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Abstract
We provide new inequalities of Jensen-Ostrowski type, by considering bounds for the
magnitude of

∫
� f ◦ gdμ – f (ζ ) – (

∫
� gdμ – ζ )f ′(ζ ) – 1

2λ
∫
�(g – ζ )2 dμ, ζ ∈ [a,b], with

various assumptions on the absolutely continuous function f : [a,b] →C and a
μ-measurable function g, and a complex number λ. Inequalities of Ostrowski and
Jensen type are obtained as special cases, by setting λ = 0 and ζ =

∫
� gdμ,

respectively. In particular, we obtain some bounds for the discrepancy in Jensen’s
integral inequality. Applications of these inequalities for f -divergence measures are
also given.

MSC: Primary 26D10; 26D15; secondary 94A17

Keywords: Jensen inequality; Ostrowski inequality; divergence measure;
discrepancy

1 Introduction
The simplest form of Jensen’s inequality for a convex function f : I → R reads as follows:

f
(

a + b


)

≤ f (a) + f (b)


, a, b ∈ I. (.)

This was proved by Jensen in  []. Throughout the paper, R and C denote the set of
real numbers and the set of complex numbers, respectively. Let (�,A,μ) be a measurable
space with

∫
�

dμ = , consisting of a set �, a σ -algebra A of subsets of � and a countably
additive and positive measure μ on A with values in the set of extended real numbers.
Jensen’s (integral) inequality now takes the following form: for a μ-integrable function
g : � → [m, M] ⊂R and a convex function f : [m, M] →R, we have

f
(∫

�

g dμ

)

≤
∫

�

f ◦ g dμ. (.)

Costarelli and Spigler [] considered the sharpness of Jensen’s integral inequality (for
real-valued convex function f and nonnegative function g) by studying bounds for the
discrepancy in the inequality.

Proposition  (Costarelli and Spigler []) Let ϕ : I → R be a real-valued function, where
I is a connected bounded set in R, and f : [, ] → I a real-valued nonnegative function
where f ∈ L(, ). If ϕ is a C-function, then

ϕ
(
f (x)

)
= ϕ(c) + ϕ′(c)

[
f (x) – c

]
+



ϕ′′(c∗(x)

)[
f (x) – c

], x ∈ [, ], (.)
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where c = f (x), which can be chosen arbitrarily in the domain of ϕ such that f (x) ∈ I̊ (here,
I̊ is the interior of I), and c∗(x) is a suitable value between f (x) and f (x). Furthermore,

∫ 


ϕ
(
f (x)

)
dx = ϕ(c) + ϕ′(c)

∫ 



[
f (x) – c

]
dx +




∫ 


ϕ′′(c∗(x)

)[
f (x) – c

] dx. (.)

If ϕ is convex and f is nonnegative, then the discrepancy in the Jensen inequality is given by
the following estimates:

 ≤
∫ 


ϕ
(
f (x)

)
dx – ϕ

(∫ 


f (x) dx

)

≤ 

∥
∥ϕ′′∥∥

L∞(I)

[‖f – c‖
L + ‖f – c‖

L
]
, (.)

where I denotes the domain of ϕ′′. Furthermore, if ϕ is a C-smooth function, then we have

 ≤
∫ 


ϕ
(
f (x)

)
dx – ϕ

(∫ 


f (x) dx

)

≤ 

∥
∥ϕ′′∥∥

L∞(I)‖f – c‖
L –




inf
I

ϕ′′
[∫ 



(
f (x) – c

)
dx

]

. (.)

Further inequalities involving bounds for the discrepancy in Jensen type inequalities for
general integrals are given in [] and [].

In , Ostrowski proved the following inequality [].

Proposition  Let f : [a, b] → R be continuous on [a, b] and differentiable on (a, b) such
that f ′ : (a, b) → R is bounded on (a, b), i.e., ‖f ′‖∞ := supt∈(a,b) |f ′(t)| < ∞. Then

∣
∣
∣
∣f (x) –


b – a

∫ b

a
f (t) dt

∣
∣
∣
∣ ≤

[



+
(x – a+b


b – a

)]∥
∥f ′∥∥∞(b – a) (.)

for all x ∈ [a, b] and the constant 
 is the best possible.

In what follows, we recall a generalisation of Ostrowski’s inequality for twice differen-
tiable mappings.

Proposition  (Cerone et al. []) Let f : [a, b] →R be a mapping such that the derivative
f ′ : [a, b] →R is absolutely continuous on [a, b]. Then we have the inequality

∣
∣
∣
∣

∫ b

a
f (t) dt – (b – a)f (x) + (b – a)

(

x –
a + b



)

f ′(x)
∣
∣
∣
∣

≤
[




+



(x – a+b
 )

(b – a)

]

(b – a)∥∥f ′′∥∥∞ (.)

for all x ∈ [a, b].

We refer the readers to the book by Mitrinović et al. [] and the book by Dragomir and
Rassias [] for further generalisations of Ostrowski’s inequality.

Dragomir [] introduced some inequalities which combine the two aforementioned in-
equalities, referred to as the Jensen-Ostrowski type inequalities. We recall one of the re-
sults in the next proposition.



Cerone et al. Journal of Inequalities and Applications  (2015) 2015:328 Page 3 of 20

Proposition  Let � : I → C be an absolutely continuous functions on [a, b] ∈ I̊ , the inte-
rior of I . If g : � → [a, b] is Lebesgue μ-measurable on � and � ◦ g, g ∈ L(�,μ), then

∣
∣
∣
∣

∫

�

� ◦ g dμ – �(x) – λ

(∫

�

g dμ – x
)∣

∣
∣
∣

≤
∫

�

|g – x|∥∥�′(( – �)x + �g
)

– λ
∥
∥

[,], dμ

≤

⎧
⎪⎨

⎪⎩

‖g – x‖�,∞‖‖�′(( – �)x + �g) – λ‖[,],‖�,,
‖g – x‖�,p‖‖�′(( – �)x + �g) – λ‖[,],‖�,q,
‖g – x‖�,‖‖�′(( – �)x + �g) – λ‖[,],‖�,∞,

p > ,

p

+

q

= 

for any λ ∈ C and x ∈ [a, b]. Here, � denotes the identity function on [, ], namely �(t) = t,
for t ∈ [, ].

Inequalities of Jensen type and Ostrowski type are obtained by setting x =
∫
�

g dμ and
λ = , respectively, in Proposition . Further results on inequalities for functions with
bounded derivatives and applications for f -divergence measures in information theory are
also given in []. Similar inequalities are given for: (i) functions with derivatives that are
of bounded variation and Lipschitz continuous in []; and (ii) functions which absolute
values of the derivatives are convex in []. In [], new inequalities of Jensen-Ostrowski
type are established by obtaining bounds for the magnitude of

∫

�

(f ◦ g) dμ – f (ζ ) –
∫

�

(g – ζ )f ′ ◦ g dμ +


λ

∫

�

(g – ζ ) dμ, ζ ∈ [a, b]

for various assumptions on the absolutely continuous function f : [a, b] → C, a μ-mea-
surable function g and λ ∈ C.

In this paper, we provide new inequalities of Jensen-Ostrowski type by studying the mag-
nitude of:

∫

�

f ◦ g dμ – f (ζ ) –
(∫

�

g dμ – ζ

)

f ′(ζ ) –


λ

∫

�

(g – ζ ) dμ, ζ ∈ [a, b],

following our previous results in []. Our results in this paper stem on the estimate ob-
tained by utilising the Taylor approximation with integral remainders (cf. Lemma  of Sec-
tion ).

We present our main results in Section . We obtain inequalities with bounds involving
the p-norms ( ≤ p ≤ ∞), as well as inequalities for functions with bounded and convex
second derivatives. Applications for f -divergence measure are provided in Section .

In Section , we discuss some special cases of our results. We provide a generalised
version of the Ostrowski inequality (.) (cf. Proposition ) in the measure-theoretic (and
probabilistic) form in Remark . We also obtain a result on the discrepancy in Jensen’s
inequality (cf. inequality (.)), without the assumption of convexity. We connect this re-
sult with those of Costarelli and Spigler [] (cf. Proposition ) in Remark . Costarelli and
Sprigler noted that the bound in (.) is better than (.) due to a stronger assumption of
C-smoothness. Under the assumptions of Proposition , our result gives a better upper
bound than (.), although (.) still gives the better upper bound. However, our result
holds in a more general setting, that is, for differentiable functions with absolutely contin-
uous derivatives, in a measure-theoretic (and probabilistic) form.
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2 Some estimates
We start with the following lemma to assist us in our calculations throughout the paper.

Lemma  Let f : I → C be a differentiable function on I̊ , f ′ : [a, b] ⊂ I̊ → C is absolutely
continuous on [a, b] and ζ ∈ [a, b]. If g : � → [a, b] is Lebesgue μ-measurable on � such
that f ◦ g, g, (g – ζ ) ∈ L(�,μ), with

∫
�

dμ = , then

∫

�

f ◦ g dμ – f (ζ ) –
(∫

�

g dμ – ζ

)

f ′(ζ ) –


λ

∫

�

(g – ζ ) dμ

=
∫

�

(g – ζ )
(∫ 


( – s)

[
f ′′(( – s)ζ + sg

)
– λ

]
ds

)

dμ

=
∫ 


( – s)

(∫

�

(g – ζ )[f ′′(( – s)ζ + sg
)

– λ
]

dμ

)

ds (.)

for any λ ∈C.

Proof Since f ′ is absolutely continuous function, f ′′ exists almost everywhere and by
Taylor’s formula with integral remainder we have

f (x) = f (ζ ) + (x – ζ )f ′(ζ ) + (x – ζ )
∫ 


( – s)f ′′(( – s)ζ + sx

)
ds (.)

for any ζ , x ∈ [a, b]. We observe that for λ ∈C we have

(x – ζ )
∫ 


( – s)

[
f ′′(( – s)ζ + sx

)
– λ

]
ds

= (x – ζ )
∫ 


( – s)f ′′(( – s)ζ + sx

)
ds – (x – ζ )λ

∫ 


( – s) ds

= (x – ζ )
∫ 


( – s)f ′′(( – s)ζ + sx

)
ds –




(x – ζ )λ (.)

and by (.) we get

f (x) = f (ζ ) + (x – ζ )f ′(ζ ) +


λ(x – ζ )

+ (x – ζ )
∫ 


( – s)

[
f ′′(( – s)ζ + sx

)
– λ

]
ds

for any ζ , x ∈ [a, b] and λ ∈C. Now, if we replace x with g(t) ∈ [a, b] we get

f
(
g(t)

)
= f (ζ ) +

(
g(t) – ζ

)
f ′(ζ ) +



λ
(
g(t) – ζ

)

+
(
g(t) – ζ

)
∫ 


( – s)

[
f ′′(( – s)ζ + sg(t)

)
– λ

]
ds (.)

for any ζ ∈ [a, b], t ∈ � and λ ∈C. By integrating (.) on � and using the fact that
∫
�

dμ =
, we obtain the first result in (.) by rearranging the terms. The second part follows by
Fubini’s theorem. �
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We denote by σ (g), the dispersion of a μ-measurable function g on �, that is,

σ (g) :=
∫

�

g dμ –
(∫

�

g dμ

)

=
∫

�

(

g –
∫

�

g dμ

)

dμ.

In what follows, we have a particular case of Lemma .

Corollary  Under the assumptions of Lemma , we have the following identities when
ζ =

∫
�

g dμ:

∫

�

f ◦ g dμ – f
(∫

�

g dμ

)

–


λσ (g)

=
∫

�

(

g –
∫

�

g dμ

)(∫ 


( – s)

[

f ′′
(

( – s)
∫

�

g dμ + sg
)

– λ

]

ds
)

dμ

=
∫ 


( – s)

(∫

�

(

g –
∫

�

g dμ

)[

f ′′
(

( – s)
∫

�

g dμ + sg
)

– λ

]

dμ

)

ds (.)

for any λ ∈C.

Remark  Following the main idea of Costarelli and Spigler [], one may obtain another
estimates by considering the mean-value form of the remainder in (.)

f (x) = f (ζ ) + (x – ζ )f ′(ζ ) +



f ′′(ξ )(x – ζ ), (.)

where ξ is between x and ζ . By setting x = g(t), and integrate (.) on �, we obtain

∫

�

f ◦ g dμ = f (ζ ) + f ′(ζ )
(∫

�

g dμ – ζ

)

+



∫

�

f ′′(ξ )(g – ζ ) dμ, (.)

where ξ = ξ (t) is between g(t) and ζ .
Let ϕ : I → R be a real-valued convex function, where I is a connected bounded set in

R, and f : [, ] → I a real-valued nonnegative function where f ∈ L(, ). Suppose that ϕ

is a C function. Set f ≡ ϕ, g ≡ f , and ζ = c = f (x) (x can be chosen arbitrarily such that
f (x) ∈ I̊) in (.), we have

∫ 


ϕ
(
f (x)

)
dx

= ϕ(c) + ϕ′(c)
∫ 



(
f (x) – c

)
dx +




∫ 


ϕ′′(c∗(x)

)(
g(x) – c

) dx,

where c∗(x) is between f (x) and ζ = f (x). This estimate is given in the paper by Costarelli
and Spigler [], p. to investigate the sharpness of the Jensen inequality (cf. Proposition ).

3 Main results
In this section, we present our main results on the Jensen-Ostrowski type inequalities for
various cases. We start by introducing the following notation:

‖k‖�,p :=

{
(
∫
�

|k(t)|p dμ(t))/p, p ≥ , k ∈ Lp(�,μ),
ess supt∈� |k(t)|, p = ∞, k ∈ L∞(�,μ)
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and

‖f ‖[,],p :=

{
(
∫ 

 |f (s)|p ds)/p, p ≥ , f ∈ Lp([, ]),
ess sups∈[,] |f (s)|, p = ∞, f ∈ L∞([, ]).

We denote by �, the identity function on [, ], namely, �(t) = t (t ∈ [, ]); and for t ∈ �,
ζ ∈ [a, b] and λ ∈C, we have

ess sup
s∈[,]

∣
∣f ′′(( – s)ζ + sg(t)

)
– λ

∣
∣ =

∥
∥f ′′(( – �)ζ + �g

)
– λ

∥
∥

[,],∞.

We state the first of our main results, for which the bounds are given in terms of the
p-norms.

Theorem  Let f : I → C be a differentiable function on I̊ , f ′ : [a, b] ⊂ I̊ → C is absolutely
continuous on [a, b] and ζ ∈ [a, b]. If g : � → [a, b] is Lebesgue μ-measurable on � such
that f ◦ g, g, (g – ζ ) ∈ L(�,μ), with

∫
�

dμ = , then for any λ ∈C,

∣
∣
∣
∣

∫

�

f ◦ g dμ – f (ζ ) –
(∫

�

g dμ – ζ

)

f ′(ζ ) –


λ

∫

�

(g – ζ ) dμ

∣
∣
∣
∣

≤ 


∫

�

(g – ζ )∥∥f ′′(( – �)ζ + �g
)

– λ
∥
∥

[,],∞ dμ

≤

⎧
⎪⎨

⎪⎩


‖(g – ζ )‖�,∞‖‖f ′′(( – �)ζ + �g) – λ‖[,],∞‖�,,

‖(g – ζ )‖�,p‖‖f ′′(( – �)ζ + �g) – λ‖[,],∞‖�,q,

‖(g – ζ )‖�,‖‖f ′′(( – �)ζ + �g) – λ‖[,],∞‖�,∞,

p > ,

p

+

q

= . (.)

Proof Taking the modulus in (.), we have

∣
∣
∣
∣

∫

�

f ◦ g dμ – f (ζ ) –
(∫

�

g dμ – ζ

)

f ′(ζ ) –


λ

∫

�

(g – ζ ) dμ

∣
∣
∣
∣

≤
∫ 


( – s)

(∫

�

(g – ζ )∣∣f ′′(( – s)ζ + sg
)

– λ
∣
∣dμ

)

ds

≤
∫ 


( – s)

(∫

�

(g – ζ )∥∥f ′′(( – �)ζ + �g
)

– λ
∥
∥

[,],∞ dμ

)

ds

=
∫ 


( – s) ds

(∫

�

(g – ζ )∥∥f ′′(( – �)ζ + �g
)

– λ
∥
∥

[,],∞ dμ

)

=



∫

�

(g – ζ )∥∥f ′′(( – �)ζ + �g
)

– λ
∥
∥

[,],∞ dμ. (.)

The proof is completed by utilising Hölder’s inequality. �

For the next result, we need the following notation and proposition: for γ ,� ∈ C and
[a, b] an interval of real numbers, define the sets of complex-valued functions []

Ū[a,b](γ ,�) :=
{

h : [a, b] →C|Re
[(

� – h(t)
)(

h(t) – γ̄
)] ≥  for a.e. t ∈ [a, b]

}
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and

�̄[a,b](γ ,�) :=
{

h : [a, b] → C

∣
∣
∣

∣
∣
∣
∣h(t) –

γ + �



∣
∣
∣
∣ ≤ 


|� – γ | for a.e. t ∈ [a, b]

}

.

The following representation results may be stated [].

Proposition  For any γ ,� ∈ C and γ = �, we have
(i) Ū[a,b](γ ,�) and �̄[a,b](γ ,�) are nonempty, convex and closed sets;

(ii) Ū[a,b](γ ,�) = �̄[a,b](γ ,�);
(iii) Ū[a,b](γ ,�) = {h : [a, b] →C|(Re(�) – Re(h(t)))(Re(h(t)) – Re(γ )) + (Im(�) –

Im(h(t)))(Im(h(t)) – Im(γ )) ≥  for a.e. t ∈ [a, b]}.

We have the following Jensen-Ostrowski inequality for functions with bounded second
derivatives.

Theorem  Let f : I →C be a differentiable function on I̊ , f ′ : [a, b] ⊂ I̊ →C is absolutely
continuous on [a, b] and ζ ∈ [a, b]. For some γ ,� ∈C, γ = �, assume that f ′′ ∈ Ū[a,b](γ ,�) =
�̄[a,b](γ ,�). If g : � → [a, b] is Lebesgue μ-measurable on � such that f ◦ g, g, (g – ζ ) ∈
L(�,μ), with

∫
�

dμ = , then
∣
∣
∣
∣

∫

�

(f ◦ g) dμ – f (ζ ) –
(∫

�

g dμ – ζ

)

f ′(ζ ) –
γ + �



∫

�

(g – ζ ) dμ

∣
∣
∣
∣

≤ 


|� – γ |
[

σ (g) +
(∫

�

g dμ – ζ

)]

. (.)

In particular, we have the following Ostrowski type inequality:
∣
∣
∣
∣

∫

�

(f ◦ g) dμ – f
(

a + b


)

–
(∫

�

g dμ –
a + b



)

f ′
(

a + b


)

–
γ + �



∫

�

(

g –
a + b



)

dμ

∣
∣
∣
∣

≤ 


|� – γ |
[

σ (g) +
(∫

�

g dμ –
a + b



)]

, (.)

and we have the following Jensen type inequality:
∣
∣
∣
∣

∫

�

(f ◦ g) dμ – f
(∫

�

g dμ

)

–
γ + �


σ (g)

∣
∣
∣
∣ ≤ 


|� – γ |σ (g). (.)

Proof By equality (.), for λ = γ +�

 we have
∫

�

(f ◦ g) dμ – f (ζ ) –
(∫

�

g dμ – ζ

)

f ′(ζ ) –
γ + �



∫

�

(g – ζ ) dμ

=
∫

�

[

(g – ζ )
∫ 


( – s)

[

f ′′(( – s)ζ + sg
)

–
γ + �



]

ds
]

dμ. (.)

Since f ′′ ∈ �̄[a,b](γ ,�), we have
∣
∣
∣
∣f

′′(( – s)ζ + sg
)

–
γ + �



∣
∣
∣
∣ ≤ 


|� – γ | (.)
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for almost every s ∈ [, ] and any t ∈ �. Multiply (.) with s >  and integrate over [, ],
we obtain

∫ 


( – s)

∣
∣
∣
∣f

′′(( – s)ζ + sg
)

–
γ + �



∣
∣
∣
∣ds ≤ 


|� – γ |

∫ 


( – s) ds =




|� – γ | (.)

for any t ∈ �.
Taking the modulus of (.), we get the following, by (.):

∣
∣
∣
∣

∫

�

(f ◦ g) dμ – f (ζ ) –
(∫

�

g dμ – ζ

)

f ′(ζ ) –
γ + �



∫

�

(g – ζ ) dμ

∣
∣
∣
∣

≤
∫

�

[

(g – ζ )
∫ 


( – s)

∣
∣
∣
∣f

′′(( – s)ζ + sg
)

–
γ + �



∣
∣
∣
∣ds

]

dμ

≤ 


|� – γ |
∫

�

(g – ζ ) dμ,

and the proof is completed. We also note that

∫

�

(g – ζ ) dμ =
∫

�

(

g –
∫

�

g dμ +
∫

�

g dμ – ζ

)

dμ

=
∫

�

(

g –
∫

�

g dμ

)

dμ +
(∫

�

g dμ – ζ

)

= σ (g) +
(∫

�

g dμ – ζ

)

. (.)

We obtain (.) and (.), by setting ζ = (a + b)/ and ζ =
∫
�

g dμ, respectively. �

Remark  If f ′ is convex in Theorem , then γ = f ′′
+ (a) and � = f ′′

– (b).

We recall the following definition.

Definition  Let h : I ⊂R →R be a real-valued function. Then:
() h is convex, if for any x, y ∈ I and s ∈ [, ], we have

h
(
( – s)x + sy

) ≤ ( – s)h(x) + sh(y).

() h is quasi-convex, if for any x, y ∈ I and s ∈ [, ], we have

h
(
( – s)x + sy

) ≤ max
{

h(x), h(y)
}

.

() h is log-convex, if for any x, y ∈ I and s ∈ [, ], we have

h
(
( – s)x + sy

) ≤ h(x)–sh(y)s.

() For a fixed q ∈ (, ], h is q-convex, if for any x, y ∈ I and s ∈ [, ], we have

h
(
( – s)x + sy

) ≤ ( – s)qh(x) + sqh(y).
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We refer the reader to the paper by Dragomir [], for further background on these
notions of convexity.

In the next theorem, we assume that |f ′′| satisfies some convexity properties.

Theorem  Let f : I →C be a differentiable function on I̊ , f ′ : [a, b] ⊂ I̊ →C is absolutely
continuous on [a, b] and ζ ∈ [a, b]. Suppose that g : � → [a, b] is Lebesgue μ-measurable
on � such that f ◦ g, g, (g – ζ ) ∈ L(�,μ), with

∫
�

dμ = .
(i) If |f ′′| is convex, then we have

∣
∣
∣
∣

∫

�

(f ◦ g) dμ – f (ζ ) –
(∫

�

g dμ – ζ

)

f ′(ζ )
∣
∣
∣
∣

≤ 


[
∣
∣f ′′(ζ )

∣
∣
∫

�

(g – ζ ) dμ +



∫

�

(g – ζ )∣∣f ′′ ◦ g
∣
∣dμ

]

. (.)

(ii) If |f ′′| is quasi-convex, then we have
∣
∣
∣
∣

∫

�

(f ◦ g) dμ – f (ζ ) –
(∫

�

g dμ – ζ

)

f ′(ζ )
∣
∣
∣
∣

≤ 


∫

�

(g – ζ ) max
{∣∣f ′′(ζ )

∣
∣,

∣
∣f ′′ ◦ g

∣
∣}dμ. (.)

(iii) If |f ′′| is log-convex, then we have
∣
∣
∣
∣

∫

�

(f ◦ g) dμ – f (ζ ) –
(∫

�

g dμ – ζ

)

f ′(ζ )
∣
∣
∣
∣

≤
∫

�

(g – ζ )

×
∣
∣
∣
∣
–|f ′′(ζ )| + |f ′′ ◦ g| + |f ′′(ζ )|[log(|f ′′(ζ )|) – log(|f ′′ ◦ g|)]

[log(|f ′′(ζ )|) – log(|f ′′ ◦ g|)]

∣
∣
∣
∣dμ. (.)

(iv) If |f ′′| is q-convex (for a fixed q ∈ (, ]), then we have
∣
∣
∣
∣

∫

�

(f ◦ g) dμ – f (ζ ) –
(∫

�

g dμ – ζ

)

f ′(ζ )
∣
∣
∣
∣

≤ 
(q + )

[∣
∣f ′′(ζ )

∣
∣
∫

�

(g – ζ ) dμ +


q + 

∫

�

(g – ζ )∣∣f ′′ ◦ g
∣
∣dμ

]

. (.)

Proof (i) If |f ′′| is convex, then

∣
∣f ′′(( – s)ζ + sg(t)

)∣
∣ ≤ ( – s)

∣
∣f ′′(ζ )

∣
∣ + s

∣
∣f ′′(g(t)

)∣
∣ for all t ∈ �,

which implies that

∫ 


( – s)

∣
∣f ′′(( – s)ζ + sg(t)

)∣
∣ds

≤
[∫ 


( – s) ds

]
∣
∣f ′′(ζ )

∣
∣ +

[∫ 


s( – s) ds

]
∣
∣f ′′(g(t)

)∣∣

=


∣
∣f ′′(ζ )

∣
∣ +




∣
∣f ′′(g(t)

)∣∣ for all t ∈ �.
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Thus,
∫

�

∣
∣
∣
∣(g – ζ )

∫ 


( – s)

[
f ′′(( – s)ζ + sg(t)

)]
ds

∣
∣
∣
∣dμ

≤ 

∣
∣f ′′(ζ )

∣
∣
∫

�

(g – ζ ) dμ +



∫

�

(g – ζ )∣∣f ′′ ◦ g
∣
∣dμ.

The proof is completed by (.) with λ = .
(ii) If |f ′′| is quasi-convex, then

∣
∣f ′′(( – s)ζ + sg(t)

)∣
∣ ≤ max

{∣
∣f ′′(ζ )

∣
∣,

∣
∣f ′′(g(t)

)∣
∣
}

for all t ∈ �,

which implies that

∫ 


( – s)

∣
∣f ′′(( – s)ζ + sg(t)

)∣∣ds

≤
[∫ 


( – s) ds

]

max
{∣
∣f ′′(ζ )

∣
∣,

∣
∣f ′′(g(t)

)∣
∣
}

=



max
{∣∣f ′′(ζ )

∣
∣,

∣
∣f ′′(g(t)

)∣∣} for all t ∈ �.

Thus,

∫

�

∣
∣
∣
∣(g – ζ )

∫ 


( – s)

[
f ′′(( – s)ζ + sg(t)

)]
ds

∣
∣
∣
∣dμ

≤ 


∫

�

(g – ζ ) max
{∣
∣f ′′(ζ )

∣
∣,

∣
∣f ′′ ◦ g

∣
∣
}

dμ.

The proof is completed by (.) with λ = .
(iii) If |f ′′| is log-convex, then

∣
∣f ′′(( – s)ζ + sg(t)

)∣
∣ ≤ ∣

∣f ′′(ζ )
∣
∣–s∣∣f ′′(g(t)

)∣
∣s for all t ∈ �,

which implies that

∫ 


( – s)

∣
∣f ′′(( – s)ζ + sg(t)

)∣∣ds

≤
[∫ 


( – s)

∣
∣f ′′(ζ )

∣
∣–s∣∣f ′′(g(t)

)∣
∣s ds

]

=
–|f ′′(ζ )| + |f ′′(g(t))| + |f ′′(ζ )|[log(|f ′′(ζ )|) – log(|f ′′(g(t))|)]

[log(|f ′′(ζ )|) – log(|f ′′(g(t))|)]

for all t ∈ �. Thus,

∫

�

∣
∣
∣
∣(g – ζ )

∫ 


( – s)

[
f ′′(( – s)ζ + sg(t)

)]
ds

∣
∣
∣
∣dμ

≤
∫

�

(g – ζ )
∣
∣
∣
∣
–|f ′′(ζ )| + |f ′′ ◦ g| + |f ′′(ζ )|[log(|f ′′(ζ )|) – log(|f ′′ ◦ g|)]

[log(|f ′′(ζ )|) – log(|f ′′ ◦ g|)]

∣
∣
∣
∣dμ.

The proof is completed by (.) with λ = .
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(iv) If |f ′′| is q-convex (for a fixed q ∈ (, ]), then
∣
∣f ′′(( – s)ζ + sg

)∣
∣ ≤ ( – s)q∣∣f ′′(ζ )

∣
∣ + sq∣∣f ′′(g(t)

)∣
∣ for all t ∈ �,

which implies that
∫ 


( – s)

∣
∣f ′′(( – s)ζ + sg(t)

)∣∣ds

≤
[∫ 


( – s)q+ ds

]∣
∣f ′′(ζ )

∣
∣ +

[∫ 


( – s)sq ds

]∣
∣f ′′(g(t)

)∣
∣

=


q + 
∣
∣f ′′(ζ )

∣
∣ +


(q + )(q + )

∣
∣f ′′(g(t)

)∣
∣ for all t ∈ �.

Thus,
∫

�

∣
∣
∣
∣(g – ζ )

∫ 


( – s)

[
f ′′(( – s)ζ + sg(t)

)]
ds

∣
∣
∣
∣dμ

≤ 
q + 

∣
∣f ′′(ζ )

∣
∣
∫

�

(g – ζ ) dμ +


(q + )(q + )

∫

�

(g – ζ )∣∣f ′′ ◦ g
∣
∣dμ.

The proof is completed by (.) with λ = . �

4 Generalised Ostrowski’s inequality and bounds for the discrepancy in
Jensen’s inequality

In this section, we provide a generalised version of the Ostrowski inequality (.) of Propo-
sition , as well as bounds for the discrepancy in Jensen’s integral inequality. We start with
the following theorem.

Theorem  Let f : I →C be a differentiable function on I̊ , f ′ : [a, b] ⊂ I̊ →C is absolutely
continuous on [a, b] and ζ ∈ [a, b]. If g : � → [a, b] is Lebesgue μ-measurable on � such
that f ◦ g, g, (g – ζ ) ∈ L(�,μ), with

∫
�

dμ = , then we have the following Ostrowski type
inequality:

∣
∣
∣
∣

∫

�

(f ◦ g) dμ – f (ζ ) –
(∫

�

g dμ – ζ

)

f ′(ζ )
∣
∣
∣
∣

≤ 

∥
∥f ′′∥∥

[a,b],∞

[

σ (g) +
(∫

�

g dμ – ζ

)]

. (.)

We also have the following Jensen type inequality:
∣
∣
∣
∣

∫

�

(f ◦ g) dμ – f
(∫

�

g dμ

)∣
∣
∣
∣ ≤ 


∥
∥f ′′∥∥

[a,b],∞σ (g), (.)

which is the best inequality one can get from (.).

Proof We have from (.) with λ = ,
∣
∣
∣
∣

∫

�

(f ◦ g) dμ – f (ζ ) –
(∫

�

g dμ – ζ

)

f ′(ζ )
∣
∣
∣
∣

≤ 


∫

�

(g – ζ )∥∥f ′′(( – �)ζ + �g
)∥
∥

[,],∞ dμ.
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For any t ∈ � and almost every s ∈ [, ], we have

∣
∣f ′′(( – s)ζ + sg(t)

)∣
∣ ≤ ess sup

u∈[a,b]

∣
∣f ′′(u)

∣
∣ =

∥
∥f ′′∥∥

[a,b],∞,

which implies that

∥
∥f ′′(( – �)ζ + �g

)∥∥
[,],∞ = ess sup

s∈[,]

∣
∣f ′′(( – s)ζ + sg(t)

)∣∣ ≤ ∥
∥f ′′∥∥

[a,b],∞.

Therefore, we have
∣
∣
∣
∣

∫

�

(f ◦ g) dμ – f (ζ ) –
(∫

�

g dμ – ζ

)

f ′(ζ )
∣
∣
∣
∣ ≤ 


∥
∥f ′′∥∥

[a,b],∞

∫

�

(g – ζ ) dμ.

This proves (.). Note the use of (.). By choosing ζ =
∫
�

g dμ in (.), we obtain
(.). �

Remark  (Ostrowski type inequality) We recall the quantity

∫

�

(g – ζ ) dμ =
∫

�

(

g –
∫

�

g dμ

)

dμ +
(∫

�

g dμ – ζ

)

. (.)

In the case that � = [a, b], g : [a, b] → [a, b] is defined by g(t) = t and μ(t) = t
b–a , we have

∫

�

g dμ =


b – a

∫ b

a
t dt =

a + b


,

and (.) becomes

∫

�

(

g –
∫

�

g dμ

)

dμ +
(∫

�

g dμ – ζ

)

=


b – a

∫ b

a

(

t –
a + b



)

dt +
(

ζ –
a + b



)

=
(b – a)


+

(

ζ –
a + b



)

.

Under this assumption, the left-hand side of (.) becomes
∣
∣
∣
∣


b – a

∫ b

a
f (t) dt – f (ζ ) –

(
a + b


– ζ

)

f ′(ζ )
∣
∣
∣
∣

and the right-hand side of (.) becomes



∥
∥f ′′∥∥

[a,b],∞

[∫

�

(

g –
∫

�

g dμ

)

dμ +
(∫

�

g dμ – ζ

)]

=


∥
∥f ′′∥∥

[a,b],∞

[



(b – a) +

(

ζ –
a + b



)]

.

Thus, (.) becomes
∣
∣
∣
∣


b – a

∫ b

a
f (t) dt – f (ζ ) +

(

ζ –
a + b



)

f ′(ζ )
∣
∣
∣
∣ ≤

[



+




(ζ – a+b
 )

(b – a)

]

(b – a)∥∥f ′′∥∥
[a,b],∞
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for ζ ∈ [a, b], which recovers the result by Cerone et al. [] (cf. Dragomir and Rassias [],
p.), by multiplying the above inequality by (b – a) and setting ζ = x ∈ [a, b]. We conclude
that the Ostrowski inequality (.) is a generalised version of (.) in a measure-theoretic
(probabilistic) form.

Remark  We may obtained the results in Theorem  from (.), which uses the mean-
value form of the remainder, so that

∣
∣
∣
∣

∫

�

f ◦ g dμ – f (ζ ) – f ′(ζ )
(∫

�

g dμ – ζ

)∣
∣
∣
∣

≤ 


∫

�

∣
∣f ′′(ξ )

∣
∣(g – ζ ) dμ

≤ 

∥
∥f ′′∥∥

[a,b],∞

∫

�

(g – ζ ) dμ

=


∥
∥f ′′∥∥

[a,b],∞

(

σ (g) +
(∫

�

g dμ – ζ

))

. (.)

Let ϕ : I → R be a real-valued convex function, where I is a connected bounded set in R

and f : [, ] → I a real-valued nonnegative function where f ∈ L(, ). Suppose that ϕ is
a C function. Set f ≡ ϕ, g ≡ f , and ζ =

∫ 
 g(t) dt in (.), we have

∣
∣
∣
∣

∫ 


ϕ
(
f (x)

)
dx – ϕ

(∫ 


f (x) dx

)∣
∣
∣
∣

≤ 

∥
∥ϕ′′∥∥

I,∞

∫ 



(

f (x) –
∫ 


f (x) dx

)

dt,

where I is the domain of ϕ′′. Furthermore, if ϕ is convex and f is continuous, then
the mean-value theorem for integration asserts that there exists x ∈ [, ] such that
∫ 

 f (t) dt = f (x) =: c, and thus

 ≤
∫ 


ϕ
(
f (x)

)
dx – ϕ

(∫ 


f (x) dx

)

≤ 

∥
∥ϕ′′∥∥

I,∞

∫ 



(
f (x) – c

) dx

=


∥
∥ϕ′′∥∥

I,∞‖f – c‖
[,],

≤ 

∥
∥ϕ′′∥∥

I,∞
(‖f – c‖

[,], + ‖f – c‖
[,],

)
, (.)

where the last estimate is given by Costarelli and Spigler in (.). Here, our result is shown
to be sharper than the result by Costarelli and Spigler (.). When ϕ is assumed to be
C-smooth, the result (.) by Costarelli and Spigler is sharper than our estimate:

 ≤
∫ 


ϕ
(
f (x)

)
dx – ϕ

(∫ 


f (x) dx

)

≤ 

∥
∥ϕ′′∥∥

I,∞‖f – c‖
[,], –




inf
I

ϕ′′
[∫ 



(
f (x) – c

)
dx

]

≤ 

∥
∥ϕ′′∥∥

I,∞‖f – c‖
[,],.
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Costarelli and Spigler provide an example to compare the two bounds given in (.) and
(.) [], Example ., p.. In what follows, we recall the example and provide a comparison
to the bound obtained in (.). Let ϕ(y) = – sinπy and f (x) = x. The true discrepancy E :=
∫ 

 ϕ(f (x)) dx – ϕ(
∫ 

 f (x) dx) between the two sides of the Jensen inequality is E ≈ ..
Using (.), the estimate for E is: E ≤ . . . . . Noting that infI ϕ′′[

∫ 
 (f (x) – c) dx] = ,

the estimate for E by using (.) is the same as that of (.), which is closer to the true
discrepancy, that is,

E ≤ 

∥
∥ϕ′′∥∥

I,∞‖f – c‖
[,], =

π



[



–



+



]

≈ ..

Remark  The assumption of convexity on |f ′′| provides refinements for (.) (cf. Theo-
rem ), as shown in the following: If |f ′′| is convex, then

∣
∣
∣
∣

∫

�

(f ◦ g) dμ – f
(∫

�

g dμ

)∣
∣
∣
∣

≤ 


[∣
∣
∣
∣f

′′
(∫

�

g dμ

)∣
∣
∣
∣σ

(g) +



∫

�

(

g –
∫

�

g dμ

)∣
∣f ′′ ◦ g

∣
∣dμ

]

≤ 


[∥
∥f ′′∥∥

[a,b],∞σ (g) +


∥
∥f ′′∥∥

[a,b],∞

∫

�

(

g –
∫

�

g dμ

)

dμ

]

=


∥
∥f ′′∥∥

[a,b],∞σ (g).

We give an example to the above comparison. Let f (t) = e–t and g(t) = t for t ∈ [, ]. The
true discrepancy in the Jensen inequality is

E =
∣
∣
∣
∣

∫ 


e–t dt – f

(∫ 


t dt

)∣
∣
∣
∣ =

e – 
e – e–/ ≈ ..

The estimate for the discrepancy given by Theorem  is

E ≤ 


max
{

e–t , t ∈ [, ]
}
∫ 



(

t –



)

dt =



e– ≈ ..

The estimate for the discrepancy given by Theorem  is closer to the true discrepancy,
that is,

E ≤ 


[∣
∣
∣
∣f

′′
(




)∣
∣
∣
∣

∫ 



(

t –



)

dt +



∫ 



(

t –



)

e–t dt
]

=



[



e–/ +




(
e – 

e

)]

≈ ..

5 Applications for f -divergence
In the same spirit to that of [], we apply our result to obtain inequalities for f -divergence
measures. Assume that a set � and the σ -finite measure μ are given. Consider the set of
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all probability densities on μ to be

P :=
{

p
∣
∣
∣p : � →R, p(t) ≥ ,

∫

�

p(t) dμ(t) = 
}

.

We recall the definition of some divergence measures which we use in this text. For other
divergence measures, we refer the readers to [–] and []. The Kullback-Leibler diver-
gence [] is defined as

DKL(p, q) :=
∫

�

p(t) log

[
p(t)
q(t)

]

dμ(t), p, q ∈P . (.)

The following is the definition of the χ-divergence:

Dχ (p, q) :=
∫

�

p(t)
[(

q(t)
p(t)

)

– 
]

dμ(t), p, q ∈P . (.)

The Csiszár f -divergence is defined as follows []:

If (p, q) :=
∫

�

p(t)f
[

q(t)
p(t)

]

dμ(t), p, q ∈P , (.)

where f is convex on (,∞). It is assumed that f (u) is zero and strictly convex at u = . The
Kullback-Leibler divergence and the χ-divergence are particular instances of the Csiszár
f -divergence. For the basic properties of the Csiszár f -divergence, we refer the reader to
[, ] and [].

Proposition  Let f : (,∞) → R be a differentiable convex function with the property
that f () = . Assume that p, q ∈P and there exists constants  < r <  < R < ∞ such that

r ≤ q(t)
p(t)

≤ R for μ-a.e. t ∈ �. (.)

If ζ ∈ [r, R] and f ′ is absolutely continuous on [r, R], then we have the inequalities

∣
∣If (p, q) – f (ζ ) – ( – ζ )f ′(ζ )

∣
∣ ≤ 


∥
∥f ′′∥∥

[r,R],∞
[
Dχ (p, q) + (ζ – )]. (.)

In particular, by choosing ζ = (r + R)/, we have

∣
∣
∣
∣If (p, q) – f

(
r + R



)

–
(

 –
r + R



)

f ′
(

r + R


)∣
∣
∣
∣

≤ 

∥
∥f ′′∥∥

[r,R],∞

[

Dχ (p, q) +
(

r + R


– 
)]

, (.)

and when ζ = ,

∣
∣If (p, q)

∣
∣ ≤ 


∥
∥f ′′∥∥

[r,R],∞Dχ (p, q). (.)
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Proof We choose g(t) = q(t)/p(t) and noting that
∫
�

p(t) dμ = , in inequality (.), we have
∣
∣
∣
∣

∫

�

f
(

q(t)
p(t)

)

p(t) dμ – f (ζ ) –
(∫

�

q(t) dμ – ζ

)

f ′(ζ )
∣
∣
∣
∣

=
∣
∣If (p, q) – f (ζ ) – ( – ζ )f ′(ζ )

∣
∣

≤ 

∥
∥f ′′∥∥

[r,R],∞

[∫

�

(
q(t)
p(t)

–
∫

�

q(t) dμ

)

p(t) dμ +
(∫

�

q(t) dμ – ζ

)]

=


∥
∥f ′′∥∥

[r,R],∞

[∫

�

(
q(t)
p(t)

– 
)

p(t) dμ + (ζ – )
]

=


∥
∥f ′′∥∥

[r,R],∞

[∫

�

(
q(t)
p(t)

– q(t) + p(t)
)

dμ + (ζ – )
]

=


∥
∥f ′′∥∥

[r,R],∞

[∫

�

q(t)
p(t)

dμ –  + (ζ – )
]

=


∥
∥f ′′∥∥

[r,R],∞

[∫

�

(
q(t)
p(t)

– p(t)
)

dμ + (ζ – )
]

=


∥
∥f ′′∥∥

[r,R],∞

[∫

�

(
q(t)
p(t)

– 
)

p(t) dμ + (ζ – )
]

=


∥
∥f ′′∥∥

[r,R],∞
[
Dχ (p, q) + (ζ – )];

and this completes the proof. �

Proposition  Under the assumptions of Proposition , if f ′ is convex or f ′′± exists, then we
have

∣
∣
∣
∣If (p, q) – f (ζ ) – ( – ζ )f ′(ζ ) +

f ′′
+ (r) + f ′′

– (R)


[
Dχ (p, q) + (ζ – )]

∣
∣
∣
∣

≤ 


∣
∣f ′′

– (R) – f ′′
+ (r)

∣
∣
[
Dχ (p, q) + (ζ – )] (.)

for ζ ∈ [r, R]. Some particular cases of interest are obtained by setting ζ = (r + R)/ and
ζ = .

Proof When f ′ is convex, we set γ = f ′′
+ (r) and � = f ′′

– (R) (cf. Remark ). For the case where
f ′′± exists, we set γ and � appropriately to the values of f ′′

+ (r) and f ′′
– (R), with γ ≤ �. Utilising

(.) for g(t) = q(t)/p(t) and the measure
∫
�

p(t) dμ = , we have
∣
∣
∣
∣

∫

�

f
(

q(t)
p(t)

)

p(t) dμ – f (ζ ) –
(∫

�

q(t) dμ – ζ

)

f ′(ζ )

+
f ′′
+ (r) + f ′′

– (R)


∫

�

(
q(t)
p(t)

– ζ

)

p(t) dμ

∣
∣
∣
∣

=
∣
∣
∣
∣If (p, q) – f (ζ ) – ( – ζ )f ′(ζ ) +

f ′′
+ (r) + f ′′

– (R)


[
Dχ (p, q) + (ζ – )]

∣
∣
∣
∣

≤ 


∣
∣f ′′

– (R) – f ′′
+ (r)

∣
∣
[∫

�

(
q(t)
p(t)

– 
)

p(t) dμ + (ζ – )
]

=



∣
∣f ′′

– (R) – f ′′
+ (r)

∣
∣
[
Dχ (p, q) + (ζ – )].
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Note that we make use of the following:

∫

�

(
q(t)
p(t)

– ζ

)

p(t) dμ =
∫

�

(
q(t)
p(t)

)

p(t) dμ –  + (ζ – )

=
∫

�

((
q(t)
p(t)

)

– 
)

p(t) dμ + (ζ – )

= Dχ (p, q) + (ζ – );

and this completes the proof. �

Example  If we consider the convex function f : (,∞) →R, f (t) = t log(t), then

If (p, q) =
∫

�

p(t)
q(t)
p(t)

log

(
q(t)
p(t)

)

dμ(t) =
∫

�

q(t) log

(
q(t)
p(t)

)

dμ(t) = DKL(q, p).

We have f ′(t) = log(t) +  and f ′′(t) = /t. By Proposition , we have the following inequal-
ities:

∣
∣DKL(q, p) – ζ log(ζ ) – ( – ζ )

(
log(ζ ) + 

)∣
∣

=
∣
∣DKL(q, p) –  + ζ – log(ζ )

∣
∣

≤ 


[

sup
x∈[r,R]


x

]
[
Dχ (p, q) + (ζ – )]

=


r
[
Dχ (p, q) + (ζ – )]

for all ζ ∈ [r, R]; and when ζ = ,

 ≤ DKL(q, p) ≤ 
r

Dχ (p, q). (.)

Furthermore, by Proposition , we have the inequalities:
∣
∣
∣
∣DKL(q, p) – log(ζ ) –  + ζ +

r + R
rR

[
Dχ (p, q) + (ζ – )]

∣
∣
∣
∣

≤ R – r
rR

[
Dχ (p, q) + (ζ – )]

for ζ ∈ [r, R]; and when ζ = ,
∣
∣
∣
∣DKL(q, p) +

r + R
rR

Dχ (p, q)
∣
∣
∣
∣ ≤ R – r

rR
Dχ (p, q). (.)

Example  If we consider the convex function f : (,∞) →R, f (t) = – log(t), then

If (p, q) = –
∫

�

p(t) log

(
q(t)
p(t)

)

dμ(t) =
∫

�

p(t) log

(
p(t)
q(t)

)

dμ(t) = DKL(p, q).

We have f ′(t) = –/t and f ′′(t) = /t, and we note that

∫

�

p(t)
q(t)

dμ = Dχ (q, p) + .
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By Proposition , we have the following inequalities:
∣
∣
∣
∣DKL(p, q) + log(ζ ) +


ζ

– 
∣
∣
∣
∣

≤ 


[

sup
x∈[r,R]


t

]
[
Dχ (p, q) + (ζ – )]

=


r

[
Dχ (p, q) + (ζ – )]

for all ζ ∈ [r, R]; and when ζ = ,

–


r Dχ (p, q) ≤  ≤ DKL(p, q) ≤ 
r Dχ (p, q). (.)

Recall the following inequality from []:

∣
∣DKL(p, q) – Dχ (q, p)

∣
∣ ≤ 

r Dχ (p, q),

or equivalently,

Dχ (q, p) –


r Dχ (p, q) ≤ DKL(p, q) ≤ Dχ (q, p) +


r Dχ (p, q). (.)

Thus, we have the following chain of inequalities:

–


r Dχ (p, q) ≤ Dχ (q, p) –


r Dχ (p, q) ≤ DKL(p, q)

≤ 
r Dχ (p, q) ≤ Dχ (q, p) +


r Dχ (p, q).

Furthermore, by Proposition , we have the inequalities:

∣
∣
∣
∣DKL(p, q) + log(ζ ) +


ζ

–  +
r + R

rR

[
Dχ (p, q) + (ζ – )]

∣
∣
∣
∣

≤ R – r

rR

[
Dχ (p, q) + (ζ – )]

for ζ ∈ [r, R]; and when ζ = ,

–
R – r

rR ≤ DKL(p, q) +
r + R

rR

[
Dχ (p, q)

] ≤ R – r

rR Dχ (p, q). (.)

Recall the following inequality from []:

∣
∣
∣
∣DKL(p, q) – Dχ (q, p) +

r + R

rR

[
Dχ (p, q)

]
∣
∣
∣
∣ ≤ R – r

rR Dχ (p, q),

or equivalently,

Dχ (q, p) –
R – r

rR Dχ (p, q) ≤ DKL(p, q) +
r + R

rR

[
Dχ (p, q)

]

≤ Dχ (q, p) +
R – r

rR Dχ (p, q). (.)
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Thus, we have the following chain of inequalities:

–
R – r

rR Dχ (p, q) ≤ Dχ (q, p) –
R – r

rR Dχ (p, q)

≤ DKL(p, q) +
r + R

rR

[
Dχ (p, q)

]

≤ R – r

rR Dχ (p, q)

≤ Dχ (q, p) +
R – r

rR Dχ (p, q).

6 Conclusions
We study the magnitude of:

∫

�

f ◦ g dμ – f (ζ ) –
(∫

�

g dμ – ζ

)

f ′(ζ ) –


λ

∫

�

(g – ζ ) dμ, ζ ∈ [a, b],

to provide new inequalities of Jensen-Ostrowski type. In Remark , we provide a gener-
alised version of inequality (.) (cf. Proposition ) in the measure-theoretic (and proba-
bilistic) form.

We obtain an inequality which gives a bound to the discrepancy in the Jensen integral
inequality:

∣
∣
∣
∣

∫

�

(f ◦ g) dμ – f
(∫

�

g dμ

)∣
∣
∣
∣ ≤ 


∥
∥f ′′∥∥

[a,b],∞σ (g)

in Theorem . In Remark , we consider a special case of the above inequality and compare
it to the results (inequalities (.) and (.)) by Costarelli and Spigler []. Our result gives
a better upper bound than (.), but (.) still gives the better upper bound, due to the
stronger assumption of C smoothness. Nevertheless, our result holds in a more general
setting (a measure-theoretic and probabilistic form).

We obtain inequalities with bounds involving the p-norms ( ≤ p ≤ ∞) in Theorem ,
inequalities for functions with bounded second derivatives in Theorem , and inequalities
for convex second derivatives in Theorem , with different types of convexity. In Remark ,
we show that the assumption of convexity gives refinement to the inequality in Theorem .
Finally, we apply these inequalities for f -divergence measure in information theory in Sec-
tion .
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