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Abstract
We introduce the notion of order generalised gradient, a generalisation of the notion
of subgradient, in the context of operator-valued functions. We state some operator
inequalities of Hermite-Hadamard and Jensen types. We discuss the connection
between the notion of order generalised gradient and the Gâteaux derivative of
operator-valued functions. We state a characterisation of operator convexity via an
inequality concerning the order generalised gradient.
MSC: 47A63; 46E40
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1 Background
Convex functions play a crucial role in many fields of mathematics, most prominently in
optimisation theory. There are two main important inequalities which characterise convex
functions, namely Jensen’s and Hermite-Hadamard’s inequalities. In  (), Jensen
defined convex functions as follows: f : I ⊂R →R is a convex function if and only if

f
(

a + b


)
≤ f (a) + f (b)


for any a, b ∈ I. ()

Inequality () is referred to as Jensen’s inequality. Hermite-Hadamard’s inequality provides
a refinement for Jensen’s inequality, namely, for a convex function f : I ⊂R→R,

f
(

a + b


)
≤ 

b – a

∫ b

a
f (x) dx ≤ f (a) + f (b)


for any a, b ∈ I. ()

We refer the reader to Section  for further details regarding these inequalities.
Similarly to the case of real-valued functions, the operator convexity can be charac-

terised by some operator inequalities. Hansen and Pedersen [] characterise operator con-
vexity via a non-commutative generalisation of Jensen’s inequality. If f is a real continuous
function on an interval I , andA(H) is the set of bounded self-adjoint operators on a Hilbert
space H with spectra in I , then f is operator convex if and only if

f

( n∑
i=

a∗
i xiai

)
≤

n∑
i=

a∗
i f (xi)ai
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for x, . . . , xn ∈ A(H) and a, . . . , an ∈ B(H) with
∑n

i= a∗
i ai = . We refer the reader to Sec-

tion  for further details regarding this characterisation.
One of the useful differential properties of convex functions is the fact that their one-

sided directional derivatives exist universally [, p.]. Just as the ordinary two-sided di-
rectional derivatives of a differentiable function can be described in terms of gradient vec-
tors, the one-sided directional derivatives can be described in terms of ‘subgradient’ vec-
tors [, p.]. A vector x∗ is said to be a subgradient of a convex function f : K ⊂R

n →R

at point x if

f (x) – f (y) ≥ x∗ · (x – y) for all y ∈ K . ()

This condition is referred to as the subgradient inequality [, p.]. If () holds for every
x ∈ K , then () characterises the convexity of f (cf. Eisenberg [, Theorem ]).

In this paper, we introduce the notion of order generalised gradient (cf. Section ) for
operator-valued functions, which is a generalisation of () (without the assumption of
convexity) in the settings of bounded self-adjoint operators on a Hilbert space. Further-
more, we state some inequalities of Hermite-Hadamard and Jensen types for the order
generalised gradient in Section . Finally, in Section , we state the connection between
the order generalised gradient and Gâteaux derivative of operator-valued functions. We
state a characterisation of convexity analogues to () in the context of operator-valued
functions.

2 Inequalities for convex functions
This section serves as a point of reference for known results regarding some inequalities
related to convex functions (both real-valued and operator-valued functions).

2.1 Jensen’s inequality
Jensen’s inequality for convex functions plays a crucial role in the theory of inequal-
ities due to the fact that other inequalities, such as the arithmetic-geometric mean,
Hölder, Minkowski and Ky Fan’s inequalities, can be obtained as particular cases of
it.

Let C be a convex subset of the linear space X and f be a convex function on C. If p =
(p, . . . , pn) is a probability sequence and x = (x, . . . , xn) ∈ Cn, then

f

( n∑
i=

pixi

)
≤

n∑
i=

pif (xi). ()

This inequality is referred to as Jensen’s inequality. Recently, Dragomir [] obtained the
following refinement of Jensen’s inequality:

f

( n∑
j=

pjxj

)
≤ min

k∈{,...,n}

[
( – pk)f

(∑n
j= pjxj – pkxk

 – pk

)
+ pkf (xk)

]

≤ 
n

[ n∑
k=

( – pk)f
(∑n

j= pjxj – pkxk

 – pk

)
+

n∑
k=

pkf (xk)

]
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≤ max
k∈{,...,n}

[
( – pk)f

(∑n
j= pjxj – pkxk

 – pk

)
+ pkf (xk)

]

≤
n∑

j=

pjf (xj), ()

where f , xk and pk are as defined above. For other refinements of Jensen’s inequality, we
refer the reader to Pečarić and Dragomir [] and Dragomir [].

The above result provides a different approach to the one that Pečarić and Dragomir []
obtained in 

f

( n∑
i=

pixi

)
≤

n∑
i,...,ik+=

pi . . . pik+ f
(

xi + · · · + xik+

k + 

)

≤
n∑

i,...,ik =

pi . . . pik f
(

xi + · · · + xik
k

)

≤ · · · ≤
n∑

i=

pif (xi) ()

for k ≥ , and p, x are as defined above.
If q, . . . , qk ≥  with

∑k
j= qj = , then the following refinement obtained in  by

Dragomir [] also holds:

f

( n∑
i=

pixi

)
≤

n∑
i,...,ik =

pi . . . pik f
(

xi + · · · + xik
k

)

≤
n∑

i,...,ik =

pi . . . pik f (qxi + · · · + qkxik+ )

≤
n∑

i=

pif (xi), ()

where  ≤ k ≤ n and p, x are as defined above.
For more refinements and applications related to the generalised triangle inequality,

the arithmetic-geometric mean inequality, the f -divergence measures, Ky Fan’s inequality,
etc., we refer the readers to [–] and [].

2.2 Hermite-Hadamard’s inequality
The following inequality also holds for any convex function f defined on R:

(b – a)f
(

a + b


)
≤

∫ b

a
f (x) dx ≤ (b – a)

f (a) + f (b)


, a, b ∈R. ()

It was first discovered by Hermite in  in the journal Mathesis []. However, this re-
sult was nowhere mentioned in the mathematical literature and was not widely known as
Hermite’s result [].

Beckenbach, a leading expert on the history and the theory of convex functions wrote
that this inequality was proven by Hadamard in  []. In , Mitrinović found Her-
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mite’s note in Mathesis []. Since () was known as Hadamard’s inequality, the inequality
is now commonly referred to as Hermite-Hadamard’s inequality [].

Hermite-Hadamard’s inequality has been extended in many different directions. One of
the extensions of this inequality is in the vector space settings. Firstly, we start with the
following definitions and notation: Let X be a vector space and x, y be two distinct vectors
in X. We define the segment generated by x and y to be the set

[x, y] :=
{

( – t)x + ty, t ∈ [, ]
}

.

For any real-valued function f defined on the segment [x, y], there exists an associated
function gx,y : [, ] →R with

gx,y(t) = f
[
( – t)x + ty

]
.

We remark that f is convex on [x, y] if and only if g is convex on [, ]. For any convex func-
tion defined on a segment [x, y] ⊂ X, we have the Hermite-Hadamard integral inequality
(cf. Dragomir [, p.] and Dragomir [, p.]):

f
(

x + y


)
≤

∫ 


f
[
( – t)x + ty

]
dt ≤ f (x) + f (y)


, x, y ∈ X, ()

which can be derived by the classical Hermite-Hadamard inequality () for the convex
function gx,y : [, ] → R. Consider the function f (x) = ‖x‖p (x ∈ X and  ≤ p < ∞), which
is convex on X, then we have the following norm inequality (derived from ()) [, p.]:

∥∥∥∥x + y


∥∥∥∥
p

≤
∫ 



∥∥( – t)x + ty
∥∥p dt ≤ ‖x‖p + ‖y‖p


()

for any x, y ∈ X.

2.3 Non-commutative generalisation of Jensen’s inequality
Hansen [] discussed Jensen’s operator inequality for operator monotone functions.
Motivated by Aujla’s work [] on the matrix convexity of functions of two variables,
Hansen [] characterised operator convex functions of two variables in terms of a non-
commutative generalisation of Jensen’s inequality (cf. [, Theorem .]). A simplified
proof of this result formulated for matrices is given in Aujla []. The case for several
variables is given in Hansen []. The case for self-adjoint elements in the algebra Mn of
n-square matrices is given in Hansen and Pedersen []. Finally, Hansen and Pedersen
[] presented a generalisation of the above results for self-adjoint operators defined on a
Hilbert space.

Theorem  We denote by B(H) the Banach algebra of all bounded linear operators on the
Hilbert space H . If f is a real continuous function on an interval I , and A(H) is the set of
bounded self-adjoint operators on a Hilbert space H with spectra in I , then the following
conditions are equivalent:

(i) f is operator convex;
(ii) f (

∑n
i= a∗

i xiai) ≤ ∑n
i= a∗

i f (xi)ai for x, . . . , xn ∈A(H) and a, . . . , an ∈ B(H) with∑n
i= a∗

i ai = ;
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(iii) f (v∗xv) ≤ v∗f (x)v for any x ∈A(H) and any isometry v ∈ B(H);
(iv) pf (pxp + s( – p))p ≤ pf (x)p for x ∈A(H), projection p ∈ B(H), every self-adjoint

operator x with spectrum in I and s ∈ I .

2.4 Subgradient inequality
Recall the following definition of a subgradient [].

Definition  A vector x∗ is said to be a subgradient of a convex function f : K ⊂R
n →R

at point x if

f (x) – f (y) ≥ x∗ · (x – y) for all y ∈ K .

The following theorem is a useful characterisation of convexity (cf. Eisenberg [, Theo-
rem ]).

Theorem  If U is a nonempty open subset of Rn, f : U → R is a differentiable function
on U , and K is a convex subset of U , then f is convex on K if and only if

f (x) – f (y) ≥ (x – y)T f ′(y) for all x, y ∈ K ()

where f ′(y) denotes the gradient of f at y.

This theorem has been generalised and employed in obtaining optimality conditions of
a non-differentiable minimax programming problem in complex spaces (cf. Lai and Liu
[]). Note that (x – y)T f ′(y) can be written as f ′(y) · (x – y), which can be interpreted as
the directional derivative of f at point y in x – y direction.

3 Order generalised gradient
Throughout the paper, we use the following notation. We denote by B(H) the Banach al-
gebra of all bounded linear operators on the Hilbert space (H , 〈·, ·〉), and by A(H) the linear
subspace of all self-adjoint operators on H . We denote by P+(H) ⊂A(H) the convex cone
of all positive definite operators defined on H , that is, P ∈P+(H) if and only if 〈Px, x〉 ≥ ,
and for all x ∈ H , 〈Px, x〉 =  implies x = . This gives a partial ordering (we refer to it as
the operator order) on A(H), where two elements A, B ∈A(H) satisfy A ≤ B if and only if
B – A ∈P+(H).

Definition  Let C be a convex set in A(H). A function f : C → A(H) has the function
∇f : C ×A(H) →A(H) as an order generalised gradient if

f (A) – f (B) ≥ ∇f (B, A – B) for any A, B ∈ C ()

in the operator order of A(H).

Remark  We remark that in (), if f is a real-valued differentiable function on an open
set U ⊂ R

n, and ∇f is the gradient of f , then () becomes (). We also note that there is
no assumption of convexity at this point. We discuss the convexity case in Section .
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Proposition  If Q ∈A(H) and f : A(H) →A(H), f (A) = QAQ, then

∇f (B, X) := Q(BX + XB)Q ()

is an order generalised gradient for f .

Proof Observe that BX + XB ∈A(H) and if P ∈A(H) then P(BX + XB)P ∈A(H). We need
to prove that

f (A) – f (B) ≥ ∇f (B, A – B)

for any A, B ∈A(H), that is,

QAQ – QBQ ≥ Q
[
B(A – B) + (A – B)B

]
Q. ()

Since

Q
[
B(A – B) + (A – B)B

]
Q = QBAQ – QBQ + QABQ – QBQ,

hence () is equivalent to

QAQ – QBQ ≥ QBAQ – QBQ + QABQ – QBQ

which is also equivalent to

Q(A – B)Q ≥ 

which always holds. This completes the proof. �

We denote by P(H) ⊂A(H) the convex cone of all nonnegative operators defined on H .

Proposition  If P ∈P(H), then the function f : A(H) →A(H), f (A) = APA has

∇f (B, X) := XPB + BPX ()

as an order generalised gradient.

Proof Observe that XPB + BPX ∈A(H). We need to prove that

APA – BPB ≥ (A – B)PB + BP(A – B)

= APB – BPB + BPA – BPB,

that is,

APA – APB – BPA + BPB ≥ .
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But APA – APB – BPA + BPB = (A – B)P(A – B) and since (A – B)P(A – B) ≥ , and this
completes the proof. �

Recall P+(H) ⊂ A(H) the convex cone of all positive definite operators defined on H ,
that is, P ∈P+(H) if and only if 〈Px, x〉 ≥ , and for all x ∈ H , 〈Px, x〉 =  implies x = .

Proposition  Let f : P+(H) →A(H) defined by

f (A) = QA–Q,

where Q ∈A(H). The function ∇f : P+(H) ×P+(H) →A(H) with

∇f (B, X) = –QB–XB–Q

is an order generalised gradient for f .

Proof For B ∈ P+(H), B– ∈ P+(H) then B–XB– ∈ P+(H) for any X ∈ P+(H) and thus
QB–XB–Q ∈P+(H) showing that ∇f (B, X) ∈A(H). We need to prove that

QA–Q – QB–Q ≥ –QB–(A – B)B–Q,

that is,

QA–(B – A)B–Q + QB–(A – B)B–Q ≥ 

or equivalently

QA–(B – A)B–Q – QB–(B – A)B–Q ≥ 

or

Q
(
A– – B–)(B – A)B–Q ≥ .

But

Q
(
A– – B–)(B – A)B–Q = Q

(
A– – B–)AA–(B – A)B–Q

= Q
(
A– – B–)A

(
A– – B–)Q ≥ ,

which is true since for A ∈P+(H) we have that

(
A– – B–)A

(
A– – B–) ≥ 

and Q ∈A(H). �
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4 Inequalities involving order generalised gradients
We start this section by the following definition.

Definition  An order generalised gradient ∇f : C ×A(H) →A(H) is
(i) operator convex if

∇f (B,αX + βY ) ≤ α∇f (B, X) + β∇f (B, Y )

for any B ∈ C , X, Y ∈A(H) and α,β ≥  with α + β = ;
(ii) operator sub-additive if

∇f (B, X + Y ) ≤ ∇f (B, X) + ∇f (B, Y )

for any B ∈ C and X, Y ∈A(H);
(iii) positive homogeneous if

∇f (B,αX) = α∇f (B, X)

for any B ∈ C , X ∈A(H) and α ≥ ;
(iv) operator linear if

∇f (B,αX + βY ) = α∇f (B, X) + β∇f (B, Y )

for any B ∈ C , X, Y ∈A(H) and α,β ∈R.

It can be seen that if ∇f (·, ·) is operator linear, then it is positive homogeneous and sub-
additive. If ∇f (·, ·) is positive homogeneous and sub-additive, then it is operator convex.

Theorem  Let f : C →A(H) be operator convex and ∇f : C×A(H) →A(H) be an order
generalised gradient for f . Then, for any A, B,∈ C and t ∈ [, ], we have the inequalities

–( – t)∇f
(
B, –t(B – A)

)
– t∇f

(
A, ( – t)(B – A)

)
≥ tf (A) + ( – t)f (B) – f

(
tA + ( – t)B

)
≥ ∇f

(
tA + ( – t)B, 

)
. ()

Proof If we write the definition of ∇f for B instead of A, we get

f (B) – f (A) ≥ ∇f (A, B – A),

which is equivalent to

–∇f (A, B – A) ≥ f (A) – f (B).

Therefore, for any A, B ∈ C , we have the gradient inequalities

–∇f (A, B – A) ≥ f (A) – f (B) ≥ ∇f (B, A – B). ()
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Since C is a convex set, hence by () we have

–∇f
(
A, ( – t)(B – A)

) ≥ f (A) – f
(
tA + ( – t)B

)
≥ ∇f

(
tA + ( – t)B, –( – t)(B – A)

)
()

and

–∇f
(
B, –t(B – A)

) ≥ f (B) – f
(
tA + ( – t)B

)
≥ ∇f

(
tA + ( – t)B, t(B – A)

)
()

for any t ∈ (, ).
If we multiply () by t and () by ( – t) and add the obtained inequalities, then we get

–t∇f
(
A, ( – t)(B – A)

)
– ( – t)∇f

(
B, –t(B – A)

)
≥ tf (A) + ( – t)f (B) – f

(
tA + ( – t)B

)
≥ t∇f

(
tA + ( – t)B, –( – t)(B – A)

)
+ ( – t)∇f

(
tA + ( – t)B, t(B – A)

)
.

Since ∇f (·, ·) is operator convex, we also know that

t∇f
(
tA + ( – t)B, –( – t)(B – A)

)
+ ( – t)∇f

(
tA + ( – t)B, t(B – A)

)
≥ ∇f

(
tA + ( – t)B, –t( – t)(B – A) + ( – t)t(B – A)

)
≥ ∇f

(
tA + ( – t)B, 

)
,

which completes the proof. �

Corollary  Under the assumptions of Theorem ,
() If ∇f (·, ·) is positive homogeneous, then we have

–t( – t)
[∇f (B, A – B) + ∇f (A, B – A)

]
≥ tf (A) + ( – t)f (B) – f

(
tA + ( – t)B

) ≥ . ()

() If ∇f (·, ·) is operator linear, then

t( – t)
[∇f (B, B – A) – ∇f (A, B – A)

]
≥ tf (A) + ( – t)f (B) – f

(
tA + ( – t)B

) ≥ . ()

4.1 Hermite-Hadamard type operator inequalities
In this subsection, we will state inequalities of Hermite-Hadamard type for order gener-
alised gradients.
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Corollary  Under the assumptions of Theorem , if ∇f is positive homogeneous, then
we have the following inequality:

–



[∇f (B, A – B) + ∇f (A, B – A)
]

≥ f (A) + f (B)


–
∫ 


f
(
tA + ( – t)B

)
dt ≥ . ()

We obtain () by integrating () over t ∈ [, ].

Example 
. We consider the function f (A) = QAQ with Q ∈A(H). We note that the order

generalised gradient

∇f (B, X) = Q(BX + XB)Q

is operator linear. Then

∇f (B, X) – ∇f (A, X) = Q(BX + XB)Q – Q(AX + XA)Q

= Q
[
(B – A)X + X(B – A)

]
Q.

For X = B – A, we then get

∇f (B, B – A) – ∇f (A, B – A) = Q(B – A)Q.

Applying inequality () we have

t( – t)Q(B – A)Q

≥ Q
[
tA + ( – t)B –

(
tA + ( – t)B

)]Q ≥  ()

for any A, B ∈A(H) and Q ∈A(H).
. We consider the function f (A) = APA with P ∈P(H). We note that the order

generalised gradient

∇f (B, X) = XPB + BPX

is operator linear. Then

∇f (B, X) – ∇f (A, X) = XPB + BPX – XPA – APX

= XP(B – A) + (B – A)PX.

If X = B – A, we then get

∇f (B, B – A) – ∇f (A, B – A) = (B – A)P(B – A).
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Applying inequality () we have

t( – t)(B – A)P(B – A)

≥ tAPA + ( – t)BPB –
(
tA + ( – t)B

)
P
(
tA + ( – t)B

) ≥ 

for any A, B ∈A(H) and P ∈P(H).
. For f (A) = QA–Q with Q ∈A(H) and A ∈P+(H), we note that the order generalised

gradient

∇f (B, X) = –QB–XB–Q

is operator linear. Then

∇f (B, X) – ∇f (A, X) = –QB–XB–Q + QA–XA–Q.

For X = B – A, we get

∇f (B, B – A) – ∇f (A, B – A)

= –QB–(B – A)B–Q + QA–(B – A)A–Q

= –Q
(
B– – B–AB–)Q + Q

(
A–BA– – A–)Q

= QA–BA–Q + QB–AB–Q – QB–Q – QA–Q.

By () we have the inequality

t( – t)
[
QA–BA–Q + QB–AB–Q – QB–Q – QA–Q

]
≥ tQA–Q + ( – t)QB–Q – Q

(
tA + ( – t)B

)–Q ≥ 

for any A, B ∈P+(H) and Q ∈A(H).

4.2 Jensen type operator inequalities
In this subsection, we will state inequalities of Jensen type for order generalised gradients.

Theorem  Let f : C ⊂A(H) →A(H) be a function that possesses ∇f : C×A(H) →A(H)
as an order generalised gradient. Then, for any Ai ∈ C , i ∈ {, . . . , n} and pi ≥  with Pn :=∑n

i= pi > , we have the inequalities

–


Pn

n∑
j=

pj∇f

(
Aj,


Pn

n∑
i=

piAi – Aj

)

≥ 
Pn

n∑
j=

pjf (Aj) – f

(


Pn

n∑
i=

piAi

)

≥ 
Pn

n∑
j=

pj∇f

(


Pn

n∑
i=

piAi, Aj –


Pn

n∑
i=

piAi

)
. ()
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Proof From the definition of an order generalised gradient we have

–∇f (A, B – A) ≥ f (A) – f (B) ≥ ∇f (B, A – B). ()

Now, if we choose A = Aj, j ∈ {, . . . , n} and B = (/Pn)
∑n

i= piAi in (), then we get

–∇f

(
Aj,


Pn

n∑
i=

piAi – Aj

)

≥ f (Aj) – f

(


Pn

n∑
i=

piAi

)

≥ ∇f

(


Pn

n∑
i=

piAi, Aj –


Pn

n∑
i=

piAi

)
()

for any j ∈ {, . . . , n}. We obtain the desired inequalities () by multiplying the inequalities
in () by pj ≥  and taking the sum over j from  to n; and divide the resulted inequalities
by Pn. �

Corollary  Under the assumptions of Theorem , we have the following results:
() If ∇f : C ×A(H) is convex, then


Pn

n∑
j=

pjf (Aj) – f

(


Pn

n∑
i=

piAi

)
≥ ∇f

(


Pn

n∑
i=

piAi, 

)
. ()

() If ∇f is linear, then ∇f (B, ) =  for any B, and we get the Jensen’s inequality


Pn

n∑
j=

pjf (Aj) – f

(


Pn

n∑
i=

piAi

)
≥ . ()

() If ∇f is linear, we have


Pn

n∑
j=

pj∇f

(
Aj, Aj –


Pn

n∑
i=

piAi

)

≥ 
Pn

n∑
j=

pjf (Aj) – f

(


Pn

n∑
i=

piAi

)
≥ . ()

Theorem  Under the assumptions of Theorem , we have the following results:


Pn

n∑
j=

pjf (Aj) –


Pn

n∑
j=

pj∇f (A, Aj – A)

≥ f (A)

≥ 
Pn

n∑
j=

pjf (Aj) +


Pn

n∑
j=

pj∇f (Aj, A – Aj).
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Proof From () we also have

–∇f (A, Aj – A) ≥ f (A) – f (Aj) ≥ ∇f (Aj, A – Aj). ()

If we multiply () by pj ≥  and take the sum over j from  to n and divide the resulted
inequalities by Pn, then

–


Pn

n∑
j=

pj∇f (A, Aj – A) ≥ f (A) –


Pn

n∑
j=

pjf (Aj)

≥ 
Pn

n∑
j=

pj∇f (Aj, A – Aj),

which completes the proof. �

Remark  If ∇f is linear in Theorem , then we get simpler inequalities such as

f (A) ≥ 
Pn

n∑
j=

pjf (Aj) +


Pn

n∑
j=

pj∇f (Aj, A) –


Pn

n∑
j=

pj∇f (Aj, Aj)

and

f (A) ≤ 
Pn

n∑
j=

pjf (Aj) –


Pn

n∑
j=

pj∇f (A, Aj) +


Pn

n∑
j=

pj∇f (A, A).

Therefore, if A ∈A(H) is such that


Pn

n∑
j=

pj∇f (Aj, A) ≥ 
Pn

n∑
j=

pj∇f (Aj, Aj),

then we have the Slater type inequality (cf. Slater [] and Pečarić [])

f (A) ≥ 
Pn

n∑
j=

pjf (Aj).

5 Connection with Gâteaux derivatives
In this section, we consider the connection between order generalised gradients and
Gâteaux derivatives. We refer the reader to Dragomir [] for some inequalities of Jensen
type, involving Gâteaux derivatives of convex functions in linear spaces.

Let C ⊂A(H) be a convex set. Then f : C →A(H) is said to be operator convex if for all
t ∈ [, ] and A, B ∈ C , we have

f
[
( – t)A + tB

] ≤ ( – t)f (A) + tf (B).

We start with the following lemmas.
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Lemma  Let F : R → B(H) be a function such that limt→± F(t) exists. Then limt→± F(t)
is a bounded linear operator and

〈[
lim

t→± F(t)
]
x, y

〉
= lim

t→±
〈
F(t)x, y

〉

for all nonzero x, y ∈ H .

Proof We provide the proof for the right-sided limit, as the proof for the left-sided limit
follows similarly. Let ε >  and for x, y ∈ H , where x, y �= , set ε = ε/(‖x‖H‖y‖H ). Since
limt→+ F(t) = L, there exists δ such that

∥∥F(t) – L
∥∥
B(H) < ε

when  < t < δ. Note that L ∈ B(H) since B(H) is a Banach space, hence F(t) – L is also a
bounded linear operator. Now, we have

∣∣〈F(t)x, y
〉
– 〈Lx, y〉∣∣ ≤ ∥∥(

F(t) – L
)
x
∥∥

H‖y‖H

≤ ∥∥F(t) – L
∥∥
B(H)‖x‖H‖y‖H < ε‖x‖H‖y‖H = ε,

which completes the proof. �

Lemma  Let f : A(H) → A(H) be operator convex and A ∈ A(H). Then, for all B ∈
A(H), both limits

(∇–f (A)
)
(B) = lim

t→–

f (A + tB) – f (A)
t

and

(∇+f (A)
)
(B) = lim

t→+

f (A + tB) – f (A)
t

exist and are bounded self-adjoint operators.

Proof Fix an arbitrary B ∈A(H), and let

G(t) =
f (A + tB) – f (A)

t
, t ∈R \ {}.

We want to show that G is nondecreasing. Let  < t < t, then

f (A + tB) – f (A) = f
[

t

t
(A + tB) +

(
 –

t

t

)
A

]
– f (A)

≤ t

t
f (A + tB) +

(
 –

t

t

)
f (A) – f (A)

=
t

t

[
f (A + tB) – f (A)

]
.
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Thus,

f (A + tB) – f (A)
t

≤ f (A + tB) – f (A)
t

.

Also,

f (A – tB) – f (A)
–t

= –
f [A + t(–B)] – f (A)

t

≤ –
f [A + t(–B)] – f (A)

t
=

f (A – tB) – f (A)
–t

.

Note also that

f (A) = f
(

A + tB – tB


)
= f

[



(A + tB) +



(A – tB)
]

≤ 


f (A + tB) +



f (A – tB),

which implies that

f (A) ≤ f (A + tB) + f (A – tB);

and thus

f (A + tB) – f (A) ≥ –
[
f (A – tB) – f (A)

]
,

which implies that

f (A + tB) – f (A)
t

≤ f (A – tB) – f (A)
–t

.

By the above expositions, we conclude that G is nondecreasing on R\{}. This proves that
both (∇–f (A))(B) and (∇+f (A))(B) exist and are bounded linear operators by Lemma .
Note that for all t ∈R, t �=  and A, B ∈A(H),

f [B + t(A – B)] – f (B)
t

is a self-adjoint operator. If x, y ∈ H , then Lemma  gives us

〈[
lim

t→±
f [B + t(A – B)] – f (B)

t

]
x, y

〉

= lim
t→±

〈[
f [B + t(A – B)] – f (B)

t

]
x, y

〉

= lim
t→±

〈
x,

[
f [B + t(A – B)] – f (B)

t

]
y
〉

=
〈
x, lim

t→±

[
f [B + t(A – B)] – f (B)

t

]
y
〉
,

which completes the proof. �
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Theorem  Let C ⊂ A(H) be a convex set and f : C → A(H) be operator convex. Then
∇±f defined by

(∇±f (A)
)
(B) = lim

t→±
f (A + tB) – f (A)

t
, A, B ∈ C ()

is an order generalised gradient.

Proof Let t ∈ (, ) and A, B ∈ C . Since f is operator convex, we have

f [B + t(A – B)] – f (B)
t

=
f [( – t)B + tA] – f (B)

t

≤ ( – t)f (B) + tf (A) – f (B)
t

= f (A) – f (B).

This is equivalent to

K := f (A) – f (B) –
f [B + t(A – B)] – f (B)

t
∈P+(H).

Note that for all x ∈ H ,

〈[
lim

t→± K
]

x, x
〉

= lim
t→±〈Kx, x〉

by Lemma . Since K ∈ P+(H), 〈Kx, x〉 ≥ , hence 〈[limt→± K]x, x〉 ≥ , which implies
that

lim
t→±

[
f (A) – f (B) –

f [B + t(A – B)] – f (B)
t

]
∈P+(H).

Therefore,

(∇+f (B)
)
(A – B) = lim

t→±
f [B + t(A – B)] – f (B)

t
≤ f (A) – f (B).

Lemma  gives us

(∇–f (B)
)
(A – B) ≤ (∇+f (B)

)
(A – B),

which implies that

(∇–f (B)
)
(A – B) ≤ f (A) – f (B).

Thus both ∇+f and ∇–f are order generalised gradients. �

Proposition  Let f : A(H) → A(H) be operator convex and A ∈ A(H). The right
Gâteaux derivative of f is sub-additive, i.e.

(∇+f (A)
)
(B + C) ≤ (∇+f (A)

)
(B) +

(∇+f (A)
)
(C)
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for any B, C ∈A(H). The left Gâteaux derivative of f is super-additive, i.e.

(∇–f (A)
)
(B + C) ≥ (∇–f (A)

)
(B) +

(∇–f (A)
)
(C)

for any B, C ∈A(H).

Proof Since f is operator convex, we have the following for any B, C ∈A and t > :

f [A + t(B + C)] – f (A)
t

=
f [ 

 (A + tB) + 
 (A + tC)] – f (A)
t

≤ f (A + tB) – f (A)
t

+
f (A + tC) – f (A)

t
.

By a similar argument to the proof of Theorem , we conclude that

(∇+f (A)
)
(B + C) = lim

t→+

f [A + t(B + C)] – f (A)
t

≤ lim
t→+

f (A + tB) – f (A)
t

+ lim
t→+

f (A + tC) – f (A)
t

=
(∇+f (A)

)
(B) +

(∇+f (A)
)
(C)

as desired. The proof for the left Gâteaux derivative of f follows similarly. �

Remark  We remark that the Gâteaux (lateral) derivative(s) is always positive homo-
geneous with respect to the second variable, i.e. for any function f : A(H) → A(H) and
fixed A ∈A(H),

(∇±f (A)
)
(αB) = α

(∇±f (A)
)
(B)

for all α ≥  and B ∈A(H). The Gâteaux derivative, on the other hand, is always homoge-
neous with respect to the second variable, i.e. for any function f : A(H) →A(H) and fixed
A ∈A(H),

(∇f (A)
)
(αB) = α

(∇f (A)
)
(B)

for all α ∈C and B ∈A(H).

The following result restates Theorem  in the setting of operator-valued functions.

Corollary  Let C ⊂A(H) be a convex set and f : C →A(H) be a Gâteaux differentiable
function. Then f is operator convex if and only if ∇f defined by

(∇f (A)
)
(B) = lim

t→

f (A + tB) – f (A)
t

, A, B ∈ C ()

is an order generalised gradient.
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Proof For any A, B ∈ C , if f is operator convex, then by Theorem 

(∇±f (A)
)
(B) = lim

t→±
f (A + tB) – f (A)

t

are order generalised gradients. Since f is assumed to be Gâteaux differentiable, both limits
are equal, hence

(∇f (A)
)
(B) = lim

t→

f (A + tB) – f (A)
t

is an order generalised gradient for any A, B ∈ C . Conversely, we have the following in-
equality:

(∇f (B)
)
(A – B) ≤ f (A) – f (B)

for any A, B ∈ C . Let C, D ∈ C , t ∈ (, ), and choose A = C and B = tC + ( – t)D. Then we
have

( – t)
(∇f

[
tC + ( – t)D

])
(C – D) ≤ f (C) – f

[
tC + ( – t)D

]
. ()

Let A = D and B = tC + ( – t)D. Then we have

(–t)
(∇f

[
tC + ( – t)D

])
(C – D) ≤ f (D) – f

[
tC + ( – t)D

]
. ()

Multiply () by t and () by ( – t), and add the resulting inequalities to obtain

f
[
tC + ( – t)D

] ≤ tf (C) + ( – t)f (D),

which completes the proof. �

The following result follows by Corollary  and employing the fact that the Gâteaux
lateral derivatives are positive homogenous.

Corollary  (Hermite-Hadamard type inequality) Let f : C ⊂A(H) →A(H) be operator
convex. The following inequality holds:

–



[(∇±f (B)
)
(A – B) +

(∇±f (A)
)
(B – A)

]

≥ f (A) + f (B)


–
∫ 


f
(
tA + ( – t)B

)
dt ≥ .

The above inequality also holds for ∇f when f is Gâteaux differentiable.

Example 
() We note that the function f (x) = – log(x) is operator convex. The log function is

(operator) Gâteaux differentiable with the following explicit formula for the
derivative (cf. Pedersen [, p.]):

(∇ log(A)
)
(B) =

∫ ∞


(sI + A)–B(sI + A)– ds
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for A, B ∈A(H) and I the identity operator. Thus, we have the following inequality:




[∫ ∞


(sI + B)–(A – B)(sI + B)– ds

+
∫ ∞


(sI + A)–(B – A)(sI + A)– ds

]

≥ –
log(A) + log(B)


+

∫ 


log

(
tA + ( – t)B

)
dt ≥ .

() We consider the operator convex function f (x) = x log(x), and using the following
representation (cf. Pedersen [, p.])

log(t) =
∫ ∞



t – 
(s + t)(s + )

ds,

and noting the fact that d
dt t log(t) = log(t), we have

(∇f (A)
)
(B) =

∫ ∞




s + 

(sI + A)–(A – I)B ds.

Then we have the following inequalities:

–



[∫ ∞




s + 

(sI + B)–(B – I)(A – B) ds

+
∫ ∞




s + 

(sI + A)–(A – I)(B – A) ds
]

≥ A log(A) + B log(B)


–
∫ 



[
tA + ( – t)B

]
log

(
tA + ( – t)B

)
dt ≥ .

The following results follow by Theorems  and .

Corollary  (Jensen type inequality) Let f : C ⊂ A(H) → A(H) be operator convex.
Then, for any Ai ∈ C , i ∈ {, . . . , n} and pi ≥  with Pn :=

∑n
i= pi > , we have the inequalities

–


Pn

n∑
j=

pj
(∇±f (Aj)

)( 
Pn

n∑
i=

piAi – Aj

)

≥ 
Pn

n∑
j=

pjf (Aj) – f

(


Pn

n∑
i=

piAi

)

≥ 
Pn

n∑
j=

pj

(
∇±f

(


Pn

n∑
i=

piAi

))(
Aj –


Pn

n∑
i=

piAi

)
.
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We also have


Pn

n∑
j=

pjf (Aj) –


Pn

n∑
j=

pj
(∇±f (A)

)
(Aj – A)

≥ f (A)

≥ 
Pn

n∑
j=

pjf (Aj) +


Pn

n∑
j=

pj
(∇±f (Aj)

)
(A – Aj).

The above inequalities also hold for ∇f when f is Gâteaux differentiable.

Example 
() We have the following inequalities for the operator convex function f (x) = – log(x):


Pn

n∑
j=

pj

∫ ∞


(sI + Aj)–

(


Pn

n∑
i=

piAi – Aj

)
(sI + Aj)– ds

≥ –


Pn

n∑
j=

pj log(Aj) + log

(


Pn

n∑
i=

piAi

)

≥ –


Pn

n∑
j=

pj

∫ ∞



(
sI +


Pn

n∑
i=

piAi

)–

×
(

Aj –


Pn

n∑
i=

piAi

)(
sI +


Pn

n∑
i=

piAi

)–

ds

and

–


Pn

n∑
j=

pj log(Aj) +


Pn

n∑
j=

pj

∫ ∞


(sI + A)–(Aj – A)(sI + A)– ds

≥ – log(A)

≥ –


Pn

n∑
j=

pj log(Aj) –


Pn

n∑
j=

pj

∫ ∞


(sI + Aj)–(A – Aj)(sI + Aj)– ds.

() We have the following inequalities for the operator convex function f (x) = x log(x):

–


Pn

n∑
j=

pj

∫ ∞




s + 

(sI + Aj)–(Aj – I)

(


Pn

n∑
i=

piAi – Aj

)
ds

≥ 
Pn

n∑
j=

pjAj log(Aj) –

(


Pn

n∑
i=

piAi

)
log

(


Pn

n∑
i=

piAi

)

≥ 
Pn

n∑
j=

pj

∫ ∞




s + 

(
sI +


Pn

n∑
i=

piAi

)–

×
(


Pn

n∑
i=

piAi – I

)(
Aj –


Pn

n∑
i=

piAi

)
ds
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and


Pn

n∑
j=

pjAj log(Aj) –


Pn

n∑
j=

pj

∫ ∞




s + 

(sI + A)–(A – I)(Aj – A) ds

≥ A log(A)

≥ 
Pn

n∑
j=

pjAj log(Aj) +


Pn

n∑
j=

pj

∫ ∞




s + 

(sI + Aj)–(Aj – I)(A – Aj) ds.

6 Conclusions
For a function f : C → A(H) defined on a convex set C ⊂ A(H), the function ∇f : C ×
A(H) →A(H) is an order generalised gradient if

f (A) – f (B) ≥ ∇f (B, A – B) for any A, B ∈ C

in the operator order of A(H). We have the following operator inequalities.
() Operator inequalities of Hermite-Hadamard type:

–



[∇f (B, A – B) + ∇f (A, B – A)
]

≥ f (A) + f (B)


–
∫ 


f
(
tA + ( – t)B

)
dt ≥  for any A, B ∈ C.

() Operator inequalities of Jensen type:

–


Pn

n∑
j=

pj∇f

(
Aj,


Pn

n∑
i=

piAi – Aj

)

≥ 
Pn

n∑
j=

pjf (Aj) – f

(


Pn

n∑
i=

piAi

)

≥ 
Pn

n∑
j=

pj∇f

(


Pn

n∑
i=

piAi, Aj –


Pn

n∑
i=

piAi

)
;

and


Pn

n∑
j=

pjf (Aj) –


Pn

n∑
j=

pj∇f (A, Aj – A)

≥ f (A)

≥ 
Pn

n∑
j=

pjf (Aj) +


Pn

n∑
j=

pj∇f (Aj, A – Aj)

for any A ∈ C , Ai ∈ C , i ∈ {, . . . , n} and pi ≥  with Pn :=
∑n

i= pi > .
() Operator inequalities of Slater type: if ∇f is linear and A ∈A(H) is such that


Pn

n∑
j=

pj∇f (Aj, A) ≥ 
Pn

n∑
j=

pj∇f (Aj, Aj),
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then

f (A) ≥ 
Pn

n∑
j=

pjf (Aj)

for any A ∈ C , Ai ∈ C , i ∈ {, . . . , n} and pi ≥  with Pn :=
∑n

i= pi > .
Order generalised gradients extend the notion of subgradients, without the assumption

of convexity, for operator-valued functions. This notion is also connected to the Gâteaux
(lateral) derivatives. If f is operator convex, then ∇±f defined by

(∇±f (A)
)
(B) = lim

t→±
f (A + tB) – f (A)

t
, A, B ∈ C

is an order generalised gradient. Furthermore, if f : C → A(H) is a Gâteaux differentiable
function, we have the following characterisation: f is operator convex if and only if ∇f
defined by

(∇f (A)
)
(B) = lim

t→

f (A + tB) – f (A)
t

, A, B ∈ C

is an order generalised gradient. This characterisation of convexity is a generalised version
of Theorem  of Section  (cf. Eisenberg [, Theorem ]).
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5. Pečarić, JE, Dragomir, SS: A refinement of Jensen inequality and applications. Stud. Univ. Babeş–Bolyai, Math. 24(1),
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