Eb/N0 values of 5 to 7dB. For Eb/N0 values of 7dB and greater, the

performance of 24 and 32 user systems is almost identical to the 1, 8 and 16 user systems.

4.9 Conclusion

In this chapter, the Golden Code—an optimal linear-dispersion (LD) code providing

both diversity gain and full-rate—was presented.

First, the single-user case was considered and the performance of the Golden Code

was been presented and compared with common multiple-antenna systems, namely the

Alamouti code and V-BLAST (spatial multiplexing). The Golden Code was shown to

provide superior performance at high-SNR levels while using the same low-complexity

linear dispersion code decoding schemes typically used to decode Alamouti and V-BLAST

schemes.

Simulation results of a single-user MIMO system using the Golden Code at various

Doppler frequencies were presented. These results showed that the Golden Code maintains

its superior performance when compared to the Alamouti scheme over the range of Doppler

frequencies that would typically be encountered in a mobile communications system. For

a symbol error rate of 10−4 the Eb/N0 requirement for the Golden code is 5dB less than

the Alamouti code and V-BLAST.

Next, the multiuser case was considered and a MIMO framework for incorporating

LD codes into an IDMA multiple-access scheme was developed. The performance of

the 2× 2 MIMO-IDMA multiuser scheme using the Golden Code (GC-IDMA) was then

presented and compared with other 2× 2 MIMO-IDMA schemes using the Alamouti code

and V-BLAST space-time codes. GC-IDMA was shown to provide superior performance

at moderate and high SNR levels while using the same low-complexity iterative decoding

receiver structure as the other MIMO-IDMA schemes.

In a Rayleigh flat-fading environment, simulation results show that GC-IDMA out-

performs Alamouti and V-BLAST IDMA at moderate and high SNR levels. For bit
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error rate of 10−5 or less, the Eb/N0 requirement for the GC-IDMA is 1dB less than

the Alamouti-IDMA and V-BLAST-IDMA. Simulation results showing the effect of the

number of simultaneous users and the effect of the number of receiver iterations on

GC-IDMA performance were also presented.



Chapter 5

Multiuser Detection for Delay-Spread

Underwater Acoustic Channels

Underwater sensor networks enable a broad range of applications including environmental

monitoring, undersea exploration, assisted navigation, and distributed surveillance [2]. A

robust and efficient communications scheme between the underwater network nodes is

an essential foundation for reliable high-performance sensor networks.

The shallow water acoustic channel is an exceptionally difficult medium for data

transmission, and developing reliable communications systems for this environment has

proved to be very challenging. One of the main channel impairments is multipath

interference caused by multiple reflections of the acoustic signal from the water surface

and bottom. These reflections occur at small grazing angles and with small reflection

losses. This effect causes both long time-delay spread and large multipath amplitudes to

be present in the received signal [51].

Over the past decade, CDMA has been successfully employed as the modulation

scheme for shallow water networks [15] [119] [111]. Spread-spectrum schemes, such

as CDMA, employ a transmission bandwidth that is considerably greater than the

information rate. Utilization of the bandwidth in this manner introduces a number

of benefits, including multiple-access interference suppression capability and improved

immunity against multipath effects.

Unfortunately, the long time-delay spreads that are typical for shallow water acoustic

channels cause severe inter-symbol interference (ISI). This ISI degrades the performance

of many CDMA receiver detection schemes. Multi-carrier modulation (MCM) is an

attractive alternative because it is particularly resilient to long time-delay spreads.

144



Multiuser Detection for Delay-Spread Underwater Acoustic Channels 145

The basic principle of MCM is to split a high-rate data stream into a number of

lower-rate streams that are transmitted simultaneously over a number of sub-carriers.

This significantly reduces the ISI span because the lower-rate parallel sub-carriers have

increased symbol duration [126].

In [75], Orthogonal Frequency Division Multiplexing (OFDM), a low-complexity

spectrally-efficient MCM technique, was combined with an IDMA overlay to develop

a multiple-access scheme for multi-path fading channels. In this chapter we develop

an OFDM-IDMA scheme that provides robust performance in the presence of large

time-delay spread and the other impairments presented by the shallow water acoustic

channel. The proposed scheme utilises a low-complexity iterative decoding algorithm

based on the turbo-decoding concept [12].

The performance of the proposed OFMD-IDMA scheme is compared against other

shallow water communication schemes, including single-carrier CDMA, single-carrier

IDMA. Using ray-trace underwater channel models combined with noise models of

commonly occurring oceanic noise phenomena, simulations of multiple-access sensor

network systems are performed to assess the overall performance of the different schemes.

A Multiple-Input Multiple-Output (MIMO) extension to the OFDM-IDMA scheme

is also investigated, where each transmitter and receiver use multiple transmitting and

receiving elements respectively. This MIMO concept is used to exploit the multi-path

nature of the underwater channel to provide improved performance in the form of either

increased data robustness or increased data throughput.

Simulations of various underwater acoustic sensor network scenarios show that the

OFDM-IDMA scheme consistently outperforms other common multiple-access schemes

in the shallow water environment. The work in this chapter was published in [61] and

[64].

5.1 Channel Model

Acoustic signals transmitted in shallow water are corrupted by interference from reflection

and scattering at the water surface and bottom. For this reason, the shallow water

channel is a difficult medium in which to achieve the high data rates needed for many

applications. An especially difficult problem is that the acoustic signal transmitted over

a shallow water channel has associated with it inherently small grazing angles and small
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reflection losses. This results in significant corruption due to large amplitude multi-path

signals.

n(t)
Noise

Models

y(t)

x(t)

Ray Tracing
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dt
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S

Figure 5.1: Channel Model Simulator Description

Ray tracing methods have been shown to provide realistic modeling of these effects

for high frequency acoustic signals propagating in shallow water environments [27]. For

our system simulations, we develop a ray-trace underwater channel model combined with

noise models of commonly occurring oceanic ambient and intermittent noise sources. The

channel model is shown in Figure 5.1.

5.1.1 Multipath Modeling

The shallow water propagation is modeled using the multipath channel model proposed

by Zielinski, et al. [145]. This model is characterised by Ray theory and simplified with

assumptions of constant sound velocity profile and constant bottom depth. Boundaries

at the channel surface and bottom reflect an acoustic signal, resulting in multiple travel

paths between transmitter and receiver. Therefore, the receiver can acquire signals

arriving on different paths, each signal delayed according to the channel geometry.

We assume a channel geometry as shown in Figure 5.2 where the channel has uniform

depth, h, and constant sound speed, c. The transmitter and receiver height are denoted

by a, and b respectively. We only consider the case where the channel has a large range

to channel depth ratio (L/h), such that it supports coherent, specular reflection.
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The transmitted signal path can be classified as either the direct path D or multipath.

Multipath signals are grouped into four types according to their first and last boundary

reflection before arriving at the receiver. We use the following notation:

• SSn denotes a multipath signal which has a first and last boundary reflection from

the sea-surface;

• SBn denotes a multipath signal which has first and last boundary reflections from

the sea surface and bottom respectively;

• BSn denotes a multipath signal which has first and last boundary reflections from

the sea bottom and surface respectively; and

• BBn to denote multipath signals which make a first and last boundary reflection

from the sea bottom.

The subscript n denotes the multipath “order”. Multipath signals with an order, n,

of 2 or more have an additional (n− 1) intermediatory boundary reflections. Figure 5.2

shows these four types of multipath signals for the primary (n = 1) path.
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Multipath Signal Amplitude Calculation

The normalised amplitudes of each of the four types of multipath signals can be calculated

from the following:

αSSn =

[
LD
LSSn

]
RSSn , αSBn =

[
LD
LSBn

]
RSBn ,

αBSn =

[
LD
LBSn

]
RBSn , αBBn =

[
LD
LBBn

]
RBBn (5.1)

where LD is length of the direct signal path; LSSn , LSBn , LBSn , LBBn are the lengths of

the multipath signal paths; and RSSn , RSBn , RBSn , RBBn are the combined reflection

attenuation coefficients for each of the multipath types.

The path lengths can be calculated using the channel geometry. Using the binomial

expansion to simplify the equations, the path lengths for the direct signal and each of

the multipath types is given by:

LD '
[
L+

1

2L
(b− a)2

]

LSSn '
[
L+

1

2L
(2nh− a− b)2

]
LSBn '

[
L+

1

2L
(2nh− a+ b)2

]
LBSn '

[
L+

1

2L
(2nh+ a− b)2

]
LBBn '

[
L+

1

2L
(2(n− 1)h+ a+ b)2

]
(5.2)

The combined reflection attenuation coefficients represent the total attenuation due

to repeated surface and/or bottom reflections for each multipath type. The coefficient

values are calculated as follows:

RSSn = r̃ns r̃
(n−1)
b ' −|rs|n, RSBn = r̃ns r̃

n
b ' |rs|n,

RBSn = r̃ns r̃
n
b ' |rs|n, RBBn = r̃(n−1)

s r̃nb ' −|rs|n−1 (5.3)

where r̃s is the surface reflection coefficient, and r̃b is the bottom reflection coefficient.

The surface reflection coefficient, rs can be evaluated using the Bechmann-Spezzichino

model, and the bottom reflection coefficient, rb can be evaluated using either the Rayleigh

model (Brekhovskikh) or the NUSC model (Yarger)[145]. In general, reflection coefficients

depend on grazing angle and therefore on the order of the multipath.
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Multipath Signal Arrival Time Calculation

The signal arrival times can be calculated from the signal path lengths and the sound

speed. The difference in arrival times between the direct path and each of the four types

of multipath signals can be calculated from the following:

τSSn = tSSn − tD '
2

cL

[
n2h2 − nh(a+ b) + ab

]
τSBn = tSBn − tD '

2

cL

[
n2h2 − nh(b− a)

]
τBSn = tBSn − tD '

2

cL

[
n2h2 − nh(a− b)

]
τBBn = tBBn − tD '

2

cL

[
(n− 1)2h2 + (n− 1)h(a+ b) + ab

]
(5.4)

Combined Multipath Channel Response

The impulse response of a multi-path channel can be modeled by the weighted sum of

delayed delta functions [93], therefore the received signal y(t) can be represented by a

weighted sum of the delayed transmitted signal x(t), i.e.:

y(t) =
∞∑
`=1

α`x(t− τ`) (5.5)

where α` is the amplitude of the signal received from the `-th path normalised by the

amplitude of the direct path signal (` = 1), and τ` designates the difference in time of

arrivals between the direct path signal (` = 1) and reflected signals (` > 1).

Elaborating (5.5) for the channel geometry shown in Figure 5.2, the received signal

y(t) constructed from the summation of image signals is given by:

y(t) =
exp{jω(t− tD)}

LD

{
1 +

∞∑
n=1

(αSSn exp{−τSSn}+ αSBn exp{−τSBn}

+ αBSn exp{−τBSn}+ αBBn exp{−τBBn} )

}
(5.6)

where j =
√
−1. In the computation of (5.6), the number of terms is usually limited

to include only those with significant amplitudes. In our simulations, we neglect terms

smaller than 2% of the amplitude of the direct path signal. An example multipath

channel response for frequencies between 10kHz and 100kHz, and channel lengths (L)
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Figure 5.3: Shallow water multipath channel response example

from 100m to 1100m, is shown in Figure 5.3. In this example, the channel depth (h) is

20m, the transmitter height (a) and receiver height (b) is 10m. The surface reflection

coefficient (r̃s) is 0.33, bottom reflection coefficient (r̃b) is 1.00, and sound speed (c) of

1500m/s.

5.1.2 Noise Modeling

The channel model includes models for ambient and significant intermittent noise sources.

Ambient noise sources include surface agitation noise, and thermal nose. Intermittent

noise sources include noise due to snapping shrimp and rain noise. Figure 5.4 shows the

typical noise levels of the following common ambient and intermittent sources.

Shipping Noise. The noise level (in dB re 1µPa) due to shipping is given by [71][124]

NLshipping =

NL100 f ≤ 100Hz

NL100 − 20 log(10f) f > 100Hz
(5.7)

where NL100 is typically between 60 and 80 dB re 1µPa (depending on shipping

density), and f is the frequency in kHz.

Surface Agitation Noise. The noise caused by the bursting of bubbles of dissolved air

at the air-water interface, gives rise to noise which is mainly dependant on wind
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Figure 5.4: Typical noise levels of ambient and intermittent sources

speed [35].

Nwind = 20.5 + 22.4 logU (5.8)

where U is the wind speed in m/s at a reference height of 10m above the surface of

the water. The frequency dependent ambient noise level due to surface agitation

can be given by [5]

Nsurface agitation = Nwind + 20.7− 15.9 log f (5.9)

where f is the frequency in kHz.

Thermal Noise. The noise due to the thermal excitation of the water can be modeled

by [124]

Nthermal = −15 + 20 log f (5.10)

where f is the frequency in kHz.

Rain Noise. The noise level for rain is a function of the size and velocity of the water

droplets when they hit the water surface. Both of these factors are dependent on

the rainfall rate [124]. In addition, rain noise is also effected by wind speed [5]. The

noise level (in dB re 1µPa) due to rain is given by

NLrain = b+ a logRR (5.11)
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where

a =


25.0 U ≤ 1.5

5.0 + 5.7(5.0− U) 1.5 < U < 5.0

5.0 U ≥ 5.0

(5.12)

and

b =


41.6 U ≤ 1.5

50.0 + 2.4(5.0− U) 1.5 < U < 5.0

50.0 U ≥ 5.0

(5.13)

RR is the rainfall rate in mm/h, and U is the wind speed in m/s.

Noise due to Snapping Shrimp. There are currently no theoretical models for modeling

the noise due to snapping shrimp [35]. The empirical formula developed by Urick

[124] for modeling snapping shrimp noise (in dB re 1µPa) is

Nshrimp = −15 + 20 log f (5.14)

where f is the frequency in kHz.

5.2 Single-Carrier IDMA for Multipath-Fading

5.2.1 Transmitter Structure and Signal Model

The single-carrier IDMA transmitter structure and multipath-channel signal model is

shown in Figure 5.5. The transmitter operates as described in Section 2.10.1.

We consider the case of underwater acoustic channels with memory due to multipath

delay dispersion. Each received sample can be expressed using an L-tap model as

y[i] =
K∑
k=1

L−1∑
l=0

hk,l xk[i− l] + n[i] (5.15)

where xk(i) is the i-th chip transmitted by user k, hk,l is the channel coefficient for user k

(corresponding to a delay of l chip durations), and n[i] is a noise sample. For a particular
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user k, we can rewrite (5.15) as

y[i] = hk,l xk[i− l] + ζk,l[i] (5.16)

where ζk,l[i] is the distortion (including additive noise, interference from other users as

well as ISI from the same user) contained in y[i] with respect to xk[i− l].
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Figure 5.5: Single-Carrier IDMA transmitter structure and multipath-channel signal model

5.2.2 Iterative Receiver Structure

The joint multiple-access system with FEC coding in Figure 5.5 can be considered as a

serially concatenated coding system, in which the FEC code takes the role of the outer

code, and the multiple-access channel takes the role of the inner code [102]. Using this

interpretation, an iterative receiver algorithm based on the turbo decoding concept [12]

can be developed.

The iterative receiver structure for the multiuser IDMA system is shown in Figure 5.6.

It consists of a soft-output elementary signal estimator (ESE) and K single users a

posteriori probability decoders (DECs). The two stages are separated by by interleavers

and deinterleavers.

Using the received signal, y[i], and the interleaved extrinsic information (in LLR

form) of the code bits of the K-users (from the K single-user DECs), {λ2(bk[i]}i,k, as

inputs, the soft-output ESE calculates the a posteriori probabilities (in LLR form) of
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Figure 5.6: Receiver structure for the multiuser IDMA system

the code bits of all K-users. These a posteriori LLRs are then deinterleaved (producing

{λ1(ck[i]}i,k) and fed to the DECs.

Using the deinterleaved extrinsic information of the code bits from the soft-output

ESE as input, the DEC of the k-user calculates the a posteriori probabilities (in LLR

form) of the code bits, {Λ2(ck[i]}i,k. These a posteriori LLRs are then interleaved and

fed back to the ESE.

The components of the receiver are described next.

Elementary Signal Estimator (ESE) for Multipath-Fading Channels

The ESE described in Section 2.10.2 is now extended to account for the multipath-fading

channel. This is developed from [85]. At a given iteration, the ESE estimates the a

posteriori LLRs of the code bits bk[i], i.e.,

Λ1(bk[i]) , log
P (bk[i] = 1 | y)

P (bk[i] = 0 | y)
(5.17)

for i = 0, . . . , J − 1, and k = 1, . . . , K. Here, y denotes the received vector. Note that

the real and imaginary components of symbol xk[i] are decoded independently. Using

Bayes’ rule, (5.17) can be rewritten as

Λ1(bk[i]) = log
P (y | bk[i] = 1)

P (y | bk[i] = 0)︸ ︷︷ ︸
λ1(bk[i])

+ log
P (bk[i] = 1)

P (bk[i] = 0)︸ ︷︷ ︸
λ2(bk[i])

(5.18)
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The first term in (5.18), denoted as λ1(bk[i]), is the extrinsic information calculated by

the ESE. The second term, denoted as λ2(bk[i]) is the a priori probability (in LLR form)

of bk[i]. An estimate of the a priori probability is calculated by the DEC of the k -th

user at the previous iteration. At the first iteration, no prior information about the code

bits is available, therefore all bit values are assumed equiprobable and the a priori LLR

values are set to zero.

The calculation of the extrinsic information for each user is now described in detail.

By rewriting (5.16), the received signal from user-k via path-l can be described as

y[i+ l] = hk,l xk[i] + ζk,l[i]. (5.19)

Let h∗k,l denote the conjugate of hk,l, and define

ỹ[i+ l] , h∗k,l y[i+ l]

= |hk,l|2xk[i] + ζ̃k,l[i] (5.20)

where

ζ̃k,l[i] = h∗k,l ζk,l[i]. (5.21)

By the central limit theorem, ζ̃k,l[i] can be approximated as a Gaussian variable. The

phase shift due hk,l is canceled out in (5.20), which means that the real and imaginary

parts of xk[i] can be decoded independently. This reduces the complexity of decoding

the QPSK mapping.

The extrinsic information for user-k and path-l can be written as

λ1(bk[i])l , log
P (ỹ[i+ l] | bk[i] = 1)

P (ỹ[i+ l] | bk[i] = 0)

= 2|hk,l|2
 ỹ[i+ l]− E

{
ζ̃k,l[i]

}
Var

{
ζ̃k,l[i]

}
 (5.22)

where E{ · } and Var{ · } denote expectation and variance, respectively. Finally, the

extrinsic information for user-k, considering all l-paths of the channel can be written as

λ1(bk[i]) =
L−1∑
l=0

λ1(bk[i])l. (5.23)
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Soft Channel Decoding (DEC)

The channel decoder for the k -th user estimates the a posteriori probabilities (in LLR

form) of the code bits, Λ2(ck(i)), which are given by

Λ2(ck[i]) , log
P (ck[i] = 1 | {λ1(ck[i])}i ; code structure )

P (ck[i] = 0 | {λ1(ck[i])}i ; code structure )
, (5.24)

= λ2(ck[i]) + λ1(ck[i]).

These a posteriori probabilities are computed using the BCJR algorithm [6] based on

the a priori information from the ESE, {λ1(ck[i])}, and knowledge of the code structure.

Additionally, the DEC estimates the a posteriori LLRs of the information bits, {Λ2(dk[i])},
and at the final iteration, performs a hard decision on the information bits, producing

{d̂k[i])}.

5.3 Multi-Carrier IDMA (OFDM-IDMA)

The concept of multicarrier modulation is to split a high-rate data stream into a number

of lower-rate streams that are transmitted simultaneously over a number of subcarriers.

These lower-rate parallel streams have increased symbol duration, and therefore the

relative amount of time dispersion caused by multipath delay spread is decreased. The

bandwidth of each subcarrier is made sufficiently narrow so that the frequency response

characteristics of the individual sub-channels are nearly flat [126].

OFDM is an efficient realization of multicarrier modulation communication in which

the subcarriers are made mutually orthogonal. The orthogonality attribute allows the

subcarrier spectra to overlap, while still allowing the subcarrier signals to be received

and decoded without interference from the adjacent carriers.

Consider an OFDM system with Nc subcarriers. The frequency spacing of the Nc

subcarriers is 4f . The total system bandwdith B is divided into Nc equidistant sub-

channels. All subcarriers will be mutually orthogonal within a time interval of length

Ts = 1/4f . The n-th subcarrier signal, denoted by s̃(n)(t), can be given by

s̃(n)(t) = exp{j2πn4ft}, n = 0, 1, . . . Nc − 1; 0 ≤ t ≤ TS, (5.25)
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Figure 5.7: Transmitter structure for the multiple-access OFDM-IDMA system

where j =
√
−1. Since the system bandwidth B is subdivided into N narrowband

channels, the OFDM block duration TS is N times as large as in the case of a single-

carrier transmission system covering the same bandwidth. Typically, for a given system

bandwidth, the number of subcarriers is chosen such that the symbol duration is large

compared to the maximum delay of the channel. The composite OFDM baseband signal,

x̃(t), for symbol time i is then given by

x̃(t) =
Nc−1∑
n=0

x(n)[i] s̃(n)(t− iTS), iTS ≤ t ≤ (i+ 1)TS, (5.26)

where x(n)[i] are the input IDMA symbols. The complex baseband OFDM signal (5.26)

exactly described the inverse discrete Fourier transform of Nc input symbols (where

Nc is the number of sub-carriers) [76]. Therefore the OFDM modulator can be readily

implemented using the inverse discrete Fourier transform. To improve computational

efficiency, the fast Fourier transform (FFT) algorithm is generally used to compute the

inverse DFT.

Usually the subcarrier signal s̃(n)(t), (5.25), is extended by a cyclic prefix with the

length TCP yielding the following signal

s(n)(t) = exp{j2πn4ft}, −TCP ≤ t ≤ TS. (5.27)
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The cyclic prefix is added to the subcarrier signal in order to reduce or eliminate ISI

from a multipath channel. At the receiver, the cyclic prefix is removed and only the time

interval 0 ≤ t ≤ TS is evaluated. The total OFDM block duration is T = TS + TCP .

Figure 5.7 shows the transmitter structure of the OFDM-IDMA scheme. After

IDMA processing (FEC encoding, interleaving and symbol mapping), a serial to parallel

(S/P) buffer sub-divides the chip sequence into Nc substreams. Then each substream is

modulated onto a sub-carrier by IFFT operation. Finally, the cyclic prefix is added.
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Figure 5.8: Receiver structure for the multiple-access OFDM-IDMA system

Figure 5.8 shows the receiver structure of the OFDM-IDMA scheme. OFDM demod-

ulation is performed before iterative multiuser detection. OFDM demodulation can be

readily performed by a discrete Fourier transform, which for computational efficiency,

is usually implemented using the FFT algorithm. In this scheme, ISI and MAI are

independently processed by the OFDM demodulator and the ESE, respectively. Note

that the multipath-fading version of the ESE (from Section 5.2.2) is not required here,

and the lower-complexity version of the ESE (for flat-fading) from Section 2.10.2 is used.
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5.4 MIMO-OFDM-IDMA

MIMO (Multiple-Input and Multiple-Output) is a general term that refers to communica-

tion systems where each transmitter and receiver use multiple transmitting and receiving

elements respectively. These systems exploit the spatial diversity of the multipath trans-

mission channel underwater channel to provide improved performance in the form of

either increased data robustness or increased data throughput.

At the transmitter side of a MIMO system, Space-Time Block Codes (STBCs) are

used to map the input data stream into multiple sub-streams that are dispersed in linear

combinations over space (i.e., transmit elements) and time. A STBC is defined by a

(P ×N) code matrix X, where N denotes the number of transmit antennas or the spatial

transmitter diversity order, and P denotes the number of channel usages for transmitting

a STBC codeword or the temporal transmitter diversity order.

The STBC encoder takes as input a code vector, x, and transmits each row of symbols

as specified in X at P consecutive channel usages. At each channel usage, the symbols

contained in the N -dimensional row vector of X are transmitted through N transmitter

antennas simultaneously [114].

As an example, consider the 2× 2 Alamouti STBC (ie., P = 2, N = 2) [3]. The

Alamouti STBC matrix X is defined by

X =

 x(1) x(2)

−x∗(2) x∗(1)

 (5.28)

where ( · )∗ denotes the complex conjugate operation. The input to this STBC is the code

vector x = [x(1), x(2) ]T . During the first channel use, the two symbols of the top row

of X, [x(1), x(2) ], are transmitted simultaneously from the two transmit elements; and

during the second channel use, the symbols in the second row of X, [−x∗(2), x∗(1) ], are

transmitted. The Alamouti STBC provides diversity gain (compared to a single-input

single-output systems), but not multiplexing gain.

In this chapter, we restrict our investigation to 2× 2 MIMO systems (transmitters and

receivers with 2 transmitting and 2 receiving elements respectively), using the Alamouti

STBC (5.28).

Figure 5.9 shows the transmitter structure of the MIMO-OFDM-IDMA scheme. The

input data sequence is encoded and interleaved by the FEC encoder and interleaver
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respectively. The interleaved chip sequence is then QPSK-modulated followed by space-

time mapping as specified by the Alamouti code matrix, X. Finally, each STBC output

sub-stream is independently OFDM modulated.
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Figure 5.10: Shallow water channel model for a 2 x 2 MIMO system

The channel model for the MIMO system is shown in Figure 5.10. For simplicity the

multipath signals are not shown.
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5.5 System Performance

The application of an underwater sensor network is used to assess the performance of the

various multiuser communication schemes. A star topology network is considered where

multiple sensor nodes transmit directly (single-hop) to the central gateway node. Each

sensor node is located within the receiving range of the gateway node. Data transmission

may be ad hoc, and multiple nodes can transmit data simultaneously to the central

gateway node.

Channel Range, L (m) Depth,

Model min. nom. max. h (m)

1 117 130 143 16

2 306 340 374 16

3 495 550 605 16

Table 5.1: Underwater Acoustic Channel Model Parameters

The system performance of the three communications schemes presented (single-

carrier IDMA, OFDM-IDMA, and MIMO-OFDM-IDMA), and single-carrier CDMA, are

evaluated using the ray-trace multipath channel model. For the CDMA scheme, the

coded-CDMA transmitter of Section 2.8 is used (Figure 2.17), and at the receiver side,

the CDMA turbo multiuser detector described in Section 2.9 is used, which is suitable

for asynchronous CDMA over multipath fading channels. The simulations assume the

receiver has perfect channel knowledge.

Each schemes is simulated with 8 simultaneous users (transmitting sensor nodes) over

three different channel ranges. The parameters for the channel models are shown in

Table 5.1. The range (L) between the receiver and each transmitter is randomly selected

between the minimum and maximum values listed to ensure each user has different

multipath channel characteristics. The surface reflection coefficient (r̃s) is 0.33, and

bottom reflection coefficient (r̃b) is 1.00. The transmitter and receiver heights are 6m

and 11m respectively (i.e., a = 6, b = 11 ), except for the MIMO systems where a1 = 5,

a2 = 7, b1 = 10, and b2 = 12.

In the IDMA schemes, the transmitter FEC code is a 1/4-rate convolutional code

serially concatenated with a 1/8-rate repetition code (producing an overall code rate

of R = 1/32). Each transmitter generates QPSK symbols and has a symbol rate of
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Figure 5.11: UAC System Performance in Delay-Spread Channels (Model Nos. 1 & 2)
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Figure 5.12: UAC System Performance in Delay-Spread Channels (Model No. 3)

1200 symbols per second (producing an aggregate rate of 9600 symbols per second).

The OFDM systems uses 128 sub-carriers. In the single-carrier CDMA scheme, the

transmitter FEC code is a 1/2-rate convolutional code, and the spreader uses a 16-chip

sequence (producing the same bandwidth expansion as the IDMA schemes).

Figures 5.11a, 5.11b, and 5.12 compare the bit error rate (BER) performances of the

comunications schemes over channel models 1, 2, and 3 respectively. A slight performance

degradation is observed over all four communication schemes for increasing channel range.

The BER performance at the longest range (550m) is degraded by approximately 1dB

when compared to the shortest range (130m).

In general, the single-carrier IDMA scheme provides a 1dB performance improvement

compared to the single-carrier CDMA scheme. This can be attributed to the coding-gain

of the IDMA scheme. In CDMA, the spreading operation produces redundancy, and

therefore bandwidth expansion, since a single chip alone can carry one bit of information.

This redundancy is used to distinguish different users, but this is not ideal from a coding

perspective because redundancy is introduced without coding gain. Whereas in IDMA,

the bandwidth expansion is entirely achieved by a low-rate FEC code. This code can be
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a combination of a repetition code (for bandwidth expansion) and a stronger code (for

coding gain), which provides a trade-off between performance and complexity.

The OFDM-IDMA scheme provides a performance improvement of approximately

1dB compared to single-carrier IDMA. This improvement in BER comes with the cost of

reduced bandwidth efficiency because of the addition of cyclic-prefix to each transmitted

OFDM block. Finally, the MIMO-OFDM-IDMA provides an improvement in BER

performance of approximately 2dB, which can be attributed to the diversity-gain of the

Alamouti STBC. The rich multipath nature of the underwater acoustic channel makes it

an ideal candidate for MIMO systems.

5.6 Conclusion

In this chapter, multiuser communications schemes for shallow water acoustic channels

were presented. The underwater acoustic channel is characterised by strong multipath

signals and long delay spreads, and is considered to be an exceptionally difficult medium

for data transmission.

Three IDMA schemes were developed for the underwater channel:

• single-carrier IDMA with a modified multiuser detector for multipath channels;

• OFMD-IDMA, combining multicarrier-modulation with an IDMA overlay; and

• MIMO-OFDM-IDMA, a multiple-input multiple-output extension added to the

OFDM-IDMA scheme employing space-time coding to provide diversity gain.

The performance of the three schemes was presented and also compared to single-carrier

CDMA.

The single-carrier IDMA scheme was shown to consistently outperform CDMA over

the range of conditions tested. The use of low-rate FEC codes to generate bandwidth

expansion in IDMA provides additional coding gain compared to CDMA, which uses

spreading sequences for bandwidth expansion (producing redundancy without coding

gain). The OFDM-IDMA and MIMO-OFDM-IDMA provided further performance

improvement, outperforming CDMA by approximately 2dB and 4dB respectively.

The efficient use of bandwidth makes IDMA an attractive spread-spectrum modulation

scheme for underwater channels that are severely limited in bandwidth. MIMO systems
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with space-time coding are able to exploit the rich multipath nature of the underwater

channel and are also attractive for underwater communications schemes. The results

demonstrate that both OFDM-IDMA and MIMO-OFDM-IDMA schemes are strong

candidates for shallow water sensor communication schemes, and are worthy of further

research.



Chapter 6

Multiuser Detection for Doubly-Spread

Underwater Acoustic Channels

Designing reliable multiple-access communication systems to underpin underwater acous-

tic sensor networks has proved challenging. For single-carrier modulation schemes with

time-domain equalization, the long delay-spread inherent in shallow water channels

dictates that a large number of equalizer taps must be used. The resulting computational

complexity means that these schemes are often considered unattractive. Multicarrier

modulation schemes, such as orthogonal frequency division multiplexing (OFDM), are

commonly used for delay-spread channels. However, shallow water channels are often

both delay- and Doppler-spread. In Doppler-spread channels, the orthogonality of OFDM

is lost, leading to subcarrier interference which complicates data detection and degrades

performance. In this chapter, we develop an adaptive multiuser single-carrier system

where time-domain equalization is performed using a Kalman filter (KF). KF-based

equalization has been shown to outperform traditional linear transversal equalizers, and

have much lower complexity. Low-level pilot sequences are superimposed on each users’

transmitted data to enable semi-blind channel estimation at the receiver. An adaptive

receiver is created by embedding an extended Kalman filter (EKF) into a turbo mul-

tiuser detector. The EKF-based equalizer jointly optimizes the estimates of the channel

coefficients and data symbols in each iteration of the detection process. EKF state-space

modelling is performed using low-rank basis expansion models which provide accurate

tracking of time-varying channels at minimal computational complexity. Experimen-

tal results demonstrate that the proposed multiple-access scheme with adaptive turbo

receiver provides robust performance in doubly-spread underwater acoustic channels.

166
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6.1 Introduction

Underwater sensor networks facilitate a wide range of applications including environmental

monitoring, undersea exploration, distributed surveillance, and assisted navigation [2].

A robust and efficient multiple-access communications scheme between the underwater

network nodes is an essential foundation for reliable high-performance sensor network

operation. However, the shallow water acoustic channel has proved to be a difficult

medium for data transmission, and developing reliable communications systems for this

environment has been challenging [51].

Code-division multiple-access (CDMA) has been successfully employed as the modu-

lation scheme for shallow water networks [15] [119] [111]. CDMA is a spread-spectrum

technique that can provide simultaneous access for multiple users. By employing a

transmission bandwidth that is considerably greater than the information rate, spread-

spectrum schemes provide a number of benefits, including multiple-access interference

(MAI) suppression capability and improved immunity against multipath effects.

The underwater channel is generally impaired by significant multipath interference

which produces both long time-delay spread and large multipath amplitudes in the

received signal [51]. These long time-delay spreads cause severe inter-symbol interference

(ISI) which degrades the performance of many CDMA receiver detection schemes. To

alleviate the effects of long time-delay spreads, Multi-carrier modulation (MCM) schemes,

such as the spectrally-efficient orthogonal frequency division multiplexing (OFDM), are

often used. The basic principle of MCM is to split a high-rate data stream into a number

of lower-rate streams that are transmitted simultaneously over a number of sub-carriers.

This significantly reduces the ISI span because the lower-rate parallel sub-carriers have

increased symbol duration [126].

In [64], a multiple-access communications system that provides robust performance

over delay-spread shallow water acoustic channels was developed by combining OFDM

with an interleave-division multiple-access (IDMA) overlay. IDMA [85] is a new multiple-

access spread-spectrum scheme that uses a low-complexity iterative receiver structure to

perform multiuser detection, and has been shown to outperform coded CDMA. However,

many practical shallow water acoustic channels are not only delay-spread but are also

significantly Doppler-spread. Channels that are both delay- and Doppler-spread are said

to be doubly-spread. In the case of doubly-spread channels, the orthogonality of OFDM

is lost, leading to subcarrier interference which greatly complicates data-detection and
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degrades performance. For Doppler-spread (time-varying) channels, guard bands can be

used in OFDM systems to maintain sub-carrier orthogonality, but this is at the expense of

spectral efficiency. For channels with large Doppler-spread, this loss of spectral efficiency

would be severe.

In this chapter, we develop a multiple-access IDMA system that would be suitable

for underwater acoustic sensor networks. The receiver using a turbo multiuser detection

(MUD) algorithm with time-domain equalization. The application of the turbo processing

principle to data detection of coded transmission systems with ISI is commonly referred

to as turbo equalization [23]. For underwater acoustic channels, time-domain equalization

using traditional linear traversal equalizers would require a large number of equalizer

taps, and may be considered impractical due to the computational complexity. However,

we consider equalization based on the Kalman filter (KF). KF-based equalizers have

been shown to perform significantly better than linear transversal equalizers, and at

much lower complexity (fewer equalizer taps) [101], [55]. Additionally, the state-space

formulation of the Kalman equalizer is well suited for iterative receivers and can easily

incorporate the soft a-priori information from forward error correction (FEC) channel

decoders.

For practical systems, it is necessary to perform channel estimation at the receiver

because the channel coefficients will be unknown. Channel estimation schemes are

generally categorized into one of two methodologies: pilot-aided methods that use

information induced from known pilot symbols or training sequences that are interspersed

with the data symbols; and blind methods that only use information contained in the

receive data symbols. However, with turbo processing, the receiver’s the channel estimator

can begin with a coarse channel estimate deduced from the pilot symbols, and then

utilize the a posteriori decision on data symbols obtained from previous iterations to

further improve the channel estimate. This type of scheme that combines both pilot

symbols and blind information is called a semi-blind method and is more powerful than

the two methods separately [22].

In[109], an iterative linear channel estimator employing Kalman filtering was developed

for turbo processing, where channel estimation and equalization are performed separately

in each iteration. However this type of scheme generally only works well for slow fading

channels. Also, there can be significant correlation between the estimates of the channel

and data symbols because the estimator and equalizer use the estimates obtained from

each other.
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In [58], an adaptive turbo equalizer was developed using nonlinear Kalman filtering

to incorporate channel estimation into the equalization process. The resulting adaptive

soft nonlinear Kalman filter (NKF) takes the soft decisions of data symbols from the soft

decoder as its a priori information, and performs equalization iteratively. With such an

approach, the proposed scheme jointly optimizes the estimates of the channel and data

symbols in each iteration. This avoids the convergence to a local minima problem that

can occur when channel estimation and equalization are performed separately.

Linear channel estimation schemes using pilot-symbols has been shown to provide

good performance in delay-spread (multipath) channels and in Doppler-spread (fast-

fading) channels. However, in doubly-spread channels, the number of unknown channel

parameters often exceeds the number of known data variables (pilot symbols) and the

underlying linear system used by the estimation algorithm becomes underdetermined. To

alleviate this problem, the number of unknown channels parameters must be reduced so

that the linear system becomes tractable. This can be achieved by using low-dimensional

models to approximate the time-varying nature of the channel. The accuracy of the

channel model employed by the estimation scheme will largely determine the system

performance.

Low-order autoregressive (AR) processes are popular low-complexity models of

discrete-time random processes. The first-order AR model, AR(1), has been shown

to be effective for modelling Rayleigh channels with slow- and moderate-fading on

a symbol-by-symbol basis [132] [131], and was employed as state-space model in the

NKF-based turbo equalizer of [58].

The basis expansion model (BEM) is low-dimensional low-rank model that can

accurately capture the fast time-variations of a doubly-spread channel over a period

of time. A BEM consists of superpositions of time-varying basis functions weighted

by time-invariant coefficients. Modelling of linear systems by basis functions can turn

a time-varying identification problem into a time-invariant one, thereby reducing the

number of channel parameters to estimate. The usefulness of using BEMs to model

underwater acoustic channels was first recognised in [95] and [96].

In [52], an adaptive NKF-based turbo equalizer was developed using a Fourier BEM

channel model. The NKF is used to track the changes in the BEM coefficients instead

of tracking the actual channel changes, since the time-variations of BEM coefficients

generally evolve much slower that the time-variations of the channel itself. For fast-fading

channels, the NKF with Fourier BEM model [52] achieves better performance than the
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NKF scheme in [58] where the channel is modelled as an AR process. The Fourier BEM

is the time-domain equivalent of the (frequency-domain) Doppler-line filters used in [24]

to equalize underwater Doppler-spread channels.

For the multiple-access IDMA system developed in this chapter, the receiver embeds

a NKF-based channel estimator/equalizer into the turbo multiuser detection framework.

This approach will be shown to be considerably more effective at tracking and equalizing

doubly-spread channels than the traditional linear systems-based schemes for IDMAS

multiuser channel estimation [86]. The channel estimation and equalization scheme are

based on the nonlinear Kalman filtering approach of [58] and [52], but are extended to the

multiuser case, adapted to IDMA with superimposed training sequences, and generalised

to accommodate different BEM and AR models. The performance of the proposed

scheme is evaluated using shallow-water acoustic channel simulation models that been

verified by sea trial data. A number of BEM and AR channel estimation models are

evaluated to assess the channel estimation/tracking ability and also the system bit error

rate performance.

6.2 Underwater Acoustic Channels and Channel

Modelling

In a shallow water environment, transmitted acoustic signals undergo multiple reflections

at the water surface and sea floor. These reflections occur at small grazing angles and

with small reflection losses creating large multipath amplitudes and long time-delay

spread in the received signal [51].

Relative movements between the transmitters and the receiver, and the movements

of the propagation medium induce Doppler effects, which can be significant even for slow

changes. Additional amplitude and phase fluctuations may also result from scattering

which is caused by the roughness of the channel surface and bottom. When the sea surface

is rough, the vertical motion of the surface modulates the amplitude of the incident

wave and superposes its own spectrum as upper and lower sidebands on the spectrum of

the incident sound. Moreover, when there is a surface current, the horizontal motion

will appear in the scattered sound and cause a Doppler-shifted and Doppler-smeared

spectrum [123], [27]. The frequency of the signal received might differ significantly from

the frequency of the signal transmitted (by up to 1% typically) [71].
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6.2.1 Models for Channel Simulation

Practical methods for modelling refraction effects can be derived from geometrical acoustic

theory. The acoustic energy is followed along its various propagation paths, accounting for

refractions of the wave direction with sound velocity and gradient. This commonly-used

method is based on ray tracing, and is considered to be accurate and computationally

efficient for short ranges at high frequencies (where high frequencies are considered to be

acoustic frequencies above 500Hz) [47], [27]. An example geometry-based model using ray

tracing is shown in Figure 6.1.
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Figure 6.1: Geometry-based ray tracing model of a shallow water acoustic channel

The shallow water propagation is modeled using the multipath channel model proposed

by Zielinski, et al. [145]. This model is based on the ray tracing method and simplified with

assumptions of constant sound velocity profile and constant bottom depth. Boundaries

at the channel surface and bottom reflect the acoustic signal, resulting in multiple travel

paths between transmitter and receiver. Consequently, the receiver acquires signals

arriving on different paths, each signal delayed according to the channel geometry and

attenuated by path and reflection losses.

Figure 6.2 compares the channel impulse responses of the ray tracing model from

[145] against published channel measurements from sea trials for four different channel

configurations. For the modelling parameters, we assume a surface reflection coefficient

(r̃s) of 0.33, a bottom reflection coefficient (r̃b) of 1.00, and the underwater speed of sound

(c) of 1500m/s. The sea trial measurements are from Aliesawi et al. [4] for Figure 6.2a and

Figure 6.2b, and from Coatelan and Glavieux [21] for Figure 6.2c and Figure 6.2d. The

comparison results show that the ray theory model provides a reasonable representation

of the physical underwater acoustic channel.
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Figure 6.2: Normalised channel impulse responses from sea trial data and channel models

Additionally, the Doppler effects and micropath scattering can be modelled using

Rayleigh random processes. Independent and uncorrelated Rayleigh random processes

are applied to each path within the ray-theory multipath model. Each Rayleigh process

is generated by the method in [143] and satisfies Jakes’ model [46].

6.2.2 Models for Channel Estimation

The shallow water acoustic channel can be modelled as a stochastic linear time-variant

(LTV) system, with Bello system functions [8] employed to characterize the system in

terms of time (t); frequency (f); delay (τ); and Doppler shift (ν).

The input-output relation of the channel is defined by

y(t) =

∫ ∞
−∞

h(t, τ)x(t− τ) dτ (6.1)

where y(t) is the channel output at time t, x(t) is the channel input at time t, and h(t, τ)

is the input delay-spread function and is interpreted as the response of the channel at

time t to a unit impulse input that stimulated the channel at the time t− τ .
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The delay-Doppler-spread function S(τ, ν) of the channel is defined by the Fourier

transform of h(t, τ) with respect to time t, i.e.,

S(τ, ν) =

∫ ∞
−∞

h(t, τ) exp{−j2πfτ} dt (6.2)

Expressing the time-variant impulse response h(t, τ) by the inverse Fourier transform of

S(τ, ν), allows the representation of (6.1) in the form

y(t) =

∫ 0

−∞

∫ ∞
−∞

S(τ, ν)x(t− τ) exp{−j2πνt} dν dτ (6.3)

This relation shows that the output signal y(t) can be represented by an infinite sum of

delayed, weighted, and Doppler shifted replicas of the input signal x(t). Signals delayed

during transmission in the range of [τ, τ + dτ) and affected by a Doppler shift within

[ν, ν+dν) are weighted by the differential part S(τ, ν)dν dτ . Therefore, S(τ, ν) explicitly

describes the dispersive behaviour of the channel as a function of both the propagation

delays τ and the Doppler frequencies ν.

In the discrete-time setting, the channel’s input-output relation becomes

y(i) =
L−1∑
l=0

h(i, l)x(i− l) (6.4)

and the delay-Doppler-spread function in discrete-time form becomes

S(l, d) =
N−1∑
i=0

h(i, l) exp

{
−j2di
N

}
(6.5)

Here, x(i), y(i), h(i, l) and S(l, d) are sampled versions of x(t), y(t), h(t, τ) and S(τ, ν),

respectively, from (6.1) and (6.2). The sampling frequency fs = 1/Ts is assumed to be

larger than B + νmax, where B is the transmit bandwidth, and νmax is the maximum

Doppler frequency. Furthermore, L = dτmax/Tse is the number of discrete channel taps,

i.e., the maximum discrete-time delay.

Estimating the complete mathematical description of a doubly-spread LTV channel

is a complex task. For every N received samples, we need NL channel coefficients to

accurately characterize the channel. Even with superimposed training, where a pilot-

symbol is superimposed onto each of the N data symbols, we cannot solve for NL

coefficients as the number of unknown variables exceeds the known data variables (i.e.
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N pilot symbols). Fortunately, most practical channels exhibit some additional structure

which simplifies the description so that a smaller number of parameters are sufficient

to model the channels behavior. Such low-dimensional low-rank representations of LTV

channels are often referred to as parsimonious models.

A popular class of low-rank channel model is the basis expansion model (BEM) [118],

[32] which employs a basis expansion {gq(l)ψq(i)}Q−1
q=0 , with respect to time i, for each

tap of the channel impulse response h(i, l), i.e.,

h(i, l) =

Q−1∑
q=0

gq(l)ψq(i). (6.6)

The BEM is motivated by the observation that the temporal (i) variation of h(i, l) is

generally smooth due to the channels limited Doppler spread, and hence {ψq(i)}Q−1
q=0 can

be chosen as a small set of smooth functions. In most cases, the BEM (6.6) is considered

only within a finite interval, which we assume to be i ∈ [0, N − 1]. The q-th coefficient

for the l-th tap in (6.6) is given by

gq(l) = 〈h( · , l), ψ̃q〉 =
N−1∑
n=0

h(i, l)ψ̃q(i), (6.7)

where {ψ̃q(i)}Q−1
q=0 is the bi-orthogonal basis for the span of {ψq(i)}Q−1

q=0 (i.e., 〈ψq, ψ̃q′〉 = δqq′

for all q, q′) [42].

The BEM of (6.6) is useful because the complexity of characterizing h(i, l) for the

interval i ∈ [0, N − 1] is reduced from NL to QL parameters, where Q� N . Although,

in general, an extension of the time interval will require a proportional increase in the

BEM model order (i.e., Q ∝ N). Using the basis expansion of (6.6) in the channel

input-output relation of (6.4) results in

y(i) =
L−1∑
l=0

Q−1∑
q=0

gq(l)ψq(i)x(i− l)

=

Q−1∑
q=0

ψq(i)
L−1∑
l=0

gq(l)x(i− l)

=

Q−1∑
q=0

ψq(i)ỹq(i) where ỹq(i) =
L−1∑
l=0

gq(l)x(i− l) (6.8)



Multiuser Detection for Doubly-Spread Underwater Acoustic Channels 175

Hence, the channel can be viewed as a bank of Q time-invariant filters (convolutions)

with impulse responses gq(l) whose outputs ỹq(i) are multiplied by the (time-varying)

basis functions ψq(i) and added. This BEM structure is shown in Figure 6.3.
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Figure 6.3: Basis expansion model (BEM) of a linear time-variant (LTV) channel

Discrete Fourier (Complex-Exponential) BEM

A basis expansion using complex-exponential basis functions is the most common form of

BEM used in practice [118] [32]. This is motivated by taking the inverse discrete Fourier

transform of the discrete delay-Doppler-spread function, S(l, d), of (6.5), i.e.,

h(i, l) =
1

N

N−1∑
d=0

S(l, d) exp

{
−j2ni
N

}
. (6.9)

Denoting the discrete Doppler shift and the maximum discrete Doppler shift as d and dmax

respectively, and assuming that S(l, d) = 0 for |d| > dmax results in the so-called critically

sampled complex-exponential (CE) BEM. Here, the model order equals Q = 2dmax + 1
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with the basis functions given by

ψq(i) = exp

{
−j2π(q − dmax)i

N

}
, 0 ≤ i ≤ N − 1; 0 ≤ q ≤ Q− 1 (6.10)

and the corresponding BEM coefficients given by

gq(l) =
1

N
S(l, q − dmax), 0 ≤ q ≤ Q− 1. (6.11)

The BEM coefficients, {gq(l)}q, remain invariant during the block of N symbols, but

may change from block to block. The Fourier basis functions {ψq(i)}q are common for

every block. the basis functions of the CE-BEM can be inferred if the delay spread and

the Doppler spread (or at least their upper bounds) are known [72]. Treating the basis

functions as known, estimation of a time-varying process is reduced to estimating the

invariant coefficients over a block of N symbols.

Oversampled Complex-Exponential (CE) BEM

The critically-sampled CE BEM often suffers from spectral leakage introduced by the

the (time-limited) rectangular window of the truncated discrete Fourier transform. This

Doppler leakage often requires a rather large value of dmax to achieve satisfactory modeling

accuracy. An alternative interpretation of this problem is that the uniformly-spaced

discrete Doppler frequencies d/N (i.e., Doppler resolution 1/N) usually do not coincide

with the actual Doppler frequencies of the continuous channel. In the time domain,

this manifests as a Gibbs (or ringing) phenomenon, which degrades the quality of the

CE-BEM particulary near the interval boundaries.

These issues of Doppler leakage and Gibbs phenomenon can be alleviated by over-

sampling [117]. The basis functions for the oversampled CE-BEM are given by

ψq(i) = exp

{
−j2π(q − ξdmax)i

ξN

}
, 0 ≤ i ≤ N − 1; 0 ≤ q ≤ Q− 1 (6.12)

where ξ is the oversampling factor (ξ ∈ N∗), and Q = 2ξdmax + 1. The oversampling

reduces the frequency spacing of complex exponentials and gives a better representation

of the channel impulse response [56]. Although in the oversampled model, the basis

functions are no longer orthogonal. Example critically-sampled and oversampled CE

BEMs are shown in Figure 6.4.
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Figure 6.4: Example Doppler spectrum and CE-BEM frequencies

Discrete Prolate Spheroidal Sequences (DPSS) BEM

The Doppler leakage that afflicts the CE-BEM can be significantly reduced by replacing

the complex-exponential basis functions with truncated versions of discrete prolate

spheroidal sequences (DPSSs) [141]. DPSSs are functions that are band-limited as well as

maximally time-concentrated in the sense of having minimum energy outside a prescribed

time interval [0, N − 1]. For a given time sequence of length N and a given maximum

normalized Doppler frequency νmax, the DPSSs are the solutions ψq(i) to the eigenvalue

problem [108]:

N−1∑
i′=0

sin(2πνmax(i− i′))
π(i− i′)

ψq(i
′) = λqψq(i), i ∈ Z. (6.13)
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Equivalently, the eigenvalues {λq}q are the eigenvalues of the N ×N matrix C where

Cψq = λqψq and {C}i,i′ =
sin[2π(i− i′)νmax]

π(i− i′)
0 ≤ i, i′ ≤ N − 1

where {C}i,i′ denotes the (i, i′)-th element of C. The N -elements of the corresponding

eigenvectors for this matrix, ψq , [ψq(0), ψq(1), . . . , ψq(N − 1)]T , are the length-N sub-

sequences of the DPSSs [84]. The DPS sequences, ψq(i), form an orthogonal basis on

[0, N − 1] and also an orthonormal basis on Z. Assuming that the maximum Doppler

frequency can be established with reasonable accuracy, DPS sequences usually provide

better modelling accuracy than complex-exponential (Fourier) sequences with the same

number of basis functions.

Karhunen-Loève Expansion (K-L) BEM

The normalised mean square (MS) error E{|h(t) − h̃(t)|2} between h(t) and its series

representation h̃(t) depends on the number of terms in the series and the basis functions

used in the series expansion. A series expansion is considered optimum in a MS sense if

it yields the smallest MS error for a given number of terms. The Karhunen-Loève (K-L)

expansion is optimum in a MS sense for expanding a stationary random process over a

finite time interval [−T/2, T/2]. The orthonormal set of basis functions, {ψq(t)}q, used

in the K-L expansion of h(t) are obtained from the solutions of the integral equation

[106]: ∫ T/2

−T/2
Rhh(t− τ)ψ(τ)dτ = λψ(t) − T/2 < t < T/2, (6.14)

where Rhh(t− τ) denotes the autocorrelation of h(t) and is defined as E{h(t)h∗(t+ τ)}.
The solution yields a set of eigenvalues λ1 > λ2 > . . . > λQ, and eigenfunctions {ψq(t)}Qq=1,

and the K-L expansion is written in terms of the eigenfunctions as

h̃(t) =

Q∑
q=1

gqψq(t) − T/2 < t < T/2 (6.15)

where

gq =

∫ T/2

−T/2
h(t)ψ∗n(t) dt q = 1, 2, . . . , Q (6.16)
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The K-L expansion is often of limited use because of the difficulty in finding eigenfunctions

of the appropriate random process. However, for the fast Rayleigh fading process the

eigenfunctions can be found using the method in [128].

6.3 Single-User Channel Equalization using the Kalman

Filter

The Kalman filter (KF) was first applied to the problem of intersymbol interference (ISI)

channel equalization in [55]. The received signal model is stated in terms of a dynamic

system driven by white noise, and the system state variables are tracked by the KF using

only the outputs of noisy linear combinations of certain states. The following overview

of KF-based equalization summarizes the work from [55], [9], [50], and [40].

6.3.1 State-Space System Model

The single-user ISI channel can be modelled in discrete-time as a finite tapped delay line

as shown in Figure 6.5.

h(i,0)

TT T

y(i)

h(i,1) h(i,2) h(i,L-1)

channel
output

channel
input

S

w(i)

additive
noise

state-space
equationstate

state-space

equation
measurement

x(i-1) x(i-2) x(i-L+1)x(i)

Figure 6.5: Channel model

The sequence of transmitted symbols, x(i), that form the input data into the delay

line are assumed to be uncorrelated complex random variables, and are treated as random

binary white noise with mean E{x(i)} = 0 and covariance Cov{x(i), x(j)} = σ2
xδij. The

overall channel is characterized by the causal impulse response, {h(i, l)}L−1
l=0 , with the

channel output being a finite weighted sum of input pulses. The received signal, y(i), is
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given by

y(i) =
L−1∑
l=0

h(i, l)x(i− l) + w(i) (6.17)

where w(i) is the so-called additive measurement noise. This is a discrete-time complex

white noise process with mean E{w(i)} = 0 and covariance Cov{(w(i), w(j)} = σ2
wδij.

The measurement noise, w(i), is statistically independent of the channel input, x(i).

In state-space form, the L-tap delay line and transmit data sequence are modelled

using two equations: the state equation; and the measurement equation. The state

equation is defined as:

s(i+ 1) = Φs(i) + Γu(i+ 1) (6.18)

where Φ is a L×L matrix (termed the state transition matrix ), Γ is a L× 1 vector, and

u(i) is the so-called process noise, with definitions:

Φ =

 01× (L−1) 0

IL−1 0(L−1)× 1

 , Γ =

 1

0(L−1)× 1

 , u(i+ 1) = x(i+ 1). (6.19)

The L× 1 state vector, s(i), represents the state of the system at time i. The components

of the state vector, s1(i), s2(i), . . . , sL(i), are thus, respectively, the channel input x(i)

at time i, and the L− 1 successive outputs of the delay elements in the channel model

(Figure 6.5), i.e.,

s(i) =


s1(i)

s2(i)
...

sL(i)

 ,


x(i)

x(i− 1)
...

x(i− L+ 1)

 (6.20)

The measurement equation describes the channel output at time i, i.e.,

y(i) = H(i)s(i) + w(i) (6.21)

where y is the (scalar) measured output; H(i) is the 1×L row vector of channel coefficients

defined as H(i) , [h(i, 0), h(i, 1), . . . , h(i, L− 1)], and w(i) is the so-called observation
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noise. The observation noise is assumed to be scalar Gaussian white noise with mean

E{w(i)} = 0 and covariance Cov{w(i), w(j)} = σ2
wδij. From inspection, it can be seen

that the state space model of (6.18) and (6.21) has the same expression as the signal

model of (6.17).

6.3.2 Equalization of Channels with Known Coefficients

The Kalman filtering algorithm calculates the minimum error-variance estimate of the

state vector s(i) of the state space model ((6.18) and (6.21)), in the sense that it minimizes

the mean square of the norm of the estimation error

E{||s̃(i | i)||2} , E{||s(i)− ŝ(i | i)||2} (6.22)

where ŝ(i | i) is the estimate of state vector s(i) based on the set of sequential observations

y(1), y(2), . . . , y(i). The L×L error covariance matrix P(i | i) is defined as

P(i | i) , E
{

[ŝ(i | i)− s(i)][ŝ(i | i)− s(i)]H
}

(6.23)

and (6.22) becomes E{||s̃(i | i)||2} = tr ( P(i | i) ). The KF minimizes the trace of the

error covariance matrix, or any linear combination of the main diagonal elements of the

matrix. For the state vector defined in (6.20), the KF minimizes E{|x̂(i)− x(i)|2} [9].

The KF for the discrete state-space system of (6.18) and (6.21) is described by the

following recursive equations for the state estimate vector and error covariance matrix

[55], [9]:

1. Time update:

ŝ(i | i− 1) = Φŝ(i− 1 | i− 1) (6.24)

P(i | i− 1) = ΦP(i− 1 | i− 1)ΦT + ΓQΓT (6.25)

2. Kalman gain:

K(i) = P(i | i− 1)HT (i)
[
σ2
w + H(i)P(i | i− 1)HT (i)

]−1
(6.26)
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3. Measurement update:

ŝ(i | i) = ŝ(i | i− 1) + K(i) [ y(i)−H(i)ŝ(i | i− 1) ] (6.27)

P(i | i) = [I−K(i)H(i)] P(i | i− 1) (6.28)

The resulting general form for the KF is shown in Figure 6.6. A new estimate, ŝ(i | i),
is formed by predicting forward the old estimate, ŝ(i | i− 1), and then correcting it with

a combination of the observation error ŷ(i | i− 1) = y(i)− ŷ(i | i− 1), which is usually

known as innovation, weighted by the Kalman gain matrix K(i). Note that the output

vector, ŝ(i | i), is an estimate of the last L inputs to the channel.
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Figure 6.6: General form of the Kalman filter (KF)

The recursive algorithm of (6.24)-(6.28) requires the initial selection of ŝ(0 | 0) and

P(0 | 0). This is usually achieved by assigning the mean value of s(0) as ŝ(0 | 0) and its

corresponding covariance as P(0 | 0), i.e.,

ŝ(0 | 0) = E{ s(0) } = 0 (6.29)

P(0 | 0) = E{ s(0) sH(0) } = σ2
xI. (6.30)

The variables and parameters used in the KF algorithm are summarized in Table 6.1.

The KF-based ISI channel equalizer is shown in Figure 6.7. It is a form of recursive

digital filter and is attractive for digital implementation. Note that the tap coefficients

k1(i), . . . , kL(i) are the elements from the Kalman gain matrix, K(i) , [k1(i), . . . , kL(i)].

The Kalman filter contains the same number of delay elements as employed in the channel

model, and that that the predicted measurement, y(i | i− 1), is the sum of the predicted

states weighted by the appropriate tap coefficients from the measurement matrix, H(i).
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Variable Definition Dimension

s(i) State vector at time i L× 1

y(i) Observation at time i 1× 1

H(i) Measurement matrix at time i 1×L
Q Covariance matrix of the process noise u(i), Q = σ2

xI L×L
K(i) Kalman gain at time i L× 1

ŝ(i | i− 1) Predicted estimate of the state at time i, given the ob-
servations y(0), y(1), . . . , y(i− 1)

L× 1

ŝ(i | i) Filtered estimate of the state at time i, given the obser-
vations y(0), y(1), . . . , y(i)

L× 1

P(i | i− 1) Error covariance matrix of ŝ(i | i − 1), the a priori
covariance

L×L

P(i | i) Error covariance matrix of ŝ(i | i), the a posteriori co-
variance

L×L

Table 6.1: Summary of Kalman filter (KF) variables and parameters

h(i,0)

T T T
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Figure 6.7: KF-based equalizer for ISI channels (single-user channel)

At time i, the estimates of L consecutive transmitted symbols, x̂(i− L+ 1), . . . , x̂(i),

are available at the receiver. However, in an attempt to minimize the error variance,

only the delayed estimates are generally used. The greater the estimation delay, the

more information (observations) there is available to form the estimate, and hence

the smaller the error variance. In this case, the best symbol estimate at time i is
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x̂(i − L + 1) = {ŝ(i | i)}L. This is a so-called fixed-lag estimate with delay-δ, where

δ = L− 1

6.3.3 Adaptive Equalization of Channels with Unknown Coefficients

To account for unknown coefficients, the equalizer must estimate the channel coefficients

and use these values to estimate the signal. This is accomplished by extending the state

vector to include the channel parameters as states, i.e.

s(i) =
[

sT1 (i) sT2 (i)
]T

(2L× 1 vector) (6.31)

where

s1(i) = [ x(i), x(i− 1), . . . x(i− L+ 1) ]T (L× 1 vector) (6.32)

s2(i) = [h(i, 0), h(i, 1), . . . h(i, L− 1) ]T (L× 1 vector) (6.33)

and hence the state equation is appended with L additional difference equations:

h(i+ 1, l) = h(i, l), 0 ≤ l ≤ L− 1 (6.34)

assuming a time-invariant channel. (The case of a time-varying channel is considered in

Section 6.5.) The state equation then assumes the form

s(i+ 1) = Fs(i) + Gu(i+ 1) (6.35)

where F is a 2L× 2L matrix, and G is a 2L× 1 vector, with definitions:

F =

 Φ 0L×L

0L×L IL

 , G =

 Γ

0L× 1

 , u(i+ 1) = x(i+ 1) (6.36)

The 2L× 1 state vector s(i) represents the state of the system at time i, the first L

components of the vector are the last L transmitted signals, and the last L components

are the channel coefficients. Matrices Φ and Γ are as defined in (6.19).
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The adaptive equalizer formulaton of the KF includes a non-linearity in the measure-

ment equation:

y(i) = h (s(i)) + w(i), (6.37)

where the function h (s(i)) represents the transformation from the state variables to the

ideal observations (without noise), and is defined as

h (s(i)) = s1(i)sL+1(i) + · · · + sL(i)s2L(i) =
L∑
n=1

sn(i)sL+n(i) (6.38)

and sL+n(i) is the channel coefficient corresponding to the n-th input sn(i)

The KF is a linear filter and is unable to process non-linear equations intrinsically.

However, an approximate solution can be achieved by linearizing h. The result of this

linearization and the subsequent application of the linear KF of (6.24)-(6.28) results in

the extended Kalman filter (EKF). We linearize h (s(i)) about the estimate of s(i) based

on the previous data or predicted estimate ŝ(i | i − 1), since a linearized observation

equation is needed to determine ŝ(i | i) in (6.27). Using a first-order Taylor expansion to

linearize h (s(i)) yields

h (s(i)) ≈ h (s(i | i− 1)) +
∂h

∂s(i)

∣∣∣∣
s(i)=ŝ(i|i−1)

(s(i)− ŝ(i | i− 1)) (6.39)

Denoting the Jacobian matrix by

H(i) =
∂h

∂s(i)

∣∣∣∣
s(i)=ŝ(i|i−1)

(6.40)

the linearized version of the observation equation from (6.37) becomes

y(i) = H(i)s(i) + (h(ŝ(i | i− 1))−H(i)ŝ(i | i− 1)) + w(i) (6.41)

For the function h (s(i)) defined in (6.38), the Jacobian matrix, H(i), is a 1× 2L vector

defined as

H(i) = [sL+1(i | i− 1), . . . , s2L(i | i− 1), s1(i | i− 1), . . . , sL(i | i− 1)] (6.42)

The linear KF for this model is the EKF which is defined by the following equations [50]:
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1. Time update:

ŝ(i | i− 1) = Fŝ(i− 1 | i− 1) (6.43)

P(i | i− 1) = FP(i− 1 | i− 1)FT + GQGT (6.44)

2. Kalman gain:

K(i) = P(i | i− 1)HT (i)
[
σ2
w + H(i)P(i | i− 1)HT (i)

]−1
(6.45)

3. Measurement update:

ŝ(i | i) = ŝ(i | i− 1) + K(i) [ y(i)− h (ŝ(i | i− 1)) ] (6.46)

P(i | i) = [I−K(i)H(i)] P(i | i− 1) (6.47)

6.4 Multiple Access IDMA

Interleave division multiple-access (IDMA) [85] is a new spread-spectrum multiple-access

scheme, that when used with low-complexity iterative receivers has been shown to

outperform coded CDMA. In contrast to CDMA, which separates users by specific

spreading codes, IDMA separates users by unique interleaver sequences. IDMA can

be regarded as a special case of chip interleaved CDMA, and therefore inherits many

advantages of CDMA including dynamic channel sharing, asynchronous transmission,

and robustness against fading [74].

In an IDMA system, bandwidth expansion is entirely achieved by low-rate forward

error correction (FEC) code. A compromise between complexity and performance can be

achieved by constructing the FEC code as a combination of simple repetition code (for

bandwidth expansion) and strong code (for coding gain).

6.4.1 Transmitter Structure

Fig 6.8 shows the transmitter structure of the multiple-access IDMA scheme with K

simultaneous users [85]. The input data sequence dk of user-k is encoded by the FEC

encoder generating a coded sequence ck , [ck(1), . . . , ck(i), . . . ck(N)]T , where N is the

frame length. The elements in ck are referred to as coded bits. Then ck is passed through
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Figure 6.8: Transmitter structure for a multiple-access IDMA system

a random interleaver πk, generating the interleaved coded bit sequence bk(i) = πk[ck(i)].

Finally, the interleaved chip sequence is QPSK modulated, producing xk. The QPSK

symbols are assumed to have unity average energy, with mean E{xk(i)} = 0 and variance

E{|xk(i)|2} = 1. The elements of xk are referred to as chips in accordance with CDMA

convention.

The interleaver sequence for each user, πk, must be unique since IDMA system users

are distinguished solely by their interleaver sequence. These interleavers disperse the

coded sequences so that the adjacent chips are approximately uncorrelated.

Our proposed scheme employs a pilot-embedding method, where low-level pilots are

transmitted concurrently with the data, is used to obtain an initial coarse estimate of the

channel such that the iterative detection process at the receiver can be started. The soft

information obtained from the turbo decoder is subsequently used to improve channel

estimates.

For each user, the pilot sequences are superimposed over the entire transmission block.

For each chip, xk(i), there is one pilot chip, xpk(i). Therefore, the channel memory length

does not need to be smaller than the spreading length. Additionally, as the training is

performed in parallel to the data transmission, it is possible to track rapidly time-varying

channels. Compared with the more conventional approach of time-multiplexing pilot
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symbols with data, superimposing the pilot-sequences has the advantage of not increasing

the transmission bandwidth [45].

In this chapter, the pilot symbols are transmitted at 10dB below the signal level of

the data symbols, and the pilot sequence design is from [80].

6.4.2 Receiver Structure

The joint multiple-access system with FEC coding in Figure 6.8 can be considered as

a serially concatenated coding system, where the FEC code and the multiple-access

channel assume the roles of outer code and inner code, respectively [102]. Using this

interpretation, an iterative receiver algorithm based on the turbo decoding concept [13]

can be developed.
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Figure 6.9: Receiver structure for a multiple-access IDMA system

The iterative receiver structure for the multiuser IDMA system is shown in Fig. 6.9.

This structure is based on the IDMA iterative receiver structure for joint channel

estimation and multiuser detection from [86] and [144], except here an adaptive soft

extended Kalman filter (EKF) is embedded into the iterative decoding process (in place

of the elementary signal estimator (ESE) of [86]). The adaptive EKF combined with

appropriate state-space channel models enables the receiver to effectively track and
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equalize time-varying frequency-selective fading channels. The EKF is developed from

[58], [101], and [52].

The receiver structure consists of a soft-input soft-output (SISO) Kalman filter-based

multiuser equalizer and K single-user a posteriori probability FEC decoders (DECs).

The two stages are separated by interleavers and deinterleavers.

In each decoding iteration, the equalizer uses its a priori information to perform

joint adaptive channel estimation and equalization. The a priori information consists of

the the received signal y(t), soft information about the data symbols (supplied by the

K single-user FEC decoders from the previous iteration), and knowledge of the pilot

symbols. The equalizer produces soft-valued extrinsic information consisting of updated

sequences of soft symbol estimates x̂k(i), and the associated error variance σ2
k(i), for

the K users. The estimates x̂k(i) are assumed to be complex Gaussian distributed with

mean xk(i) and variance σ2
k(i).

The K single-user demodulators then perform symbol-by-symbol MAP demodulation

using the extrinsic information from the equalizer, and the a priori information, λ2(bk(i)),

for the coded bits, bk(i), from the soft FEC decoders (produced in the previous iteration).

The demodulators produce extrinsic information, λ1(bk(i)), (in log-likelihood ratio (LLR)

form) for the coded bits bk(i). The demodulator output LLRs, λ1(bk(i)), are then

deinterleaved according to λ1(ck(i)) = π−1
k {λ1(bk(i))}, where each user (k) has a unique

interleaver sequence (πk). The deinterleavers reorder the extrinsic information sequences

into the correct order for the FEC decoding. The deinterleaver outputs, λ1(ck(i)), (which

are now the extrinsic LLRs for the coded sequence ck(i)) are then passed to the K

single-user soft FEC decoders which then use the BCJR algorithm [6] to perform MAP

decoding.

The K FEC decoders generate both the extrinsic information λ2(ck(i)) and the a

posteriori probabilities Λ2(ck(i)) for each user’s coded sequence {ck(i)}i. The interleaved

extrinsic LLRs λ2(bk(i)) = π{λ2(ck(i))} are then used as a priori information for the

demodulator, while the a posteriori LLRs Λ2(bk(i)) = λ1(bk(i)) + λ2(bk(i)) are used to

compute the mean x̄k(i) and variance vk(i) for data symbols xk(i) as

x̄k(i) = E{xk(i)} =
∑
x∈X

xP (xk(i) = x), (6.48)
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and

vk(i) = Var{xk(i)} =
∑
x∈X

|x− x̄k(i)|2 P (xk(i) = x),

= 1− |x̄k(i)|2 (6.49)

where X denotes the set of possible symbol constellations, and the probability P (xk(i) = x)

is calculated based on the assumption of independent bit sequence {bk(i)}i. Finally, x̄k(i)

and vk(i) are fed back into the equalizer as a priori information for the next iteration.

6.5 Multiuser Adaptive Soft EKF-Based Equalizer for

Doubly-Spread Channels

In this section, we describe the multiuser adaptive EKF-based equalizer that is embedded

in the turbo multiuser detector (MUD). The doubly-spread channels are modelled using

basis expansion models, and the EKF performs joint channel estimation and equalization

where their correlation is implicity considered. The multiuser EKF design is based on

the single-user channel EKF designs of [58] and [52], except here it is extended to the

multiuser case, adapted for IDMA systems with superimposed training, and incorporates

different channel models.

6.5.1 Multiuser System Model

The single-user channel of (6.17) is now extended to the doubly-spread multiuser case

with K users. The sequence of transmitted symbols from the k-th user is denoted {xk(i)},
and the channel response for the k-th user at time i to a unit impulse at time i− l is

denoted {hk(i, l)}Ll=0. The received signal, y(i), is given by

y(i) =
K∑
k=1

L∑
l=0

hk(i, l)xk(i− l) + w(i) (6.50)

where w(i) is the additive measurement noise, described previously. The channels

{hk(i, l)} are modelled using the wide-sense stationary uncorrelated scattering (WSSUS)

assumption [8], and are independent for different users, k. The transmitted symbols,
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xk(i), are assumed mutually independent and identically distributed (i.i.d.) with mean

E{xk(i)} = 0 and variance E{xk(i)x∗k(i)} = σ2
xk

= σ2
x ∀ k.

For a block of NB consecutive received symbols, the BEM representation of the

channel for user-k is

hk(i, l) =

Q∑
q=1

gk,q(l)ψq(i), 0 ≤ i ≤ NB − 1; 0 ≤ l ≤ L− 1 (6.51)

where {gk,q(l)}Qq=1 are the BEM coefficients for k-th user, and {ψq(i)}Qq=1 are the basis

functions. The BEM coefficients are time-invariant during the block i ∈ [0, N − 1],

but may change from block to block. The basis functions vary with time i, but are

common for every block (and all users). For a given set of basis functions, estimation of

the time-varying channel {hk(i, l)}i,l is reduced to estimating the invariant coefficients

{gk,q(l)}q,l over a block of NB symbols.

The basis functions in (6.51) are stacked into the following vector:

Ψ(i) , [ψ1(i), ψ2(i), . . . , ψQ(i) ]T (Q× 1 vector) (6.52)

and the BEM coefficients (for all K users) are stacked into the following vectors:

g(l)
q , [ g1,q(l), g2,q(l), . . . , gK,q(l) ]T (K × 1 vector) (6.53)

g(l) , [ g
(l)T
1 , g

(l)T
2 , . . . , g

(l)T
Q ]T (KQ× 1 vector) (6.54)

g , [ g(0)T , g(1)T , . . . , g(L)T ]T (J1× 1 vector) (6.55)

where dimension J1 , KQ(L+ 1). Define the following transmit symbol vectors:

x(i) , [x1(i), x2(i), . . . , xK(i) ]T (K × 1 vector) (6.56)

X(i) , [ xT (i), xT (i− 1), . . . , xT (i− L) ]T (K(L+ 1)× 1 vector) (6.57)

Then, with the time restriction of i ∈ [0, NB − 1], the multiuser system model of (6.56)

using the BEM channel representation of (6.51), can be restated in vector form as

y(i) = XT (i)[ I(L+1) ⊗ (Ψ(i)⊗ IK) ]Hg + w(i), 0 ≤ i ≤ NB − 1 (6.58)

where ⊗ denotes the Kronecker product.
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6.5.2 State-Space Model Incorporating A Priori Information

Using the approach of [52], the time-varying channels are modelled using BEMs, with

the BEM coefficients tracked by the EKF employing a low-order vector autoregressive

(VAR) process as state-space model. A VAR process of dimension KQ(L+ 1) is used to

track the corresponding number of BEM coefficients.

Although the BEM coefficients in (6.58) are invariant over the block of NB symbols,

they can change from block to block, therefore, in the broader sense, the BEM coefficient

vectors can be considered to be varying with time i. Consequently, the coefficient vector

of (6.55) can be denoted as g(i). With the assumption that the channel BEM coefficients

follow an AR(1) model [52], a first-order VAR model is used to track the time-variations

of the BEM coefficient vector, g(i), as follows:

g(i) = A1g(i− 1) + z(i) (6.59)

where A1 = αIJ1 is the VAR coefficient matrix, and the driving noise vector z(i) is zero-

mean complex Gaussian with variance σ2
zIJ1 and statistically independent of g(i−1). The

Yule-Walker method (autocorrelation method) [49] can be used to calculate α. Typically

α ≈ 1 but α < 1. Assuming the multiuser channel is wide-sense stationary (WSS) and

the BEM coefficients {gk,q(l)} are independent, we have

σ2
z = σ2

h(1− |α|2)/Q (6.60)

where σ2
h , E{|hk(i; l)|2}, based on the assumption that all users (k) and all taps (l)

have the same Doppler spectrum.

The KF-equalization is performed with a fixed-lag of δ symbols (δ > 0) in order to

minimize the symbol estimate error variance. Generally, the equalization delay (δ) should

be greater than the maximum discrete delay-spread (L) to capture all the available

information. Define D , max{δ + 1, L+ 1}.

The state vector must include estimates of both the transmitted symbols and the

BEM channel coefficients to enable the EKF to adaptively equalize the multiuser channel

with unknown coefficients. The state vector, s(i), is defined as follows:

s(i) =
[

sT1 (i) sT2 (i)
]T

(J × 1 vector) (6.61)
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where

s1(i) , [xT (i), xT (i− 1), . . . , xT (i−D + 1)]T , (KD× 1 vector) (6.62)

s2(i) , g(i). (J1× 1 vector) (6.63)

and J , KD + KQ(L + 1) = KD + J1. Transmit symbol vector, x(i), is the K × 1

vector defined in (6.56).

For the EKF to be used within a turbo processing framework, the standard EKF

formulation (of Section 6.3.3) must be modified to incorporate soft a priori information

from the FEC channel decoders. This is achieved by considering each user’s transmit

symbol sequence, {xk(i)}i, to be a WSS stochastic process [109]. Then, using Wold’s

theorem [49], the symbol sequence of the k-th user, xk(i), can be expressed as

xk(i) = x̄k(i) + x̃k(i), (6.64)

where x̄k(i) = E{xk(i)} is a deterministic sequence, and x̃k(i) is approximated as an

uncorrelated stochastic process with mean E{x̃k(i)} = 0 and autocorrelation E{x̃k(i)x̃∗k(i+
j)} = vk(i)δ(j) (assuming an ideal interleaver).

The statistical characteristics of xk(i), namely x̄k(i) and vk(i), are calculated from

the a priori information. For data symbols, x̄k(i) and vk(i) are calculated from (6.48)

and (6.49), respectively. While for pilot symbols, x̄k(i) = xpk(i) and vk(i) = 0, since the

pilot symbols are known to the equalizer.

Collecting the K users together, the following vectors are defined:

x̄(i) = [ x̄1(i), x̄2(i), . . . , x̄K(i) ]T (K × 1 vector) (6.65)

x̃(i) = [ x̃1(i), x̃2(i), . . . , x̃K(i) ]T (K × 1 vector) (6.66)

Using the state vector, s(i) in (6.61), the state equation (incorporating a priori informa-

tion) can be written as

s(i) = Fs(i− 1) + Gx̄(i) + u(i), (6.67)
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with the following definitions:

F =

 Φ 0KD× J1

0J1×KD A

 (J × J matrix) (6.68)

A = αIJ1 (J1× J1 matrix) (6.69)

Φ =

 01× (D−1) 01× 1

I(D−1) 0(D−1)× 1

⊗ IK (KD×KD matrix) (6.70)

G =
[
IK 0K× (J−K)

]T
(J ×K matrix) (6.71)

(6.72)

The vector u(i) is zero-mean uncorrelated process noise, defined as

u(i) =
[
ΓT x̃(i) zT (i)

]T
, (J × 1 vector) (6.73)

where

Γ = [ 1 01× (D−1) ]T ⊗ IK (KD×K matrix) (6.74)

and z(i) is the J1× 1 vector defined in (6.59). The covariance matrix of u(i) is given by

Q(i) = E{u(i) uH(i)} = Q̃ + GVGT , (J × J matrix) (6.75)

where

V = diag { v1(i), v2(i), . . . , vK(i) } (K ×K matrix) (6.76)

Q̃ =

 0KD×KD 0KD× J1

0J1×KD σ2
zIJ1

 (J × J matrix) (6.77)

The measurement equation is given by

y(i) = h[s(i)] + w(i), (6.78)

and the nonlinear function for h[s(i)] is defined as

h[s(i)] , XT (i)
[
I(L+1) ⊗ (Ψ(i)⊗ IK)

]H
g(i), (6.79)
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where both X(i) and g(i) can be obtained from the the state vector, s(i).

6.5.3 Fixed-Lag Soft Input Extended Kalman Filtering

The EKF is applied to the state and measurement equations of (6.67) and (6.78),

respectively, to jointly decode the data symbols and track the channel BEM coefficients.

The EKF is initialized with

ŝ(−1 | −1) = 0J × 1 and P(−1 | −1) = Q̃,

The EKF is described by the following recursive equations:

1. Time update:

ŝ(i | i− 1) = Fŝ(i− 1 | i− 1) + Gx̄(i), (6.80)

P(i | i− 1) = FP(i− 1 | i− 1)FT + Q̃ + GVGT . (6.81)

2. Kalman gain:

H(i) =
∂f [s]

∂s

∣∣∣∣∣
s=ŝ(i|i−1)

(Jacobian matrix), (6.82)

K(i) = P(i | i− 1)HH(i)
[
σ2
w + H(i)P(i | i− 1)HH(i)

]−1
. (6.83)

3. Measurement update:

ŝ(i | i) = ŝ(i | i− 1) + K(i){y(i)− h[̂s(i | i− 1)]}, (6.84)

P(i | i) = [IJ −K(i)H(i)]P(i | i− 1). (6.85)

The EKF recursions are shown diagrammatically in Figure 6.10. The a priori

information {x̄k(i), vk(i)}Kk=1 is the soft information (at time i) obtained from the K

single-user FEC channel decoders, via the LLR-to-symbol blocks (as shown in Figure 6.9).

The output x̂k(i) = {ŝ(i + δ | i + δ)}(Kδ+k) is the delayed a posteriori estimate of the

data symbol xk(i) for the k-th user, k ∈ [1, K].
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Figure 6.10: Extended Kalman filter (EKF) recursions

6.5.4 Generating Extrinsic Information

The fixed-lag EKF generates delayed a posteriori estimates for {xk(i)}Kk=1. However,

if the EKF equalizer is to be used within a turbo framework, it must produce delayed

extrinsic estimates. To generate extrinsic estimates, {x̂k(i)}Kk=1, that are independent

of the a priori information {x̄k(i), vk(i)}Kk=1, the comb structure shown in Figure 6.11

(adapted from [58]) is used in conjunction with the EKF.

EKF EKF EKF EKF

{x (i-1)} ,

{v (i-1)} ,

y(i-1)

k

k

k

k

{x (i)} ,

{v (i)} ,

y(i)

k k

k k

EKF EKF EKF

{x (i+1)} ,

{v (i+1)} ,

y(i+1)

k k

k k

{x (i+ )} ,

{v (i+ )} ,

y(i+ )

k k

k k

d

d

d

s

P

(i-2|i-2),
(i-2|i-2)

s

P

e

e

(i+n|i+n),

(i+n|i+n)

s

P

(i-1|i-1),
(i-1|i-1)

( +1) timesd

{x (i+2)} ,

{v (i+2)} ,

y(i+2)

k k

k k

{x (i+ +1)} ,

{v (i+ +1)} ,

y(i+ +1)

k k

k k

d

d

d

s

P

e

e

(i+n+1|i+n+1),

(i+n+1|i+n+1)

{x (i+1)} ,

{v (i+1)} ,

y(i+1)

k k

k k

{x (i+3)} ,

{v (i+3)} ,

y(i+3)

k k

k k

{x (i+ +2)} ,

{v (i+ +2)} ,

y(i+ +2)

k k

k k

d

d

d

s

P

e

e

(i+n+2|i+n+2),

(i+n+2|i+n+2)

s

P

(i|i),
(i|i)

s

P

(i+1|i+1),
(i+1|i+1)

s

P

(i+2|i+2),
(i+2|i+2)

EKF EKF EKF

EKF EKF EKF

{x (i+2)} ,

{v (i+2)} ,

y(i+2)

k k

k k

{x (i)=0} ,

{v (i)=1} ,

y(i)

k k

k k

{x (i+1)=0} ,

{v (i+1)=1} ,

y(i+1)

k k

k k

{x (i+2)=0} ,

{v (i+2)=1} ,

y(i+2)

k k

k k

{x (i), (i)}k k ks
2

{x (i+1), (i+1)}k k ks
2

{x (i+2), (i+2)}k k ks
2

extrinsic
estimates

a posteriori
estimates

Figure 6.11: Adaptive SISO equalizer using fixed-lag extended Kalman filters (EKFs).

At each time i, the vertical branch composed of (δ + 1) EKFs produce the extrinsic

estimates for each user, {x̂k(i)}Kk=1, while the horizontal branch keeps updating the
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a posteriori estimate ŝ(i | i) and its error covariance P(i | i). In order to exclude

the effect of the a priori information, the first EKF in the vertical branch assigns

{x̂k(i) = 0, vk(i) = 1}Kk=1 to the a priori inputs, in place of the information generated by

the FEC decoders, Let ŝe(i+ n | i+ n) and Pe(i+ n | i+ n) denote the state estimate

and its error covariance matrix, respectively, generated by the (n+ 1)-th vertical filtering

branch. Then the δ-delayed estimate x̂k(i) and its error covariance σ2
k(i), which form the

extrinsic information for xk(i), are given by

x̂k(i) = { ŝe(i+ δ | i+ δ) }(Kδ+k) , and (6.86)

σ2
k(i) = {Pe(i+ δ | i+ δ) }(Kδ+k),(Kδ+k) , (6.87)

respectively (for user k).

6.6 Performance Evaluation

We consider an underwater sensor network multiuser system where multiple sensor

nodes can directly transmit (single-hop) to the central gateway node. Sensor node data

transmission may be ad hoc, and multiple nodes may transmit data simultaneously to the

central gateway node. Each sensor node must be located within the receiving range of

the gateway node. The adaptive equalization schemes are evaluated with 8 simultaneous

users (transmitting sensor nodes). The transmitter FEC code (which is common to all

users) is a 1/4-rate convolutional code serially concatenated with a 1/8-rate repetition

code (producing an overall code rate of R = 1/32). Each transmitter generates QPSK

symbols and has a symbol rate of 1200 symbols per second (producing an aggregate rate

of 9600 symbols/second).

A multiple-access random doubly-spread underwater acoustic channel is simulated by

a tapped delay line (multipath) structure derived from the ray-tracing methods of [145],

with independent and uncorrelated Rayleigh processes applied to each tap. Within the

multiuser channel, the channel coefficients {hk(i, l)}k,l are mutually independent for each

user k and for each tap l. Each tap is generated via the method in [143] and satisfies

Jakes’ model [46]. Channel ranges of 200 to 500m, and water depth of 25 to 30m are

considered, using the models described in Section 6.2.1. From the channel fading rate

definitions in Table 6.2, we consider fast- and very-fast-fading rates with normalised

Doppler frequency range of 2.5× 10−3 to 15× 10−3.
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Norm. Doppler frequency Velocity (m/s)

Fading Term (fd ·Tc) (for fc = 12kHz)

Slow fading 0.15× 10−3 − 0.50× 10−3 0.07 − 0.22

Moderate fading 0.50× 10−3 − 2.50× 10−3 0.22 − 1.10

Fast fading 2.50× 10−3 − 5.00× 10−3 1.10 − 2.20

Very fast fading 5.00× 10−3 − 15.0× 10−3 2.20 − 6.60

Table 6.2: Normalised Doppler frequencies and corresponding velocities (for speed of sound in
water c = 1500m/s, chip duration Tc ≈ 280us and carrier frequency fc = 12kHz).

The channel model includes models for significant ambient and intermittent noise

sources. Significant ambient noise sources include surface agitation, and thermal excita-

tion, while significant intermittent noise sources include shipping, and rain. The typical

levels of these common noise sources are shown in Fig 6.12. These values are calculated

from the empirical formulae and observations in [5], [71], and [124].
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Figure 6.12: Typical noise levels of ambient and intermittent sources

The bit error rate performance of any adaptive receiver scheme will be dependent on

the accuracy of the channel estimation methods employed. Therefore, the estimation

accuracy of various BEM models is investigated first. The channel estimation normalised

mean square error (NMSE) achieved with CE, DPSS, and K-L basis functions for a

channel with normalized Doppler spread, fdT , of 15× 10−3 is shown in Figure 6.13. The

results for different model orders, Q, is also shown.

For the CE-BEM, the critically-sampled (ξ = 1), and oversampled (ξ = 2, 3, 4) forms

are considered. At Eb/N0 = 25dB, the critically-sampled CE-BEM (with model order,
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Figure 6.13: Channel estimation NMSE for CE, DPSS, and K-L basis expansion models of a
Rayleigh channel with normalized Doppler spread, fdT = 15× 10−3.

Q = 3) has a channel estimation NMSE of -8dB. This result improves with oversampling.

For oversampling factors of 2,3, and 4, the NMSE reduces to -13dB, -18dB and -23dB,

respectively (at Eb/N0 = 25dB). Note that oversampling also increases the model order,

with oversampling factors 2, 3, and 4 producing model orders of 5, 7 and 9 respectively.

Computational complexity increases linearly with model order, and so we observe a

trade-off between model accuracy and computational complexity.

For the DPSS and K-L BEMs, model orders of Q=3, and Q=5 are considered. For a

model order of 3 (Q = 3), the channel estimation NMSE for the DPSS BEM and K-L

BEM is -10.5dB and -12.8dB, respectively, at Eb/N0 = 25dB. Increasing the model order

to 5 (Q=5), the channel estimation NMSE reduces to -22dB and -28dB for the DPSS

BEM and K-L BEM, respectively. The K-L BEM provides the best NMSE performance

for a given model order, but requires exact knowledge of the Doppler frequencies and

expects the channel to be Rayleigh distributed. In these simulations, the channel model

has correct statistics and the Jakes’ model simulators pass the Doppler spread parameters

to the K-L BEM. In practical implementation, the Doppler frequencies will not be known

(with any accuracy) and the channel may not be Rayleigh distributed, but we have

included the K-L BEM here to demonstrate the performance bound of the channel

estimation/equalization scheme.
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Both the CE BEM and DPSS BEM only require an upper bound on the Doppler

spread (not knowledge of the exact Doppler frequencies), so the performance of these

two models should be more representative of what is achievable in practice.

As a general rule, for a coded system to achieve an acceptable receiver bit error rate

performance (e.g., a BER in the order of 10−4 or better), the channel estimation scheme

should have a NMSE performance of approximately -12dB or better. From the results of

Figure 6.13, this suggests that a minimum BEM order of 5 (Q=5) is required for channels

with normalised Doppler spread up to 15× 10−3. Therefore the following results all use

BEM models of order 5 or greater.

Figure 6.14 compares the performance of channel estimation models employed by

the iterative multiuser detector over a range of normalised Doppler spread. The linear

equalizer is the standard IDMA channel estimation scheme of [86] and [144]. The auto-

regressive (AR) model and basis expansion models (CE, DPSS, K-L) are the state-space

models employed by the extended Kalman filter (EKF) embedded in the IDMA turbo

multiuser detector. Figure 6.14a shows the channel estimation normalised mean square

error (NMSE), while Figure 6.14b shows the bit error rate performance.

The linear equalizer scheme performs well at lower Doppler spreads (with NMSE of

18.8dB and BER of 1.7× 10−5 at fdT = 1× 10−3 and Eb/N0 = 10dB) but at higher

Doppler spreads the performance rapidly deteriorates, with a BER greater than 1× 10−1

for fdT ≥ 5× 10−3.

The EKF using the 10th-order AR model, AR(10), also performs well for slow and

moderate fading channels, with a BER of 4× 10−5 at fdT = 1× 10−3 and Eb/N0 = 10dB,

but performance also deteriorates significantly with increasing Doppler spread, with a

BER of greater than 1× 10−2 for fdT ≥ 6.25× 10−3.

The EKF using the BEM state-space models provides better performance. The

critically-sampled CE-BEM (OS=1) has a channel NMSE of -14.6dB or better for fdT ≤
8.75× 10−3, deteriorating to -9.6dB for fdT = 15× 10−3. Similarly the BER performance

is 2.6× 10−5 at fdT = 1× 10−3 and slowly rises to 7× 10−4 for fdT = 15× 10−3.

The oversampled CE (OS=2), DPSS, and K-L BEMs provide the best performances,

all providing BER of 2× 10−5 or better and channel NMSE values of -18dB or better for

fdT ≤ 10× 10−3. At fdT = 15× 10−3, the channel NMSE is -12.5dB or better and the

BER is 2× 10−4 or better.
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a) channel estimation NMSE; and b) bit error rate. (Eb/N0 = 10dB)



Multiuser Detection for Doubly-Spread Underwater Acoustic Channels 202

As the maximum normalised Doppler frequency increases, the number of significant

eigenvalues in the BEM representation increases and thus a larger number of basis

functions, Q, need to be used for an accurate approximation. As a general case, the BEM

accuracy deteriorates with increasing fdT . The accuracy can be improved by increasing

the number of basis functions used (Q), but this comes with the cost of increasing

computational complexity.

Figure 6.15 compares the performance of the channel estimation schemes over a range

of signal-to-noise ratios at maximum Doppler spread (fdT = 15× 10−3). Figure 6.15a

shows the channel estimation normalised mean square error (NMSE), while Figure 6.14b

shows the bit error rate performance.

As discovered previously, the linear equalization scheme performs poorly at theis

high Doppler spread, with channel NMSE and BER values of approximately -3dB and

3× 10−1 respectively, over the range of Eb/N0 values. The EKF with autoregressive

model achieves better performance than the linear scheme, but still only attains a BER

of 1.2× 10−3 and channel NMSE of -8dB at Eb/N0 = 20dB.

The four basis expansion models all achieve good performance at high Doppler spread.

The K-L BEM achieves a channel NMSE and BER of -16.5dB and 4.8× 10−6 respectively

at Eb/N0 = 12.5dB. The K-L BEM is exactly matched to the Jakes’ model Rayleigh

spectrum, so this represents the best case performance of the multiuser EKF scheme

(for 5 basis functions, Q = 5). The DPSS BEM achieves a channel NMSE and BER of

-15dB and 1.3× 10−5, respectively, at Eb/N0 = 12.5dB. This is within 2dB of the K-L

BEM performance and the DPSS BEM doesn’t require detailed knowledge of he channel

spectrum, only the maximum Doppler frequency.

The critically-sampled CE-BEM achieves a channel NMSE and BER of -10.5dB and

9× 10−5, respectively, at Eb/N0 = 12.5dB. While the over-sampled CE-BEM achieves a

channel NMSE of -15.5dB and 6.5× 10−6, respectively, for the same Eb/N0 ratio. The

over-sampled CE-BEM performance is within 1.5dB of the K-L BEM, but this comes

at the expense of computational complexity with the oversampled CE-BEM requiring 9

basis functions compared to 5 for the K-L BEM (and other BEM types evaluated).
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6.7 Conclusion

In this chapter, a multiple-access communications scheme for doubly-selective underwater

acoustic channels was developed. It is envisaged that the schmee could be used to support

an underwater sensor network.

The communications scheme uses interleave-division multiple access (IDMA), a

scheme where users are separated by unique interleaver sequences. When used with

low-complexity iterative receivers, IDMA has been shown to outperform coded CDMA.

To enable joint channel estimation and data detection, low-level pilot symbols are

superimposed onto the transmitted data. These pilots, which are at a level much lower

that the signal level, are used by the receiver to obtain the initial coarse estimates of

the channel. Improved estimates of the channel are then obtained by integrating the

estimation of the channel into the decoding loop. Soft information from the iterative

decoder is used to improve channel estimation after every iteration of the decoder.

Such schemes have been shown to provide good performance in multipath (delay-

spread) channels, and in fast-fading (Doppler-spread) channels. However in doubly-spread

channels, the number of unknown channel variables exceeds the number of known data

variables (pilot symbols). The underlying system of equations used by the channel

estimation algorithm becomes underdetermined, and accurate channel estimation becomes

intractable.

To alleviate this problem, we model the doubly-selective channel using basis expansion

models (BEMs). A BEM is an economical or parsimonious model that can provide a

good approximation of a time-varying channel using a a reduced number of parameters.

Modelling of linear systems by basis expansion models can turn a time-varying system

identification problem into a time-invariant one. Using BEM representations of the

channel, estimation of doubly-spread channels from using pilot symbols becomes tractable.

An adaptive turbo multiuser receiver was developed where time-domain equalization

is performed using a Kalman filter (KF). KF-based equalization has been shown to

outperform traditional linear transversal equalizers, and have much lower complexity. An

extended Kalman filter (EKF) is embedded into the turbo multiuser detector to create a

multiuser equalizer that jointly optimizes the estimates of the channel coefficients and

data symbols in each iteration of the detection process. EKF state-space modelling
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is performed using basis expansion models to provide a tractable means of estimating

doubly-spread channels at minimal computational complexity.

Experimental results demonstrate that the proposed multiple-access scheme with

adaptive turbo receiver provides robust performance in doubly-spread underwater acoustic

channels.



Chapter 7

Conclusion

This thesis explores and applies iterative and adaptive processing techniques to multiple-

access IDMA systems. The research consists of two parts. The first is concerned

with the optimisation of the iterative detection process, this is achieved through power

allocation, FEC code allocation and perfect space-time coding. The second part is

concerned with the application of IDMA systems with iterative receivers to underwater

acoustic communications. The underwater acoustic channel is a challenging environment

characterised by long delay-spreads and limited bandwidth. An OFDM-IDMA system

was presented as a solution for underwater channels with delay spread, and an iterative

receiver for IDMA using a non-linear Kalman filter to perform joint decoding and

channel equalization was presented for doubly-spread underwater acoustic channels. The

non-linear Kalman filter utilised low-rank basis expansion models (BEMs) to track the

temporal variation of the channels.

In this final chapter, the main conclusions from the novel findings and future research

directions on this work are presented. The following section summarises the work that

has been conducted in this thesis which highlights the contributions of this research work.

Thereafter, directions for further research are discussed.

206
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7.1 Summary and Thesis Contributions

7.1.1 IDMA Performance Optimisation using Variance Transfer

Analysis

Variance Transfer (VT) charts were used as a tool for analysing the iterative receiver

performance. VT charts track the variance in the log-likelihood ratio (LLR) values

that are exchanged between the multiuser detector (MUD) and the channel decoders,

providing a graphical representation of the receiver’s convergence process. The variance

transfer (input/output) characteristic curves of the constituent receiver components, the

multiuser detector (MUD) and the forward error correction (FEC) channel decoders,

were calculated and then the iterative receiver performance was optimised by matching

the VT characteristic curves. Two optimisation schemes were developed:

Power Allocation. Chayat et. al. [18] have shown that the performance of an iterative

receiver is optimised if different users transmit at different powers, allowing the

iterative decoder to operate in an “onion peeling” mode, where the higher-power

layers converge first, decreasing their contribution to the residual noise, and then

the lower-power layers converge.

The IDMA concept was extended to a multi-rate system where different users

transmit data at different rates, but the same low-complexity iterative receiver

structure could still be used. High-rate users were supported by breaking up the

input data stream into multiple sub-streams. An IDMA layer was created from each

sub-stream, and the multiple IDMA layers are then combined and transmitted from

a single antenna. The iterative receiver treats each IDMA layer as a virtual user.

VT charts where then used to analyse the iterative receiver performance, and to

develop an optimal power allocation strategy for assigning transmit power levels to

IDMA layers. In a Rayleigh flat-fading environment, simulation results demonstrated

that the performance of the proposed scheme is close to the theoretical limit.

FEC Code Allocation. Ten Brink [116] demonstrated that different FEC codes generate

different FEC channel decoder VT characteristics. The allocation of FEC codes can

also be used to manipulate the reciever VT characteristics and thereby optimise

system performance.
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Using numerical methods and VT Charts, a simple FEC code allocation strategy is

devised so that new users are allocated FEC codes according to the existing system

load, this allows the FEC decoder VT curve to dynamically match the MUD VT

curve as it changes with system load, providing optimal system performance over a

range of operating conditions. For small multiuser systems, results demonstrated

that the performance of the proposed system approaches the theoretical single user

bound.

7.1.2 Optimal Space-Time Coding using the Golden Code

Multiple antenna systems (commonly referred to as multi-input multi-output or MIMO

systems) have proven to be an effective method for realising high-rate reliable wireless

communications. While coding strategies for MIMO systems have generally focused on

providing either higher-rate or increased diversity over traditional single antenna (SISO)

systems, linear dispersion (LD) codes are a generalised class of space-time codes that

can theoretically provide both diversity gain and high-rate.

LD codes are defined as codes that break up the input data stream into sub-streams

that are dispersed in linear combinations over space and time. Recently, cyclic division

algebra techniques have provided the means for constructing LD codes that provide both

full-diversity and full-rate. Codes that achieve both full-diversity and -rate (and meet a

few energy efficiency criteria) are known as perfect STBCs or perfect codes. The golden

code is a perfect STBC for 2× 2 multiple-antenna systems.

The Golden Code system was extended to the multiuser case, and a MIMO-IDMA

multiuser detector to decode LD codes was developed. The complexity of the receiver

was linear in the number of users. The performance of this GC-IDMA scheme was

compared with MIMO-IDMA schemes employing the Alamouti STBC and V-BLAST,

and also against the single-user bound. In a Rayleigh flat-fading environment, simulation

results demonstrated that GC-IDMA outperforms both Alamouti- and V-BLAST-IDMA

at moderate and high SNR levels. For signal to noise ratios of 8dB and greater, the

GC-IDMA scheme employing 16 users approaches within 0.25dB of the single-user bound.
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7.1.3 Multiuser Communications for Underwater Acoustic Channels

Underwater sensor networks enable a broad range of applications including environmental

monitoring, undersea exploration, assisted navigation, and distributed surveillance [2].

Reliable high-performance sensor networks would need to be underpinned by a robust

and efficient multiple-access underwater communications scheme.

Transmission of acoustic waves is considered the most practical means of underwater

communications. Radio systems are not feasible because the only radio waves in the

extra-low frequency range (< 300Hz) are capable of propagating any distance through

conductive sea water. Optical systems are also not suitable because optic waves, while

not suffering as significantly from attenuation, are severely affected by scattering and

absorption [110].

However, designing reliable underwater acoustic communications (UAC) systems

has proven to be very challenging. One of the main channel impairments is multipath

interference caused by multiple reflections of the acoustic signal from the water surface

and bottom. These reflections occur at small grazing angles and with small reflection

losses. This effect causes both long time-delay spread and large multipath amplitudes to

be present in the received signal [51].

Delay-spread underwater acoustic channels

Large delay-spread implies that single-carrier communication will be plagued by inter-

symbol interference (ISI) that, for practical signal bandwidths, spans many symbols.

As an alternative, multi-carrier modulation (MCM) has been proposed to increase the

symbol interval and thereby decrease the ISI span. Multicarrier modulation (MCM) is a

popular transmission scheme in which the data stream is split into several substreams

and transmitted, in parallel, on different subcarriers. MCM transforms the inter-symbol

interference (ISI)-inducing frequency selective channel into a set of independent parallel

subchannels.

Orthogonal frequency division multiplexing (OFDM) [135], [20] has emerged as one

of the most practical MCM techniques for data communication over frequency-selective

fading channels. In OFDM, the computationally-efficient fast Fourier transform (FFT)

is used to transmit data in parallel over a large number of orthogonal subcarriers.

The principle advantage of multi-carrier schemes like OFDM, relative to single-carrier
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schemes, is that they facilitate simple equalization of delay-spread (i.e., frequency-

selective) channels. When an adequate number of subcarriers are used in conjunction

with a cyclic prefix of adequate length, subcarrier orthogonality is maintained, even in

the presence of frequency-selective fading. Orthogonality implies a lack of subcarrier

interference and permits simple, high-performance data detection.

Orthogonal Frequency Division Multiplexing (OFDM) was combined with an IDMA

overlay to develop a multiple-access communications system that provides robust perfor-

mance in the presence of large time-delay spread and the other impairments presented by

the shallow water acoustic channel. A low-complexity iterative decoding algorithm based

on the turbo-decoding concept was developed for the OFDM-IDMA system receiver, and

experimental results demonstrate good performance.

Doubly-spread underwater acoustic channels

The underwater acoustic channel was extended to the doubly-spread case. The relative

motion between the transmitter, receiver, and scattering objects imparts each path

with a unique Doppler shift, so that multipath propagation also induces a frequency-

domain spreading effect on the information signal. Such channels are both delay- and

Doppler-spread (or equivalently, frequency- and time-selective), and are referred to as

“doubly-spread” or “doubly-selective”.

OFDM schemes can been used successfully for time-invariant and slowly time-varying

(TV) channels, but they become problematic for doubly-spread (or rapidly TV) channels.

For time-invariant channels, the data stream can be split up and transmitted in parallel

on non-interfering subcarriers, with equalization being just a simple matter of adjusting

the gain and phase on each received subcarrier. This approach can be easily extended

to slowly TV channels, where a time-invariant channel is simulated by choosing an

OFDM symbol duration that is shorter than the coherence time of the channel. For

time-invariant or slowly TV channels, the loss in spectral efficiency due to the inclusion

of the guard intervals can be made small, since the channel delay spread (and hence the

guard interval) is much smaller than the channel coherence time (and hence the OFDM

symbol length). But for rapidly TV channels, the OFDM symbol length would need

to be made extremely short, at which point the loss of spectral efficiency due to guard

insertion would be severe [104]. Hence, OFDM schemes become impractical for rapidly

TV channels.
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As a result, a single-carrier system with adaptive channel-estimation is considered

for the doubly-spread underwater channel. A single-carrier system with linear traversal

equalizer would face complexity issues due to the large number of equalizer taps required

to compensate for the long delay-spread. Instead, a Kalman filter (KF) is used as

equalizer. KF-based equalizers have been shown to perform significantly better than

linear traversal equalizers at a much lower complexity. Additionally, the state-space

formulation of the Kalman equalizer is well suited for iterative receivers and allows easy

incorporation of soft (a-priori) information for channel-coded systems.

The Kalman filter utilises basis expansion models (BEMs) to model the doubly-

selective underwater channels. A basis expansion model is a parsimonious low-rank

channel model that exploits the inherent structure in the channel response [32]. Modelling

of linear systems by basis functions turns a time-varying system identification problem

into a time-invariant one, thereby reducing the number of channel parameters to estimate

and simplifying the equalization task.

The receiver uses a semi-blind iterative channel estimation algorithm to initially

estimate the channels using only the pilot sequences and then iteratively includes the

decoded data into the channel estimates to improve the estimation accuracy. Experimental

results showed that the proposed system provides robust performance in doubly-spread

underwater acoustic environments.

7.2 Future Work

For future work, we would like to examine multiple directions, including:

• Further investigation into iterative receiver optimisation. For example, as an

alternative to the power and code allocation methods presented, allocation of Low-

Density Parity-Check (LDPC) codes [31] with different degree sequences could be

considered.

• The MIMO-IDMA scheme for the 2× 2 Golden code could be extended to accom-

modate optimal space-time codes of higher dimensions, for example, the 3× 3, 4× 4,

and 6× 6 perfect space-time codes proposed by Oggier, et al. [82].

• Further investigation of the nonlinear Kalman filter equalizer. Potentially improved

accuracy may be achieved by using other forms of non-linear Kalman filter instead
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of the extended Kalman filter, for example, the particle filter. Complexity reduction

could also be addressed be considering lower-complexity variants of the Kalman

filter, for example, the reduced-complexity Kalman filter proposed by Roy and

Duman [101].

• Sea trials of the underwater acoustic communications schemes would provide insight

into the performance of the both the OFDM-IDMA scheme and the non-linear

Kalman Filter based single-carrier IDMA scheme. Sea trial data would also help

improve the accuracy of the simulation channel models.

• Channel tracking using Basis Expansion Models. Additional types of basis expansion

model could be considered for the channel tracking function. The Wavelet BEM is

a potential candidate. Also, sea trial data could allow the KL BEM to be better

customised to the underwater environment, instead of just matching the KL BEM

to the Jakes-model spectrum.

• To maximise the performance of the underwater communications schemes, the

optimisation methods proposed in the first part of the thesis could be applied to

the underwater schemes. Namely power allocation, FEC code allocation and perfect

space-time codes.
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[122] M. Tüchler, A. Singer, and R. Kötter, “Minimum mean squared error (MMSE)

equalization using a priori information,” IEEE Transactions on Signal Processing,

vol. 50, no. 3, pp. 673–683, Mar. 2002.

[123] R. J. Urick, Principles of underwater sound, 3rd ed. Los Altos Hills, CA, USA:

Peninsula Publishing, 1983.

[124] ——, “Ambient noise in the sea,” Naval Sea Systems Command, Department of

the Navy, Washington DC, USA, Tech. Rep., 1984.

[125] M. Valenti, “Iterative detection and decoding for wireless communications,” Ph.D.

dissertation, Virginia Polytechnic Institute and State University, Blacksburg, Vir-

ginia, USA, Jul. 1999.

[126] R. van Nee and R. Prasad, OFDM for wireless multimedia communications. Boston,

USA,: Artech House, 2000.
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