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SOME INEQUALITIES FOR f-DIVERGENCES VIA SLATER’S

INEQUALITY FOR CONVEX FUNCTIONS

SILVESTRU SEVER DRAGOMIR

Abstract. Some inequalities for f -divergence measures by the use of Slater’s
inequality for convex functions of a real varaible are established.

1. Introduction

Given a convex function f : R+ → R+, the f -divergence functional

Df (p, q) :=

n∑
i=1

qif

(
pi
qi

)
(1.1)

was introduced in Csiszár [3], [4] as a generalized measure of information, a “dis-
tance function” on the set of probability distributions Pn. The restriction here to
discrete distribution is only for convenience, similar results hold for general distri-
butions.

As in Csiszár [4], we interpret undefined expressions by

f (0) = lim
t→0+

f (t) , 0f

(
0

0

)
= 0

0f
(a

0

)
= lim
ε→0+

f
(a
ε

)
= a lim

t→∞

f (t)

t
, a > 0.

The following results were essentially given by Csiszár and Körner [5].

Theorem 1.1. If f : R+ → R is convex, then Df (p, q) is jointly convex in p and
q.

The following lower bound for the f -divergence functional also holds.

Theorem 1.2. Let f : R+ → R+ be convex. Then for every p, q ∈ Rn+, we have
the inequality:

Df (p, q) ≥
n∑
i=1

qif


n∑
i=1

pi

n∑
i=1

qi

 . (1.2)
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If f is strictly convex, equality holds in (1.2) iff
p1

q1
=
p2

q2
= ... =

pn
qn
. (1.3)

Corollary 1.3. Let f : R+ → R be convex and normalized, i.e.,

f (1) = 0. (1.4)

Then for any p, q ∈ Rn+ with
n∑
i=1

pi =

n∑
i=1

qi (1.5)

we have the inequality
Df (p, q) ≥ 0. (1.6)

If f is strictly convex, the equality holds in (1.6) iff pi = qi for all i ∈ {1, ..., n}.

In particular, if p, q are probability vectors, then (1.5) is assured. Corollary 1.3
then shows, for strictly convex and normalized f : R+ → R,

Df (p, q) ≥ 0 for all p, q ∈ Pn. (1.7)

The equality holds in (1.7) iff p = q.
These are “distance properties”. However, Df is not a metric: It violates the

triangle inequality, and is asymmetric, i.e, for general p, q ∈ Rn+, Df (p, q) 6=
Df (q, p).

In the examples below we obtain, for suitable choices of the kernel f , some of the
best known distance functions Df used in mathematical statistics [15], information
theory [2]-[24] and signal processing [13], [19].

Example 1.4. (Kullback-Leibler) For

f (t) := t log t, t > 0 (1.8)

the f -divergence is

Df (p, q) =

n∑
i=1

pi log

(
pi
qi

)
, (1.9)

the Kullback-Leibler distance [17]-[18].

Example 1.5. (Hellinger) Let

f (t) =
1

2

(
1−
√
t
)2

, t > 0. (1.10)

Then Df gives the Hellinger distance [1]

Df (p, q) =
1

2

n∑
i=1

(
√
pi −

√
qi)

2
, (1.11)

which is symmetric.

Example 1.6. (Renyi) For α > 1, let

f (t) = tα, t > 0. (1.12)

Then

Df (p, q) =

n∑
i=1

pαi q
1−α
i , (1.13)

which is the α-order entropy [23].
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Example 1.7. (χ2-distance) Let

f (t) = (t− 1)
2
, t > 0. (1.14)

Then

Df (p, q) =

n∑
i=1

(pi − qi)2

qi
(1.15)

is the χ2-distance between p and q.

Finally, we have:

Example 1.8. (Variational distance). Let f (t) = |t− 1| , t > 0. The correspond-
ing divergence, called the variational distance, is symmetric,

Df (p, q) =

n∑
i=1

|pi − qi| .

For other examples of divergence measures, see the paper [16] by J. N. Kapur,
where further references are given.

2. Slater Type Inequalities

Suppose that I is an interval of real numbers with interior I̊ and f : I → R is
a convex function on I. Then f is continuous on I̊ and has finite left and right
derivatives at each point of I̊. Moreover, if x, y ∈ I̊ and x < y, then

D−f (x) ≤ D+f (x) ≤ D−f (y) ≤ D+ (y) ,

which shows that both D−f and D+f are nondecreasing functions on I̊ . It is also
known that a convex function must be differentiable except for at most countably
many points.

For a convex function f : I → R , the subdifferential of f denoted by ∂f is
the set of all functions ϕ : I → [−∞,∞] such that ϕ(̊I ) ⊆ R and

f (x) ≥ f (a) + (x− a)ϕ (a) for any x, a ∈ I. (2.1)

It is also well known that if f is convex on I , then ∂f is nonempty, D+f, D−f ∈
∂f and if ϕ ∈ ∂f , then

D−f (x) ≤ ϕ (x) ≤ D+f (x) (2.2)

for every x ∈ I̊ . In particular, ϕ is a nondecreasing function. If f is differentiable
convex on I̊ , then ∂f = {f ′} .

The following result is well known in literature as Slater’s inequality. For the
original proof due to Slater, see [25]. For related results, see Chapter I of the book
[21] or Chapter 2 of the book [22].

We shall here follow the presentation in [6, pp. 129-130] where a slightly more
general result for Slater’s inequality is provided:

Lemma 2.1. Let f : I → R be a nondecreasing (nonincreasing) convex function
on I, xi ∈ I , pi ≥ 0 with Pn =

∑n
i=1 pi > 0 and for a given ϕ ∈ ∂f assume

that
∑n
i=1 piϕ (xi) 6= 0. Then one has the inequality

1

Pn

n∑
i=1

pif (xi) ≤ f
(∑n

i=1 pixiϕ (xi)∑n
i=1 piϕ (xi)

)
. (2.3)
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Proof. Let us give the proof for the case of nondecreasing functions only.
In this case ϕ (x) ≥ 0 for any x ∈ I and∑n

i=1 pixiϕ (xi)∑n
i=1 piϕ (xi)

∈ I

being a convex combination of xi ∈ I with the nonnegative weights

piϕ (xi)∑n
i=1 piϕ (xi)

, i ∈ {1, ..., n} .

Now, if we use the inequality (2.2) we deduce

f (x)− f (xi) ≥ (x− xi)ϕ (xi) for any x, xi ∈ I , i ∈ {1, ..., n} . (2.4)

Multiplying (2.4) by pi/Pn ≥ 0 and summing over i ∈ {1, ..., n} , we deduce

f (x)− 1

Pn

n∑
i=1

pif (xi) ≥ x ·
1

Pn

n∑
i=1

piϕ (xi)−
1

Pn

n∑
i=1

pixiϕ (xi) (2.5)

for any x ∈ I. If in (2.5) we choose

x =

∑n
i=1 pixiϕ (xi)∑n
i=1 piϕ (xi)

,

then we deduce the desired inequality (2.3). �

If we would like to drop the assumption of monotonicity for the function f , then
we can state and prove in a similar way the following result (see also [6]):

Lemma 2.2. Let f : I → R be a convex function, xi ∈ I , pi ≥ 0 with Pn >
0 and

∑n
i=1 piϕ (xi) 6= 0 for a given ϕ ∈ ∂f. If∑n

i=1 pixiϕ (xi)∑n
i=1 piϕ (xi)

∈ I,

then the inequality (2.3) holds true.

Proof. Since ∑n
i=1 pixiϕ (xi)∑n
i=1 piϕ (xi)

∈ I,

hence we can use the inequality (2.4) and proceed as in the above Lemma 2.1. The
details are omitted. �

The following inequality is well known in literature as Karamata’s inequality, see
[21, pp. 298] or [22, p. 212]:

Lemma 2.3. Assume that 0 < a ≤ ai ≤ A < ∞ , 0 < b ≤ bi ≤ B < ∞ for
each i ∈ {1, ..., n}. Then for pi > 0 ,

∑n
i=1 pi = 1 , one has the inequalities

K−2 ≤
∑n
i=1 piaibi∑n

i=1 piai
∑n
i=1 pibi

≤ K2 (2.6)

with K =
√
ab+
√
AB√

aB+
√
bA

> 1.

Using Karamata’s result, we may point out the following reverse of Jensen’s
inequality that may be useful in applications.
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Lemma 2.4. . Let f : [0,∞)→ R be a monotonic nondecreasing convex function.
Assume that 0 < r ≤ xi ≤ R < ∞ for each i ∈ {1, ...n} , (pi)i=1,...,n is a
probability distribution and for a given ϕ ∈ ∂f consider

K(r,R) =

√
rϕ(r) +

√
Rϕ(R)√

rϕ(R) +
√
Rϕ(r)

.

Then we have the inequality

n∑
i=1

pif(xi) ≤ f

(
K2(r,R)

n∑
i=1

pixi

)
. (2.7)

Proof. From Lemma 2.3 we know that
n∑
i=1

pif(xi) ≤ f
(∑n

i=1 pixiϕ(xi)∑n
i=1 piϕ(xi)

)
. (2.8)

If we apply Karamata’s inequality for ai = xi , bi = ϕ(xi), we get successively

f

(∑n
i=1 pixiϕ(xi)∑n
i=1 piϕ(xi)

)
= f

( ∑n
i=1 pixiϕ(xi)∑n

i=1 pixi
∑n
i=1 piϕ(xi)

·
n∑
i=1

pixi

)

≤ f

(
K2(r,R)

n∑
i=1

pixi

)
,

since, obviously, ϕ(xi) ∈ [ϕ(r), ϕ(R)] being monotonic nondecreasing on [r,R].
The inequality (2.7) is thus proved. �

3. Some Inequalities for f-Divergences

The following result may be stated:

Theorem 3.1. Let f : [0,∞] → R be a differentiable, convex and normal-
ized function, i.e. f (1) = 0 and 0 ≤ r ≤ 1 ≤ R ≤ ∞. If there exists a real
number m so that

−∞ < m ≤ f ′ (x) for any x ∈ (r,R) , (3.1)

then for any probability distribution p, q ∈ P with

r ≤ pi
qi
≤ R for any i ∈ {1, ..., n} (3.2)

(if r = 0 and R = ∞, the assumption (3.2) is always satisfied), one has the
inequality

0 ≤ Df (p, q) ≤ f
(
DΦ∗ (p, q)−m
Df ′ (p, q)−m

)
−m ·

DΦ] (p, q)

Df ′ (p, q)−m
, (3.3)

where Φ∗ (x) := xf ′ (x) , Φ] (x) := (x− 1) f ′ (x) for x ∈ [0,∞] and Df ′ (p, q) 6= m.

Proof. Consider the auxiliary function fm (x) = f (x) − m (x− 1) , x ∈ [0,∞] .
Since f ′m (x) = f ′ (x)−m, x ∈ (r,R) , it follows that fm is differentiable, convex
and monotonic nondecreasing on (r,R) , and we may apply Lemma 2.1 to get

n∑
i=1

qifm

(
pi
qi

)
≤ fm

∑n
i=1 qi

pi
qi
f ′m

(
pi
qi

)
∑n
i=1 qif

′
m

(
pi
qi

)
 . (3.4)
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It is easy to see that
n∑
i=1

qifm

(
pi
qi

)
=

n∑
i=1

qi

[
f

(
pi
qi

)
−m

(
pi
qi
− 1

)]
= Df (p, q)

and
n∑
i=1

qi
pi
qi
f ′m

(
pi
qi

)
=

n∑
i=1

pi

[
f ′
(
pi
qi

)
−m

]

=

n∑
i=1

pif
′
(
pi
qi

)
−m = DΦ∗ (p, q)−m

where Φ∗ (x) has been defined above.
Also, one may observe that

n∑
i=1

qif
′
m

(
pi
qi

)
=

n∑
i=1

qi

[
f ′
(
pi
qi

)
−m

]
= Df ′ (p, q)−m

and

fm

(
DΦ∗ (p, q)−m
Df ′ (p, q)−m

)
= f

(
DΦ∗ (p, q)−m
Df ′ (p, q)−m

)
−m

(
DΦ∗ (p, q)−m
Df ′ (p, q)−m

− 1

)
= f

(
DΦ∗ (p, q)−m
Df ′ (p, q)−m

)
−m · DΦ∗ (p, q)−Df ′ (p, q)

Df ′ (p, q)−m

= f

(
DΦ∗ (p, q)−m
Df ′ (p, q)−m

)
−m ·

DΦ] (p, q)

Df ′ (p, q)−m
,

which gives, by (3.4), the desired inequality (3.3). �

If one would like to drop the assumption of lower boundedness for the derivative f ′

(see (3.1)), one may need to impose another condition as described in the following
theorem:

Theorem 3.2. Let f : [0,∞) → R be a differentiable, convex and normalized
function and 0 ≤ r ≤ 1 ≤ R ≤ ∞ . As above, consider Φ∗ (x) = xf ′ (x) and
assume that for two probabilities p and q satisfying (3.2) one has Df ′ (p, q) 6=
0 and

DΦ∗ (p, q)

Df ′ (p, q)
≥ 0. (3.5)

Then one has the inequality

0 ≤ Df (p, q) ≤ f
(
DΦ∗ (p, q)

Df ′ (p, q)

)
. (3.6)

The proof follows in a similar way as the one in Theorem 3.1 by utilizing Lemma
2.2. We omit the details.

Now we can point out another result for f -divergences when bounds for the
likelihood ratio p

q are available:

Theorem 3.3. Let f : [0,∞] → R be a differentiable convex and normalized
function and 0 ≤ r ≤ 1 ≤ R ≤ ∞ and let K(r,R) be as stated in Lemma 2.4. If
there exists a real number m so that

−∞ < m ≤ f ′(x) for any x ∈ (r,R)
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then for all probability distributions p, q ∈ P satisfying

r ≤ pi
qi
≤ R for each i ∈ {1, ..., n} ,

one has the inequality

Df (p, q) ≤ f(K2(r,R))−m(K2(r,R)− 1).

Proof. As in Theorem 3.1, the function fm(x) = f(x)−m(x− 1) is differentiable,
convex and monotonic nondecreasing on (r,R) . If we apply Lemma 2.4 we get

n∑
i=1

qifm

(
pi
qi

)
≤ fm

(
K2(r,R) ·

n∑
i=1

qi
pi
qi

)
= f

(
K2(r,R)

)
−m

(
K2(r,R)− 1

)
,

which completes the proof. �

4. Applications for Particular Divergences

We consider the Kullback-Leibler distance

KL (p, q) =

n∑
i=1

pi log

(
pi
qi

)
that is the f -divergence for the convex function f : (0,∞)→ R, f (t) = t log t.

If we take the convex function f (t) = − log t, then the corresponding f -divergence
is

Df (p, q) :=

n∑
i=1

qif

(
pi
qi

)
=

n∑
i=1

qi

[
− log

(
pi
qi

)]
=

n∑
i=1

qi log

(
qi
pi

)
= KL (q, p)

for all probability distributions p, q ∈ P.
For the function f (t) = − log t we have

Φ∗ (t) := tf ′ (t) = −1 and Φ] (t) := (t− 1) f ′ (t) =
1− t
t

, t > 0.

Now for 0 ≤ r ≤ 1 ≤ R <∞ and m = − 1
R we have

m ≤ f ′ (t) = − 1

t
for any t ∈ (r,R)

and the condition (3.1) is satisfied.
We also have

DΦ∗ (p, q) = −1 and Df ′ (p, q) = −
n∑
i=1

q2
i

pi
+ 1− 1 = −1−Dχ2 (q, p)

where

Dχ2 (p, q) =

n∑
i=1

(pi − qi)2

qi
=

n∑
i=1

p2
i

qi
− 1

is the χ2-distance between p and q.
We also have

DΦ] (p, q) =

n∑
i=1

qi
1− pi

qi
pi
qi

=

n∑
i=1

q2
i

pi
− 1 = Dχ2 (q, p) .
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Therefore, for any probability distribution p, q ∈ P with

r ≤ pi
qi
≤ R for any i ∈ {1, ..., n}

we have by (3.3) the inequality

0 ≤ KL (q, p) ≤ − ln

( −1 + 1
R

−1−Dχ2 (q, p) + 1
R

)
+

1

R
·

Dχ2 (q, p)

−1−Dχ2 (q, p) + 1
R

,

which is equivalent to

0 ≤ KL (q, p) ≤ ln

(
R
(
Dχ2 (q, p) + 1

)
− 1

R− 1

)
−

Dχ2 (q, p)

R
(
Dχ2 (q, p) + 1

)
− 1

. (4.1)

Observe that

DΦ∗ (p, q)

Df ′ (p, q)
=

−1

−1−Dχ2 (q, p)
=

1

Dχ2 (q, p) + 1
> 0,

then by the inequality (3.6) we have

0 ≤ KL (q, p) ≤ ln
(
Dχ2 (q, p) + 1

)
(4.2)

for any p, q ∈ P.
We notice that the inequality (4.2) can be obtained from (4.1) by letting R→∞.
Now, for the function f (t) = t log t, we have

Φ∗ (t) := tf ′ (t) = t log t+ t.

Then

DΦ∗ (p, q) =

n∑
i=1

qi

(
pi
qi

log
pi
qi

+
pi
qi

)
=

n∑
i=1

pi log
pi
qi

+

n∑
i=1

pi

= KL (p, q) + 1

and

Df ′ (p, q) =

n∑
i=1

qi

(
log

pi
qi

+ 1

)
= 1−KL (q, p) .

Then, if we take p, q ∈ P with 1 > KL (q, p) , by utilizing the inequality (3.6) we
get

0 ≤ KL (p, q) ≤ 1 +KL (p, q)

1−KL (q, p)
ln

(
1 +KL (p, q)

1−KL (q, p)

)
. (4.3)

For α > 1 consider α-order entropy

Dα (p, q) :=

n∑
i=1

pαi q
1−α
i ,

which is an f -divergence for the convex function f (t) = tα.
We have

K(r,R) =

√
rf ′(r) +

√
Rf ′(R)√

rf ′(R) +
√
Rf ′(r)

=
r
α
2 +R

α
2

r
1
2R

α−1
2 +R

1
2 r

α−1
2

.

We have
f ′ (t) = αtα−1 ≥ αrα−1.
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If we apply Theorem 3.3, then for all probability distributions p, q ∈ P satisfying

0 < r ≤ pi
qi
≤ R <∞ for each i ∈ {1, ..., n},

we have the inequality

Dα (p, q) ≤
(

r
α
2 +R

α
2

r
1
2R

α−1
2 +R

1
2 r

α−1
2

)2α

(4.4)

− αrα−1

[(
r
α
2 +R

α
2

r
1
2R

α−1
2 +R

1
2 r

α−1
2

)2

− 1

]
.
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[22] J. E. Pečarić, F. Proschan and Y. L. Tong, Convex Functions, Partial Orderings and Statis-
tical Applications, Academic Press Inc., 1991.

[23] A. Renyi, On measures of entropy and information, Proc. Fourth Berkeley Symp. Math.

Statist. Prob., Vol. 1, University of California Press, Berkeley, 1961.
[24] C. E. Shannon, A mathematical theory of communication, Bull. Sept. Tech. J., 27 (1948),

370-423 and 623-656.

[25] M. S. Slater, A companion inequality to Jensen’s inequality, J. Approx. Theory, 32 (1984),
160-166.

Mathematics, College of Engineering & Science, Victoria University, PO Box 14428,

Melbourne City, MC 8001, Australia.
E-mail address: sever.dragomir@vu.edu.au


	1. Introduction
	2. Slater Type Inequalities
	3. Some Inequalities for f-Divergences
	4. Applications for Particular Divergences
	References

