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1 Introduction

In 1906, J. L. W. V. Jensen [13] has proved the following remarkable inequality

f

�Pn
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iD1 pif .xi /Pn

iD1 pi
(1)

for a convex function f W I � R! R in the interval I , elements xi 2 I and nonnegative numbers pi ; i 2 f1; :::; ng
with

Pn
iD1 pi > 0: This inequality is important in various fields of mathematics due to the fact that one can obtain

from it other important inequalities such as the triangle inequality, Hölder’s inequality, Ky Fan’s inequality, to name
only a few.

Let .�;A; �/ be a measurable space consisting of a set �; a � – algebra A of subsets of � and a countably
additive and positive measure � on A with values in R [ f1g : Assume, for simplicity, that

R
�
d� D 1: Consider

the Lebesgue space

L .�;�/ WD ff W �! R; f is �-measurable and
Z
�

jf .t/j d� .t/ <1g:

For simplicity of notation we write everywhere in the sequel
R
�
wd� instead of

R
�
w .t/ d� .t/ :

In order to provide a reverse of the celebrated Jensen’s integral inequality for convex functions, the author
obtained in [4] and [7] the following result:

Theorem 1.1. Let ˆ W Œm;M� � R! R be a differentiable convex function on .m;M/ and f W � ! Œm;M� so
that ˆ ı f; f; ˆ0 ı f; .ˆ0 ı f / f 2 L .�;�/ : Then we have the inequality:
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Remark 1.2. We notice that the inequality between the first and the second term in (2) in the discrete case was
proved in 1994 by Dragomir & Ionescu, see [9].

For other recent reverses of Jensen inequality and applications to divergence measures see [6], [7] and [8].
Motivated by the above results we establish in this paper some Jensen’s type inequalities for functions defined

by power series with nonnegative coefficients. Applications for functions of selfadjoint operators on complex Hilbert
spaces are provided as well.

2 Results

The most important power series with nonnegative coefficients are:

exp .z/ D
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1
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1

1 � z
D

1X
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zn; z 2 D .0; 1/ ; (3)
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z2n�1; z 2 D .0; 1/ ;

where by D .0;R/ we denote the open disk centered in 0 with radius R > 0:
The following results that improve Jensen inequality as well as provide some reverse inequalities can be stated:

Theorem 2.1. Letˆ.z/ D
P1
nD0 anz

n be a power series with nonnegative coefficients and convergent onD .0;R/

with R > 0 or R D 1: Assume that f W �! R is �-measurable and with 0 < f .u/ < R for �-almost every u in
� and such that ˆ ı f; .ˆ0 ı f / f; .ˆ0 ı f / f �1 2 L .�;�/ : Then we have the inequalities
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Proof. If g W I ! R is a differentiable convex function on the interior VI of the interval I then we have the gradient
inequality

g0 .t/ .t � s/ � g .t/ � g .s/ � g0 .s/ .t � s/ (5)

for any t; s 2 VI :
If we write the inequality (5) for the power function g .t/ D tr ; r � 1 on the interval .0;1/ ; then we have

rtr�1 .t � s/ � g .t/ � g .s/ � rsr�1 .t � s/ (6)

for any s; t > 0:
Let n � 2 be a natural number, then g .t/ D tn=2 is convex on .0;1/ and by taking t D x2 and s D y2 then

we get from (6) that
n

2
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(7)

for any n � 2 and any x; y � 0:
From (7) we have
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for any n � 2; or, equivalently
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for any n � 2:
Integrating the inequality over u on � we get
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for any n � 2; which is an inequality of interest in itself.
Let m � 2: If we multiply (9) by an � 0 and sum over n from 2 to m we get
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Observe thatZ
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From (10) we get
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for any m � 2:
Observe that the power series
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Since 0 < f .u/ < R for �-almost every u in �; then 0 <
R
�
fd� < R, the series
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By taking the limit in (11) over m ! 1; interchanging the limit with the integral, we get the third and fourth
inequalities in (4).

Since ˆ0 is also a convex function on .0; R/ then we have by (5)
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and since
R
�
fd� > 0; we obtain the second inequality in (4). The first inequality is obvious.

By the inequality (5) applied for ˆ0 we also have

ˆ00 .0/ �
ˆ0 .f .u// �ˆ0 .0/

f .u/
� ˆ00 .f .u//

for �-almost every u in �:
This implies that Z
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which prove the fifth inequality in (4).
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iD1wi D 1; then we have the
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We have the following particular inequalities of interest.

Corollary 2.3. Assume that f W � ! R is �-measurable and with 0 < f .u/ for �-almost every u in � and such
that exp ıf; .exp ıf / f; .exp ıf / f �1 2 L .�;�/ : Then we have the inequalities
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The inequality (13) follows by (4) for ˆ.z/ D exp .z/ D
P1
nD0

1
nŠ
zn; z 2 C.

If we use the inequality (4) for ˆ.z/ D 1
1�z
D
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nD0 z

n; z 2 D .0; 1/ ; then we can state:

Corollary 2.4. Assume that f W � ! R is �-measurable and with 0 < f .u/ < 1 for �-almost every u in � and
such that .1 � f /�1 ; .1 � f /�2 f; .1 � f /�2 f �1 2 L .�;�/ : Then we have the inequalities
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3 Applications for functions of selfadjoint operators

Let A be a selfadjoint operator on the complex Hilbert space .H; h:; :i/ with the spectrum Sp .A/ included in the
interval Œm;M� for some real numbers m < M and let fE�g� be its spectral family. Then for any continuous
function f W Œm;M� ! R, it is well known that we have the following spectral representation in terms of the
Riemann-Stieltjes integral (see for instance [12, p. 257]):

hf .A/ x; yi D

MZ
m�0

f .�/ d .hE�x; yi/ ; (15)

for any x; y 2 H:
The function gx;y .�/ WD hE�x; yi is of bounded variation on the interval Œm;M� and gx;y .m � 0/ D 0 while

gx;y .M/ D hx; yi for any x; y 2 H: It is also well known that gx .�/ WD hE�x; xi is monotonic nondecreasing
and right continuous on Œm;M� for any x 2 H .

The following result holds:

Theorem 3.1. Letˆ.z/ D
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nD0 anz

n be a power series with nonnegative coefficients and convergent onD .0;R/

with R > 0 or R D 1 and A a bonded selfadjoint operator on the Hilbert space H with m D minSp .A/ and
M D maxSp .A/ : Assume that f W I ! R is continuous on I with Œm;M� � VI and 0 < f .u/ < R for any u 2 VI :
Then we have the inequalities
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In particular, if 0 < m �M < R; then
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Proof. Let x 2 H; kxk D 1: For small " > 0; consider f W Œm � ";M� ! R continuous and g .�/ D hE�x; xi
monotonic nondecreasing on Œm � ";M� : Utilising the inequality (4) for the positive measure d� D dg we have
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Taking the limit over "! 0C we deduce the desired result (16).

We can give some examples as follows:

Example 3.2. If A > 0 (is a positive definite operator) on H; then we have the exponential inequalities
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Example 3.3. If 0 < A < I; then we have
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for any x 2 H; kxk D 1:

For recent inequalities for continuous functions of selfadjoint operators see the papers [1], [5], the monographs [10],
[11] and the references therein.
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