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Abstract 

Objectives: To determine those performance indicators that have the greatest influence on classifying 

outcome at the elite level of mixed martial arts (MMA).  A secondary objective was to establish the 

efficacy of decision tree analysis in explaining the characteristics of victory when compared to 

alternate statistical methods.   

Design: Cross-sectional observational. 

Methods: Eleven raw performance indicators from male Ultimate Fighting Championship bouts 

(n=234) from July 2014–December 2014 were screened for analysis. Each raw performance indicator 

was also converted to a rate-dependent measure to be scaled to fight duration. Further, three additional 

performance indicators were calculated from the dataset and included in the analysis. Cohen’s d effect 

sizes were employed to determine the magnitude of the differences between Wins and Losses, while 

decision tree (chi-square automatic interaction detector (CHAID)) and discriminant function analyses 

(DFA) were used to classify outcome (Win and Loss). 

Results: Effect size comparisons revealed differences between Wins and Losses across a number of 

performance indicators. Decision tree (raw: 71.8%; rate-scaled: 76.3%) and DFA (raw: 71.4%; rate-

scaled 71.2%) achieved similar classification accuracies. Grappling and accuracy performance 

indicators were the most influential in explaining outcome. The decision tree models also revealed 

multiple combinations of performance indicators leading to victory.     

Conclusions: The decision tree analyses suggest that grappling activity and technique accuracy are of 

particular importance in achieving victory in elite-level MMA competition. The DFA results 

supported the importance of these performance indicators. Decision tree induction represents an 

intuitive and slightly more accurate approach to explaining bout outcome in this sport when compared 

to DFA.  

 

Keywords 

Combat sports, performance analysis, decision tree, athletic performance, discriminant function 

analysis 
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Introduction 

Distinguishing the trainable characteristics of superior performance in a given sport can provide 

valuable insight for coaching and training practices. For instance, interventions can be designed to 

target those skills and attributes which have the greatest impact on competition success
1, 2

. Although 

the process of performance analysis can be undertaken from a biomechanical and physiological 

perspective, notational approaches employ an analysis of action variables related to a technical aspect 

of competition success 
3
. Identifying combinations of those performance indicators that are most 

associated with outcome can be used to direct training towards more influential techniques while also 

formulating strategic game-plans for competition 
4, 5

. Additionally, this information can provide a 

framework by which informed, within-competition coaching decisions can be made in response to 

certain patterns of action or opposition behaviour 
1, 6

. The benefits of this information further extends 

to strength and conditioning practices, whereby once the decisive skills are clearly established, 

training interventions can then emphasise the development of the physiological mechanisms that 

underpin these manoeuvres
2
. Such analyses therefore play a pivotal role in the optimisation of the 

training process 
4, 7

.  

 

Probabilistic statistical methods have been used to examine the interaction between performance 

indicators and competition outcomes in a number of sports, including Australian rules football 
1, 8

, 

rugby sevens 
9
, wrestling 

10
, and football 

4
. However to the authors’ knowledge, there has been no 

such inquiry into mixed martial arts (MMA) to date. This represents a notable gap in the scientific 

literature considering the marked growth in professionalism and the highly technical nature of this 

sport. Expressed as intermittent collision activity
11, 12

, MMA combat is driven by techniques from 

more traditional combat disciplines in addition to its own specialised skills
13

. These foundational 

sports can be divided into the distinct categories of grappling and striking based upon their 

predominant techniques. Manoeuvres including throws, joint locks and chokes define grappling sports 

including judo, wrestling and Brazilian jiu-jitsu. In contrast, the striking combat which characterises 

boxing, kickboxing and karate is driven primarily by attacks such as punches and kicks
14

. The use of 

both modes of activity distinguishes MMA from other combat sports and results in the potential for a 
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broad and highly complex series of events across both forms of combat to occur in order to achieve 

victory. An outcome may be rendered via judges’ decision at the end of the scheduled duration based 

upon optimal execution of these strategies. Additionally, it is possible for an outcome to be reached 

prior to this in the event of a knockout, official stoppage or if a competitor signals that they are unable 

to continue. Therefore, competition can be completed in a matter of seconds or continue for the full 

scheduled time period, which is generally 15 to 25 minutes, across three to five rounds respectively at 

the elite level 
15

.  

 

Some inquiry has been made into the technical factors of MMA activity at both the elite 
11, 13

 and 

lower-level 
12

. Notably, Miarka et al. 
13

 compared performance indicators between winners and losers 

across a sample of professional bouts. Higher strike attempts and measures of positional advances 

during ground fighting were noted amongst winners. However, the inclusion criteria for this study 

excluded any fights that did not enter a third round, while the statistical procedures performed did not 

account for the influence or interaction of other indicators.  

 

The primary aim of this study was to determine whether bout outcome at the highest level of MMA 

competition could be classified using commonly-reported performance indicators. A secondary 

objective sought to establish the efficacy of a non-linear modelling method when compared with a 

linear and univariate approach. Such findings could allow for evidence based coaching and training 

practices by contributing to a framework that guides attention and resources towards those skills that 

have the greatest impact on achieving victory.   

 

Methods 

The highest level of professional MMA competition takes place in the Ultimate Fighting 

Championship (UFC) 
16

. As such, raw performance indicators from UFC competition were acquired 

upon formal request via Fightmetric (www.fightmetric.com); the official statistics and analytics 

provider to the organisation. Data from all male bouts from July 2014-December 2014 (n = 236) were 

screened for analysis. This period was chosen to provide a representative sample of contemporary 

http://www.fightmetric.com/
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UFC competition over a time-frame narrow enough to ensure no major rule or tactical changes 

notably influenced results. This included 234 fights in which a winner was decided; a ‘no contest’ 

occurred in 2 bouts which were subsequently removed from the main analyses.  The following 11 

common performance indicators were extracted from the dataset, with terminology: total strikes 

attempted, total strikes landed, significant strikes landed, significant strikes attempted, significant 

distance strikes landed, significant distance strikes attempted, significant clinch strikes landed, 

significant ground strikes landed, takedowns attempted, takedowns landed and offensive passes. 

Following this, each raw performance indicator was converted to a rate-dependent measure to be 

scaled to fight duration. Additionally, successful (landed) overall strikes, takedowns and significant 

strikes were also expressed as a percentage of their respective attempts to produce three accuracy 

variables for inclusion in the analysis.  

 

Descriptive statistics for winning competitors (represented as the mean difference relative to the 

opponent) for 13 performance indicators were obtained. Takedown accuracy was not included in the 

main descriptive and univariate analyses due to multiple missing values as a result of no takedown 

attempts being executed in a bout. This was to prevent the calculation of a misleading value that 

would bias the result against those competitors who successfully restricted their opponent from 

attempting a takedown. Cohen’s d effect sizes and their associated 95% confidence intervals were 

employed to determine the magnitude of the differences between Wins and Losses for each indicator 

in their rate-dependent and accuracy form. Strengths of the effect size differences were interpreted 

using the following categorisation system:  <0.2 = trivial, 0.2-0.6 = small, 0.61-1.2 = moderate, and 

1.2 – 2.0 = large
17

.  

 

Because of its ability to identify multiple combinations of factors that influence outcome, decision 

tree analysis was selected as the experimental model to classify MMA. This technique also has the 

advantage of being intuitive and easy to interpret by coaches and analysts 
1, 6, 18

, in addition to 

providing greater insight into the factors influencing an outcome variable than linear methods
19

. The 

decision tree analysis (chi-square automatic interaction detector (CHAID)) was used to classify 
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outcome (Win and Loss) based on the 11 raw and three accuracy independent variables. To determine 

the efficacy of modelling rate-dependent indicators, a second decision tree was also constructing 

including only these adjusted (n = 11), and the same accuracy (n = 3), performance indicators. For 

both models, a minimum of 10 cases were required in order for a node to split, with a minimum gain 

ratio of 10% set for each variable with respect to model contribution
1
. A 10-fold cross validation was 

undertaken for both models, with classification accuracy reported as mean ± SD across all folds
20

. 

These measures were implemented with the intention of producing the most generalisable model. The 

95% confidence limits relating to the classification accuracy of each model were also outputted. Two 

discriminant function analyses (DFA) were employed using both the rate-scaled and non-rate scaled 

performance indicators to allow comparison with decision tree induction. Validation of discriminant 

models was conducted using the leave-one-out method of cross-validation. Effect sizes were 

calculated in Microsoft Excel 2013 (Microsoft Corporation, Washington, USA), while all other 

analyses were conducted using SPSS for Windows Version 23.0 (IBM Corporation, Somers, New 

York, USA). 

 

Results 

Results from the main effect size comparisons revealed differences between Wins and Losses for the 

majority of performance indicators (Figure 1). Specifically, total strikes landed per minute, total 

strikes attempted per minute, significant strikes landed per minute, significant strike accuracy, 

significant ground strikes landed per minute and offensive passes all showed moderate differences for 

Wins and Losses. Only three variables did not show a small effect or greater, while no large effects 

were present. A moderate difference was present between Wins (n = 164) and Losses (n = 132) for the 

removed performance indicator (takedown accuracy: Win = 50.89 ± 32.47%, Loss = 28.96 ± 34.71%; 

Cohen’s d = 0.62, 95% confidence interval = -3.88 to 5.13). 

 

Figure 2 represents results relating to the first decision tree analysis using the raw and accuracy 

performance indicators. This model successfully classified bout outcome at 71.8% ± 3.6% across all 

folds (95% CI = 71.5 to 72.1%), including a sensitivity and specificity of 88.9% and 54.7% 
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respectively. Primarily influencing the classification of the model was significant ground strikes 

landed, while takedown accuracy and significant strike accuracy also contributed. For instance, 80.4% 

of fighters that recorded greater than four significant ground strikes landed per bout, went on to win 

the fight (Node 3, 111 out of 138 occasions). This victory rate was increased to 84.9% (Node 7, 101 

out of 119 occasions) when these individuals also recorded a takedown accuracy of greater than 25%.  

The second decision tree model achieved a classification accuracy of 76.3% ± 5.1% across all folds 

(Figure 3) (95% CI = 75.8-76.8%) with a sensitivity and specificity of 73.5% and 79.1% respectively. 

Major performance indicators in the model included significant ground strikes landed per minute, 

strikes landed per minute, takedown accuracy and significant strike accuracy, with higher values 

recorded in each associated with Wins. For example, when a competitor lands greater than 0.850 

significant grounds strikes per minute, he achieves victory in 91.5% of instances (Node 3, 86 out of 

94 occasions). The likelihood of achieving a Win further increases to 96.3% when these fighters also 

deliver greater than 4.190 strikes landed per minute (Node 9, 79 of 82 instances).   

 

The DFA achieved a classification accuracy of 71.4% (sensitivity: 75.6%, specificity: 67.1%, 70.1% 

cross-validation) and 71.2% (sensitivity: 76.1%, specificity: 66.2%, 69.4% cross-validation) for raw 

and rate-scaled indicators, respectively. For the first model, similar to the first decision tree analysis, 

significant ground strikes landed and takedown accuracy were important to explaining outcome, with 

offensive passes contributing strongly as well. Also similarly to the second decision tree model, 

significant ground strikes landed per min and takedown accuracy represented the most important 

performance indicators in classifying outcome in the second DFA, with offensive passes per minute 

also discriminatory.  

 

 

**** Place Figure 1 about here **** 

**** Place Figure 2 about here **** 

**** Place Figure 3 about here **** 
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Discussion 

The primary aim of this investigation was to determine whether outcome at the highest level of MMA 

competition could be classified using commonly collected performance indicators. The decision tree 

analyses identified multiple combinations of performance indicators that contribute to explaining bout 

outcome using both raw and rate-dependent indicators, with the latter revealing a higher classification 

accuracy. Impacting this finding was a relatively limited ability for Model 1 to accurately explain a 

Loss. This low level of specificity in concert with increased sensitivity suggest that the contribution of 

the raw performance indicators to achieving a Win was over-estimated. The improved classification 

rate, in particular its ability to detect a Loss, using the adjusted values is unsurprising as it corrects for 

the duration of each individual bout. This suggests that indicators in this form are superior when 

analysing data sets for relationships to outcome in such sports.  It is of note that while the univariate 

comparisons identified all but two variables as having a non-trivial magnitude of effect, both decision 

tree models achieved its degree of accuracy despite including only 3 to 4 performance indicators. 

Furthermore, unlike isolated comparisons, this analysis technique revealed multiple combinations of 

performance indicators that contribute to victory thereby allowing for greater function in an applied 

setting. Accordingly, due to the multiple profiles that exist, the descriptive measures display a 

substantial amount of variance. Thus it is clear that not all victorious fighters consistently express 

these collective differences from their opponent in a given bout.  

 

When compared to DFA, the decision tree method was slightly more successful at classifying 

outcome, and revealed multiple performance indicator profiles leading to victory. This suggests that 

decision tree analysis is a superior method for explaining the characteristics of performance in this 

sport. Previous reports have noted similar accuracy between linear (82.5%) and decision tree (81.5%) 

models in Australian football 
1
. The differences between the two methods in this study can be 

explained by the multiple ways of achieving victory in MMA, which are better classified using a non-

linear approach.  
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The first level of partitioning in both models clearly highlights the decisive nature of landing powerful 

strikes during ground fighting. When examining this technique, fundamental biomechanical principles 

in addition to observation of the sport suggests that unlike standing combat, the ability to throw a 

damaging strike during ground activity is almost entirely dependent on achieving an advantageous 

position on top of an opponent, and therefore may be somewhat less influenced by the technique of 

the strike itself when compared to this attack performed in a standing position. From an operational 

perspective this provides evidence that superior grappling ability may heavily impact victory in many 

cases. The influential nature of this mode of combat is reinforced in other pathways of both decision 

trees. In particular, the interaction between significant ground strikes landed per minute and takedown 

accuracy in nodes 1 and 5 in model 2 (Figure 3) highlights that the disadvantage suffered from 

landing no significant ground strikes per minute can be overcome by a takedown accuracy of >25%, 

which shifts the likelihood of winning into the athlete’s favour. In further support of this is the finding 

that two of the three indicators included in Model 1 are representative of grappling activity. However, 

it is important to consider that although these results hold great applied value, it does not necessarily 

explain how a desirable position was attained. For example, scenarios may occur in which effective 

distance striking creates enough damage that a dominant ground fighting position can then be easily 

secured and retained. Regardless, based upon the analysis undertaken it is still reasonable to infer that 

grappling combat is particularly influential. This information should therefore be considered within 

the context of an individual athlete’s strength and weaknesses when determining training allocations.  

 

In addition to identifying the technical characteristics that influence outcome, these findings can also 

provide insight into the physiological qualities that may distinguish more successful competitors 

within the sport. Specifically, greater levels of maximal lower body strength and power have been 

reported in higher versus lower-tier competitors in the grappling sports of judo and wrestling 
14

. 

Although differences exist between these sports and MMA that would drive a more aerobic 

adaptation
14

, these findings indicate that lower body strength and power qualities are crucial to 

grappling performance and, therefore, might also be of notable importance to MMA success.  
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The decision tree partitioning also reveals the highly technical nature of MMA activity across both 

modes of combat. In particular, the accuracy of strikes and takedowns, in addition to strikes landed 

per minute, which are representative of successfully executed techniques, were featured in the model. 

This is in contrast to attempted, but not necessarily successful strikes, significant strikes and 

takedowns, which did not meaningfully impact the result. Such findings are in contrast to the 

magnitude based comparison which determined total strikes attempted per minute as possessing the 

second highest magnitude of effect of all 13 variables. Furthermore, these models are in distinct from 

previous findings that report attack attempts as a key factor in achieving victory in MMA and 

consequently make training recommendations based upon this 
13

. This provides further evidence that 

isolated comparisons have the potential to provide misleading results 
1
, particularly within complex 

and dynamic sports such as MMA.  

 

To this end, the findings of this present study suggest that it is the accuracy of a manoeuvre, rather 

than the volume executed, that is of greatest importance in determining a winning outcome. Alongside 

increasing the likelihood of victory, training strategies that consider this would also have the desirable 

effect of potentially reducing the physical stress on the athlete, resulting in lowered opportunities for 

injury, increased recovery and the strategic reprioritisation of alternate training tasks (conditioning, 

strength and power development and tactics) based on the principles of periodisation 
25

 
26

 and the 

individual athlete’s window of adaptation
27

.  

 

 

 

Conclusions 

The findings of this current study reveal multiple combinations of actions that explain winning at the 

highest level of MMA competition via decision tree analysis. Amongst non-rate dependent indicators, 

significant ground strikes landed, takedown accuracy and significant strike accuracy classified the 

first model. Similarly, when rate-dependent indicators were analysed, significant ground strikes 

landed per minute, takedown accuracy, strikes landed per minute and significant strike accuracy were 
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featured. The DFA analysis supported the relevance of these performance indicators to classifying 

outcome. This highlights both the influential nature of grappling combat and demand for technical 

precision across both striking and grappling. The information presented here is of great practical value 

to coaches of the technical, tactical and physiological components of the sport.  

 

Practical implications   

 Victory at the elite level of MMA competition is impacted by the accuracy of the technique, while 

executing an increased volume of attempts does not contribute to a winning result. 

 In preparation for competition sports specific coaches can use these findings to emphasise those 

techniques and strategies most likely to determine victory.  

 The numerous performance indicator combinations identified can provide informed guidance for 

the diverse and unique situations that an athlete encounters during competition. 

 From a physiological perspective these results can be considered by strength and conditioning 

coaches to ensure training plans are effectively designed to develop the mechanisms underpinning 

the predominant and influential actions.   
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Figure Legends 

 

Figure 1.  Effect size calculations (±95% confidence intervals) and descriptive statistics of rate 

dependent and accuracy based performance indicators. A positive effect represents a higher value by 

the bout winner.  The shaded area indicates a moderate to large effect.  

 

Figure 2. Model 1. Decision tree analysis of non-rate dependent and accuracy performance indicators. 

Node 0 includes the Win and Loss result for all 234 bouts. The first level below this describes the 

impact of the most influential performance indicator on outcome, in this case it is significant ground 

strikes landed. The algorithm partitioned the count frequency of this indicator into three categories, 

and describes its influence on outcome within each node. The model continues to split in this fashion 

until classification accuracy is no longer markedly improved.   

 

Figure 3: Model 2. Decision tree analysis of rate-dependent and accuracy performance indicators.  

Node 0 includes the Win and Loss result for all 234 bouts. The first level below this describes the 

impact of the most influential performance indicator on outcome, in this case it is significant ground 

strikes landed per minute. The algorithm partitioned the rate of this indicator into three categories, and 

describes its influence on outcome within each node. The model continues to split in this fashion until 

classification accuracy is no longer markedly improved.  
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