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Abstract In this paper, some Griiss-type results via Pompeiu’s-like inequalities are proved.
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1 Introduction

In 1946, Pompeiu [18] derived a variant of Lagrange’s mean value theorem, now known as Pompeiu’s mean
value theorem (see also [18, p.83]).

Theorem 1.1 (Pompeiu [18]) For every real valued function f differentiable on an interval [a, b] not con-
taining 0 and for all pairs x| # x3 in [a, b], there exists a point & between x| and x, such that

x1f (x2) —x2f (x1)

X1 — X2

=f@ -1 ®. (1.1)

The following inequality is useful to derive some Ostrowski-type inequalities; see [9].

Corollary 1.2 (Pompeiu’s inequality) With the assumptions of Theorem 1.1 and if H f—ef ||Oo
= SUP;e(ap | (1) — 1f (1)| < 0o where £ (1) =1, 1 € [a, D], then

tf ) —xf O < | f —ef|| o 1x —1] (1.2)

foranyt,x € [a,b].
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The inequality (1.2) was obtained by the author in [9].
For other Ostrowski-type inequalities concerning the p-norms || f—ef ||I7 , see [1,2,17,19].

For two Lebesgue integrable functions f, g : [a, b] — R, consider the Cebysev functional:

1 b 1 b b
C(f.8)= m/ﬂ f)gt)dr — (z;——aﬁ/a f(t)dt/a g(nydr. (1.3)

Griiss [10] showed that
IC(f,g)Iii(M—m)(N—n), (1.4)
provided that there exists the real numbers m, M, n, N such that
m<f@t)<M and n<g({) <N forae.t€la,b]. (1.5)

The constant % is best possible in (1.3) in the sense that it cannot be replaced by a smaller quantity.
Another, however less known, result, though it was obtained by Cebygev [7], states that

IC (/. 9) §%||f’||oo||g’|{oo(b—a)2, (1.6)
provided that f ’, g’ existand are continuous on [a, b] and || £/ ||oo = SUP;c[q.5] | £/ (t)| . The constant ﬁ cannot
be improved in the general case.
The Cebysev inequality (1.6) also holds if f, g : [a, b] — R are assumed to be absolutely continuous and
f'.8 € Lola, b, while || f'||__ = esssup,ciqp | f' (1)
A mixture between Griiss’ result (1.4) and Ceby3ev’s one (1.6) is the following inequality obtained by
Ostrowski [15]:

1
IC(fl =g b —a)(M—m) l¢']| - (1.7)

provided that f is Lebesgue integrable and satisfies (1.5), while g is absolutely continuous and g’ € L [a, b] .

The constant % is best possible in (1.7).
The case of Euclidean norms of the derivative was considered by Lupasg [12], in which he proved that

1
IC(fol=— L 11, & —a), (1.8)

provided that f, g are absolutely continuous and f’, g’ € L; [a, b] . The constant # is the best possible.
Recently, Cerone and Dragomir [3] have proved the following results:
1
p P
dt) , (1.9)

1 b
f(f)—b—/ f(s)ds
—a/,

1 b
C(f, o) < inf llg—yll, - ——
IC (f, &)l _;IéRllg g b—a(/a

wherep>1and%+%=10rp=1andq=oo,and

. 1
IC(f 9l < inf g —yll, - ——ess sup f(t)——/ £ (s)ds|. (1.10)
yeR b—a tela,b] b—a a
provided that f € L, [a, bl and g € L, [a,b] (p > 1, %—i—%:l;p:l,q:ooorp:oo,q:l).
Notice that for ¢ = co, p = 1 in (1.9), we obtain
1 b 1 b
IC (f, g)| < inf IIg—ylloo-—/ f(t)——/ f(s)ds|dt
yeR b—a /, b—a/,
1 b 1 b
< Ilglloo-—/ f@) — —/ f(s)ds|dt (1.11)
b—a ), b—a ),
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and, if g satisfies (1.5), then

1 b 1 b
IC (f, 8| = inf ||g—)/||oo'—/ f(f)——/ f(s)ds|dr
yeR b—a —

n+ N 1 /
8 2 | b—a

b 1
f(t)——/ £ () ds]| dr
b—a /),

I /\

(N—n)

T (1.12)

The inequality between the first and the last term in (1.12) has been obtained by Cheng and Sun [8]. However,
the sharpness of the constant %, a generalization for the abstract Lebesgue integral and the discrete version of
it have been obtained in [4].

For other recent results on the Griiss inequality, see [5,6,11,13,14,16,20] and the references therein.

In this paper, some Griiss-type results via Pompeiu’s-like inequalities are proved.

2 Some Pompeiu’s-type inequalities

We can generalize the above inequality for the larger class of functions that are absolutely continuous and
complex valued as well as for other norms of the difference f — £f.

Theorem 2.1 Let f : [a, b] — C be an absolutely continuous function on the interval [a, b] with b > a > 0.
Then for any t, x € [a, b], we have

lf—er'|, 1x =1l if f—40f € Lola,b],

if f—2f' €Lyla,b]

1/q 1/q
if o —xf o<t () 1=, |75 - s P> L @1
_+_=17
P q
|7 =&l maisr
or equivalently
TRUANIE i) -t € Lol b
if f—4£f" eLpla,b)
1/q
L@ _LOF () s - el [ = =] 2= 0 2
t Liyl=y,
P

|F =l sy

Proof If f is absolutely continuous, then f/£ is absolutely continuous on the interval [a, b] that does not

contain O and
/x(f(s))’d f@ SO
S = _
P K X t
forany ¢, x € [a, b] with x # t.

Since
[ (L) am [ L0210,
P K ; K

tf(x)—xf(t)zxt/x f/(s)s—z_f(s)ds
t

we get the following identity:

2.3)

@ Springer
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forany ¢, x € [a, b].

We notice that the equality (2.3) was proved for the smaller class of differentiable function and in a different
manner in [17].

Taking the modulus in (2.3), we have

ltf () —xf (O] =

Xt

/x f’(S)Sz—f(S)ds‘

r

and utilizing Holder’s integral inequality we deduce

(s)s = f(s)

< xt

ds‘ =1, 2.4

SUPseqs ity |/ ()5 = f ][] slz ds|.
1 1/q p>1,
R R R s R S}
1 6)s = £ 6] ds| supaegea | 5]
[[f—ef']| o 1x
1/q Vg p>1,
e LC R M e R Rt i} as
L[f =l Tt
and the inequality (2.2) is proved. O

Remark 2.2 The first inequality in (2.1) also holds in the same form for 0 > b > a.

3 Some Griiss-type inequalities
We have the following result of Griiss type.

Theorem 3.1 Let f, g : [a, b] — C be absolutely continuous functions on the interval [a, bl withb > a > 0.

If f',g € Lo la,b], then
P33 b b b
‘—/ f(t)g(t)dt—/ tf(t)dt/ tg (t)de

_§<b—a)4 [F =7 lc g = €8] - 3.1

The constant % is best possible.

Proof From the first inequality in (2.1), we have

b b
/ (tf (x) —xf (1)) (1g (x) — xg (1)) drdx

b b
< / / (tf (x) — xf () (g (x) — xg (1))] didx

b b
<lr-trlle-tel [ [ o= nraa 62
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Observe that
b rb
/ / @f (x) —xf (1)) (g (x) — xg (1)) drdx

b b
= / / [2f () g () +x2f (1) g (1) —tg (1) xf (x) — f (t) txg (x)] drdx

b b b b
=2[/ tzdt/ f(t)g(t)dt—/ tf(t)dt/ tg(t)dt:|

b rb 1 b 1
//(x—t)2dzdx=§/ [(b—x)3+(x—a)3]dx=g(b—a)4.

and

Utilizing the inequality (3.2), we deduce the desired result (3.1).
Now, assume that the inequality (3.1) holds with a constant B > 0 instead of %, ie.,

b —ad b b b
3 /f(t)g(t)df—/ ff(t)dt/ 1g (1) dr

=BO=a|F = tf g =t/ (33)

If wetake f (r) =g (t) =1, t € [a, D], then

P a3 b b b
/f(t)g(t)dt—/ tf(t)dt/ tg (¢)dt

3
b — a3 p—a®\> 1
= b—a)— = —b-a?
3(a>(2) = (b —a)
and
[ f =t =lg—tg'] =1
and by (3.3) we get B > %, which proves the sharpness of the constant. O

The following result for the complementary (p, g)-norms, with p, g > 1 and % + % =1, holds.

Theorem 3.2 Let f, g : [a, b] — C be absolutely continuous functions on the interval [a, bl withb > a > 0.
Iff'eLyla,bl, g €Lyla,blwithp,q>1,p,q #Zand%—i—ql =1, then

b3_a3 b b b
/f(t)g(t)dt—/ tf(t)dt/ g (1) dr

3
= ; lr=er'l, I = s'll, Mq" (@. ) M,/ (. b) (3.4)
T20Qq-DYV1@2p-1l/r p g Maq , p o (a,b), .
where
b b g 44
My (a, b) 3=/ / L P
a Ja ta—1 x4q—1

We have the bounds

M, (a,b) < (b —a)N,'* (a, b)

and

M, (a,b) < (b—a) N/ (a, b)

; = @ Springer
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where, forr > 1,

) I i s N 2 r £ 3
2r+1 —2r+3 2 ’ 2

2 2\ ( b2+a? b _ b?—a® _3
(b —a)(T'lnz—T r=3.

Ny (a, b) =

Proof From the second inequality in (2.1), we have

Itf(x)—xf(t)lfwﬂf 'l = I‘F
and
1 , x? tp|Vp
ltg (x) —xg (1)] < m ||g —Lg ”q Py
forany t, x € [a, b].
If we multiply these inequalities and integrate, then we get
b b
/ (tf (x) —xf (1)) (1g (x) — xg (1)) drdx
a a
b b
< [ [ s 00 = e @) g (0~ xg 0 dra
a a
1
< ) / ) /
b b 1/q I/p
14 P tP
x / / - v drdx. (3.5)
o Ja |t271 0 xa7l tp=l xp—l
Utilizing Holder’s integral inequality for double integrals, we have
b b a |YVa| yp o |1/p
/ / — - drdx
a Jo [t970 xa-l p=t o xp-l
b b 1/q b b 1/p
(1 ) (-
o Ja |97 xa—1 0 Ja [tP71 0 xpl
= M, (a,b) M)/" (a,b) (3.6)

for p,q > land%—i-é:l.
Utilizing Cauchy—Bunyakowsky—Schwarz integral inequality for double integrals, we have

My (a,b) = drdx

x‘il

() (/ [ )
o[ Gy o)
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Observe that

Ny (a, b) _/ / (;q 1—T>2dtdx
[ [

b t2q
dtdx // P 1dldx+/ /a T} dtdx
/ 2qu/ 1~2@=Dgy — 2(/ xdx)

p2a+1 _ j2q+1  p=2q+3 _ ;,—2q+3 b2 — a2\?
=2 . - ,
2g + 1 —2q +3 ( 2 )
provided g # %
Ifqg = %, then
b*+a> b b —a®
2 2

Nq(a,b):(b —a)[ > ln;— 5 ]

Therefore,

M, (a,b) < (b —a) N,/

and, similarly,

M, (a,b) < (b—a) N,/

Remark 3.3 The double integral

b b
M, (a, b) ::/ /

191 xa-T

*(a, b)

2, b).

drdx

can be computed exactly by iterating the integrals. However, the final form is too complicated to be stated

here.

The Euclidian norms case is as follows:

Theorem 3.4 Let f, g : [a, b] — C be absolutely continuous functions on the interval [a, bl withb > a > 0.

Iff',g' € Lala, bl, then

b b
3 / f@g@dr— / ff(f)df/ 1g (1) dt

! b2
§Hf—£f HzHg—Kg ”2[(b3+a)lng—§(b3—a3)i|.

Proof From the second inequality in (2.1), we have

lf (¥) —xf ()] < f||f f||2

and

ltg (x) — xg ()] < f le—e'll, |

forany t, x € [a, b].

1/2
tz/

X

12
x2 12/

X

3.7

@ Springer
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If we multiply these inequalities and integrate, then we get

b b
/ (tf (x) —xf (1)) (1g (x) — xg (1)) drdx

b b
< / / (tf (X) — xf (1) (g (¥) — xg (1)) didx

<Yir—erl e 2 dedx.
-3 2 X
Since
b rb|,2 2
t
// T D ldrdx
a Ja t X
b by 2 2 b 2 2
t t
(L E-e [ €20
a a t X X X t
be, b +a’ — 2x3
= x*2Inx —Ina—Inb) + ——— ) dx
a 3x
and
b
/x2(21nx—lna—lnb)dx
a
b b
=/ 2x21nxdx—1n(ab)/ x2dx
a a
B +a¥Ylnl 2
=( ) a——(b3—a3),
3 9
while

/b B tad-2 (B +a*)ink
a 3x 3 9

then we conclude that

VAL

Making use of the inequality (3.8), we deduce the desired result (3.7).

a

Remark 3.5 It is an open question to the author if % is best possible in (3.7).

drdx = 3 [(zﬁ +a’) n? - % (b — a3)] :

(3.8)

Theorem 3.6 Let f, g : [a, b] — C be absolutely continuous functions on the interval [a, bl withb > a > 0.

Then,

PERE b b
‘T/ f(f)g(f)df—/ ff(f)dl/ 1g (1) dt

2% + a® — 3ab?
= ”f _Ef/||1 ||g —fg/Hl - <

6a
Proof From the third inequality in (2.1), we have

b b
(tf (x) —xf (1)) (g (x) — xg (1)) drdx

b b
S/ / [(tf (x) = xf (1)) (1g (x) — xg (1)) drdx

{t,x}
<|f=ef] s -2l / / (ﬁﬁt;) -

; = @ Springer

(3.9)

(3.10)
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Observe that
b b 2
[ (e g,
a Ja \min{z, x}
b X 2 b 2
[ ey [ (Y a]a
a |Ja \min{z, x} + \Umin {¢, x}
b X N2 b t 2
=/ [/ () dt—i—/ (—) dti|dx
a a t X X

20 +a® — 3ab?
B 6a

k]

which together with (3.10) produces the desired inequality (3.9). O

4 Some related results
The following result holds.

Theorem 4.1 Let f, g : [a, b] — C be absolutely continuous functions on the interval [a, bl withb > a > 0.
If f',g € Ly a,b], then

b b b
‘(b—a)/ [We@ (z)2g (t)dt—/ &dt/ &dt‘
a t 0 1 a 1

L?(a,b) — G?*(a, b)

< (b—a)? —of’ —Lg'| 4.1
- ( a) L2 (a,b) G2 (a,b) ”f f “oo ”g 8 Hoo ( )
where G (a, b) := +/ab is the geometric mean and
b—a
L(a,b):=——
@b = T

is the Logarithmic mean.
The inequality (4.1) is sharp.

Proof From the first inequality in (2.2), we have

‘(f(x) ~ f(t)) (g(x) ~ g(r))‘
X t X t

/ LAY
lr-tllr - (5 - 5) 42)

t X

forany ¢z, x € [a, b].
Integrating this inequality on [a, b]*, we get

/"/b (f(x) - f(t)) (g(x) ~ g(t))dtdx‘
a Ja X t X t
/”/b (f(x) . f(t)) (g(x) - g(r))
a Ja X t X t
, , b b 1 1 2
<=t lr—er ”°°/a / (?_;) drdx. 4.3)

: = @ Springer

drdx
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We have
b b
/ / (f(x) B f(t)) (g(x) ~ g(t))dtdx
a a X t X t
b b ,
:2|:(b—a)/ szg(t)dt_ f(t)dl‘/ g(t)dt:|
a 1 a t . 1
and

borb 1 1)? L?(a,b) — G*(a, b
/ / T W adr =20 —ap @2 @b)
a Ja t X L2 (a,b) G? (a,b)
Making use of (4.3), we get the desired result (4.1).
If we take f (1) = g (t) = 1, then we have

b b b
(b—a)/ J0e® (t)dt—/ Mdt/ 80y,
B ! . ! . 1

, L?(a,b) — G* (a, b)

== T TR @)

and

[F=trl=1ls—tlc =1,
and we obtain in both sides of (4.1) the same quantity

, L?(a,b) — G?(a,b)

b= T G @b

The case of Euclidian norms is as follows:

Theorem 4.2 Let f, g : [a, b] — C be absolutely continuous functions on the interval [a, bl withb > a > 0.
If f'. g € La[a, b], then

b b b
om0 [ LO80y_ [ 10, 50,
u t w .t

1 b —a)’
=clr=erlyle—tel, == “@4)
Proof From the second inequality in (2.2) for p = g = 2, we have
S fol_ 1 gL L
—— < —|f—¢ = - — 4.5
R e ERv I I A N @s)
and "
gx)  g) 1 a1
-l —g—-¢ - - — 4.6
’x = Az -5 (4.6)
forany ¢, x € [a, b].
On multiplying (4.5) with (4.6), we derive
f)  fOY[8x) g@®) 1 / a1
— — <-\f—¢ —¢ = - — 4.7
(E2-LO) (22 £9) < Sy el e - e - @

forany t, x € [a, b].

; = @ Springer
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Integrating this inequality on [a, b]?, we get

b
(f(x) - ft(t)) (giX) - g(t))dtdx‘

(f(X) ft(t)) (g(X) g(t))‘dtdx

2 ||f—£f ||2||g 74 ”2

I A

— | drdx. (4.8)

We have

L]

1 1

—dtdx=/b|:/x<l—i>dt+/b<i—l)dt]dx

3 LL\F T \E 78
z/b[/x(l_i)dt_i_/b(i_l)dt:|dx=M.
o La \3 X3 o\x3 83 a’b?

From (4.8), we then obtain the desired result (4.4). O

3

Remark 4.3 1t is an open question to the author if % is the best possible constant in (4.4).

The interested reader may obtain other similar results in terms of the norms ” f—tf || p H g—Ltg ||q with

p,qg>1,p,q#2and % + é = 1. However, the details are omitted.
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