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ABSTRACT

DATA STREAM MINING IN MEDICAL SENSOR-CLOUD

Le Sun, Ph.D.

Victoria University 2016

Data stream mining has been studied in diverse application domains. In recent

years, a population aging is stressing the national and international health care

systems. Along with the advent of hundreds and thousands of health moni-

toring sensors, the traditional wireless sensor networks and anomaly detection

techniques cannot handle huge amounts of information. Sensor-cloud makes

the processing and storage of big sensor data much easier. Sensor-cloud is an

extension of Cloud by connecting the Wireless Sensor Networks (WSNs) and

the cloud through sensor and cloud gateways, which consistently collect and

process a large amount of data from various sensors located in different areas.

In this thesis, I will focus on analysing a large volume of medical sensor da-

ta streams collected from Sensor-cloud. To analyse the Medical data streams, I

propose a medical data stream mining framework, which is targeted on tackling

four main challenges:

Problem 1. Segment data streams. Medical data streams are very long (con-

sistently) and have medical-related features (e.g., pseudo-periodic). In certain

situations, it is necessary to segment the long data stream to short sub-sequences

and to analyse the data based on these sub-sequences.

Solution 1. I propose a novel concept of a feature vector to capture the fea-

tures of the key points in a data stream, and introduce a silhouette-value based

approach to identify the periodic points that can effectively segment the data



stream into a set of consecutive periods with similar patterns.

Problem 2. Detect abnormal subsequence in a data stream. Anomaly detec-

tion in medical data streams can assist doctors or patients in diagnosing disease

or analysing physical abnormal signals. It is normally intractable to exactly dis-

cover the discords based on the original continuous data streams.

Solution 2. I introduce a classification-based framework for anomaly de-

tection in uncertain pseudo periodic medical data streams. The procedure of

pre-processing uncertainties can reduce the noise of anomalies and improve the

accuracy of anomaly detection.

Problem 3. Identify variable-length motifs. Finding motifs (i.e., repeated

patterns) is still an open problem in continuous stream mining, though it has

been studied for decades in the area of mining discrete data streams. Particu-

larly, most researchers assume the repeated patterns having similar lengths in

one data stream, which is definitely incompatible with the real-word cases that

have multiple types of motifs with different lengths.

Solution 3. I propose an unsupervised Limited-length suffix array based

Motif Discovery algorithm (LiSAM) for continuous time series, which is time

and space efficient, and supports approximately discovering motifs in different

lengths.

Problem 4. Select qualified Cloud service for Sensor-cloud construction.

When making a purchasing decision for cloud services, healthcare IT managers

should evaluate cloud service providers in terms of user specific requirements,

to proactively resolve the precursors of cost leakages or service failures.

Solution 4. I propose a service selection framework to assist healthcare tech-

nicians choosing the optimal cloud services.
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CHAPTER 1

INTRODUCTION

The fast development of the sensor, wireless and cloud computing technolo-

gies enable a smart healthcare mechanism that supports the consistent remote

monitoring on the physical conditions of patients, elderly people or babies, and

the efficient processing of the large sensing data sets. Such a smart healthcare

mechanism can enhance the quality of life significantly. However, as investigat-

ed by the Cloud Standards Customer Council [43], the healthcare institutions

are not keen on building smart healthcare systems based on the IT technolo-

gies, especially in developing countries. The under-utilization of IT technolo-

gies prevents the wide information sharing and the fast information processing

in healthcare industry.

1.1 Background

In this section, I introduce the background knowledge of the healthcare data

stream mining. I discuss the background knowledge in terms of three dimen-

sions: the wireless sensor network technologies for healcare, the sensor-cloud

technologies for healthcare, and the data stream mining technologies for health-

care.

1.1.1 Wireless Sensor Networks for Healthcare

Making healthcare decisions is a tough task that is influenced by a variety of

factors: the lack of medical knowledge, the subjective mistakes of the health-
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care givers, the false and incomplete information, and the misunderstanding

and misinterpretation. The development of the wireless sensor network tech-

nologies improves the accuracy of the collected information. The advancing

of the decision making mechanisms that connect the sensor networks and the

decision makers guarantee the correct medical decision making.

There have been many researches and applications on building smart health-

care systems based on the wireless sensor network (WSN) technologies. A wire-

less sensor network is composed of a set of distributed sensor nodes that moni-

tor a specific object, like temperature, blood pressure, heartbeat, and communi-

cate with each other over limited frequencies and bandwidths [10]. The sensor

nodes are self-managed and randomly deployed [9], which are capable of sens-

ing, communicating, and processing the monitored symbols [8].

However, along with the advent of hundreds and thousands of health mon-

itoring sensors, the traditional WSNs and anomaly detection techniques cannot

handle huge amount of information. They need to overcome difficulties on con-

stantly communicating, saving and processing a large amount of data streams.

When the size of the wireless network is very large, the communication pow-

er among nodes is constrained by the distance and environment obstruction-

s, which in turn reduces the application performance based on the WSNs [9].

To resolve these challenges, researchers consider to combine cloud computing

technologies and WSNs.
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1.1.2 Sensor-cloud for Healthcare

Cloud computing paradigms enable a virtual mechanism for IT resource man-

agement and usage. Sensor-cloud infrastructure [231] is a technology that in-

tegrates cloud techniques into the WSNs. It provides users a virtual platform

for utilizing the physical sensors in a transparent and convenient way. Users

can control, monitor, create, and check the distributed physical sensors without

knowing their physical details, but just using a few of functions. In this section,

I summarize the definitions and the features of the sensor-cloud infrastructure

based on a previous survey [9].

Cloud computing provides the IT resources for WSNs, which supports the

storage and fast processing of a large amount of sensor data streams. The con-

nection between WSNs and clouds is implemented by two types of gateways:

sensor gateways and cloud gateways, where sensor gateways collect and com-

press information, and cloud gateways decompress and process information

[112].

Sensor-clouds have been used in various applications, such as the disaster

prediction, environment monitoring and healthcare analysis. Sensor-clouds col-

lect data from different applications, and share and process the data based on

the cloud computational and storage resources. A user interface is provided to

the users to manage and monitor the virtual sensors.

In Sensor-clouds, the sensor modeling language (SML) is utilized to describe

the information of the physical sensors, which is processed as the metadata of

the sensors. The standard language format enables the collaboration among

sensors in different networks and platforms. The XML encoding also provides

3



a mapping mechanism for transforming commands and information between

virtual and physical sensors.

Compared with the traditional sensor networks, Sensor-clouds have the fol-

lowing advantages [9]: (1) the capability of dealing with various data types; (2)

scalable resources; (3) user and network collaboration; (4) data visualization;

(5) flexible data access and resource usage; (6) low cost; (7) automated resource

delivery and data management; (8) less processing and response time.

In healthcare industry, a large amount of medical sensors have been de-

ployed to monitor medical signals. Medical sensor data are gathered and stored

for flexible access. Cloud computing enables fast and low-cost accessing to the

medical data whenever and wherever needed. Sensor and cloud technologies

make it possible to accurately collect and utilize the medical data that diagnosed

from the remote patients. Medical sensor monitoring enhances the healthcare

system by remotely detecting the early-stage abnormal health signals. Sensors

can monitor a variety of body signals such as blood pressure, heart rate, and

temperature [42]. The monitored data are transferred to the data analysers or

doctors for diagnosing or predicting patient conditions.

1.1.3 Data Stream Mining for Healthcare

The speed of data processing is being improved dramatically, so that data min-

ing processes can be executed automatically and consistently in real-time, which

assist decision makers in making instant and accurate decisions. The processed

multiple data streams may come from different types of sources, like sensors,

mobiles, and cameras [42].
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Data mining is a process of identifying useful yet previously hidden knowl-

edge from data sets, containing a series of techniques, such as classification,

clustering, and association rule mining [56]. Huge volume healthcare data are

being produced from various sources like disease monitoring, patient histor-

ical records, specialist diagnosis, and hospital devices. These healthcare data

are valuable and useful to assist the care givers in making decision efficiently.

Data mining techniques have been applied in healthcare industry in terms of

a variety of areas [56], for example, tracking the states of patients who have

chronic diseases or physical disabilities, analysing the diagnosis results and rec-

ommending the treatment programs, identifying the patterns or rules of the

’fraud and abuse’ to detect the fraudulent claims or the wrong referrals.

Data streams are ordered by time, updated continuously, huge volume, and

mostly infinite [165]. To resolve data stream mining problems, several chal-

lenges should be handled properly, which mainly include: (1) how to instantly

process the data streams of infinite volumes without taking massive storage s-

pace to store them; (2) how to dynamically deal with the concept drifting and

evolution in a data stream. Fig. 1.1 describes a process of data stream mining

[165].

1.2 Motivations and Problems

This thesis focuses on analysing large volume of medical sensor data streams

based on sensor-cloud architectures. The motivation of this research is analyzed

from the following aspects:

1. Segment data streams

5



Figure 1.1: Data stream mining [165]

Medical data streams are very long (consistently) and have medical-related

features (e.g., pseudo-periodic). In certain situations, it is necessary to segment

the long data stream to short sub-sequences and to analyse the data based on

these sub-sequences. However, it is difficult to get high performance (e.g., accu-

racy and computational complexity) by applying the segmentation techniques

against general areas to medical data sets. Thus,

Issue 1. Find an efficient way of segmenting medical data streams based on the

medical-related features.

2. Detect abnormal subsequences in a data stream

6



Anomaly detection is a typical example of a data stream mining applica-

tion. Here, anomalies or outliers or exceptions often refer to the patterns in data

streams that deviate expected normal behaviours. Thus, anomaly detection is a

dynamic process of finding abnormal behaviours from given data streams.

Anomaly detection in medical data streams can assist doctors or patients

in diagnosing diseases or analysing physical abnormal signals. Most existing

work detects the abnormal sub-sequences in data streams in an approximate

way by first converting the continuous data stream to a discrete data stream.

It is normally intractable to exactly discover the discords based on the original

continuous data streams.

Issue 2. Find a computation-efficient way to exactly discover the abnormal sub-

sequences in uncertain medical data streams

3. Identify variable-length motifs

Finding motifs (i.e., repeated patterns) is still an open problem in continuous

stream mining, though it has been studied for decades in the area of mining

discrete data streams. It has been proved that the subsequence clustering is

meaningless in unsupervised data stream mining area, and the motif grouping

in the discrete data stream mining has been applied as a replacement of the

subsequence-clustering in the real time series.

In particular, most researchers assume the repeated patterns having similar

lengths in one data stream, which is definitely incompatible with the real-word

cases that have multiple types of motifs with different lengths. Especially, the

occurrences of the same motif may have similar shapes yet variable lengths.

So I will also discuss in this thesis the problem of discovering variable-length

7



motifs in medical sensor data streams, where the discovered motifs can be used

to recognize the repeating occurred behaviours or physical conditions.

Issue 3. Discover variable-length motifs in medical sensor data streams with low

time and space complexities.

4. Select qualified cloud services for sensor-cloud construction.

When making a purchasing decision for cloud services, healthcare IT man-

agers should evaluate cloud service providers in terms of user specific require-

ments, to proactively resolve the precursors of cost leakages or service failures.

It is valuable to explore the problem of cloud service selection to achieve a best

trade-off between the spending and quality of using cloud services for building

healthcare sensor-clouds.

In the cloud area, it is more difficult for decision makers to make informed

decisions on service usage because of the diversification of service types and the

lack of service publication standards.

Issue 4. Find cloud services with the user-expected functions given the fuzzy ex-

pressions of user requirements

1.3 Solutions and Contributions

This section introduces the solutions proposed in this thesis against the four

problems given in the previous section.
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1.3.1 Supervised Anomaly Detection in Uncertain Pseudo-

periodic Data Streams

To deal with issue 1 and issue 2, I propose a supervised classification frame-

work for detecting anomalies in uncertain pseudo periodic time series, which

comprises four components: an uncertainty identification and correction com-

ponent (UICC), a time series compression component (TSCC), a period segmen-

tation and summarization component (PSSC), and a classification and anomaly

detection component (CADC). First, UICC processes a time series to remove un-

certainties from the time series. Then TSCC compresses the processed raw time

series to an approximate time series. Afterwards the PSSC identifies the peri-

odic patterns of the time series and extracts the most important features of each

period, and finally the CADC detects anomalies based on the selected features.

Contributions

• I present a classification-based framework for anomaly detection in uncer-

tain pseudo periodic time series, together with a novel set of techniques

for segmenting and extracting the main features of a time series. The pro-

cedure of pre-processing uncertainties can reduce the noise of anomalies

and improve the accuracy of anomaly detection. The time series segmen-

tation and feature extraction techniques can improve the performance and

the time efficiency of classification.

• I propose the novel concept of a feature vector to capture the features of

the turning points in a time series, and introduce a silhouette value based

approach to identify the periodic points that can effectively segment the

time series into a set of consecutive periods with similar patterns.
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1.3.2 LiSAM: Fast and Approximate Discovery of Different-

length Time Series Motifs

To deal with issue 3, I propose an unsupervised Limited-length Suffix Array

based Motif Discovery algorithm (LiSAM) for continuous time series, which is

time and space efficient, and supports approximately discovering motifs in d-

ifferent lengths. I first convert the continuous time series to the discrete time

series by using the Symbolic Aggregate approXimation procedure (SAX) [101],

and then identify the different-length motifs based on the discrete time series.

The illustration of discrete motif discovery is on the basis of an exact substring

matching procedure, however, I can easily embed the existing approximate sub-

string matching methods, such as, in LiSAM. That is, I use the exact subse-

quence grouping of discrete time series to discover the approximate patterns of

continuous time series. I can also calculate the exact similarities between the

instances of a continuous motif after such an approximate grouping.

Contributions

• LiS AM can discover motifs in different lengths (e.g., maxLength to

minLength provided by users), avoid the unexpected trivial-matching by

allowing user-defined overlapping degree (represented as α) between the

instances of motifs, and support discovering motifs that overlap with each

other in a specified degree (β). It can either be an automatic or semi-

automatic algorithm by either manually setting all the parameters or by

using default parameters (e.g., set maxLength = 1
2 |T | (T is a time series),

minLength = 2, α = 0 and β = 0).

• LiS AM is both space and time efficient. It has linear space complexity
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O(N). Existing approximate solutions [180, 135] applied the suffix tree to

model the discrete time series to increase the searching speed of a subse-

quence, which consumes a large volume of storage space. Instead, I use

a limited-length enhanced suffix array with linear space consumption to

improve the space efficiency. In addition, in an extreme case that S has

maximum LCP intervals, O(LiS AM) = O(N + n), while in the case an in-

terval has maximum child intervals, O(LiS AM) = O(N + n2), where N is

the length of the raw time series T , and n is the length of the discrete time

series S . If N ≫ n, the performance can be improved dramatically.

1.3.3 Decision Making Framework for Cloud Service Selection

To deal with issue 4, I propose the following Cloud service selection approaches.

Cloud-FuSeR: Fuzzy Ontology and MCDM-based Cloud Service Selection

I propose a Fuzzy User-oriented Cloud SeRvice Selection System (Cloud-

FuSeR) that is capable of dealing with fuzzy information and rating cloud ser-

vices by considering three aspects: (1) the similarities between user-required

functions and the service functions provided by cloud providers, (2) the perfor-

mance of the non-functional properties, and (3) the user preference on different

properties.

Contributions

• I build a fuzzy cloud ontology to support the functional similarity calcu-

lation, which defines the concept taxonomies of cloud services and the
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properties of cloud services, and quantifies the relations among concepts

and between concepts and properties;

• I define fuzzy functions to quantify the performance of the non-functional

properties and the user preference on different properties, and employ

a fuzzy-AHP and fuzzy-TOPSIS techniques to weigh the non-functional

properties based on the user preference and to measure the service non-

functional performance;

Exploring Criteria Interdependence in MCDM and its Application in Cloud

Service Selection

I propose a MCDM framework that helps Decision Makers (DMs) to build the

criteria relations and measures the performance of cloud service alternatives.

Contributions

• I describe an I-ISM approach that can help DMs construct different types

of criteria relations, which allows the DMs adjust the relations interactive-

ly during the construction process until a consistent relation network is

established.

• Based on the criteria relation constructed by I-ISM, I use 2-order Choquet

Integral approach to aggregate the criterion performance. The 2-order

Choquet Integral is a simplified procedure of the Choquet Integral that

can aggregate non-additive utilities by considering the utilities of single

criterion and the interactive utilities between two criteria.

• I apply the proposed decision making method to the cloud service selec-

tion problem, and use a User-oriented sigmoid utility function to get the
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intra-utilities of a criterion w.r.t. different alternatives. The user-oriented

sigmoid utility function is flexible enough to reflect cloud users’ require-

ments in different contexts.

1.4 Thesis Structure

This thesis has two main parts: Part I (Chapter 2, 3, and 4) introduces the data

stream mining technologies for medical anomaly detection and pattern recogni-

tion, and Part II (Chapter 5 and Chapter 6) describes the cloud service selection

approaches for selecting the sensor-cloud services to support the data stream

mining process. Chapter 2 reviews the literature in the data stream mining

area, particularly, in anomaly detection and motif identification for data stream-

s. Chapter 3 presents a framework for time series segmentation and anomaly

detection in uncertain medical data streams. Chapter 4 introduces an algorithm

LiSAM that identifies variable length motifs in medical time series. Chapter 5

and 6 focus on developing decision making methods of selecting sensor-cloud

services. Chapter 5 presents a framework Cloud-FuSeR that deals with fuzzy

information in decision making process, and Chapter 6 introduces an approach

to process the interdependency among decision criteria. Chapter 7 concludes

this thesis.
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Part I

Part I: Anomaly Detection and

Pattern Recognition in Medical Data

Streams
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CHAPTER 2

RELATED WORK

In this chapter, I introduce the related work in the area of Data Stream Min-

ing. In particularly, I review the anomaly detection and motif discovery for data

streams. In Section 2.1, previous survey on anomaly detection is introduced.

Then, I review the primary techniques for anomaly detection of time series in

recent five years (from 2011 to 2015). In Section 2.3, the related work on motif

discovery of data streams is discussed.

2.1 Previous Survey on Anomaly Detection

Chandola et al. [34] did a comprehensive survey on the techniques (devel-

oped in the past two decades, until 2010) of anomaly detection in discrete se-

quences, and discussed how to apply these techniques to the problem of time

series anomaly detection. The authors categorised the existing techniques into

three general groups: (1) detect abnormal sequences in a sequence database; (2)

detect abnormal subsequences in a long sequence; and (3) identify abnormal

patterns in a sequence. As the authors stated, the techniques in these three cate-

gories can be easily adapted to the domain of anomaly detection in time series,

so I present the main techniques analysed in [34] in this section.

2.1.1 Anomalous Sequence Detection in a Sequence Database

Chandola et al. [34] classified techniques in this category as: Similarity-based

anomaly detection, Window-based anomaly detection, and Markov-model-
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Figure 2.1: An example of sliding-windows on multiple sensor data
streams

based anomaly detection.

Similarity-based Techniques

Similarity-based techniques group sequences into a number of clusters based

on the similarities (or distances) between these sequences. Different clustering

techniques were discussed in [34], such as the k-nearest neighbor(kNN) tech-

niques [171], the k-medoid algorithm [26], the Probabilistic Suffix Trees [224],

and Maximum Entropy models [166]. The work of [34] also presented two main

distance calculation techniques for discrete sequences: the Simple Matching Co-

efficient [77], and the length of the longest common subsequence [35].

Sliding-Window-based Techniques

Window-based techniques use the abnormal degrees of the fixed-length win-

dows applied on a sequence to measure the anomalous degree of this sequence.

An example of applying sliding-window on multiple sensor data streams is

shown in Figure 2.1 [163].
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There are various techniques developed for calculating the anomaly scores

of windows and of a sequence. The main techniques of anomaly score calcu-

lation of windows include the threshold-based sequence time delay embed-

ding (t-STIDE) [217], anomaly score calculation based on the lookahead pairs

[68], anomaly score calculation based on the normal [91] or abnormal dictionar-

ies [50, 49], abnormal window identification based on classification techniques

[70, 76, 205].

When the anomaly score of each window is obtained, the anomaly score of

the entire sequence is calculated by aggregating the anomaly scores of all the

windows. Chandola et al. [34] discussed three main aggregation techniques:

the average anomaly score [91], the locality frame count [217], and the leaky

bucket [73].

Markovian Techniques

Markovian Techniques calculate the probabilities of symbols at certain positions

in a test sequence based on the Markov models that are learned from a set of

training sequences. This kind of techniques estimate the symbol probabilities

based on the symbols in a short historical period (e.g., k) rather then on the

previous overall symbols, which is as shown in Formula 2.1.

P(ti|t1t2 · · · ti−1) = P(ti|ti−kti−k+1 · · · tu−1) (2.1)

Different Markovian techniques have been developed. For example, Ye [228]

designed a Markovian model that considers one-step backward (i.e., k = 1) to

estimate the current state probabilities. Michael and Ghosh [152] proposed an
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Extended Finite State Automata (EFSA) that stores the frequencies of certain

length subsequences to save the memory space of establishing the Markovian

model, where the EFSA only keeps the subsequences and the transitions that

can happens in the training sequences. Marceau [149] utilized suffix trees to

assist the FSA-based state estimation, where a suffix tree maintains the k + 1

length subsequences.

The standard Markovian models can only be used to deal with the cases

based on the fixed length historical symbols. Variable length Markovian models

(e.g., Probabilisitic Suffix Trees (PSTs) [198]) are applied to support a flexible

estimation mechanism based on the variable length history.

The sparse Markovian techniques estimate the probability of the current

symbols based on a sparse historical period. That is, the symbols in the histori-

cal period are not necessarily continuous. Eskin et al. [58] employed the Sparse

Markov Transducers (SMTs) to estimate the transition probability distribution

of symbols, in which the utilization of wild cards ensures the sparsity of the in-

put sequences. Lee et al. [125] proposed to use a classification approach RIPPER

to learn the rules of building the sparse Markovian models of sequences.

Hidden Markov models (HMMs) are also widely used to model sequences.

A general process [116, 223] of using HMM is as: (1) learn an HMM for the

normal sequences; (2) calculate the probabilities of test sequences; and (3) obtain

the anomaly score of each test sequence by using the probabilities’ negative

log. Florez et al. [64] calculated the best hidden state sequence of an HMM

of a normal training sequence by using the Viterbi algorithm [67], and utilized

a threshold method to distinguish the normal and abnormal state transitions.

The anomalous score of a test sequence is the average anomaly score of the state
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transition probabilities.

2.1.2 Anomalous Contiguous Subsequence Detection in a Se-

quence

Identifying anomalous contiguous subsequences in a long sequence is another

important problem in the area of the anomaly detection of sequences. Tech-

niques developed for solving this problem are mainly based on the window-

based sequence segmentation, where a sequence is segmented into a set of con-

tiguous subsequences by a window of length k.

Chandola et al. [34] summarized a basic technique [104, 101] for anomaly de-

tection in this category: each window is attached with an anomaly score based

on the difference degree between this window and the other windows, and the

windows with highest difference degrees are considered as the abnormal sub-

sequences. Keogh et al. [107] proposed a Window Comparison Anomaly De-

tection method that utilized the Compression-Based Dissimilarity technique to

measure the anomaly degree of a window in a time series.

There are researches [101, 218] that focused on reducing the time complexity

of the window-based anomaly detection for contiguous sequences. One such

technique [74, 134] only scores part of the windows to identify the top n anoma-

lous windows, which prunes anomalous windows in an earlier stage based on

the distances of the windows to their m nearest neighbours.

Anomaly detection for contiguous subsequences based on fixed-length (e.g.,

length k) windows has difficulties on choosing k, especially in the case that there
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are different-length abnormal subsequences. Chakrabarti et al. [30] proposed a

technique to segment a sequence into different-length subsequences based on

Shannons Source Coding Theorem. Gwadera et al. [85] designed a variable

Markov chain method for sequence segmentation.

2.1.3 Abnormal Pattern Identification in Sequences

The problem of anomaly detection based on the identification of pattern recog-

nition is to find sequences that are significantly different from the normal se-

quences in terms of the query patterns. The basic technique summarised by

Chandola et al. [34] calculated the anomaly score of a query pattern as formula

2.2.

A(α) = | ft(α) − fS (α)| (2.2)

where,

ft(α) =
ft(α)

lt
(2.3)

fS (α) =
1
|S |Σsi∈S

fsi(α)
|lsi |

(2.4)

There are a series of improvements of this technique against different prob-

lems. For example, Keogh et al. [106] calculated the anomaly score of a query

by counting the occurrence times of this query in a test sequence. Gwadera et

al. [86] counted the number of all the windows containing the queried pattern

as a subsequence.
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2.2 Anomaly Detection in Time Series

In this section, I discuss the techniques of the time series anomaly detection in

recent five years. Our discussion focuses on two types of work: online anomaly

detection in data streams, and off-line anomaly detection in static time series.

2.2.1 Online Anomaly Detection in Data Streams

Masud et al. [150] focused on developing the data stream classification tech-

niques with the consideration on the concept-drifting and concept-evolution.

They designed the ECSMiner algorithm to automatically identify novel class-

es in a consistent data stream on the basis of the traditional classification tech-

niques. The ECSMiner uses a delayed time period to determine the classification

category of a test instance and adopts another time delay and a buffer space to

label and store a set of test time points. In addition, to speed up the classifica-

tion process, the authors defined a ’pseudopoint’ that summarizes a cluster of

similar time points to reduce both the computation and space complexities.

Tan et al. [202] proposed a one-class anomaly detection algorithm: Stream-

ing Half-Space Trees (HS-Trees). It can dynamically process endless data

streams by consuming constant memory volume, and it takes constant time

to build and update the tree. The proposed anomaly detection algorithm us-

es ’Mass’ (i.e., the number of data items) to measure the anomaly degree of a

streaming data item. The HS-Tree of a data stream can be constructed very fast

as the tree construction depends only on the Mass in a data space. The data

streams are divided into equal-sized segments (i.e., having similar number of

21



items), and two consecutive windows are defined: the reference window and

the latest window. The initial mass profile of the data stream is first learned

based on the data items in the reference window. Then the new arriving da-

ta are stored in the latest window, and the anomaly scores of these data are

calculated based on the initial mass profile. The reference window is updated

consistently as long as the latest window is full, which adapts to the evolution

of the data streams.

Das et al. [48] studied the anomaly detection in commercial fleet data stream-

s. The authors developed a multiple kernel learning method to detect safety

anomalies in both discrete and continuous data. The proposed method applied

the one-class support vector machine (SVM) method to detect anomalous, in

which the various types of knowledge are incorporated by using multiple ker-

nels.

At first, the SVM method solves an optimization problem:

minimize

Q =
1
2
Σi, jαiα jk(xi, x j) (2.5)

subject to 0 ≤ αi ≤ 1
lv , Σiαi = 1, v ∈ [0, 1];

where α is the Lagrange multiplier, k is a kernel matrix, l is the length of the data

sequence, and v is a user-defined parameter for upper-bounding the fraction of

the outliers and lower-bounding the fractions of the support vectors.

By solving the optimization problem of 2.5, I can get a set of support vectors

{xi|i ∈ [0, l], αi > 0}. Then the value of a decision function is calculated to estimate

the label of a point x j by using the formula 2.6. If the fx j is negative, x j is an

abnormal point.
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f (x j) = sgn(Σi∈Imαik(xi, x j) + Σi∈Inmk(xi, x j) − ρ) (2.6)

where Im = {i|0 < αi < 1}, and Inm = {i|αi = 1}.

I use a kernel function 2.7 to measure the distance between two discrete

points xi and x j.

Kd(xi, x j) =
|LCS (xi, x j)|√

lxi , lx j

(2.7)

where LCS (xi, x j) represents the longest common sequence of xi and x j.

The continuous data sequences, the continuous values will be first trans-

formed to discrete variables by using the SAX technique [137], and then the

kernel function 2.7 is applied. The kernel for the mixture data sets is defined

as an integration of the discrete and continuous data sets by using the weight

aggregation function 2.8.

k(xi, x j) = wKd(xi, x j) + (1 − w)Kc(xi, x j) (2.8)

Liu et al. [139] investigated the anomaly detection problem in continuous

time series using isolation techniques. They pointed out that the time series item

classification methods based on the density and distance based measures are

too time and space consuming to be applied in large databases. To implement

the isolation-based anomaly detection, they utilized two key features (few and

different) of the abnormal data items compared with the normal items. They

proposed to use an isolation tree (iTree) to isolate the data items: the abnormal

items tend to be closer to the root of the iTree, while the normal items are usu-

ally at further locations. Then an ensemble of iTrees is constructed to form an
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isolation forest (iForest), by sub-sampling the subsets of the time series. The

iForest technique can identify the abnormal items by selecting the nodes in the

iTrees that are close to the roots in terms of average path lengths. The authors

also illustrated how to determine the size of sub-sampling and the number of

ensemble iTrees. In particular, a few trees (e.g., 128) and a small subset size

for sub-sampling are capable of achieving a high performance on the anomaly

detection. The author also indicated that a small sub-sampling size for iTree

construction can reduce the swamping and masking degree.

There is various work in anomaly detection in network traffic monitoring.

Brauckhoff et al. [25] focused on solving the problem of inaccurate anomaly

detection caused by the preprocessing steps for the traffic data streams. The

authors analysed the impact of the random packet sampling and temporal ag-

gregation on the signal properties and the correlation structures of the captured

traffic streams. They proposed a solution of using a low-pass filter to reduce

the aliasing influence. Silveira et al. [189] introduced an traffic anomaly detec-

tion approach that is based on a statistical model, namely ASTUTE (A Short-

Timescale Uncorrelated-Traffic Equilibrium), to detect strongly correlated flow

changes, rather than based on the historical data sets. Khalid et al. [110] de-

veloped a motion learning system that models trajectories using DFT-based co-

efficient feature space representation. They proposed a m-mediods method to

represent the class containing n members with m mediods, and provided four

anomaly detection algorithms based on the m-mediods method.

Liu et al. [142] explored an approach of automatically identifying outliers in

one-class classification problem. The proposed approach performs classification

in an unsupervised way to deal with the cases that neither positive nor nega-
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tive labels is known in advance. The optimization function for this one-class

classification is defined as in formula 2.9.

minα,ỹQ(α, ỹ) = αT K(I + γ1L)Kα − 2αT Kỹ (2.9)

s.t. ∥α∥ = 1, ỹ ∈ {c+ + γ2
∥ỹ+∥ , c

−}n×1, where α = [α1, · · · , αn]T ∈ Rn is the coefficient

vector; K = [k(xi, x j)]1≤i, j≤n ∈ Rn×n is the kernel matrix; L = D − W is the graph

Laplacian matrix; ỹ is the new label assignment; ∥ỹ∥+ represents the number of

positive items in ỹ; and γ1, γ2 > 0 are two trade-off parameters.

2.3 Motif Identification in Time Series

Fu [41] did a comprehensive survey on the time series mining work conducted

before 2010. One section of this work [41] summarises the literature of finding

the repeated patterns in time series. In the following, I conduct a further survey

on the main techniques of the repeated pattern identification developed in 2010

- 2016.

2.3.1 Single-dimensional Time Series

Ye et al. [227] used a minimum description length (MDL) method to cluster sub-

sequences of a time series, in which the length of each subsequence is measured

by bit values. The MDL method is fault-tolerance and parameter-free.

Sart et al. [184] proposed to use hardware-based approaches to speed up the

subsequence search of time series, which include Graphics Processing Unit (G-
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PU) and Field Programmable Gate Array (FPGA) accelerating techniques that

can speed up similarity search in two-order and four-order magnitudes respec-

tively.

Zhao et al. [233] discussed the problem of improving the CRF-based (CRF:

conditional random field) classification method by extracting features of time

series, and applied the method to the IMU data to recognize the action mo-

tifs. The authors first discover motifs of IMU data and the discovered motifs

are used as features to learn a Conditional Random Field classifier. In partic-

ularly, to discover motifs, the authors transformed the continuous time series

to discrete time series by using Piecewise Aggregate Approximation [137] tech-

niques, and then applied a random projection method to identify the repeated

subsequences.

Berlin et al. [22] proposed a subsequence classification method for time se-

ries based on a dense motif discovery procedure. The authors used a suffix tree

structure to accelerate the searching speed of motifs that are used as classifica-

tion features. A bag-of-words classifier is then applied to recognize activities in

the time series.

2.3.2 Multi-dimensional Time Series

Saria et al. [182] focused on finding deformable motifs in continuous time se-

ries by proposing a Continuous Shape Template Model (CSTM). They designed

a hidden markov model to describe the temporal relations among motifs and

random walk samples. Smooth continuous functions are adopted to represent

individual motifs, which supports non-linear warp and scale transformations.
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The authors used an unsupervised method to identify the motifs with various

warps for unsegmented time series.

McGovern et al. [151] concentrated on discovering the ordered temporal

motifs in multi-dimensional data streams. The authors proposed a motif iden-

tification method that first determines the salient data dimensions, and then

identifies the motifs of each dimension and their temporal ordering for even-

t prediction. The proposed method is applied to weather prediction by using

a large number of numerically simulated super cell thunderstorms to identify

precursor sets represented by the meteorological quantities in a temporal se-

quence.

Syed et al. [200] discussed the problem of finding predictive elements in

physiological datasets based on a motif discovery methodology. The authors

used randomized greedy algorithms like TCM and Gibbs sampling to identify

motifs of datasets, and they applied a relaxed conservation view to deal with

frequent noise.
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CHAPTER 3

SUPERVISED ANOMALY DETECTION IN UNCERTAIN

PSEUDO-PERIODIC DATA STREAMS

Uncertain data streams have been widely generated in many Web applica-

tions. The uncertainty in data streams makes anomaly detection from sensor

data streams far more challenging. In this chapter, I present a novel frame-

work that supports anomaly detection in uncertain data streams. The proposed

framework adopts the wavelet soft-thresholding method to remove the noises

or errors in data streams. Based on the refined data streams, I develop effec-

tive period pattern recognition and feature extraction techniques to improve the

computational efficiency. I use classification methods for anomaly detection in

the corrected data stream. I also empirically show that the proposed approach

shows a high accuracy of anomaly detection on a number of real datasets.

3.1 Introduction

Data streams have been widely generated in many Web applications such as

monitoring click streams [84], stock tickers [38, 236], sensor data streams and

auction bidding patterns [15]. For example, in the applications of Web tracking

and personalization, Web log entries or click-streams are typical data streams.

Other traditional and emerging applications include wireless sensor networks

(WSN) in which data streams collected from sensor networks are being post-

ed directly to the Web. Typical applications comprise environment monitoring

(with static sensor nodes) [7] and animal and object behaviour monitoring (with

mobile sensor nodes), such as water pollution detection [89] based on water sen-

sor data, agricultural management and cattle moving habits [44], and analysis
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of trajectories of animals [83], vehicles [234] and fleets [122].

Anomaly detection is a typical example of a data streams application. Here,

anomalies or outliers or exceptions often refer to the patterns in data streams

that deviate expected normal behaviours. Thus, anomaly detection is a dynam-

ic process of finding abnormal behaviours from given data streams. For ex-

ample, in medical monitoring applications, a human electrocardiogram (ECG)

(vital signs) and other treatments and measurements are typical data streams

that appear in a form of periodic patterns. That is, the data present a repetitive

pattern within a certain time interval. Such data streams are called pseudo pe-

riodic time series. In such applications, data arrives continuously and anomaly

detection must detect suspicious behaviours from the streams such as abnormal

ECG values, abnormal shapes or exceptional period changes.

Uncertainty in data streams makes the anomaly detection far more challeng-

ing than detecting anomalies from deterministic data. For example, uncertain-

ties may result from missing points from a data stream, missing stream pieces,

or measurement errors due to different reasons such as sensor failures and mea-

surement errors from different types of sensor devices. This uncertainty may

cause serious problems in data stream mining. For example, in an ECG data

stream, if a sensor error is classified as abnormal heart beat signals, it may cause

a serious misdiagnosis. Therefore, it is necessary to develop effective method-

s to distinguish uncertainties and anomalies, remove uncertainties, and finally

find accurate anomalies.

There are a number of related research areas to sensor data stream min-

ing, such as data streams compression, similarity measurement, indexing and

querying mechanisms [59]. For example, to clean and remove uncertainty
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from data, a method for compressing data streams was presented in [55]. This

method uses some critical points in a data stream to represent the original

stream. However, this method cannot compress uncertain data streams effi-

ciently because such compression may result in an incorrect data stream ap-

proximation and it may remove useful information that can correct the error

data.

This chapter focuses on anomaly detection in uncertain pseudo periodic time

series. A pseudo periodic time series refers to a time-indexed data stream in

which the data present a repetitive pattern within a certain time interval. How-

ever, the data may in fact show small changes between different time intervals.

Although much work has been devoted to the analysis of pseudo periodic time

series [103, 94], few of them focus on the identification and correction of uncer-

tainties in this kind of data stream.

In order to deal with the issue of anomaly detection in uncertain data stream-

s, I propose a supervised classification framework for detecting anomalies in

uncertain pseudo periodic time series, which comprises four components: a

uncertainty identification and correction component (UICC), a time series com-

pression component (TSCC), a period segmentation and summarization com-

ponent (PSSC), and a classification and anomaly detection component (CADC).

First, UICC processes a time series to remove uncertainties from the time series.

Then TSCC compresses the processed raw time series to an approximate time

series. Afterwards the PSSC identifies the periodic patterns of the time series

and extracts the most important features of each period, and finally the CAD-

C detects anomalies based on the selected features. Our work has made the

following distinctive contributions:
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• I present a classification-based framework for anomaly detection in uncer-

tain pseudo periodic time series, together with a novel set of techniques

for segmenting and extracting the main features of a time series. The pro-

cedure of pre-processing uncertainties can reduce the noise of anomalies

and improve the accuracy of anomaly detection. The time series segmen-

tation and feature extraction techniques can improve the performance and

time efficiency of classification.

• I propose the novel concept of a feature vector to capture the features of

the turning points in a time series, and introduce a silhouette value based

approach to identify the periodic points that can effectively segment the

time series into a set of consecutive periods with similar patterns.

• I conduct an extensive experimental evaluation over a set of real time

series data sets. Our experimental results show that the techniques I

have developed outperform previous approaches in terms of accuracy of

anomaly detection. In the experiment part of this chapter, I evaluate the

proposed anomaly detection framework on ECG time series. However,

due to the generic nature of features of pseudo periodic time series (e.g.

similar shapes and intervals occur in a periodic manner), we believe that

the proposed method can be widely applied to periodic time series mining

in different areas.

The structure of this chapter is as follows: Section 3.2 introduces the related

research work. Section 3.3 presents the problem definition and generally de-

scribes the proposed anomaly detection framework. Section 3.4 describes the

anomaly detection framework in detail. Section 3.5 presents the experimental

design and discusses the results. Finally, Section 3.6 concludes this chapter.
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3.2 Related Work

I analyse the related research work from two dimensions: anomaly detection

and uncertainty processing.

Anomaly detection in data streams: Anomaly detection in time series has

various applications in wide area, such as intrusion detection [204], disease de-

tection in medical sensor streams [148], and biosurveillance [185]. Zhang et

al.[138] designed a Bayesian classifier model for identification of cerebral palsy

by mining gait sensor data (stride length and cadence). In stock price time se-

ries, anomalies exist in a form of change points that reflect the abnormal behav-

iors in the stock market and often repeating motifs are of interest [220]. Detect-

ing change points has significant implications for conducting intelligent trading

[99]. Liu et al. [143] proposed an incremental algorithm that detects changes

in streams of stock order numbers, in which a Poisson distribution is adopted

to model the stock orders, and a maximum likelihood (ML) method is used to

detect the distribution changes.

The segmentation of a time series refers to the approximation of the time

series, which aims to reduce the time series dimensions while keeping its rep-

resentative features [59]. One of the most popular segmentation techniques is

the Piecewise Linear Approximation (PLA) based approach [108, 168], which

splits a time series into segments and uses polynomial models to represent the

segments. Xu et al. [222] improved the traditional PLA based techniques by

guaranteeing an error bound on each data point to maximally compact time se-

ries. Daniel [126] introduced an adaptive time series summarization method

that models each segment with various polynomial degrees. To emphasize the
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significance of the newer information in a time series, Palpanas et al. [164] de-

fined user-oriented amnesic functions for decreasing the confidence of older in-

formation continuously.

However, the approaches mentioned above are not designed to process and

adapt to the area of pseudo periodic data streams. Detecting anomalies from pe-

riodic data streams has received considerable attention and several techniques

have been proposed recently [65, 81, 128]. The existing techniques for anomaly

detection adopt sliding windows [103, 82] to divide a time series into a set of

equal-sized sub-sequences. However, this type of method may be vulnerable

to tiny difference in time series because it cannot well distinguish the abnor-

mal period and a normal period having small noisy data. In addition, as the

length of periods is varying, it is difficult to capture the periodicity by using

a fixed-size window [12]. Other examples of segmenting pseudo periods in-

clude an peak-point-based clustering method and valley-point-based method

[94, 12]. These two methods may have very low accuracy when the processed

time series have noisy peak points or have irregularly changed sub-sequences.

Our proposed approach falls into the category of classification-based anomaly

detection, which is proposed to overcome the challenge of anomaly detection

in periodic data streams. In addition, our method is able to identify qualified

segmentation and assign annotation to each segment to effectively support the

anomaly detection in a pseudo periodic data streams.

Uncertainty processing in data streams: Most data streams coming from

real-world sensor monitoring are inherently noisy and uncertain. A lot of work

has concentrated on the modelling of uncertain data streams [5, 4, 127]. Dal-

lachiesa et al.[47] surveyed recent similarity measurement techniques of uncer-
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tain time series, and categorized these techniques into two groups: probability

density function based methods [181] and repeated measurement methods [17].

Tran et al.[210] focused on the problem of relational query processing on uncer-

tain data streams. However, previous work rarely focused on the detection and

correction of the missing critical points for a discrete time series.

3.3 Problem Specification and prerequisites

In this section, I first give a formal definition of the problems and then describe

the proposed framework of detecting abnormal signals in uncertain time series

with pseudo periodic patterns. The symbols frequently used in this chapter are

summarized in Table 3.1.

3.3.1 Problem definition

Definition 3.1. A time-series TS is an ordered real sequence: TS = (v1, · · · , vn),

where vi, i ∈ [1, n], is a point value on the time series at time ti.

I use the form |TS | to represent the number of points in time series TS (i.e.,

|TS | = n). Based on the above definition, I define subsequence of a TS as below.

Definition 3.2. For time series TS , if S S (⊂ TS ) comprises m consecutive points: S S =

(vs1 , · · · , vsm), I say that S S is a subsequence of TS with length m, represented as

S S ⊑ TS .

Definition 3.3. A pseudo periodic time series PTS is a time series PTS =

(v1, v2, · · · , vn), ∃Q = {vp1 , · · · , vpk |vpi ∈ PTS , i ∈ [1, k]}, that regularly separates PTS
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Table 3.1: Frequently Used Symbols

Symbols Meaning

TS A time series

pi The ith point in a TS

S S A subsequence

PTS A pseudo periodic time series

Q A set of period points in a PTS

pd A period in a PTS

CTS A compressed PTS

veci A feature vector of point pi

sil(pi) Silhouette value of point pi

sim(pi, p j) Euclidean distance based similarity between points pi and p j

C A set of clusters

msil(C) Mean silhouette value of a cluster C

segi A summary of a period

S TS A segmented CTS

A A set of annotations

Lbs A set of labels indicating the states

lb(i) The ith label in Lbs

on the condition that

1. ∀i ∈ [1, k − 2], if △1 = |pi+1 − pi|,△2 = |pi+2 − pi+1|, then | △2 − △1 | ≤ ξ1; where ξ1

is a small value.

2. let s1 = (vpi , v(pi)+1, · · · , vpi+1) ⊑ PTS , and s2 = (vpi+1 , v(pi+1)+1, · · · , vpi+2) ⊑ PTS ,

then dsim(s1, s2) ≤ ξ2, where dsim() calculates the dis-similarity between s1 and
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s2, and ξ2 is a small value. dsim() can be any dis-similarity measuring function

between time series, e.g., Euclidean distance.

In particular, vpi+1 ∈ Q is called a period point.

An uncertain PTS is a PTS having error detected data or missing points.

Definition 3.4. If pd ⊑ PTS , and pd = (vpi , v(pi)+1, · · · , vpi+1),∀vpi ∈ Q, then pd is

called a period of the PTS .

Definition 3.5. A normal pattern M of a PTS is a model that uses a set of rules to

describe a behaviour of a subsequence S S , where m = |S S | and |S S | ∈ [1, |PTS |/2].

This behaviour indicates the normal situation of an event.

Based on the above definitions, I describe types of anomalies that may occur

in a PTS . There are two possible types of anomalies in a PTS : local anomalies

and global anomalies Given the PTS in Definition 3.5, and a normal pattern

N = (v1, · · · , vm) ⊑ PTS , a local anomaly (L) is defined as:

Definition 3.6. Assume L = (vl1 , · · · , vln) ⊑ PTS , L is a local anomaly if either of the

two conditions in Definition 3.5 is broken (condition 1 below), and at the same time

another two conditions (conditions 2 and 3 below) are satisfied:

1. △N − △L > ξ1 or dsim(N, L) > ξ2;

2. frequency of L: f req(L) ≪ f req(N) and L does not happen in a regular sampling

frequency.

3. |L| ≪ |PTS |.

Example 3.1. Fig.3.1 shows two examples of pseudo periodic time series and their local

anomalies. Fig.3.1(a) shows a premature ventricular contraction signal in an ECG
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Figure 3.1: Two examples of local anomaly in ECG time series

stream. A premature ventricular contraction (PVC) [128] is perceived as a ”skipped

beat”. It can be easily distinguished from a normal heart beat when detected by the

electrocardiogram. From Fig.3.1(a), the QRS and T waves of a PVC (indicated by V)

are very different from the normal QRS and T (indicated by N). Fig.3.1(b) presents an

example of premature atrial contractions (PACs)[65]. A PAC is a premature heart beat

that occurs earlier than the regular beat. If I use the highest peak points as the period

points, then a segment between two peak points is a period. From Fig.3.1, the second

period (a PAC) is clearly shorter than the other periods.

3.3.2 Wavelet-based error reduction

In the proposed framework, I use wavelet noise reduction method to reduce

the white-noise in a time series obtained from the signal collection stage [3]. I

briefly introduce this de-noising method in this subsection. The wavelet de-

noising process contains the following three steps:

Step 1: wavelet signal decomposition. In this step, a time series is iteratively

broken down to finer resolution signals in terms of frequencies. This decom-

position process depends on two symmetric filters: low pass filter (LPF) and
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Figure 3.2: Iterative wavelet decomposition

high pass filter (HPF) that are both created from a mother wavelet. The LPF fil-

ters the low frequency signals (Approximate co-efficient) while the HPF keeps

the high frequency signals (Detailed co-efficient). They are applied in a few

number of iterative steps, which results in a tree structure with signals decom-

posed by different banks. The decomposition structure is shown in figure 3.2,

where AC represents the ’approximate co-efficient’ and DC means the ’detailed

co-efficient’.

Step 2: noise reducing through soft-thresholding. The key step of noise-

reducing is to find a noise-threshold that is used to distinguish the normal and

noise signals. The soft-thresholding method proposed by Donoho[54] is applied

to filter the noises in the high frequency signals (i.e., DC in figure 3.2), which

is processed as: if the amplitude of a signal point (i.e., wavelet co-efficient) is

smaller than a threshold value, the signal point is seen as a noise and is removed

(i.e., its co-efficient is set to 0); or else, this point is treated as a normal waveform

signal and its value is subtracted by the threshold. In this work, I mainly deal

with the white gaussian noise whose threshold value is determined by formula

3.1.
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tn = σ
√

2 log n (3.1)

where σ is a noise standard deviation estimated based on the first-level signals

with highest frequency (i.e., DC1 in figure 3.2), and n is the length of the time

series.

Step 3: signal reconstructing. After noise reduction on each level, the remain-

ing signal points are combined together in a bottom-up manner (from level3 to

the root in figure 3.2) to obtain a filtered time series.

3.4 Anomaly Detection in Uncertain Periodic Time Series

The proposed framework comprises four main components: a signal noise re-

duction component (SNRC), a time series compression component (TSCC), a pe-

riod segmentation and summarization component (PSSC), and a classification

and anomaly detection component (CADC). I explain the process of anomaly

detection of the proposed framework using an example of the dataset mitdb.

Fig.3.3 shows the processing progress of mitdb. First, the uncertain mitdb time

series is an input to the SNRC component. The TS1 in Fig.3.3 shows a sub-

sequence of the raw mitdb. The SNRC removes the errors in mitdb, then the

uncertain mitdb is transformed into a refined time series (TS2 in Fig.3.3). The

TSCC component then further compresses the approximated mitdb. The TS3

in Fig.3.3 shows the compressed time series (CTS ) that is a compression of the

subsequence in TS2. The PSSC component segments the time series and assigns

annotations to each segment. TS4 in Fig.3.3 shows the segmented and annotat-

ed CTS corresponding to the CTS in TS3. Finally, the CADC component learns
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Figure 3.3: Workflow of the mitdb processing based on the proposed
framework

a classification model based on the segmented CTS to detect abnormal subse-

quences in similar time series.

In the sequel of this section, I introduce the anomaly detection framework in

detail.

3.4.1 Anomaly Detection in refined Time Series

The first step is to remove the noise in the uncertain time series (SNRC). I use

the wavelet-based approach introduced in Section 3.3.2 to filter the errors ob-

tained in the signal collection process. The refined time series is then processed

for anomaly detection and normal pattern identification, which is based on the

unit of period. Therefore, I need to identify period points Q that separate PTS

into a set of periods. I use a clustering method to categorize the inflexions of a

PTS into a number of clusters. Then a cluster quality validation mechanism is

applied to validate the quality of each cluster. The cluster with the highest qual-

ity will be adopted as the period cluster, that is, the points in the period cluster

will be the period points for the time series. The period points are the points

that can regularly and consistently separate the PTS better than the points in

the other clusters.

The cluster quality validation mechanism is a silhouette-value based
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Figure 3.4: A PTS and one of its CTS s

method, in which the cluster that have highest mean silhouette value will be

assumed to have the best clustering pattern. To accurately conduct clustering, I

introduce a feature vector for each inflexion of PTS , with the optimal intention

that each point can be distinguished with others efficiently.

Time Series Compression: TSCC

To save the storage space and improve the calculation efficiency, the raw PTS

will first be compressed. In this work, I use the DouglasPeucker (DP) [90] al-

gorithm to compress a PTS , which is defined as: (1) use line segment p1 pn

to simplify the PTS ; (2) find the farthest point p f from p1 pn; (3) if distance

d(p f , p1 pn) ≤ λ, where λ is a small value, and λ ≥ 0, then the PTS can be simpli-

fied by p1 pn, and this procedure is stopped; (4) otherwise, recursively simplify

the subsequences {p1, · · · , p f } and {p f , · · · , pn} using steps (1 − 3).

Definition 3.7. Given a PTS = (v1, · · · , vn), a compressed time series CTS of PTS

is represented as CTS = (vc1 , · · · , vcn) ⊆ PTS , where ∀pci ∈ CTS is an inflexion, and

|CTS | ≪ |PTS |.

The feature vector of an inflexion is defined as:
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Definition 3.8. A feature vector for a point pi ∈ CTS is a four-value vector veci =

(vdi f f 1i, vdi f f 2i, tdi f f 1i, tdi f f 2i), where vdi f f 1i = vci − vci−1 , vdi f f 2i = vci+1 − vci ,

tdi f f 1i = ci − ci−1, and tdi f f 2i = ci+1 − ci.

Example 3.2. Fig.3.4 shows an example of a PTS and one of its compressed time series

CTS . The value differences vdi f f 1 and vdi f f 2, and the time differences wdi f f 1 and

wdi f f 2 are shown in Fig.3.4.

Period Segmentation and Summarization: PSSC

PSSC component identifies period points that separate the CTS into a series of

periods, which is implemented by three steps: cluster points of CTS , evaluate

the quality of clusters based on silhouette value, and Segment and annotate

periods. Details of these steps are given below.

Step 1: Cluster Points of CTS Points are clustered into a number of clusters

based on their feature vectors.

We use the Euclidean distance of feature vectors of two points to mea-

sure the point distance, which is defined as: given points p1 and p2, and

their feature vectors vec1 = (vdi f f 11, vdi f f 21, tdi f f 11, tdi f f 21) and vec2 =

(vdi f f 12, vdi f f 22, tdi f f 12, tdi f f 22), the distance between p1 and p2 is calculated

by Equation 3.2

dis(p1, p2)2 =(vdi f f 11 − vdi f f 12)2 + (vdi f f 21 − vdi f f 22)2+

(tdi f f 11 − tdi f f 12)2 + (tdi f f 21 − tdi f f 22)2
(3.2)

In this work, I use k-means++ [16] clustering method to cluster points. It has
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been validated that based on the proposed feature vector, the k-means++ is more

accurate and less time-consumed than other clustering tools (e.g., k-means [88],

Gaussian mixture models [174] and spectral clustering [161]). I give an brief

introduction of the k-means++ in this section.

k-means++ is an improvement of k-means by first determining the initial

clustering centres before conducting the k-means iteration process. k-means is

a classical NP-hard clustering method. One of its drawbacks is the low cluster-

ing accuracy caused by randomly choosing the k starting points. The arbitrarily

chosen initial clusters cannot guarantee a result converging to the global opti-

mum all the time. k-means++ is proposed to solve this problem. K-mean++

chooses its first cluster center randomly, and each of the remaining ones is se-

lected according to the probability of the point’s squared distance to its closest

centre point being proportional to the squared distances of the other points. The

k-means++ algorithm has been proved to have a time complexity of O(logk) and

it is of high time efficiency by determining the initial seeding. For more details

of k-means++, readers can refer to [16].

Step 2: Evaluate the quality of clusters based on silhouette value. I use

the mean Silhouette value[177] of a cluster to evaluate the quality of a cluster.

The silhouette value can interpret the overall efficiency of the applied clustering

method and the quality of each cluster such as the tightness of a cluster and the

similarity of the elements in a cluster. The silhouette value of a point belonging

to a cluster is defined as:

Definition 3.9. Let points in PTS be clustered into k clusters: CCTS =

{C1, · · · ,Cm, · · · ,Ck}, k ≤ |CTS |. For any point pi = vi ∈ Cm, the silhouette value
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of pi is

sil(pi) =
b(pi) − a(pi)

max{a(pi), b(pi)}
(3.3)

where a(pi) = 1
M−1

∑
pi,p j∈Cm,i, j sim(pi, p j),M = |Cm| is the number of elements in cluster

m; b(pi) = min( 1
M−1

∑
pi∈Cm,p j∈Ch,h,m sim(pi, p j)). sim(pi, p j) represents the similarity

between pi and p j.

In the above definition, sim(pi, p j) can be calculated by any similarity calcula-

tion formula. In this work, I adopt the Euclidean Distance as similarity measure,

i.e., sim(pi, p j) =
√

(vi − v j)2 + (ti − t j)2, where ti and t j are the time indexes of the

points pi and p j. From the definition, a(pi) measures the dissimilarity degree

between point pi and the points in the same cluster, while b(pi) refers to the

dissimilarity between pi and the points in the other clusters. Therefore, a small

a(pi) and a large b(pi) indicate a good clustering. As −1 ≤ sil(pi) ≤ 1, a sil(pi)→ 1

means that a point pi is well clustered, while sil(pi) →+ 0 represents the point is

close to the boundary between clusters M and H, and sil(pi) < 0 indicates that

point pi is close to the points in the neighbouring clusters rather than the points

in cluster M.

The mean value of the silhouette values of points is used to evaluate the

quality of the overall clustering result: msil(CCTS ) = 1
|CTS |
∑

pi∈CTS sil(pi). Similar

to the silhouette value of a point, the msil→ 1 represents a better clustering.

After clustering, I need to choose a cluster in which the points will be used

as period points for the CTS . The chosen cluster is called period cluster. The

points in the period cluster are the most stable points that can regularly and

consistently separate CTS . I use the mean silhouette value of each cluster to

evaluate the efficiency of a single cluster, represented as msil(Cm) =
∑

pi∈Cm
sil(pi),

where −1 ≤ msil(Cm) ≤ 1, and msil(Cm)→ 1 means the high quality of the cluster
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Algorithm 1: Cluster quality validation

1: procedure CLUSTERQUALITY(V = {veci|1 ≤ i ≤ |CTS |},CCTS = {Cm|1 ≤ m ≤

k}, η, ξ)

2: Calculate sil(pi)

3: for all dopi ∈ CTS

4: Calculate mean silhouette value: msil(CCTS )

5: end for

6: if msil(CCTS ) < η then

7: Cperid = NULL

8: return

9: end if

10: Cperid = max(msil(Cm))

11: msil(Cm) > ξ

12: for all doCm ∈ CCTS

13: return Cperid

14: end for

15: end procedure

m. Based on the definition of silhouette values, I give Algorithm 1 of choosing

period cluster from a clustering result. Algorithm 1 shows that if the mean sil-

houette value of the overall clustering result is less than a pre-defined threshold

value η, then the clustering result is unqualified. Feature vectors of points need

to be re-clustered with adjusted parameters, e.g., change the number of clusters.

The previous line indicates that the chosen period cluster is the one with highest

mean silhouette values that is higher than a threshold ξ.
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Step 3. Segmentation and annotation of periods. As mentioned in the pre-

vious section, a CTS can be divided into a series of periods by using the period

points. Thus detecting a local anomaly in CTS means to identify an abnormal

period or periods. In this section, I introduce a segmenting approach to extract

the main and common features of each period. The extracted information will

be used as classification features that are used for model learning and anomaly

detection. In addition, signal annotations (e.g., ’Normal’ and ’Abnormal’) are at-

tached to each period based on the original labels of the corresponding PTS . I

will first give the concept of a summary of a period.

Definition 3.10. Given a CTS that has been separated into D periods, a sum-

mary of a period pdi = (vi1 , · · · , vim), 1 ≤ i ≤ D is a vector segi =

(hmin
i , t

min
i , h

max
i , t

max
i , h

mea
i , p

minmax
i , pl

i), where hmin
i is the amplitude value of the point hav-

ing minimum amplitude in period i: hmin
i = min{vik ; 1 ≤ k ≤ m}; tmin

i is the time index

of the point with minimum amplitude. If there are two points having the minimum

amplitude, tmin
i is the time index of the first point. hmax

i = max{vik}; tmax
i is the first point

with maximum amplitude; hmea
i = 1

m (
∑

vik); pminmax
i = |tmax

i − tmin
i |; pl

i = tim − ti1 .

I represent the segmented CTS as S TS = {seg1, · · · , segn}. Each period corre-

sponds to an annotation ann indicating the state of the period. In this chapter, I

will only consider two states: normal and abnormal. Therefore, a S TS is always

associated with a series of annotations AS TS = {ann1, · · · , annn}.

For the supervised pattern recognition model, the original PTS has a set

of labels to indicate the states of the disjoint sub-sequences of PTS , which are

represented as Lbs = {lb(1), · · · , lb(w)}, ∀lb(r) = {′N′(Normal),′ Ab′(Abnormal)}, 1 ≤

r ≤ w. However, Lbs cannot be attached to the segmentations of the PTS directly

because the periodic separation is independent from the labelling process. To
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Figure 3.5: Segmentation and annotation of two periods

determine the state of a segmentation, I introduce a logical-multiplying relation

of two signals:

Rule 1. ann = ⊗(′Ab′,′ N′) =′ Ab′ and ann = ⊗(′N′,′ N′) =′ N′.

Assume a period covers a subsequence that is labelled by two signals, if

there exists an abnormal behaviour in the subsequence, then based on rule 1, the

behaviour of the segmentation of the period is abnormal; otherwise the period

is a normal series. This label assignment rule can be extended to multiple labels:

given a set of labels Lbs = {lb1, · · · , lbr}, if ∃lb j =
′ Ab′, 1 ≤ j ≤ r, the value of Lbs

is ′Ab′, represented as lbs = ⊗(lb1, · · · , lbr) =′ Ab′; if ∀lb j =
′ N′, lbs =′ N′.

According to the above discussion, the annotation of a period pdi is deter-

mined by Algorithm 2.

Example 3.3. I present the segmentation and annotation of a period in Fig.3.5 to ex-

plain their processes more clearly. Fig.3.5 shows that pdi does not involve any label and

the first label in pdi+1 is lb1 = N, so lbpdi =
′ N′. lb2 is ’Ab’, hence pdi+1 is annotated as

’Ab’.
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Classification and Anomaly detection Component: CADC

From Definition 3.10, each period of a PTS is summarised by seven features

of the period: (hmin
i , t

min
i , h

max
i , t

max
i , h

mea
i , p

minmax
i , pl

i). Using these seven features to

abstract a period can significantly reduce the computational complexity in a

classification process. In the next section, I validate the proposed anomaly de-

tection framework with various classification methods on the basis of different

ECG datasets.

3.5 Experimental Evaluation

Our experiments are conducted in four steps. The first step is to remove the

noises and compress the raw ECG time series by utilizing the DP algorithm,

and to represent each inflexion in the perceived CTS as a feature vector (see

Definition 3.8). Secondly, the K-means++ clustering algorithm is applied to the

series of feature vectors of the CTS , and the clustering result is validated by

silhouette values. Based on the mean silhouette value of each cluster, a period

cluster is chosen and the CTS is periodically separated to a set of consisten-

t segments. Thirdly, each segment is summarised by the seven features (see

Definition 3.10). Finally, a normal pattern of the time series is constructed and

anomalies are detected by utilizing classification tools on the basis of the seven

features.

I validate the proposed framework on the basis of eight ECG datasets [75],

which are summarised in Table 3.2 where ’V’ represents Premature ventricular

contraction, ’A’: Atrial premature ventricular, and ’S’: Supraventricular prema-
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Table 3.2: ECG Datasets used in experiments

Datasets Abbr. #ofSamples Types #ofAbnor #ofNor

AHA0001 ahadb 899750 V 115 2162

SA800 svdb 230400 S & V 75 1846

SCDH30 sddb 22099250 V 38 5743

MIT-BIH100 mitdb 650000 A & V 164 2526

MIT-BIH106 mitdb06 650000 A & V 34 2239

MGH/MF001 mgh 403560 S & V 23 776

MIT-BIHLT14046 ltdb 10828800 V 000 000

AFN04 aftdb 7680 NA NA NA

ture beat. Apart from the a f tdb dataset, each time series is separated into a series

of subsequences that are labelled by the dataset provider. I give the number of

abnormal subsequences (’#ofAbnor’) and the number of normal subsequences

(’#ofNor’) of each time series in Table 3.2.

Our experiment is conducted on a 32-bit Windows system, with 3.2GHz CPU

and 4GB RAM. The ECG datasets are downloaded to a local machine using

the WFDB toolbox [188] for 32-bit MATLAB. I use the 10-fold cross validation

method to process the datasets.

The metrics used for evaluating the final anomaly classification results in-

clude:

(1) Accuracy (acc): (T P + T N) / Number of all classified samples;

(2) Sensitivity (sen): T P / (T P + FN);

(3) Specificity (spe): T N / (FP + T N);

(4) Prevalence (pre): T P / Number of all samples.
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(5) Fmeasure (fmea): 2 ∗ precision∗recall
precision+recall , where recall = sen, precision = T P

T P+FP

T P = true positive, T N = true negative, FP = false positive, and FN = false neg-

ative.

Details of the experiments are illustrated in the following sections.

3.5.1 Error Detection and Time Series Compression

At first, I design an experiment for noisy reduction in an uncertain time series.

I use the synthetic uncertain data: I plant the additive Gaussian white noise to

six time series in Table 3.2: ahadb, aftdb, sddb, svdb, mgh, and mitdb. The per-

formance of the error reduction is evaluated by the mean squared error (MSN)

between the six real time series and the synthetic uncertain time series. I use

different signal-to-noise ratio ϵ (from 1 to 15) to see the change of the MSE value

based on the wavelet de-noising approach. The experiment result is shown in

Figure 3.6 (a). We can see that the MSE values of the six time series are decreas-

ing from 0.25 to 0 when the value of the signal-to-noise ratio is increasing from

0 to 15.

The refined time series (whose errors have been reduced) will be compressed

by DP algorithm. I use the approach proposed by the work of [176] to assess the

stability of the DP compression algorithm under the variations of the change

of the scale parameter and the perturbation of data. The former is measured by

using a monotonicity index and the latter is quantified by a break-point stability

index.

The monotonicity index is used to measure the monotonically decreasing
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Table 3.3: Decreasing monotonicity degree of six datasets in terms of the
value of λ

ahadb svdb sddb mitdb mgh aftdb

λ 100 100 100 100 100 100

Figure 3.6: MSE of noise reduction and monotonically decreasing number
of breakpoints in terms of λ of DP algorithm

or increasing trend of the number of break points when the values of scale pa-

rameters of a polygonal approximation algorithm are changed. For the DP al-

gorithm, if the value of the scale parameter λ is increasing, the number of the

produced breakpoints of the time series will be decreasing, and vice versa. The

decreasing monotonicity index is defined as MD = (1 − T+
T−

) × 100, and the in-

creasing monotonicity index is MI = (1 − T−
T+

) × 100, where T− = −
∑
∀∆vi<0 ∆vi/hi,

T+ =
∑
∀∆vi>0 ∆vi/hi, and hi =

vi+vi−1
2 . Both of MD and MI are in the range [0, 100],

and their perfect scores are 100. I test the decreasing monotonicity degrees for

the datasets ahadb, svdb, sddb, mitdb, mgh, and a f tdb in terms of different val-

ues of λ for DP algorithm. I set λ = 5, 10, 15, 20, 25, 30, 35, 40, 45, 50 to conduct

DP compression. From Table 3.3 and Fig.3.6(b), we can see that the numbers of

breakpoints are also 100% decreasing in terms of the increasing λ.

The break-point stability index is defined as the shifting degree of break-
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Table 3.4: Endpoint stability of six datasets and pertubations

ahadb svdb sddb mitdb mgh aftdb

Shifting length 10000 10000 10000 10000 10000 100

S 100 99.8988 99.9955 99.9725 99.9348 99.9351

points when deleting increasing amounts from the beginning of a time series.

We use the endpoint stability to test the breakpoint stability for fixed parameter

settings : λ = 10 for the DP algorithm. The endpoint stability measurement is

defined as S = (1− 1
m

∑
d
∑

b
sd

b
ndld

), where m is the level number of deletion, d is the

dth level, sd
b is the shifting pixels at breakpoint b, ld is the length of the remain-

ing time series and nd is the number of breakpoints after the dth deletion. Table

3.4 shows the deletion length of each running circle and the stability degree of

each time series. We iteratively delete 10000 samples from the beginning of the

remaining ahadb time series, and conduct the DP algorithm based on the new

time series. The positions of the identified breakpoints in each running circle are

compared with the positions of the breakpoints identified in the whole ahadb.

From Table 3.4, we can see that each time series is of high stability (i.e. values of

S ) when conducting the uncertainty detection procedure and the DP algorithm

with fixed scale parameters.

3.5.2 Compressed Time Series Representation

Based on Fig.3.6, we set λ = 10 for time series compression. We then compare

three methods of period point representation: (1) inflexions in CTS are repre-

sented by feature vectors (FV); (2) inflexions are represented by angles (Angle)

of peak points [94]; (3) inflexions are represented by valley points (Valley) [12].
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Valley points are points in a PTS , which have values less than an upper bound

value (represented as U). U is initially specified by users and will be updated as

time evolves. The update procedure is defined as Ub = α(
∑N

i=1 Vi)/N, where N is

the number of past valley points and α is an outlier control factor that is deter-

mined and adjusted by experts. As stated by Tang et al.[12], the best values of

initial upper bound and α in ECG are 50mmHg and 1.1. The perceived feature

vector sets, angle sets, and valley point sets are passed to the next step in which

points are clustered and the period points of the CTS are identified. Each peri-

od is then segmented using the proposed segmentation method(see Definition

3.10). Finally, Linear Discriminant Analysis (LDA) and Naive Bayes(NB) classi-

fiers are applied for sample classification and anomaly detection. Fig 3.7 shows

the identified period points using the FV-based method for four datasets: ltdb,

sddb, svdb and ahadb. From Fig 3.7, we can see that for each dataset, the FV-

based method successfully identifies a set of periodic points that can separate

the CTS in a stable and consistent manner.

Table 3.5 presents the silhouette values of clustering the inflexions in the

CTS s of seven time series, where column ’mean’ refers to the mean silhouette

value of a dataset clustering, and the values in columns c(luster)1-6 are the mean

silhouette values of each cluster after clustering a dataset. ’NAs’ in the sixth

column means that the inflexions in the corresponding datasets are clustered

into five groups, which present the best clustering performance in this dataset.

From Definition 3.9, we know that if the silhouette values in a cluster is close to

1, the cluster includes a set of points having similar patterns. On the other hand,

if the silhouette values in a cluster are significantly different from each other

or have negative values, the points in the cluster have very different patterns

with each other or they are more close to the points in other clusters. Table
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Figure 3.7: Period point identification of four datasets based on feature
vectors

3.5 shows that for each of the seven datasets, the mean silhouette values of the

overall clustering result and each of the individual clusters are higher than 0.4

(η = 0.4 in algorithm 1). The best silhouette value of an individual cluster in

each dataset is close to or higher than 0.9 (ξ = 0.8 in Algorithm 1). In addition,

for each dataset, I select the points in the cluster with highest silhouette value as

the period points. For example, for dataset ahadb, points in cluster 4 are selected

as period points.

Fig. 3.8 presents the silhouette values of clustering the inflexions in the CTS s

of mitdb and ltdb time series. From this figure, we can see that for both the mitdb

and ltdb datasets, FV-based clustering results in fewer negative silhouette val-

ues in all clusters, and he values in each cluster are more similar to each other

compared with the angle-based clustering. We also come to a similar conclu-
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Table 3.5: Silhouette values of six datasets

Dataset Silhouette values

mean cluster1 (c1) c2 c3 c4 c5 c6

ahadb 0.8253 0.4479 0.8502 0.9824 0.9891 0.9381 NA

svdb 0.6941 0.9792 0.6551 0.9703 0.5463 0.5729 0.959

sddb 0.772 0.6888 0.5787 0.965 0.9727 0.6971 0.7529

mitdb 0.9373 0.9877 0.7442 0.9898 0.9711 0.5854 0.3754

mitdb06 0.7339 0.7317 0.8998 0.609 0.8577 0.8669 NA

ltdb 0.9149 0.9164 0.8381 0.9739 0.9079 0.8975 NA

mgh 0.8253 0.4479 0.8502 0.9824 0.9891 0.9381 NA

Figure 3.8: Silhouette value comparison between the feature vector based
clustering method (FV-based) and the angle-based clustering
method for the mitdb and ltdb datasets

sion by examining their mean silhouette values. The mean silhouette values of

FV-based clustering for mitdb (corresponding to Fig.3.8(a)) is 0.9373, while the

angle-based clustering (Fig.3.8(b)) is 0.7461; and the mean values for ltdb are

0.9149 and 0.8155 (Fig.3.8(c) and Fig.3.8(d)) respectively.

Fig.3.9 compares the average classification performance on the basis of four

datasets using four classifiers: LDA, NB, Decision tree (DT), and AdaBoost (A-
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Figure 3.9: Average performance comparison of four classifiers (LDA, NB,
ADA, DT) based on feature vector based (FV), angle based (A)
and valley point based (V) periodic separating methods

da) with 100 ensemble members. From Fig.3.9, we can see that the classifier-

s based on the FV periodic separating method have the best performance in

terms of the four datasets (i.e., the highest accuracy, sensitivity, f-measure, and

prevalence). In the case of LDA and DT, the valley-based periodic separating

method has the worst performance while in the cases of NB and Ada, valley-

based methods perform better than angle-based methods.

3.5.3 Evaluation of Classification Based on Summarized Fea-

tures

This section describes the experimental design and the performance evaluation

of classification based on the summarized features. This experiment is conduct-

ed on seven datasets: ahadb, svdb, sddb, mitdb, mitdb06, mgh, and ltdb. From the

previous subsections, I know that the seven time series have been compressed

and the period segmenting points have been identified (see Table 3.5). The seg-

ments of each of the time series are classified by using three classification tools:
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Figure 3.10: Classification performance of six datasets based on the sum-
marized features using classification methods of LDA, RF, and
NB

Random Forest with 100 trees (RF), LDA and NB. I use matrices of acc, sen, spe,

and pre to validate the classification performance.

The classification performance is shown in Fig.3.10, which compares the per-

formance of classification methods LDA, NB and RF, based on datasets (a) ahadb,

(b) sddb, (c) mitdb, (d) mgh, (e) svdb, and (f) mitdb06. From the figure, I can see

that for all six datasets, the performances of NB and RF are better than the per-

formance of LDA based on the selected features. The accuracy and sensitivity

of NB and RF are higher than 80% for each of the datasets. Their prevalence

values are over 90% for the first five datasets (a-e). However, I can also see that

the feature values of LDA are always higher than the feature values of the other

two methods.
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Figure 3.11: Performance of seven classifiers (LDA, NB, DT, Ada, LPB, T-
tl, and RUS) based on the proposed period identification and
segmentation methods on five datasets ((a) ahadb, (b) ltdb, (c)
mitdb, (d) sddb, and (e) svdb)

3.5.4 Performance Evaluation of Other Classification Methods

Based on Summarized Features

In this section, I design an experiment to evaluate the performance of the pro-

posed time series segmentation method. Experimental results on the basis of

five datasets (i.e.,mitdb, ltdb, ahadb, sddb and svdb) are presented in this section.

I carry out the experiment by the following steps. First, the raw time series

are compressed by DP algorithm and periodically separated by feature vector

based period identification method. Second, each period is summarized by the

proposed period summary method (see Definition 3.10) and is annotated by the

annotation process(see Section 3.4.1). The classification methods used in this

experiment include LDA, NB, DT, and a set of ensemble methods: AdaBoost

(Ada), LPBoost (LPB), TotalBoost (Ttl), and RUSBoost (RUS). The classification

performance is validated by five benchmarks: acc, sen, f mea, and prev.
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Fig.3.11 shows the evaluated results of the classifier performance based on

the proposed period identification and segmentation method. From Fig.3.11, I

can see that the accuracy values of classification based on the 5 datasets are over

90%, except the cases of LPB with mitdb, LDA with sddb, LDA with svdb, and

RUS with svdb. Some of them are of more than 98% accuracy. The sensitivity

of classification based on the datasets of ahadb, ltdb, and mitdb are closing to

100%. The sensitivity based on the datasets of sddb and svdb are over 85%. The

f-measure rates of classification based on ahadb, ltdb, mitdb, and sddb are higher

than 95%. The f-measure rates of RUS and LDA based on mitdb and svdb are

less than 80%, but the f-measure of other classifiers based on these two datasets

are all higher than 80%, and some of them are closing to 100%. The prevalence

rates of classification on the basis of the five datasets are over 90%.
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Algorithm 2: Period annotation

1: procedure ANNOTATION(pdi = (vi1, · · · , vim), Lbs = (lb1, · · · , lbr))

2: t1
i = NULL

3: tend
i = NULL

4: if ∃lb j that t(i−1)1 ≤ t j−1 ≤ t(i−1)m < ti1 ≤ t j ≤ tim then

5: t1
i = t j

6: end if

7: if ∃lbk & ti1 ≤ tk ≤ tim & t(i+1)1 ≤ tk+1 ≤ t(i+1)m then

8: tend
i = tk

9: else if t1
i , NULL ∥ tend

i , NULL then

10: if t1
i = NULL then

11: t1
i =

′ N′

12: end if

13: if tend
i = NULL then

14: tend
i =′ N′

15: end if

16: Lbs = Lbs{t1
i , · · · , tend

i }

17: lbs = ⊗(Lbs)

18: else

19: lbs = Lbs{t1
i+1}

20: end if

21: return annotated pd
′

i

22: end procedure
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3.6 Summary

In this Chapter, I have introduced a framework of detecting anomalies in un-

certain pseudo periodic time series. I formally define pseudo periodic time se-

ries (PTS ) and identified three types of anomalies that may occur in a PTS . I

focused on local anomaly detection in PTS by using classification tools. The

uncertainties in a PTS are pre-processed by an inflexion detecting procedure.

By conducting DP-based time series compression and feature summarization of

each segment, the proposed approach significantly improves the time efficiency

of time series processing and reduces the storage space of the data streams. One

problem of the proposed framework is that the silhouette coefficient based clus-

tering evaluation is a time consuming process. Though the compressed time

series contains much fewer data points than the raw time series, it is necessary

to develop a more efficient evaluation approach to find the optimal clusters of

data stream inflexions. In the future, I am going to find a more time efficien-

t way to recognize the patterns of a PTS . In addition, I will do more testing

based on other datasets to further validate the performance of the method. Cor-

recting false-detected inflexions and detecting global anomalies in an uncertain

PTS will be the main target of our next research work.

61



CHAPTER 4

LISAM: FAST AND APPROXIMATE DISCOVERY OF

DIFFERENT-LENGTH TIME SERIES MOTIFS

In the previous chapter, I introduced a supervised method for anomaly de-

tection of data streams, and applied the method to ECG data sets. In this

chapter, I explore two key problems in time series motif discovery: releasing

the constraints of trivial matching between subsequences with different lengths

and improving the time and space efficiency. The purpose of avoiding trivial

matching is to avoid too much repetition between subsequences in calculating

their similarities. I describe a limited-length enhanced suffix array based frame-

work (LiSAM) to resolve the two problems. I convert the consistent time series

to the discrete time series using the Symbolic Aggregate approXimation pro-

cedure, and introduce two covering relations of the discrete subsequences: α-

covering between the instances of LCP (Longest Common Prefix) intervals and

β-covering between LCP intervals to support the motif discovery: if an LCP

interval is β-uncovered, its instances form a motif. The βUncover algorithm of

LiSAM identifies the β-uncovered l-intervals, in which I introduce two LCP tabs:

presu f and nextsu f to support the identification of the α-uncovered instances of

an l-interval. I prove that in an extreme case that S has maximum LCP intervals,

O(N + n), while in the case an interval has maximum child intervals, O(N + n2),

where N is the length of the raw time series T , and n is the length of the symbol-

ized time series S . If N ≫ n, the performance can be improved dramatically. In

addition, it has linear space complexity O(N). Experimental results indicate the

accuracy of LiSAM on finding motifs with different lengths.
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4.1 Introduction

Motifs of a time series are the frequently-occurred and approximately similar

subsequences that can summarize the features of the time series [144]. Motifs

have been applied in a variety of areas of time series processing, such as the

anomaly detection in moving objects trajectories [131], the semantic analysis for

the surgical sensor data streams [6], repeating pattern mining in audio streams

[160], and human activity discovery [153]. Especially, it has been applied to

the medical signals [102], like Electrocardiography(ECG) [133] and biological

signals [145] for normal condition recognition and disease detection. I show

examples of motifs in four different ECG time series in Fig. 4.1.

Discovering motifs for time series is an important and tough task. It has been

proved that the subsequence clustering is meaningless in unsupervised data

stream mining area, and the motif grouping in the discrete data stream mining

has been applied as a replacement of the subsequence-clustering in the real time

series [105]. In this chapter, I focus on two primary issues in the time series motif

discovery: reducing the computational complexity and avoiding unexpected

repetitions among different motifs and among instances of one motif. In an

unsupervised context with little knowledge about the time series, it might be

intractable to find all the motifs with different lengths by using exact and brute-

force methods. There has been a series of work focusing on improving the time

efficiency. One significant improvement is the method proposed by Minnen et

al. [154], which has sub-quadratic time complexity in the time series length.

The subsequence trivial matching [105] and the overlapping among different

motifs [155] are two types of motif repetition issues in the literature. To avoid
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trivial matching, some methods assumed that the instances of a motif do not

overlap with each other at all [154]. We believe that, however, a more flexible

and user-manageable mechanism is necessary to control the numbers and styles

of the discovered patterns.

I use an example to describe the main problems targeted by our work about

different-length motif discovery. Fig. 4.2 shows a piece of time series and its

four identified patterns: M1, M2, M3, and M4. From this figure, M1 happen-

s two times, and M2 happens 4 times, where two instances of M2 are covered

by the instances of M1, and M1 is a maximum pattern uncovered by any other

patterns. M3 and M4 each occurs once, and they overlap with each other in the

length oL. We have two problems about this figure:

problem 1 Given a trivial matching threshold, the first two instances of M2

trivially match the first two instances of M1. However, we can also see that

Freq(M1) < Freq(M2) , then should M2 be considered as: (1) an independent

motif including the two instances covered by M1 ?, (2) a motif without includ-

ing the two covered instances, or (3) not a motif ?

problem 2 Given that M4 repeats 86 times in the overall time series, while M3 re-

peats 98 times, and assume that every instance of M4 is covered by an instance of

M3, should we discard M3 and M4, and instead determine a maximum-length

pattern M5 with less repeated times than M3 as a motif?

Enhancing the time and space complexity, and at the same time, guaran-

teing an expected accuracy is always one of the top topics in data processing.

Some motif discovery researchers used approximate solutions to get an accept-

able computational complexity [132]. In this work, I propose an unsupervised

Limited-length suffix array based Motif Discovery algorithm (LiSAM) for con-
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Figure 4.1: Examples of motifs in ECG time series

Figure 4.2: Problems in identifying different-length motifs in time series

tinuous time series, which is time and space efficient, and supports approxi-

mately discovering motifs in different lengths. I first convert the continuous

time series to the discrete time series by using the Symbolic Aggregate approX-

imation procedure (SAX) [136], and then identify the different-length motifs

based on the discrete time series. Our illustration of discrete motif discovery is

on the basis of an exact substring matching procedure, however, we can easily

embed the existing approximate substring matching methods, such as [95, 111],

in LiSAM. That is, we use the exact subsequence grouping of discrete time se-

ries to discover the approximate patterns of continuous time series. We can also

calculate the exact similarities between the instances of a continuous motif after
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such an approximate grouping. The distinctive contribution of LiSAM are as

below:

• LiS AM can discover motifs in different lengths (e.g., maxLength to

minLength provided by users), avoid the unexpected trivial-matching by

allowing user-defined overlapping degree (represented as α) between the

instances of motifs, and support discovering motifs that overlap with each

other in a specified degree (β). It can either be an automatic or semi-

automatic algorithm by either manually setting all the parameters or by

using default parameters (e.g., set maxLength = 1
2 |T | (T is a time series),

minLength = 2, α = 0 and β = 0).

• LiS AM is both space and time efficient. It has linear space complexity

O(N). Existing approximate solutions [180, 135] applied the suffix tree to

model the discrete time series to increase the searching speed of a subse-

quence, which consumes a large volume of storage space. Instead, I use

a limited-length enhanced suffix array with linear space consumption to

improve the space efficiency. In addition, in an extreme case that S has

maximum LCP intervals, O(LiS AM) = O(N + n), while in the case an in-

terval has maximum child intervals, O(LiS AM) = O(N + n2), where N is

the length of the raw time series T , and n is the length of the discrete time

series S . If N ≫ n, the performance can be improved dramatically.

• I conduct extensive experiments based on both synthetic time series

datasets to evaluate the performance of LiS AM. Experimental results

show the high accuracy of LiS AM and its applicability in the pattern recog-

nition of data streams such as ECG.
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4.2 Related Work and Background Knowledge

4.2.1 Related Work

The research on motif discovery in bio-informatics has been conducted for

decades, which has derived a large number of popular techniques. For example,

the MEME Suite [20] integrates a set of web-based tools for discovering motif-

s in bio-signals like DNA, RNA, and proteins. Jensen et al. [98] introduced a

motif discovery algorithm Gemoda that can be applied to both categorical and

continuous sequential data. Gemoda guarantees the discovered motifs having

maximal composition and length, and support different similarity calculation

metrics. Bandyopadhyay et al. [21] improved the time complexity of discov-

ering (l, d)-motifs, which are to find a repeated string of length l by allowing

minimum d mismatch. Grant et al. [80] developed a tool named Find Indi-

vidual Motif Occurrences (FIMO) that supports motif discovery based on the

position-specific scoring matrices.

There also has been a large amount of effort on exploring approximately

accurate and fast motif discovery algorithms in continuous time series. Lin et

al. [136] first introduced the concept of motif in discrete time series to contin-

uous time series, and proposed the SAX (Symbolic Aggregate approXimation)

method to symbolize the continuous time series. The SAX method can lower

bound the distance between the original time series based on the symbolized

time series. Because of its time efficiency, it supports a streaming time series

conversion. Nguyen et al. [191] proposed a disk-efficient approximate motif

discovery algorithm that is based on MP C dimensionality reduction and Sky-

line Index. The authors stated that the time efficiency of their method is over
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that of the random projection. To deal with big time series data, Sahli et al.

[180] designed a method ACME that searches sequences in terms of the con-

tiguous searching blocks, which can speed up the searching performance with

more than 90% by using thousands of processors. Yankov et al. [226] focused

on the problem of finding repeated patterns with variable length under unifor-

m scaling. They also applied the proposed algorithm to a variety of domains

such as detecting motifs in brain activities, capturing motions based on motifs,

and finding projectile shapes. Floratou et al. [63] concentrated on improving

the accuracy of motif discovery in continuous sequential data. They proposed a

suffix tree based algorithm FLAME to find different motifs with high accuracy.

As motif discovery is an unsupervised process, it is difficult to manually deter-

mine the lengths of the motifs in a time series. Against this problem, Yingchare-

onthawornchai [229] used a compression-based method to discover motifs with

variable lengths. The proposed method also supports the motif evaluation and

ranking in terms of their importance to the time series.

The exact motif discovery of continuous time series is normally untractable.

Mueen et al. [158] designed a tractable exact algorithm to discover motifs based

on an intuition of ’early abandoning’, which shows high time efficiency com-

pared with an brute-force exact algorithm. The MOEN algorithm [156] is anoth-

er exact motif discovery method. It enumerates time series motifs at different

lengths and is of high time and space efficiencies.
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4.2.2 Background Knowledge

I briefly introduce the frequently used symbols and the basic concept of the

enhanced suffix array in this section. Readers can refer to [1] for more details. I

first introduce and list the symbols and their definitions in this chapter in Table

4.1.

Enhanced suffix array. A suffix array of S is an integer array (suftab) having

values k ∈ [0, n]. An enhanced suffix array (ESA) is a suffix array with a number

of additional supporting arrays, where two of them (lcptab and bwttab) will be

used in this chapter. I use an example of S examp = aceaceacece to describe the ESA

that is shown in Table.4.2. The su f tab keeps the starting positions of suffixes of

S in ascending lexicographic order. The definition of lcptab is in Table 4.1. From

Table 4.2, lcptab[0] = 0 and lcptab[n] = 0.

To group the suffixes that have the longest common prefixes, the concept of

LCP interval is proposed. I describe below the definition of an LCP interval

from the work of [1].

Definition 4.1. Given S and its Enhanced suffix array, an interval [i, j] of index (see

Table4.2), where i, j ∈ [0, n] and i < j, is a LCP interval with LCP length ℓ if the

following conditions are satisfied: (1) lcptab[i] < ℓ; (2) lcptab[k] ≥ ℓ,∀k ∈ [i+ 1, j]; (3)

lcptab[k] = ℓ if ∃k ∈ [i + 1, j]; (4) lcptab[ j + 1] < ℓ. The LCP interval [i, j] with LCP

length ℓ can be represented as lℓ-[i, j].

An LCP interval tree indicates the embedding and enclosing relations [1]

between LCP intervals. I describe an example of LCP tree of S examp in Fig. 4.3.

I can see that the root of the LCP tree covers all the suffixes of S examp. The child

intervals are the intervals embedded in their father intervals. The leaf intervals
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Table 4.1: Symbols and Definitions

Concepts Definitions

T a continuous time series

Σ a finite ordered alphabet

Σ∗ & Σ+ strings over Σ & Σ∗\null

S a discrete time series over Σ with length |S | = n

∼ ∼∈ Σ, ∼< S ; ∼> σ, ∀σ ∈ Σ

S [i, j]
substring of S between

positions i and j

su f tab (su f ) suffix array table of S

presu f (pre)
the suffix index of the previous

position of the current suffix in suftab

nextsu f (next)
the suffix index of the next position

of the current suffix in suftab

S su f tab[i], i ∈ [0, n] ith suffixes of S ∼

lcptab[i]
longest common prefix (LCP) of S su f [i−1]

and S su f [i], i ∈ [1, n]

bwttab[i] (bwt)
= S [su f tab[i] − 1], ∀su f [i] > 0;

= null, if su f [i] = 0

lℓ-interval, lℓ-[i, j]
an LCP interval from LCP index i

to index j with length ℓ

l-[l, l], l ∈ [0, n] singleton interval (SI) corresponding to S su f [l]

NSI non-singleton interval

mℓ-[i, j] m-interval: instances of lℓ interval forming a motif
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Table 4.2: Enhanced Suffix Array of S examp

index suf lcptab bwt S su f [i]

0 0 0 null aceaceacece ∼

1 3 6 e aceacece ∼

2 6 3 e acece ∼

3 1 0 a ceaceacece ∼

4 4 5 a ceacece ∼

5 7 2 a cece ∼

6 9 2 e ce ∼

7 2 0 c eaceacece ∼

8 5 4 c eacece ∼

9 8 0 c cece ∼

10 10 0 c e ∼

11 11 0 e ∼

do not enclose any NSI. A fast traversing procedure for LCP trees is defined in

[1]. Note that in this chapter I use lℓ to represent an l-interval with LCP length

ℓ, while use mℓ to represent an motif interval (Def. 4.7) with LCP length ℓ. In

addition, I refer the normal ’LCP intervals’ to non-singleton intervals (NSIs).
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Figure 4.3: LCP tree of S examp

4.3 Problem Definition

In this section, I introduce the basic concepts to be used in LiSAM. A contin-

uous time series T is a sequence of real values that have temporal properties.

To identify the motifs of a time series, previous work has given different form-

s of motif definitions [154, 157]. I summarize these definitions and present a

comprehensive motif concept in Definition 4.2.

Definition 4.2. A motif M of a time series T is a set of similar subsequences

S Q = {sq0, ..., sqn−1} such that n ≥ 2, and ∀i, j ∈ [0, n − 1], the length of |sqi| ≥ 2,

|sqi
∩

sq j| ≤ o, and Dis(sqi, sq j) ≤ d, where o is an overlapping threshold to constraint

the overlapping length in terms of the time period between two subsequences of M, Dis

is a distance measure, and d ≥ 0 is a small value to guarantee a certain similarity among

subsequences. We call a subsequence of M as an instance of this motif.

This definition requires that a motif subsequence should occur at least 2

times in a long time series, and each instance should have at least 2 continuous

samples. Setting value o can avoid the trivial matching between the instances

of a motif [157]. To approximately identify time series motifs, I first convert the

real time series T to a discrete time series S by using SAX. I can then group the

approximate similar subsequences of S . The discrete motif discovery is like a

first-step clustering, which groups together the relatively similar subsequences
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of T . In one symbol motif group, the real subsequences are most probably simi-

lar with each other depending on the SAX conversion procedure. In the follow-

ing sections, the discussion on motif discovery is based on S .

For motifs in different lengths, one problem is that if some of the occurrences

of a motif m1 are subsequences of the occurrences of another motif m2, is m1 a

motif independent with m2? For example, given a time series aaa f aaa, if we

want a motif with length = 3, we can find pattern aaa. On the other hands, if we

want a motif with uncertain length, e.g., 2 ≤ length ≤ 4, we will find patterns aa

and aaa. We can see that every occurrence of aa is a part of an occurrence of aaa,

which means that identifying aa is meaningless because whenever aa occurs,

there is one longer and more regular pattern aaa that can better capture the

variation of the time series. To formulate a definition that can be applied to the

different-length motifs, I introduce here the relation of cover among l-intervals

and among the instances of l-intervals.

Definition 4.3. Given two l-intervals lℓ1-[i1, j1] and lℓ2-[i2, j2], sk1(k1 ∈ [i1, j1]) is an

instance of lℓ1 , sk2(k2 ∈ [i2, j2]) is an instance of lℓ2 , sz1 = | j1 − i1 + 1|: (1) instance sk1

is α-covered by sk2 if ℓ1 < ℓ2, sk1 overlaps with sk2 at sub-string s′′, where s′′ ⊂ sk2

and s′′ ⊂ sk1 , and |s′′| > α, |sk1 | ≥ α ≥ 1
2 ∗ |sk1 |. Or else, sk1 is α-uncovered by sk2 ; (2)

Interval lℓ1 is β-covered by lℓ2 , if β instances of lℓ1 are α-covered by the instances of lℓ2 ,

where (sz1 − β) < β ≤ sz1, and β is a pre-defined threshold. Or else, lℓ1 is β-uncovered

(or uncovered) by lℓ2 .

For example, given α = 2 and β = 2, in Table 4.2, we can find l-intervals

l6-[0, 1] and l3-[0, 2], where sk1 = ace, sk2 = aceace, sz1 = 3. As |sk1 | > α ≥ 1
2 |sk1 |, and

s′′ = ace, |s′′| = 3, then sk1 is α-covered by sk2 . As (sz1 −β) < β ≤ sz1, sk1 is β-covered

by sk2 .
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From Definition 4.1, an lℓ-interval is composed of at least two suffixes that

have the LCP of length ℓ. Therefore, an l-interval can be seen as a pattern of S ,

and the LCPs of the l-interval correspond to the occurrences of the pattern. A

pattern of S is defined as:

Definition 4.4. Given an alphabet set Σ and an approximate time series S ∈ Σ∗, a

pattern of S is a time series pt that 1 ≤ |pt| < 1
2 |S |, pt ⊂ S , and occurs k(k ≥ 2)

times in S at positions {p1, ..., pk}, p1 , ... , pk, where a position is the start point of an

occurrence of pt in S .

For example, the subsequence of l3-[0, 2], i.e. ace, is a pattern of S examp in

Table 4.2.

Definition 4.4 shows that a pattern of S has limited length (|pt| < 1
2 |S |). To

adapt to the concept of limited-length patterns, I define a limited-length suffix

array that will be used later for motif identification.

Definition 4.5. Given a suffix s f of S , If each suffix in a suffix array has limited length

maxL (maxL < 1
2 |S |), this suffix array is called a limited length suffix array.

For example, Table 4.3 shows a limited length suffix array of S examp with

suffix length 6.

In this chapter, our discussion will be based on the limited length suffix array

of S . From Definition 4.4, a pattern should occur at least twice in a time series.

From the Definition 4.1, an lℓ-interval is composed of at least two suffixes that

have the LCP of length ℓ. Therefore, an l-interval can be seen as a pattern of

S , and the LCPs of the l-interval correspond to the occurrences of the pattern.

However, the requirement on the minimum occurrence times of a pattern varies
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in different situations. For example, in a very long S (e.g., ≥ 10 thousands), the

element that repeats a small number of times (e.g., < 10 times) is meaningless for

the time series analysis. Therefore, I define a general concept of an approximate

motif of discrete time series as below.

Definition 4.6. Assume u = S [a, b](a ≤ b) is an instance of an l-interval lℓ-[i, j] of S .

Given a lower bound β(β ≥ 2) of the pattern occurrences, if ε = j − i + 1 ≥ β, and lℓ is

uncovered by any other l-intervals of S , it is an approximate motif of S , represented

as m f = ⟨ℓ; P = {p1, · · · , pε}⟩, where ℓ = b − a + 1(l ≥ 1) is the length of m f , pi is the

start indexes of the occurrences of u in S , and ε is the size of m f .

In the following, a motif of S refers to an approximate motif of T . The rela-

tion between an l-interval and a motif of S is defined as an m-interval.

Definition 4.7. For an l-interval lℓ-[i, j] of S , if the instances of lℓ is one-to-one matched

to the occurrences of a motif m f = ⟨ℓ; su f tab[i], · · · , su f tab[ j]⟩, then lℓ is an m-interval,

represented as mℓ-[i, j].

Based on Definition 4.7, motifs and m-intervals have the following relation.

Lemma 4.1. A motif of S corresponds to and only corresponds to one m-interval of S .

Proof. Given a motif m fu = ⟨ℓ; Pu = {p1, · · · , pε}⟩ of S , as ε ≥ 2, then the subse-

quence u occurs at least twice in S . Based on the definitions of LCP intervals

and the suffix array, the suffixes s f = {S [p1,∼1], ..., S [pε,∼ε]} are in one LCP in-

terval lℓ-[i, j], where p1, ..., pϵ ∈ [i, j], ℓ = |u| and ∼ϵ′= pϵ′ + maxL − 1, ϵ′ ∈ [1, ϵ].

Assume (1) ∃k, k ∈ [i, j] that s1 = S [su f tab[k], su f tab[k + ℓ − 1]] = u, but s1 is not

an occurrence of m fu,i.e., k < Pu, which is opposite to the given condition that

m fu is a motif of S , because a motif needs to contain all the subsequences fitting
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one pattern. Assume (2) ∃px ∈ Pu but px < [i, j], and ∃py ∈ Pu and py ∈ [i, j], then

(s1 = S [su f tab[px], su f tab[px+ℓ−1]]) = u = (s2 = S [su f tab[py], su f tab[py+ℓ−1]]),

that is, s1 and s2 are similar LCP and need to be in one LCP interval (suppose

in l
′

ℓ-[i
′
, j
′
]). As lℓ and l

′

ℓ have one LCP u, they are the same l-interval, which is

opposite to assumption (2). Lemma 4.1 is proved. �

In the following sections, I refer an m-interval to a motif.

4.4 Limited-length Suffix-array-based Motif Discovery

The Limited-length Suffix-Array-based Motif Discovery (LiSAM) Framework

identifies motifs of S by determining the α-covering and β-covering degrees be-

tween instances of one l-interval and between different l-intervals respectively,

which is based on a bottom-up traversing process of identifying LCP intervals

of the enhanced suffix array [2]. The LiSAM is composed of two main algo-

rithms: (1) βUncover (Alg. 3) determines whether or not an LCP interval is

β-covered by other LCP intervals given a constraint β on the β-covering degree

of a motif. From Definition 4.3, the determination of β-covering is based on the

α-covering degree. To identify the α-covering relations between instances, part

(2) αUncovered (Alg. 6) is described, which determines the nontrivial matching

instances of an LCP interval given a constraint on the α-covering degree be-

tween motifs. If an l-interval is β-uncovered, the instances of this interval form

a motif.
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4.4.1 Identify β-uncovered l-intervals for Discrete Time Series

In this section, I first discuss the determination of the β-uncovered intervals with

an assumption that α = 1 for the α-covering relation between instances. In sec-

tion 4.4.2, I introduce the α-covered algorithm and illustrate how to interactively

perform the β- and α-uncovered algorithms to identify the motifs.

In ESA, identifying LCP intervals is a bottom-up traversing process. When

an LCP interval is being processed, its child intervals have been identified, so

the child intervals can support the determination of β-covering of the LCP inter-

val. I distinguish the case of an LCP interval having a single character (the sin-

gleChar interval) with the case that the interval is comprised of more than one

character(the multiChar interval). I give Lemma 4.2 to identify the β-uncovered

multiChar intervals.

Lemma 4.2. Given an multiChar LCP interval lℓ-[i, j],its child intervals Θ, and the

lower bound of the occurrence times of motifs β ≥ 2, let λ = j − i + 1, lℓ is β-uncovered

by other l-intervals if any of the following conditions is satisfied:

1. |Θ| = 0, λ = β and bwttab[i, j] are pair-wise different, i.e., bwttab[i′] ,

bwttab[ j′],∀i′, j′ ∈ [i, j] and i′ , j′;

2. |Θ| = 0, and ∃σ1 , ... , σγ, σ1,...,γ ∈ bwttab[i... j], β < γ ≤ λ;

3. |Θ| > 0, ∃lℓ1-[w1, z1], lℓ1 ∈ Θ and λθ = z1 − w1 + 1 ≥ β, and ∃r1...rk ∈ [w1, z1]

and h1...hk ∈ [i, j] but < [w1, z1] that bwttab[r1] , bwttab[h1], ..., bwttab[rk] ,

bwttab[hk], k ≥ β.

4. |Θ| > 1, ∃mℓ1-[w1, z1], ...,mℓk-[wk, zk] ∈ Θ, k ≥ β, and mℓ1 , ...,mℓk are β-uncovered.
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Proof. 1. |Θ| = 0, so the characters after the LCP subsequences of lℓ are pair-

wise different, i.e., S [su f tab[i] + ℓ] , S [su f tab[ j] + ℓ]. Meanwhile, λ = β

and bwttab[i] , ... , bwttab[ j]. So the instances of lℓ are not covered by any

longer repeated sequences in S . Hence, lℓ is β-uncovered.

2. if γ > β, then at least β + 1 characters in bwttab[i, j] are different (assume

bwttab[k1] , bwttab[k2]); and as Θ = 0, the k1th and k2th LCP subsequences

are not covered by any longer subsequences of its child intervals. So lℓ is

β-uncovered.

3. assume lℓ have one child interval cθ, where λθ ≥ β, i ≤ wθ ≤ zθ ≤ j and λ > β.

(a)Assume λ = λθ, then lℓ = cθ, cθ is not a child interval of lℓ. Assumption

(a) is not true. (b) Assume λ − λθ < β, then there are λ − β instances of lℓ

covered by the instances of cθ, so interval lℓ is covered by interval cθ, and

lℓ is not a motif. Assumption (b) is not true. (c) as λ − λθ ≥ β, then there

are at least β instances of lℓ that are not covered by the instances of cθ. In

addition, ∃σ1 , ... , σγ, σ1,...,γ ∈ bwttab[i... j], β < γ ≤ λ, based on the proof

of (3), lℓ is β-uncovered.

4. if k = β, as mℓ1 , ...,mℓk are k motifs, the subsequences in all of the β intervals

are pair-wise different, so the interval lℓ, where ℓ < ℓ1, ..., ℓβ, cannot be

covered by any of {mℓ1 (as ∀|mℓt | ≥ β, t ∈ [1, k], t , 1), ..., mℓβ}, that is, the

interval lℓ cannot be individually covered by any of its k child motifs. So lℓ

is β-uncovered.

�

For singleChar intervals, the problem of determining their motif proper-

ty is to avoid finding a shorter singleChar motif β-covered by a longer sin-

gleChar motif. Lemma 4.3 shows how to determine if a singleChar interval
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is β-uncovered.

Lemma 4.3. Given a singleChar interval lℓ-[i, j] that its LCP subsequence, i.e.,

S [su f tab[i], su f tab[i] + ℓ − 1], is only comprised of one character (assume σ),

1. if lℓ does not have child intervals, i.e., |Θ| = 0 and ∃σ1 , ... , σγ, σ1,...,γ ∈

bwttab[i... j], β + 1 ≤ γ ≤ λ, then lℓ is β-uncovered;

2. if |Θ| > 0 and lθ-[w, z] ∈ Θ, that ∃σ1 , ... , σγ , σ and σ1,...,γ ∈ bwttab[w...z],

where γ > 0; and ∃[w
′
...z

′
] ⊂ [i.. j], z

′ −w
′
+ 1 ≥ β, and [w

′
...z

′
] is β-uncovered by

[w...z], where ∃σ′1 , ... , σ
′
γ′ , σ and σ′1,...,γ′ ∈ bwttab[w

′
...z

′
], γ′ > 0.

Proof. 1. As lℓ does not have child intervals, lℓ cannot be covered by an inter-

val comprising LCP subsequences of u
′
= S [su f tab[k1], ..., su f tab[k1]+ℓ

′−1],

where k1 ∈ [i, j], ℓ
′
> ℓ. In addition, as ∃σ1 , ... , σγ, σ1,...,γ ∈ bwttab[i... j], β+

1 ≤ γ ≤ λ(λ = j− i+ 1), lℓ cannot be covered by an interval comprising LCP

subsequences of u′′ = S [su f tab[k2] − 1, ..., su f tab[k2] − 1 + ℓ′′ − 1], where

k2 ∈ [i, j], ℓ′′ > ℓ. So lℓ is β-uncovered.

2. Assume u = S [su f tab[i]..su f tab[ j] + θ − 1] is the prefix of lℓ, and u′ =

S [su f tab[w]..su f tab[w] + θ − 1] is the prefix of lθ, and assume ∃σ1 ∈

bwttab[w..z] and ∃σ2 ∈ bwttab[w′, z′] that σ1 , σ and σ2 , σ, then (1) any

child interval θ cannot cover lℓ, since z′ − w′ + 1 ≥ 2; (2) I prove that un-

der condition 2 in Lemma 4.3, if lℓ is a singleChar interval with LCPs like

u = x...x︸︷︷︸
ℓ

, then @lθ (the strings of its singleChar LCP u′ = x...x︸︷︷︸
θ

, (θ > ℓ))

that cover lℓ. Assume exist such lθ, then the strings of the LCP of lθ in-

clude all the stings whose prefixes with length θ are u′, i.e., ∃k(= z − w + 1)

subsequences u ⊂ S , and there must be η(= k ∗ (θ − 1)) bwttabs that

bwttab[r1] = ... = bwttab[rη] = σ, η = z′ − w′ + 1 and k + η = j − i + 1;
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which means there must not exist σ′1,...,λ , σ, λ > 0 in bwttab[w′, z′]. This is

contradicting with condition 2 of Lemma4.3, so the second statement (2)

is correct. Combining statements (1) and (2), the singleChar interval lℓ is

β-uncovered given condition 2 of Lemma 4.3.

�

I use an example to explain Lemma 4.2 and Lemma 4.3. Table 4.3 shows a

LiSA of ’aceaceaceceeecccc’ with maxL = 6. If we set β = 2 and β = 2, we can

get an m-interval l6-[0, 1] since bwt[0] , bwt[1] (point 1 of Lemma 4.2); l-interval

l3-[0, 2] is not an m-interval, as bwt[1] = bwt[2], which means ace is β-covered by

eace (point 2 of Lemma 4.2); l-interval l3-[3, 4] is an m-interval (point 1 of Lemma

4.3); and l-interval l2-[3, 5] is not an m-interval, as it is covered by l3-[3, 4] (point

2 of Lemma 4.3).

Based on Lemma 4.2 and 4.3, I design the procedure of determining an LCP

interval being β-uncovered in Algorithm 3. The procedure sinChar() (line 3)

determines whether lℓ is a singleChar interval: if it is singleChar, return the

character, otherwise, return null. The singleChar status of l-intervals can be

determined in the construction process of the suffix array. countUniqChar() (line

4, Alg.4) calculates the number of different characters in bwttab[i, j]. If lℓ does

not have children (cd); it is a singleChar interval; and it has at least β different

characters (uc) other than the sc character, then lℓ is a motif (lines 7-8 in Alg.

3, point 1 in Lemma 4.3). If lℓ is a multiChar interval (sc == null) with more

than β unique characters, it is a motif (lines 7-8, point 2 in Lemma 4.2). For a

multiChar interval, if it at least has β children that are motif intervals (lℓ.mcd.sz),

then it is a motif (lines 10-12, point 4 in Lemma4.2). For each interval, I can

use a integer variable to keep the number of motifs of its children, and this
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integer value can be determined during the suffix array building process. Lines

13-18 are based on point 3 in Lemma 4.2, where cu represents the current child

interval; f cd is the first child interval; nt and la are respectively the next and

last child intervals of cu; and lb and rb are the left and right boundaries of an l-

interval. The procedure di fCharPair() (Line 14, Alg.5) compares a child interval

(cu) of lℓ with the other part of lℓ (l′), where l
′ includes the intervals not covered

by any child intervals of lℓ, and also the other child intervals apart from cu.

If there are at least two pair of different character pairs in bwttab[i, j], that is,

∃i1, i2, i3, i4 ∈ [i, j] that bwttab[i1] , bwttab[i2] and bwttab[i3] , bwttab[i4], then

cp← true.

Algorithm 4 calculates the number of different characters in an l-interval giv-

en that the interval is singleChar or multiChar (based on the value of sc). In line

2, if l
′ does not have children, traverse the index tab (e.g., i in Table 4.3) of L-

CP table from w to z, and count the index if bwttab[x] is different with the other

characters in bwttab[i, j] and different with the sc character (see the procedure

addCnt(c, cx) in lines 24-29). The addCnt() indicates that if l
′ is a multiChar inter-

val (sc = null and c , sc), or if it is a singleChar interval (without considering

the indexes with bwttab[x] = sc, i.e., c , sc), and the current character has not

happened in l
′ (!l′ .has(c)), then count once and record the character in l

′ . Lines

7-20 count the pair-wise different characters in each child of l
′ and in the indexes

uncovered by any of its child, where la is the child interval of l
′ before cu; nt is

the child interval after cu; and lb and rb are left and right bounds of an interval.

Lines 15 checks which character is in the current child interval cu. If cu is not a

singleChar interval or the character sc is not counted(c , sc in line 15), and the

character c occurs in cu but not in l
′ , then this character c is counted (line 16),

and is marked as happened in the interval l
′ (line 17).
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Algorithm 3: Identify β-uncovered l-intervals

1: procedure βUNCOVERED(lℓ-[i, j], mi, ma, bwt, β)

2: sz← j − i + 1

3: sc← sinChar(lℓ)

4: uc← countUniqChar(lℓ, singleChar)

5: if sz == mt & bwt[i, j] are pair-wise different then

6: return true

7: else if lℓ.cd == nul & (sc , nul & uc ≥ β||uc > β) then

8: return true

9: else

10: if lℓ.mcd.sz ≥ mt & sc == null then

11: return true

12: end if

13: for all cu ∈ lℓ.cd do

14: cp← cu.di fCharPair(cu, l
′
)

15: if cp || cu == f cd & i < lℓ. f cd.lb & cp || lℓ.cu.rb + 1 <

lℓ.nt.lb & cp || cu == la & lℓ.la.rb + 1 < lℓ.rb & cp then

16: return true

17: end if

18: end for

19: end if

20: return f alse

21: end procedure
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Algorithm 4: Count the number of different characters in an l-interval

1: procedure COUNTUNIQCHAR(l′-[w, z], sc)

2: if lℓ′ .children == null then

3: for all x ∈ [w, z] do

4: addCnt(bwt[x], x)

5: end for

6: else

7: for all cu ∈ lℓ′ .cd do

8: for all c ∈ bwttab[la.rb + 1...lℓ′ .rb] do

9: addCnt(c, cx)

10: end for

11: for all c ∈ bwttab[cu.rb + 1...nt.lb − 1] do

12: addCnt(c, cx)

13: end for

14: for all c ∈ S igma do

15: if c , sc & !lℓ′ .has(c) & cu.has(c) then

16: lℓ′ .cnt + +

17: lℓ′ .has(bwt[cx]) = true

18: end if

19: end for

20: end for

21: end if

22: return cnt

23: end procedure

24: procedure ADDCNT(c, cx)

25: if c , sc & !lℓ′ .has(c) then

26: lℓ′ .cnt + +

27: lℓ′ .has(bwt[cx]) = true

28: end if

29: end procedure
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Algorithm 5 calculates the different character pairs between one child inter-

val and the other part of lℓ. The inputs are two intervals (child intervals or lℓ’s

sub-intervals that are not covered by any child intervals of lℓ). lℓ is a motif if at

least mt different character pairs (cd) are identified (line 8, point 4 in Lemma4.2);

otherwise, count the next pair of characters in lℓ1 and lℓ2. In addition, if the cur-

rent interval lℓ is a singleChar interval (sc , nul), and its two child intervals lℓ1

and lℓ2 both have at least 1 character that is different with the sc character, then

lℓ is a motif (line 15-16, point 2 in Lemma4.3).

4.4.2 Identify α-uncovered Instances for Discrete Time Series

In section 4.3, I defined the concept of α-covering between instances of one in-

terval. For example, in a time series s = aceaceace, if we expect a motif of length

6, we may get a motif with two instances:
instance1︷ ︸︸ ︷
aceaceace︸ ︷︷ ︸

instance2

, where instance2 3-covers

instance1. To control the α-covering degree, I introduce two tabs: presu f and

nextsu f that respectively record the indexes of the previous suffix and the next

suffix for the current suffix. An example of the two tabs is shown in Table 4.3.

The values of pre and next can be determined during the process of building

suffix arrays, so it does not take extra time. The pre of the 0th suffix is −1 and

the next of the last suffix is length(s).

Algorithm 6 shows how to identify the α-uncovered instances of an m-motif.

In Algorithm 6, ∩ represents the overlapping part of two suffixes; s[r..] repre-

sents the suffix starting from position r. If the index of the suffix (ntS ) after

the current suffix (su f ) is in interval [a, b], and the overlapping length between

suffix s[su f tab[p]..] and suffix s[su f tab[ntS [p]]..] is less than the threshold val-
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Algorithm 5: Count different character pairs between two intervals

1: procedure DIFCHARPAIR(lℓ1, lℓ2)

2: cd = 0

3: for all c1 ∈ S igma do

4: for all c2 ∈ S igma & lℓ1.has(c1) & c , sc do

5: if c2 , sc & lℓ2.has(c2) & c1 , c2 then

6: cd + +

7: end if

8: if cd ≥ mt then

9: return true

10: else

11: break the inner for-loop

12: end if

13: end for

14: end for

15: if sc , nul & countUniqChar(lℓ1, sc) > 0 & countUniqChar(lℓ2, sc) > 0 then

16: return true

17: end if

18: return f alse

19: end procedure
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ue α, then the position su f [p] is recorded as a start position of an α-uncovered

instance (lines 10-11). If the overlapping length between suffix s[su f [p]..] and

suffix s[su f [ntS [p]]..] is over α, then continue checking the suffix after ntS [p],

until the checking step is over the maD (lines 8 to 15). As the LCP length of

the current interval is ℓ, if an instance is maD far from the current instance, it is

impossible that the two instances can α-cover each other. For each suffix, Algo-

rithm 6 checks its α-covering instances by only iterating the suffixes from start

positions afterwards. I temporally create an array (’visited’ in lines 5, 6, 9) for

the m-interval to record the visited status of each instance.

Algorithm 6 identifies α-uncovered instances given that the input interval

is β-uncovered in terms of α = 1. We can also interactively perform the algo-

rithms βUncover and αUncover to determine the β-uncovered motifs in terms

of different values of α by using the tab pre: in the process of βUncover, for each

instance of an l-interval, we check both its pre- (i.e. suffixes with prior starting

positions) and afterwards-suffixes simultaneously by using the chain-procedure

of Algorithm 6(for pre-suffixes, next can be simply replaced by pre). Specifically,

we check each line in [i, j] when bwttab[i.. j] is traversed in line 5 of Alg. 3, and

determine whether this instance is overlapping with its previous instances pre.

Remove it if it is overlapped with pre. In addition, in Alg. 4, we can check each

position in [i, j] in lines 3, 8 and 11, and remove this position if it is overlapped

with its previous instance. At last, only the instances that are not overlapping

with each other are used to decide if the current l-interval is βUncovered.
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Algorithm 6: Identify αUncovered l-intervals

1: procedure αUNCOVERED(α, mℓ-[a, b])

2: maD = ℓ − α + 1

3: for all p ∈ [a, b] do

4: if mℓ.visited then

5: P.add(p)

6: mℓ.visited = true

7: end if

8: while q ≤ maD do

9: if ntS [p] ∈ [a, b] & |s[su f [p]..] ∩ s[su f [ntS [p]]..]| < α then

10: P.add(p)

11: mℓ[p].visited = true

12: else if |s[su f [p]..] ∩ s[su f [ntS [p]]..]| ≥ α then

13: mℓ[p].visited = true

14: end if

15: end while

16: end for

17: return P

18: end procedure

4.4.3 Real Motif Identification for Continuous Time Series

After finding the βUncovered m-intervals for discrete time series, we need to

cluster again the instances in one interval given the distance threshold d and

based on the Euclidean distance between the real subsequences the instances

refer to. As the current instance group is much smaller than the group of all
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time series subsequences, and the instances in this group are already very sim-

ilar to each other after conducting the ’βUncover’ grouping, this second-time

instance clustering process would be much faster than directly conducting the

real subsequence clustering. We can use the classical clustering methods like

Hierarchic or k-means. To improve the distance calculation efficiency, a num-

ber of pruning procedures can be applied. For example, a simple one is to only

cluster the middle points of the instances. The ’early abandoning’ [158] is an-

other procedure that stops summing up the squared differences between two

instances when the cumulative sum becomes larger than the distance threshold

d, which avoids calculating the whole time series to improve the speed.

4.5 Performance Evaluation and Complexity Analysis

In this section, I present the experimental results to show the efficiency of

LiSAM. I insert patterns to random time series generated by gaussian white

noise, and quantitatively measure the algorithm performance on the simulated

data sets, in terms of the overlapping degree between the planted pattern and

the discovered pattern of a time series (represented as old). In addition, time

and space complexities of the proposed algorithm are analyzed. Our experi-

ments are conducted on a windows 64-bit system with 3.2GHz CPU and 4 GB

RAM, and is implemented by Java.
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4.5.1 Accuracy and Inner Quality of Motifs

I extract patterns from six different ECG data streams, repeat each pattern 30

times and insert the repeated patterns to Gaussian white noise data streams sep-

arately. The information of the extracted patterns and the parameter settings is

shown in Table 4.4. The first three datasets are from the UCR Time Series Clas-

sification Archive [40], and the other three are from the Physionet [75]. Particu-

larly, the nL is the length of a piece of noise subsequence between two pieces of

a pattern. I use the fixed-length intervals (i.e., length of noise subsequences) be-

tween two pattern subsequences to make the annotation of the pattern instances

easy. Column sL sets the parameters of the SAX-based symbol conversion, rep-

resenting the length of a subsequence that corresponds to a symbol. Columns

maxM set the upper bounds of the lengths of the discovered patterns. The lower

bounds of the lengths of the discovered patterns for all datasets are set as 10.

I use old to measure the accuracy of the discovered motifs, which represents

the overlapping degree between the inserted pattern (pi) and the discovered

pattern (d j): old =
∑

i
∑

j overlap(pi,d j)
length(plantedPattern) . The old values for each of the simulated ECG

time series are shown in Table 4.4. I can see that the proposed motif discovery

algorithm can identify the inserted patterns with very high accuracy (all over

0.9). I compare the shapes of the planted patterns and the discovered motifs in

each of the six time series in Fig. 4.4. In addition, I use the average pair-wise

distances among instances (represented as inDis) of a motif to measure the dis-

similarity degree of the instances of one discovered motif (e.g., motif m), which

is calculated as: inDis(m) =
∑

i, j dis(mi,m j)
m.len∗m.size , where mi and m j represent the ith and jth

instances of m; and m.len is the length of this motif; m.size is the number of its

instances, and dis is the Euclidean distance function. The average inDis value
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Table 4.3: Pre and Nextsuf

i pre next suf bwt sel.

0 -1 6 0 - aceace

1 11 7 6 e aceace

2 12 8 3 e acecee

3 13 4 0 e cccc∼

4 3 5 3 c ccc∼

5 4 10 2 c cc∼

6 0 11 1 a ceacea

7 1 12 5 a ceacec

8 2 14 2 a ceceee

9 14 16 2 e ceeecc

10 5 17 1 c c∼

11 6 1 0 c eaceac

12 7 2 4 c eacece

13 15 3 1 e ecccc∼

14 8 9 2 c eceeec

15 16 13 1 e eecccc

16 9 15 2 c eeeccc

17 10 18 0 c ∼
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Table 4.4: Parameter Settings of Datasets

Datasets nL sL maxM

ECG200 50 2 100

ECGfivedays 50 2 140

ECGtorse 100 10 1640

ECGtwa01 150 3 300

ECGsvdb800 150 2 170

ECGmitdb100 150 2 150

LTDB14134 - 2 150

SVDB800 - 2 150

AHADB0001 - 2 120

CARTI01 - 2 100

of each time series is shown in Table 4.4, and the distance distribution of each

instance pair of the most frequent motif for each dataset is shown in Fig. 4.5. I

can see that the instances of one motif for each datasets are very close to each

other, all of which have less than 0.1 average instance dis-similarities.

Based on the settings shown in Table 4.4, I validate the performance of OLD,

InDis, and shows the identified Number of Motifs (NOM) in terms of a range

of β values. The validation results are shown in Table 4.5. I can see that for

each Datasets, when the value of β is in a certain range, the highest performance

of OLD and InDis, and the number of NOM do not change. For example, for
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Figure 4.4: Planted patterns and discovered motifs

dataset ECG200, when β ∈ [2, 100], OLDmax = 0.99, InDismin = 0.0076, and 46 mo-

tifs are identified; whereas, when β > 100, the LiSAM cannot find motifs, and

the performance of OLD and InDis is worst. I can see from the performance of

ECGmitdb100, the NOM changes when the β changes, while the highest perfor-

mance of OLD and InDis keeps at a certain level, which means the change of β

and NOM does not influence the highest performance of the identified motifs.

4.5.2 Pattern Discovery on Real Datasets

I use the proposed SAMOF algorithm to identify the most frequent pattern-

s in four real ECG datasets: the MIT-BIH Long Term Database (LTDB), the
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Table 4.5: OLD, InDis, and NOM in terms of β

Datasets β OLD InDis NOM

ECG200
2 ∼ 100 0.9892 0.0076 46

> 100 0 1 0

ECGfivedays

2 ∼ 98 0.9923 0.0041 39

99 ∼ 200 0.9923 0.0041 1

> 200 0 1 0

ECGtorse
2 ∼ 12 0.9939 0 4

> 12 0 1 0

ECGtwa01
2 ∼ 99 0.9933 0.0086 5

> 12 0 1 0

ECGsvdb800

2 0.9923 0.0056 2

3, 4 0.9923 0.0134 1

> 4 0 1 0

ECGmitdb100

2 0.9966 0.0038 3

3 0.9966 0.007 2

4 0.9966 0.007 1

> 4 0 1 0
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Figure 4.5: Distance distributions of instance pairs of the most frequent
motif for six datasets

Supraventricular Arrhythmia Database (SVDB), the American Heart Associa-

tion Database (AHADB), and the St. Petersburg INCART Arrhythmia Database

(CART) [75]. Their information is listed in the bottom part of Table 4.4. For each

dataset, I conduct pattern recognition in the first 30000 samples (1:30000). I dis-

cover the most frequent motifs for each datasets, and present the motifs in Fig.

4.6.
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Figure 4.6: Discovered most frequent motifs of four real datasets

4.5.3 Time and Space Complexity Analysis

Time Complexity

The LiSAM mainly contains three steps: 1) discrete the time series based on

SAX; 2) establish suffix array for the discrete time series and traverse the suffix

array to find the LCP intervals; 3) determine the β-uncovered l-intervals.

If the length of a time series is N, the first step of time series discretion takes

ON time. After discretion, if there are n symbols, the maximum time taken to

build and traverse the suffix array (step 2) is n + n = 2n. The main part of Step 3

is the process of Algorithm 3.

For an LCP interval lℓ− [i, j], the hasS ingleChar function can be implemented

during the suffix array construction process (line 3 in Alg.3). countUniqChar()
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function (line 7 in Alg.3, and Alg.4) takes maximum time z× r, where sz = |w− z|

is the size of a child interval of lℓ, and r is the number of symbols in Σ. The three

’for-loop’s in lines 6-8 in Alg.4 are actually a traverse of the index tab in [w, z]. As

r is a constant normally less than 10, the O(Alg.4)) = O(sz). The time complexity

of function compInterv() depends on the interval size sz and the complexity of

countUniqChar(), so it is O(sz). Then the worst time complexity of LiSAM is

O(LiS AM) = O(N + m0 × sz0 + m1 × sz1 + · · · + mK × szK).

I may intuitively believe that the worst time complexity of LiSAM is O(N +

n3). However, the values of K, m, and sz are interrelated with each other to influ-

ence the O(LiS AM). Lemma 4.4 gives their relations. I always exclude singleton

intervals SI whenever I mention the l-intervals and their child intervals.

Lemma 4.4. Given a discrete time series S with length n, and an LCP tree LT of S ,

1. S has maximum n − 1 l-intervals, i.e., max(K) = n − 1, each LCP interval has at

most 2 child non-singleton intervals (abbr. NSI), i.e., m ≤ 2, and the max(sz) =

n − 1.

2. S has minimum 1 l-interval (i.e., the root interval l-[0..n-1]) that has 0 child NSI.

Other than this case, the number of l-intervals of an LCP tree is a decreasing

function of the child number of each LCP interval. That is, K = f ( 1
ck

), where ck is

the child number of the kth interval.

3. given an lℓ-[i, j], the number of its child intervals m is a decreasing function for

the sizes of its child intervals: m = f ( 1
sz),

Proof. I describe the problem of counting the LCP intervals as a problem of pick-

ing up elements from a set (see Fig. 4.7). There are n sequential elements in S .

Each time I remove any two adjacent elements (e.g., ei, ei+1 in S n) from S and
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combine these two elements as one new elements (ei..i+1), and put this new ele-

ments back to S . For example, S n−1 in Figure 4.7 represents the S after the first

time combination, and the number of elements in S n−1 is n − 1. I continue this

process until there is only one element in S 1: e1..n. In this process, I need to con-

duct the combination n− 1 times in total. And each time I can combine both S Is

and NS Is. I can see that each combination forms a new NS I, and this NS I has

at most two NS I children. For the gth combination, there are n − g elements in

the set S n−g, g = 1, ..., n − 1. A child interval lℓ′ -[w, z] of any l-intervals in LT has

size n − 1 when it is after the (n − 2)th combination: lℓ′ -[1, n − 1], which is the

maximum size of a child interval.

I then prove that n − 1 is the maximum number of NS I in LT . If I remove k

(k > 2) elements from S n−1, ..., S n−w, where w ≥ 1 and 1, ...,w are not necessarily

adjacent, and I remove 2 elements from S n−v,∀v ∈ [1, n − 1], and v , 1, ...,w,

then after w times combinations, it remains n − w × k elements in S n−(w), and

requires n − w × k − 1 times combination. So the overall combination times is

t = n− 1− k(w− 1), as k > 2 and w > 1, so t < n− 1 = max(K). I call the behavior of

combining more than one elements at one time as multi-combination (statement

1). This proof also indicates that as long as multi-combination happens (once or

more than once and at any positions), the total number of LCP intervals will be

decreased. Hence, the number of LCP interval is a decreasing function of the

child number of each interval (statement 2).

Statement 3 is definite. When [i, j] is fixed, as the child intervals of lℓ cannot

be overlap with each other, the increase of m will result in the decrease of z. �

Based on Lemma 4.4, it has very low possibility thatO(LiS AM) reachesO(N+

n3). I consider two extreme cases:
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Figure 4.7: Number of LCP intervals

• Assume S has maximum number of LCP intervals n − 1, the root interval

ln−1 has sz0 = n − 1, and each interval (ln−1, · · · , l1) has max(m) = 2, then the

time complexity of LiSAM is O(LiS AM) = O(N + (n − 1) × 2 + · · · + 2 × 2) =

O(N + n);

• Assume C is a child interval of an l-interval in LT , has sz = n − 2, and has

m = ⌊n−1
2 ⌋NSI children, then C is the only child of the root interval [0, n−1],

K = 2 + m, and each child of C has sz = 2 and has 0 children, then the time

complexity is O(N + 1 × m × (n − 1) + m × 2) = O(N + n2).

If S is highly compressed compared with T (i.e., N ≫ n), the time complexity of

LiSAM can be improved dramatically.

Space Complexity

For the space efficiency, I mainly need to keep three types of information in

LiSAM: the raw time series T , the discrete time series S and the LCP table, which

consumes O(N + n + c ∗ n) space, where N is the length of T , n is the length of

S , and c is a constant that count the number of tabs in the LCP table. Therefore,

LiSAM has O(N + n) space complexity, and when N ≫ n, it becomes to O(N).

98



4.6 Summary

In this chapter, I proposed an algorithm LiSAM to identify different-length mo-

tifs of time series. By converting the raw time series into symbolized time se-

ries, I group the symbolized subsequences as approximate motifs. I focused on

resolving two important problems: releasing the constraints of trivial matching

between subsequences with different lengths and improving the time and space

efficiency. I proposed two covering relations: α-covering between instances of

l-intervals and β-covering between l-intervals to support the motif discovery. I

used the LiSAM algorithm to identify the β-uncovered l-intervals, and I intro-

duced two LCP tabs: presu f and nextsu f to support the identification of the

α-uncovered instances of an l-interval. In general, the time and space complex-

ities of LiSAM are O(N + n2) and O(N) respectively. When N ≫ n, the time

complexities of LiSAM can reach O(N), where N is the length of the raw time

series T , and n is the length of the discrete time series S . Experimental results

showed the high accuracy of LiSAM on finding different-length motifs.

LiSAM provides an approximate and time&space-efficient way of identi-

fying different-length motifs of static time series, which can be used in rule-

learning and feature summarization of time series to support decision making

process. In the future, I am going to take further steps on motif identification:

identifying motifs in real-time time series, and identifying motifs with similar

shapes but with different lengths in terms of the time scale, which are both dif-

ficult and important problems in time series mining area.
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Part II

Part II: Selecting Cloud Services for

Building Medical Sensor-clouds
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In Part I, I discussed the data stream mining techniques of both anomaly

detection and motif identification in single variate data streams. Respectively, I

proposed a supervised anomaly detection method, and an unsupervised motif

identification method for Medical time series.

With the advent of a large amount of medical data streams, Cloud comput-

ing has been an effective way to improve the computational and storage efficien-

cies for processing big medical data sets. The first step of moving the existing

data stream mining techniques to the Cloud computing paradigm is to choose

the appropriate Cloud service providers. In this part, I will introduce two de-

cision making methods that help Cloud users make informed decisions on s-

electing Cloud services. The first Cloud service selection method Cloud-FuSeR

focuses on processing the fuzzy information in a Cloud service selection, while

the second method mainly deals with the influence of the interdependencies

among Cloud service evaluation criteria on decision making of Cloud service

selection.
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CHAPTER 5

CLOUD-FUSER: FUZZY ONTOLOGY AND MCDM BASED CLOUD

SERVICE SELECTION

Selecting accurate cloud services to fulfill the need for ordinary cloud user-

s has become a significant challenge. As Cloud service environments encom-

pass many uncertainties that may hinder users to make sound decisions, it

is highly desirable to handle fuzzy information when choosing a suitable ser-

vice in an uncertain environment. In this chapter, I describe a novel fuzzy

decision-making framework that improves the existing Cloud service selection

techniques. In particular, I build a fuzzy ontology to model the uncertain re-

lationships between objects in databases for service matching, and present a

novel analytic hierarchy process approach to calculate the semantic similarity

between concepts. I also present a multi-criteria decision-making technique to

rank Cloud services. Furthermore, I conduct extensive experiments to evaluate

the performance of the fuzzy ontology-based similarity matching. The experi-

mental results show the efficiency of the proposed method.

5.1 Introduction

With the proliferation of a range of Cloud services over the Internet, efficient

and accurate service selection based on user-specific requirements has become

a significant challenge for decision makers and Cloud consumers [72]. Vari-

ous decision-making methods are applied to help service users to find the most

appropriate services [196]. However, a service selection environment may en-

compass many uncertainties, which may hinder the ability of decision makers

to make sound decisions.
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Consider a Cloud service selection scenario [96] in which a service user is

looking for an online Cloud storage service with high security requirements.

In the Cloud market, two types of storage services meet the user’s require-

ments: normal storage services without an encryption function and secured

storage services with advanced encryption tools. There are three options for

the user to choose from: a) a standard storage service without extra data en-

cryption, b) a standard storage service with an encryption service from another

service provider (e.g. TrueCrypt [212]), and c) a secured storage service (e.g.

Spideroak [192]). Option a may be priced the lowest but have the worst secu-

rity guarantee. Option b may provide the highest level of security but be the

most costly and the easiest to use (because the user has to configure the secu-

rity service and encrypt the data himself). Option c may support a lower level

of security than Option b, but can be used in a more convenient way. It is d-

ifficult for the user (especially a non-professional) to compare such options in

this multi-criteria scenario of vague expressions and un-quantified evaluation

factors (e.g. high security and greater convenience). Therefore, an efficient

and accurate decision-making approach is highly desirable to guarantee that

the chosen services work well in all possible cases, given the uncertainty [27]. I

analyze the fundamental problems that need to be resolved in designing such a

Cloud service selection system as below:

Problem 1. Why should we study the problems of Cloud service selection?

Web service selection has been explored for over 10 years. Some Web service

selection techniques are being applied to the Cloud service area. However, can

we say that it is worthless studying Cloud service selection given the mature

techniques of Web service selection ?
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To select a service, service users are usually concerned with service function-

s and Quality of Services (QoS). Web services are software services [87]. For a

set of Web services with similar functions, service requestors choose services

based on their QoS ratings. Compared with Web services, the process of Cloud

service selection is more complicated due to the following reasons: a) Cloud

services include not only software services (SaaS), but also IaaS and PaaS [109].

When selecting services for a service composition task, Cloud service selection

techniques should consider both the composition between services at the same

level (e.g., SaaS) and the composition between services at different levels (e.g.,

SaaS and PaaS); b) A company user may need to choose the right deployment

model (i.e., private, public and hybrid) to adapting the size and the usage pur-

pose of the organization. Business objectives may be a deterministic factor for

a company user making decisions on using Clouds; c) Compared with Web ser-

vice selection, balancing benefits and risks is much more difficult for a Cloud

user composing services from different providers based on a hybrid deploy-

ment model; d) Other than the common QoS (e.g., availability and throughput),

Web and Cloud service users focus on different service evaluation dimensions.

For example, a Cloud user should be concerned more with the interoperability

[193] of a Cloud service to enable flexible data management among heteroge-

neous hardware; e) As most Cloud users (especially enterprise users) expect a

long-term and stable relation with a Cloud service provider, rating factors of

Cloud providers should also be defined, such as financial stability, experience

and technical expertise of the service provider [193]. �

From the above discussion, the problems faced by a Cloud selection system

vary greatly from the problems to be solved by Web service selection techniques.
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Problem 2. How to find Cloud services with the user-expected functions

given the fuzzy expressions of user requirements?

In the Cloud area, it is more difficult for decision makers to make informed

decisions on service usage because of the diversification of service types and

the lack of service-publication standards [162]. Defining a common ontology

with high extensibility has been widely accepted as a reasonable approach to

solve this kind of problems [120]. Ontology is a conceptual framework that

models domain knowledge into a format that is both human- and machine-

readable [140]. Crisp ontology cannot represent uncertain information or pro-

cess uncertain reasoning. Several fuzzy ontologies for different domains have

been proposed [27, 206, 120]. Nonetheless, little attention has been paid to fuzzy

ontology for Cloud service selection. Based on a rigorous survey in this area, I

conclude that it is necessary to build a fuzzy ontology to support Cloud users’

needs: a) compared to Web services, Cloud services are more heterogeneous,

e.g., a variety of terms are used by different providers to describe the same con-

cepts; b) there is no normalization of Cloud service descriptions serving differ-

ent kinds of users; c) there is usually limited concern for the interdependency of

criteria (e.g., compensation and dominance [183]) in the Cloud service selection

area. �

Another key issue for service selection is that the candidate services are

generally evaluated by multiple criteria [186], e.g., Quality-of-service (QoS),

provider reputation, and service price. Multi-criteria decision-making (MCDM)

techniques are proposed to handle MCDM problems [93]. The analytic hierar-

chy process (AHP) [66] and the technique for order performance by similarity

to ideal solution (TOPSIS) [37] are two of the most widely applied MCDM ap-
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proaches.

Problem 3. How to combine the MCDM techniques with the fuzzification

and defuzzification techniques to rank Cloud services based on the fuzzy infor-

mation of the performance of the service non-functional performance and the

fuzzy information of user preference on the non-functional properties?

To handle fuzziness, fuzzy AHP and fuzzy TOPSIS have both been studied

and applied to various domains. However, there are still problems in this area

that require further study. Three key points are identified here: a) Different

defuzzification techniques are usually employed to simplify the inference pro-

cess, where linguistic variables are defuzzified before complicated operations

are conducted (e.g. Eigenvector calculation in AHP). In this way, computa-

tional efficiency can be enhanced. Nevertheless, a large amount of information

used to capture the uncertainty will be lost and the rationality of defining fuzzy

variables is therefore reduced [215]. b) In contrast, there are also approaches

[211, 24]that retain the fuzziness of fuzzy variables in the whole inference pro-

cess, which can provide results with fuzzy rating values. The techniques of

ranking fuzzy variables are emphasized in this situation. One of the problems

encountered by this kind of approach is that enclosing a wide range of fuzzy

information in complicated computational steps (e.g. fuzzy number multiplica-

tion) may cause the exaggerated support of a fuzzy number [123], which can

result in reduced accuracy in decision-making. Also, Chen et al. [18] have stated

that it is highly time-consuming to perform complicated fuzzy number arith-

metic operations and linguistic approximations. c) The risk attitude of decision

makers can greatly affect the decision-making results. The subjective judge-

ment and preference of decision makers can significantly influence the ranking
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results [39]. �

Against the above problems, I propose a Fuzzy User-oriented Cloud S-

eRvice Selection System (Cloud-FuSeR) that is capable of dealing with fuzzy

information and rating Cloud services by considering three aspects: (1) the sim-

ilarities between user-required functions and the service functions provided by

Cloud providers, (2) the performance of the non-function properties, and (3) the

user preference on different properties.

This work has the following distinctive contributions:

• I build a fuzzy Cloud ontology to support the functional similarity calcu-

lation, which defines the concept taxonomies of Cloud services and the

properties of Cloud services, and quantifies the relations among concepts

and between concepts and properties;

• I define fuzzy functions to quantify the performance of the non-functional

properties and the user preference on different properties, and employ

a fuzzy-AHP and fuzzy-TOPSIS techniques to weight the non-functional

properties based on the user preference and to measure the service non-

functional performance;

• I compare the performance of a variety of fuzzification, defuzzification,

and distance calculation techniques for solving Cloud service selection

problems. I conduct comprehensive experiments to show the influence

of the different techniques and the risk attitudes of service users on deal-

ing with the fuzzy service information, and identify the techniques that

can achieve a best trade-off between the time efficiency and computation-

al accuracy.
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The rest of the chapter is structured as follows: Section 5.2 introduces the

related work. Section 5.3 describes the main structure of Cloud-FuSeR.It gives

the definition of fuzzy service selection ontology, fuzzy lightweight similarity

model, and bipartite-based service function-matching process, and introduces

a fuzzy AHP criterion weighting approach and a fuzzy TOPSIS service rating

approach. Simulation and experiment results are shown in Section 5.4. In sec-

tion 5.5, I describe a case study of Cloud storage service selection to show the

efficiency of Cloud-FuSeR. Section 5.6 concludes this chapter.

5.2 Literature Review

The issue of Cloud service selection has been the research focus of academia and

industry for a few years [196].

There are a number of Ontologies that were designed to support functional

querying of Cloud services [11]. Jrad et al. [100] proposed a semantic matching

approach to evaluate Cloud resources and select the Cloud services or service

compositions with respect to the user requirements and Cloud properties. Two

types of ontology model are designed to support the Cloud service matching: a

user requirement ontology and a service description ontology, both of which in-

clude the concepts of functional and non-functional (e.g., QoS and price) Cloud

properties. Di Martino et al. [52] introduced an ontology that classify and cate-

gorize the functional concepts of Cloud services and virtual appliances. Though

the ontologies in both the above work model Cloud service concepts and prop-

erties, they does not support the processing of fuzzy information of Cloud ser-

vices.
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The Cloud Services Measurement Initiative Consortium (CSMIC) [187] de-

veloped the Service Measurement Index (SMI), a standard measurement frame-

work to measure the profits and costs of Cloud services. Based on the SMI ma-

trices, Garg et al. [71] designed an AHP-based framework ’SMICloud’ that sup-

ports the Cloud consumers to compare Cloud services. Liu et al. [141] applied

utility theory to determine the service components in a service composition pro-

cess. Zhang et al. [232] developed an AHP approach that supports the real-time

QoS performance evaluation. These work is not capable of handling the fuzzy

information (e.g., subjective user expressions or vague service descriptions of

service providers) in a Cloud service selection process, which will be solved by

our work.

In service area, some researchers applied fuzzy techniques to endeavour a

robust service selection system. Techniques to combine the fuzzy set theory

with ontologies have been applied in a range of Web service areas [46, 121, 213,

36, 199]. In our work, I will apply the fuzzy set theory to a Cloud service on-

tology. In addition, there are research work combining fuzzy techniques with

multi-criteria decision making (MCDM) techniques for Cloud service selection

[60, 172, 169]. Qu et al. [170] introduced a framework of assessing Cloud ser-

vices based on the subjective feedback of cloud users and the objective evalu-

ation of cloud performance from a trusted third party. Tajvidi et al. [201] de-

signed a comprehensive fuzzy Cloud service selection framework to validate

the service configuration information, collect real-time QoS measurement data,

and deal with consumers’ vague QoS perception. These methods conduct de-

fuzzification at the very beginning (i.e.before conducting complex calculations,

such as Eigenvector calculation), which may cause extensive information loss

and therefore decrease the rationality of the adoption of fuzzy theories. Some
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methods [119, 45] attempt to avoid this problem by retaining the fuzziness in

the main processing steps.

5.3 Fuzzy User-oriented Cloud Service Selection System:

Cloud-FuSeR

The Cloud-FuSeR is a Cloud service selection system that recommends top-K

Cloud services with user-expected functions and with the highest services’ non-

functional performance given user preference on non-functional properties. I

introduce the details of Cloud-FuSeR in this section. An overview of the work

flow of Cloud-FuSeR is shown in Figure 5.1. A fuzzy Cloud ontology and a

Cloud service repository are built in the pre-processing stage. In step 1, the

pair-wise semantic similarities among concepts are calculated through the Fuzzy

lightweight semantic model and are kept in the Concept similarity repository. In step

2, the Cloud services (in the CloudServiceRepository) are filtered by the functional

matching component: the Bipatite Model to find the top-K Cloud services having

functions most similar to the user-required functions. Step 3 processes fuzzy

user preference on non-function properties by using a fuzzy AHP technique to

determine the weights of each property. The fuzzy TOPSIS component in step

4 accepts three types of input data: the top-K services with optimal function

matchings, the performance of non-function properties of the top-K services,

and the property weights. It outputs a sequence of ordered top-K services that

are ranked based on the three types of input data.

110



Figure 5.1: Workflow of Cloud-FuSeR

5.3.1 Service Function Matching based on Fuzzy Cloud Ontol-

ogy

In this section, I introduce a novel fuzzy ontology for service matching. I first

define a fuzzy ontology and then give an example of fuzzy cloud storage on-

tology. After describing similarity calculation between two fuzzy concepts, I

present detailed steps for selecting services.

Definition of Fuzzy Cloud Ontology

In this section, I use fuzzy variables to model the relationship between service

concepts and the relationship between service concepts and service properties.

The proposed ontology model has the following unique features compared with

existing fuzzy ontologies: a) it is specific to the domain of Cloud service selec-

tion and capable to capture interdependencies between the evaluation criteria

of concepts; b) expert-assigned weights are used to establish the fuzzy relations

between functional concepts, and between functional concepts and criteria con-

cepts. What is more, the proposed model supports a top-to-bottom hierarchical

progress of service selection and forms the basis of service selection framework.
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Definition 5.1. A fuzzy ontology is defined as Ô =< Ĉ, P̂, Î >. P̂ = D̂P ∪ ÔP is a set

of fuzzy properties; D̂P refers to fuzzy datatype properties and ÔP represents a set of

fuzzy object properties. D̂P = { fd}, where d is a datatype property with fuzzy value fd.

OP = { fQ(c)}, where Q is an object property of concept c ∈ C in the degree of fQ. Îis a

set of fuzzy instances; Î = { fi(c)}, where i is an instance of the concept c in the degree of

fi.

Example 5.1. Assume property serviceResponseTime is an evaluation criterion of

Cloud service ServiceMonitoring, and the importance degree of serviceResponse-

Time for evaluating the ServiceMonitoring service is 0.75, then we say that d =

serviceResponseT ime is a datatype property of class ServiceMonitoring with fd = 0.75.

Definition 5.2. Assume {Ai, i = 1, · · · , n}, F ∈ C, and Ai are sub-classes of F, i.e.

Ai ⊂ F, Pi = { fp j(Ai), j = 1 · · ·m} is a set of m fuzzy properties with respect to Ai, then

PF = {∩(Pi)} = min{ fp j(A1), fp j(A2), · · · fp j(An), j = 1, · · · ,m}.

Example 5.2. Assume class ServiceMonitoring has two subclasses: RealUserMonitor-

ing and SyntheticMonitoring. Property serviceResponseTime is an evaluation criterion

for both subclasses. The importance degree of serviceResponseTime for evaluating the

RealUserMonitoring service is 0.75, and for evaluating the SyntheticMonitoring ser-

vice is 0.95. Then serviceResponseTime is also an evaluation property for class Service-

Monitoring with importance degree 0.75.

Definition 5.3. Assume A, B ∈ C, QAB is an object property of A with the range B, and

fQAB(A) ∈ ÔP. If fb(B) ∈ Î, then fQAb(A) = min{ fQAB(A), fb(B)}.

Example 5.3. Assume hasFunctionalProperty is an object property of the class Stor-

ageService. A concept NetworkManagement is a function of a storage service in a degree

of 0.89. Concept DataTransferManagement is an instance of the concept NetworkMan-

agement in a degree of 0.95. Then the concept DataTransferManagement is the value of

the object property hasFunctionalProperty in the degree of 0.89.
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Definition 5.4. If object property q1 and object property q2 are the domain and range

of an inverseOf property, then fq1(q2) = fq2(q1).

Example 5.4. Assume Is-part-of and Comprise are two object properties between the

classes Replication and StorageService, if in 80% cases, the objects of Replication is a

constitute function of the objects of StorageService, then I can say that Replication is

part of StorageService in a degree of 0.8, and the degree the StorageService comprises

Replication is 0.8.

Definition 5.5. If an object property q is a transitive property among concepts A, B,

and C with in different degrees, i.e., the pair (A, B) is an instance of q in a degree of

fq(A, B), and the pair (B,C) is an instance of q in a degree of fq(B,C), then the pair

(A,C) is an instance of q in a degree of fq(A,C) = min( fq(A, B), fq(B,C)).

Example 5.5. InternetTransfer is a subclass of DataTransfer in a degree of 0.99, and

DataTransfer is a subclass of DataManagement in a degree of 0.9, then InternetTransfer

is a subclass of DataManagement in a degree of 0.9.

Theorem 5.1. Assume {Bi, i = 1, · · · , n} ⊂ A. If fBi(b) ∈ Î, then fA(b) ∈ Î and

fA(b) = max{ fBi(b)}.

Proof. Let fm = max{ fBi(b)}. If fA > fm, then ∃C ⊂ A, and b ∈ C in a degree of

fC = fA and fC > fm, hence fm , max{ fi}. If fA < fm, then ∃Bk ⊂ A, fk = fm; let

fA = 0, then fk > 0, i.e., b ∈ Bk and b < A, then Bk 1 A. Hence, fA = fm. �

An Example of Fuzzy Ontology: Fuzzy Cloud Storage Ontology

Figure 5.2 shows an example of fuzzy Cloud service ontology. It contains a tax-

onomy of concepts of Cloud service functionalities (represented by rectangles),
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Figure 5.2: A fuzzy Cloud storage ontology

evaluation properties of the concepts (represented by ellipses), and instances of

the functionalities. Two types of fuzzy relationship are highlighted in Figure 5.2:

the relationship between service functions and properties (namely, the fuzzy e-

valuation relationship (FER) or fuzzy expert preference (FEP)), and the interde-

pendent relationship between properties (namely, the fuzzy interdependency

relationship, FIR). FER implies the importance degree of an evaluation property

with respect to the performance of a function. For example, support services are

defined to be rated by two properties: the number of types of support service

(e.g., online support, phone support, technical support, and document support)

and the response speed of the support service. Interesting readers may refer to

[195] for the detailed structure of the fuzzy Cloud storage ontology.

To determine FEP, i.e., the importance degree of criteria for different func-

tions, the relative weights of criteria are assessed by conducting expert inter-

views. This method will also be used to identify user preferences on criteria

(namely fuzzy user preference, FUP) when conducting the QoS-based ranking

of Cloud services. The details to determine these two types of fuzzy relationship
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Figure 5.3: Bipartite graph

are given in Section 5.3.1. FIR is evaluated automatically using tfidf weighting

schema and the cosine correlation similarity measurement method. Figure 5.2

shows the interdependency rate of the criteria with respect to the three func-

tions.

A Fuzzy Lightweight Semantic Model for Service-function-similarity Calcu-

lation

This section describes a fuzzy lightweight semantic model (F-lightweight in

abbreviation) which is an extension of our previous work: a context-aware

lightweight similarity model (C-lightweight in abbreviation) [53]. The C-

lightweight model deals with similarity matching with precise information,

combining the ontology structure and the context of ontology concepts and re-

lationships. For further details on the lightweight semantic model, readers can

refer to [53]. The F-lightweight model improves the C-lightweight model by

integrating the fuzzy pseudo-concepts and fuzzy relationships.

The pseudo-concept is extended to a fuzzy pseudo-concept and its represen-

tation form is shown in formula 5.1.

ζ f = {C f , [δi, γδi], [o j, γo j], [C
x
f ,o j
, dx

j ], λ
y
o j
} (5.1)

where C f is a fuzzy concept in a fuzzy ontology; δi is a datatype property of the
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concept C f ; γδi is a restriction for δi; o j is an object property and γo j is a restriction

for o j. Cx
f ,o j

(x = 1, · · · , k) is a concept related by the object property o j; dx
j is the

degree of the object property o j being a relationship between concept C f and

fuzzy concept Cx
f ,o j

, and λy
o j(y = 1, · · · , k − 1) is a Boolean operation between

concepts Cx
f ,o j

. For example, in the service selection ontology, if a functional

concept fi has an object property criterion C j, then d j
x reflects the importance

degree of C j for the evaluation of concept fi.

The similarity degree between two fuzzy concepts based on the pseudo-

concepts and the lightweight structure is represented by the formula 5.2.

sim f (C f1 ,C f2) = (1 − β) × sim f−cos(ζ f1 , ζ f2)+

β × |sim f−Resnik(ζ f1 , ζ f2)| (5.2)

, where sim f−cos(ζ f1 , ζ f2) is cosine correlation between pseudo-concepts ζ f1 and ζ f2 .

The fuzzy Resnik similarity model for fuzzy pseudo-concepts is defined as

in formula 5.3.

sim f−Resnik(ζ f1 , ζ f2) =
maxζ f ∈s(ζ f1 ,ζ f2 )[−log(P(ζ f )∗dint(ζ f ))]

maxζ f ∈θ f [−log(P(ζ f )∗dint(ζ f ))] , ζ f1 , ζ f2

1, ζ f1 = ζ f2

(5.3)

, where dint(ζ f ) is the degree of an encountered instance belonging to the concept

C f .

A User-oriented Bipartite Model for Finding Services with User-expected

Functions

I now present detailed steps for selecting services. The first step in the service

matching procedure is to choose the services with best matched functions. Each
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service and each user requirement comprises a set of functions, thus the prob-

lem boils down to require the location of all the best matches between the service

functions and the requested functions. As different function compositions may

have different QoS performance which can cause distinct final ratings for the

same service provider, I use a weighted bipartite model for function matching

and use a bipartite matching algorithm to find all the possible maximal weight-

ed matches between the user requirements and the service. The steps for finding

all the best matches are as follows:

Step 1: Build the bipartite graph. In a service bipartite graph, a node repre-

sents a function and an edge between two nodes represents the similarity degree

between two functions. If the similarity degree between two functions is higher

than a pre-set threshold value, an edge will be added between them. For ex-

ample, assume service s1 = ( f1, · · · fm), and query q1 = ( f
′

1, · · · , f
′
m); a bipartite

graph is shown in Figure 5.3. The weight values w11, · · · ,wmm are the similarity

degree between two functions, and the weight values wup1, · · · ,wupm reflect the

importance degree on the queried functions according to the user s preference.

Step 2: Apply the method proposed by Fukuda and Matsui [69] to find all

the best matches between the queried functions and the functions contained in

a service.

Step 3: Filter out the duplicated matches. If two matches recommend the

same set of functions in the same order, the two matches are the same.

Step 4: Choose the top-k services with the highest weighted similarity de-

gree. If n(n < m) queried functions are matched, the weighted similarity degree

is calculated by formular 5.4.
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sim(s1, q1) =

(wup1 ∗ w11 + · · · + wupn ∗ wmm)/(wup1 + · · · + wupn) (5.4)

5.3.2 Service Rating in terms of Non-functional Properties

In this section, I present a multi-criteria decision making technique to rank cloud

services. I first introduce an AHP based fuzzy weighting method, and then

describe a fuzzy multi-criteria decision making technique to rank services.

Property Weighting based on Fuzzy AHP

The fuzzy pair-wise comparison process is defined as follows:

Step 1. Construct the AHP hierarchy and model the relationships between

elements.

Step 2. Determine the local interdependence degree using the pair-wise

comparison method. The pair-wise comparison identifies the relative impor-

tance between two elements w.r.t. another element. The values used for pair-

wise comparison are linguistic variables.

Based on the fuzzy linguistic variable defined in Figure 5.5, as an example,

the pair-wise importance weights of each criterion (the criteria abbreviations in

reference to the criteria definition in Figure 5.2) for data transfer service (DT),

are defined as below: Mexpert
DT =
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S p Av Re S c La Th

S p 1 M S M S S

Av 1/M 1 M EQ M M

Re 1/S 1/M 1 1/M EQ M

S c 1/M 1/EQ M 1 M M

La 1/S 1/M 1/EQ 1/M 1 EQ

Th 1/S 1/M 1/EQ 1/M 1/EQ 1


Step 3. Check the consistency of the matrix. For triangular fuzzy numbers,

βi j = γi j , I use the crisp matrix with the middle values ai jm = (βi j + γi j)/2 of all

the fuzzy numbers in the corresponding fuzzy matrix as matrix A and check its

consistency ratio (CR) by utilizing the method of crisp AHP proposed by Saaty

[178]. If CR > 0.1, it is assumed that the pair-wise comparison matrix is not

consistent and should be reset. For more details of CR calculation, refer to [207].

The consistency rate of Mexpert
DT is 0.012.

Step 4. Find the fuzzy weight vector for each matrix. The method proposed

by Csutora et al.[45] closely follows the inference process of crisp AHP by calcu-

lating the Eigenvector corresponding to the λmax value of the matrix. For exam-

ple, the steps to obtain the fuzzy weight vector depending on expert opinions

(i.e. fuzzy expert preference) wexpert
DT are processed as:

a. Set α = 0, the left weight vector is:

wexpert
DTl =

(0.4107, 0.1818, 0.1038, 0.149, 0.085, 0.0697)T ;

the right weight vector is

wexpert
DTu =

(0.3647, 0.2114, 0.0955, 0.1791, 0.0809, 0.0685)T .
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b. The middle weight vector is:

wexpert
DTm =

(0.4231, 0.1861, 0.0683, 0.1861, 0.0683, 0.0683).

The k value used to reduce the fuzziness of the weight vector:

kDTl = 0.6577, kDTu = 1.1602.

c. The calculation of weight vectors is: w = (wi ∗ ki,wm,wu ∗ ku).

The expert weight vector of the data-transfer service when α = 0 and α = 0.5

is calculated as:

wexpert
DT,α=0.5 =



(0.3547, 0.4231, 0.4231)

(0.1605, 0.1861, 0.2233)

(0.0683, 0.0683, 0.1940)

(0.1496, 0.1861, 0.2)

(0.0636, 0.0683, 0.0842)

(0.0593, 0.0683, 0.0755


I can see that 0 ≤ wexpert

DTl,α=0 ≤ wexpert
DTl,α=0.5 ≤ wexpert

DTm ≤ wexpert
DTu,α=0.5 ≤ wexpert

DTu,α=0, which

satisfies the meaning of the normal α-cut fuzzy numbers: the higher the confi-

dence level, the less support there is for the fuzziness. In this work, the fuzzy

weights with α = 0 are adopted for later calculation.

Step 5. Defuzzify the fuzzy weight vector depending on the risk attitudes

of the decision makers. The risk attitude is determined by the confidence level

of the decision maker (i.e., value of α) and the index of optimism µ. For a LR-

type fuzzy number A = (AL, AR), the defuzzified value based on α and µ can

be obtained by conducting a convex combination: Âα = µ ∗ AαL + (1 − µ)AαR. For

example, for a risk-averse decision maker, the value α = 0, µ = 0.05 may be

used, and the defuzzified weight of the data transfer service is: wexpert
DT,α=0,µ=0.05 =
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( S p Av Re S c La Th

0.4154 0.239 0.1087 0.2023 0.0919 0.0777
)

Service Rating based on Fuzzy TOPSIS

TOPSIS is a decision technique that is able to rate alternatives by measuring the

similarity distance of an alternative to the ideal solution (both positive and neg-

ative). The positive ideal solution (PIS)(resp. NIS) is a reference solution that

maximizes (resp. minimizes) the benefit criteria and minimizes (resp. maxi-

mizes) the cost criteria[215]. The alternatives with the highest utilities are those

that are closest to the positive ideal solution and farthest from the negative ideal

solution. The procedure of fuzzy TOPSIS is as follows:

Step 1. Form decision matrix for each sub-service of a service. There are

usually two types of properties: quantitative and qualitative. To handle the

expression uncertainties, linguistic variables are defined for different proper-

ties. Let m be the number of alternatives of service k, which are evaluated

by n properties (including i quantitative properties cr1 , · · · , cri , (r ∈ (1, · · · ,m))

and n − i + 1 qualitative properties c̃r,i+1, · · · , c̃r,n), associated with a set of n

membership functions ( f1, · · · , fn), then the decision matrix is represented as:

˜DMk =


f k
1 (c11) · · · f k

n (c1n)
...

. . .
...

f k
1 (cm1) · · · f k

n (cmn)

 =


ũk
1(c11) · · · ũk

n(c1n)
...

. . .
...

ũk
1(cm1) · · · ũk

n(cmn)


Step 2. Determine the weights of the criteria and the weights of the service

functions according to the decision maker’s preference. The criteria weights

and function weights are assigned by decision makers using the fuzzy pair-wise

comparison method introduced in Section 5.3.2. The weighting vector of the kth
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function is represented as w̃k = (wk1 , · · · ,wkn)
T .

Step 3. Defuzzify the fuzzy decision matrix and fuzzy weight vectors based

on the risk attitude of decision makers, which depends on confidence level (α)

and index of optimism (µ). The defuzzification process is introduced in Step 5

of Section 5.3.2. DMk =


uk(c11) · · · uk(c1n)
...

. . .
...

uk(cm1) · · · uk(cmn)

 ,
wk = (wk1,··· ,wkn

)T

Step 4. Calculate the aggregated weights (AW): aggregate the defuzzified

user weights, expert weights, and function weights:

AWk = wexpert
k ∗ wuser

k ∗ wk
f un

= (wexpert
k1

∗ wuser
k1
∗ wk

f un, · · · ,w
expert
kn

∗ wuser
kn
∗ wk

f un)

= (awk1 , · · · , awkn)

(5.5)

Step 5. Calculate the weighted global decision matrix (WDM). The WDM of

the kth function is defined as:

WDMα,µk = AWk ∗ DMk

=


awk1 ∗ uk(c11) · · · awkn ∗ uk(c1n)

...
. . .

...

awk1 ∗ uk(cm1) · · · awkn ∗ uk(cmn)


(5.6)

Step 6. Normalize the weighted decision matrix (NWDM). The NWDM of

the kth decision matrix is defined as: NWDMk =


nwuk(c11) · · · nwuk(c1n)
...

. . .
...

nwuk(cm1) · · · nwuk(cmn)


where nwuki j = awuk(ci j)/max(awuk(c j)),∀i = 1, · · · ,m
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Step 7. Define the positive ideal solution (PIS) and negative ideal solution

(NIS). The PIS and NIS of the kth function is defined by formula 5.7 and 5.8.

PIS k = {(max(nwuk(ci j))|ci j ∈ ΩB),

min(nwuk(ci j))|ci j ∈ ΩC), i = 1, 2, · · · ,m}

= {nwuk(c∗1), · · · , nwuk(c∗n)}

(5.7)

NIS k = {(min(nwuk(ci j))|ci j ∈ ΩB),

(max(nwuk(ci j))|ci j ∈ ΩC), i = 1, 2, · · · ,m}

= {nwuk(c−1 ), · · · , nwuk(c−n )}

(5.8)

where ΩB is a set of benefit criteria, ΩC is a set of cost criteria.

Step 8. Calculate the distance from PIS (d+) and NIS (d−) using formula 5.9

and 5.10.

d+i = Σk, jd(nwuk(ci j), nwuk(c∗j))

= Σk, j|nwuk(ci j) − nwuk(c∗j)|
(5.9)

d−i = Σk, jd(nwuk(ci j), nwuk(c−j ))

= Σk, j|nwuk(ci j) − nwuk(c−j )|
(5.10)

, where k is the number of functions.

Step 9. Rate and rank the alternatives. The rating value of alternative i is

calculated by formula 5.11.

µi = 1 −
d+i

d+i + d−i
(5.11)

Step 10. Rank the alternatives based on both function similarity and criteria

rating, calculated by formula 5.12.

ui = α ∗ simi + β ∗ µi, α, β ∈ [0, 1], α + β = 1 (5.12)
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where α and β are the weights assigned by decision makers based on their pref-

erence.

5.4 Experiment and Time Complexity of Cloud-FuSeR

I carry out simulations and evaluations from two steps: (i) service function

matching based on the Fuzzy lightweight similarity model (abbr. FL), and (i-

i) service ranking via the evaluation of QoS parameters using the proposed

fuzzy TOPSIS method (namely ALPHA). Step (i) is processed on the basis of

a fuzzy Cloud storage service ontology [195], which contains 91 concepts and

over 200 instances. Queries of 50 different cases are performed. Each query in-

cludes different service functions and various numbers of functions. The first

step produces a set of filtered service providers whose provisions are capable of

matching the functional requirements of service requesters. Then the services

provided by the remained service providers are ranked through the fuzzy TOP-

SIS approach. Details for the fuzzy TOPSIS are shown in Section 5.3.2.

The simulation is conducted in Windows 7 Enterprise 64-bit OS, with Intel

core i5-3470S CPU, 2.90GHz, and 8GB RAM, 1333MHz. Algorithms are imple-

mented in Eclipse JAVA, combined with Matlab and protégé for data process-

ing and ontology management. For each dimension (i.e., semantic similarity

and TOPSIS alternative ranking), the proposed framework is compared with

the representative models and approaches, and is based on the standard evalu-

ation parameters in each area.
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5.4.1 Experiment Design and Result Discussion of Fuzzy-

cloud-ontology-based Function Matching

In this experiment, I compare the performance of the proposed FL model with

the performance of three typical semantic similarity models (i.e., Resnik, Wu-

Palmer, and String-based) in terms of five indicators: precision, recall, f allout,

F-measure, and F-measure(β = 2). The compared methods are as follows:

1) Resnik (abbr. Res). Resnik [173] similarity model is defined as

simResnik(C1,C2) = max
C∈S (C1,··· ,C2)

[−log(P(C))]: where C1 and C2 are two concepts,

S (C1,C2) is the set of concepts subsuming both C1 and C2 , and P(C) is the

possibility of encountering an instance of concept C.

2) Wu-Palmer (abbr. WP). Wu-Palmer[221] similarity model is defined as:

simwu palmer(C1,C2) = (2 ∗N)/(N1 +N2 + 2 ∗N3), where C3 is the least common

super concept of C1 and C2, then N1 is the number of nodes on the path

from C1 to C3. N2 is the number of nodes on the path from C2 to C3. N3 is

the number of nodes on the path from C3 to root.

3) String-based (abbr. Str). The string-based similarity model [61] is defined

as: CL
D1+D2 , where CL is the length of common longest similar sub-string in

description1 and description2, and D1 and D2 are the length of descrip-

tion1 and the length of description2 respectively.

Assume ML is the number of matched and logically similar concepts, M is

the number of matched concepts, L is the number of logically similar concepts,

MN is the number of matched and non-logically similar concepts, and NL is the

number of non-logically similar concepts, the evaluation indicators are defined

as follows:
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Table 5.1: Performance Comparison of Four Similarity Models

Model Thresh Re Pr Fa FMβ=1 FMβ=2

Str > 0.5 0.52 0.36 0.21 0.41 0.49

WP > 0.5 0.68 0.46 0.2 0.53 0.56

Res > 0.8 0.88 0.46 0.19 0.6 0.69

FL > 0.85 0.94 0.52 0.15 0.65 0.8

1) Precision (abbr. Pr) [19]. For a single concept, precision is defined as:

Pr(C) = ML
M . For a collection of n concepts, the average precision is em-

ployed, which is defined as: Ave(Pr) = Σn
i=1Pr(Ci)/n.

2) Recall (abbr. Re) [19]. For a single concept, recall is defined as: Re(C) = ML
L .

For a collection of n concepts, total recall is adopted, which is defined as:

Ave(Re) = Σn
i=1Re(Ci)/n.

3) Fallout (abbr. Fa) [225]. For a single concept, fallout is defined as: Fa(C) =

MN
NL . For a collection of n concepts, the total fallout is defined as:Ave(Fa) =

Σn
i=1Fa(Ci)/n.

4) F-measure (abbr. FMβ=1 or FM). F-measure [175] is defined as the mean of

precision and recall: FMβ=1 = 2×P×R/(P+R). When FM reaches the highest

point, precision and recall achieve the best trade-off. The FM performance

comparison of the four models is shown in Figure 5.4a.

5) F-measure (β = 2) (abbr. FMβ=2). FMβ=2 [92] combines precision and recall

based on user preference, which is defined as FMβ=2 = ((1+β2)×P×R)/(β2×

P + R).

When β = 2, recall is weighted twice as much as precision, reflecting the

concerns of users in practical information retrieval systems [194]. The FMβ=2
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Figure 5.4: Performance of FM

performance comparison of the four models is shown in Figure 5.4b.

The average value of each indicator is calculated for final performance e-

valuation. Specifically, FMβ=1 and FMβ=2 are two aggregated metrics which are

employed as key benchmarks to find the best threshold value of functional sim-

ilarity for forming a bipartite matching model. Other indicators will be evaluat-

ed based on the identified threshold value. As shown in Figure 5.4, the optimal

threshold value (on the x-axis) for each model can be chosen according to the

point at which FM reaches its highest value shown on the y-axis. Table 5.1

shows the performance of the candidate models relative to the threshold values

(i.e., Thresh) and according to the five indicators.

From this comparison, it can clearly be seen that the FL model performs

better than the other three models for each of the indicators.
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5.4.2 Experiment Design and Result Discussion of Service Rat-

ing in terms of Non-function Properties

I carry out further simulations and experiments to evaluate the performance of

ALPHA compared to the traditional TOPSIS method and other fuzzy TOPSIS

methods. At first, I define two fuzzy variables that will be used in this experi-

ment. The variables in Figure 5.5(a) represent the rating values of the decision

matrix. Figure 5.5(b) defines the linguistic variables for the pair-wise compari-

son in the AHP process.

Experiment Design

Five indicators are used for evaluation:

1) Mean squared error of ranks (MSER):MS ERm = E[(rm − r0)2], where rm is

the rank produced by method m and r0 is the rank corresponding to the

traditional TOPSIS method, and E refers to the expected value operation.

2) TOP rank matched count (TOP). Counts the number of top ranked alter-

natives of different methods matching the top ranking given by the tradi-

tional TOPSIS.

3) Match count (MATCH). Counts the number of matched positions of alter-

natives in two rankings, that is, the matching rate between two rankings

of the same set of alternatives.

4) Variation between TOP and the expected results of the TOPSIS method

(TOPSIS). The definition of the traditional TOPSIS method indicates that

the top-ranked alternative should have both the shortest distance to the
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PIS and the farthest distance from the NIS. In this experiment, I employ

the TOPSIS definition as one of the testing indicators. In cases where risk

attitude is not considered, I only measure whether the top-ranked alter-

native is closest to the PIS or farthest from the NIS, while in cases with

risk attitude, additional measures are taken. In the case of risk aversion,

a check is made to determine whether the distance from the PIS is shorter

than the distance from the NIS, and in the case of risk taking, an additional

step taken is to check whether the distance from the NIS is shorter than the

distance from the PIS.

The proposed method attempts to prune the candidate alternatives using the

function matching process, where top-k matched services or service composi-

tions are selected to conduct the TOPSIS ranking step. The maximum value of k

is set as 20 in this simulation. As for the number of criteria, seven plus or minus

two offers the greatest amount of information an observer can provide based

on a reasonable judgement [230]. Conducting MCDM analysis with a higher

number of criteria may cause problems such as reduced accuracy and increased

computation complexity [31]. Based on this theory, I choose a relatively small

number of alternatives in this experiment. The performance of the evaluated

methods is compared in accordance with a different number of alternatives and

criteria. I use the following parameters to perform simulation in this work. 1)

Number of criteria: 4,8,6,10,12

2) Number of alternatives: 3,5,7,9,15,20

3) Value of decision matrices: simulate the crisp criterion value of each element

fitting log-normal distribution

4) Value of criterion weights: a pair-wise weight between elements is generated

from the 10 fuzzy criteria variables defined in Figure 5.5b
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5) Number of replications: 60 times simulated decision matrices, each of them

combined with 20 times randomly generated criterion weight values.

Based on the indicators and parameters introduced above, I now compared

25 instances of TOPSIS methods, which were differentiated by the risk attitudes

of decision makers (i.e., risk-neutral, risk-averse, and risk-taking), by the fuzzi-

ness of the ranking process, and by the methods of calculating the distance be-

tween numerics. The 25 cases are as follows:

Crisp(case 0). Traditional TOPSIS without involving fuzziness. Crisp deci-

sion values are applied to solve traditional TOPSIS. Crisp weights are deter-

mined by domain experts based on the nine rating levels (1-9) in traditional

AHP. For the other fuzzy cases, the crisp decision values will be first converted

to fuzzy numbers based on the fuzzy functions for decision matrices defined in

Figure 5.5a; and the fuzzy criteria variables that correspond to the nine rating

levels are used to determine the fuzzy criteria weights.

FUZZY-dis-N(1);FUZZY-dis-A(2);FUZZY-dis-S(3). The fuzzy pair-wise com-

parison is conducted by using the method proposed by Csutora et al.[45], and

the ranking of fuzzy numbers is processed by the method proposed by Liem

et al.[209]. Risk attitude is determined by a weighting function that assign-

s changing weights to the measured fuzzy distance. The functions used are:

f = x→ risk neutral (-N); f = x ∗ x→ risk averse (-A); f = 1→ risk seeking (-S).

FUZZY-mem-N(4);FUZZY-mem-A(5);FUZZY-mem-S(6). Referencing the

work proposed by Chamodrakas et al.[32], in which the degree closest to the

PIS and farthest from the NIS is employed under three types of risk attitude.

Risk attitude is determined by a connective parameter p : p = 2 → risk neutral;
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p = 0→ risk averse; p = ∞ → risk seeking.

GMIR(7). GMIR [33] defuzzification technique is utilized to defuzzify the

fuzzy decision matrix and the global fuzzy weights obtained from the fuzzy

AHP process.

ALPHA-N(8),ALPHA-A(9),ALPHA-S(10). The proposed method in this work

under three types of risk attitude. Risk attitude is determined by the value pair

of alpha (α) and the convex parameter (µ), which is defined as: < α = 0.5, µ =

0.5 >→ risk neutral; < α = 0.5, µ = 0.05 >→ risk averse; < α = 0.5, µ = 0.95 >→

risk seeking.

ALPHA2-N(11),ALPHA2-A(12),ALPHA2-S(13). Referencing the method pro-

posed by Kwong et al.[113], employing alpha-cut and convex defuzzification

technique, with respect to three types of risk attitude. Risk attitude is deter-

mined in the same way as given above.

Fuzzy-Pdis-S(14). The fuzzy pair-wise comparison is conducted by using the

method proposed by Csutora et al.[45]. Fuzzy numbers are used in TOPSIS cal-

culation. P-adic norm with Sum function (see formula5.14) is applied to mea-

sure the distance between fuzzy numbers.

Fuzzy-Pdis-M(15). The same setting as the above, except that P-adic norm

with Max function (see formula5.14) is utilized for distance measure.

Fuzzy-Pmem-S-N(16),Fuzzy-Pmem-S-A(17),

Fuzzy-Pmem-S-S(18). The same setting as the cases of Fuzzy-mem-

neutral/averse/seeking, except that P-adic norm Sum function is applied for

the distance calculation between fuzzy numbers.
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Fuzzy-Pmem-M-N(19),Fuzzy-Pmem-M-A(20),

Fuzzy-Pmem-M-S(21). The same setting as the cases of Fuzzy-mem-

neutral/averse/seeking, except that P-adic norm Max function is applied for

the distance calculation between fuzzy numbers.

ALPHA-P-N(22),ALPHA-P-A(23),ALPHA-P-S(24).

The same setting as the cases ALPHA-neutral/averse/ seeking, except that P-

adic norm is applied for distance calculation.

The measure of distance between numerics is mainly applied to rank the rat-

ing values of alternatives in the TOPSIS process. Based on the distance measure

methods, the instances compared are classified into two groups: Archimedean-

field (AF) and non-Archimedean-field (NAF) (here I focus on p-adic-norm in

NAF). One of the key differences between the above two fields is that the for-

mer is under the constraints of triangular inequality, i.e., |x+y| ≤ |x|+|y|, x, y ∈ AF;

while the latter has to satisfy a more restricted ultra-metric triangular inequal-

ity, i.e., |x + y| ≤ max(|x|, |y|), x, y ∈ NAF. For more details regarding the two

norms, readers can refer to the work of [57] and [203]. Below I introduce the

p-adic-norm for both crisp and fuzzy numbers [203].

Assume p is a prime, a ∈ z, and a , 0. I define ordpa = m, where a ≡ 0(mod

pm). A p-adic norm on the field of Q is defined by formula 5.13.

ϕp(x) =


( 1

p )ordp x, x , 0

0, x = 0
(5.13)

Then the distance between two crisp numbers (x, y ∈ Q) is calculated as:

dϕ(x, y) = ϕp(x − y). To operate fuzzy variables, a metric, depending on ϕ, in
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Figure 5.5: Two fuzzy variables

Q3 is defined by formula 5.14.

ϕ̂(x, y, z) = ϕ(x) + ϕ(y) + ϕ(z), or

ϕ̂(x, y, z) = max(ϕ(x), ϕ(y), ϕ(z)), x, y, z ∈ Q
(5.14)

I name the former formula in 5.14 as Sum function, and the latter as Max

function. The performance of the Crisp instance(case 0) is utilized as a bench-

mark of the indicators MSER, TOP, and MATCH.

Experiment Results

In this section, I compare experimental results. The experiment results of the

five indicators are shown in Figures 5.6 to 5.9. On the basis of the MSER def-

inition, the lower the value, the better the performance. Figure 5.6 shows that

the proposed method reaches the lowest point in any of the deployments com-

pared to other methods. It also has the best stability when the number of alter-

natives and criteria are changed, which means it can maintain high performance

in ranking cases with different numbers of alternatives and criteria. The MSER

performance of the instances of Fuzzy-dis, Fuzzy-mem, GMIR, and ALPHA2 is

slightly lower than that of the ALPHA approach (around 0-0.3). However, their
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performance is not as stable as ALPHA, and does not show a definite trend

when the criterion number is changed. The number of alternatives does not

have a substantial influence on the Archimedean-based approaches, while the

performance of the p-adic-based approaches shows a downward trend when

the alternative number is increased.

Figure 5.7 shows that ALPHA has higher performance than the other meth-

ods in terms of the TOP ranked match indicator in accordance with different

numbers of criteria and alternatives. The performance of TOP of Fuzzy-dis,

Fuzzy-mem, and ALPHA2 instances changes dramatically when the number of

criteria changes, and it shows a similar trend to the change of MSER perfor-

mance under a different number of criteria. The number of alternatives also

has a dramatic influence on the TOP performance but does not follow a regular

trend.

A comparison of the match count rate is shown in Figure 5.8. Like the TOP

ranked match case, the ALPHA has the highest MATCH rate. Its performance

is 20% higher than that of GMIR, and is 20% higher than that of fuzzy-dis and

fuzzy-mem cases when the number of criteria is 4. When the number of crite-

ria is 12, the performance of fuzzy-dis and fuzzy-mem is much lower than that

of ALPHA (around 70% lower). The number of alternatives has a clear influ-

ence on the MATCH rate. The MATCH performance of all the cases shows a

monotonically decreasing trend when the alternative number is increased.

Figure 5.9 shows that most of the cases considered closely follow the stan-

dard TOPSIS expectation for the different number of alternatives and criteria.

The ALPHA method almost maintains the highest performance under this in-

dicator, while the cases of Crisp, Fuzzy-Pdis-M, and Fuzzy-Pmem-M are on a
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Figure 5.6: Comparison of rate of MSER

Figure 5.7: Comparison of top matched rate

similar TOPSIS rating level as ALPHA. However, the cases of Fuzzy-Pdis-S and

Fuzzy-Pmem-S have very low TOPSIS performance. In this case, the p-adic-

based distance measure between fuzzy numbers based on the Max function is

much better than the p-adic fuzzy distance measure based on the Sum func-

tion. Compared to instances of fuzzy-mem and GMIR, the proposed ALPHA

has 5% − 10% higher performance.

Figure 5.8: Comparison of rate of matched count
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Figure 5.9: Comparison of rate of aligning TOPSIS definition

Discussion

The proposed fuzzy TOPSIS method (ALPHA) is compared with eight other

TOPSIS methods, including Crisp TOPSIS, GMIR, Fuzzy-dis, Fuzzy-mem, AL-

PHA2, Fuzzy-Pdis, Fuzzy-Pmem, and ALPHA-P) under five indicators: MSER,

TOP match count, MATCH count, TOPSISDefinition, and time complexity.

Generally, the performance of MSER, TOP, TOPSISDefinition, and MATCH

of the compared instances does not show much change when the number of

criteria is changed. However, the number of alternatives usually influences the

performance of these indicators negatively, i.e. more alternatives, lower per-

formance. The reason is evident. The involvement of more alternatives will

increase the complexity of the problem, raising the rate of deviation from the

standard ranking. When the number of alternatives and criteria is changed, the

ALPHA method shows better stability than other methods. It provides greater

flexibility and maintains higher performance in different decision settings.

The instances that demonstrate the second best performance under the three

indicators are the instances of ALPHA2. Compared to ALPHA, they have

less stability in general; their performance of MSER indicator, of TOP, and of

MATCH in particular is very low when there are fewer criteria. This indicates
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that this approach is less accurate, and there is a limitation on setting the num-

ber of alternatives and criteria in a decision-making problem. The reason for

this is that the approach defuzzifies the fuzzy weights and fuzzy decision ma-

trix before conducting the TOPSIS ranking process, which reduces the support

of a fuzzy number to a crisp point, resulting in a loss of uncertainty information.

For example, two different fuzzy rating values may be defuzzified to the same

crisp value, in spite of the difference in the membership degree between them.

Information loss causes instability and reduced accuracy. The number of criteria

in particular indicates the volume of information available to a decision maker.

A greater amount of information can help decision makers to make more accu-

rate decisions. On the other hand, defuzzification with fewer criteria can result

in lower performance.

From the comparison results, the performance of the Fuzzy-dis and Fuzzy-

mem approaches on MSER, TOP, and MATCH indicators is easily influenced

by the number of criteria and alternatives. The more the criteria and alterna-

tives, in particular, the lower the performance of these two approaches. Both

approaches retain uncertain information to the largest extent compared to other

Archimedean-based methods, and the exaggeration of fuzzy information causes

a larger deviation in their results from the results of the crisp TOPSIS. In addi-

tion, the FUZZY-mem and FUZZY-dis are very time-consuming, which makes

them computationally much more complex than the other instances under the

same condition. However, the alignment of their results to the definition of the

TOPSIS method is almost the same as that of the other methods. For the indica-

tors of MSER, TOP, and MATCH, Archimedean-based approaches show higher

performance than p-adic-based approaches overall.
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Table 5.2: Simulated QoS Performance Values and QoS weights

Service inte obs tr

Sp Av Re Sc La Th Ca Av Re Sc RS Ty

s1 46 99 98 97 24 33 120 99 96 99 30 5

s2 30 98 99 92 32 10 100 98 97 92 60 5

s3 67 92 96 94 26 8 70 97 99 99 45 4

s4 42 94 96 96 43 15 88 93 98 92 72 3

s5 89 97 98 92 51 32 150 98 96 91 30 4

wuser 0.48 0.26 0.12 0.24 0.1 0.08 0.51 0.21 0.09 0.39 0.9 0.11

wexpert 0.42 0.24 0.11 0.2 0.09 0.08 0.5 0.27 0.09 0.23 0.83 0.18

wexpert
f unc 0.627 0.318 0.132

wuser 0.38 0.18 0.08 0.22 0.07 0.07 0.39 0.13 0.09 0.38 0.9 0.1

wexpert 0.42 0.19 0.07 0.17 0.07 0.07 0.51 0.19 0.07 0.23 0.83 0.17

wuser
f unc 0.637 0.258 0.105

Overall, ALPHA performs better than the other Archi-medean based meth-

ods in most cases. The number of alternatives influences MSER, TOPSIS defini-

tion commitment and TOP ranked match in a negative way. A higher num-

ber of criteria and alternatives can cause higher computational complexity.

The Archimedean-based approaches perform better than the p-adic-based ap-

proaches and the p-adic-based approaches especially are of much higher com-

putational complexity. However, their performance is on a level similar to the

Archimedean-based approaches in terms of TOPSIS indicator, which is indepen-

dent from the benchmark. Deeper research on non-Archimedean-based fuzzy

operations needs to be conducted to break through the limitation of the current

Archimedean-based approaches.
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Table 5.3: Service Ranking based on the Rates of QoS Performance and
Functional Similarities

Service instance s1 s2 s3 s4 s5

f-QoS rate 1 0.814 0.924 0.404 0.737

c-QoS rate 1 0.751 0.79 0.388 0.672

f-function rate 1 1 0.992 0.983 0.962

c-function rate 1 1 0.976 0.92 0.904

f-aggregated 1 0.907 0.958 0.694 0.85

c-aggregated 1 0.876 0.883 0.654 0.788

5.4.3 Time Complexity Discussion of Cloud-FuSeR

In this section, I analyse the time complexity of Cloud service selection by us-

ing Cloud-FuSeR, which depends on the following steps: ontology establish-

ment, concept similarity calculation based on the F-lightweight model, function

matching based on the bipartite-graph model, non-function property weighting

based on the fuzzy AHP, and service rating based on the fuzzy TOPSIS.

The ontology building and similarity calculation are off-line operations. The

concept similarities are calculated in advance based on the built ontology and

are stored for the users’ function querying. So I do not consider the time con-

sumption of these two steps. For the bipartite-graph-based function matching,

assume a service or service composition has p functions, and a user is querying

q functions, then the time complexity of building a bipartite model is O(pq). As

p and q are both the number of functions of a service item, I assume p = q, so

O(pq) can be written as O(p2). Let v = p + q is the number of nodes (i.e., func-

tions) of a bipartite graph, and e is the number of edges. Since in a matching
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of a bipartite model, a node on the left side can only be matched to a node on

the right side, and in the worst case, there may be v/2 nodes on each side, and

each node on one side is connected to each node on the other side, so the max-

imum number of edges in a bipartite graph is e = v/2. Let L be the number of

perfect matchings in the bipartite graph, then L ≤ v. Hence, the time complexity

of finding all the perfect matchings is O(v(v log v + e) + Lv(v + e)). In the worst

case, the time complexity reaches O(v(v log v + v/2) + Lv(v + v/2)) ∼ O(Lv2). Note

that v is usually not large (most probably less than 20 functions in a service or

service composition), so apparently v ≪ n, where n is the number of service

items in a service repository. To find the top-K best matched services in terms

of service functions, I need to check each service item in the service repository,

so the overall calculation time is O(nLv2).

For the service rating based on non-function properties, a fuzzy AHP ap-

proach is applied to determine criteria weights. The main operation of an AHP

process is to identify the maximum eigenvalue and the corresponding eigen-

vector, which has the time complexity O(c3); c is the number of the criteria used

to evaluate a service. Sequential operations in the fuzzy TOPSIS mainly include

matrix multiplications and distance calculation. The time consumption in this

stage depends on the time of the matrix operation. Therefore, for a case with a

alternatives (i.e., service candidates) and c criteria, the time complexity is O(ac).

Then the time consumption of the non-function rating is O(c3) + O(ac). Based

on the theory of AHP and according to the reality of Cloud services, a service

user is usually concerned with a few of specific non-function properties (most

probably 5 ≤ c ≤ 20). In addition, the previous step of function matching only

picks up a few of service candidates (a alternatives, a ≪ n) that having most

similar functions with user requirements. The overall time complexity of func-
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tional and non-functional ratings of services is O(nLv2 + c3 + ac). Since L ≤ v ≪ n

and c, a ≪ n, the time complexity of finding and rating the top-K most expected

services is approximately as O(n), which is a linear time complexity, depending

on the number of services in the service repository.

5.5 A Case Study of Cloud Service Selection through Cloud-

FuSeR

I illustrate an example in this section to present the applicability of the proposed

framework. To show that the framework is capable of accurately capturing un-

certain information in a service selection, I simulate a scenario with precise nu-

merical data, and transfer this crisp scenario to a fuzzy model. Then I compare

the ranking results of the precise and the fuzzy models. The inference in the pre-

cise model is based on a crisp Cloud storage ontology, and crisp pair-wise com-

parison and TOPSIS techniques. The scenario is described as: a user requires a

Cloud storage service that contains three sub-services: r={troubleshooting ser-

vice (tr), object storage service (obs), Internet data transfer service (inte)}. For

each type of services, as shown in Figure 5.2, there are a range of QoS properties

that can be used for describing and evaluating the associated service. In ad-

dition to the functional requirements, the user has different preferences on the

sub-services and QoS properties.

The first step is to filter service instances according to the functional similar-

ity between user-required services and candidate services. In the fuzzy frame-

work, the similarity calculation is based on the fuzzy Cloud storage ontology

[195]; while in the crisp scenario, a crisp ontology is applied, which composed
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of the concept taxonomy of the fuzzy ontology, without considering the fuzzy

information FER and FIR. To see the difference between the fuzzy ontology-

based and crisp ontology-based similarity calculation, I compare the similari-

ties between two pairs of service functions: inte- and intra-cloud transfer (intra)

(represented by sim1), and inte- and automatic data migration (dm) (represented

by sim2). The results are sim f uzzy
1 = 0.9103, simcrisp

1 = 0.8225, sim f uzzy
2 = 0.3581, and

simcrisp
2 = 0.4936, which indicate that the fuzzy similarity model gives higher

similarity between services inte and intra, but less similarity between inte and

dm. From the Cloud storage ontology, inte and intra have a same set of QoSs,

while inte and dm have different QoSs. The fuzzy model considers the similar-

ity between QoSs, which increase the discrimination between the services with

same and different QoSs.

After service filtering, top-5 functional-similar service instances are

chosen to be rated by TOPSIS, which are S im f uzzy(s1, s2, s3, s4, s5) =

(1, 1, 0.992, 0.983, 0.962) and S imcrisp(s1, s2, s3, s4, s5) =

(1, 1, 0.976, 0.92, 0.904). The TOPSIS component evaluates the top-5 service in-

stances based on their QoS values. I simulate the precise numerical QoS values

according to real Cloud service data [117], which are standardized using the

formula
x − xmin + 0.125(xmax − xmin)

1.25(xmax − xmin)
and are applied in the crisp TOSIS rating

procedure. For fuzzy TOPSIS, the standardized values are transferred to fuzzy

variables through the fuzzy function in Figure 5.5. The simulated QoS values

are shown in Table 5.2.

To conduct the crisp pair-wise comparison, the five rating scales {1, 3, 5, 7, 9}

proposed by Saaty [178] are applied, corresponding to the fuzzy rating scales

{EQ,M, S ,VS , EX}. The calculated importance weights and preference weights
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of QoSs and service functions based on the fuzzy procedure are shown in Ta-

ble 5.2, wexpert , wuser and wuser
f unc, given user’s risk-averse attitude. The weights

obtained by the crisp pair-wise comparison are represented as wuser , wexpert and

wexpert
f unc in Table 5.2. The ranking results are shown in Table 5.3, where ’ f -’ mean-

s the ratings based on the fuzzy framework and ’c-’ refers to the crisp ratings;

aggregated is the aggregation of the QoS performance rating and the functional

similarity rating. From f -aggregated and c-aggregated, the fuzzy and precise

procedures give a similar top-ranking service and a ranking order, which mean-

s the proposed fuzzy framework can capture the real service information accu-

rately, so that it can be independently applied to the scenarios having fuzziness

and uncertainties.

5.6 Summary

In this chapter, I studied the issues in the Cloud service selection area. At

first, I identified the necessity of doing research in Cloud service selection. I

then discussed how to select appropriate Cloud services based on the func-

tional and non-functional requirements expressed by fuzzy (i.e., vague or im-

precise) knowledge given by users. Against this problem, I proposed a novel

fuzzy user-oriented Cloud service selection system (Cloud-FuSeR) to help ordi-

nary services users to select right Cloud services. Cloud-FuSeR includes three

primary components: (1) a fuzzy Cloud ontology that supports the similarity

calculation of Cloud service concepts and the efficient query of Cloud services

or service compositions that most match user-requested functions; (2) a fuzzy

AHP approach that calculates the weights of the non-functional properties (i.e.,

service ranking criteria) in terms of user preference; and (3) a fuzzy TOPSIS ap-
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proach that rates the candidate Cloud services based on the weights and the

performance of the non-functional properties. I describe a case study of se-

lecting Cloud storage services to present the service selection process, and con-

ducted comprehensive experiments to show the efficiency of the Cloud-FuSeR

framework. At last, I theoretically discussed the linear time complexity of this

framework.

Our approach is capable of facilitating the automatic transactions in on-line

Cloud marketplaces, assisting service users to find Cloud services that meet

users’ requirements containing fuzzy expressions and unquantifiable decision

criteria. The proposed approach and techniques open up some interesting direc-

tions for future research. For example, by improving the structure of ontology,

I can further simplify the similarity matching. To further improve the perfor-

mance of Cloud service selection, I can leverage other fuzzy number managing

approaches, such as using distance measurement between fuzzy numbers and

ranking fuzzy numbers.
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CHAPTER 6

EXPLORING CRITERIA INTERDEPENDENCE IN MCDM AND ITS

APPLICATION IN CLOUD SERVICE SELECTION

In the previous chapter, I introduced a cloud service selection framework

Cloud-FuSeR that deals with the fuzzy information to help the service users s-

elect appropriate services. However, the Cloud-FuSeR does not consider the

interdependencies among decision criteria in the process of cloud service selec-

tion. In this chapter, I study such interdependencies of the decision criteria, and

explore the influence of the criterion interdependencies on making decisions of

the cloud service selection.

6.1 Introduction

With the development of Cloud computing and the proliferation of Cloud ser-

vices on the Internet, the problem of cloud service selection has become an im-

portant and complicated research topic. A number of researchers have devel-

oped a series of Cloud service selection or recommendation techniques to help

service users make informed investment decisions. Typically, researches in this

area focus on solving the following challenges: exact matching between Cloud

functional descriptions and functional requirements; QoS performance evalu-

ation of Cloud services; and trust evaluation of Cloud service providers [197].

In this chapter, I discuss the problem of QoS performance evaluation of Cloud

services, and explore how to apply the Multi-criteria decision making (MCDM)

techniques to Cloud service selection.

MCDM techniques are developed for supporting decision makers making
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informed decisions by considering multiple decision criteria [146]. I focus on

the MCDM problems with finite decision alternatives and criteria, which can

be tackled by MCDM techniques like MAUT [167], ELECTRE [29], and analytic

hierarchy process/analytic network process (AHP/ANP) [14]. In other words,

the MCDM decision making process is a ranking process of alternatives, where

one of the key steps is to identify the relations among criteria and to aggregate

the criteria utilities based on their relations to obtain the overall evaluation of

alternatives.

The existing MCDM techniques assume that the criteria are independent

[23]. However, this assumption does not reflect the fact that there are different

types of relations between criteria, and both the individual criterion and the cri-

teria coalitions can influence the ranking results of the alternatives and the final

decisions of the MDCM problems. In reality, components in a complex system

are interdependent with each other in different forms, and different types of cri-

teria interrelations have different types of influence on the performance of the

overall system [114].

Three forms of criteria relations were identified: independent, supportive,

and conflicting [118]. Independent criteria do not have relations with each oth-

er. Their utilities influence the system performance independently. Supportive

criteria are similar with each other in terms of functions, so that they influence

each other’s utility positively, while their coalition influence the system utility

negatively. Conflicting criteria have opposite impacts with each other. The in-

crease of a criterion utility causes the decrease of the utilities of its conflicting

criteria. One technique modelling the three types of relations of a decision sys-

tem is the Fuzzy measure theory [216] that can measure the weights of both the
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singleton criteria and the coalitions of criteria. The calculated weights are used

to additively aggregate the marginal utilities of criteria to get the overall utilities

of alternatives.

Interpretive structural modelling (ISM) [147] is a technique of building rela-

tions of elements (e.g., criteria) in a decision system. The constructed element

relations represent an organized knowledge that can explain the decision sys-

tem in a simple way. One disadvantage of ISM is that it can only model the

single-type element relations (e.g., i is preferred to j; or i supports j), which can

cause inaccurate problem solving due to the lack of the complete relation mod-

elling.

From the above discussion, I focus on solving two issues in this chapter: is-

sue (1)-identify different types of relations between criteria in a decision system;

and issue (2)-measure the influence of the individual criterion and the different

types of criteria relations on the decision system. I propose a MCDM framework

that helps DMs to build the criteria relations and measures the performance of

alternatives. The distinctive contributions of this chapter are as below:

• I describe an I-ISM approach that can help decision makers (DMs) con-

struct different types of criteria relations, which allows the DMs adjust the

relations interactively during the construction process until a consistent

relation network is established. The I-ISM can be used to resolve issue (1).

• Based on the criteria relation constructed by I-ISM, I use 2-order Choquet

Integral approach to solve issue (2). The 2-order Choquet Integral [13] is

a simplified procedure of the Choquet Integral that can aggregate non-

additive utilities by considering the utilities of single criterion and the in-

teractive utilities between two criteria.
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• I apply the proposed decision making method to the Cloud service se-

lection problem. I use a User-oriented sigmoid utility function to get the

intra-utilities of a criterion w.r.t. different alternatives. The user-oriented

sigmoid utility function is flexible enough to reflect Cloud users’ require-

ments in different contexts.

• I conduct extensive experiments based on real QoS performance data of

Cloud service providers. Experimental results show the efficiency of our

I-ISM.

This chapter is organized as follow: in section 6.2, I discuss the related work

in Cloud service selection, and introduce the background knowledge of this

work. In section 6.3, I define a user-oriented sigmoid utility function for evalu-

ating Cloud service QoS performance. In section 6.4, I introduce the basic defi-

nitions of I-ISM, and explain how the I-ISM can support the non-additive utility

aggregation in the 2-order Choquet Integral. I show our experimental results in

section 6.5 and conclude this chapter in section 6.6.

6.2 Related Work and Background Knowledge

In this section, I first discuss the related work of Cloud service selection. Then I

briefly introduce the background knowledge: Interpretive Structural Modelling

(ISM) and 2-order Choquet Integral.

148



6.2.1 Cloud Service Selection Techniques

I categorize the existing cloud service selection techniques into three main

groups [197]: optimization-based, logic-based, and MCDM-based.

Optimization-based. Optimization-based cloud service selection tech-

niques help the DMs find the optimal Cloud services that can minimize or maxi-

mize the utilities of criteria under a set of constraints [197]. Wang et al. [214] de-

veloped a cloud service selection mechanism DCS that dynamically optimizes

the decision making results. Zheng et al. [235] proposed a cloud service ranking

prediction framework, named CloudRank in which two greedy algorithms are

designed to predict the service performance and rank the Cloud services. Li et

al. [129] focused on the cloud service selection problems in hybrid Cloud envi-

ronment, proposing a two-level optimization procedure of hybrid Cloud service

selection.

Logic-based. I call the methods based on the semantic techniques for Cloud

service description and matching as logic-based methods. Singh et al. [190]

designed an ontology of manufacturing resources in Cloud manufacturing sys-

tem to support the querying tools based on customers’ requirements. Fang et

al. [62] designed a cloud service ontology model based on OWL2 (Web Ontol-

ogy Language), which can be dynamically and collaboratively maintained. The

ontology model supports Cloud service querying that can deals with fuzzy in-

formation and has high agility. Li et al. [130] introduced a context ontology

model to describe SaaS services. The proposed ontology model supports the

discovery and recommendation of the SaaS services according to the behavior

habits and requesting contexts.
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MCDM-based. MCDM methods rank alternatives based on the perfor-

mance of a variety of criteria. Whaiduzzaman et al. [219] reviewed and com-

pared the multi-criteria decision analysis techniques in Cloud service selection.

Rehman et al. [172] introduced a MCDM method for Cloud service selection

based on the historical information of Cloud services. The proposed method

processes the historical service information in various time periods in an inde-

pendent and parallel way. Lee et al. [124] introduced a hybrid MCDM model

for cloud service selection based on the techniques of fuzzy analytical hierarchy

process (FAHP), fuzzy Delphi method (FDM), and balanced scorecard (BSC).

Our work is different with the above discussed techniques by supporting

an interactive process of determining different types of criteria relations, and

measuring the alternative utilities based on non-additive criteria performance.

In the next subsection, I introduce the background knowledge of our work.

6.2.2 Background Knowledge

Interpretive Structural Modelling

The ISM procedure [97] is conducted based on the mapping of binary matrices

and digraphs. The basic components of an ISM include a subordinate relation

(represented as R) and a set of elements (represented as E = {ei|i = 1, · · · , n}) that

need to be partially ordered through the relation, both of which are determined

by domain experts or decision makers according to the contexts of the targeted

issues. I define that eiRe j if ei is of direct subordinate relation to e j, or else eiRe j.

I can use a directed graph (G) to represent such a partial ordering, in which

vertices (V = {vi}) and arcs (represented as A = {ai j, j = 1, · · · , n}) correspond to
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the elements and the subordinate relation respectively. Element ei is reachable

to e j means that ei can be connected to e j via a directed path p, represented as

vi pv j. The length of the path (l(p)) is defined as the number of arcs between

vertices vi and v j in the corresponding digraph. If l = 1, vi is directly connected

to v j; if l > 1, vi is connected to v j via transitive relations. The process of ISM are

as follows:

Step 1. Identify elements E. Identify factors related to a complex system

based on expert opinions. These factors have certain relations with each other

based on the objectives of the complex system.

Step 2. Identify contextual relation R. As mentioned before, a contextual re-

lation is a subordinate relation between two elements, such as ’influence’, ’lead

to’, and ’prefer to’.

Step 3. Develop structural self-interaction matrix (SSIM). SSIM shows the

existence and the direction of a direct relation between two elements by using

four symbols: S S IM = [Mi j], mi j = V , if eiRe j; mi j = A, if e jRei; mi j = X, if eiRe j

and e jRei; mi j = O, if eiRe j&e jRei.

Step 4. Develop reachability matrix (RM). RM is a binary matrix built from

SSIM to represent the reachability between elements. First, SSIM is converted

to a binary matrix: BM = [bi j], bi j = 1; bi j = 1&b ji = 0, if mi j = X; b ji = 1&bi j = 0,

if mi j = A; bi j = 1&b ji = 1, if mi j = X; bi j = 0&b ji = 0, if mi j = O, where bii = 1

means that an element is always reachable to itself. Then RM = BMk ∗ BM =

BMk+1 ∗ BM = · · · .

Step 5. Classify elements based on Driver power and dependence. I-

dentify the driver power and the dependence of an element, and then classi-
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fy the elements into four groups: autonomous, dependent, linkage, and driv-

er/independent. The driver power of an element is the number of elements it

can reach; dependence of an element is the number of its antecedents. Each

of them can determine the importance degree of an element for a system (e.g.,

drivers are more important than others).

Step 6. Hierarchically partition elements. Rank the elements according

to their driver power and dependence, and identify the reachable set and the

antecedent set of each elements. Partition elements hierarchically based on their

reachable and antecedent elements.

Step 7. Form ISM digraph. In the ISM digraph, vertices represent elements,

and arcs between vertices refer to the relations between elements.

K-order Additive Choquet Integral

A fuzzy integral is a kind of utility aggregation operator that is capable of mea-

suring the influence of the importance of a criterion and the importance of inter-

actions among criteria [208]. A set of importance values needs to be defined to

calculate the fuzzy measure that is a set of importance values for all the subsets

of a set of elements (e.g., decision criteria and a group of players in a game).

The critical step of a fuzzy measure application is to precisely define a fuzzy

measure.

Though the fuzzy integral shows more rationality and richness compared

with the additive measures (e.g., simple weighted additive, SWA), it has not got

enough enthusiasm on application side due to its complexity of determining

the hidden fuzzy measures [78]. For example, suppose X is a set of n elements
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(|X| = n). pow(X) represents all the subsets of X. For a A ∈ pow(X), µ(A) is the

importance of the coalition A for the decision problem. Defining a fuzzy mea-

sure on X requires identifying 2n positive real coefficients, which would become

very complex when n is high (SWA only requires n coefficients). Grabisch [78]

introduced the k-order additive fuzzy measure to reduce the complexity. In real

applications, the weight of singleton criterion and the interaction weight of a

pair of criteria are important, and it is very difficult for DMs to determine the

importance degree of three or more interactive criteria. Therefore, 2-additive

fuzzy measure can be handled easily (only n(n + 1)/2 parameters need to be

identified by using Mobius representation [78]).

According to the monotonicity of a fuzzy measure, two types of set function-

s are discussed: monotonic fuzzy measure and non-monotonic fuzzy measure.

Murofushi [159] argued that the monotonicity is not essential for fuzzy mea-

sures. They analysed the non-monotonicity in terms of the offset of disjoint

subsets, and proved that it is unnecessary to keep monotonicity for fuzzy mea-

sures from a mathematical point of view. In this chapter, I use the 2-additive

fuzzy measure with respect to non-monotonic set functions. Basic definitions

and properties are introduced below:

Let A = {s1, s2, · · · , sm} be a set of alternatives; C = {c1, c2, · · · , cn} be a set

of decision criteria, where ci : A → R, i ∈ {1, · · · , n}; U(C) = U(c1, c2, · · · , cn)

represents the utility of an alternative based on DMs’ preference on criteria C,

ui(ci(sk)) is a marginal utility of criterion i with respect to alternative sk; and (C,Γ)

is a measurable space, where Γ = pow(C),

• A non-monotonic fuzzy measure on (X, Γ) is a real-valued set function µ :

Γ→ R satisfying µ(Φ) = 0 and µ(X) < inf [159].
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• A Möbius representation of a fuzzy measure is defined as a function a:

Γ → R, for each C ⊂ X, a(C) = ΣT⊂C(−1)|C−T |µ(T ). If for k ∈ R, a(T ) = 0 for

|T | > k, then the fuzzy measure is called k-additive.

• Based on the definition of Möbius representation, for a singleton criteria

set, e.g., {ci}, µ({ci}) = a({ci}); for a couple of criteria (non-ordered), e.g.,

{ci, c j}, then µ({ci, c j}) = µ(ci) + µ(c j) + a({ci, c j}). For a criteria set C with any

number of elements, its 2-additive fuzzy measure is µ(T ) = Σci∈T a({ci}) +

Σ{ci,c j}⊂T a({ci, c j}),T ⊂ C.

• The Möbius representation of the Choquet integral of an alternative in the

case of 2-additive is Chµ(ek) = Σci⊂T (a{ci})ui(ci(ek)) + Σ{ci,c j}⊂T a({ci, c j})

min{ui(ci(ek)), u j(c j(ek))}.

6.3 A user-oriented Sigmoid Utility Function for Intra-criterion

In this section, I introduce a sigmoid utility function [118] to elastically measure

the satisfaction degrees on criteria based on users’ requirements and in specific

application contexts.

The utility of a criterion for service evaluation reflects the satisfaction degree

of the service user to the criterion performance value. Labreuche and Grabisch

[115] described a procedure of determining the utility functions of the ith criteri-

on (represented as ui) depending on both the ranking of the elements of X⌋i and

the satisfaction-degree difference between element pairs of X⌋i. The procedure

is defined by four necessary conditions:

Intraa. ∀x1
i , x

2
i ∈ Xi, ui(x1

i ) ≥ ui(x2
i )⇔ (x1

i , 0−i) ≽ (x2
i , 0−i);

Intrab. ∀x1
i , x

2
i , x

3
i , x

4
i ∈ Xi, assume ui(x1

i ) > ui(x2
i ) and ui(x3

i ) > ui(x4
i ), then
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Rax1∼4 =
ui(x1

i )−ui(x2
i )

ui(x3
i )−ui(x4

i )
=

u(x1
i ,0−i)−u(x2

i ,0−i)
u(x3

i ,0−i)−u(x4
i ,0−i)

, where Ra ∈ ℜ+;

Intrac. ui(0i) = 0 and ui(1i) = 1, where 0i(resp. 1i) represents the value of criterion

i of an alternative satisfies (resp.cannot satisfy) the user;

Intrad. ∀x1
i , x

2
i , x

3
i , x

4
i , x

5
i , x

6
i ∈ Xi where ui(x1

i ) > ui(x2
i ), ui(x3

i ) > ui(x4
i ) and ui(x5

i ) >

ui(x6
i ), this condition ensures the consistency of the satisfaction differences a-

mong criteria assigned by the user: Rax1∼4 × Rax3∼6 = Rax1,2,5,6 .

Based on Intraa∼d, Labreuche and Grabisch [115] built ui of the ith criterion by

setting x2
i = x4

i = 0i, and x3
i = 1i. This method determines the marginal utilities of

the alternatives based on the overall performance values of criterion i. However,

the question is ” can ui defined by Intraa∼d efficiently reflect users’ satisfaction

degree based on their specific service requirements ?” .

For example, assume a user requires that a candidate cloud service should

have at least 95% availability (abbr. av). If service j has 94% av, it may be ir-

rational to set uav( jav) = uav(0av) = 0 (based on Intrac), because the marginal

performance of j in terms of criterion av is still quite high (though it is lower

than user’s expecting lower bound). On the other hand, if services j and g has

96% and 97% av respectively, the DM may not have similar satisfaction differ-

ences among the three av values: uav(96%) − uav(95%)(= | ,)uav(97%) − uav(96%).

In reality, as long as the availability performance is higher than user’s expected

performance, its improvement may not have too much positive influence on the

overall performance of the alternative given the performance of the other crite-

ria, i.e., uav(96%)−uav(95%) ≥ uav(97%)−uav(96%) given ui, i ∈ C, i , av. Therefore,

an elastic utility function is needed to measure users satisfiability for different

criteria and application contexts according to their specific requirements.

I now introduce a sigmoid utility function. This utility function satisfies the

155



Figure 6.1: A sigmoid utility function of criterion av for Cloud services.
The user expected lowest av is 95%

Figure 6.2: A sigmoid utility function of criterion av for Cloud services.
The user expected lowest av is 95%

condition Intraa and a relaxed condition of Intrac. It also normalizes the value of

each criterion to the range (0, 1) in order to ensure a unique and consistent scales

for criteria utilities. Based on criterion i, a marginal sigmoid utility function of

an alternative is defined as:

ui(xi) =


(1 + e−a(xi−b))−1, i ∈ CB

1 − (1 + e−a(xi−b))−1, i ∈ CC
(6.1)

where xi is the performance value, CB refers to a set of benefit criteria, and CC is

a set of cost criteria. a controls the steepness (i.e., the changing rate of a criterion

utility), and b indicates the median of the function in terms of x-axis. An exam-

ple of the sigmoid utility function is shown in Fig.6.1. Readers can refer to [118]

for more details and examples of the user-oriented sigmoid utility function.
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6.4 Criteria Relational Network Construction based on I-ISM

6.4.1 Basic Definitions and an Interactive Structure Construc-

tion of I-ISM

To determine relations among decision criteria, decision makers typically pair-

wisely compare alternatives or criteria, and directly assign difference thresholds

between a pair of elements. Although such kind of method may be easy to apply

when there are few alternatives and criteria, usually under 10 [97], users may

feel confused in the pair-wise ranking process when the number of alternatives

and criteria are more than 10. Therefore, the inconsistency of constraints can

cause an optimization problem without any solutions. To help decision makers

identify the relations between criteria and between alternatives based on their

preferences, I propose an Interactive Interpretive Structural Modelling (I-ISM)

method that can determine and modify the element relations by consistently

interacting with decision makers in the modelling process.

Typically, four types of ’leads to’ relations are modelled by an ISM, distin-

guished by the direction of a relation between two criteria (e.g., criteria i and

j): 1) i influences j; 2) j influences i; 3) mutual influence between i and j; and

4) i independent with j. Specific to the area of multi-criteria decision making,

the definition and analysis regarding conflicting and supportive criterion rela-

tions in [28] indicate that in a decision making scenario, a relation between a

couple of criteria is usually symmetric, that is, if criteria i and j are support-

ive (or conflicting), then the increase of i’s performance can lead to the increase

(or decrease) of j’s, and vice versa. Therefore, it is rational to assume that the
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resulting criteria relational structure is symmetric, i.e., a rational interactive re-

lation model should only have the symmetric influence and the independent

relations between criteria. Moreover, I propose to integrate the supportive and

conflicting characteristics of relations into the ISM in order to present a clear pic-

ture of the types of criteria relations, and to facilitate the identification of fuzzy

measures. I will introduce some basic definitions and operations of I-ISM. Let

C = {c1, c2, ..., cn} be a set of criteria, F = { f1, f2, ..., f n} be the performance of the

criteria, and S C ⊂ C be a subset of C. For ∀ci, c j ∈ C:

Definition 6.1. An interactive relation from ci to c j is defined as a value pair ri j =

(si j, xi j), where si j ∈ {−1, 0, 1} indicates the type of the relation, i.e., how ci influences c j;

and xi j ∈ [0, 1] is the interactive degree of the relation, i.e., how important the relation

is to the whole system. Details are specified as below:

• ri j = (si j = −1, xi j , 0): ci negatively influences c j, i.e., fi ↓ (resp. ↑) ⇒ f j ↑

(resp. ↓), namely ci conflicts to c j, represented as rc
i j;

• ri j = (−1, xi j , 0)&r ji = (−1, x ji , 0): ci and c j negatively influence each other,

i.e., fi ↓ (resp. ↑)⇔ f j ↑ (resp. ↓), namely ci is conflicting with c j, represented

as rcc
i j ;

• ri j = (si j = 1, xi j , 0): ci positively influences c j, i.e., fi ↑ (resp. ↓) ⇒ f j ↑

(resp. ↓), namely ci supports c j, represented as rs
i j;

• ri j = (1, xi j , 0)&r ji = (1, x ji , 0): ci and c j positively influence each other,

namely ci is supportive with c j, represented as rss
i j ;

• ri j = (0, 0): ci is independent with c j, represented as ru
i j.

Property 6.1. ri j = rpq ⇔ xi j = xpq&si j = spq; ri j = −rpq ⇔ xi j = xpq&si j = −spq;

Definition 6.2. Given a relation ri j, if ri j = r ji, then ri j is a symmetric relation, and

changeO f ( fi)⇔ changeO f ( f j), represented as ci
←→ri j c j.
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The relations support and conflict to are asymmetric relations; supportive with,

conflicting with, and independent with are symmetric relations. In this work, I

focus on the symmetric relations. I now illustrate the following definitions and

properties based on the assumption of symmetric relations.

Property 6.2. rii = rss
ii = (1, 1), i.e., a relation is supportive with itself with the interac-

tive degree of 1.

Property 6.3. For ∀c, if rss
i j , fi j < fi + f j; if rcc

i j , fi j = fi + f j, where fi j is the importance

of the interaction between ci and c j to the system.

Property 6.4. For two relations ri j and rpq, if xi j > xpq, for ∀si j&spq, the importance of

the interaction between criteria ci and c j for the system is higher than the importance of

the interaction between criteria cp and cq.

The concept of path and the length of path in I-ISM are similar to the con-

cepts in ISM. I give their formal definitions as below.

Definition 6.3. A path from ci to c j, written as pi j, indicates a relation between them

(i.e., ri j), containing a series of linked elements between ci and c j. The length of ri j,

represented as li j, is the number of arcs between ci and c j. If li j = 1, ri j is a direct

relation, represented as cirϕc j; if li j > 1&li j < +∞, ri j is a transitive relation, represented

as cir{k,c1...ck}c j, where c1, ..., ck are elements on the path pi j, k is the number of elements;

if li j = +∞, ri j is ru
i j (represented as cir∞c j).

In the following, I use circ j to represent any type of a relation (i.e., rϕ, r{.,.} or

r∞) between ci and c j. In addition, in the case that I only concern about the type

and direction of a relation, but not concern about the interaction degree, I also

use cisc j to represent circ j, e.g., if rs
i j = {1,∀xi j}, then cirs

i jc j = ci{1,∀xi j}c j = ci
−→
1 c j.

159



Property 6.5. Let m be the number of paths between element ci and c j, all the paths

between ci and c j are represented as: Pi j = {p1
i j ∪ p2

i j ∪ ... ∪ pm
i j}. If m = 0, ri j = ru

i j.

To identify stable relations between criteria, I define two context-aware logi-

cal operators logic addition(∨) and logic multiplication(∧), and relational operators

relation addition(∨) and relation multiplication(∧). These logical operators are used

to operate the Characteristic matrix of an SSIM to determine the types of rela-

tions. ∨ and ∨ are for aggregating two relational paths between two vertices to

determine a unique relation between the two criteria. ∧ and ∧ are for aggre-

gating a set of relations on a path to find a transitive relation between the two

vertices. They are defined as:

Given a set of variables s1, s2, ..., sn ∈ {−1, 0, 1},

Definition 6.4. Logic addition (∨) satisfies:

• si∨0 = si;

• 1∨1 = 1, −1∨ − 1 = −1, 1∨ − 1 = ∞;

• ∨ satisfies left associativity: si∨s j∨sk = (si∨s j)∨sk, i, j, k ∈ {1, ..., n}.

Definition 6.5. Relational addition (∨) satisfies: r1
i j ∨ r2

i j ∨ ... ∨ rm
i j =

((s1
i j∨s2

i j∨...∨sm
i j),max{x1

i j, x
2
i j, ..., x

m
i j}).

From the definition of ∨, if there are m relational paths between vertices ci

and c j, then their interaction degree xi j ≥ ∀xk
i j, k ∈ {1, ...,m}.

Definition 6.6. Logic multiplication (∧) satisfies:

• si∧0 = 0;
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• 1∧1 = 1, −1∧ − 1 = 1, 1∧ − 1 = −1;

• ∧ satisfies left associativity: si∧s j∧sk = (si∧s j)∧sk, i, j, k ∈ {1, ..., n}.

Definition 6.7. Relational multiplication (∧) satisfies: for the kth path between ci and

ci, rk
i,i+1 ∧ rk

i+1,i+2 ∧ ... ∧ rk
j−1, j =

((sk
i,i+1∧sk

i+1,i+2∧...∧sk
j−1, j),min{xk

i,i+1∧xk
i+1,i+2}).

The definition of ∧ indicates that if a relation ri j is a transitive relation, then

xi j ≤ xpq, where xpq ∈ {xi,i+1, xi+1,i+2, ..., x j−1, j}.

Definition 6.8. A S S IM of I-ISM is defined as S S IM = (ChM, InD); ChM =
s11 · · · s1n

...
. . .

...

sn1 · · · snn

 is the Characteristic Matrix of S S IM; and ChM =


x11 · · · x1n

...
. . .

...

xn1 · · · xnn


is the interactive matrix of S S IM.

Property 6.6. S S IM ∗ S S IM = (ChM ∗ChM, InD ∗ InD).

Property 6.7. A S S IM is consistent. An RM is stable (i.e., RM = RMk = RMk+1),

consistent, and symmetric (i.e., ∀ci, c j, ri j = r ji).

Property 6.8. For a set of relations R = {ri j}, if one of the following two cases exists,

there is inconsistency in the relations: 1)∃ri j = −ri j; 2)if there are m paths between ci

and c j, ∃ra
i j , rb

i j, a, b ∈ {m}, then the corresponding S S IM is inconsistent.

I use four criteria {c1, c2, c3, c4} to explain the usage of the logic operations.

Fig.6.3(a) is an initial S S IM given by an decision maker, which shows that:

• c1
←→
1 c4: c1 and c4 are directly supportive with each other;

• c1
−→−1c3: c1 directly conflict to c3;
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• c1
←→
1 c4
←→
1 c3 ⇒ c1

←−→
1∧1c3: c1 and c3 are transitively supportive with each oth-

er via c4;

• Inconsistencies:

– based on 2) and 3), c1
−−−−−−−→
−1 ∪ 12

c4
c3 ⇒ c1

−−−−→
−1∨1c3 ⇒ c1

−→∞c3: the relation

from c1 to c3 cannot be determined due to the conflicting relation be-

tween their direct relation
−→−1 and their transitive relation via c4.

– c1
−−−−−→−1{1,c3}c2 & c2

−−−−−→
1{2,c3c4}c1 ⇒ c1(−1∨1)c2 ⇒ c1(∞)c2: the relation between

c1 and c2 are not symmetric.

Inconsistency is incident to a manually assigned relation matrix. According

to the theory proposed by Saaty [179], if the number of considered criteria is

over 7, it is quite possible that the decision makers feel confused to decide the

pair-wise relations between criteria. However, establishing consistent relations

is essential for guaranteeing a consistent and stable reachability matrix. There-

fore, it is necessary to develop an interactive way to help the decision makers

check and adjust the relation matrix to avoid its inconsistency. Fig. 6.3 shows

an example of an interaction process. I illustrate it as below:

Using the logic operations, we raise the power of S S IM to identify the tran-

sitive relations, until the matrix reaches its stable state.

• Check the direct inconsistent relations in S S IM. If there are direct in-

consistencies, return the position of the inconsistent relations, and then

decision makers revise the S S IM, e.g., if the initial S S IM is:ChM0 =
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c1 c2 c3 c4

c1 1 0 −1 1

c2 0 1 1 0

c3 0 1 1 1

c4 1 0 1 1


, the revised consistent matrix is ChM1 =



c1 c2 c3 c4

c1 1 0 −1 1

c2 0 1 1 0

c3 −1 1 1 1

c4 1 0 1 1


, which corresponds to Fig. 6.3a;

• Or else, raise the power of ChM, and record the additive vectors and the

median matrix in each power-raised step, i.e., ChMk, k = {2, 3, ...}.

• If there are inconsistencies in the vectors or in the median matrix, the

raising process will be terminated, and the conflicting elements will be

detected and be returned to decision makers as feedbacks, e.g., ChM0 =



c1 c2 c3 c4

c1 1 −1 ∞ ∞

c2 −1 1 1 1

c3 ∞ 1 1 ∞

c4 ∞ 1 ∞ 1


.

It shows that the relations among c1, c3, c4 are inconsistent. Therefore,

the additive vectors for the two positions are returned to the decision

makers, e.g., the additive vector for position (c3, c1) in ChM2 is calculat-

ed as: c3?c1 ⇐ (−1, 1, 1, 1)∧(1, 0,−1, 1)T = ((−1∧1)∨(1∧0)∨(1∧ − 1)∨(1∧1)) =

(−1∨0∨ − 1∨1)⇒ c3r∞c1.

The meaning of the additive vector (−1∨0∨ − 1∨1) is: c3
−→−1c1, c3

−−−−−→
0{1,c2}c1,
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c3
−→−1c1, c3

−−−−−→
1{1,c4}c1. ChM1 shows that the transitive relation from c3 to c1

through c4 is conflict with the direct relation from c3 to c1.

For positions (c1, c3), (c1, c4), (c3, c4), (c4, c1), and (c4, c3), the additive vectors

are c1r∞c3 ⇐ (−1∨0∨− 1∨1); c1r∞c4 ⇐ (1∨0∨− 1∨1); c3r∞c4 ⇐ (−1∨0∨1∨1);

c4r∞c1 ⇐ (1∨0∨ − 1∨1); c4r∞c3 ⇐ (−1∨0∨1∨1).

• The experts adjust the relation matrix based on the returned additive vec-

tors and the powered matrix, e.g., the six additive vectors in last step

shows that the inconsistencies are: c1
←−→r{1,c4}c3, c1

←−→r{1,c3}c4, c3
←−→r{1,c1}c4. Thus, the

relations among c1, c3, and c4 need to be reviewed and adjusted by de-

cision makers, e.g., suppose after reviewing, the relation is changed to

c3
←→−1c4 (see Fig. 6.3b).

• Restart the powering process based on the new matrix ChM1, until the sta-

ble matrix is achieved and there is no feedback in the process. The reach-

ability matrix is obtained, e.g., the final stable and symmetric reachability

matrix is RM∗ChM = ChM3 = ChM4 = ... = ChM∞ =



c1 c2 c3 c4

c1 1

c2 −1 1

c3 −1 1 1

c4 1 −1 −1 1


.

The reachability diagram is shown in Fig. 6.3c. We can see that the relation

c4
←−−−−−−−→−1{1,c1 or c3}c2 is an identified transitive relation, and c1

←→−1c2 is an identified

direct relation.
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Figure 6.3: Interactive relations among criteria c1, c2, c3, c4

6.4.2 Supportive and Conflict Power

After establishing the reachability matrix, elements in ISM will be partitioned

based on the driver power and the dependence of one sub-ordinate relation. To

partition the elements in I-ISM, I additionally consider the rss
i j and rcc

i j . Since I

focus on the symmetric relations between criteria in this work, the driver power

of a criterion equals to its dependence. Therefore, the driver power and the

dependence cannot be used to partition the criteria. I define here the supportive

power and the conflict power to measure rss
i j and rcc

i j .

Definition 6.9. Let N be a set of criteria for a decision system, i, j ∈ N, i , j. The

supportive power of i is defined as S (i) = Σ j∈N xss
i j . The conflict power of i is defined

as C f (i) = Σ j∈N(xcc
i j ).

An example of the SSIM of the nine criteria of a cloud service is shown in

Table 6.1. We raise the power of SSIM to get a stable Reachability Matrix (RM in

Table 6.3). We can see that S (av) = 3, and C f (re) = 4.
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Table 6.1: SSIM of Nine Criteria of a Cloud Service

SSIM av(0) re(1) sc(2) stc(3) dts(4) la(5) tcs(6) rscs(7) cost(8)

av(0) 1 1 1 −1 0 0 0 0 0

re(1) 1 1 0 0 0 0 0 0 0

sc(2) 0 0 1 −1 0 0 0 0 0

stc(3) −1 0 −1 1 0 0 0 0 1

dts(4) 0 0 0 0 1 1 0 0 1

la(5) 0 0 0 0 1 1 0 0 0

tcs(6) 0 0 0 0 0 0 1 1 0

rscs(7) 0 0 0 0 0 0 1 1 0

cost(8) 0 0 0 1 1 0 0 0 1

6.4.3 Criteria Partition based on Reachability Matrix

In this section, I introduce a partition procedure for the I-ISM according to the

triplet relations, which is an extension the the partition procedure of ISM. To

conveniently inspect and construct the relations among criteria, ISM has a par-

tition procedure that can group criteria according to their binary influence rela-

tions based on the reachability matrix.

Block Partition: ΠB = (B1, ..., Bh), where Bl = {i ∈ A−B0−B1− ...−Bl−1|rss
i j ,∀ j ∈

Bl, and rcc
ik ||ru

ik,∀k < Bl}.

For example, the relation partition induced by the reachability matrix RM in

Table 6.3 is ΠR = {{0, 1, 2}, {3, 4, 5, 8}, {6, 7}}.

If we assume that the relation value between criteria i and j are xcc
i j = xss

i j = 1
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and xu
i j = 0. Based on the concepts of conflicting power and supportive power,

we can extend the block partition to level partition. I first introduce a theorem for

level partition.

Theorem 6.1. ∀i, j ∈ A, C f (i) − S (i) ≥ C f ( j) − S ( j) ⇒ i ≽ j; C f (i) + S (i) ≥

C f ( j) + S ( j)⇒ i ≽ j, where C f (i) = {k, rcc
ik ,∀k ∈ A}, and S (i) = {k, rss

ik ,∀k ∈ A}.

Proof. Based on the definitions of supportive with and conflicting with, the more a

criterion being conflicting with the other criteria, the more important the crite-

rion is to the system; while the more a criterion being supportive with the other

criteria, the less important the criterion is to the system. Therefore, the higher

the value of C f − S , the higher importance degree (or satisfaction degree) the

criterion has.

Based on the definitions of driver power and dependence, the more a criterion

being connective with other criteria (i.e., having higher driver power and de-

pendence), the more important the criterion is. Therefore, the higher the value

of C f + S , the higher importance degree (or satisfaction degree) the criterion

has. �

Given the block partition of a set of criteria, and the assumption that xcc||ss
i j = 1

and xu
i j = 0, I define a hierarchic partition to rank the importance degree of

criteria for the decision system.

Hierarchic Partition: ΠH = (H1, ...,Hh), where Hl ∈ {i ∈ A − H0 − H1 − · · · −

Hl−1|C f (i) = C f ( j)&S (i) = S ( j),∀ j ∈ Hl; C f (i) < C f (k)&S (i) > S (k),∀k ∈ Hg, g < l}.

The values of C f −S and C f +S of criteria are used to rank the criteria respec-

tively. Table 6.3 shows the ranking of nine criteria for Cloud service evaluation
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based on the values of C f −S or C f +S . The tab Rank indicates that criteria av, re

and sc are most important. The criterion ranking hierarchies can be established

based on the tab Rank, which is shown in Fig. 6.2. In Fig. 6.2, the arcs are all

bi-direction, representing the symmetric relation between criteria. The arcs with

dotted lines represent the supportive relations between criteria, while the arcs

with solid lines represent the conflict relations.

Table 6.2: RM and Ranking of Nine Criteria of a Cloud Service

RM 0 1 2 3 4 5 6 7 8 S C f C f − S C f + S Rank

0 1 1 1 -1 -1 -1 0 0 -1 3 4 1 7 I

1 1 1 1 -1 -1 -1 0 0 −1 3 4 1 7 I

2 1 1 1 -1 -1 -1 0 0 -1 3 4 1 7 I

3 -1 -1 -1 1 1 1 0 0 1 4 3 -1 7 II

4 -1 -1 -1 1 1 1 0 0 1 4 3 -1 7 II

5 -1 -1 -1 1 1 1 0 0 1 4 3 -1 7 II

6 0 0 0 0 0 0 1 1 0 2 0 -2 2 III

7 0 0 0 0 0 0 1 1 0 2 0 -2 2 III

8 -1 -1 -1 1 1 1 0 0 1 4 3 -1 7 II

6.4.4 I-ISM in 2-order Additive Choquet Integral

As I introduced in previous section, I-ISM is capable of determining the rela-

tions between criteria, which can help the modelling of 2-additive capacity i-

dentification in Fuzzy measure theory. Based on the definition of supportive

and conflicting relations among criteria, I define property 6.9 that indicates the

168



influence of different types of criteria relations on the decision system.

Property 6.9. Given a set of mutually supportive criteria NS S and a set of mutually

conflicting criteria NCC, let the interaction index of a criteria coalition c1, ..., ck be Iµ1,...,k.

then −1 ≤ {Iµ(T2)|∀T2 ⊂ NS S } ≤ 0 ≤ {Iµ(T1)|∀T1 ⊂ NCC} ≤ 1.

6.5 Experimental Evaluation and Application

In this section, I apply the I-ISM to the 2-order additive Choquet Integral and

evaluate the efficiency of I-ISM according to the results of alternative rank-

ing by using the Choquet Integral. At first, I obtain the marginal utilities

of the criteria of 10 alternatives using the sigmoid utility function proposed

in Section 6.3. Then the desired utility value of each alternative are given

based on the MACBETH [51] approach, which in this experiment is fixed as

y(x)x∈A = (0.9126, 1, 0.9106, 0.5942, 0.6732, 0.2732, 0.566, 0.3504, 0.5381, 0.49), and

the order of the service providers is sp1 > sp2 > sp10 > sp5 > sp6 > sp3 > sp9 >

sp4 > sp8 > sp7. The DM can use the pair-wise comparison of the Analytic

Network Process (ANP) [118] to get the importance order of the nine criteria:

av > stc > cost > re > dts > la > tcs > sc > rscs.

I also give a set of constraint conditions in Table 6.3 to describe DM’s in-

tensions on the interactive index between two criteria, where δS h is a threshold

given by DMs. The value of δS h will be set in the specific capacity identifica-

tion. In addition, I use δϕ represents the importance threshold for singleton

criterion. For example, in Fig. 6.2, I have got the block partition of the nine

criteria of Cloud services. I assume that the DMs give similar importance of the

criteria in the same block, while the criteria in RankI are more important than
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the criteria in RankII, and the RankII criteria are more important than RankI-

II criteria. For example, −δϕ ≤ Φ(stc) − Φ(sc) ≤ δϕ; −δϕ ≤ Φ(av) − Φ(re) ≤ δϕ;

−δϕ ≤ Φ(dts) − Φ(la) ≤ δϕ; and Φ(av) − Φ(stc) > δϕ; Φ(dts) − Φ(tcs) > δϕ. In this

experiment, I fix δΦ = 0.01.

Our experiments are conducted on a 64-bit Windows System with Intel i5 3.2

GHz CPU and 4GB RAM. I use ’kappalab’ package [79] for identifying capaci-

ties and evaluating the alternative ranking results.

In these experiments, I apply four capacity identification procedures to eval-

uate the quality of ranking of the 10 service providers, which are least squares

(ls), linear programming (lp), minimum variance (mv), and minimum distance

(md). Readers can refer to [79] for details of these four types of capacity identi-

fication procedure. I show the performance of the capacity calculation in terms

of two measures:

• entropy (en): the maximum entropy procedure determines the most un-

certain capacity: maximize HM(µ) = −Σi∈NΣS⊂N\iγs(n)[µ(S ∪ i) − µ(S )]. The

maximum entropy procedure is corresponding to the minimum variance

procedure: minimize V(µ) = 1
nΣi∈NΣS⊂N\iγs(n)(µ(S ∪ i)−µ(S )− 1

n )2. In the fol-

lowing experiments, I will show both the values of entropy and variance

of a capacity to see the capacity quality.

• mean squared error (mean): measure the difference between the expected

utilities of alternatives and the induced utilities calculated by the Choquet

Integral.

Least Squares Capacity Identification. I evaluate the ranking of the ten

Cloud service providers by investigating the changing trend of the en, var,

170



Table 6.3: Constraints on the Criteria Preference in terms of DM’s Desire

I(ij) re(1) sc(2) stc(3) dts(4) la(5) tcs(6) rscs(7) cost(8)

av(0)
[-1,

-δS h]

[-1,

-δS h]
[-1,-δS h]

[δS h,

1]

[δS h,

1]

[-1,

-δS h]

[δS h,

1]

[δS h,

1]

re(1)
[-1,

-δS h]

[-1,

-δS h]

[δS h,

1]

[δS h,

1]

[-1,

-δS h]

[δS h,

1]

[δS h,

1]

sc(2)
[-1,

-δS h]

[δS h,

1]

[δS h,

1]

[-1,

-δS h]

[δS h,

1]

[δS h,

1]

stc(3)
[δS h,

1]

[δS h,

1]

[-1,

-δS h]

[δS h,

1]

[δS h,

1]

dts(4)
[-1,

-δS h]

[δS h,

1]

[-1,

-δS h]

[-1,

-δS h]

la(5)
[δS h,

1]

[-1,

-δS h]

[-1,

-δS h]

tcs(6)
[-1,

-δS h]

[-1,

-δS h]

rscs(7)
[-1,

-δS h]

and mean in terms of different δS h and δC. I test each combination of δS h =

{0.1, 0.2, 0.3, 0.4, 0.5} and δC = {0.1, 0.2, 0.3, 0.4, 0.5} individually by using the least

squares 2-additive (represented as ls2c) and 3-additive (ls3c) capacity identifi-

cation. Based on the marginal utilities of the ten service providers, the partial

order of the 9 criteria and the values of δS h and δC, the performance of en, var

and mean is shown in Fig. 6.4.
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Figure 6.4: The performance of ls2c and ls3c in terms of en, var, and mean
w.r.t different δS h and δC. The x-axis marks ’1.1’ represent δS h =

0.1 and δC = 0.1.

From Fig. 6.4, I can see that both the entropy and the variance can be kept

in a high performance (en > 0.7 and var < 0.2) in terms of different thresholds

of δS h and δC by using both ls2c and ls3c capacity identification procedures. The

mean squared errors is staying in a very low level (mean < 0.1) for both of ls2c

and ls3c. The ranking performance results of ls2c and ls3c indicate the efficiency

of using the proposed I-ISM model to construct the different types of relations

among criteria.

Linear Programming, Minimum Variance, Minimum Distance Capacity

Identification. The capacity identification procedures of the linear program-

ming (abbr. lp), minimum variance (mv), and minimum distance (md) only de-

pend on the partial orders of alternatives and criteria. I present the changing

trend of the variance and entropy performance in terms of different threshold

values δC based on 8 capacity identification procedures: 2-additive Linear pro-

gramming (lp2), 2-, 3- and 5- additive minimum variance (mv2 and mv3), 2-,

3-, and 5-additive minimum distance based on the average quadratic distance

between the global scores of the bi-alternatives (md2g, md3g, and md5g), and
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Figure 6.5: The performance of lp, mv and md in terms of en and var w.r.t
different δC.

Figure 6.6: The performance of lp, mv and md in terms of en and var w.r.t
different number of alternatives.

5-additive minimum distance with the minimized average distance between

bi-alternatives (md5b). The performance is shown in Fig. 6.5. The evaluation

results show that the performance of the three types of capacity identification

procedures based on different k − additive and distance settings is very high

(var < 0.14 and en > 0.7) w.r.t a series of alternative threshold values δC.

I again compare the performance of the 8 capacity identification procedures

in terms of en and var w.r.t a series of alternative numbers 3, 4, · · · , 10. Based

on the performance comparison result in Fig. 6.5, when δC = 0.02, the variance
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reaches the lowest point and the entropy reaches the highest point with any ap-

propriate deltaS h. Therefore, I set δC = 0.02 and deltaS h = 0.01 in this comparison

process, and the performance result is shown in Fig. 6.6. We can see that the

performance of all the 8 capacity identification procedures is high (var < 0.16

and en > 0.7) w.r.t different alternative numbers.

6.6 Summary

In this chapter, I introduced a MCDM approach of Cloud service selection to

help Cloud users make informed decisions on choosing most appropriate Cloud

services. One distinctive feature of the proposed approach is that it measures

the influence of the criteria relations on the decision making performance. This

approach comprises two parts: an Interactive Interpretive Structural Modelling

(I-ISM) approach to help decision makers establish consistent criteria relations

interactively; and a 2-order fuzzy integral procedure to aggregate the utilities of

singleton criterion performance and the performance of criteria coalitions. Our

Cloud service selection approach improves the existing Cloud service selection

techniques by taking into account the interactive utilities of a set of decision

criteria. Experimental results show the efficiency of the proposed I-ISM for es-

tablishing criteria relations.
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CHAPTER 7

CONCLUSION AND FUTURE WORK

7.1 Conclusion

Making healthcare decisions is challenging, which is influenced by a variety of

factors: the lack of medical knowledge, the subjective mistakes of the health-

care givers, the false and incomplete information, and the misunderstanding

and misinterpretation of the knowledge. The development of the medical sen-

sor and the data mining technologies improve the accuracy of the medical in-

formation and the correctness of the medical decision making.

In this thesis, I focused on analysing large volume of medical sensor data

streams collected from Sensor-cloud, where the following four problems were

discussed:

• Segment data streams. Medical data streams are very long (consistent-

ly) and have medical-related features (e.g., pseudo-periodic). In certain

situations, it is necessary to segment the long data stream to short sub-

sequences and to analyse the data based on these sub-sequences. Howev-

er, it is difficult to get high performance (e.g., accuracy and computational

complexity) by applying the segmentation techniques against general ar-

eas to medical datasets.

• Detect abnormal subsequence in a data stream. Anomaly detection in

medical data streams can assist doctors or patients in diagnosing diseases

or analysing physical abnormal signals. Most existing work detects data
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stream abnormal sub-sequences in an approximate way by first convert-

ing the continuous data stream to a discrete data stream. It is normally

intractable to exactly discover the discords based on the original continu-

ous data streams.

• Identify variable-length motifs. Finding motifs (i.e., repeated patterns) is

still an open problem in continuous stream mining, though it has been s-

tudied for decades in the area of mining discrete data streams. Particular-

ly, most researchers assume the repeated patterns having similar lengths

in one data stream, which is incompatible with the real-word cases that

have multiple types of motifs with different lengths. Especially, the occur-

rences of the same motif may have similar shapes yet variable lengths. So

I discuss in this thesis the problem of discovering variable-length motifs

in medical sensor data streams, where the discovered motifs can be used

to recognize the repeated occurred behaviours or physical conditions.

• Select qualified cloud services for sensor-cloud construction. When mak-

ing a purchasing decision for cloud services, healthcare IT managers

should evaluate cloud service providers in terms of user specific require-

ments, to proactively resolve the precursors of cost leakages or service

failures. It is valuable to explore the problem of cloud service selection to

achieve a best trade-off between the spending and quality of using cloud

services for building healthcare sensor-clouds.

I proposed a medical data stream mining framework to analyse the medical

data streams (e.g., ECG and EEG), which consists of the following components:

• Supervised classification framework for anomaly detection. I proposed a

supervised classification framework for detecting anomalies in uncertain
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pseudo periodic time series, which comprises four components: an uncer-

tainty identification and correction component (UICC), a time series com-

pression component (TSCC), a period segmentation and summarization

component (PSSC), and a classification and anomaly detection component

(CADC). First, UICC processes a time series to remove uncertainties from

the time series. Then TSCC compresses the processed raw time series to

an approximate time series. Afterwards the PSSC identifies the periodic

patterns of the time series and extracts the most important features of each

period, and finally the CADC detects anomalies based on the selected fea-

tures.

• Limited-length suffix array based motif discovery. I proposed an unsu-

pervised Limited-length Suffix Array based Motif Discovery algorithm

(LiSAM) for continuous time series, which is time and space efficient, and

supports approximately discovering motifs in different lengths. I first con-

verted the continuous time series to the discrete time series by using the

Symbolic Aggregate approXimation procedure (SAX) [101], and then i-

dentify the different-length motifs based on the discrete time series. The

illustration of discrete motif discovery is on the basis of an exact substring

matching procedure, however, I can easily embed the existing approxi-

mate substring matching methods, such as, in LiSAM. That is, I use the

exact subsequence grouping of discrete time series to discover the approx-

imate patterns of continuous time series. I can also calculate the exact

similarities between the instances of a continuous motif after such an ap-

proximate grouping.

• I proposed a Fuzzy User-oriented Cloud SeRvice Selection System

(Cloud-FuSeR) that is capable of dealing with fuzzy information and
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rating cloud services by considering three aspects: (1) the similarities

between user-required functions and the service functions provided by

cloud providers, (2) the performance of the non-functional properties, and

(3) the user preference on different properties.

• MCDM framework considering criteria interdependence. I proposed a M-

CDM framework that helps DMs to build the criteria relations and mea-

sures the performance of cloud service alternatives.

7.2 Future Work

The medical data stream mining work introduced in this thesis is focused on

single-variable and non-evolving medical time series. In most cases, however,

the medical decision making is based on the simultaneous analysis of multiple

data streams, and the information in the data streams are evolving over time.

Therefore, in the next stage, I am going to extend the current work from the

following aspects:

• I will develop anomaly detection and motif discovery methods for multi-

variate medical time series, considering the correlations among the time

series.

• I will consider the influence of the concept evolution on the medical deci-

sions based on the data stream mining.

• I will develop a ECG-based healthcare application that consistently mon-

itors the patients, and online detect and predict the diseases based on the

ECG data streams.
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• I will extend the ECG-based healthcare application to various healthcare

areas, like EEG data stream mining, body temperature monitoring, and

speaking voice analysis.
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[163] Francisco Javier Ordóñez and Daniel Roggen. Deep convolutional and
lstm recurrent neural networks for multimodal wearable activity recogni-
tion. Sensors, 16(1):115, 2016.

[164] Themis Palpanas, Michail Vlachos, Eamonn Keogh, and Dimitrios
Gunopulos. Streaming time series summarization using user-defined am-
nesic functions. IEEE Trans. Knowl. Data Eng., 20(7):992–1006, July 2008.

[165] DiptiD. Patil, JyotiG. Mudkanna, Dnyaneshwar Rokade, and VijayM.
Wadhai. Concept adapting real-time data stream mining for health care
applications. In David C. Wyld, Jan Zizka, and Dhinaharan Nagamalai,
editors, Advances in Computer Science, Engineering and Applications, volume
166 of Advances in Intelligent and Soft Computing, pages 341–351. Springer
Berlin Heidelberg, 2012.

[166] D. Pavlov. Sequence modeling with mixtures of conditional maximum
entropy distributions. In Data Mining, 2003. ICDM 2003. Third IEEE Inter-
national Conference on, pages 251–258, Nov 2003.

[167] Jonathan Pryshlakivsky and Cory Searcy. A heuristic model for estab-
lishing trade-offs in corporate sustainability performance measurement
systems. Journal of Business Ethics, pages 1–20, 2015.

[168] Jianzhong Qi, Rui Zhang, Kotagiri Ramamohanarao, Hongzhi Wang, Zeyi
Wen, and Dan Wu. Indexable online time series segmentation with error
bound guarantee. World Wide Web, 18(2):359–401, 2015.

[169] Lie Qu, Yan Wang, M.A. Orgun, Ling Liu, and A. Bouguettaya. Context-
aware cloud service selection based on comparison and aggregation of us-

196



er subjective assessment and objective performance assessment. In IEEE
International Conference on Web Services (ICWS), pages 81–88, June 2014.

[170] Lie Qu, Yan Wang, Mehmet Orgun, et al. Cloud service selection based
on the aggregation of user feedback and quantitative performance assess-
ment. In IEEE International Conference on Services Computing (SCC), pages
152–159. IEEE, 2013.

[171] Sridhar Ramaswamy, Rajeev Rastogi, and Kyuseok Shim. Efficient algo-
rithms for mining outliers from large data sets. In Proceedings of the 2000
ACM SIGMOD International Conference on Management of Data, SIGMOD
’00, pages 427–438, New York, NY, USA, 2000. ACM.

[172] Ziaur Rehman, OmarKhadeer Hussain, and FarookhKhadeer Hussain.
Parallel cloud service selection and ranking based on qos history. Int.
J. Parallel. Prog., 42(5):820–852, 2014.

[173] Philip Resnik. Semantic similarity in a taxonomy: an information-based
measure and its application to problems of ambiguity in natural language.
J. Artif. Intell. Res., 11:95–130, 1999.

[174] Douglas Reynolds. Gaussian mixture models. In StanZ. Li and Anil Jain,
editors, Encyclopedia of Biometrics, pages 659–663. Springer, USA, 2009.

[175] C.J. Van Rijsbergen. Information retrieval. Butterworth-Heinemann, Lon-
don, 1979.

[176] Paul L. Rosin. Assessing the behaviour of polygonal approximation algo-
rithms. Pattern Recogn., 36(2):505–518, 2003. Biometrics.

[177] Peter J. Rousseeuw. Silhouettes: a graphical aid to the interpretation and
validation of cluster analysis. J. Comput. Appl. Math., 20(0):53–65, 1987.

[178] Thomas L Saaty. How to make a decision: the analytic hierarchy process.
Eur. J. Oper. Res., 48(1):9–26, 1990.

[179] Thomas L Saaty. Decision making with the analytic hierarchy process.
International journal of services sciences, 1(1):83–98, 2008.

[180] Majed Sahli, Essam Mansour, and Panos Kalnis. Parallel motif extraction
from very long sequences. In Proceedings of the 22Nd ACM International

197



Conference on Conference on Information &#38; Knowledge Management, CIK-
M ’13, pages 549–558, New York, NY, USA, 2013. ACM.

[181] Smruti R. Sarangi and Karin Murthy. Dust: a generalized notion of sim-
ilarity between uncertain time series. In Proceedings of the 16th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining,
KDD’10, pages 383–392, New York, NY, USA, 2010. ACM.

[182] Suchi Saria, Andrew Duchi, and Daphne Koller. Discovering deformable
motifs in continuous time series data. In Proceedings of the Twenty-Second
International Joint Conference on Artificial Intelligence - Volume Volume Two,
IJCAI’11, pages 1465–1471. AAAI Press, 2011.

[183] Prasad Saripalli and Gopal Pingali. Madmac: multiple attribute decision
methodology for adoption of Clouds. In IEEE International Conference on
Cloud Computing (CLOUD), pages 316–323. IEEE Computer Society, 2011.

[184] D. Sart, A. Mueen, W. Najjar, E. Keogh, and V. Niennattrakul. Accelerating
dynamic time warping subsequence search with gpus and fpgas. In Data
Mining (ICDM), 2010 IEEE 10th International Conference on, pages 1001–
1006, Dec 2010.

[185] Galit Shmueli and Howard Burkom. Statistical challenges facing early
outbreak detection in biosurveillance. Technometrics, 52(1):39–51, 2010.

[186] Huan-Jyh Shyur and Hsu-Shih Shih. A hybrid MCDM model for strategic
vendor selection. Math. Comput. Model., 44(7):749–761, 2006.

[187] Jane Siegel and Jeff Perdue. Cloud services measures for global use: the
service measurement index (smi). In Annual SRII Global Conference (SRII),
pages 411–415. IEEE, 2012.

[188] Ikaro Silva and George Moody. An open-source toolbox for analysing and
processing physionet databases in matlab and octave. J. Open Res. Softw.,
2(1), 2014.

[189] Fernando Silveira, Christophe Diot, Nina Taft, and Ramesh Govindan.
Astute: Detecting a different class of traffic anomalies. In Proceedings of
the ACM SIGCOMM 2010 Conference, SIGCOMM ’10, pages 267–278, New
York, NY, USA, 2010. ACM.

[190] Chirpreet Singh, Qun Shao, Yuqian Lu, Xun Xu, and Xinfeng Ye. Tool s-

198



election: A cloud-based approach. In James J. (Jong Hyuk) Park, Albert
Zomaya, Hwa-Young Jeong, and Mohammad Obaidat, editors, Frontier
and Innovation in Future Computing and Communications, volume 301 of Lec-
ture Notes in Electrical Engineering, pages 237–245. Springer Netherlands,
2014.

[191] Nguyen Thanh Son and Duong Tuan Anh. Discovering approximate time
series motif based on mp c method with the support of skyline index. In
Knowledge and Systems Engineering (KSE), 2012 Fourth International Confer-
ence on, pages 113–120, Aug 2012.

[192] Spideroak. Spideroak, 2014.

[193] Stratecast. Tips for choosing a cloud service provider. Technical Report
MSU-CSE-00-2, Department of Computer Science, Michigan State Univer-
sity, march 2011.

[194] Louise T Su. The relevance of recall and precision in user evaluation. J.
Am. Med. Inf. Assoc., 45(3):207–217, 1994.

[195] Le Sun. Cloud data storage service ontology, 2013.

[196] Le Sun, Hai Dong, Farookh Khadeer Hussain, Omar Khadeer Hussain,
and Elizabeth Chang. Cloud service selection: State-of-the-art and future
research directions. J. Netw. Comput. Appl., 45:134 – 150, 2014.

[197] Le Sun, Hai Dong, Farookh Khadeer Hussain, Omar Khadeer Hussain,
and Elizabeth Chang. Cloud service selection: State-of-the-art and future
research directions. Journal of Network and Computer Applications, 45:134–
150, 2014.

[198] Pei Sun, Sanjay Chawla, and Bavani Arunasalam. Mining for outliers in
sequential databases. In SDM, pages 94–105. SIAM, 2006.

[199] Shengtao Sun, Lizhe Wang, Rajiv Ranjan, and Aizhi Wu. Semantic analy-
sis and retrieval of spatial data based on the uncertain ontology model in
digital earth. Int. J. Digit. Earth, 8(1):3–16, 2015.

[200] Zeeshan Syed, Collin Stultz, Manolis Kellis, Piotr Indyk, and John Gut-
tag. Motif discovery in physiological datasets: A methodology for infer-
ring predictive elements. ACM Trans. Knowl. Discov. Data, 4(1):2:1–2:23,
January 2010.

199



[201] M. Tajvidi, R. Ranjan, J. Kolodziej, and Lizhe Wang. Fuzzy cloud service
selection framework. In IEEE International Conference on Cloud Networking
(CloudNet), pages 443–448, Oct 2014.

[202] Swee Chuan Tan, Kai Ming Ting, and Tony Fei Liu. Fast anomaly de-
tection for streaming data. In Proceedings of the Twenty-Second Internation-
al Joint Conference on Artificial Intelligence - Volume Volume Two, IJCAI’11,
pages 1511–1516. AAAI Press, 2011.

[203] J.T. Tate. Fourier analysis in number fields and hecke’s zeta-functions. In
Proceedings Instructional Conference, 1965.

[204] Mahbod Tavallaee, Natalia Stakhanova, and Ali Akbar Ghorbani. Toward
credible evaluation of anomaly-based intrusion-detection methods. IEEE
T. Syst. Man. Cy. C., 40(5):516–524, September 2010.

[205] Shengfeng Tian, Shaomin Mu, and Chuanhuan Yin. Sequence-similarity
kernels for svms to detect anomalies in system calls. Neurocomput., 70(4-
6):859–866, January 2007.

[206] Fatma Tiryaki and Beyza Ahlatcioglu. Fuzzy portfolio selection using
fuzzy analytic hierarchy process. Inform. Sci., 179(1):53–69, 2009.

[207] Fatemeh Torfi, Reza Zanjirani Farahani, and Shabnam Rezapour. Fuzzy
AHP to determine the relative weights of evaluation criteria and Fuzzy
TOPSIS to rank the alternatives. Appl. Soft Comput., 10(2):520–528, 2010.

[208] Vicen Torra and Yasuo Narukawa. The interpretation of fuzzy integrals
and their application to fuzzy systems. International Journal of Approximate
Reasoning, 41(1):43–58, 2006. Aggregation Operators and Decision Mod-
eling.

[209] Liem Tran and Lucien Duckstein. Comparison of fuzzy numbers using a
fuzzy distance measure. Fuzzy Set. Syst., 130(3):331–341, 2002.

[210] Thanh T. Tran, Liping Peng, Yanlei Diao, Andrew Mcgregor, and Anna
Liu. Claro: modelling and processing uncertain data streams. VLDB J.,
21(5):651–676, October 2012.

[211] Evangelos Triantaphyllou and Chi-Tun Lin. Development and evaluation
of five fuzzy multiattribute decision-making methods. Int. J. Approx. Rea-
son., 14(4):281–310, 1996.

200



[212] TrueCrypt. TrueCrypt, 2014.

[213] Ping Wang. Qos-aware web services selection with intuitionistic fuzzy set
under consumers vague perception. Expert Syst. Appl., 36(3):4460–4466,
2009.

[214] Xiaogang Wang, Jian Cao, and Yang Xiang. Dynamic cloud service se-
lection using an adaptive learning mechanism in multi-cloud computing.
Journal of Systems and Software, 100:195–210, 2015.

[215] Ying-Ming Wang and Taha Elhag. Fuzzy TOPSIS method based on alpha
level sets with an application to bridge risk assessment. Expert Syst. Appl.,
31(2):309–319, 2006.

[216] Zhenyuan Wang and George Klir. Fuzzy measure theory. Springer Science
& Business Media, 2013.

[217] C. Warrender, S. Forrest, and B. Pearlmutter. Detecting intrusions using
system calls: alternative data models. In Proceedings of the 1999 IEEE Sym-
posium on Security and Privacy, pages 133–145, 1999.

[218] Li Wei, E. Keogh, and Xiaopeng Xi. Saxually explicit images: Finding
unusual shapes. In Data Mining, 2006. ICDM ’06. Sixth International Con-
ference on, pages 711–720, Dec 2006.

[219] Md Whaiduzzaman, Abdullah Gani, Nor Badrul Anuar, Muhammad Shi-
raz, Mohammad Nazmul Haque, and Israat Tanzeena Haque. Cloud ser-
vice selection using multicriteria decision analysis. The Scientific World
Journal, 2014, 2014.

[220] William Wilson, Phil Birkin, and Uwe Aickelin. The motif tracking algo-
rithm. Int. J. Auto. Comput., 5(1):32–44, 2008.

[221] Zhibiao Wu and Martha Palmer. Verbs semantics and lexical selection.
In Proceedings of the 32nd Annual Meeting on Association for Computation-
al Linguistics, pages 133–138. Association for Computational Linguistics,
1994.

[222] Zhenghua Xu, Rui Zhang, Ramamohanarao Kotagiri, and Udaya Param-
palli. An adaptive algorithm for online time series segmentation with
error bound guarantee. In Proceedings of the 15th International Conference

201



on Extending Database Technology, EDBT’12, pages 192–203, New York, NY,
USA, 2012. ACM.

[223] Kenji Yamanishi and Yuko Maruyama. Dynamic syslog mining for net-
work failure monitoring. In Proceedings of the Eleventh ACM SIGKDD Inter-
national Conference on Knowledge Discovery in Data Mining, KDD ’05, pages
499–508, New York, NY, USA, 2005. ACM.

[224] Jiong Yang and Wei Wang. Cluseq: efficient and effective sequence clus-
tering. In Data Engineering, 2003. Proceedings. 19th International Conference
on, pages 101–112, March 2003.

[225] Miin-Shen Yang, Wen-Liang Hung, and Shou-Jen Chang-Chien. On a sim-
ilarity measure between LR-type fuzzy numbers and its application to
database acquisition. Int. J. Intell. Syst., 20(10):1001–1016, 2005.

[226] Dragomir Yankov, Eamonn Keogh, Jose Medina, Bill Chiu, and Victor Zor-
dan. Detecting time series motifs under uniform scaling. In Proceedings of
the 13th ACM SIGKDD international conference on Knowledge discovery and
data mining, pages 844–853. ACM, 2007.

[227] Lexiang Ye and Eamonn Keogh. Time series shapelets: a novel technique
that allows accurate, interpretable and fast classification. Data Mining and
Knowledge Discovery, 22(1-2):149–182, 2011.

[228] Nong Ye et al. A markov chain model of temporal behavior for anomaly
detection. In Proceedings of the 2000 IEEE Systems, Man, and Cybernetics
Information Assurance and Security Workshop, volume 166, page 169. West
Point, NY, 2000.

[229] S. Yingchareonthawornchai, H. Sivaraks, T. Rakthanmanon, and C.A.
Ratanamahatana. Efficient proper length time series motif discovery. In
Data Mining (ICDM), 2013 IEEE 13th International Conference on, pages
1265–1270, Dec 2013.

[230] Mustafa Yurdakul and Yusuf Tansel Ic. Application of correlation test to
criteria selection for multi-criteria decision making (MCDM) models. Int.
J. Adv. Manuf. Tech., 40(3-4):403–412, 2009.

[231] Madoka Yuriyama and Takayuki Kushida. Sensor-cloud infrastructure -
physical sensor management with virtualized sensors on cloud comput-
ing. 2013 16th International Conference on Network-Based Information Sys-
tems, 0:1–8, 2010.

202



[232] M. Zhang, r. Ranjan, M. Menzel, S. Nepal, P. Strazdins, W. Jie, and
L. Wang. An infrastructure service recommendation system for cloud
applications with real-time qos requirement constraints. Systems Journal,
PP(99):1–11, 2015.

[233] Liyue Zhao, Xi Wang, G. Sukthankar, and R. Sukthankar. Motif discovery
and feature selection for crf-based activity recognition. In Pattern Recog-
nition (ICPR), 2010 20th International Conference on, pages 3826–3829, Aug
2010.

[234] Yu Zheng, Xing Xie, and Wei-Ying Ma. Geolife: a collaborative social
networking service among user, location and trajectory. IEEE Data Eng.
Bull., 33(2):32–39, 2010.

[235] Zibin Zheng, Xinmiao Wu, Yilei Zhang, M.R. Lyu, and Jianmin Wang.
Qos ranking prediction for cloud services. IEEE Transactions on Parallel
and Distributed Systems, 24(6):1213–1222, June 2013.

[236] Yunyue Zhu and Dennis Shasha. Statstream: Statistical monitoring of
thousands of data streams in real time. In Proceedings of the 28th Interna-
tional Conference on Very Large Data Bases, VLDB’02, pages 358–369. VLDB
Endowment, 2002.

203




