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Abstract 

As warships can carry weapons on board, the unlikely occurrence of fire is one of the 

most feared events on board. Until recently, halon 1301 (bromo-tri-fluoro methane, 

CF3Br) has been the primary fire-fighting agent for protecting the machinery spaces 

of ships. Halon 1301 is not only harmful to humans, but it also depletes the ozone 

layer. Water-mist fire suppression systems (WMFSS) have been considered as a 

potential candidate for the replacement of halon-based fire suppression systems by 

fire protection industries. WMFSS is already being used in commercial buildings, 

passenger and naval ships, etc. However, it is essential to examine the efficacy of 

water-mist droplets in suppressing fires. The efficacy of a water-mist system can be 

investigated in two ways: (i) experimental investigation; and (ii) numerical analysis. 

This study is a combination of an experimental study (water mist spray without fire) 

and two types of numerical studies using (a) semi-empirical equations based model 

developed in this study; and (b) a state of the art computational fluids dynamics 

(CFD) based fire model. 

Prior to determine the efficacy of water mists in suppressing fire using a CFD-based 

fire model, the model needs to be validated for the type of simulation events. In this 

study, fire dynamic simulator (FDS), has been chosen which is being developed for 

compartment fires and it is widely used among fire research groups. The uniqueness 

of this model is its pyrolysis model, which allows fire growth and suppression 

modelling. The capability of FDS has been examined in three areas: namely, 

predicting (i) behaviour of evaporation of water droplets at high temperatures 

induced by fire; (ii) distribution of flux densities of water-mist nozzle sprays; (iii) 

burning rates of polymethyl methacrylate (PMMA) fires with and without water-mist 

sprays. 
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A semi-empirical model has been developed with the primary aim of developing a 

detailed understanding of the science of droplet evaporation using equations of the 

conservation of mass, momentum and energy. The variable thermo-physical 

properties of water and air, and the change of the Reynolds number of droplets due to 

the change of their diameters and velocities, have been considered. The effect of the 

high evaporation rate on the mass and heat transfer coefficients has also been 

included. A particular feature of this model is that it accounts for the effects of 

thermal radiation on the rate of evaporation of droplets. Results from the model 

indicate that the predicted terminal velocity is within 4% of the experimental data 

and the saturation temperature is within 5% of the adiabatic saturation temperature. 

A key finding of this work is that droplets with a smaller diameter suspend in the air 

for a longer time and have a higher rate of evaporation compared to larger droplets. 

In contrast, droplets with a larger diameter have a higher capability of penetrating the 

smoke layer. The secondary aim is to validate FDS in terms of single droplet 

evaporation against this semi-empirical model. It has been found that predictions of 

FDS show good agreement with results of the semi-empirical model. 

The effectiveness of a spray in suppressing a fire is greatly influenced by its 

distribution pattern on a horizontal surface. Hence, it is essential that any CFD based 

model can predict the distribution of the flux densities of a spray. Full-scale 

experiments have been conducted on water sprays emanating from a single and 

multi-orifice nozzle, and the distributions of flux densities have been measured. 

Numerical simulations have been performed using FDS. The predicted results show 

good agreement with the experimental data. 

The ultimate value of FDS is its ability to predict the growth and extinguishment of 

fires. In this work the success of FDS in predicting the rate of burning of PMMA 

before and after activation of water-mist sprays has been examined. Results from 
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FDS are compared with published experimental data. It has been found that FDS 

prediction of burning rate is within 23% of the experimental data. 

Having gained confidence in the ability of FDS in accurately predicting the 

evaporation of droplets, distribution of sprays, and burning and suppression of fires, 

more realistic scenarios have been examined by conducting a comparative parametric 

study. The effect of different factors, such as obstructions, location of fires, number 

of nozzles and size of droplets, has been investigated. The results indicate that the 

spray is the most effective for unobstructed fires and the least effective for 

horizontally obstructed fires provided that both of them are located directly 

underneath the nozzle. The spray produced by a single nozzle shows a marginally 

better performance in suppressing fires when it is unobstructed and directly 

underneath the nozzle.  

In the analysis, it appears that the cooling of hot gases and burning surfaces play a 

major role in suppressing unobstructed fires. Whereas the blocking of air entrainment 

and attenuation of radiation feedback to the fuel surface play a major role in 

suppressing horizontally obstructed fires while the fire is directly underneath the 

nozzle. In case of size of droplets, due to higher momentum and greater volume, 

larger droplets have better capacity to penetrate the fire plume and reach the depth of 

the fire before their evaporation, respectively. These result in exhibiting better 

performance in fire suppression. 
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Chapter	1 			 	
Background	study	and	scope	

1.1 Background to the project 

Fire is one of the most feared events on board ship. The danger is particularly acute 

on warships that might carry weapons. Until recently, halon 1301 (bromo-tri-fluoro 

methane, CF3Br) has been the primary fire-fighting agent for protecting the 

machinery spaces of ships [Darwin and Williams 2000]. It has been used as a fire 

extinguishing agent because of its efficacy in the suppression of fires; however, such 

chemicals are not only harmful to humans, but they also deplete the ozone layer. As a 

result, their manufacture and use has been banned under the Montreal Protocol 

[Burch 2006]. 

The environmental and health issues of current extinguishing agents have resulted in 

a move to explore alternatives that are non-hazardous and non-harmful to the 

environment. Water is one such alternative as it does not have a deleterious effect on 

the ozone layer, the release of water vapour does not contribute to global warming, 

water vapour is non-toxic (it is not a cardiac sensitiser) and it does not produce toxic 

products as a result of thermal breakdown.  

Water in the form of a mist has been shown to be an effective extinguishing agent. 

The National Fire Protection Association (NFPA) has defined water mist as a water 

spray in which 99% of the water is in droplets whose diameter ሺܦ௩ଽଽሻ is less than 

1000 μm [NFPA 2010]. During the past several years, water mist technology has 
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been developed and regarded as a promising substitute, since it can extinguish fires 

quickly with little water and, at the same time, without damaging the environment 

[Liu 2003]. 

The effectiveness of water-mist systems can be investigated in two ways: (i) 

experimental investigation; and (ii) numerical analysis. These two techniques have 

their own advantages and shortcomings. In the case of full-scale experiments, the 

focus is on the production of a real fire scenario and the investigation of the growth 

and suppression of fires, which is very cost-intensive, as they require large 

experimental set-ups, expensive data collection systems and a large space for 

performing the experiments. These types of fire tests are destructive; as a result more 

than one test is not possible with a single experimental set-up. Moreover, 

repeatability of a specific test might not be possible due to the unstable nature of fires 

and uncertainties in the experiment [Chen et al. 2010].  

On the other hand, a computational-based model can be a tool to investigate the 

suppression of fires using water mists. Nowadays, as computer-processing power 

becomes more available at lower costs, computational fluid dynamics (CFD) based 

models are increasingly being used in all aspects of fire safety engineering. An 

important feature of numerical simulation is that it can be used to explore 

complicated fire scenarios multiple times, with minor changes in the scenario, as 

required. However it is important to examine the accuracy of a particular numerical 

model before using it for the design and analysis of fire suppression systems. The 

results of a numerical model need to be verified by using analytical solutions and/or 

be validated against the test results of full-scale fire experiments.  
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1.2  Mechanisms of suppression of fires by water mist sprays 

The suppression of fires by water mists is basically a physical mechanism and no 

significant chemical or gaseous reaction is involved [Kim 2002], unless chemical 

agents are added to enhance the efficiency of suppression. However, the mechanisms 

of suppression are complex and continue to be the subject of research. Some 

fundamental research on the mechanisms of the suppression of fires by water mist 

sprays was conducted in the 1950s and 1960s [Liu and Kim 2000]. The studies by 

Braidech et al. [1955] and Rasbash et al. [1960] identified two primary mechanisms 

in suppressing fires: the cooling of flame and hot gases by the extraction of heat, and 

the displacement of oxygen from the flame area.  

Research in the middle of the 1990s, however, identified some additional 

mechanisms that also contribute to the suppression of fires by water-mist sprays. 

Investigations by Wighus [1995] and Mawhinney et al. [1994] suggest that the 

attenuation of thermal radiation by water mists also plays a significant role in 

reducing radiation feedback to the fuel surface and prevents fires from spreading to 

unignited fuel sources. The experimental study by Dembele et al. [2001] and the 

numerical study by Hostikka and McGrattan [2006] have also supported this 

observation. Some other mechanisms that participate in the suppression of fires, such 

as kinetic effects of water droplets on the flame and wetting of the fuel surface, are 

reported in a review by Liu and Kim [2000]. Therefore, the extinguishing 

mechanisms of the suppression of fire through water-mist sprays can be classified as 

follows: 

(i) the extraction of heat from flames and burning surfaces  

(ii) the displacement of oxygen  

(iii) the attenuation of thermal radiation.  
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i) Extraction of heat from flames and burning surfaces 

Flame and hot gas cooling refers to the extraction of heat from the flame and 

surrounding hot gases by water droplets. As water has a high heat capacity and latent 

heat of vaporisation, it is highly effective in absorbing heat from the flame and hot 

gases produced by a fire. Furthermore, due to the atomisation of droplets in a water-

mist spray, the size of the droplets is very fine. This increases the surface area to 

volume ratio of water droplets, and as a result, it enhances the rate of evaporation of 

the droplets by extracting heat from the flame, hot gases, smoke layer and hot 

boundaries. The finer the droplets the greater the surface area to volume ratio of 

water. In Table 1.1 a comparison is presented on the surface area to volume ratio for 

the different size of droplets. 

Table 1.1: Surface area to volume ratio of the different size of water droplets 

Droplet 
size 
(μm) 

Surface area of 
each droplet 

(mm2) 

Volume of 
one droplet 

(mm3) 

Surface area to 
volume ratio 

(mm-1) 

Total surface area 
for 1 m3 of water 

spray (m2) 

1000 3.142 0.5237 6 6000 

500 0.7855 0.0655 12 12000 

250 0.19638 0.00818 24 24000 

100 0.03142 0.000524 60 60000 

 

As the finer droplets have a higher capacity for extracting heat from a flame due to 

higher surface to area ratio, they reduce the temperature of the flame and hot gases. If 

the flame temperature is reduced below the critical value necessary to sustain 

combustion, known as the limiting adiabatic flame temperature, the flame will be 

extinguished. For most hydrocarbons and organic vapours, this critical temperature 

limit is approximately 1600 K (1326°C) [Drysdale 2011]. The cooling of the 

adiabatic flame temperature also reduces the radiation of heat from the flame and hot 
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gases, thus reducing the pyrolysis rate of the fuel that drives the fire to the 

extinguishing limit. 

Yu-chuan et al. [2004-2005] studied the effect of the size of the water droplets of a 

spray on the suppression of a liquid pool fire. To evaluate the optimal size of water 

droplets in extinguishing the liquid pool fire, they studied three liquids: methanol, 

diesel and heptane. According to their study, droplets less than 700 μm in diameter 

provided better extinguishment of fires produced by one litre of liquid under a 

constant water flow rate, whereas the water droplet size of ܦଽ଴	 greater than 1000 μm 

did not show satisfactory results in extinguishing fires. They also found that the fire 

extinguishing time did not exhibit a significant variation when the water droplet sizes 

ranged from 700 μm to 300 μm. Chow [1989] showed theoretically that there was 

insignificant evaporation of droplets with diameters greater than 500 μm. Bill and 

Ural [1999] suggest that water mists can be used in fire suppression as total flooding 

agents with much better success in comparison with gaseous flooding systems since 

mists are much less affected by fire shielding or location as well as ventilation. 

Experiments have been reported that establish a correlation between the size of a fire 

and the quantity of water required from a spray to cool the fire enough for 

suppression. Wighus [1995], in a study of the extinguishment of unconfined propane 

fires by water mist, proposed a relationship to establish this connection. In his study, 

it was found that if about one-third of the heat produced by the fire in a ventilated 

space was removed by the water spray, the fire might be extinguished. 

Kanury [1994] identified the factors that affect the rate of evaporation of water 

droplets; they are: (i) adiabatic gas or air temperature; (ii) surface area of the 

droplets; (iii) the heat transfer coefficient between the water droplet and the hot air; 

and (iv) the relative velocity of the droplets in the surrounding air. Fuss et al. [2002] 

studied the effect of submicron water drops on the burning velocity of methane/air 
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mixtures and compared it with the suppression effect of gaseous thermal agents N2 

and CF4 and the chemical agent CF3Br. The diameter of water mists used in the study 

was less than 1 µm. The results indicated that water mists were about 3.5 times more 

efficient by mass than the inert agents N2 and CF4, and twice as efficient as water 

vapour at reducing the methane/air burning velocity.  

ii) Displacement of oxygen 

Due to high air temperatures, hot surfaces and very fine size of droplets, some of the 

water mists evaporate. As a result, the volume occupied by the water increases to 

approximately 1500 times its initial volume and results in the dilution of the oxygen 

concentration around the flame by displacing the air [Burch 2006]. A study 

conducted by Rosander and Giselsson [1984] showed that the concentration of 

oxygen in a room with a volume of 100 m3 could decrease to approximately 10% 

when 5.5 litres of water are completely converted into steam. The reduction of the 

oxygen concentration in a compartment by water mist is a function of the fire size, 

the length of the pre-burn period, the compartment volume and the ventilation 

conditions in the compartment. As the fire size or the length of the pre-burn period of 

the fire increases, the average temperature in the compartment increases.  

Furthermore the volumetric expansion of water droplets can disrupt the entrainment 

of air into the flame. If the collective effect of the depletion of oxygen due to 

consumption by fire and dilution of oxygen by water vapour can reduce the oxygen 

concentration below the critical value, the limiting oxygen concentration (LOC) 

necessary to sustain combustion will result in the fire being extinguished [Back Iii et 

al. 2000]. The LOC for most hydrocarbon fires is around 12–14% [Beyler 2002]. For 

solid fuels the critical oxygen concentration required for combustion is even lower. 

According to Drysdale [2011], the LOC for fires produced by burning of solid fuel is 

around 7%. Wighus [1991] and Kung [1977] conducted experiments separately on 
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the effectiveness of the suppression of fires by water sprays. They found that the 

combined effect of the depletion of oxygen by water vapour, and together with the 

cooling of flame and hot gases by the evaporation of water droplets, resulted in the 

extinguishment of fires provided that the droplets were supplied either in the flame 

zone or in the layer of smoke and hot gases. This reduction of oxygen concentration 

may be the dominant mechanism of extinguishment when the direct cooling of the 

flame is not possible due to the obstruction of the fire from a spray. The depletion 

and dilution of oxygen in the fire environment are illustrated in Figure 1.1. 

 

 

 

 

 

Figure 1.1: Illustration of consumption of oxygen by a fire and displacement of 

oxygen by water vapour. 

 
(iii) Attenuation of thermal radiation 

Fine mists suspend in air and envelop the fire, resulting in the isolation of the fire 

from the surroundings. As a result, it forms a thermal barrier and prevents radiation 

feedback to the fire source, as well as to the unburned fuel source. Also, water 

vapour in the air, resulting from the evaporation of droplets, absorbs radiant heat 

from the fire. An experimental study showed that the radiation heat flux to the walls 

in a test compartment was reduced by more than 70% by the activation of the water-

mist system [Mawhinney 1995]. The attenuation of thermal radiation by fine mist is 
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also evident from a numerical study by Hostikka and McGrattan [2006] and the 

predicted results are further supported by the experimental data of Dembele et al. 

[2001]. The study by Hostikka and McGrattan [2006] found that sprays from three 

nozzles with a flow rate of 0.33 L/min from each, attenuated the thermal radiation by 

about 65%. Ravigururajan and Beltran [1989] also theoretically estimated the 

attenuation of thermal radiation by a very fine water mist with a range of incident 

wavelength of 0.6 to 25 μm. They found that finer droplets could significantly 

attenuate the thermal radiation at a lower concentration of water loading compared to 

that of the larger droplets. Their study indicated that to achieve a level of attenuation 

at a target temperature of 650 K, the droplets with a diameter of 100 μm required 10 

times larger concentration of water loading compared to that for the droplets with 10 

μm, and it was 36 times higher for the droplets of 1000 μm. Wavelength is also an 

important factor in attenuating the radiation by water mist. In the same study, the 

authors found that the maximum attenuation factor was achieved when the droplet 

radii are on the order of the incident wavelengths. The attenuation of thermal 

radiation is illustrated in Figure 1.2. 

 

 

 

 

 

 

 

Figure 1.2: Illustration of attenuation of thermal radiation by a water-mist spray. 
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The relationship between the evaporation of water droplets and the absorption of 

radiation by small droplets in the range of 50–100 μm was studied by Lage and 

Rangel [1993]. They identified that the absorption of radiation played a potentially 

important role in the evaporation of droplets. Another advantage of isolating fires is 

that it prevents fresh air (oxygen) being entrained by the fire plume which results in 

the depletion of oxygen in the vicinity of the flames.  

1.3 Numerical modelling of the suppression of fires 

Thus far we have considered the mechanisms by which water mists suppress fires. It 

is clear that water-mist systems are highly efficacious at suppressing fires but there 

remains a pressing need to develop design tools that can simulate those mechanisms. 

Numerous experimental studies are available in the literature on the suppression of 

fires using water-mist sprays. The experimental data generated by those studies are 

used to identify the capability of different CFD based tools in simulating the 

behaviour of the suppression of fires.  

Prasad et al. [2002] conducted a numerical study on the suppression of fires using 

water mists in large enclosures. They computed the effect of the diameter of droplets, 

injection velocity of droplets, location of the nozzle and orientation of the nozzle in 

suppressing fires. Results indicate that for the orientation of the top injection of water 

mists, the time of suppression decreased with the increase of the density and velocity 

of the droplets and increased with the increase of the diameter of the droplets. 

Results also show that for similar values of injection parameters, the time for 

suppression was smallest for the orientation of top injection. However water-mist 

injection through the side walls, the front and rear walls, and through the floor were 

found to be less efficient than the orientation of top injection. In this study the 

authors did not compare their results with any experimental data for the purpose of 

validation of the model. 
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Kim and Ryou [2003] conducted experiments on the suppression of fires using 

water-mist sprays and compared the results with those predicted by FDS (ver. 3.0). 

Extinction times, temperature fields and oxygen concentrations were measured in an 

enclosed compartment. The temperature predictions made by the model showed good 

agreement with the measured data within 10Ԩ for both methanol and hexane fires 

without the application of water-mist sprays. However the numerical model failed to 

predict the extinguishment of fires. Hart [2005] carried out a numerical study on the 

suppression of fires in a tunnel using water-mist spray. For numerical simulation the 

author used FLUENT, a commercial CFD package, and for validation of the model 

he used the experimental data from the study by Kim and Ryou [2003] on pool fires. 

Hart [2005] found that the experimental data showed a significant difference of 

ceiling temperatures in the enclosure with the prediction of the model.  

The suppression of obstructed fires is not similar to that of unobstructed fires. The 

mechanisms that play a major role in the extinguishment of an obstructed fire by 

water mists are the dilution of oxygen by water vapour, the cooling of hot gases by 

water droplets and the attenuation of thermal radiation feedback to the fire sources. 

Li and Chow [2006] developed a zone model to study the suppression of obstructed 

fires by a total flooding water mist system in a chamber with different ventilation 

conditions. The model was verified by comparing it with two sets of experimental 

data reported in the literature. The extinguishment of fires was predicted based on the 

limiting oxygen volume fraction and was used to analyse the critical size of the fires, 

the influence of ventilation, size of the droplet, pre-burn time, etc. It was found that 

the initial vertical velocity had little effect on the extinguishment by water mists with 

small droplets. For larger droplets, a lower initial velocity would be better in 

extinguishing the fire provided that the discharged water mists acted on the fire 

directly. Longer extinguishing time was predicted when the droplet size was 

increased. In their study it was observed that the extinguishing time of the fire was 
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inversely proportional to the pre-burn time. This was because the longer pre-burn 

period led to a high room air temperature and both oxygen depletion due to the fire, 

and oxygen displacement due to the formation of more water vapour caused by high 

temperatures, would increase. However this finding of their study contradicted the 

study by Jenft et al. [2014] where it was observed that extinction was achieved in a 

shorter time for the smaller pre-burned period of the fire.  

The effectiveness of water mists in suppressing fires is enhanced if the droplets are 

able to penetrate the base of the fires. Hence it is essential to quantify the transport of 

the low momentum water mists into the firebases. Adiga et al. [2007] investigated 

the effect of air entrainment due to water-mist injection and the interactions between 

the fire source and the water mists. To perform this they conducted both numerical 

and experimental studies on the effect of ultra-fine water mists for the 

extinguishment of fire in a methane and heptane pool fire. In the numerical 

simulation, FLUENT was used to simulate the transport and entrainment of mist into 

the firebase and its interaction with the fire, and finally, the time of extinguishment. 

The results showed that at the base of the compartment, the fire directed the air in the 

direction of the base. If mists were positioned at these locations, with a suitable flow 

condition, they were entrained into the firebase; otherwise the droplets fell out or 

were swept across the firesides downstream. If the mist was transported near the 

firebase, with a matching flow condition, the entrainment was efficient and the 

extinction was quicker; otherwise the extinction was delayed. In the case of the 

extinguishment of the fire, it was found that the model failed to predict the time of 

extinguishment as compared to their experimental data. Kim and Ryou [2003] also 

mentioned the effect of mist entrainment into the firebase. They described the 

burning rate as highly affected by the water mists in a real situation because of 

additional factors such as air entrainment due to water-mist injection and strong 

interactions between the fire source and water mists. They also suggested further 
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theoretical and experimental study for better simulation with the variation of burning 

rates. 

Many fires involve the combustion of solids. Cong et al. [2008] investigated the 

extinguishment of a burning horizontal sheet of polymethyl methacrylate (PMMA) 

using water mists. For the numerical study, FDS (ver. 3.0) was adopted to simulate 

the interaction between water mists and the burning of PMMA. In the study, 

numerical data of the heat release rate (HRR), production rate of smoke, carbon 

dioxide and carbon monoxide emitted from the fire in the process of the suppression 

by water mists was compared with the experimental measurements. The results 

showed that the predicted HRR was about 35% higher than the measured value 

during the steady state combustion, but when the water mist was activated, the 

predicted HRR reduced much more quickly compared to that of the measured value. 

Alexander and Li [2009] performed a comparative study on some available CFD 

codes for modelling the suppression of fires using water mist. They considered 

several CFD software packages, mainly FDS and CFX, to determine whether they 

were appropriate for modelling water-mist fire suppression. A number of test cases 

were used to examine the functionality of these software packages. Comparison of an 

FDS simulation was performed using the Vaari [2002] test scenario. Alexander and 

Li [2009] found that the fire in the FDS simulation was suppressed inside the room 

but not at the opening or outside the opening of a room, which reveals that the fire 

was suppressed locally, not globally. CFX 11 was used to determine whether a 

water-mist fire suppression scenario could be simulated using this code. However, as 

addressed by the authors, the simulation was not successful as no discernible water 

mist could be detected in the flow domain. 

Yang et al. [2010] investigated the characteristics of room fire suppression with a 

water-mist system through a full-scale fire experiment and numerical simulations 
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using FDS (ver. 4.0) with a heat release rate of 6 MW. In their study it was found 

that in the temperature field of the fire without suppression, the numerical results 

were in qualitatively good agreement with the experimental data, but not when water 

mist was employed. They performed a fire test without water mist to validate the 

predictions of FDS. In the numerical simulation the grid size was 100 mm after a 

grid sensitivity analysis and HRR of the fire was prescribed in the simulation. It was 

found that the numerical model predicted temperature successfully without the 

suppression of fire. However it is established that if the HRR is prescribed as the 

experimental measurements, FDS can accurately predict temperatures and radiation 

flux time histories at various points [Moinuddin and Li 2010].  

Trelles and Mawhinney [2010] carried out a study in which they performed tests on a 

water-mist system against large fires in tunnels and integrated the test data with CFD 

simulations. FDS (ver. 4.0) was used to simulate a series of full-scale fire tests of 

water-mist systems conducted in 2006 in a highway test tunnel. From a comparison 

of experimental data with numerical results, it was found that agreement was deemed 

to be good enough in an unsuppressed fire and in the fire growth regime of 

suppressed fire, but not in the suppression regime. 

Byström et al. [2012] conducted an experiment of a full-scale compartment fire 

produced by a wood crib under low ambient temperature (–10°C). They explored the 

growth of the fire and the distribution of temperature in the experiment and 

compared the results with the predictions of FDS (ver. 5.0). An important 

consideration in their study was not specifying the heat release rate (HRR) curve in 

the numerical simulation, rather allowing the model to calculate the HRR based on 

the fuel mass, properties, arrangement, compartment dimensions and ambient 

temperature. A grid size of 100 mm was used for the computational domain far from 

the fire source and a grid size of 50 mm was used for the domain near the fire source. 

However they did not report any grid independency with these grid sizes. The 
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measured and calculated HRR curves agreed well and the calculated temperatures of 

hot smoke at different positions also agreed well with the measured values before the 

application of water spray. However they did not present any of the FDS results after 

activation of the water spray. 

Experimental evidence and numerical analysis showed that the variation of size and 

location of fires and the diameter of droplets affect the performance of the 

suppression by water-mist sprays. Liang et al. [2013] conducted a study on the effect 

of those factors in suppressing fires. They used ultra-fine mists (UFM) of diameter 

equal to or less than 10 μm in their experiments, and varied the locations of fires in a 

closed space. The results indicate that larger fires were easier to suppress in a 

compartment space and the fire located closer to the spray was extinguished more 

quickly. They also modelled the experiment using FLUENT. They used two types of 

model in FLUENT for simulating the UFM: one was the discrete phase model 

(DPM) and the other was the density gas model (DGM). The numerical results 

showed that DGM was more suitable for predicting UFM transportation and flow 

behaviour compared to the DPM model. 

Zhao et al. [2010] also carried out a study using FLUENT to explore the effect of 

those factors, including the angle of the spray and pressure of water flow, in 

suppressing fires in the engine room of a ship. The numerical results indicated that 

large-scale fires were more easily suppressed by water-mist spray compared to small-

scale fires and the droplets with diameters in a range of 200 μm to 400 μm showed 

better performance in suppressing fires. The smaller cone angle of a spray displayed 

a high flame cooling effect and the increase of spray pressure also enhanced the 

flame cooling effect. However the authors did not present any validation of the 

numerical data. 
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The effect of time on the application of water-mist spray on the suppression of fires 

was studied experimentally by Jenft et al. [2014]. The authors also performed a 

numerical study to address the capability of FDS in simulating the experimental 

observations. In the experiment, two different cases were considered where water-

mist spray was applied at two different times: early application on a developing fire 

(and still cool environment) and late application on a developed fire (and high 

temperature environment). The experimental results showed that the flame was 

suppressed at an earlier time in the latter case. In the case of FDS, validation of the 

model was obtained before the application of water-mist spray with the condition 

that the HRR was prescribed in the simulation. However the model failed to follow 

the experimental observations on the suppression of fires.  

From this literature review it is clear that the current CFD based models are good at 

predicting the temperature field of a fire, production of gases and movement of 

smoke, etc., with a prescribed design fire. However, as mentioned earlier, if the HRR 

is prescribed in any CFD model, it can predict those parameters at various points 

correctly. Moreover the model was good at predicting those parameters without the 

application of water-mist sprays, but not in the case of the suppression of fires with 

the application of water-mist sprays. Actually, the performance of a spray in 

suppressing fires is influenced by the distribution pattern of a spray, size distribution 

of droplets, size of the fire, location of the fire and droplet-fire interaction, etc. One 

of the important features is that the model should be capable of predicting the 

behaviour of the evaporation of water-mist droplets in high temperatures induced by 

room fires. Many studies [Back et al. 2000; Novozhilov 2001; Wighus and Brandt 

2001; Vaari 2002] have been conducted over the past few decades on the interaction 

of sprinklers with hot air or smoke layers. These studies basically focused on the 

convective heat transfer phenomena between large water droplets and the hot air 
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layer, without considering or paying much attention to the evaporation of droplets, as 

the evaporation for large droplets was insignificant in those cases.  

Radford [1996] developed a zone model for studying the characteristics of sprinklers 

discharging comparatively bigger water droplets where only the direct convective 

cooling effect of water droplets was considered. Therefore the work by these authors 

is applicable for large water droplets where convective cooling is predominating, but 

not valid for sprays with fine droplets, as fine water droplets would evaporate while 

travelling through a layer of hot air. Moreover the droplets of water mist have a 

higher surface area/volume ratio that results in the rapid evaporation of droplets by 

extracting heat from the flame and hot gases. However a few works can be found in 

the literature on the behaviour of water droplets in the hot air layer, considering the 

simultaneous changes of heat and the mass of droplets with the change of the 

momentum of moving water droplets. Moreover there is a significant amount of 

radiation emitted from a fire that also affects the rate of evaporation of droplets. 

Therefore it is essential to identify the capability of any CFD based model in 

predicting the evaporation of water mist sprayed from a nozzle in a fire-induced hot 

environment. 

Performance of a spray depends on its distribution pattern produced on a horizontal 

plane. Hence predicting the distribution of a spray injected from a nozzle is 

important for a CFD based model. Various experimental and numerical studies 

[Putorti et al. 1995; Chow and Yin 1999; McGrattan 2001; Widmann 2001; Ren et 

al. 2011] have been conducted on the characterisation of spray patterns; however, 

most are related to sprays from conventional sprinklers. Spray kinematics and the 

dispersion of water-mist sprays are governed by the initial size of the droplets and 

the velocity characteristics of the spray [Ren et al. 2011]. The initial size of the water 

mist produced by a nozzle is smaller in size compared to the droplets of spray 

produced by a conventional sprinkler and the mists are injected with a high velocity 
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from the nozzle. As a result, the spray dynamics of water mists, such as momentum, 

drag force, buoyancy force, etc., produced by a nozzle are unlike that of a 

conventional sprinkler. A benchmark experiment would be useful to quantify the 

distribution of a water mist spray on a horizontal surface produced by a nozzle and to 

validate any CFD based model in predicting the distribution of the spray. This is 

because no experimental study has been found in the archived literature on the 

distribution of a spray produced by a water mist nozzle. 

Another important feature of any CFD based model in simulating the burning of a 

solid or liquid fuel is that the model is capable of predicting the pyrolysis of the 

material [Abu-Bakar and Moinuddin 2015]. The burning of any material is instigated 

by the release of volatiles from the material due to the decomposition of it caused by 

high temperatures. Pyrolysis has the main role in controlling the rate of mass loss and 

the history of temperatures at surface and in-depth [Lee 2006]. Moreover the 

suppression of a fire by water droplets is also affected by the reduction of pyrolysis 

of the material. When the droplets of a spray reach a fire, they wet the burning 

surface and cool it by extracting heat from the hot surface. As the result the pyrolysis 

of the material is reduced and the fire is extinguished. Therefore a CFD based model 

should be capable of predicting the rate of pyrolysis to simulate both the growth and 

suppression of a fire by water spray. 

Pope and Bailey [2006] measured gas temperatures in an experiment of a post-

flashover compartment fire and compared the results with the prediction by FDS 

(ver. 4.0) using a prescribed HRR in the simulation. They found that FDS was able to 

predict the temperatures accurately. Recently, Byström et al. [2012] and Yang et al. 

[2010] conducted a similar study, as mentioned earlier, using FDS (ver. 5.0) and 

found that FDS was able to predict the gas temperature accurately with a prescribed 

HRR. However, in their study, FDS failed to predict the time of suppression of the 

fire. Although the HRRs of the fires were prescribed in those studies, the capability 
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of a CFD model cannot be assessed until it can predict the growth and spread of a 

fire without prescribing a design fire. As mentioned above, pyrolysis of the material 

governs the prediction of the growth, spread and suppression of a fire and the model 

should be capable of predicting the burning rates of a material resulting from its 

pyrolysis. 

Therefore three fields are identified from the above literature review for investigating 

the capability of a state-of-the-art CFD model before using it for simulating the 

growth of a fire and its suppression by water-mist spray. These three fields that the 

model should be capable of simulating are (i) the behaviour of the evaporation of 

water droplets at high temperature; (ii) the distribution of spray on a horizontal 

surface; and (iii) the growth of fire in terms of its burning rate and suppression by 

water-mist sprays in which they are governed by the pyrolysis of fuel. 

In this study a state-of-the-art CFD based model, FDS (ver. 6.0), is used as this offers 

several advantages over other CFD based tools. One is that FDS can simulate the 

pyrolysis of fuels that are considered very important in modelling the growth of fires 

and their suppression by water mist. Another main advantage is that it has been 

developed and tested for modelling compartment fires, which is the result of the 

work of an international team and researchers. Moreover, in recent years, it has been 

used for a large number of studies and applications for the interaction of water sprays 

with fire plumes and smoke layers [Kim and Ryou 2003; Yang et al. 2010; Zhang 

and Chow 2013]. It has also been used to evaluate the performance of sprinklers or 

water-mist nozzles and the extinction times of fire [Kim and Ryou 2003; Yang et al. 

2010; Jenft et al. 2014], reconstruction of arson fires [Pope and Bailey 2006; Shen et 

al. 2008] and for the modelling of firefighting [Kim and Ryou 2003; Byström et al. 

2012]. Moreover, another version of FDS, wildland fire dynamic simulator (WFDS) 

is being used for simulating wildland fires [Mell et al. 2010; Moinuddin et al. 2010; 

Mell et al. 2011].  
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After validating and verifying the FDS model in those fields, this study can be 

further extended by conducting a qualitative parametric exploration using it on the 

effect of different factors in suppressing fires by water-mist sprays. The factors may 

include the location of the fire, obstruction on the fire, number of nozzles and size of 

the droplets. 

1.4 Aims of the research 

The literature review presented above has identified several areas worthy of further 

research. We have selected four main areas for detailed study. They are:  

1. To develop a detailed understanding of the science of the evaporation of water 

droplets by constructing a semi-empirical model, and validating and verifying it 

against experimental and analytical data. The proposed model is compared with a 

state-of-the-art CFD based model (FDS). 

2. To design and conduct a benchmark experiment to measure the distribution of flux 

densities produced by spray nozzles. The results can be used to validate any CFD 

based model in simulating the distribution of a spray. 

3. To investigate the capability of FDS in predicting the growth of fires and their 

suppression by water mists.  

4. To conduct a parametric study using FDS in predicting the effect of factors, such 

as the location of fires, obstructions, the number of nozzles and the size of droplets 

on the suppression of fire using water-mist spray. 

1.5 Methodology 

To achieve the first aim of this project, a semi-empirical model of water droplet 

evaporation is developed based on the conservation of mass, momentum and energy, 
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and the proposed model is validated against the experimental and analytical data. The 

proposed model has also been used to validate a state-of-the-art CFD based model, 

FDS (ver. 6.0). Then the semi-empirical model is used to examine the behaviour of 

different sizes of water mist in a smoke layer induced by a room fire. 

To achieve the second aim, a benchmark experiment is designed and conducted to 

characterise the distribution of water flux densities of sprays produced by the water-

mist nozzle on a horizontal surface. As no experimental study has been found in the 

archived literature on the distribution of sprays produced by water mist nozzle, the 

result of this experiment can be useful to validate the capability of any CFD based 

model in this scenario. In this study, simulations are carried out to examine the 

capability of FDS in predicting the distribution of the water flux densities of the 

spray.  

To achieve the third aim, the capability of FDS is examined in predicting the burning 

rates of PMMA in the presence and absence of water mist. The predicted burning 

rates of PMMA are compared with the experimental data. In this case the published 

data by Magee and Reitz [1974] has been used to validate the numerical results of 

FDS. 

To achieve the fourth aim of this project, a parametric study has been conducted 

using FDS to evaluate the performance of water-mist spray under a range of fire 

conditions. The parameters involve the effect of obstructions, the locations of fires, 

the number of nozzles and the size of the droplets. 
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Chapter	2 	
CFD	model	description	

2.1 Introduction 

In the last decade, the Fire Dynamics Simulator (FDS) and the coupled three-

dimensional visualisation program, Smokeview, have been widely used as a CFD 

based tool for the prediction of fire generation, growth and the spread and 

suppression of fires, and for the prediction of smoke and gas movement in building 

fires. FDS has been developed by the National Institute of Standards and Technology 

(NIST), USA. The FDS model is appropriate for low-speed, thermally driven flow, 

with an emphasis on smoke and heat transport from fires [McGrattan et al. 2014]. 

The details of the model are presented in the following sections. 

2.2 Features and program version of FDS 

The first version of the program was publicly released in February 2000. Since then 

the program has seen several major improvements and new features implemented. 

This study is carried out using FDS (ver. 6.0) by compiling the FORTRAN source 

codes before release of the official version. Once the official version was released in 

November 2013, it has been used for the study. FDS was developed primarily as a 

tool for solving practical problems in fire protection engineering and also as a tool to 

study fundamental fire dynamics and combustion. 

FDS can be used to model the following phenomena: 
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 low speed transport of heat and combustion products (mainly smoke) from 

fire 

 convective heat transfer between the gas and solid surfaces 

 radiative heat transfer 

 pyrolysis 

 fire growth 

 flame spread 

 activation of sprinklers and heat detectors 

 fire suppression by sprinklers/nozzle. 

FDS is a CFD based software package that is widely used by fire safety 

professionals. There are many studies where FDS has been used for simulations. 

Selected studies are reviewed and listed in the references. 

2.3 Governing equations 

The computational domain is discretised into cells or control volumes and the value 

of the unknown variable ߔ is calculated at the cell centre. Since these cells are not 

infinitely small or small enough to capture small turbulent eddies, turbulence models 

are solved along with the flow equations in order to approximately factor in the 

effects of these turbulent eddies on the flow field. Once the boundary conditions and 

initial conditions are applied, the differential form of the governing mass, momentum 

and energy equations are discretised at each node to generate a large system of 

algebraic equations that are numerically solved to obtain the values of all the 

required variables ߔ at all the cell centres. The governing equations that have been 

used in FDS are presented below. 

2.3.1  Modelling of mass, species and enthalpy transport 

The hydrodynamic model Fire Dynamics Simulator numerically solves a form of 

Navier-Strokes equation appropriate for low thermally driven flow (Mach number < 
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0.3) with an emphasis on smoke and heat transport from fires. The core algorithm is 

an explicit predictor-corrector scheme that is second order accurate in space and 

time. The basic conservation equations for the mass and momentum for a Newtonian 

fluid are presented as a set of partial differential equations and solved by the Fire 

Dynamics Simulator program. The airflow, including the thermal distribution, is 

simulated by solving one set of the coupled state conservation equations of mass, 

momentum and energy. 

(i) Continuity equation 

The mass transport equations are solved using the basic predictor-corrector scheme 

[McGrattan et al. 2014, p. 14]: 

ߩ߲
ݐ߲
	൅ ߘ	 ∙ 	ܷߩ	 ൌ 	0																																																																																					ሺ2.1ሻ 

where the first term describes the density changes with time and the second term 

defines the mass convection. U is the vector describing the instantaneous velocity in 

the u, v and w directions. 

(ii) Momentum equation 

ߩ߲ ഥܷ

ݐ߲
	൅ 	ߘ	 ∙ 	 ሺߩ ഥܷ ഥܷሻ 	ൌ 	െ	݌ߘ	 ൅ 	ߘ	 ∙ 	߬௜௝ 	൅ 	݃	ߩ	 ൅	׏ 	 ∙ 	߬௧௨௥௕								ሺ2.2ሻ 

Here, the left hand side represents the increase in momentum and inertia forces, 

while the right hand side comprises forces acting on it. In this equation, ഥܷ represents 

filtered velocity (approximately instantaneous). The forces on the right hand side 

include pressure p, gravity g and a measure of the viscous stress tensor ߬௜௝ acting on 

the fluid within the control volume. ߬௜௝ is defined as:  

߬௜௝ 	ൌ 	ߤ	 ൬2	 ௜ܵ௝ 	െ	
2
3
	ሺ׏ 	 ∙ 	ഥܷ ሻ	ߜ௜௝൰																																																									ሺ2.3ሻ 
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where ߤ is the molecular viscosity and ௜ܵ௝ is  

௜ܵ௝ 	ൌ 	
1
2
	ቆ
௜ݑ߲
௝ݔ߲

	൅	
௝ݑ߲
௜ݔ߲

ቇ																																																																													ሺ2.4ሻ 

It further includes a term ߬௧௨௥௕ representing filtered turbulence known as sub-grid 

scale Reynolds stress that is further described below. 

FDS uses large eddy simulation (LES) methodology to model turbulence [McGrattan 

et al. 2014, p. 21]. LES is a technique used to model the dissipative processes 

(viscosity, thermal conductivity, material diffusivity) that occur at length scales 

smaller than those that are explicitly resolved on the numerical grid. FDS has four 

turbulence models: the constant coefficient Smagorinsky model, the dynamic 

Smagorinsky model, Deardorff’s model and Vreman’s model. The Deardorff model 

is the default in FDS. The LES turbulence model equation is shown below: 

߬	௧௨௥௕ 	ൌ 	 ௧௨௥௕	ߤ 	൬2	 ௜ܵ௝ 	െ 	
2
3
	ሺ׏ 	 ∙ 	ഥܷ ሻ	ߜ௜௝൰																																			ሺ2.5ሻ 

where ߤ	௧௨௥௕ 	ൌ  ሺ2.6ሻ																																																																													|ܵ|	∆ሻଶ	௦ܥሺ	ߩ	

        |ܵ| 	ൌ 	 ቀ2	 ௜ܵ௝	 ௜ܵ௝ 	െ 	
ଶ

ଷ
	ሺ׏ 	 ∙ 		ܷሻଶቁ

భ
మ 																																																										ሺ2.7ሻ  

In the above, ܥ௦ = 0.2 is a constant model coefficient, ∆	ൌ ሺݔߜ	ݕߜ	ݖߜሻ
భ
య is the filter 

width, S is the strain rate. 

(iii) Equation of state 

FDS does not solve the energy balance equation [McGrattan et al. 2014, p. 9]. FDS 

uses the ideal gas equation for temperature and the Poisson equation for pressure 

(though the energy balance equation is ideal) to realise a quicker solution. The ideal 

gas equation: 
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̅݌ 	ൌ 	
ܶ	ܴ	ߩ
ܯ

																																																																																											ሺ2.8ሻ 

where ̅݌ is the background pressure, R is the molar gas constant = 8.3145 kJ/(kmol 

K) and M is the molecular weight. 

(iv) Poisson equation for pressure 

	ܪ	ଶߘ ൌ 	െ	
߲	ሺߘ ∙ 		ܷሻ

ݐ߲
	െ 	ߘ	 ∙  ሺ2.9ሻ																																																																																			ܨ	

	ܨ ൌ െ	ܷ	 ൈ 	߱	 െ	݌෤׏	൬
1
ߩ
൰ 	െ	൬

1
ߩ
൰	ൣሺߩ	 െ 	݃	଴ሻߩ	 ൅	 ௕݂ 	൅ ׏	 	 ∙ 	 ߬௜௝൧																		ሺ2.10ሻ 

Here, H is the total pressure ሺ̅݌ 	൅ ෤݌	 	െ  ሻ, where h is the height from ground݄݃ߩ	

level. U is the velocity vector describing the instantaneous velocity component of  u, 

v and w in x, y and z directions, respectively. F is referred to collectively as 

momentum flux. ݌෤ is the perturbation pressure, while ߱ represents vorticity. ߩ is the 

instantaneous density and ߩ଴ represents density at initial temperature. g is the 

acceleration of gravity and ௕݂ is the external force vector (excluding gravity). ߬௜௝ is 

the viscous stress tensor and is described earlier. 

(v) Species equation 

To simulate smoke transport, FDS needs to track at least six gas species (Fuel, O2, 

CO2, H2O, CO, N2) plus soot particulate [McGrattan et al. 2014, p. 6]. The following 

species equation is solved for each species represented by Yi (mass fraction of ith 

species) where i = 1, 2, 3 ... etc. 

߲ሺߩ	 ௜ܻሻ
ݐ߲

൅
߲
ݔ߲
	ሺߩ	ݑ	 ௜ܻሻ ൅

߲
ݕ߲
	ሺߩ	ݒ	 ௜ܻሻ ൅

߲
ݖ߲
	ሺߩ	ݓ	 ௜ܻሻ ൌ ׏ ∙ ׏	௜ܦ	ߩ ௜ܻ ൅ ሶݓ ᇱᇱᇱ						ሺ2.11ሻ 

ሶݓ ᇱᇱᇱ is the production rate of the ith species during combustion, ܦ௜ is the diffusion 

coefficient of ith species. 
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2.3.2  Modelling of pyrolysis 

In the case of solid fuel, FDS assumes that heat conduction occurs only in the 

direction normal to the surface [McGrattan et al. 2014, p. 67]. The one-dimensional 

heat transfer equation for the solid phase temperature ௦ܶሺݔ,  ,ሻ, as mentioned belowݐ

is applied in the direction x pointing into the solid: 

ܿ௦	௦ߩ 	
߲ ௦ܶ

ݐ߲
ൌ 	

߲
ݔ߲
	൬݇௦ 	

߲ ௦ܶ

ݔ߲
൰	൅	ݍሶ௦ᇵ																																												ሺ2.12ሻ 

The source term, ݍሶ௦ᇵ, consists of chemical reactions and radiative absorption:  

ሶ௦ᇵݍ 	ൌ ሶ௦,௖ᇵݍ	 	൅	ݍሶ௦,௥ᇵ 																																																																										ሺ2.13ሻ 

Here, the term ݍሶ௦,௖ᇵ  is the heat production (loss) rate that is given by the pyrolysis 

mode for different types of fuel. The source term in the pyrolysis model is: 

ሶ௦,௖ᇵݍ 	ൌ 	െ	ߩ௦ሺ0ሻ	෍ݎఈఉሺݔሻ	ܪ௥,ఈఉ					 																																								ሺ2.14ሻ 

where ݎఈఉ is the rate of reaction which depends on Arrhenius function and ܪ௥,ఈఉ is 

the heat of reaction. It is assumed that fuel pyrolysis takes place on the surface, thus 

the heat required to vaporise the fuel is extracted from the incoming energy flux. The 

pyrolysis rate is given by an Arrhenius expression [McGrattan et al. 2014, p. 51]: 

ఈఉݎ ൌ ݁ିா	௦ߩ	ܣ	 ோ்⁄ 																																																																							ሺ2.15ሻ 

Values of the pre-exponential factor A and the activation energy E for the solid have 

to be selected carefully to describe the burning behaviour. The actual burning rate is 

determined by the overall energy balance for the solid fuel.  

2.3.3  Modelling of radiation transport 

The radiation equation is solved using a technique similar to a finite volume method 

for convective transport, thus the name given to it is the finite volume method (FVM) 
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[McGrattan et al. 2014, p. 10]. Using approximately 100 discrete angles, which are 

updated over multiple time steps, the finite volume solver requires about 20% of the 

total CPU time of a calculation, a modest cost given the complexity of radiation heat 

transfer. 

The net contribution from thermal radiation in the energy equation is defined by 

[McGrattan et al. 2014, p. 9]: 

ሶ௥ᇱᇱᇱݍ 	≡ 	െ	׏ 	 ∙ ሶ௥ᇱᇱݍ	 	ൌ ሻݔሾܷሺ	ሻݔሺߢ	 	െ  			ሺ2.16ሻ																							ሻሿݔ௕ሺܫ	ߨ	4	

ܷሺݔሻ 	ൌ 	න ,ݔሺܫ	 ᇱݏ݀	ᇱሻݏ
ସగ

																																																					ሺ2.17ሻ 

where к(x) is the absorption coefficient, Ib(x) is the source term, and I(x, s) is the 

solution of the radiation transport equation (RTE) for a non-scattering gray gas. 

Water droplets can absorb and scatter thermal radiation. This is important in 

scenarios involving water-mist suppression systems, but also plays a role in all 

sprinkler cases. The absorption and scattering coefficients are based on Mie theory. 

The scattering from the gaseous species and soot is considered negligible and is not 

included in the model. 

2.3.4  Modelling of combustion 

(i) Mixing-controlled model 

FDS uses the eddy dissipation concept (EDC) to model the reaction system for the 

combustion of fuel, with the approximation of ‘mixed is burnt’ [McGrattan et al. 

2014, p. 41]. In the EDC model, all the reactants are initially unmixed and the rate of 

chemical kinetics is infinite. The mean chemical source term is: 

ሶ݉ ி
ᇵ ൌ െ	ߩ	

min ቀܼி	, ܼ஺ݏ ቁ

߬	௠௜௫
																																																	ሺ2.18ሻ 
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where ZF and ZA are the lumped mass fractions of fuel and air, respectively, and s is 

the mass stoichiometric coefficient for air. The quantity ߬௠௜௫ is a time scale for 

mixing.  

(ii) Heat release rate 

The heat release rate per unit volume is calculated by summing the species mass 

production rates times the respective heat of formation: 

ሶிݍ
ᇵ ൌ െ෍ ሶ݉ ∝ᇵ

∝

	∆݄௙,∝																																																									ሺ2.19ሻ	 

2.3.5  Modelling of water-mist 

(i) Heat and mass transfer model 

In FDS, droplets are represented as discrete spheres travelling through air. Over the 

course of a time step, the droplets in a given grid cell evaporate as a function of the 

liquid equilibrium vapour mass fraction of particle, ܻ, the local air phase vapour 

mass fraction, ஶܻ, the droplet temperature, ܶ, and the local air temperature, ஶܶ. The 

mass and energy transfer between hot air and water droplet can be described by the 

following set of equations: 

݀݉
ݐ݀

	ൌ 	െ	ܣ	݄௠	ߩ	ሺܻ	 െ	 ஶܻሻ																																							ሺ2.20ሻ 

݉	ܿ	
݀ ௣ܶ

ݐ݀
	ൌ ሺ	݄	ܣ	 ஶܶ	 െ 	ܶሻ 	൅	

݀݉
ݐ݀

 	ሺ2.21ሻ																								ܮ	

The vapour mass fraction of the air, ஶܻ, is calculated from the gas phase mass 

conservation equations, and the liquid equilibrium vapour mass fraction, ܻ, is 

calculated from the Clausius-Clapeyron equation. The mass and heat transfer 

coefficient between water droplet and air are described by empirical correlations. 
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(ii) Transport model 

In FDS, water droplet transport is modelled by the Lagrangian approach [McGrattan 

et al. 2014, p. 77]. The velocity and position of a droplet is obtained from the low of 

the conservation of momentum. The trajectory and position of each droplet satisfies 

the following equations: 

݀
ݐ݀
	ሺ݉	ݒሻ 	ൌ 	݉	݃	 െ	

1
2
 ሺ2.22ሻ																							ଶݒ	ଶݎ	ߨ	ௗܥ	ߩ	

ݔ݀
ݐ݀
	ൌ  ሺ2.23ሻ																																																																											ݒ	

where the drag coefficient, ܥௗ, depends primarily on the Reynolds number based on 

the droplet terminal velocity, which can be well represented by: 

Cୢ 	ൌ 	

ە
ۖۖ
۔

ۖۖ
ۓ 24	 	Re⁄ 																			 Re	 ൏ 	1						

	24	ሺ0.85	 ൅ 	0.15	Re	଴.଺଼଻ሻ	 	Re⁄ 	1	 ൏ 	ܴ݁	 ൏ 	1000

0.44																					 Re	 ൐ 1000			

							ሺ2.24ሻ 

Reynolds number of droplets is represented by: 

ܴ݁	 ൌ 	
ܦ	ݒ	ߩ
ߤ

																																																																																																		ሺ2.25ሻ	 

where μ is the dynamic viscosity of air. 

(iii) Droplet size distribution model 

FDS takes a sample of spherical droplets to calculate the distribution pattern. The 

droplet size distribution is expressed in terms of its cumulative volume fraction 

(CVF), which is represented by a combination of lognormal and Rosin-Rammler 

distributions [McGrattan et al. 2014, p. 79]. 
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ሺ݀ሻܨ ൌ 	

ە
ۖ
۔

ۖ
ۓ
ሺ2	ߨሻି

ଵ
ଶ 	 න 	ሺߪ	ܦሻିଵ		݁	

ሾ௟௡ 	ቀ ஽஽೘
ቁሿమ

ଶఙమ

	஽಴ೇಷ

	଴

஼௏ிܦሺ		ܦ݀ 	൑ ௠ሻܦ	

1	 െ	݁
ି଴.଺ଽଷ	ቀ

஽	಴ೇಷ
஽೘

ቁ
ം

												ሺܦ஼௏ி 	൐ ௠ሻܦ	

							ሺ2.26ሻ	 

where ܦ	is the generic droplet diameter and ܦ௠ is the median droplet diameter. The 

median droplet diameter is a function of the sprinkler/nozzle orifice diameter, 

operating pressure and geometry. ߛ and ߪ are empirical constants used for the curve 

fitting of distribution patterns. 

2.4 Geometry and numerical grid 

FDS uses a rectilinear grid system to create a computational domain. It uses uniform 

meshing of the cells as default. However cells can be stretched in one or two 

directions of the three-dimensional coordinate system. FDS also allows creating the 

computational domain with regions of different grid resolutions that are known as 

multiple meshing. Both the grid stretching and the use of multiple meshes allow the 

user to apply better grid resolutions in critical areas (e.g. near the fire region) without 

unnecessarily increasing the demand for computational resources by applying fine 

mesh to the entire computational domain. The use of multiple meshes is also required 

when an FDS simulation is to be run in parallel processing on more than one 

computer. 

FDS approximates the governing equations using a second-order accurate finite 

difference technique on a collection of either uniformly spaced or stretched three-

dimensional grids. Multiple meshes of a single computational domain can be 

processed using message passing interface (MPI) libraries in a parallel computing 

system. Scalar quantities are assigned to the centre of each grid cell; vector 
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components are assigned at the appropriate cell faces. This is what is commonly 

referred to as a staggered grid. 

Defining the obstruction in a computational domain using a rectangular grid system 

is a limitation of FDS, where certain geometric features of that obstruction do not 

conform to the rectangular grid. An example of such obstruction is the inclined part 

of an ISO hood. However this can be approximated by small rectangular obstructions 

in the parts. The more complex shape of any geometry (e.g. non-linear or curved 

geometry) is difficult to model in FDS. 
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Chapter	3 	
Development	of	a	semi‐empirical	model	
for	the	evaporation	of	water	droplets	

3.1 Introduction 

The performance of WMFSS depends on many interacting factors such as the mass 

flow rate of water and the diameter, velocity and spatial distribution of the droplets. 

The droplets have the potential to cool the surrounding air, attenuate thermal 

radiation, and the water vapour produced by evaporation of droplets reduces the fuel 

vapour/air ratio by displacing oxygen [Braidech et al. 1955; Rasbash et al. 1960; 

Grant et al. 2000; Liu and Kim 2000; Liu and Kim 2001; Shu et al. 2005; Yao and 

Chow 2005; Yang et al. 2010; Mizukami et al. 2013]. Not all the droplets evaporate 

before striking burning surfaces and this provides a direct method of suppressing 

fires [Braidech et al. 1955; Rasbash et al. 1960; Mawhinney et al. 1994; Wighus 

1995; Grant et al. 2000; Liu and Kim 2001]. 

A distinguishing feature of water-mist nozzles is that they produce fine mists 

consisting of droplets with diameters of less than 1000 µm. The fine mists display 

fog-like behaviour that renders their fire suppression characteristics quite differently 

from conventional water sprays. Studies of the interaction of conventional sprinkler 

sprays with hot air or smoke layers [Morgan 1979; Morgan and Baines 1979; Chow 

and Cheung 1994; Chow and Tang 1994; Cooper 1995; Chow and Yao 2001; Zhang 

and Chow 2013] have focused primarily on the convective heat transfer phenomena 

between large water droplets and the hot air layer. It has been found that the 
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evaporation of larger droplets discharged by conventional sprinklers is not affected 

significantly by the fire plume [Morgan 1979; Yao and Chow 2005]. In contrast, the 

small droplets of water that comprise fine mists have a higher surface area/volume 

ratio and this results in their rapid evaporation. The mechanisms of extinction are 

complex and research is ongoing to understand the entire mechanism of the 

suppression of fire using water mist [Liu and Kim 2000]. However, to understand the 

mechanism of the extinguishment of fire, the knowledge of evaporative water droplet 

behaviour in a hot air environment is imperative. 

A number of studies [Ranz and Marshall 1952; Yuen and Chen 1978; Renksizbulut 

and Yuen 1983; Novozhilov 2001; Thomas 2002; Vaari 2002; Li and Chow 2004; 

Barrow and Pope 2007; Liu et al. 2007; Li and Chow 2008; Fujita et al. 2010] 

reported in the published literature account for the rate of evaporation of droplets in 

the analysis. The rate of evaporation of falling droplets differs from that of stationary 

droplets due to different heat and mass transfer coefficients resulting from the change 

of momentum. Ceteris paribus, the drag coefficients of droplets depend on their 

diameters and velocities. In the case of water droplets emanating from a nozzle, these 

two variables change and this affects the drag coefficient. However this phenomenon 

was neglected by Novozhilov [2001] in his analysis of the transport of water 

droplets. When sprinkler systems are activated at a temperature of 60Ԩ, say, the 

relative humidity (RH) of the surrounding air is very low, typically 5%. This is in 

sharp contrast with the data generated by Li and Chow [2008] who assumed that the 

RH of the air was 53%, yet the dry bulb temperature was 60Ԩ. Varri [2002] assumed 

the droplet temperature to be identical to the surrounding air temperature in his 

transient one-zone model that described the total flooding water-mist fire 

suppression.  

The Reynolds number (Re) does have an effect on the heat and mass transfer 

coefficient in between water and air. However Barrow and Pope [2007] neglected 
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this effect by assuming the Re of droplets to be zero and this has limited the use of 

their model. The use of a one-zone model and its limitations in studying water-mist 

fire suppression systems is reported by Li and Chow [2004]. However none of these 

reported studies considered the effects of thermal radiation on the behaviour of water 

droplets although radiative heat transfer is important in the case of fire. In addition, 

the effect of a high mass transfer rate and low humidity should be considered in the 

case of a room fire. 

If we are able to accurately model the behaviour of water mists, we must be able to 

quantify the rate of evaporation of water considering all of the issues as discussed 

above. The principal objective of this work is to develop a detailed model of the 

evaporation of water droplets by considering: 

(i) the contribution of radiation emanating from the flame and the surrounding 

boundary walls to the rate of evaporation of water droplets 

(ii) the effect of high mass transfer rates on the mechanism of evaporation 

(iii) the change of the momentum of the droplets 

(iv) the variable thermo-physical properties of water and air. 

In this study, the proposed model is validated and verified against experimental and 

theoretical data available in the published literature. The proposed semi-empirical 

model can be used as a validation tool for more comprehensive CFD based models. 

In this study we have validated Fire Dynamic Simulator (FDS) version 6.0, for 

example. In the second part, the proposed model will be used for a parametric study. 

Subsequently the proposed model is used to assess the behaviour of water mists 

while travelling in a hot air layer. The profile of the temperature, diameter and 

position of the droplet is studied with different initial droplet sizes. The suspension 

time in the air and the evaporation rate of the droplet are also studied. The effect of 

the high mass transfer rate due to high air temperature is also observed. 
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3.2 Mathematical formulation 

The rate of evaporation of a moving droplet is a manifestation of simultaneous heat, 

mass and the momentum transfer process as between the particle and the surrounding 

air. Momentum transfer affects the motion of the particle, mass transfer causes 

changes of the particle size, and heat transfer determines the temperature of the 

particle. In fact, these mechanisms are interdependent [Novozhilov 2001]. In the 

proposed model, the effect of the high mass transfer rate, due to high temperature 

and low humidity, are taken into account by modifying the heat and mass transfer 

coefficients.  

The changes of diffusivity of water vapour through air, density and the latent heat of 

vaporisation of water with the change of temperature are also taken into account to 

improve the accuracy of the model. The droplet is considered a ‘lumped mass’ on 

account of the low Biot number [Holman 2002]. The shape of the droplet was 

assumed to be spherical, as this was not expected to give any significant error in the 

computation [Kakatsios and Krikkis 2001]. The assumption of uniform temperature 

distribution in the droplet considerably simplified the analysis of the overall 

computational process, since it avoided the need for a conjugate heat conduction 

analysis for the internal transient temperature distribution inside the droplet [Barrow 

and Pope 2007].  

The hot air or smoke layer is assumed to be in a quasi-steady-state and this refers to a 

stable smoke layer which is finally formed when the ceiling jet reached the boundary 

wall and rebounded several times [Li and Chow 2008]. This assumption is more 

appropriate for the nozzles and smoke layers that are located away from the fire 

source or burning object. This is also supported by the experimental observations in 

[Bullen 1977; Veltre 1997]. Moreover this assumption is also used in a few 

analytical and numerical studies [Morgan 1979; Novozhilov 2001; Li et al. 2009; 
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Tang et al. 2013; Tang et al. 2014]. The distance of the stable smoke layer from the 

spray nozzle can be quantified using Alpert’s equation [Alpert 1972], taking into 

account the size of the fire and the height of the ceiling [Alpert 1972; Drysdale 

2011]. The mathematical models of mass and heat transfer and the momentum of a 

droplet are discussed in the following sections. 

3.2.1  Mass transfer model 

According to the theory of mass transfer, the mass flux per unit area from the 

interfacial surface of a water droplet is proportional to the mass concentration 

difference across the boundary layer of the droplet [ASHRAE 1985]. The mass flow 

rate through the surface area of the droplet can be balanced by a proportionality 

constant ݄௠; which is mass transfer constant. Therefore the mass flow equation can 

be expressed as: 

ሶ݉ 	 ൌ 	 ݄௠	ܣ	ሺߩ௦ 	െ	ߩஶሻ																																												ሺ3.1ሻ	 

where ߩ௦ and ߩஶ are the mass concentration of water vapour on the droplet surface 

and in the air, respectively. The rate of change of droplet diameter can be determined 

from the following equation: 

ܦ݀
ݐ݀

	ൌ 	2	݄௠ 	
ሺߩ௦ 	െ	ߩஶሻ

௪ߩ
																																												ሺ3.2ሻ		 

where, ߩ௪ is the density of water. The mass concentration of the water  vapour at the 

surface of the droplet depends on the partial vapour pressure at the droplet surface. 

Under thermodynamic equilibrium conditions, the partial vapour pressure at the 

droplet surface depends on the surface temperature [Li and Chow 2008]. Under this 

condition, evaporation keeps the droplet surface in saturated condition until the 

droplet is totally vaporised due to heat transfer [Hinds 1999]. The vapour 

concentration at the surface is the saturated mass fraction of air at the temperature of 
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the droplet. As the mass concentration of the water particle depends on the vapour 

pressure of water, this can be found out from the ideal gas equation of state i.e. 

ܲ	ܸ	 ൌ 	݊	ܴ	ܶ																																																ሺ3.3ሻ 

	ߩ ൌ 	
ܲ	݉
݊	ܴ	ܶ

																																																		ሺ3.4ሻ 

where, P is the vapour pressure in Pascal, V is the volume in m3,  ߩ is the density in 

kg/m3, m is the mass in kg, R is the universal gas constant  8314 J/(Kg.mol.K), and T 

temperature in Ԩ. According to the definition of absolute humidity, 	߶	 ൌ 	ܲ	 	 	ܲ௦௔௧
ൗ ; 

Therefore, 

	ߩ	 ൌ 	
	∅	 	ܲ௦௔௧	݉
݊	ܴ	ܶ

																																														ሺ3.5ሻ	 

when the relative humidity (RH) = 100 %, then   = 1 and P  = satP . 

3.2.2  Heat transfer model 

When a droplet is exposed to a higher temperature, it receives heat from its 

surroundings and its temperature rises to a threshold limit, at a given pressure. This 

temperature is known as steady state or saturation temperature. At this temperature 

the water droplet changes its phase from liquid to vapour [Çengel and Turner 2005]. 

In this situation the absorbed heat leads the droplet to evaporate and the evaporation 

keeps the droplet surface in its saturated condition until the droplet is completely 

vaporised due to heat and mass transfer. Under thermal steady state conditions, the 

heat of vaporisation is supplied to the droplet surface from the surrounding air, flame 

and hot objects. Therefore, the energy equation for droplets can be set up, as the heat 

transfer rate to the droplet is equal to the rate of heat absorbed by a droplet where the 

heat would vaporise some water and change its temperature. 
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The heat transfer rate from air to droplet due to convection can be expressed by using 

the transient energy equation:  

	ܳ௖ሶ 	 ൌ 	 ݄௖	ܣ	ሺ ஶܶ 	െ 	ܶሻ																																																										ሺ3.6ሻ 

The heat storage rate in the droplet is given by: 

	ܳ௦௧ሶ 	 ൌ 	
݀
ݐ݀
	ሺ݉	ܿ௉௪	ܶሻ																																																											ሺ3.7ሻ 

The energy flux rate leaving the droplet surface due to evaporation can be expressed 

as: 

	ܳ௘ሶ 	ൌ 	݉	ሶ  ሺ3.8ሻ																																																																														ܮ

The heat transfer rate from a boundary wall to the droplet due to radiation can be 

expressed by using the following transient energy equation: 

ሶܳ 		௥௔ௗ	ି	௕௪ 	ൌ 	ሺ1	ܣ	ߝ	ߪ	 െ ሺ	ሻܨ	 ௕ܶ௪
ସ 	െ	ܶସሻ																				ሺ3.9ሻ 

The heat transfer rate from a flame to the droplet due to radiation can be expressed 

by using the following transient energy equation: 

ሶܳ 	௥௔ௗ	ି	௙ 	ൌ ൫	ܣ	ܨ	ߝ	ߪ	 ௙ܶ
ସ 	െ	ܶସ൯																																						ሺ3.10ሻ 

In Eq. (3.6) to (3.10), hc is the convective heat transfer coefficient, m is the mass of 

the droplet, Cpw is the specific heat capacity of the water, σ is the Stefan-Boltzmann 

constant, ε is the emissivity coefficient, F is the view factor and L is the latent heat of 

evaporation.  

According to the conservation of energy, convective heat transfer to the droplet 

surface will be equal to heat stored in the droplet plus heat leaving the droplet due to 

the evaporation of the water particle from the droplet surface i.e. 

	 ሶܳ 	௖ 	൅ 	 ሶܳ 	௥௔ௗ 	ൌ 	 ሶܳ 	௦௧ 	൅	 ሶܳ 	௘																																												ሺ3.11ሻ 
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	݄௖	ܣ	ሺܶ	 െ	 ஶܶሻ	ᇣᇧᇧᇧᇧᇤᇧᇧᇧᇧᇥ
	௖௢௡௩௘௖௧௜௩௘	௛௘௔௧

	൅ 	 ሾߪ	ߝ	ܨ	ܣ	൫ ௙ܶ
ସ 	െ	ܶସ൯ 	൅ 	ሺ1	ܣ	ߝ	ߪ	 െ ሺ	ሻܨ	 	ܶ௕௪

ସ 	െ	ܶସሻሿᇣᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇥ
୰ୟୢ୧ୟ୲୧୴ୣ	୦ୣୟ୲

ൌ 	 	
݀
ݐ݀
	൫݉	ܿ௣௪	ܶ൯	ᇣᇧᇧᇧᇤᇧᇧᇧᇥ

௦௧௢௥௘ௗ	௘௡௘௥௚௬/௛௘௔௧௜௡௚

	൅	 	݉	ሶ ถ	ܮ
௘௩௔௣௢௥௔௧௜௢௡

															ሺ3.12ሻ 

In the above equation, temperature (T) and mass of droplet (m) are both changing 

with time. Therefore, considering the rate of change of temperature and mass, the 

transient equation of the conservation of heat can be expressed as: 

ܿ௣௪	݉	
݀ܶ
ݐ݀

ൌ ݄௖	ܣ	ሺ ஶܶ െ ܶሻ ൅ ൛ܣܨߝߪ	൫ ௙ܶ
ସ 	െ	ܶସ൯ ൅ ሺ1	ܣ	ߝ	ߪ െ ሻሺܨ 	ܶ௕௪

ସ െ ܶସሻൟ 	

െ	
݀݉	
ݐ݀

 ሺ3.13ሻ																																																																							ܮ	

In the calculation, temperature distribution throughout the droplet volume was 

assumed to be uniform and this assumption is equivalent to saying that internal 

conduction resistance is very small compared to surface convection resistance in the 

droplet. As the droplet diameter is very small, such an assumption yield estimates 

within about 5 per cent [Holman 2002]. However this assumption is valid when the 

following condition is met: 

݅ܤ ൌ 	
݄௖	ሺܸ	 ⁄ሻܣ	

݇௪
	൏ 	0.1																																												ሺ3.14ሻ 

For water-mist droplets of 1000 µm or smaller, Biot number, Bi, is found to be less 

than 0.07 in our study and therefore ‘lumped mass’ assumption can be applied. 

3.2.3  Momentum model 

The velocity of the droplet can be obtained by solving the momentum equation for 

the droplet. When a body is falling from a height, body force (or weight) works in 

the downward direction and the resistance of air drag and buoyancy force work in the 
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upward direction. Therefore, according to the conservation of momentum, the 

resultant momentum of a droplet is: 

௥	ܨ 	ൌ ௚	ܨ	 	െ	ܨ	ௗ 	െ  ሺ3.15ሻ																																																																						௕	ܨ	

where ܨ	௥ denotes resultant force and ܨ	௚, ܨ	ௗ and ܨ	௕ denote force due to gravity, drag 

and buoyancy, respectively. The drag force on a body depends on the density of fluid 

through which the object is moving, velocity of the object and area of the object. 

When a droplet is moving through air, drag force can be calculated by: 

ௗܨ 	ൌ 	
1
2
 ሺ3.16ሻ																																																																						௣௥௢௝	ܣ	ௗܥ	ଶݒ	௔ߩ	

The buoyancy force on the droplet can be expressed by: 

௕ܨ 	ൌ 	
1	
6
 ሺ3.17ሻ																																																																														݃	ଷܦ	ߨ	௔ߩ	

In Eq. (3.16) and (3.17), ߩ௔ is the air density, Cd is the coefficient of drag and v is the 

velocity (or relative velocity) of the droplet. In the case of a droplet travelling 

through a stationary hot layer, v becomes the absolute velocity. Therefore the 

momentum equation can be written as: 

݀	ሺ݉	ݒሻ
ݐ݀

	ൌ 	݉	݃ െ	
1
2	
௣௥௢௝	ܣ	ௗܥ	ଶݒ	௔ߩ	 	െ 	

1
6
 ሺ3.18ሻ														݃	ଷܦ	ߨ	௔ߩ	

Here, ݉ and ݒ are both changing with time. Expanding the above equation by partial 

differentiation, the equation for droplet velocity can be obtained as: 

ݒ݀
ݐ݀
	ൌ 	݃	

ሺߩ௪	ି	ߩ௔ሻ
௪ߩ

	െ	
3	
4
	
ଶݒ	௔ߩ	ௗܥ

ܦ	௪ߩ
െ
ݒ3
ܦ
	
ܦ݀
ݐ݀
																																ሺ3.19ሻ 

In the above equation, ߩ௔ is the air density, Cd is the coefficient of drag and v is the 

velocity (or relative velocity) of the droplet. In the case of a droplet travelling 
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through a stationary hot layer, v becomes the absolute velocity. It is to be noted that 

Cd for a droplet depends on the Re, which is based on the air droplet relative velocity. 

Brown and Lawler [2003] proposed a correlation between the drag coefficient and Re 

and compared it with 178 experimental data points. The proposed correlation was 

found to be quite satisfactory in relation to the experimental data in the range of 

ܴ݁	 ൏ 	2	 ൈ	10ହ. Therefore the correlation by Brown and Lawler [2003] is used here 

which is: 

ௗܥ 	ൌ 	
24
ܴ݁
	ሺ1	 ൅ 	0.15	ܴ݁଴.଺଼ଵሻ 	൅	

0.407

1	 ൅	8710ܴ݁

																														ሺ3.20ሻ 

The position of a droplet in the air can be found from the velocity equation: 

ݕ݀
ݐ݀
	ൌ  ሺ3.21ሻ																																																																																																						ݒ	

where y is a position vector. It is along the downward direction of the movement of 

the droplet with upward positive. 

3.2.4  Calculation of rate constants 

The mass transfer coefficient, ݄௠, can be calculated by using the correlation for 

Sherwood number, Sh. Smolı́k et al. [2001] did an experimental study on the 

evaporation of a water droplet in ventilated conditions and connected the evaporation 

theory with heat and mass transfer. They measured the mass transfer of water 

droplets to air and compared it with predicted values using the correlation by Woo 

and Hamielec [1971], Ranz and Marshall [1952], Wedding et al. [1986] and Beard 

and Pruppacher [1971]. In the comparison they found that the prediction by Beard 

and Pruppacher [1971] was in good agreement with the experimental results. The 

correlation for the mass transfer number by Beard and Pruppacher [1971] is: 

݄ܵ	 ൌ 	2.0	 ൅ 	0.216	 ൬ܴ݁
ଵ
ଶ	ܵܿ

ଵ
ଷ൰

ଶ

	ݎ݋ܨ				, ൬ܴ݁
ଵ
ଶ	ܵܿ

ଵ
ଷ൰ 	൏ 	1.4									ሺ3.22ሻ 
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݄ܵ	 ൌ 	1.56	 ൅ 	0.616	 ൬ܴ݁
ଵ
ଶ	ܵܿ

ଵ
ଷ൰ 	ݎ݋ܨ			,	 ൬ܴ݁

ଵ
ଶ	ܵܿ

ଵ
ଷ൰ 	൒ 	1.4									ሺ3.23ሻ 

where, ݄ܵ	 ൌ ቆ
݄௠	ܦ
W ஺஻

ቇ 	or, 		݄௠ ൌ ቆ
݄ܵ	W ஺஻

ܦ
ቇ																							ሺ3.24ሻ 

In the above equations, Schmidt number, Sc, is a dimensionless number defined as 

the ratio of momentum diffusivity (viscosity) and mass diffusivity, and the Reynolds 

number, Re, is the ratio of inertia force to viscous force. The equation of Schmidt and 

Reynolds number can be calculated using the following equations: 

ܵܿ	 ൌ 	
௔ߥ

W
஺஻

	ൌ 	
௔ߤ

W	௔ߩ ஺஻	
																																																																							ሺ3.25ሻ 

ܴ݁	 ൌ 	
ܦ	ݒ	௔ߩ
௔ߤ

																																																																																													ሺ3.26ሻ 

The convective heat transfer coefficient, ݄௖, can be calculated by using the 

correlation for Nusselt number, Nu. Beard and Pruppacher [1971] proposed an 

improved correlation for Nu from laboratory experiments. They did experiments on 

drop diameters in the range of 40 to 1200 μm. The correlation for Nusselt number by 

them can be expressed as: 

	ݑܰ ൌ 	2.0	 ൅ 	0.216	 ൬ܴ݁
ଵ
ଶ		ܲݎ

ଵ
ଷ൰

ଶ

	ݎ݋ܨ					, ൬ܴ݁
ଵ
ଶ	ܲݎ

ଵ
ଷ൰ 	൏ 	1.4							ሺ3.27ሻ 

	ݑܰ ൌ 	1.56	 ൅ 	0.616	 ൬ܴ݁
ଵ
ଶ	ܲݎ

ଵ
ଷ൰ , 	ݎ݋ܨ ൬ܴ݁

ଵ
ଶ		ܲݎ

ଵ
ଷ൰ 	൒ 	1.4											ሺ3.28ሻ 

where		ܰݑ	 ൌ 	
݄௖	ܦ
݇௔

,ݎ݋		 ݄௖ 	ൌ 	
	݇௔	ܰݑ
ܦ

																																									ሺ3.29ሻ 

This relationship was found to be in good agreement with the numerical results of 

Woo and Hamielec [1971]. Smolı́k et al. [2001] also confirmed this relationship to be 

in good agreement with their experimental results for evaporation of 1-hexanol 

droplets. In addition, Pruppacher and Rasmussen [1979] investigated the evaporation 
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rate of large water droplets falling at terminal velocity in air. Their results showed 

that the applicable range of Eq. (3.27) and (3.28) can be extended to drop diameters 

up to 5000 μm. 

In the above equations, Prandtl number, Pr, is the ratio of viscous diffusion rate ( ) 

to thermal diffusion rate (α) of air i.e. 

ݎܲ 	ൌ 	
ߥ
ߙ
	ൌ 	

ܿ௣	ߤ௔
݇

																																																																																																						ሺ3.30ሻ 

Slattery and Bird [1958] proposed a correlation from a combination of kinetic theory 

and corresponding states arguments to calculate the mass diffusivity coefficient, WAB. 

According to their correlation for a binary gas mixture, WAB is inversely proportional 

to the pressure, increases with increasing temperature, and is almost independent of 

composition for a given gas pair. The advantage of this correlation is that it is 

convenient to use it, as the critical temperature and molar volume of different species 

are available. The correlation, given by Slattery and Bird [1958], is as given below: 

ܲ	 ABW

ሺ ௖ܲ஺	 ௖ܲ஻ሻଵ ଷ	⁄ ሺ ௖ܶ஺	 ௖ܶ஻ሻହ ଵଶ⁄ 	ቀ ஺ܯ1
	൅	 ஻ܯ1

ቁ
ଵ ଶ		⁄ ൌ 	ܽ	 ቆ

ܶ

ඥ ௖ܶ஺	 ௖ܶ஻

ቇ
௕

																			ሺ3.31ሻ 

where a and b are the constant of the empirical relationship. For an air-water system, 

ܽ	 ൌ 	3.64	 ൈ 10ିସ and ܾ	 ൌ 	2.334. The advantage of this correlation is that it is 

convenient to use it, as the critical temperature and molar volume of different species 

are available. 

3.2.5 Correction to the rate constants for high mass transfer rate 

The use of coefficients, ݄௠ and ݄௖, are limited to the case of low mass transfer rate. 

In the case of high temperature and low humidity, the evaporation rate is high and 

this invokes the high mass transfer rate and affects the heat transfer rate as well. 
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Hence correction factors, ߠ௠ and ߠ௖, are applied to get the coefficient of mass and 

heat transfer, respectively, for high mass transfer rates [Bird et al. 1960]. The 

correction factors, ߠ௠, can be calculated using the following expressions [Bird et al. 

1960]: 

௠ߠ 	ൌ 	
݄௠•

݄௠
																																																																													ሺ3.32ሻ 

where ݄௠•  is the coefficient of mass transfer for high mass transfer rate. Therefore, 

݄௠ in Equations (3.1) and (3.2) is replaced by	݄௠•  can be calculated from	ܽ݊݀	௠ߠ	 .

the following equations: 

௠ߠ 	ൌ 	
݈݊	ሺܴ௠ ൅ 1ሻ

ܴ௠
																																																											ሺ3.33ሻ 

ܴ	௠ 	ൌ 		
௪଴	ݔ െ	ݔ	௪ஶ
1 െ	ݔ	௪଴

																																																										ሺ3.34ሻ 

where	ݔ	௪଴  is the mole fraction water at the surface of the droplet and x	୵ஶ is the 

mole fraction of water in air. The value of ݔ	௪଴ can be determined by using the 

relation [Bird et al. 1960]: 

௪଴	ݔ 	ൌ 	
	ܲ௪௔௧௘௥

	ܲ௔௜௥
																																																															ሺ3.35ሻ 

where 	ܲ௪௔௧௘௥ and 	ܲ௔௜௥ are water vapour and air pressure, respectively, in an air-

water system. The correction factors, ߠ	௖, can be calculated using the following 

expressions [Bird et al. 1960]: 

௖	ߠ 	ൌ 	
݄௖•

݄௖
																																																																											ሺ3.36ሻ	 

where h	ୡ•  is the coefficient of heat transfer for a high mass transfer rate. Therefore, 

hୡ in Equation (3.6) is replaced by h	ୡ• . θୡ and can be calculated from the following 

equations: 
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௖	ߠ 	ൌ 	
݈݊	ሺܴ௖ 	൅ 	1ሻ

ܴ௖
																																																							ሺ3.37ሻ 

ܴ௖ 	ൌ 	 ݁థ 	െ 	1																																																																ሺ3.38ሻ 

߶	 ൌ 	 	ܰ௪଴	 	ܿ௣௪
݄௖

																																																																ሺ3.39ሻ 

ܰ௪଴ 	ൌ 	݄௠	݈݊	ሺ1	 ൅	ܴ௠ሻ																																													ሺ3.40ሻ 

where 	ܰ௪଴ is the molar flux of a water particle at the droplet surface. 

3.2.6  Thermophysical properties of air and water 

The density of humid air can be calculated using the ideal gas law as the sum of the 

densities of the two gases, dry air and water vapour, in proportion with their partial 

pressures i.e. 

௔௜௥	௛௨௠௜ௗ	ߩ 	ൌ 	
	ܲௗ௥௬	௔௜௥	ܯ௔

ܴ	ܶ
	൅	 	ܲ௩௔௣௢௥		ܯ௪

ܴ	ܶ
																		ሺ3.41ሻ 

Saturation vapour pressure can be obtained from the equation suggested by Buck 

[1981]: 

	ܲ௦௔௧ ൌ ሾ1.0007 ൅ ሺ3.46 ൈ 10ି଺	 	ܲ௔௜௥ሻሿ ൈ 6.1121 ൈ ݌ݔ݁ ൤
17.502	ܶ
240.97 ൅ ܶ

൨							ሺ3.42ሻ	 

This is an empirical relationship, where 	ܲ௦௔௧ and 	ܲ௔௜௥ are in mbar, and ܶ is in Ԩ.  

It is to be noted that the latent heat of evaporation of water, L, is not constant, rather 

it varies with temperature; the higher the temperature of the liquid water the lesser 

will be the heat required to evaporate it. A fourth order temperature dependent 

equation derived from the steam chart [Çengel and Turner 2005] is used to determine 

L within the range of 0 to 100Ԩ. The relationship between L and T is as follows: 

ܮ ൌ 7 ൈ 10ି଼	ܶସ െ 2 ൈ 10ିହ	ܶଷ ൅ 4 ൈ 10ିସ	ܶଶ െ 2.3657	ܶ ൅ 2500.9							ሺ3.43ሻ 
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The other temperature dependent on the physical properties of air, such as viscosity 

[Touloukian et al. 1975], thermal conductivity [Touloukian and Makita 1970] and 

specific heat capacity [Touloukian et al. 1970], were determined by using the 

following correlations: 

௔ߤ ൌ ሺ0.1005 ൅ 0.07848 ൈ ܶ െ ܧ0.6696 െ 4 ൈ ܶଶ ൅ ܧ0.3376 െ 7 ൈ ܶଷሻ

ൈ 10ି଺																																																																																																ሺ3.44ሻ 

݇௔ ൌ ሺെ	6.4224 ൅ 0.1571 ൈ ܶ െ ܧ0.2101 െ 3 ൈ ܶଶ ൅ ܧ0.16 െ 6 ൈ ܶଷሻ

ൈ 10ିଷ																																																																																															ሺ3.45ሻ 

ܿ௣௔	 ൌ ሺ1023.2 െ 0.176021	 ൅ ܧ4.02405 െ 4 ൈ ܶଶ	 െ ܧ4.87272 െ 8

ൈ 	ܶଷሻ																																																																																																		ሺ3.46ሻ 

Here, T is in K. The density of water is calculated by using the following correlation 

[Sifner and Klomfar 1996]: 

௪ߩ ൌ ൫0.322 ൅ 0.64166 ൈ ܼሺଵ ଷሻ⁄ ൅ 0.35409 ൈ ܼሺଶ ଷሻ⁄ െ 0.16449 ൈ ܼሺହ ଷሻ⁄

െ 0.56509 ൈ ܼሺଵ଺ ଷሻ⁄ െ 14.65649 ൈ ܼሺସଷ ଷሻ⁄ െ 2.17251 ൈ ܼሺଵଵ଴ ଷሻ⁄ ൯

ൈ 10ଷ																																																																																																			ሺ3.47ሻ 

where	ܼ	 ൌ 	1	 െ	 ்
೎்
	 ; 		 ௖ܶ is the critical temperature of water in K.  

3.3 Computational procedure 

A computational model has been developed using the equations of conservation of 

mass, momentum and energy as defined in the previous section. The governing 

differential equations are discretised and solved explicitly using a finite difference 

approach. The initial droplet conditions of D, T, v and y, together with the relevant 

thermophysical properties of water and air, are specified. The sequence of calculation 

is: 
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i) Initialise D, T, v and y of droplet, and T and RH of air. 

ii) The mass transfer and heat transfer coefficients are calculated using 

Equations (3.24) and (3.29), respectively, incorporating a correction factor for 

high mass and heat transfer rate, using Equations (3.32) and (3.36), 

respectively. 

iii) The discretised differential Equations (3.2), (3.13), (3.19) and (3.21) are 

solved sequentially using the Euler method, to obtain the time trajectories of 

D, T, v and y of the droplet. 

A general form of the discretised equations can be expressed as: 

߶	௧	ା	௱௧ 	ൌ 	߶	௧ 	൅ 	
݀߶
ݐ݀
	ฬ
௧
 ሺ3.48ሻ																																	ݐ߂	

where the variable ߶ can represent the diameter, temperature and velocity i.e. D, T 

and v. The position vector of the droplets in air is discretised as follows: 

	ݕ ൌ 	෍ 	ݒ	 ൈ	∆ݐ																																							ሺ3.49ሻ

ே

௜	ୀ	ଵ

 

where ܰ	 ൌ 	 ݁݉݅ݐ ⁄ݐ∆ . 

It is essential that the histories of D, T, v and y are independent of the time step, ∆ݐ. 

In our analysis it has been found that if the ratio of the diameter of droplets to the 

time step is less than or equal to 0.01, the solution is independent of the time step. 

Here, as an example, a time step independency test has been conducted for droplets 

with diameter 200 μm. Figure 3.1 represents the graphical presentation of the results 

of the analysis and Table 3.1 represents the numeric values of the analysis.  
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comprehensive CFD based model. We have taken FDS as an example for validation. 

The theory of the droplet model used in FDS is described briefly in Appendix B. 

This model is also compared with two other models by Li and Chow [2008] and 

Barrow and Pope [2007]. The details of the theory of the droplet model in FDS 

[McGrattan et al. 2014] and the details of the model by Li and Chow [2008] and 

Barrow and Pope [2007] are reported in the corresponding references. 

3.5.1  Comparison with FDS 

In FDS, droplets are represented as discrete spheres that have travelled through air 

and the transport of the droplet is modelled by the Lagrangian approach. A semi-

empirical heat and mass transfer model is used to simulate the droplet evaporation. 

The velocity and position of the droplet is obtained from the theory of the 

conservation of momentum. Details of these models are given in the FDS Technical 

Reference Guide, Volume 1: Mathematical model [McGrattan et al. 2014]. 

A computational domain with dimensions of 0.5 m ൈ 0.5 m ൈ 10 m is created to 

calculate the terminal velocity and saturation temperature of the droplets. The set-up 

for the computational domain in the FDS model is presented in Figure 3.4. The 

nozzle is located at the top of the domain and a single droplet of a certain diameter is 

allowed to fall from the top of the domain. All sides of the domain are kept open to 

be consistent with the conditions associated with the proposed model. Once the 

computational domain is set up, the input parameters for computational 

measurements are incorporated in the model. The input variables are the diameter of 

the droplets, the initial temperature of the air and the droplets, and the relative 

humidity of the air. Then, the simulation is allowed to run to calculate the terminal 

velocity and saturation temperature of the droplets. The input parameters for the 

numerical model are tabulated in Table 3.2. 
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Figure 3.4: Computational domain set-up of the FDS model. 

Table 3.2: The input parameters in the FDS model 

Input parameters 
Model for 

terminal vel. 
Model for 

saturation temp. 

Droplet diameters, µm 100 ~ 1600 1000 

Initial droplet temperature, oC 20 20 

Surrounding air temperature, oC 20 5 ~ 95 

Relative humidity of air, % 50 40 

 
 

The terminal velocities of droplets of different sizes are calculated using the 

proposed model and FDS. The simulation of the falling of the water droplets in air is 

modelled using FDS. The calculated values of the terminal velocity of the proposed 

model are compared with the prediction of FDS and presented in Figure 3.5. It is 

observed that FDS predicted values are very close to the calculated values of the 

proposed model. The differences in the prediction by the two models are less than 

8%. 
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3.6 Parametric study 

In the parametric study, initial air conditions in a room i.e. temperature and relative 

humidity, are taken to be 20Ԩ and 50%, respectively. The initial temperature of 

water droplets is taken to be 20Ԩ. However, due to fire, the temperature of the room 

rises and when it reaches 75Ԩ, the water-mist nozzle is deemed to be activated, as it 

is used as the activation temperature for most water-mist nozzles or sprinklers 

[Fleming 2008]. Due to increased air temperature, the relative humidity of the air 

also falls to 3%. The travel path of the droplets is taken as the room height of a 

residential or commercial building i.e. 3.0 m. The time is set to zero when the water 

droplets begin to fall from a ceiling mounted nozzle and the simulation is terminated 

when the droplets reach the floor. The airflow is assumed to be in a quiescent state, 

as the droplets are considered to be located far from the fire.  

The temperature histories of the droplets, with initial diameters of 100, 200, 300, 

400, 500, 750 and 1000 μm, are illustrated in Figure 3.12. It can be seen that the 

droplet is initially heated up and increased in temperature with the progress of time. 

After a certain time it reaches a condition of thermal equilibrium, and at this 

temperature the heat absorbed by the water droplets contributes to evaporation until 

it has totally disappeared. 

From Figure 3.12, it is found that the smaller the initial droplet size, the less time it 

takes to reach saturation temperature. As the size of the droplet increases, the time to 

reach equilibrium temperature increases. However, it is observed that the saturation 

temperature does not depend on the size or initial temperature of the droplets; it only 

depends on the initial temperature and relative humidity of the air. For 75Ԩ air 

temperature, 20Ԩ water temperature and 3% relative humidity, the equilibrium 

temperature of droplets is found to be 27Ԩ. 
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The history of the diameter and spatial position of droplets for different initial sizes 

is shown in Figure 3.13. The analysis shows that the smaller droplet has a longer 

lifetime in the air. A droplet with an initial diameter of 200 µm size has the highest 

lifetime. It is suspended for 7.42 seconds, whereas a droplet with an initial diameter 

of 1000 μm is suspended for only 1.06 seconds. However, a droplet of 100 µm 

completely evaporated before it reached the floor at a height of 2.75 m and after 2.16 

s. The change of diameter of droplets larger than an initial diameter of 500 μm is 

insignificant, because they reach the floor before they disappear due to evaporation. 

This means that droplets with a smaller diameter have a longer time in the air and, on 

the contrary, droplets with a bigger size have a better performance in penetrating a 

layer of hot air or smoke. 



 

(a) 

(c) 

(b)

(d)
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3.7 Scattering, absorption and extinction characteristics of 

water mist in a radiated medium 

Attenuating the radiation also plays an important role in reducing the transmission of 

heat developed by fires. Water mists can reduce the propagation of heat from fires to 

unburnt fuel by blocking the thermal radiation. Water droplets attenuate radiation by 

absorbing and scattering when it passes through the droplets. The properties of water 

mists in scattering, absorption and extinction of thermal radiation are evaluated based 

on the theory of Mie [1908]. The attenuation of thermal radiation for different sizes 

of droplets is calculated and compared. The results of this analysis are presented in 

Appendix B.  

A significant outcome of this analysis is that the smaller droplets are more effective 

in attenuating thermal radiation compared to the larger droplets due to their ability to 

scatter radiation. The analysis shows that a mist with a loading of 100 gm of water 

mist in 1 m3 of air, droplets with a diameter of 100 μm can attenuate the thermal 

radiation up to 80%, whereas this attenuation is only 20% for droplets with a 

diameter of 500 μm. The effect of water loading is also evaluated. Results show that 

a higher water loading gives better attenuation with the limit of a minimum level of 

concentration. However, the amount of minimum concentration of loading is lower 

for the smaller size of droplets.  

3.8  Conclusions 

A semi-empirical model of the interaction of water droplets with hot air has been 

developed based on the principles of the conservation of mass, momentum and 

energy, and some empirical correlations. The contribution of radiation emanating 

from a flame is considered on the evaporation of a droplet. The effect of a high 

evaporation rate and the change of Re to the mass and heat transfer coefficient is also 
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considered in the model. A forward finite difference technique is used to solve the 

resulting ordinary differential equations. A time step convergence analysis is 

conducted and an appropriate time step is selected leading to time step convergent 

results. 

This proposed model has been validated and verified against experimental data and 

adiabatic saturation temperature. The validation indicates that the proposed model 

predicted the terminal velocity within 4% of the experimental data. The saturation 

temperature of droplets predicted by the proposed model agreed well with the 

calculated adiabatic saturation temperature. In the study, it is found that the proposed 

model is consilient with FDS and this has given us confidence in the use of this 

model. In comparison, Li and Chow [2008] and Barrow and Pope’s [2007] models 

should be treated with caution as they predict the longevity of the droplets, and the 

distance through which they penetrate through a smoke layer or hot air environment 

induced by a fire. This work provides a further tool with which to predict the 

behaviour of water droplets evaporating in a hot environment. 

The characteristics of the evaporating droplets were evaluated using the proposed 

model and are presented in this chapter. The temperature profile, travel time history, 

velocity profile, evaporation rate and absorbed heat of a freely falling droplet are 

predicted. The findings of this study can be summarised as follows: 

i) The saturation temperature of droplets is independent of the initial diameter 

and temperature of the droplets; it depends on the temperature and relative 

humidity of ambient air. 

ii) The suspension time in air is longer for the smaller size of droplets, whereas 

the penetration capability is greater for the larger size of droplets through a 

hot air environment. 
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iii) The evaporation rate is higher for smaller droplets, whereas the quantity of 

heat absorbed is greater for the bigger size of droplets. However, the total 

amount of absorption of heat per unit mass of water is higher for the smaller 

size of droplets. 

iv) The terminal velocity is larger for the bigger size of droplets. However, it is 

found that the speed of the smaller size of droplets has begun to reduce due to 

reduction of the diameter by evaporation. 

v) The effect of the high mass transfer rate on evaporation of a droplet is 

insignificant within the range 0–100Ԩ of air temperature. 

vi) In this study, a case study is conducted where the droplets are considered 

travelling through a hot smoke layer. The temperature of the smoke layer is 

75Ԩ and relative humidity of air is 3%. In the analysis, the droplets with a 

size of less than 200 µm are found to be the most effective in evaporative 

cooling, as they have totally vaporised due to evaporation before reaching the 

floor. Moreover, the total absorbed heat per unit mass of water is highest for 

droplets sizes 100 and 200 µm. However, suspension time is highest for the 

droplet size 200 µm. The suspension time of this size is much higher than 

other sizes of droplets, which can lead this size to be the most effective where 

the suspension time is very important to block heat transfer from the source 

of fires. 

This physical model has given us the confidence to analyse the behaviour of 

individual water droplets travelling through a hot environment induced by a room 

fire. This model can be used to evaluate the performance of different sizes of droplets 

in different actions of fire suppression mechanisms i.e. whether a particular size of 

droplet is suitable for the cooling of hot gas by heat extraction or the dilution of fuel 

vapours/air ratio by evaporation of water droplets, or whether it is suitable for the 
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wetting and cooling of a fuel surface by reaching there before complete evaporation. 

The model can also be used for the validation of comprehensive CFD based models 

to obtain confidence in the use of that particular model. In this study, an example of 

the verification of a complex CFD model, FDS6, is presented. 

In this part of the study we have elucidated the physics of the evaporation of water-

mist droplets in hot air or a smoke layer and validated FDS in predicting the 

evaporation of individual droplets. However, as the performance of a spray in 

suppressing a fire is greatly influenced by its distribution pattern, any CFD based 

tool should be able to predict this phenomenon in its simulation. Hence this study is 

further proceeded to investigate the capability of FDS in predicting the distribution 

of flux densities on a horizontal surface. 
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Chapter	4 	
Spray	distribution	–	a	benchmark	
experiment	and	validation	of	FDS	

4.1  Introduction 

The performance of water-mist fire suppression systems (WMFSS) is crucially 

dependent on the characteristics of sprays produced by nozzles [Liu and Kim 2000]. 

One of the important parameters essential for specifying water-mist systems is the 

distribution of the flux density of the spray [Lefebvre 1989]. Therefore a good 

understanding of the spatial distribution of water-mist droplets and their distribution 

of flux density on surfaces is essential for fire researchers to design an effective 

WMFSS. Hence one of the objectives of this research is to verify the accuracy of 

FDS in predicting the distribution of the flux density of water-mist sprays.  

In this work, two types of nozzles, a single and a multi-orifice nozzle, are used in the 

experiments. The distribution of the flux density of sprays produced by a single and a 

multi-orifice nozzle are quite different. The single-orifice nozzle results in spray in 

which the flux distribution is concentrated in a region beneath the nozzle. However 

in the case of multi-orifice nozzles, the flux distribution is concentrated in several 

regions that correspond to the individual orifices. Single-orifice nozzles are typically 

designed to produce somewhat coarser droplets that can reach and directly extinguish 

burning surfaces. Multi-orifice nozzles may incorporate this feature, but they also 

produce fine mists from their peripheral orifices. These fine mists have the desirable 

features of being able to reach the regions that are otherwise occluded and they cool 
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the surrounding gases and attenuate the thermal radiation by blocking and isolating 

the fires. 

Therefore this work investigates, experimentally, the distribution of flux density of 

water sprays emanating from a single and a multi-orifice nozzle. The numerical 

simulations are carried out in FDS using the same input parameters of the 

experiments. FDS, version 6, is used for the simulation, and the accompanying 

smoke-view tool, version 5.6, is used for the visualisation of the sprays. The 

predicted data of FDS are compared with the measured data and validated against the 

experiment. 

This chapter also described a simple technique for determining the median size of 

droplets of a spray produced by a nozzle that required only experimental data of the 

distribution of flux densities of water spray and a CFD model to mimic the 

experiment and calculate the distribution of flux density. 

4.2 Experiment details 

4.2.1  Nozzle specification 

4.2.1.1 Single-orifice nozzle 

The schematic of the single-orifice nozzle used in the experiment is shown in Figure 

4.1. The orifice has an opening of 1.524 mm and is located centrally in the body of 

the nozzle that discharges an axi-symmetric spray around the nozzle axis. 

 

Figure 4.1: Schematic of the single-orifice nozzle (after Tanner and Knasiak [2003]). 
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4.2.1.2 Multi-orifice nozzle 

The schematic of the multi-orifice nozzle used in the experiment is shown in Figure 

4.2. The nozzle comprises a central orifice of 1.524 mm in diameter, placed along the 

inlet nozzle axis, and six orifices of 0.508 mm in diameter, placed equi-angularly 

around the perimeter of the nozzle at an azimuthal angle of 60˚ with the inlet nozzle 

axis. The central orifice discharges axi-symmetrically around the inlet nozzle axis 

and the peripheral orifices discharge axi-symmetrically around the axis of that 

individual orifice. 

 

Figure 4.2: Schematic view of the multi-orifice nozzle (a) side elevation; (b) plan 

view (after Tanner and Knasiak [2003]). 

4.2.2  Experimental set-up and procedure 

4.2.2.1 Determination of flux density distribution 

An experimental rig is constructed to measure the distribution of the flux density 

produced by the sprays. This is achieved by placing a 2 m ൈ 2 m ൈ 0.1 m water 

collection tray beneath the nozzles. To spatially resolve the distribution of flux 

densities, the tray is divided into 400 compartments, each with dimensions of 10 cm 

ൈ 10 cm ൈ 10 cm. The single-orifice and the multi-orifice nozzle heads are clamped 

at heights of 2.3 m and 2.0 m, respectively, above the floor. Water is supplied to the 

nozzles by means of a pump that could operate up to a pressure of 400 bars. The 

experimental rig is illustrated in Figure 4.3. 
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Figure 4.3: Schematic view of the experimental set-up. 

The experiments are designed to measure the distribution of flux density produced by 

the single and the multi-orifice nozzles. It has been found that the key feature of the 

distribution of flux density produced by the single-orifice nozzle is best obtained by 

placing the nozzle head above the centre of the water collection tray. This set-up is 

designated as Case A. However, as might be expected, multi-orifice nozzles produce  

a maximum intensity of distribution directly beneath the centre of the nozzles and in 

regions that correspond to their azimuthal orifices. Hence, in this situation, 

experiments are carried out with the multi-orifice nozzle located above the centre and 

at one of the corners of the water collection tray. The former set-up is similar to that 

of the single-orifice nozzle and referred to as Case A, and the latter set-up is referred 

to as Case B. In both cases, the boundary wall was located at 2 m away from the 

nozzle head. The locations of the nozzles and boundary wall for these two cases are 

shown in Figure 4.4. 
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Figure 4.4: Location of nozzle (a) Case A; (b) Case B. 

To supply the water from the reservoir to the nozzle head, the pump is operated at a 

pressure of 34.5 bars for the single-orifice nozzle spray and this has produced a 

volume flow rate of 1.7 L/min. In the case of the multi-orifice nozzle, the pump is 

operated at a pressure of 70 bars and this has produced a volume flow rate from the 

central orifice comparable to that produced by the single-orifice nozzle; the total 

volume flow rate is 8.8 L/min. The nozzles are allowed to operate until their flow 

regime is stabilised. The sprayed water is collected on the tray that enabled the flux 

densities (L/m2/min) to be measured to an accuracy exceeding 99%. The angles of 

the sprays for both of the nozzles are determined from the photographs of sprays. 

Schematic views of measuring the angle of sprays are illustrated in Figure 4.5. The 

parameters of the spray i.e. water flow rates, spray angles and spray heights of the 

experiment were used as input parameters in the FDS model.  

Figure 4.5: Schematic view of the measurements of the angle of sprays (a) spray 

produced by the single-orifice nozzle; (b) spray produced by the multi-orifice nozzle. 
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In the experiment: the volume flow rates of the sprays produced by the nozzles are 

measured. In the case of the multi-orifice nozzle spray, the flow rates for the central 

and the azimuthal orifices and for the whole nozzle are measured separately: they are 

2.2, 1.1 and 8.79 L/min, respectively. The measured flow rates from the nozzle heads 

are also corroborated by means of the following correlation [Tanner and Knasiak 

2003]: 

ܳ	 ൌ  ሺ4.1ሻ																																															ܲ√	ܭ	

where Q is the discharge rate of water and P is the operating pressure of the water 

flow. According to the manufacturer’s data, the K-factor of the multi-orifice nozzle is 

0.073 L/min/psi1/2, which gives a flow rate of 8.74 L/min. This also validates the 

accuracy of the experimental measurement of the water flow rate. 

4.2.2.2 Determination of median diameter of droplets 

The median diameter of the droplets of the spray produced by the multi-orifice 

nozzle is available from the manufacturer’s data. The median diameter of the 

droplets of the spray produced by the single-orifice nozzle is determined using the 

same experimental set-up, and the procedure of determining the median diameter of 

droplets is described below. 

Firstly, the flux density distribution of the nozzle is measured for a certain flow 

pressure (P1). The water flow rate and spray angle are also recorded. A numerical 

tool is required to simulate this experiment. This is followed by carrying out 

simulations with a range of the median diameters of droplets. The distribution of flux 

densities is calculated for the spray of each median size of the diameter of the 

droplets. These are compared with the corresponding experimental data of the 

distribution of flux densities for the flow pressure of P1. When the numerical data of 

distribution matches the experimental measurement, the corresponding size of the 

droplet can be taken as the hypothetical size of the droplet (dm1) of the spray. Then, a 
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mathematical relationship is used to determine the second median size of the droplet 

(dm2) for a different flow pressure (P2). If the numerical tool can accurately simulate 

the second set of distribution of flux densities using dm2 and P2, this will provide 

confidence that the numerical tool is well validated. Hence dm1 and dm2 can be 

considered the actual median diameters of droplets corresponding to the pressures of 

P1 and P2, respectively. 

According to Fleming [2008], the median diameter of droplets generated by a 

sprinkler has been empirically found to be inversely proportional to one-third of the 

power of water pressure and directly proportional to the two-third power of the 

orifice diameter i.e. 

݀௠ 	∝ 	
ܦ
ଶ
ଷൗ

ܲ
ଵ
ଷൗ
																																											ሺ4.2ሻ 

where dm is the median size of droplets, D is the orifice diameter and P is the flow 

pressure. Therefore, for a specific nozzle, the relationship between two median 

diameters of droplets corresponding to two different pressures can be expressed as: 

݀௠ଵ

݀௠ଶ
	ൌ 	 ൬ ଶܲ

ଵܲ
൰
ଵ
ଷൗ

																																					ሺ4.3ሻ	 

From the first experiment and numerical simulation, ݀௠ଵ is determined for the 

corresponding ଵܲ. Conducting a second experiment with a different flow pressure 

( ଶܲ), a second set of the distribution of flux densities is collected. Using Eq. 4.3, ݀௠ଶ 

is calculated for the corresponding P2. Finally, this median diameter of droplets and 

the corresponding pressure are used as input parameters for the spray in the 

numerical model. If it is found that the numerical distribution of flux densities 

matches the experimental measurements, then it can be concluded that the numerical 

model is capable of predicting the distribution of flux densities, and the 

corresponding hypothetical median size of droplets, ݀௠ଵ and ݀௠ଶ, can be considered 
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the true median diameter of droplets at pressures P1 and P2, respectively. Therefore, 

using this method, the median diameter of droplets of a spray can be estimated 

corresponding to their flow pressure. 

4.3  Numerical model 

CFD simulations are run using FDS (ver. 6.0) and the accompanying program, 

Smokeview (ver. 5.6), is used for visualisation of the model. A brief description of 

the spray model in FDS is described in Chapter 2. 

4.3.1  Domain set-up 

4.3.1.1 Single-orifice nozzle spray 

A computational domain for the simulation of spray produced by a single-orifice 

nozzle is established that represents a region in space as shown in Figure 4.6. The 

dimensions of the floor are 2 m ൈ 2 m and the vertical height of the domain is 2.4 m. 

In order to represent the laboratory set-up, one of the vertical boundaries is 

considered to be an impermeable solid wall. The three other vertical boundaries are 

considered to be open to flow, as is the upper horizontal boundary. The lower 

horizontal boundary is the floor on which the volume flux of water emanating from 

the nozzle impinges. The dots on this surface coincide with the centres of the 10 cm 

ൈ 10 cm regions in which the fluxes are estimated. The grid system on the floor of 

the domain is illustrated in Figure 4.7. The nozzle head is located at a height of 2.3 m 

above the floor. 
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Figure 4.6: Computational domain for simulating the spray produced by the single-

orifice nozzle. 

 

Figure 4.7: The grid system on the floor in the computational domain. 

4.3.1.2 Multi-orifice nozzle spray 

A similar computational domain is also established to simulate the spray produced by 

the multi-orifice nozzle, as shown in Figure 4.8. In this case, the dimensions of the 

horizontal floor are 6 m ൈ 6 m and the height of the domain is 2.1 m. To be 

consistent with the conditions associated with the experiment, one of the vertical 
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peripheral orifices are oriented so that they are separated by an azimuthal angle of 

60°. The spray from the nozzle is described as a droplet inlet boundary condition. 

4.3.3  Input variables for determining the median diameter of droplets 

Once the computational domain is set up, the input parameters are incorporated for 

the simulation. The input variables are the median diameter of droplets, flow rate of 

water, angle of spray and height of spray. Those parameters (except the median 

diameter of droplets) are measured in the experiment and used as input variables in 

the numerical simulation. The median diameter of droplets in the spray is varied and 

the Rosin-Rammler lognormal distribution pattern is used for the distribution of size 

droplets. The details of the distribution function and its spread coefficient are 

available in the FDS Technical Reference Guide [McGrattan et al. 2014]. The 

volume accumulation rate on the floor is calculated in the simulation. The input 

parameters of simulation are tabulated in Table 4.1. 

Table 4.1: Input parameters for the simulation of determining the median diameter of 

droplets of a spray 

Parameter Value 

Flow pressure (P1) 34.5 bar 

Flow pressure (P2) 75.8 bar 

Spray pattern type Solid cone 

Spray angle 65o 

Spray height 2.3 m 

4.3.4  Input variables for determining the distribution of flux densities 

The input variables for determining the distribution of flux densities are the flow rate 

of water, angle of spray, height of spray, median diameter of droplets and velocity of 

droplets. The parameters of the sprays produced by the nozzles are specified with the 

aid of the experimental measurements and manufacturer’s data. The details of the 
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spray parameters for both the single-orifice and multi-orifice nozzles are tabulated in 

Table 4.2. 

Table 4.2: Spray parameters for the simulation of determining the distribution of flux 

densities of sprays 

Nozzle type Single-orifice Multi-orifice 

Input variables  Central Peripheral 

Diameter, mm 1.524 1.524 0.508 

Orientation (azimuthal angle) 0˚ 0˚ 60˚ 

Flow rate, L/min 1.7 2.2 1.1 

Spray angle 65˚ 45˚ 15˚ 

Spray height, m 2.3 2.0 2.0 

Droplet velocity,	m/s 15.5 18.8 89.6 

Spray pattern Solid Solid Solid 

 

The angles of spray for the single-orifice nozzle and for the central and peripheral 

orifices of the multi-orifice nozzle are measured from the photographs of sprays, as 

reported in the previous section. The flow rates of each individual orifice, and of the 

whole nozzle head, are measured in the experiment. The velocity of the droplets was 

calculated from the simple geometrically based relationship between the flow rate 

and discharge area. The median diameter of droplets for the spray produced by the 

single-orifice nozzle is determined using a technique described in this chapter. The 

median size of the droplets for the multi-orifice nozzle spray is taken from the 

experimental data provided by the manufacturer [Tanner and Knasiak 2003].  

A Rosin-Rammler lognormal distribution pattern is used for the distribution of 

droplet sizes. The simulation is allowed to run for 65 seconds; the nozzle is activated 

at the beginning of the simulation and stopped at 60 seconds; the additional 5 

seconds are to allow the water droplets to fall down from the nozzle, based on the 

primary calculation. 
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densities are measured in the experiment and calculated in the numerical simulations 

in L/m2/min and the contour maps are illustrated in Figures 4.11 (a) and (b), 

respectively.  

(a) 

 

(b)

 

Figure 4.11: Distribution of flux densities (L/m2/min) of the spray produced by the 

single-orifice nozzle (a) experimental; (b) numerical. 
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The contour maps are drawn from ordinate 0.4 to 1.6 m on both the X- and Y-axes, 

as 90% of the water of the spray is found to be within this region. As expected, the 

flux density is highest at the centre of the floor, both in the experiment and in the 

numerical simulation, and it is decreased monotonically in a radial direction from the 

centre. The contour maps in Figure 4.11 indicate that there is discrepancy between 

the contour maps generated in the experiment and by the computer model. The 

contour map of the distribution produced by the experiment is elliptical in shape and 

it has translated 15 cm from the centre of the tray in the positive Y-direction. 

The eccentricities of the ellipses produced by the distribution of the spray are 

calculated. The value of eccentricity of the ellipse for the distribution generated in 

the experiment is 0.70, whereas the eccentricity of that by the numerical model is 

0.2. This indicates that the shape of the distribution of the spray generated by the 

numerical model is almost circular. Other than the elliptical in the shape of the maps, 

the predicted distribution pattern and intensity of flux densities of the numerical 

model are reasonably agreed with that of the experiment.  

The distribution of water volume flux along the axes of the ellipse and radii of the 

circle are illustrated in Figure 4.12. In the experimental study, the pattern of 

distribution along the major and minor axes of the ellipse is not identical, whereas 

the simulation results along the centreline have shown an almost identical pattern of 

distribution. However both experimental and numerical data show a bell-shaped 

pattern of distribution.  
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Figure 4.12: The distribution of the flux density of sprays for the single-orifice 

nozzle along the centreline axes as indicated in Figure 5.12:  o  Experimental values 

along the major axis; . □  Experimental values along the minor axis;  ∆  Numerical 

values along the radii of X direction; · · x  Numerical values along the radii of the Y 

direction. 

4.4.2.2 Multi-orifice nozzle spray 

The distribution of flux density of the sprays produced by the multi-orifice nozzle is 

measured experimentally at a distance 2.0 m beneath the nozzle. The experiments are 

conducted for two cases: Case A and Case B. In Case A, the position of the nozzle is 

above the centre of the water collection tray, and in Case B, the position of the 

nozzle is above one of the corners of the water collection tray. The distributions of 

flux densities obtained in the experiments and numerical simulations are displayed 

by means of contour plots for Case A and the results are given in Figure 4.13 (a) and 

(b), respectively.  

The experimental results indicate that the distributions are elliptical in shape and 

decreased with the distance from the centre of the tray. The position of the highest 

volume flux is displaced 20 cm from the centre of the tray in both the X and Y 

directions. A possible reason is that the spray is affected by the wall in the vicinity of 
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(a) 

 

 
(b) 

 

Figure 4.13: Distribution of flux densities (L/m2/min) of sprays for the multi-orifice 

nozzle for Case A (a) experimental; (b) numerical. 



Chapter 4: Spray distribution – a benchmark experiment and validation of FDS 

90 

the spray. A hint of this artefact is provided in the numerical results that have also 

produced an elliptical shape of distribution, and the position of the height volume 

flux is displaced towards the wall. In the numerical case it is displaced by about 10 

cm. The eccentricity of the ellipse for the experimentally obtained distribution is 

0.74, whereas it is 0.58 for the numerically obtained distribution of the spray. This 

confirms that the distribution generated experimentally is more ellipsoidal than that 

generated by the numerical model. 

The water fluxes along the major and minor axes of the numerically and 

experimentally obtained distributions are shown in Figure 4.14. The centre of the 

ellipse of Figure 4.13 (a) is superimposed on the centre of the ellipse of Figure 4.13 

(b) and corresponding values of the distribution of flux densities are compared. The 

figure shows that the numerical model has under predicted the distribution of water 

flux around the periphery of the ellipse. However it has predicted the distribution 

near the centre of the ellipse of the spray with accuracy greater than 90%, which  

 

Figure 4.14: The distribution of flux densities of spray for the multi-orifice nozzle 

along the major and minor axes of ellipses for case A  o  Experimental values along 

the major axis;. □  Experimental values along the minor axis;  ∆  Numerical values 

along the radii of X direction; ·· x  Numerical values along the radii of Y direction. 
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provides some validation of the model. The distributions are approximately bell-

shaped in both cases and the numerical predictions and the experimental 

measurements are generally in good agreement. 

The distributions of flux densities in the experiment and numerical simulation for 

Case B are shown in Figure 4.15 (a) and (b), respectively. The maximum flux 

densities of the sprays for the peripheral orifices are at locations (0.9, 0.4) and (0.9, 

0.2) for the experimental and numerical distributions, respectively. The distributions 

patterns of the sprays are elliptical in shape for both experimentally and numerically 

generated sprays.  

The axis of the orifice is depicted by a line connecting the centres of the ellipses of 

the distributions of sprays produced by the central and peripheral orifices. The 

distances of the centres of ellipses from the corner of the water collection tray along 

the orifice axis for the experimentally and numerically obtained distribution on the 

floor are 186 and 200 cm, respectively. The eccentricities of the experimentally and 

numerically obtained distributions are 0.72 and 0.16, respectively. This signifies that 

the numerical model has predicted a more circular distribution of flux compared to 

that of the experiment. The peripheral orifices in the nozzle body are oriented at an 

angle of 60° to each other. Therefore it is expected that the angle separating the 

peripheral distribution should also be 60°. This expectation is met by the numerical 

model to within the experimental error. 

In Case B, one of the orifice’s axes is directed along an edge of the water collection 

tray and another one along a line at an angle of 60° to the edge as indicated in Figure 

4.15. In the numerically obtained distribution, half of the ellipse of the distribution 

produced by a peripheral orifice along the direction of the X-axis is captured on the 

water collection tray; however no such pattern is observed in the experimentally 

produced distribution. A possible reason is that there is a wall 2.0 m away from the  
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(a) 

 

(b) 

Figure 4.15: Distribution of flux densities (L/m2/min) of spray for 

multi-orifice nozzle for Case B (a) experimental; (b) numerical. 
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4.5 Conclusions 

Water mists have the ability to suppress fires and their efficacy can be explored using 

computer software packages such as FDS. However it is essential that the software 

accurately predict the behaviour of the mists produced by spray nozzles. In this work 

we have validated FDS in terms of the distribution of flux densities of sprays that 

govern the prediction of the behaviour of spray nozzles. It has been found that the 

distribution of the sprays produced in the experiment and the numerical model for 

both the single- and multi-orifice nozzles are elliptical in shape. However the 

eccentricity of the ellipses for the distribution is less pronounced in the numerical 

model for both the single- and multi-orifice nozzle. 

In this work it appears that the presence of a solid wall in the vicinity of the spray has 

influenced the distribution. The experimental and numerical results obtained in this 

study indicate that the distribution of flux is closer to the wall than would otherwise 

be the case. However the effect of the boundary wall on the distribution of the spray 

in the numerical model is less pronounced compared to that of the experimental 

results. Overall, the results obtained using FDS are in close agreement with the 

experimentally determined distribution of flux densities produced by the sprays.  

In this chapter, a simple technique has also been suggested for determining the 

median diameter of a droplet produced by a nozzle. The numerical flux density 

distribution with the hypothetical median droplet size is found to agree well with the 

experimental measurements. This technique can be used to determine the median 

size of the droplets of a spray when a direct measurement is not available. 
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Chapter	5 	
Validation	of	FDS	for	the	burning	of	
PMMA	and	the	suppression	of	fires	by	
water	mists	

5.1 Introduction 

In the previous chapters the capability of FDS in modelling the behaviour of an 

individual water-mist droplet and predicting the distribution of sprays on a horizontal 

surface is presented. However it is also essential to understand the capabilities of 

FDS in modelling the pyrolysis of fuel, the ignition of fuel and the growth of fire, 

etc. Predicting these phenomena is challenging as, on the continuum scale, it 

involves complex dynamics and mechanisms that develop in length scales ranging 

from millimetres to meters and time scales from milliseconds to minutes [Jahn et al. 

2008]. Moreover, the suppression mechanisms of fires are also complex in the case 

of water-mist systems compared with conventional sprinkler systems, as they involve 

dilution of fuel vapours/air ratio by the evaporation of water droplets [Liu and Kim 

2000; Shu et al. 2005; Yang et al. 2010] and radiation attenuation from flames and 

hot surfaces [Mawhinney et al. 1994; Wighus 1995; Grant et al. 2000; Liu and Kim 

2000]. Furthermore, experimental data with appropriate material properties are 

required to validate the accuracy of the model. 

Therefore the objective of the work presented in this chapter is to validate the 

accuracy of FDS in predicting the growth and spread of fires and, finally, the 

capability of FDS in the suppression of fires using water mist. A better understanding 
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of FDS capabilities in modelling fire growth and extinction would help in designing 

fire suppression systems. It will also serve as a benchmark in identifying the ability 

of FDS to model fires resulting from the combustion of solids. 

In this study, polymethyl methacrylate (PMMA) is used as a solid fuel in the 

simulation to observe the burning prediction capabilities of FDS and in simulating 

the behaviour of fire. PMMA is chosen as a burning material as it is one of the 

plastic materials widely used in buildings. The experimental data is taken from the 

study by Magee and Reitz [1974] for the purpose of validation. In the numerical 

study, similar to the experiment, the sample orientation (horizontal and vertical) and 

radiant flux rate (kW/m2) are varied. 

5.2 The experiments of Magee and Reitz [1974] 

Magee and Reitz [1974] conducted an investigation of the burning and extinction 

characteristics of PMMA fires by water spray. The configurations of the burning 

samples aligned both horizontally and vertically. The water was applied as a uniform 

spray from a single nozzle. The steady state burning rates of the PMMA slabs were 

measured as a function of an externally applied radiant flux, both with and without 

water spray. The authors investigated the response of the samples to the external 

radiant heat flux and the effectiveness of water in suppressing the fires. 

The experimental apparatus used in the study by Magee and Reitz [1974] is shown in 

Figure 5.1. In their experiments they investigated the radiation augmented burning of 

PMMA slabs and water spray extinguishment characteristics in both the vertical and 

upward facing (horizontal) orientations. Figure 5.1 shows the burning of the PMMA 

slab for the vertical configuration. To investigate the burning of the horizontal 

sample, the radiant heaters and specimen were rotated 90 degrees to a horizontal 

position and the specimen holder changed. The specimens consisted of single slabs 
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of PMMA measuring 17.8 cm wide ൈ 35.6 cm high ൈ 5 cm thick when burned 

vertically and 17.8 cm wide ൈ 17.8 cm high ൈ 5 cm thick when burned horizontally. 

Two Armstrong speed foil radiant heaters were used as a heat source. The heaters 

were mounted 17.8 cm apart to allow passage of the water spray. These were 

positioned 25 cm in front of the specimen and inclined 45o to the plane normal to the 

centreline of the specimen (Figure 5.1). 

 

Figure 5.1: Experimental set-up for the burning of vertical specimens after the 

studies by Magee and Reitz [1974]. 

A HyCal calorimeter was employed to measure the radiant flux distribution over the 

specimen surface. The radiant flux was measured at the centre of the specimen, 

which represented the average radiant flux to the surface. The flux was varied from 

8.4 kW/m2 to 15.89 kW/m2. The maximum radiant flux incident on the specimen was 

15.89 kW/m2. The water was applied to the specimen by means of a single nozzle fed 
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from a pressurised water tank. The nozzle employed in the majority of tests was a 

full cone centre jet nozzle. 

5.3 Numerical simulation 

In this study the simulation of the burning of the PMMA slabs is conducted using 

FDS, version 6, and the burning rates of the samples are calculated in the simulation. 

For PMMA combustion, the MMA monomer (C5 H8 O2) is assumed to be liberated 

from the sample surface when pyrolysis occurs [Linteris et al. 2005]. In FDS, 

pyrolysis is assumed to occur as per the Arrhenius equation. The details of the 

computational domain, grid resolution, and operating and boundary conditions are 

discussed in the following sections. 

5.3.1  Computational domain 

Computational domains with dimensions of 1 m ൈ 1 m ൈ 2 m and 1 m ൈ 2 m ൈ 2 m 

are created for the simulation of burning and the suppression of horizontally and 

vertically oriented PMMA slabs, respectively. The set-up for the computational 

domain in the numerical simulation for the burning of horizontally and vertically 

oriented PMMA is illustrated in Figures 5.2 and 5.3. For samples with an imposed 

flux, the cone is located 2.54 cm away from the top of the PMMA surface. All sides 

of the domain are kept open to be consistent with the conditions associated with the 

experiment. 
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Figure 5.2: Three-dimensional view of the computational domain for the simulation 

of fires produced by the horizontally placed PMMA slabs. 

In the case of the burning of the horizontal PMMA slab, the specimen of dimension 

17.8 cm wide ൈ 17.8 cm high ൈ 5 cm thick is placed horizontally at a height of 0.5 

cm from the floor. A set of two inclined steel plates is used as a heating source 

(radiant heaters) to the specimens and they are mounted 17.8 cm apart to allow 

passage of the water spray. They are positioned 25 cm above the specimen and 

inclined 45o to the plane normal to the centreline of the specimen. The green dots 

above and on the specimen surface are the locations where the temperature and 

radiation rate are calculated. The nozzle is located on top of the domain. The set-up 

of the specimen, steel plate, copper protector and water-mist nozzle in the domain for 

the simulation of the horizontally oriented PMMA slab are illustrated in Figure 5.2. 

In the case of the burning of the vertical PMMA slab, the orientation of the set-up is 

rotated 90o along the vertical centreline axis. The size of the PMMA slab is 17.8 cm 

wide ൈ 35.6 cm high ൈ 5 cm thick and placed horizontally at a height of 20 cm from 

the floor and 10 cm away from the rear side of the domain boundary. A nozzle is 

located at a distance of 1 meter from the specimen. The set-up for the burning of the 

vertically oriented PMMA slab is illustrated in Figure 5.3. 
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Figure 5.3: Three-dimensional view of the computational domain for the simulation 

of fires produced by the vertically placed PMMA slabs. 

5.3.2  Operating and boundary conditions 

The operating and boundary conditions for the simulation were as follows: 

 The initial air temperature inside the computational domain is 20°C. 

 The compartment floors are modelled as concrete and the side walls of the 

domain are kept open to be consistent with the experimental set-up. 

 The domain is surrounded by free, neutral pressure boundaries. 

 There are no external wind conditions. 

5.3.3  Sensitivity analysis 

The sensitivity of the numerical results for the three parameters is examined in this 

study. This included (i) the appropriate grid size for the computational domain; (ii) 

the effect of insulation of the rear surface of the sample on the burning rates of the 

PMMA slab; and (iii) the effect of the use of the absorption coefficient as one of the 

input parameters in the numerical simulations. The details of these analyses and the 

results are described below. 
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5.3.3.1 Grid spacing 

The numerical results of any CFD model should be grid convergent. Therefore, in 

conducting a CFD analysis, it is essential to undertake a grid refinement process by 

gradually reducing the grid spacing (cell size) used in the analysis to examine the 

effect on the predicted results. It is usual to find that as the grid is refined, the results 

converge to a solution. Further reducing the cell size has virtually no effect on the 

results produced, and this result is known as a grid converged result. However 

convergence may only be obtained at an inordinate cost of computing resources and 

hence for this study a supercomputer has been required. 

A grid sensitivity analysis was performed in a study by Abu-Bakar and Moinuddin 

[2015] using grid spacing of 10 mm, 5 mm and 2.5 mm (in the x, y and z directions). 

In the simulations, the specimen is subjected to 50 kW/m2 of radiation. In all 

simulations the input parameters and boundary conditions are unchanged. The only 

change is the grid size. The heat release rates (HRR) of PMMA burning for these 

three cell sizes are calculated and compared. From the initial coarse grid sizes, the 

grid sizes are reduced by a factor of two. The results of HRR of these calculations, as 

illustrated in Figure 5.4, show that in the case of the 10 mm grid, the HRR is very 

high compared to that of the two other cell sizes. However the HRR for the 5 mm 

and 2.5 mm cell sizes are found to be almost identical. Therefore a mesh size of 5 

mm is used to discretise the computational domain. 
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Figure 5.4: Grid convergence test for PMMA fire [Abu-Bakar and Moinuddin 2015]. 

 

5.3.3.2 Insulation of rear surface 

The effect of insulation on the rear surface on the burning of the PMMA slab is also 

investigated in the simulation. If the rear surface of the specimen is kept insulated 

then there will not be heat loss from the rear surface of the sample [McGrattan et al. 

2014]. Simulations are run with and without insulating the rear surface of the PMMA 

slab, and all other parameters are kept identical. The calculated burning rate, with 

and without insulation, is shown in Figure 5.5. The differences between the two 

cases are found to be not more than 8%. However in this study the rear of the sample 

is kept uninsulated to match the experiment by Magee and Reitz [1974]. 
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5.3.5  Flammability parameters and chemical kinetics 

The amount of energy consumed per unit mass of reactant in a solid phase reaction is 

specified by the heat of the reaction/pyrolysis (HoR). The amount of energy released 

per unit mass of fuel (kJ/kg) from a gas phase chemical reaction is specified as the 

heat of combustion (HoC) [McGrattan et al. 2014]. If the heat of combustion is 

specified, FDS calculates the enthalpy of the formation of the fuel such that the user-

specified heat of combustion is maintained. The HoC and HoR of PMMA were 

determined in the Fire Dynamics Lab, CESARE, Victoria University using the cone 

calorimeter test, thermal gravimetric analysis (TGA) and DSC by Abu-Bakar and 

Moinuddin [2015]. The value of the HoR used in the simulation was 1627 kJ/kg for 

the heating rate of 5 K/min. The HoC data used in this analysis was 19490 kJ/kg for 

the irradiance of 50 kW/m2. 

To define the solid phase chemistry (Arrhenius reaction), the kinetic parameters of 

the reaction rate are specified in the simulation. The kinetic parameters of the 

reaction rate are also sometimes defined as the Arrhenius parameters that include the 

activation energy (E), the pre-exponential factor (A) and the reaction order (Ns). The 

value of the Arrhenius parameters varies with the variation of the heating rate to the 

specimen. Here, the values for a heating rate of 5 K/min is used for the simulation as 

the value for this heating rate gives a better prediction of HRR for PMMA fire [Abu-

Bakar and Moinuddin 2015]. The value of the Arrhenius parameters was determined 

using TGA in the Fire Dynamic Lab, CESARE by Abu-Bakar and Moinuddin 

[2015]. These are specified in Table 5.1. 

Table 5.1: Arrhenius parameters 

Arrhenius parameters Values 

Activation energy (E), J/mol 24234 

Pre-exponential factor (A) 1.47	ൈ1018 

Concentration exponents (Ns) 1.64 
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The input variables are the properties of PMMA, the radiative steel plate and the 

copper shield. The material properties and combustion parameters of the materials 

used for the simulations are listed in Table 5.2. 

Table 5.2: Materials properties for the FDS input file 

Material Property Value Unit Sources 

PMMA Emissivity 0.85  

[Abu-
Bakar and 
Moinuddin 

2015]  

 Density 1210 kg/m3 

 Heat of reaction 1625 kJ/kg 

 Heat of combustion 19490 kJ/kg 

 Absorption coefficient 2700 1/m 

 Activation energy 242.34 kJ/mol 

 Pre-exponential factor 1.47 x 1018  

 Reaction order 1.64  

 Soot yield 0.011 kg/kg 

 CO yield 0.006 kg/kg 

 Conductivity 1.9 at T = 20oC 

1.13 at T = 100oC 

W/m/K 

 Specific heat 1.55 at T = 20oC 

1.96 at T = 100oC 

2.36 at T = 280oC 

kJ/kg/K 
James 
[2014] 

     

Steel Emissivity 0.9  

Incropera 
and DeWitt 

[1990] 

 Density 7850 kg/m3 

 Conductivity 48 at T = 20oC 

30 at T = 677oC 

W/m/K 

 Specific heat 0.45 at T = 20oC 

0.60 at T = 377oC 

0.85 at T = 677oC 

kJ/kg/K 
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Copper Emissivity 0.78  

Incropera 
and DeWitt 

[1990] 

 Density 8940 kg/m3 

 Conductivity 400 at T = 25oC 

380 at T = 325oC 

W/m/K 

 Specific heat 0.385 at T = 25oC 

0.417 at T = 327oC 

0.432 at T = 527oC 

kJ/kg/K 

     

Gypsum  Conductivity 0.158 W/m/K 

Incropera 
and DeWitt 

[1990] 

board Emissivity 0.6  

 Specific heat 1.09 kJ/kg/K 

 Density 800 kg/m3 

 Thickness 0.039 m 

 

5.4 Results and discussion 

The burning of the vertical PMMA slab is simulated as coupled pyrolysis and 

combustion reaction using FDS and the burning rate of the specimen are calculated 

in the simulation. Figure 5.7 illustrates a three-dimensional view of the burning of 

the vertically placed specimen. The radiation flux rates on the specimen surfaces for 

the three different simulations are 15.89, 14.65 and 12.55 kW/m2, respectively. The 

samples are simulated to burn undisturbed until full burning is developed. When the 

burning rates are observed to be in a steady state, the nozzle activation is simulated 

in the simulation for the suppression of fires.  
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Figure 5.7: Three-dimensional view of the burning of the vertically oriented PMMA 

slab. 

The burning rates of the specimens for the three different rates of radiation flux are 

presented in Figure 5.8. In the case of the radiation flux of 15.89 kW/m2, the 

specimen is allowed to burn for up to 680 seconds until a steady state burning rate is 

observed. The water spray nozzle is then activated and, as a result, the burning rate 

of the sample begins to drop and becomes steady at 1100 seconds. The burning rates 

of the sample before and after activation of the nozzle in the numerical simulation 

are 13.6 and 8.0 g/cm2.s, respectively. These corresponding values in the 

experimental study by Magee and Reitz [1974] are 16.5 and 9.2 g/cm2.s, 

respectively, before and after activation of the nozzle. In the analysis it is found that 

the numerical value is about 18% and 15% lower than the experimental observation.  
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Table 5.3: The experimental and numerical values of the steady state burning rates for the vertically oriented PMMA slab 

Radiation 
flux 

(kW/m2) 

Burning rate before activation of 
nozzle spray (g/cm2.s) 

Burning rate after activation of nozzle 
spray (g/cm2.s) 

Difference in burning rate before and 
after activation of nozzle spray (g/cm2.s) 

Experimental 
values 

Numerical 
values 

% 
difference

Experimental 
values 

Numerical 
values 

% 
difference

Experimental 
values 

Numerical 
values 

% 
difference 

15.89 16.5 13.6 18% 9.2 7.8 15% 7.3 5.8 21% 

14.65 15.2 12.0 21% 7.7 6.7 13% 7.5 5.3 29% 

12.55 13.8 10.6 23% 6.0 5.2 14% 7.8 5.4 31% 

 
 



C

b

bu

Chapter 5: Va

Figure 5.1

burning rate

Figure 5.1

urning rates

Figure 5

differenc

alidation of F

10: Compar

es for the ve

11: Compar

s for the hor

5.12: Compa

e in steady 

FDS for burn

rison betwee

ertically ori

rison betwee

rizontally or

arison betw

state burnin

horizontal

ning of PMM

en the expe

ented PMM

en the expe

riented PMM

ween the exp

ng rates befo

lly oriented

MA and suppr

erimental an

MA slab befo

erimental an

MA slab be

perimental a

fore and afte

 PMMA sla

ression of fir

nd numerica

ore activatio

nd numerica

efore activat

and numeric

er activation

ab. 

res by water 

 

al steady sta

on of the sp

 
al steady sta

tion of the s

 
cal values o

n of spray fo

mists 

112 
 

ate 

pray. 

ate 

spray. 

f 

or 



C

Th

an

flu

bu

5.

In

de

ho

th

or

th

pl

kW

Th

th

Chapter 5: Va

he burning 

nd the burn

uxes of 15.

urning rates

13.  

Figure 5.1

n the numer

eveloped. I

orizontally o

hey did not 

riented PMM

he numerica

laced PMM

W/m2 is 14

he numerica

he experime

alidation of F

of the hori

ning rates o

89, 14.65 a

s for the thr

3: Burning 

rical simula

In the stud

oriented PM

have the m

MA slab. T

al simulation

MA slabs in

.4 g/cm2.s, 

al result has

ental data. T

FDS for burn

izontally or

of the spec

and 12.55 kW

ree differen

rates of the

levels of r

ations, the s

dy by Mag

MMA slabs 

measuremen

herefore, in

n. The predi

n the nume

whereas thi

s underpred

The ignition

ning of PMM

riented PMM

cimens are

W/m2 are u

nt rates of ra

e horizontal

radiation flu

samples are

gee and Re

are measur

nt of the su

n this case, 

dicted steady

erical simul

is value in t

dicted the bu

n of the sam

MA and suppr

MA slabs is

determined

used for the

adiation flu

ly oriented 

uxes (kW/m

e allowed to

eitz [1974],

red for diffe

uppression o

the nozzle a

y state burn

lation for t

the experim

urning rate b

mple, devel

ression of fir

s also simu

d. Three di

burning of

uxes are pre

PMMA slab

m2). 

o burn unti

, the burni

erent heatin

of fires for 

activation is

ing rates of

the radiatio

mental study

by 17% com

lopment of 

res by water 

ulated using

ifferent radi

f specimens

esented in F

 

bs at differe

il full burni

ing rates o

ng flux. How

the horizon

s not includ

f the horizon

on flux of 

y is 17.2 g/c

mpared to th

f the fire an

mists 

113 
 

g FDS 

iation 

s. The 

Figure 

ent 

ing is 

of the 

wever 

ntally 

ded in 

ntally 

15.85 

cm2.s. 

hat of 

nd the 



C

bu

le

(a)

F

Th

pr

un

nu

14

nu

sl

gr

 

 

 

Chapter 5: Va

urning of th

evels of time

) Start of 
simulation
(0 sec) 

Figure 5.14

he burning

resented in 

nderpredicte

umerical re

4.65 and 1

umerical va

ab and the 

raphically in

alidation of F

he specime

e are also de

 

n    
(b) Ign

sam
(10

4: Burning o

g rates for 

the same F

ed the burn

esults and t

2.55 kW/m

alues of the 

differences 

n Figure 5.1

FDS for burn

en in a stea

emonstrated

nition of 
mple 

00 sec) 

(

of fire produ

the radiati

the radiati

Figure 5.13

ning rates 

the experim

m2 are 19%

steady state

between th

15.  

ning of PMM

ady state co

d sequential

(c) Fire in 
growth  
(1500 se

uced by the 

ion flux of 1

ion levels 

3. It is obs

of the spe

mental mea

% and 20%

e burning r

hem are pre

MA and suppr

ondition in 

lly in Figure

 
ec) 

(d) F
gr
(2

horizontally

15.89 kW/m

of 14.65 a

served that 

cimens. Th

surements 

%, respective

rates of the 

esented in T

ression of fir

the simula

e 5.14. 

ire in 
rowth   
2500 sec) 

y oriented P

m2. 

and 12.55 k

the numeri

he differenc

for the rad

ely. The ex

horizontally

Table 5.4 an

res by water 

ation at diff

(e) Fire in
steady
(3000 

PMMA slab

kW/m2 are

ical results 

ces betwee

diation flux

xperimenta

y placed PM

nd also pres

mists 

114 
 

ferent 

n 
y state 

sec) 

b for 

e also 

have 

n the 

xes of 

l and 

MMA 

sented 



C

T

 

In

th

or

fo

or

an

10

Chapter 5: Va

Table 5.4: T

Radia
(kW

1

1

1

Figure 5.1

n the numer

he time requ

rientations (

ound to ign

riented slab

nd reached 

000 and 30

alidation of F

The experim

t

ation flux 
W/m2) 

5.89 

4.65 

2.55 

15: Compar

burning r

rical simula

uired to rea

(i.e. vertica

nite and atta

. The vertic

the steady 

000 seconds

FDS for burn

mental and n

the horizon

Exper
values (

17

16

15

rison betwee

rates of the 

ations an in

ach the stea

al and horiz

ain a steady

cally placed

state burnin

s, respective

ning of PMM

numerical v

ntally oriente

rimental 
(g/cm2.s) 

7.2 

6.2 

5.0 

en the expe

horizontall

nteresting ph

ady state bu

zontal orien

y state burn

d specimen i

ng rate by 6

ely, for the

MA and suppr

values of ste

ed PMMA s

Numeric
values (g/c

14.4

13.2

12.0

erimental an

y oriented P

henomenon

urning of th

ntation). The

ning rate e

is found to b

600 second

e horizontal

ression of fir

eady state bu

slab 

cal 
cm2.s) 

%

nd numerica

PMMA slab

n is observe

e PMMA s

e vertically 

arlier than 

be ignited a

ds, whereas 

ly placed s

res by water 

urning rates

% difference

17% 

19% 

20% 

 

al steady sta

b. 

ed that relat

slab for diff

y oriented s

the horizon

after 300 sec

these value

specimen fo

mists 

115 
 

s for 

e 

ate 

tes to 

ferent 

lab is 

ntally 

conds 

es are 

or the 



Chapter 5: Validation of FDS for burning of PMMA and suppression of fires by water mists 

116 
 

radiation flux of 15.89 kW/m2. The numerical result of the burning rate of the 

PMMA slab for the vertical orientation is also higher than for that of the horizontal 

orientation. From experimental evidence, it is also observed that the orientation does 

have a significant effect on the burning rate of a solid surface. The propagation of 

flame spread is also most rapid if it is directed upwards on a vertical surface 

[Drysdale 2011]. This phenomenon was also observed in the experimental work by 

Magee and Reitz [1974] and found in the numerical study by Yao and Chow [2005].  

The reason for this behaviour is that the vertical specimen gets more convective and 

radiative heat feedback from the radiator and the fire itself due to its orientation, 

compared to the horizontal slab. The direction of the flame of any fire is in the 

upward direction due to the buoyancy driven flow. As a result, for the horizontal 

orientation of the burning surface, air entrainment into the flame leads to a ‘counter 

current’ of heat and flame spread. However, for the vertical orientation of the solid 

surface, the flame clings to the specimen surface and the natural buoyancy of the 

flame generates the ‘concurrent’ spread of heat and flame on the surface. This 

produces a greatly enhanced rate of the spread of the flame, and hot gases rise in the 

same direction, filling the layer and creating a high rate of heat transfer ahead of the 

burning zone [Drysdale 2011]. As a result, this phenomenon gives rise to more heat 

feedback to the specimen for the vertical orientation. The nature of this heat transfer 

into the burning surface is also presented graphically in Figure 5.16. 
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Figure 5.16: Convective and radiative heat transfer from the flame to the PMMA 

slab  (a) vertical specimen; (b) horizontal specimen. 

 

5.5 Conclusions 

In this study, FDS is used to simulate the burning rates and suppression of radiation-

augmented PMMA fires. Experimental data by Magee and Reitz [1974] are used to 

validate the numerical results. In the simulation, the heating rate on the PMMA 

specimens is varied and the burning rates before and after the activation of the water-

mist nozzle are calculated. The outcomes of the study are summarised as below: 

i) The presence of insulation on the rear surface of a PMMA slab is found to 

have an effect on the burning rate compared to the absence of insulation. 

The burning rate was found to have increased by up to 8% in this study. 

ii) The use of an absorption coefficient in the simulation is found to have an 

effect on the burning rate of PMMA. The burning rate of the specimen has 

increased by up to 12%. 

(a) (b) 
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iii) The calculated steady state burning rates of the specimen by FDS, before 

and after activation of the water-mist nozzle, are in reasonable agreement 

with the experimental measurements of Magee and Reitz [1974]. The 

difference between the experimental and numerical values is not more than 

23%, and in some cases, this difference is about 15%. 

iv) The orientation of the solid has a profound effect on the burning rate and 

time required to ignite and attain the steady state burning rate of the 

specimen. In this study, a vertically oriented specimen is found to ignite and 

reach the steady state burning rate in a shorter time than that of the 

horizontally oriented specimen of the PMMA slab. 
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Chapter	6 	
Parametric	study	using	FDS	to	assess	
the	efficacy	of	water	mist	sprays	

6.1 Introduction 

In the previous chapters the capabilities of FDS in predicting the behaviour of 

evaporative droplets, flux density distribution of sprays, burning behaviour of solid 

fuels and suppression of fires produced by solid fuels have been validated against the 

experimental data. FDS has been found to be capable of predicting the experimental 

data with a difference of between 5 to 25%. This provides us with confidence in 

using FDS to simulate the behaviour of water mist and the suppression of fires. In 

this chapter, this model is used to investigate the ability of water mist in suppressing 

fires under a range of conditions. The factors considered include the number and 

location of the nozzles, the location of fires, obstruction on the fire and size of the 

droplets of a spray.  

The extinguishment of obstructed fires cannot be achieved as readily as it can be 

achieved for unobstructed fires by directly interacting with a water-mist spray [Back 

et al. 2000]. The mechanisms that play a major role in the extinguishment of an 

obstructed fire by water mist are the dilution of oxygen by water vapour, the cooling 

of hot gases by water droplets, and the attenuation of thermal radiation feedback to 

the fire sources. In contrast, wetting burning surfaces and cooling the flame are 

additional mechanisms for the suppression of an unobstructed fire. The details of the 

mechanisms of the suppression of fires by water-mist sprays are described in section 
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1.2 of Chapter 1. The scenario of obstruction in between a fire and a spray can occur 

in residential or commercial buildings where the combustible materials such as 

papers, and electrical equipment such as computer CPUs may be located underneath 

tables, and flammable chemicals in industry may be potentially covered with an 

obstruction. Another potential obstruction around a fire can occur in the engine room 

of naval or commercial ships where flammable liquids, such as engine oil, diesel, 

etc., can be obstructed or hidden from water-mist spray by different machinery and 

equipment. 

The location of a fire can also be an important issue in the case of suppression by 

water spray. The fire, which is located near ventilation, may be difficult to suppress 

by the spray as the fire can be supplied with oxygen by fresh air. This can also 

happen when the fire is located near an open door or window. On the other hand, fire 

that is located adjacent to boundary walls may receive a significant amount of 

radiation feedback to the fuel source. As a result, this can enhance combustion and 

increase the difficulty for a spray in suppressing the fire. However if a fire is located 

between an open door and the boundary walls of a room, then both of them may have 

an effect on the performance of the suppression of fires by the spray, depending on 

the distance from them. 

The number and position of nozzles are a further issue that affects the suppression of 

fires by water-mist sprays. If a nozzle is located directly above a fire, the water 

droplets of the spray will have to travel the least distance to reach the fire. As a 

result, it may show better performance in suppressing the fire. In contrast, while 

installation of multiple nozzles will involve a higher cost for the system, multiple 

nozzles may show a better performance in suppressing the fire. However activation 

of two nozzles may render a drop in the valve pressure of the water supply and this 

can reduce the performance of the spray.  
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The size of the water droplets of a spray is another important issue that affects the 

performance of the spray. Droplets of a larger size have higher momentums and this 

may enable them to have a higher capacity in penetrating a fire plume and smoke 

layer. As a result, they may show better performance in suppressing the fire by the 

wetting and cooling of burning surfaces and hot gases. In contrast, droplets of 

smaller size have a higher rate of evaporation and time of suspension in the air. As a 

result, this may facilitate them to show a better performance in diluting oxygen and 

attenuating radiation feedback to the burning surfaces. Therefore a spray containing 

larger droplets may be superior to smaller droplets in suppressing an unobstructed 

fire, whereas the latter may be superior over the former size in suppressing an 

obstructed fire. 

In the overall situation, if the above-mentioned factors act together, then the 

performance of the suppression of a spray might be severely compromised. For 

example, if a fire is horizontally obstructed and located near a source of ventilation 

and distant from a spray, then it might be difficult for the spray in suppressing the 

fire. Moreover, this situation might be more critical when the spray contains a larger 

size of droplets. 

Therefore the considerations of these situations have prompted an investigation of 

the effects of a range of factors and their combination on the performance of the 

suppression of fires by water-mist sprays. In this chapter a qualitative parametric 

study is presented to evaluate the effect of these factors on the performance of water-

mist sprays in suppressing fires. The factors that are evaluated are: 

(i) the type of obstruction around a fire 

(ii) the location of fire in an ISO room 

(iii) the number of nozzles above a fire  

(iv) the size of the droplets of a spray. 
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6.2 Numerical simulation  

6.2.1  Computational domain 

In this study the simulation of burning and the suppression of a wood fire is carried 

out in a domain similar to an ISO room. The reason for choosing an ISO room is that 

this is a standard size room that is normally used for the experimental and numerical 

study of fires [Yang et al. 2010; Moinuddin et al. 2011]. So, a computational domain 

similar to a standard ISO 9705 is created. The size of the room is 2.4 m ൈ 2.4 m ൈ 

3.6 m. A hood of size 2.4 m ൈ 2.4 m ൈ 4 m is also attached to the room. The room is 

ventilated only by a doorway located at the centre of one of the 2.4 m wide walls. 

The size of the door is 2.0 m high and 0.8 m wide. The door is kept open during all 

of the tests. An illustration of the ISO room is presented in Figure 6.1.  

   

Figure 6.1: ISO room (a) plan view; (b) elevation [Moinuddin et al. 2011]. 

The size of the grid of the computational domain directly affects the computational 

results and time of the model. In any simulation an appropriate grid size should be 

selected so that the numerical results become independent of it (i.e. free from 

numerical error). Without such spatial resolution the numerical results become 

qualitative rather than quantitative. Quantitative solutions come at the cost of 

enormous computational resources. Therefore the selection of the size of a finer grid 

might be critical when it demands huge computational time and resources.  

8
00

 m
m

 

3600 mm  

(a) (b) 
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In the previous chapter (Ch. 5), a grid resolution of 5 mm has been found to give the 

grid independent results on the burning and suppression of PMMA fires in a domain 

of 2 m3 in volume. A supercomputer consists of 16 processors with the specification 

of each of them of a 2000 MHz AMD Opteron 6100 series processor and 32 GB of 

RAM, and has taken about 750 hours to complete one simulation of 1200 seconds 

with that size of grid. However, in this part of the study, the computational domain is 

comprised of 43.78 m3 in volume that is quite large, and in total, 24 simulations are 

required to run it. Therefore a quantitative analysis of fire behaviour using a grid 

resolution of 5 mm for this large size of domain is beyond the scope of the study of 

this part due to the constraints of computational resources and time. Therefore 

qualitative simulations are carried out in this part of the study to compare the results 

of the effect of different factors on the suppression of fires using a grid size of 50 

mm to discretise the computational domain. In the studies by Dac [2014] and 

Moinuddin et al. [2011], 50 mm grid size has been found to give quantitative 

solutions for temperature and radiation flux when the HRR has been prescribed. 

6.2.2  Type and location of fuel load 

Timber cribs are used as fuel load in all of the simulations. The cribs are formed of 

pine timber sticks 950 mm ൈ 50 mm ൈ 50 mm in dimension. Two sticks are placed 

on the floor parallel to each other along the longitudinal axis (parallel to the width of 

the ISO room) at a distance of 85 cm from the inside edge. These two sticks are used 

as a support for the stacks and for ventilation under the crib. Then the timber sticks 

are placed on the support in nine layers to form the crib. The gap in between the two 

sticks in the crib is 50 mm. The crib size is 950 mm long ൈ 950 mm wide ൈ 450 mm 

high.  

The timber cribs are placed in three locations of the ISO room for three different 

cases, to investigate the effect on the location of the burning of fuel in the room. The 
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6.2.5  Orientation of nozzle, obstruction and fire load in the simulation 

The combination of the location of the wood crib, condition of the obstruction and 

number of nozzles has generated 18 cases for simulation. These 18 cases of 

simulation are divided into three cases based on the condition of the obstruction. 

They are – Case 1: no obstruction; Case 2: a horizontal obstruction; Case 3: a vertical 

obstruction. These three cases are again divided into two sub-cases based on the 

number of nozzles. They are – Case A: single nozzle; Case B: double nozzles. 

Finally, these two sub-cases are divided into three cases based on the location of the 

fire load. They are – Case a: adjacent to the open door; Case b: centre of the room; 

Case c: distant from the open door. The combinations of the three parameters are 

tabulated in Table 6.1, and for clarity, they are presented graphically in Table 6.2. 

The FDS representations of these cases are also presented in Tables 6.3 to 6.6. 

Table 6.1: Combination of the location of the fire, condition of obstruction and 

number of nozzles for different cases in the ISO room 

Types of 
obstruction 
(Case 1/2/3) 

Number of nozzles 
(Case A/B) 

Location of fire  
(Case a/b/c) 

Case 
number 

No obst. 
(Case 1) 

Single  
(Case A) 

Adjacent to open door (Case a) 1-A-a 

Centre of the room (Case b) 1-A-b 

Distant from open door (Case c) 1-A-c 

Double  
(Case B) 

Adjacent to open door (Case a) 1-B-a 

Centre of the room (Case b) 1-B-b 

Distant from open door (Case c) 1-B-c 

Horizontal 
(Case 2) 

Single  
(Case A) 

Adjacent to open door (Case a) 2-A-a 

Centre of the room (Case b) 2-A-b 

Distant from open door (Case c) 2-A-c 

Double  
(Case B) 

Adjacent to open door (Case a) 2-B-a 

Centre of the room (Case b) 2-B-b 

Distant from open door (Case c) 2-B-c 
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Vertical 
(Case 3) 

Single  
(Case A) 

Adjacent to open door (Case a) 3-A-a 

Centre of the room (Case b) 3-A-b 

Distant from open door (Case c) 3-A-c 

Double  
(Case B) 

Adjacent to open door (Case a) 3-B-a 

Centre of the room (Case b) 3-B-b 

Distant from open door (Case c) 3-B-c 
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Table 6.2: Graphical presentation of the combination of the location of the fire, type of obstruction and number of nozzles for different cases 

Type  
of 

obstruction

Single nozzle (Case A) Double nozzle (Case B) 

Adjacent to open door 
(Case a) 

Centre of the room 
(Case b) 

Distant from open 
door (Case c) 

Adjacent to open door 
(Case a) 

Centre of the room 
(Case b) 

Distant from open 
door (Case c) 
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Table 6.3: Location of nozzle, obstruction and fuel load for Case 1(A) 

Case 3D-view 2D-view 

Case 1(A-a) 

  

Case 1(A-b) 

  

Case 1(A-c) 

  

 

Table 6.4: Location of nozzle, obstruction and fuel load for Case 1(B) 

Case 3D-view 2D-view 

Case 1(B-a) 

  

Case 1(B-b) 

  

Case 1(B-c) 
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Table 6.5: Location of nozzle, obstruction and fuel load for Case 2(A) 

Case 3D-view 2D-view 

Case 2(A-a) 

   

Case 2(A-b) 

  

Case 2(A-c) 

  

 

Table 6.6: Location of nozzle, obstruction and fuel load for Case 2(B) 

Case 3D-view 2D-view 

Case 2(B-a) 

   

Case 2(B-b) 

  

Case 2(B-c) 
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6.2.6  Specification of the spray 

A single-orifice nozzle is used for the spray of water mist in the numerical 

simulation. The spray from the nozzle is specified by the input parameters of the 

flow rate of water, angle of spray, height of spray, median diameter of the droplet 

size and the velocity of the droplet. The values of the parameters for the spray are 

tabulated in Table 6.9.  

Table 6.9: Specification of the spray 

Input variables Values 

Flow rate, L/min 1.7 

Droplet diameter, μm 500* 

Spray pattern Solid 

Spray angle 45˚ 

Spray height,	m 2.3 

Droplet velocity,	m/s 10 

* Note: Used for the simulation of 18 cases listed in Table 6.1. 
 

6.2.7  Material properties of pinewood, ignition of the wood crib, and 

activation of the water-mist nozzle 

The kinetic parameters and other material properties of virgin pine and char used for 

the numerical simulation are listed in Table 6.10. The kinetic parameters of 

pinewood and char, the heat of reaction (HoR) and the heat of combustion (HoC) of 

pine are taken from the experimental measurement conducted in the Fire Dynamics 

Lab, CESARE, Victoria University by Abu-Bakar and Moinuddin [2015]. 

To promote ignition of the fuel, a burner is placed underneath the timber crib with a 

heat release rate per unit area (HRRPUA) of 100 kW/m2. Fire spread takes place 

from the burner to the wood crib in the simulation. To facilitate this a temporary 

arrangement is made for promoting additional heat back to the wood crib by placing 

obstructions around three sides of the fire and this is removed after fire spread has 
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occurred. As stated earlier, this part of the study is a qualitative comparison. 

Therefore the simulation time is counted from when the fire reaches a quasi-steady-

state level of HRR and is allowed to continue to burn for 100 seconds before 

activation of the water-mist spray. The water-mist nozzle is activated at 100 seconds 

and allowed to spray until the end of the simulation.  

Table 6.10: Material properties for the FDS input file 

Material Properties Value Units Sources 

Pinewood Emissivity 1  

Abu-Bakar 
and 

Moinuddin 
[2015] 

 Density 423 kg/m3 

 Heat of reaction 429.35 kJ/kg 

 Heat of combustion 11210 kJ/kg 

 Activation energy 78.41 kJ/mol 

 Pre-exponential 
factor 

6.1 x 104  

 Reaction order 0.56  

 Soot yield 0.006 kg/kg 

 CO yield 0.007 kg/kg 

 Conductivity 0.17 at T = 20oC W/m/K 
James 
[2014] 

 Specific heat 1.1 at T = 20oC 
2.3 at T = 50oC 
4.0 at T = 90oC 

kJ/kg/K 

     
Char Emissivity 1  

Abu-Bakar 
and 

Moinuddin 
[2015] 

 Specific heat 0.43 kJ/kg/K 

 Density 140 kg/m3 

 Conductivity 0.08 at T = 20oC 
0.25 at T = 900oC 

W/m/K 

     
Gypsum  Conductivity 0.158 W/m/K 

Incropera 
and DeWitt 

[1990] 

 Emissivity 0.6  

 Specific heat 1.09 kJ/kg/K 

 Density 800 kg/m3 

 Thickness 0.039 m 
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prediction of HRR, burning rates, temperatures of the burning surface and hot gases. 

Other than the 18 cases, six cases are also run to see the effect of size of the droplets 

on the suppression of fires by sprays. 

6.3.1  Effect of obstructions 

6.3.1.1 Heat release rate 

The effect of obstructions on HRR and the suppression of fires have been analysed 

and compared. The results are presented in Figure 6.7, and the suppression times of 

the fires after activation of the water spray for different cases are tabulated in Table 

6.11. 

It is observed in Figures 6.7 (b) and (e) that the fires that are at the centre of the room 

and obstructed by a horizontal barrier take a longer time to be suppressed by the 

spray compared to the unobstructed and vertically obstructed fires. The fire that is 

located at the centre of the room and horizontally obstructed (Figure 6.7 (b)) is 

suppressed at 400 seconds by the water-mist spray; whereas unobstructed and 

vertically obstructed fires are suppressed at 175 and 150 seconds, respectively, by the 

water-mist spray. The reason is that as the fire is directly underneath the nozzle and 

the spray is completely separated from the fire by the obstruction, the water droplet 

cannot reach the fire. However the horizontally obstructed fires that are not directly 

underneath the water-mist nozzle (Figure 6.7 (a, c, d and e)) are suppressed in an 

earlier time compared to the fires that are directly underneath the nozzle (Figure 6.7 

(b) and (e)) as a part of the spray can reach the fires. In the case of a vertical 

obstruction located adjacent to and distant from the open door (Figure 6.7 (a, c, d and 

f)), the fires take a little longer to be suppressed compared to that of the unobstructed 

fires. However, as might be expected, in all of the cases the unobstructed fires are 

quickly suppressed, and to a greater extent, compared to the horizontally and 

vertically obstructed fires.  
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Table 6.11: Combination of parameters for the comparison of HRR with respect to 

the type of obstruction and time of suppression of fires with respect to 65% of HRR 

Location of fire 

(Case a/b/c) 

Number of 
nozzles  

(Case A/B) 

Types of 
obstruction  

(Case 1/2/3) 

Case 
number 

Time of 
suppression 

(second) 

Adjacent to 
door 

(Case a) 

Single  
(Case A) 

No obst. (Case 1) a-A-1 200 

Horizontal (Case 2) b-A-2 275 

Vertical (Case 3) c-A-3 285 

Double  
(Case B) 

No obst. (Case 1) a-B-1 160 

Horizontal (Case 2) b-B-2 260 

Vertical (Case 3) c-B-3 210 

Centre of room 
(Case b) 

Single  
(Case A) 

No obst. (Case 1) a-A-1 175 

Horizontal (Case 2) b-A-2 400 

Vertical (Case 3) c-A-3 150 

Double  
(Case B) 

No obst. (Case 1) a-B-1 160 

Horizontal (Case 2) b-B-2 360 

Vertical (Case 3) c-B-2 150 

Distant from 
door 

(Case c) 

Single  
(Case A) 

No obst. (Case 1) a-A-1 140 

Horizontal (Case 2) b-A-1 200 

Vertical (Case 3) c-A-3 240 

Double  
(Case B) 

No obst. (Case 1) a-B-1 140 

Horizontal (Case 2) b-B-2 275 

Vertical (Case 3) c-B-3 220 

6.3.1.2 Competing mechanisms for fire suppression 

Reduction of temperature of burning surface and hot gases 

Fires produced by solid fuels require pyrolysis for the ignition and combustion of 

fuel. Therefore reduction of the temperature of the burning surface by spray plays a 

major role in arresting the pyrolysis of the fuels and consequently suppresses the 

fires. Reduction of the temperature of hot gases is also important in suppressing fires. 

Water droplets, sprayed from a nozzle, absorb heat from hot gases and flames, and 

result in reduction of the temperature of the surrounding air and flames. Therefore it 

reduces the HRRs from the fires and consequently suppresses them. 
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In this section, the effect of obstruction on the reduction of temperature of the 

burning surface and hot gases by water spray is analysed and the results are 

presented in Figures 6.8 and 6.9. Here, the comparison is conducted for two positions 

of fire – at the centre of the room and at a distance from the open door – and the 

spray is from a single nozzle. These two positions of fire are related to Figures 6.7 

(b) and (c), respectively. The location of the estimation of temperatures is shown in 

Figure 6.6. The results indicate that the spray is not able to reduce the temperatures 

of the burning surface and hot gases for two situations. They are, when the fire is (i) 

horizontally obstructed and located at the centre of the room as shown in Figure 6.8 

(a) and (d); and (ii) vertically obstructed and located at a distance from the open door 

as shown in Figure 6.9 (a) and (d). In both cases, the fires are obscured from the 

spray by the obstructions. As a result, the water droplets cannot reach the fires and 

firebases. However, in other cases, the temperatures of the burning surface and hot 

gases are substantially reduced by the spray. 

Reduction of concentration of oxygen and rate of radiation 

The reduction of the concentration of oxygen and the attenuation of thermal radiation 

also play a significant role in suppressing a fire. As a minimum amount of oxygen is 

required to support the combustion of a fire, the reduction of concentration of oxygen 

below this limit will accelerate the suppression of a fire. According to Drysdale 

[2011], the critical oxygen limit for charring solid fuel is 7%. Similarly, the 

attenuation of thermal radiation also contributes to the suppression of a fire. The 

water droplets absorb radiant heat from the flame and block the radiation feedback to 

the fire from hot boundaries. 

In this section, the effect of obstruction on the concentration of oxygen and 

irradiance to the wood surface are analysed and the results are presented in Figures 

6.8 and 6.9. The concentration of oxygen is predicted at 5 cm above the wood 

surface and the irradiance is predicted on the top surface of the crib, as shown in 
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Figure 6.6. Here, comparison is made for the same cases as mentioned in the 

previous section. The concentrations of oxygen are quickly reduced before activation 

of the spray due to consumption by the growing fire. As presented in Figures 6.8 (b) 

and 6.9 (b), the level of concentration of oxygen is lowered to half the natural 

concentration before activation of the spray. However, after activation of the spray, 

this concentration is increased for unobstructed and vertically obstructed fires 

because at these conditions, the consumption of oxygen is reduced due to the 

suppression of fires. 

In the case of the horizontally obstructed fire that is located at the centre of the room 

(Figure 6.8 (b) and (e)), rather than increasing, the concentration of oxygen remained 

unchanged. The same phenomenon is observed with little increase in the 

concentration for vertically obstructed fire located at a distance from the open door 

(6.9 (b) and (e)). This is because for horizontally obstructed conditions, as water 

droplets fall over the obstruction, they make vertical curtains around the fire, and for 

the vertically obstructed condition, as the obstruction is located in between the fire 

and the open door, it hinders the flow of oxygen to the fire source. In the case of 

radiation feedback to the fuel surface, it is also lowest for the horizontally obstructed 

condition of fire located at the centre of the room as can be seen in Figure 6.8 (c) and 

(f). 

Therefore, from this analysis, it is concluded that the cooling of hot gases and 

burning surfaces by the water droplets of a spray play a major role in suppressing 

unobstructed fires. Whereas the blocking of air entrainment and attenuating radiation 

feedback to the fuel surface caused by the spray play a major role in suppressing 

horizontally obstructed fires with the condition that the fire is directly underneath the 

nozzle. 
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6.3.2  Effect of location of fires 

The location of a fire in a room has an effect on the burning rates of fires and, 

consequently, on the suppression of the fire by spray. When a fire is located closer to 

an opening or ventilation, it gets higher access to the air supply. As a result, it may 

cause a higher burning rate of the fuel, and subsequently, a spray might take a longer 

time to suppress the fire. On the other hand, if the fire is located in a position away 

from the open door, it may have less access to the air supply. As a result, it may 

cause a lower burning rate of the fuel, and subsequently, the spray might take a 

shorter time to suppress the fire. However, if the fire is obstructed, it is obscured 

from the spray and might take a longer time to be suppressed. Furthermore, the 

obstruction may enhance the radiation feedback to the fuel surface, which can 

increase the burning rate of the fuel. Therefore the combination of location of a fire 

and condition of obstruction might either enhance the burning rate of fuel and create 

a difficult situation for the spray in suppressing the fire, or it might reduce the 

burning rate of fuel and make it easier for the spray to suppress the fire.  

The objective of this section is to investigate the effect of the location of fire in an 

ISO room on its suppression by a spray of water mist. HRRs, the temperatures of 

burning surfaces and hot gases are estimated in the simulations and compared with 

each other with respect to location of the fires. The combinations of 18 cases for the 

comparison of HRR with respect to the location of fires are presented in Table 6.12. 

6.3.2.1 Heat release rate 

The effect of the location of fire on HRR is analysed and compared in this section. 

The locations are: adjacent to the open door (ventilation); at the centre of the room; 

and at a distance from the open door (ventilation). The results and comparisons are 

presented in Figure 6.10. 
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The results indicate that, for unobstructed conditions and spray from the single 

nozzle (Figure 6.10 (a)), the spray is most effective when the fire is directly 

underneath the nozzle. The same phenomena are also observed for vertically 

obstructed fire and spray from the single nozzle as presented in Figure 6.10 (c). 

Notably, the opposite phenomenon is observed in Figure 6.10 (b) and (e) for 

horizontally obstructed fires. In these cases, the spray is least effective when the fire 

is directly underneath the nozzle. It is observed in Figure 6.10 (b) that the fire located 

at the centre of the room is suppressed at 400 seconds by the spray, whereas the fires 

located adjacent to and at a distance from the open door, are suppressed at 275 and 

200 seconds, respectively, by the spray. In the case of fire that is horizontally 

obstructed and located directly underneath the nozzle, it is totally separated from the 

spray. In other cases, part of the spray can reach the burning surfaces of fires. It is 

observed in Figure 6.10 (c) and (f) that for the vertically obstructed condition, the 

spray is least effective, as the obstruction has obscured the spray from the fires. In 

this condition, as the fire is located adjacent to the boundary walls of the room, the 

solid fuel receives more radiation feedback. As a result, this enhances the burning of 

the fuel and consequently the spray takes a longer time to suppress the fire. The 

suppression times of fires after the activation of water spray for different cases are 

tabulated in Table 6.12. 
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Table 6.12: Combination of parameters for the comparison of HRR with respect to 

the location of fires 

Types of 
obstruction 

(Case 1/2/3) 

Number of 
nozzles 

(Case A/B) 

Location of fire 

(Case a/b/c) 
Case 

number 

Time of 
suppression after 

activation of spray 
(second) 

No obst. 
(Case 1) 

Single  
(Case A) 

Adjacent to door (Case a) 1-A-a 200 

Centre of room (Case b) 1-A-b 175 

Distant from door (Case c) 1-A-c 140 

Double  
(Case B) 

Adjacent to door (Case a) 1-B-a 160 

Centre of room (Case b) 1-B-b 160 

Distant from door (Case c) 1-B-c 140 

Horizontal 
(Case 2) 

Single  
(Case A) 

Adjacent to door (Case a) 2-A-a 275 

Centre of room (Case b) 2-A-b 400 

Distant from door (Case c) 2-A-c 200 

Double  
(Case B) 

Adjacent to door (Case a) 2-B-a 260 

Centre of room (Case b) 2-B-b 360 

Distant from door (Case c) 2-B-c 275 

Vertical 
(Case 3) 

Single  
(Case A) 

Adjacent to door (Case a) 3-A-a 285 

Centre of room (Case b) 3-A-b 150 

Distant from door (Case c) 3-A-c 240 

Double  
(Case B) 

Adjacent to door (Case a) 3-B-a 210 

Centre of room (Case b) 3-B-b 150 

Distant from door (Case c) 3-B-c 220 

 

6.3.2.2 Competing mechanisms for fire suppression 

Reduction of temperatures of burning surface and hot gases 

In this section, the effect of location of a fire on the reduction of temperatures of 

burning surfaces and hot gases by a spray are analysed and the results are presented 

in Figures 6.11 (a) and (d), and 6.12 (a) and (d). Here, the comparison has been made 

for no obstructed and vertically obstructed condition of fires and the spray is from a 

single nozzle. These two cases are related to Figures 6.10 (a) and (c), respectively. 
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Figures 6.11 (d) and 6.12 (d) indicate that when the fire is located in proximity to the 

open door (ventilation) for both conditions of obstruction, the temperatures of the 

burning surfaces are not reduced; rather they increased. In this case, as the fire is 

distant from the water spray, only part of the spray can reach the burning surface. 

Moreover, as the fires are located near the ventilation, they get a supply of fresh air 

from the open door. As a result, although HRR is lowered by the spray, there is still 

burning on the surfaces of the wood crib. However, in other cases, except for the fire 

vertically obstructed and located at a distance from the open door (Figure 6.12 (d)), 

the temperatures of the burning surface and hot gases are substantially reduced by the 

spray. 

Reduction of the concentration of oxygen and rate of radiation 

The results of the concentration of oxygen are presented in Figures 6.11 (b) and (e), 

and 6.12 (b) and (e). The results show that the concentration of oxygen is increased 

at the time of suppression for all locations of fires except for the fire vertically 

obstructed and located adjacent to the open door. This is because before activation of 

the spray, the concentration of oxygen is reduced due to its consumption by the 

growing fire, and after activation of the spray the fire begins to be suppressed, 

resulting in less consumption of oxygen by the fire itself.  

The results of irradiance to the burning surface are presented in Figures 6.11 (c) and 

(f), and 6.12 (c) and (f). The results show that irradiance is lowered after activation 

of the spray for the location of the fire at a distance from the open door and 

unobstructed; however, in the other two cases, it is increased after activation of the 

spray. In the case of the vertically obstructed condition, the spray is most effective 

for the fire that is located at a distance from the open door as shown in Figure 6.12 

(f). In this case, the irradiance to the fuel surface increased little compared to the 

other two locations of fire. 
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Therefore, from the above analysis, it can be concluded that reduction of 

temperatures of burning surfaces and hot gases plays a major role in the suppression 

of fires when they are located away from ventilation. Reduction of the concentration 

of oxygen and radiation feedback also has an effect on suppressing fires when they 

are away from ventilation, as the spray does not allow for an increase for this 

location of fire.  

6.3.3  Effect of number of nozzles 

The effect of a number of nozzles on the reduction of HRR is analysed and compared 

in this section. Single and double nozzles are used for the suppression of fires. The 

positions of the single and double nozzles in the ISO room are shown in Figures 6.3 

and 6.4. The influence of the nozzles are investigated for the three locations of fires 

and three conditions of obstruction; the three locations of fires are (i) adjacent to the 

open door; (ii) centre of the room; and (iii) distant from the open door; and three 

conditions of obstructions are (i) no obstruction; (ii) a horizontal obstruction; and 

(iii) a vertical obstruction. The combination of these parameters is tabulated in Table 

6.13.  

6.3.3.1 Heat release rate 

In the simulations, the HRRs of fires are calculated and compared with respect to the 

number of nozzles. The results are presented in Figure 6.13. It is observed in Figure 

6.13 (b) and (h) that the spray produced by the single nozzle shows a slightly better 

performance in reducing the HRR compared to that of the double nozzles for both 

unobstructed and vertically obstructed fires that are located at the centre of the room. 

In these cases, when the wood crib is at the centre of the room, the fire is located 

directly underneath the spray. As a result, the spray has direct access to the fire. In 

other cases, the sprays from the double nozzles are found to produce a better 

performance in suppressing fires. In these cases, the two nozzles are located at two  
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sides of the room. As a result, when the wood crib is located adjacent to or distant 

from the open door of the room, one of the double nozzles is closer to the fire 

compared to the position of the single nozzle. 

Table 6.13: Combination of parameters for the comparison of HRR with respect to 

location of fires 

Types of 
obstruction  
(Case 1/2/3) 

Location of fire 
(Case a/b/c) 

Number of nozzles 
(Case A/B)  

Case 
number 

Time of 
suppression 

(second) 

No obst. 
(Case 1) 

Adjacent to door 
(Case a) 

Single (Case A) 1-a-A 200 

Double (Case B) 1-a-B 160 

Centre of room 
(Case b) 

Single (Case A) 1-b-A 175 

Double (Case B) 1-b-B 160 

Distant from door 
(Case c) 

Single (Case A) 1-c-A 140 

Double (Case B) 1-c-B 140 

Horizontal 
(Case 2) 

Adjacent to door 
(Case a) 

Single (Case A) 2-a-A 275 

Double (Case B) 2-a-B 260 

Centre of room 
(Case b) 

Single (Case A) 2-b-A 400 

Double (Case B) 2-b-B 360 

Distant from door 
(Case c) 

Single (Case A) 2-c-A 200 

Double (Case B) 2-c-B 275 

Vertical 
(Case 3) 

Adjacent to door 
(Case a) 

Single (Case A) 3-a-A 285 

Double (Case B) 3-a-B 210 

Centre of room 
(Case b) 

Single (Case A) 3-b-A 150 

Double (Case B) 3-b-B 150 

Distant from door 
(Case c) 

Single (Case A) 3-c-A 240 

Double (Case B) 3-c-B 220 

 

6.3.3.2 Competing mechanisms for the suppression of fires 

The effect of the number of nozzles on the reduction of the temperature of hot 

surfaces and gases by water spray is analysed and the results are presented in Figures 

6.14 and 6.15. Here, the comparison is for two situations of fires (i) unobstructed and 
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located at the centre of the room; and (ii) vertically obstructed and located in 

proximity to the open door. These two situations are related to Figure 6.13 (b) and 

(g), respectively. The results in Figure 6.14 (a) and (d) indicate that the spray 

produced by the single nozzle shows a better performance in the reduction of gas and 

surface temperatures and the blocking of radiation feedback to the burning surface 

for the first situation of fire. The surface and gas temperatures are reduced by about 

28% and 22%, respectively, for the spray produced by the single nozzle, whereas this 

reduction is only 8% and 14%, respectively, for the sprays produced by the double 

nozzles. However as shown in Figure 6.14 (b) and (e), the sprays produced by the 

single and double nozzles do have an indifferent effect on the concentration of 

oxygen in this situation. In the case of the second situation of Figure 6.15 (a) and (d), 

the sprays produced by the double nozzles show a better performance in the 

reduction of gas and surface temperatures. The sprays produced by the double 

nozzles have reduced the surface and gas temperatures about 25% and 20%, 

respectively; whereas, the spray produced by the single nozzle could not reduce these 

temperatures, rather they are increased by about 13% and 2%, respectively. However 

the sprays from the single and double nozzles cannot reduce the concentration of 

oxygen and irradiance to the burning surfaces. 

Therefore, for the above analysis, it can be concluded that when a fire is located 

directly underneath a nozzle, then the spray shows a better performance in reducing 

the temperatures of hot gases and burning surfaces. The spray for a single nozzle also 

shows a better performance in restricting radiation feedback to the fuel surface for 

the fire located directly underneath the spray. 
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6.3.4  Effect of size of droplets 

The size of the water droplets has an effect on the suppression of a fire. Droplets with 

a larger diameter have a higher capability of penetrating the fire plume and reaching 

the burning surface and consequently suppressing fires by wetting and cooling the 

hot surface of the solid fuel. In contrast, droplets with a smaller diameter have a 

higher surface area to volume ratio and this can enhance the evaporation rate via 

convection and radiation of heat from the flame, hot air and boundaries. The finer the 

water droplet the greater the surface area to volume ratio and the higher the 

evaporation rate of water. This results in the rapid cooling of hot gases and dilution 

of oxygen. The surface areas to volume ratios for the three sizes are presented in 

Table 6.14. However droplets with a smaller diameter are lower in weight and as a 

result they are less capable of penetrating the fire plume and reaching the fuel base 

that might be crucial in suppressing fires. 

Table 6.14: The surface area to volume ratio for different sizes of droplets 

Droplet 
size (μm) 

Surface area of 
each droplet 

(mm2) 

Volume of 
one droplet 

(mm3) 

Surface area 
to volume 

ratio 

Total surface area 
for 1 m3 of water 

spray (m2) 

2500 19.63 8.18 2.4 2400 

500 0.7855 0.0655 12 12000 

100 0.03142 0.000524 60 60000 

 

One of the aims of this study is to investigate the effect of the size of the droplets in 

reducing the HRRs from fires, cooling of the burning surface, concentration of water 

vapour and oxygen near the fire plume. Three sizes of droplets over a wide range are 

selected for the study, namely 100 μm, 500 μm and 2500 μm. One hundred μm 

represents a very fine mist, 500 μm represents a fine mist and 2500 μm represents a 

coarse water spray. The effect of droplet size is also investigated for two conditions 

of obstructions: no obstruction and horizontal obstruction. The location of the fires in 
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all cases is at the centre of the room. The temperatures of the hot gases are measured 

at 5 cm above the wood crib that is denoted by point A, as shown in Figure 6.6. The 

combination of obstruction and size of the droplets are presented in Table 6.15. 

Table 6.15: Combination of parameters for the analysis of the effect of the size of 

droplets 

Condition of obstruction 
(Case 1/2) 

Number of nozzles 
(Case A) 

Location of fire 
Size of droplet 

(μm) 

No obstruction 
(Case 1) 

Single  
(Case A) 

Centre of room 
(Case b) 

100 

500 

2500 

Horizontal 
(Case 2) 

Single  
(Case A) 

Centre of room 
(Case b) 

100 

500 

2500 
 

6.3.4.1 Heat release rate  

The effect of the size of droplets on HRR of a fire are investigated and presented in 

Figure 6.16. In Figure 6.16 (a) it is observed that when the fire is unobstructed, the 

suppression of fire is more affected by the larger droplets. Droplets with larger 

diameters suppress the fires at an earlier time compared to droplets with smaller 

diameters. In this case, the droplets with a diameter of 2500 μm suppress the fire at 

130 seconds, whereas droplets with a diameter of 100 and 500 μm suppress the fire at 

300 and 185 seconds. However, as shown in Figure 6.16 (b), the droplet sizes have 

less effect on the suppression of fires when they are horizontally obstructed. In this 

case, fires are suppressed between 400 to 500 seconds for all size of droplets. 

As discussed in section 6.3.1.2, the fundamental of this behaviour remains in the 

burning process and the suppression mechanism of fires produced by solid fuels. 

Solid fuels require pyrolysis for the ignition and combustion of the fuels; as a result, 

the wetting and cooling of burning surfaces by a water spray play a major role in 
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6.3.4.2 Competing mechanisms for the suppression of fires 

The performance of larger droplets is also observed when the temperatures of the 

burning surface and hot gases are estimated before and after activation of the water 

spray for the unobstructed condition of the fire. The results are presented in Figure 

6.17. In Figure 6.17 (a) and (d) it is observed that the temperature of the burning 

surface and hot gases is reduced to a greater extent at the time of the suppression by 

droplets of 2500 μm in diameter.  

The reason for this phenomenon underlies the same mechanism described in the 

previous section. The larger the droplet sizes, the higher the momentum, and this 

results in a higher capacity to penetrate the fire plume. Moreover a larger volume of 

droplets enables them to reach the depth of the fire before they are completely 

evaporated by the high temperature of the fire plume and hot gases. However in the 

case of the reduction in concentration of oxygen and irradiance to the burning 

surfaces, as shown in Figures 6.17 (b and e) and 6.17 (c and f), respectively, 100 μm 

shows a better performance compared to the other two sizes of droplets. 

6.4 Conclusions 

The results of the parametric study are presented where the effect of different factors 

on the suppression of fires by water-mist sprays are discussed. The factors are the 

condition of obstruction, location of fire, number of nozzles, and size of droplets. 

The performance of the water-mist spray on the reduction of HRR of fires, 

temperature of the burning surfaces and hot gases, concentration of oxygen, and 

irradiance to the burning surface for different parametric conditions of fires are 

investigated. The results are summarised here. 
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Effect of obstruction: 

(i) The fires that are directly obscured by a horizontal obstruction take a longer 

time to be suppressed by the water spray. The reason is that the water 

droplets cannot reach the burning surface and fire due to the obstruction. 

However, as expected, in all of the cases the unobstructed fires are 

suppressed quickly and more completely compared to the horizontally and 

vertically obstructed fires. 

(ii) In the case of the reduction of the temperature of hot gases and a burning 

surface, the spray is effective for unobstructed and vertically obstructed 

fires; whereas the spray is found not to be effective for horizontally 

obstructed fires. This is because as the fire is obscured from the spray by the 

horizontal obstruction, the water droplets cannot reach the fire and firebase 

and result in the spray not being able to reduce the temperature of the 

burning surface and hot gases. 

(iii) In the case of a reduction in the concentration of oxygen and radiation 

feedback to the fuel surface, the spray is effective for horizontally 

obstructed fires, as the droplets have generated vertical curtains around the 

fire when they fall over the obstruction. 

 
Effect of location of fire: 

(i) The spray is most effective when the fire is directly beneath the nozzle 

(location of the fire is at the centre of the room) for unobstructed fires. 

Interestingly, the opposite phenomenon is observed for this location if the 

fire is horizontally obstructed. However, for the location distant from the 

open door, the spray is least effective for vertically obstructed fires. In this 

case, the solid fuel receives more radiation feedback from the surrounding 
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boundary walls. As a result, it enhances the burning of the crib and delays 

the suppression of fire by the water-mist spray. 

(ii) The spray cannot reduce the temperatures of burning surfaces and hot gases 

for the fire located in proximity to the open door (ventilation); rather they 

are increased. However, for the other two locations of fires, the 

temperatures of the burning surface and hot gases are substantially reduced 

by the spray at the time of suppression of the fires. 

(iii) In the case of irradiance to the burning surface, it is reduced after activation 

of the spray for the fire located distant from the open door; however, in the 

other two cases it is increased after activation of the spray. 

Effect of the number of nozzles: 

(i) The spray produced by the single nozzle shows a slightly better performance 

in suppressing fires that are located at the centre of the room, and for both 

unobstructed and vertically obstructed conditions. In other cases, the sprays 

from the double nozzles are more effective in suppressing fires. However, 

when the fire is obscured from the spray by horizontal obstruction, the 

performance of sprays produced by the single and double nozzles does not 

differ much in the reduction of HRR for all locations of fires in the room. 

(ii) In the case of the reduction of gas and surface temperature and obnubilating 

the radiation feedback to the burning surface, the spray produced by the 

single nozzle also shows a better performance for the unobstructed 

condition of fire. 
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Effect of size of droplets: 

(i) The droplets that are larger in size show better performance in the 

suppression of unobstructed fires; however, little effect of the variation of 

sizes is found on the suppression of horizontally obstructed fires. 

(ii) The spray with larger droplets reduced the temperatures of the burning 

surface and hot gases to a greater extent at the time of suppression. 

However, smaller droplets show better performance in reducing the 

concentration of oxygen and irradiance to burning surfaces. 
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Chapter	7 	
Summary	and	conclusions	

An integrated research program comprising the development of a semi-empirical 

model of the evaporation of water droplets, an experimental study to validate FDS, a 

state-of-the-art CFD based model, validation of FDS in predicting the growth of fire 

and suppressing it by water-mist spray and, finally, a parametric study of the effect 

of different factors on the suppression of fires has been carried out. The overarching 

objective is to determine the efficacy of water mists in suppressing fires. 

The semi-empirical model development is aimed at developing a detailed 

understanding of the science of droplet evaporation. Against this semi-empirical 

model, FDS is validated in terms of single droplet evaporation. Experiments have 

been conducted to obtain a set of benchmarked results for validation of the numerical 

modelling of the distribution of flux densities of water-mist sprays. Validation of 

FDS in relation to the evaporation of a single droplet and the behaviour of water-mist 

sprays has been carried out in four stages: 

 The rates of evaporation of a single droplet predicted by FDS are compared 

with those produced by this semi-empirical model.  

 Distributions of flux densities of water-mist sprays predicted by FDS have 

been compared with benchmark experiments conducted in this study.  

 The predicted rates of pyrolysis and the combustion of a solid fuel (PMMA) 

have been compared with a set of literature data.  
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 The pyrolysis and combustion of PMMA fire combined with water-mist 

suppression have been validated against a set of literature data. 

The semi-empirical model developed in this study can also be used to evaluate the 

performance of the different size of droplets at different air condition and to find an 

appropriate median size of droplets in a particular scenario. The experimental data on 

distribution of flux densities can be used to validate any other CFD based model in 

simulating sprays. As the overarching objective is to investigate the capability of a 

CFD based model in simulating the suppression of fires using water mists, this study 

has identified the ability of FDS in simulating this.  

The validation study has led to a parametric study using FDS. However, due to the 

enormous computational requirement, this part is qualitative rather than quantitative. 

The results of this research are discussed below. 

7.1  Development of a semi-empirical model for evaporation 

of water droplets  

7.1.1  Model development and validation 

The behaviour of individual water droplets in the hot air induced by a fire is 

examined using the ‘semi-empirical water droplet evaporation model’ developed in 

this study. The proposed model is validated against experimental and analytical data 

and the performance of FDS is evaluated and validated against the proposed model 

developed in this study. The analysis and FDS are found to be in close agreement 

when predicting the behaviour of droplets in hot air. The terminal velocities of 

droplets of different sizes are calculated using the proposed model and FDS. It is 

observed that estimated values by FDS are very close to the calculated results of the 

proposed model within a variation less than 8%. The proposed model and FDS are 

also used to calculate the saturation temperature of droplets at a different temperature 
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to the surrounding air. The FDS prediction does not differ by more than 10% of the 

calculated values of the proposed model.  

7.1.2  Evaluation of the characteristics of the different sizes of droplets 

The proposed ‘water droplet evaporation model’ is also used to evaluate the 

characteristics of the different sizes of droplets in a layer of hot air i.e. whether a 

particular size of droplet is suitable for the cooling of hot gas by heat extraction or 

whether it is suitable for the wetting and cooling of the fuel surface by reaching there 

before complete evaporation. The results show: 

(i)  The smaller droplets have a higher rate of evaporation and longer suspension 

time in the air, which enables them to extract heat more effectively from the 

hot gases; whereas the larger droplets have a higher terminal velocity, which 

results in a higher penetration capability through the hot air and enables them 

to reach the burning surfaces.  

(ii) The effect of the high mass transfer rate on the evaporation of a droplet is 

insignificant for droplets when the temperature of the air is in the range 0–

100Ԩ. 

7.2  Spray distribution – a benchmark experiment and 

validation of FDS 

A set of experiments is conducted using a single and multi-orifice water-mist nozzle 

and when the distribution of flux densities on a horizontal surface is measured. A set 

of numerical simulations is also conducted to mimic the experiment. The 

distributions of flux densities are also estimated in the simulation and compared with 

the experimental measurements. It is observed that the numerical results are in good 

agreement with the experimental data. The distribution of the sprays in both cases of 

the single and the multi-orifice nozzle are elliptical in shape. However the 
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eccentricities of the ellipses are less pronounced in the numerical model in both of 

the cases of the sprays. 

The distribution of the sprays is found to be influenced by the presence of a solid 

wall in the vicinity of the spray. The experimental and numerical results indicate that 

the flux distribution is closer to the wall than would otherwise be the case. However 

the effect of the boundary wall on the distribution of the spray in the numerical 

model is less pronounced compared to that of the experimental results. The overall 

results from FDS are in close agreement with a variation of less than 20% with the 

experimentally determined distribution produced by the spray nozzles.  

7.3  Validation of FDS for the burning of PMMA and the 

suppression of fires by water-mist spray 

7.3.1  Simulation of PMMA fire without the presence of a water-mist 

system 

The burning rates of PMMA fire are numerically simulated using FDS and the 

numerical results are compared with the published experimental data by Magee and 

Reitz [1974]. The FDS results of the steady state burning rates of the PMMA slab are 

in reasonable agreement with the experimental measurements, with a difference of 

not more than 23%. The orientation of the specimen (vertical or horizontal) has a 

profound effect on the burning rate and time required to be ignited and attain the 

steady state burning rate of the material. In this study, the vertically oriented slab 

exhibits higher burning rates and shorter times to reach the steady state burning rate 

compared to that of the horizontally oriented PMMA slab. 
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7.3.2  Simulation of PMMA fire with the presence of a water-mist 

system 

Validation of FDS in the scenarios involving the interaction of fire with a spray is 

conducted. The numerical results of the burning rate of the PMMA slab after 

activation of the water spray are in reasonable agreement with the experimental 

measurements of Magee and Reitz [1974]. The results show that FDS has predicted 

the burning rates of PMMA with an error not exceeding 15% of the experimental 

data. 

7.4  Parametric study using FDS to assess the efficacy of 

water-mist sprays 

FDS is used to qualitatively examine a range of parameters that affects the 

performance of the suppression of fires by water-mist spray. This study is based on a 

qualitative analysis as the quantitative analysis demands enormous computational 

resources and time. The parameters are the effect of the obstruction and location of 

the fire, number of nozzles and size of the droplets of a spray. Suppression of a fire is 

considered when it is lowered to the level of 65% of HRR of its quasi-steady-state by 

the spray [Zhao et al. 1998; AFAC 2004]. The outcomes of this study are 

summarised below: 

i) Obstruction: The spray is less effective in suppressing a horizontally obstructed 

fire. However unobstructed fires are suppressed in shorter times and to a greater 

extent than obstructed fires in all cases except for fires that are vertically 

obstructed and located directly underneath the spray. 

ii) Location: The spray is found to be most effective for unobstructed fires that are 

located directly underneath the nozzle. Notably, the opposite phenomenon is 

observed for horizontally obstructed fires. 
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iii) Number of nozzles: The spray produced by a single nozzle shows a marginally 

better performance in suppressing fires when it is unobstructed and directly 

underneath the nozzle. However the performance of a spray produced by the 

single and double nozzle does not differ much when the fire is obscured from 

the spray by a horizontal obstruction. In other cases, the sprays from double 

nozzles perform better. However in most cases the reduction of the suppression 

time by the sprays from double nozzles is negligible. 

iv) Size of the droplet: The larger size of droplets exhibited better performance in 

the suppression of fires with the condition that the fire is unobstructed. 

However, for the horizontally obstructed fire, the variation of the size of the 

droplets showed little effect on the time of suppression of the fires. 

The governing mechanisms of suppression of fires at different conditions have also 

been explored.  It is observed that the cooling of hot gases and burning surfaces by 

the water droplets of a spray play a major role in suppressing unobstructed fires. 

Whereas the blocking of air entrainment and attenuating radiation feedback to the 

fuel surface caused by the spray play a major role in suppressing horizontally 

obstructed fires with the condition that the fire is directly underneath the nozzle. 

7.5  Recommendations for future study  

During the course of this project a number of areas have been identified that are 

worthy of further research. They are: 

 the expansion of the droplet evaporation model 

 the experimental measurement of the median size of droplets 

 the further investigation on factors that affect the efficacy of water-mist 

sprays in suppressing fires. 
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7.5.1  Expanding the droplet evaporation model 

In the development of the model of evaporation of water droplets, a number of 

assumptions are applied to simplify the model. However a quantitative analysis of 

the effect of these assumptions may enhance performance of the model. One of the 

assumptions is that the interaction between droplets is considered negligible. 

However it is important to identify whether or not the sprays can be treated in terms 

of single droplet relationships; if not, it is required to quantify the effect of their 

interactions on the evaporation of droplets. Another assumption is that the 

temperature of the smoke layer is considered to be within a range of 0 to 100˚C. 

However this model can be expanded by considering the temperature of hot gases 

beyond 100˚C. Finally, direct experimental data on the evaporation of water droplets 

in a smoke layer can be useful in examining the accuracy of the model. 

7.5.2  Experimental measurement of the median size of droplets 

A technique is proposed to determine the median size of droplets of a water spray. 

However no direct experimental data are presented to support the accuracy of the 

technique. Laser-based measuring techniques are available to measure the median 

size of droplets of a spray. Therefore direct measurement and comparison with the 

analytical data will increase the confidence of using this method for determining the 

median size of droplets. 

7.5.3  Further investigation on factors that affect the efficacy of water-

mist sprays in suppressing fires 

Experiments are required to examine the effect of a range of parameters, such as the 

obstruction and location of the fire, the number of nozzles, and size of droplets on the 

efficacy of the water-mist spray in the suppression of fires. Numerical simulations 

are required for the quantitative analysis of the effect of those parameters on the 

efficacy of the suppression of fires by water-mist spray. 
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Appendix	A		
Calculation	of	the	theoretical	adiabatic	
saturation	temperature	

The adiabatic saturation temperature is the temperature attained if the air were 

saturated by an adiabatic process, and the adiabatic process is the process in which 

air, having a relative humidity (RH) less than 100%, flows over water contained in a 

well-insulated duct. Since the air has RH < 100%, some of the water will evaporate 

and the temperature of the air-vapour mixture will decrease. If the channel is long 

enough, the airstream will exit as saturated air (100 per cent relative humidity) at the 

exit temperature. The temperature of the air leaving the system is known as the 

adiabatic saturation temperature. Figure A.1 represents the adiabatic process of the 

air-water system. 

The basic principle involved in the saturation temperature of an evaporating droplet 

is the same as the adiabatic saturation temperature of the air-water system. Due to the 

temperature difference between air and droplet, there is a form of heat transfer in 

between them. When a droplet travels through a hot air layer, it absorbs heat from the 

surrounding air and raises its temperature and reach to a level where the temperature 

of the droplet does not increase. The absorbed heat by the droplet is used for the 

evaporation of water particles from the droplet. The temperature of the droplet at this 

level is known as saturation temperature or steady state temperature. From the 

equation of enthalpy balance in the adiabatic process, the saturation temperature can 

be calculated. The expressions for the calculation of this temperature are given below 

[Thorpe 2001]: 
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݂ሺ 	ܶ௦ሻ 	ൌ 	1.003	ሺܶ	 െ	 	ܶ௦ሻ 	൅ 	ሺ2501.33	ݓ	 ൅ 	1.814 ∗ 	ܶ	 െ 	4.177 ∗ 	 	ܶ௦	ሻ
െ	ݓ	௦	ሺ2501.33	 െ 	2.363 ∗ 	 	ܶ௦ሻ																																											ሺA. 1ሻ 

 

 

Figure A.1: A schematic diagram of the adiabatic saturation process (after Çengel 

and Turner [2005]). 

The task is to find the value of 	ܶ௦ which makes ݂ሺ 	ܶ௦ሻ 	ൌ 	0. This can be solved by 

using the Newton-Raphson method. The details of this procedure are given by 

Thorpe [2001]. The solution algorithm is expressed as: 

	ܶ௦
	௣ାଵ 	ൌ 	 	ܶ௦

	௣ 	െ 	
݂൫ 	ܶ௦

	௣൯

݂݀൫ 	ܶ௦
	௣൯

݀ 	ܶ௦
	௣

																																																																															ሺܣ. 2ሻ 

݂݀ሺ 	ܶ௦ሻ
݀ 	ܶ௪

	ൌ 	െ	1.003	 െ 	4.177 ∗ 	ݓ	 െ 	2.363 ∗ ௦ݓ	 	

െ	
௦	ݓ݀
݀ 	ܶ௪

	ሺ2501.33	 െ 	2.363 ∗ 	 	ܶ௦ሻ																																				ሺܣ. 3ሻ 

ௗ௪ೞ

ௗ ೞ்
   can be determined for the following equations: 

௦ݓ݀
݀ ௦ܶ
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௦ݓ݀
݀ ௦ܲ

	
݀ ௦ܲ

݀ ௦ܶ
																																																																																														ሺܣ. 4ሻ 

௦ݓ݀
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where, ௦ݓ ൌ 	0.622	 ௦ܲ

	ܲ௔௧௠ െ ௦ܲ
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Appendix	B		
Scattering,	absorption	and	extinction	
of	radiation	by	water	mists	

B.1 Introduction 

Thermal radiation plays a significant role in propagating heat due to the high 

temperatures encountered in building or industrial fires. It is perhaps more important 

in naval ships, as ordnance in ships’ magazines must be shielded from radiation. 

According to experiments, about 30 per cent of the heat released by a fire is in the 

form of thermal radiation [Tewarson 2002; Liu et al. 2004]. The problem may be 

mitigated by wetting the surface of combustible material and ordnance. However 

blocking or attenuating the radiation also plays an important role in reducing the 

transmission of heat developed by a fire. Water-based fire suppression systems i.e. 

sprinklers and water mist, can reduce the propagation of heat from fire to unburnt 

fuel by blocking the thermal radiation. Water droplets attenuate radiation by 

absorbing and scattering radiation that is intercepted by the droplets. A schematic of 

the attenuation of the thermal radiation by a spray is presented in Figure B.1.  

However the attenuation of radiation by water droplets depends on the wavelength of 

the radiation, size of the water droplets and concentration of the water loading of the 

spray. Therefore a good understanding on the effect of those factors in attenuating 

thermal radiation is required to design an effective WMFSS. 
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Figure B.1. Conceptual diagram of the attenuation of thermal radiation by a water 

spray. 

Hence one of the object of this research is to investigate the characteristics of water 

mists in scattering and absorbing radiation and their performance in attenuating the 

thermal radiation. The effect of the concentration of water loading for the different 

sizes of droplets is also investigated. In this chapter, the scattering and absorption 

properties of water mists are analysed using the theory of Mie [1908]. Details of the 

theory of Mie [1908] and results of the analysis are presented. It is shown that the 

attenuation of radiation by water mists increases as the diameter of the droplets 

decrease, and as one might expect, attenuation increases with the loading of water. 

B.2 Theory of scattering 

The theory of scattering by spherical water particles of homogeneous composition 

involves the solution of Maxwell’s equations with appropriate boundary conditions 

on the sphere. Mie [1908] and Debye [1909] independently obtained an analytical 

solution of Maxwell’s equation for the scattering of light by spherical particles 

[Swamy 2010]. The relevant formulae, particularly the reference to the scattering and 

absorption by water droplets, are described below. 
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The scattering properties of a particles depend on the following quantities [Swamy 

2010]: 

1. The complex refractive index, ݉	 ൌ 	݊	 ൅ ݅݇, where ݊ is the real part and ݇ is 

the imaginary part  

2. The wavelength of the incident radiation (ߣ)  

3. The diameter of the particle (݀).  

When thermal radiation interacts with a particle, a fraction of the radiation is 

absorbed and a fraction of it is refracted or scattered, as illustrated in Figure B.2. 

Hence the total amount of radiation lost (extinction) from the incident beam is the 

summation of the absorbed and the scattered components. These are generally 

expressed in terms of the dimensionless efficiency factors ݍ	௦௖௔ and ݍ	௔௕௦ for the 

scattering and absorption components, respectively. The efficiency factor for the 

total extinction is given by: 

௘௫௧	ݍ 	ൌ ௦௖௔	ݍ	 	൅	ݍ	௔௕௦																																																															ሺB. 1ሻ 

 

 
 

 

 

 

Figure B.2: The scattering of incident radiation of wavelength, ߣ, by a water droplet. 

The extinction efficiency factor (ݍ	௘௫௧) and the scattering efficiency factor (ݍ	௦௖௔) can 

be computed using the theory of Mie [1908] i.e. 

௦௖௔	ݍ 	ൌ 	
2
ଶݔ
	 ෍ ሺ2݊	 ൅ 	1ሻ	ሾ|ܽ௡|ଶ 	൅	 |ܾ௡|ଶሿ
ஶ

௡	ୀ	ଵ

																								ሺB. 2ሻ 
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௘௫௧	ݍ 	ൌ 	
2
ଶݔ
	 ෍ ሺ2݊	 ൅ 	1ሻ	ሾܴ݁	ሺܽ௡ 	൅	ܾ௡ሻሿ																									ሺB. 3ሻ

ஶ

௡	ୀ	ଵ

 

where ܽ௡ and ܾ௡ are the coefficients of Mie and they are calculated using the 

following relations:  

ܽ	௡ 	ൌ 	
		൤
ሻݖ௡ሺ	ܣ
݉ 	൅	݊ݔ൨ 	 	߰௡	ሺݔሻ 	െ	߰	௡ିଵ	ሺݔሻ		

൤
ሻݖ௡ሺ	ܣ
݉ 	൅	݊ݔ൨	ζ	௡	ሺݔሻ െ	ߞ	௡ିଵ	ሺݔሻ

																						ሺB. 4ሻ 

Here, 	߰௡ and ζ 	
	௡

are the modified Bessel functions that are known as the Riccati-

Bessel functions and ܣ	௡ is the logarithmic derivative of 	߰௡. The other two variables 

 :are independent dimensionless variables and defined as ݖ and ݔ

	ݔ ൌ 	
݀	ߨ
ߣ
																																																																																									ሺB. 5ሻ 

	ݖ ൌ .ሺB																																																																																							ݔ	݉	 6ሻ 

where ݀ = diameter of the scattering water droplets, ߣ = wavelength of incident 

radiation and ݉ is the complex refractive index of the water droplets relative to the 

medium.  

݉	 ൌ 	݊	 ൅ 	݅݇																																																																															ሺB. 7ሻ 

where ݊ and k are, respectively, the real and imaginary parts of the refractive index 

relative to the medium. The real part accounts for the refractive component of the 

index and the imaginary part accounts for the absorptive component of the index.  

The extinction efficiency factor (ݍ	௘௫௧) is used to determine a monochromatic 

transmissivity (߬	ఒ) of water droplets. The correlation of transmissivity is expressed 

as: 
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߬	ఒ 	ൌ 	݌ݔܧ	 ൤	
	ܮ	ܹ	௘௫௧ݍ	6	

ߩ	݀	4
	൨																																																							ሺB. 8ሻ 

in which ܹ is the concentration of droplets, kg/m3, ݀ is the diameter of the droplet 

and ܮ is the travel path of the radiative wavelength. The monochromatic radiation 

intensity of a wavelength (ܫ	ఒሻ	can be calculated using Planck’s spectral distribution 

of emissive power [Siegel and Howell 1992]. 

ఒ	ܫ 	ൌ 	
ହି	ߣ		ଵܥ

		݁
஼మ

ఒ்ൗ 	െ 	1		
																																																																			ሺB. 9ሻ 

where ߣ is the wavelength of the incident radiation in μm, T is the temperature of the 

radiative body in K, and ܥଵ and ܥଶ is the constant in Planck’s distribution of spectral 

intensity. The total intensity of radiation can be calculated by integrating the 

radiation for all wavelengths. 

ஶ	ି	଴	ܫ 	ൌ 	න ఒ	ܫ
ஶ

଴
.ሺB																																																																							ߣ݀	 10ሻ 

The integration of ܫ	ఒ for all wavelengths yields the radiation equation: 

	ܳோ 	ൌ 	න ఒ	ܫ
ஶ

଴
	ߣ݀	 ൌ .ሺB																																																											ସܶ	ߪ	 11ሻ	 

However the intensity in an interval of wavelengths can be calculated by integrating 

across the corresponding interval of wavelengths: 

	ܳఒభ	ି	ఒమ 	ൌ ఒమ	ି	ఒభ	ܫ	 	ൌ 	න ఒܫ
	ఒ	మ

	ఒ	భ

.ሺB																																													ߣ݀	 12ሻ 

The amount of radiation transmitted through the medium due to water loading can be 

calculated by the following equation: 
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Study of water-mist behaviour in hot air induced by a room fire: 
Model development, validation and verification 

H. M. Iqbal Mahmud*,†, Khalid A.M. Moinuddin and Graham R. Thorpe 
Centre for Environmental Safety and Risk Engineering, Victoria University P.O. Box 14428, Melbourne, Victoria 8001, Australia 

SUMMARY 

Water-mists are emerging as an effective agent for the suppression of fires. However, the mechanisms of 
suppression are complex and the behaviour of individual water droplets in a smoke layer generated by fires 
must be quantified. This study investigates the behaviour of individual droplets injected from a nozzle into a 
hot air environment induced by a room fire. A semi-empirical model has been developed based on the 
conservation of mass, momentum and energy to evaluate the heat and mass transfer phenomena in an air-water 
droplet system. The model has considered the effect of change of momentum of an evaporating droplet. A 
forward finite difference approach is applied to solve the governing time dependent ordinary differential 
equations. The droplets are considered to be ‘lumped mass’ and variable thermo-physical properties of water 
and air and the change of Reynolds number of the droplets, due to the change of their diameter and velocity are 
considered. The effect of high evaporation rate on the mass and heat transfer coefficient and the contribution of 
radiation emanating by a flame and the surrounding boundary walls are also considered in the model which 
were not taken into account in the previous studies. Experimental data on terminal velocity and adiabatic 
saturation temperature are used to validate and verify the model. The validation and verification indicate that 
the proposed model predicted the terminal velocity within 4% of the experimental data and predicted the 
saturation temperature within 5% of the adiabatic saturation temperature. This semi-empirical model is also 
used as a tool to validate a more comprehensive computational fluid dynamics (CFD) based tool, Fire 
Dynamics Simulator (FDS). It is found that FDS results agree well with the results of the proposed model. 
Furthermore, the proposed model can be used to evaluate the temperature, velocity, diameter and other physical 
properties of a droplet travelling through a layer of hot air. Copyright © 2014 John Wiley & Sons, Ltd. 
 
Received 16 September 2013; Revised 19 September 2014; Accepted 30 September 2014 

KEY WORDS:  water-mist; fire suppression; heat and mass transfer; droplet evaporation; fire dynamic 
simulator (FDS) 

1. INTRODUCTION  

Water-mist fire suppression systems (WMFSS) are being installed in a wide range of situations. If we are 
to design and deploy WMFSS effectively, we must have a deep understanding of the physics of their 
operation. The performance of WMFSS depends on many interacting factors, such as the mass flow rate 
of water, and the diameters, velocities and spatial distributions of the droplets. The droplets have the 
potential to cool the surrounding air, attenuate thermal radiation and the water vapour produced by 
evaporation reduce the fuel vapour/air ratio by displacing oxygen [1-8]. Not all droplets evaporate before 
striking burning surfaces, and this provides a direct method of suppressing fires [2-3, 6-7, 9-10]. 

A distinguishing feature of water--mist nozzles is that they produce fine mists consisting of droplets 
with diameters  of  less than  1000 µm. The fine mists  display fog-like behaviour  that renders their fire 

 
*Correspondence to: H. M. Iqbal Mahmud, Centre for Environmental Safety and Risk Engineering, Victoria University, 
P.O. Box 14428, Melbourne, Vic. 8001, Australia. 
†E-mail: hm.mahmud@live.vu.edu.au 
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suppression characteristics quite different from conventional water sprays. Studies of the interaction of
conventional sprinkler sprays with hot air or smoke layers [11-16] have focused primarily on the
convective heat transfer phenomena between large water droplets and hot air layer. It is found that the
evaporation of larger droplets discharged by conventional sprinklers is not affected significantly by the
fire plume [8, 15]. In contrast, the small droplets of water that comprise fine mists have a higher surface
area/volume ratio and this result in their rapid evaporation.  

A number of studies [17-27] reported in the published literature account for the rate of evaporation of
droplets in the analysis. The rate of evaporation of falling droplets defers from that of stationary droplets
due to different heat and mass transfer coefficient resulted from change of momentum. Ceteris paribus,
the drag coefficients of droplets depends on their diameters and velocities. In case of water droplets,
emanating from a nozzle these two variables change, and this affects the drag coefficient. However, this
phenomenon was neglected by Novozhilov [21] in the analysis of the transport of water droplets. When
sprinkler systems are activated at a temperature of 60 Ԩ, say, the relative humidity (RH) of the
surrounding air is very low, typically 5%. This is in sharp contrast with the data generated by Li and
Chow [22] who assumed that the RH of the air was 53%, yet the dry bulb temperature was 60 Ԩ. Vaari
[23] assumed the droplet temperature to be identical to the surrounding air temperature in his transient
one-zone model that described the total flooding water mist fire suppression. The Reynolds number (Re)
does have an effect on the heat and mass transfer coefficient in between water and air. However, Barrow
and Pope [24] had neglected this effect by assuming the Re of droplets to be zero and this has limited the
use of their model. The use of a one-zone model and its limitations in studying water-mist fire
suppression systems is reported by Li and Chow [25]. However, none of these reported studies considered
the effects of thermal radiation on the behaviour of water droplets, though the radiative heat transfer is
important in case of fire. In addition, the effect of high mass transfer rate and low humidity should be
considered in case of room fires. 

If we are to accurately model the behaviour of water-mists we must be able to quantify the rate of
evaporation of water considering all of the issues as discussed above. The principal objective of this work
is to develop a detailed model of evaporation water droplets by considering: 

(i) The contribution of radiation emanating by the flame and the surrounding boundary walls to
the rate of evaporation of water droplets. 

(ii) The effect of high mass transfer rates on the mechanism of evaporation. 
(iii) The change of the momentum of the droplets. 
(iv) The variable thermo-physical properties of water and air. 

In this study, the proposed model is compared against experimental and theoretical data available in
the published literature for validation and verification purposes. Once validated and verified, the proposed
semi-empirical model can be used as a validation tool for more comprehensive CFD based models. In this
study, such validation of FDS, version 6, is carried out. 

2. MATHEMATICAL FORMULATION 

The rate of evaporation of a moving droplet is a manifestation of simultaneous heat, mass, and
momentum transfer process as between the particle and surrounding air. Momentum transfer affects
motion of the particle, mass transfer causes changes of the particle size, and heat transfer determines the
temperature of the particle. In fact, these mechanisms are interdependent [21]. In the proposed model, the
effect of high-mass-transfer rate, due to high temperature and low humidity, are taken into account by
modifying the heat and mass transfer coefficients. The changes of diffusivity of water vapour through air,
density and latent heat of vaporization of water with the change of temperature are also taken into account
to improve the accuracy of the model. The droplet is considered as a ‘lumped mass’ on account the low
Biot number [28]. The shape of droplet is assumed to be spherical as this is not expected to give any
significant error in the computation [29]. The assumption of uniform temperature  

Copyright © 2014 John Wiley & Sons, Ltd. 
Fire Mater. (2014)
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distribution in the droplet considerably simplify the analysis of the overall computational process, since it
avoids the need for a conjugate heat-conduction analysis for the internal transient temperature-distribution
inside the droplet [24]. The hot air or smoke layer is assumed to be in quasi-steady-state and this refers to
a stable smoke layer which is formed finally when the ceiling jet reach to the boundary wall and
rebounded several times [22]. This assumption is more appropriate for the nozzles and smoke layers,
which are located away from the fire source or burning object. This distance can be quantified using
Alpert’s [30] equation taking into account of the size of the fire and the height of the ceiling [30, 31]. This
is also supported by the experimental observations in [32-33]. Moreover, this assumption is also used in
few analytical and numerical studies [15, 21, 34-36]. 

2.1. Mass Transfer Model 

The mass flow rate equation can be expressed as [37]; 

ሶ݉ 	 ൌ 	 ݄௠	ܣ	ሺߩ௦ 	െ	ߩஶሻ																																												ሺ1ሻ	 

where, ߩ௦ and ߩஶ are the density of water vapour on the droplet surface and in the air, respectively. 
 

The rate of change of droplet diameter can be determined from the following equation; 

ܦ݀
ݐ݀

	ൌ 	2	݄௠ 	
ሺߩ௦ 	െ ஶሻߩ	

௪ߩ
																																										ሺ2ሻ		 

where, ߩ௪ is the density of water. The density of water particle at the surface of droplet depends on the
partial vapour pressure at the droplet surface. In thermodynamic equilibrium condition, the partial vapour
pressure at the droplet surface depends on the surface temperature. Under this condition, evaporation
keeps the droplet surface in saturated condition until the droplet is totally vaporized due to heat transfer
[38]. The vapour concentration at the surface is the saturated mass fraction of air at temperature of
droplet. As the density of water particle depends on vapour pressure of water, this can be found out from
the ideal gas equation of state.  

2.2. Heat Transfer Model 

When a droplet is exposed to a higher temperature, it receives heat from the surrounding and temperature
rises to a threshold limit, at a given pressure, which is known as steady state or saturation temperature. At
this temperature, the water droplet changes its phase from liquid to vapour, keeping the droplet surface in
saturated condition until the droplet is completely vaporized [39]. Under this condition, the heat of
vaporization is supplied to the droplet surface from surrounding air, flame and hot objects. The transient
equation of conservation of heat can be expressed as; 

ܿ௣௪	݉	
݀ܶ
ݐ݀
	ൌ 	݄௖	ܣ	ሺ ஶܶ	 െ 	ܶሻ 	൅	൛ܣܨߝߪ	൫ ௙ܶ

ସ െ	ܶସ൯ 	൅ ሺ1	ܣߝߪ	 െ ሺ	ሻܨ ௕ܶ௪
ସ െ	ܶସሻൟ െ	

݀݉
ݐ݀

 ሺ3ሻ							ܮ

Here, the first part on the right side of the equation is due to convective heat transfer from air to
droplet, the second part is due to radiative heat transfer from fire flame and boundary walls to the droplet
and the third part contributes to the evaporation of water droplets. 

2.3. Momentum Model 

The velocity of the droplet can be obtained by solving the momentum equation for the droplet. The
momentum equation can be written as: 

ݒ݀
ݐ݀

ൌ 	݃	
ሺߩ௪	ି	ߩ௔ሻ

௪ߩ
െ
3	
4
ଶݒ	௔ߩ	ௗܥ

௪ߩ ܦ
െ
ݒ3
ܦ

ܦ݀
ݐ݀

ሺ4ሻ 

 

Copyright © 2014 John Wiley & Sons, Ltd. 
Fire Mater. (2014)

DOI: 10.1002/fam



 

4 

H. M. I. MAHMUD, K. A. M. MOINUDDIN AND G. THORPE

In the above equation, ߩ௔ is the density of air, Cd is the coefficient of drag and v is the velocity (or
relative velocity) of the droplet. In case of droplet travelling through a stationary hot layer, v becomes the
absolute velocity. It is to be noted that Cd for a droplet depends on the Re, which is based on the air
droplet relative velocity. Brown and Lawler [40] proposed a correlation between drag coefficient and Re
and compared it with 178 experimental data points. The proposed correlation was found to be quite
satisfactory in relation to the experimental data in the range of ܴ݁ ൏ 2 ൈ 10ହ. Therefore, the correlation
by Brown and Lawler [40] is used here which is; 

ௗܥ 	ൌ 	
24
ܴ݁
	ሺ1	 ൅ 	0.15	ܴ݁଴.଺଼ଵሻ 	൅	

0.407

1	 ൅	
8710
ܴ݁

																								ሺ5ሻ 

The position of droplet in the air can be found from the velocity equation; 

ݕ݀
ݐ݀
	ൌ ሺ6ሻ																																																								ݒ	

Where, y is a position vector. It is along the downward direction of movement of the droplet with 
upward positive. 
 

2.4. Calculation of Rate Constants 

The mass transfer coefficient, ݄௠ , can be calculated using the correlation for the Sherwood number, Sh
[41], where Sh is hmD/WAB. The Sherwood number can be calculated using the following correlation [42];

݄ܵ	 ൌ 	ܽ	 ൅ 	ܾ	 ൬ܴ݁
ଵ
ଶ	ܵܿ

ଵ
ଷ൰

௖

																																					ሺ7ሻ 

Here, a=2, b=0.216 and c = 2 for Re
భ
మSc

భ
య ൏ 1.4; and a = 1.56, b = 0.616 and c = 1 for Re

భ
మSc

భ
య ൒ 1.4. 

The heat transfer coefficient, ݄௖ , can be calculated by using the correlation for Nusselt number, Nu
[41], where Nu is hcD/ka. The Nusselt number can be calculated using the following correlation [42]; 

	ݑܰ ൌ 	a	 ൅ 	b	 ൬ܴ݁
ଵ
ଶ	ܲݎ

ଵ
ଷ൰

௖

																																				ሺ8ሻ 

Here, a=2, b=0.216 and c = 2 for ܴ݁
భ
మܲݎ

భ
య <1.4; and a = 1.56, b = 0.616 and c = 1 for ܴ݁

భ
మܲݎ

భ
య ൒ 1.4. 

In the above equations, Re is the Reynolds number, which is the ratio of inertia force to viscous force,
i.e. Re= ρvD/μ, Sc is the Schmidt number, which is defined as the ratio of momentum diffusivity
(viscosity), i.e. Sc=ߤ௔/ߩ௔DAB and Pr is the Prandtl number which is the ratio of viscous diffusion rate to
thermal diffusion rate of air, i.e. Pr = cp μ/k. The above two equations was found to agree most closely
with the experimental results by [43].  

The mass diffusivity coefficient, DAB, can be calculated using the following expression [44]; 

ܲ ABW

ሺ ௖ܲ௥஺	 ௖ܲ௥஻ሻଵ ଷ⁄ 	ሺ ௖ܶ௥஺	 ௖ܶ௥஻ሻହ ଵଶ⁄ 	ቀ
1
஺ܯ

	൅	
1
஻ܯ

ቁ
ଵ ଶ		⁄ 	ൌ 	ܽ	ቆ

ܶ

ඥ ௖ܶ௥஺	 ௖ܶ௥஻

ቇ
௕

											ሺ9ሻ 

where, a and b are constant of the empirical relationship. For air-water system, a = 3.64 x 10–4 and b =
2.334. The advantage of this correlation is that it is convenient to use as the critical temperature and molar
volume of different species are available. 

Copyright © 2014 John Wiley & Sons, Ltd. 
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2.5. Correction to the Rate Constants for High Mass Transfer Rate 

The use of the coefficients, ݄௠ and hୡ , are limited to the case of low-mass-transfer-rate. In case of high
temperature and low humidity, the evaporation rate is high and this invokes the high mass transfer rate
and affects the heat transfer rate, as well. Hence, correction factors, ߠ௠ and ߠ௖, are applied to get the
coefficient of mass and heat transfer, respectively, for high mass transfer rates [41]. The correction
factors, ߠ௠, can be expressed as [41]; 

௠ߠ 	ൌ 	
݄௠•

݄௠
																																																					ሺ10ሻ 

where, ݄௠•  is the coefficient of mass transfer for high-mass-transfer rate. Therefore, ݄௠ in Equations (1)
and (2) is replaced by	݄௠•  ;can be calculated from the following equations	௠ߠ	.

௠ߠ 	ൌ 	
݈݊	ሺ ෨ܴ௠	 ൅ 1ሻ

෨ܴ௠
																																												ሺ11ሻ 

෨ܴ௠ ൌ 	
	௪଴ݔ െ	ݔ௪ஶ
1	 െ	ݔ௪଴

																																												ሺ12ሻ 

where,	ݔ௪଴  is the mole fraction of water at surface of droplet and x୵ஶ is the mole fraction of water in the
air. The value of ݔ௪଴ can be determined by using the following expression [41]; 

௪଴ݔ 	ൌ 	
௪ܲ௔௧௘௥

௔ܲ௜௥
																																																ሺ13ሻ 

where, ௪ܲ௔௧௘௥ and ௔ܲ௜௥ are the water vapour and air pressure, respectively, in air-water system. 
The correction factors, ߠ௖, can be expressed as [41]; 

௖ߠ 	ൌ 	
݄௖•

݄௖
																																																			ሺ14ሻ	 

where, hୡ•  is the coefficient of heat transfer for high-mass-transfer rate. Therefore, hୡ in Equation (17) is
replaced by hୡ• . θୡ can be calculated from the following equations; 

௖ߠ 	ൌ 	
݈݊	ሺ ෨ܴ௖ 	൅ 	1ሻ

෨ܴ௖
																																										ሺ15ሻ 

෨ܴ௖ 	ൌ 	 ݁థ 	െ 	1																																															ሺ16ሻ 

߶	 ൌ 	
ܰ௪଴ܿ௣௪
݄௖

																																														ሺ17ሻ 

ܰ௪଴	 ൌ 	݄௠	݈݊	൫1	 ൅	 ෨ܴ௠൯																																			ሺ18ሻ 

where, ߶ is the dimensionless rate factor and ܰ௪଴ is the molar flux of water particle at the droplet surface.
 

2.6. Thermo-Physical Properties of Air and Water 

The density of humid air can be calculated, using the ideal gas law, as the sum of the densities of the two
gases, dry air and water vapour in proportion with their partial pressures; i.e. 

	௔௜௥	௛௨௠௜ௗߩ ൌ 	
ௗܲ௥௬௔௜௥	ܯ௔

ܴܶ
	൅	 ௩ܲ௔௣௢௥	ܯ௪

ܴܶ
																														ሺ19ሻ 
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Saturation vapour pressure can be obtained from the equation suggested by Buck [45]: 

௦ܲ௔௧ 	ൌ 	 ሾ1.0007	 ൅	ሺ3.46 ൈ 10ି଺	 ௔ܲ௜௥ሻሿ 	ൈ 	6.1121	 ൈ ݌ݔ݁	 ൤
17.502	ܶ
240.97 ൅ ܶ

൨									ሺ20ሻ 

In this equation, ௦ܲ௔௧ and ௔ܲ௜௥ are in mbar, and ܶ is in Ԩ.  
It is to be noted that latent heat of evaporation of water, L, is not constant, rather it varies with

temperature; the higher the initial temperature of the liquid water the lesser will be the heat required to
evaporate it. A fourth order temperature dependent equation derived from the steam chart [39] is used to
determine L within the range of 0 to 100 Ԩ. The relationship between L and T is as follow; 

ܮ ൌ 7 ൈ 10ି଼	ܶସ െ 2 ൈ 10ିହ	ܶଷ ൅ 4 ൈ 10ିସ	ܶଶ െ 2.3657	ܶ ൅ 2500.9									ሺ21ሻ

The other temperature depended physical properties of air such as viscosity [46], thermal conductivity
[47] and specific heat capacity [48] were determined by using the following correlations; 

௔ߤ 	ൌ 	 ሺ0.1005	 ൅ 	0.07848 ∗ ܶ	 െ ܧ	0.6696	 െ 4 ∗ ܶଶ	 ൅ ܧ0.3376	 െ 7 ∗ ܶଷሻ ൈ 10ି଺			ሺ22ሻ 

݇௔ 	ൌ 	 ሺെ	6.4224	 ൅ 	0.1571 ∗ ܶ	 െ ܧ	0.2101	 െ 3 ∗ ܶଶ	 ൅ ܧ0.16	 െ 6 ∗ ܶଷሻ ൈ 10ିଷ					ሺ23ሻ 

ܿ௣௔ 	ൌ 	 ሺ1023.2	 െ 	0.176021 ∗ ܶ	 ൅ ܧ	4.02405	 െ 4 ∗ ܶଶ 	െ ܧ	4.87272	 െ 8 ∗ ܶଷሻ						ሺ24ሻ 

here, T is in K. The density of water is calculated by using the following correlation [49]; 

௪ߩ ൌ ൫0.322	 ൅ 	0.64166	 ∗ 	ܼሺଵ ଷሻ⁄ 	൅ 	0.35409	 ∗ 	ܼሺଶ ଷሻ⁄ 	െ 	0.16449	 ∗ 	ܼሺହ ଷሻ⁄ 	െ 	0.56509	 ∗ 	ܼሺଵ଺ ଷሻ⁄ 	
െ 14.65649	 ∗ ܼሺସଷ ଷሻ⁄ 	െ 2.17251	 ∗ 	ܼሺଵଵ଴ ଷሻ⁄ ൯ ∗ 10ଷ															ሺ25ሻ 

where, ܼ	 ൌ 	1	 െ	
்

೎்ೝ
; 	 ௖ܶ௥ is the critical temperature of water in K. 

3. COMPUTATIONAL PROCEDURE 

A computational model has been developed using the equations of conservation of mass, momentum and
energy as defined in the previous section. The governing differential equations are discretised and solved
explicitly using a finite difference approach. The initial droplet conditions of D, T, v and y, together with
the relevant thermo-physical properties of water and air are specified. The sequence of calculation is – 

i) Initialise D, T, v and y of droplet, and T and RH of air. 
ii) The mass transfer and heat transfer coefficients are calculated using Equations (7) and (8),

respectively, incorporating a correction factor for high mass and heat transfer rate, using
Equations (10) and (14), respectively. 

iii) The discretised differential Equations (2), (3), (4) and (6) are solved sequentially using the Euler
method, to obtain the time trajectories of D, T, v and y of the droplet. 

A general form of the discretised equations can be expressed as – 

Φ௧ା௱௧	 ൌ 	Φ௧ 	൅	
݀Φ
ݐ݀
ฬ
௧
 ሺ26ሻ																																						ݐ߂

where, the variable Φ can represent the diameter, temperature and velocity; i.e. D, T and v. The position
vector of the droplets in air is discretised as follow 
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5.1. Comparison with FDS 

In FDS, droplets are represented as discrete spheres travelled through air and transport of droplet is
modelled by Lagrangian approach. A semi-empirical heat and mass transfer model is used to simulate the
droplet evaporation. The velocity and position of droplet is obtained from theory of conservation of
momentum. Details of those models are given in the FDS Technical Reference Guide [52]. 

A computational domain with dimensions of 0.5m×0.5m×10m is created to calculate the terminal
velocity and saturation temperatures of droplets. The set-up for the computational domain in the FDS
model is presented in Figure 4. The nozzle is located at the top of the domain and a single droplet of
certain diameter is allowed to fall from the top of the domain. All sides of the domain are kept open to be
consistent with the conditions associated with the proposed model. Once the computational domain is set-
up, the input parameters of the computational measurements are incorporated in the model. The input
variables are the diameter of droplets, the initial temperature of air and droplets, and the relative humidity
of air. Then the simulation is allowed to run to calculate the terminal velocities and saturation
temperatures of droplets. The input parameters for the numerical model are tabulated in Table 2. 

The terminal velocities of droplets of different sizes are calculated using the proposed model and FDS.
The simulation of falling of water droplets in air is modelled using FDS with the initial condition as
tabulated in Table 2. The calculated values of the terminal velocity of the proposed model are compared
with the predection of FDS and presented in Figure 5. It is observed that FDS predicted values are very
close to the calculated values of the proposed model. The differences in the prediction by the two models
are less than 8%. 

The proposed model and FDS are again used to calculate the saturation temperatures of the same size
of droplet (1000 µm) at different temperatures of surrounding air. The surrounding air temperatures are
varied between 5 and 95 oC. The comparison of the results is presented graphically in Figure 6. Like
Figure 5, a very close result is observed. FDS prediction does not differ more than 10% of the calculated
values by the proposed model. Hence, it enforces our confidence in the FDS’s capability in predicting the
parameters (i.e. temperature, velocity, etc.) associated with the behaviour of an evaporative droplet in hot
air. 

 

Figure 4. Computational domain set-up of the FDS model. 

 

Copyright © 2014 John Wiley & Sons, Ltd. 
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It can be seen that the drag force estimated by Barrow and Pope’s [24] model is lower by up to 40%
compared to that value of the proposed model. As a result, it predicts that the distance travelled by the
droplets is larger. A comparison of the results of distance travelled by the droplets is presented in Figure
11. The droplets of diameter 200 μm have travelled about 15 meters from the point of insertion in the air
by the model of Barrow and Pope [24], whereas the droplets have travelled only 10 meters as estimated
by the proposed model. As a result, one might expect that the proposed model would predict that the
droplets penetrate the hot air or smoke layer induced by a fire to a greater extent than predicted by Barrow
and Pope [24]. This may be a crucial consideration when one needs to know that if droplets will contact
any hot surface in a fire environment. 

6. CONCLUSION 

In this study, a semi-empirical model of the interaction of water droplets with hot air has been developed
based on the principles of conservation of mass, momentum and energy, and some empirical correlations.
The contribution of radiation emanating by a flame is considered on the evaporation of droplet. The effect
of high evaporation rate and the change of Re to the mass and heat transfer coefficient is also considered
in the proposed model. A forward finite difference technique is used to solve the resulting ordinary
differential equations. A time step convergence analysis is conducted and an appropriate time step is
selected leading to time step convergent results. 

This proposed model has been validated and verified against experimental data and adiabatic
saturation temperature. The validation indicates that the proposed model has predicted the terminal
velocities within 4% of the experimental data. The saturation temperatures of droplets predicted by the
proposed model agree well with the calculated adiabatic saturation temperatures. In this study, the
proposed model is also used to validate FDS. The prediction of FDS for saturation temperatures and
terminal velocities of droplets agrees well with the calculated values by the proposed model. Therefore, it
has given us confident to use FDS in simulating the behaviour of water-mist droplet in hot air
environment. In comparison, Li and Chow [22], and Barrow and Pope’s [24] models should be treated
with caution as it predicts the longevity of the droplets, and the distance into which they penetrate through
a smoke layer or hot air environment induced by a fire. This work provides a further tool with which to
predict the behaviour of water droplets evaporating in a hot environment.  
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NOMENCLATURE 

A surface area, m2 
Bi  biot number 
 ௗ drag coefficientܥ
cpa specific heat capacity of air, J/kgԨ 
cpw specific heat capacity of water, J/kgԨ 
D diameter, m 
F force, kg.m/s2 
G gravitational acceleration, m/s2 
hc 

convective heat transfer coefficient, W/m2Ԩ 
hm 

mass transfer coefficient, m/s 
L latent heat of vaporization of water, J/kg 
M molecular weight, kg/mol 
m mass, kg 
m  mass flow rate of water particle from droplet surface, kg/s 
N molar flux, moles/m2s 
Nu Nusselt number 
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P vapour pressure, Pa 
Pr Prandtl number  
R universal gas constant, 8314 J/(Kg.mol.K) 

෨ܴ  dimensionless flux ratio 
Re Reynolds number 
RH relative humidity, % 
Sc Schmidt number 
Sh Sherwood number 
T temperature, Ԩ 
V volume, m3 
v air droplet relative velocity, m/s 
x mole fraction 
Y vapour mass fraction 

GREEK SYMBOLS 

 dimensionless correction factor ߠ
Φ generalised form of variables 
µ viscosity, Pa.s 

ρ density, kg/m3 
߶ dimensionless rate factor 
W mass diffusivity coefficient 
σ Stefan-Boltzmann constant 
ε emissivity factor 

SUBSCRIPTS 

A gas/liquid A 
a air 
atm atmosphere 
AB binary system of A and B 
B gas/liquid B 
b buoyancy  
bw boundary wall 
c convective heat 
cr critical value 
d drag 
e evaporation 
f flame 
g gravitation 
m mass transfer 
p water particle/droplet 
s droplet surface 
sat saturation  
w water 
  refers to the far field value 

SUPERSCRIPTS 
• transfer coefficient for high mass transfer rate 
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