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SOME INEQUALITIES FOR f-DIVERGENCES VIA SLATER’S
INEQUALITY FOR CONVEX FUNCTIONS

SILVESTRU SEVER DRAGOMIR

ABSTRACT. Some inequalities for f-divergence measures by the use of Slater’s
inequality for convex functions of a real varaible are established.

1. INTRODUCTION

Given a convex function f: Ry — Ry, the f-divergence functional

Dy (p,q) := g%‘f <pi> (1.1)

qi

was introduced in Csiszér [3], [4] as a generalized measure of information, a “dis-
tance function” on the set of probability distributions P™. The restriction here to
discrete distribution is only for convenience, similar results hold for general distri-
butions.

As in Csiszar [4], we interpret undefined expressions by
. 0
-t 10, (3)
ay .. ay . f(?)
Of(ﬁ)fhmf(>fahm—t , a>0.

e—0+ IS t—o00
The following results were essentially given by Csiszar and Korner [5].
Theorem 1.1. If f : Ry — R is convez, then Dy (p,q) is jointly convex in p and
q.

The following lower bound for the f-divergence functional also holds.
Theorem 1.2. Let f : Ry — Ry be convex. Then for every p,q € R, we have
the inequality:

n E Di
Di(pa) =Y af | 54— |- (1.2)
=1 >
i=1
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If f is strictly convex, equality holds in iff

h_h_ I (1.3)
q1 q2 an
Corollary 1.3. Let f: Ry — R be conver and normalized, i.e.,
f@y=o0. (1.4)

Then for any p,q € R} with

Zpi = Z 4i (1.5)
i=1 i=1

Dy (p,q) > 0. (1.6)
If f is strictly convex, the equality holds in (@ iff pi = qi for alli € {1,...,n}.

In particular, if p, g are probability vectors, then (L.5)) is assured. Corollary
then shows, for strictly convex and normalized f: R, — R,

Dy (p,q) >0 for all p,q € P". (1.7)

The equality holds in iff p=gq.

These are “distance properties”. However, D is not a metric: It violates the
triangle inequality, and is asymmetric, i.e, for general p,q € R}, Dy (p,q) #
Dy (¢, p).

In the examples below we obtain, for suitable choices of the kernel f, some of the
best known distance functions Dy used in mathematical statistics [15], information
theory [2]-[24] and signal processing [13], [19].

Example 1.4. (Kullback-Leibler) For

we have the inequality

f(t):=tlogt, t>0 (1.8)
the f-divergence is
S Di
Dy (p.q) = pilog <q) : (1.9)
i=1 ¢

the Kullback-Leibler distance [17]-[18].
Example 1.5. (Hellinger) Let

1 2
r =5 (=) t>0. (1.10)
Then Dy gives the Hellinger distance [1]
1 n
i=1
which is symmetric.
Example 1.6. (Renyi) For o> 1, let
F(t) =t t>0. (1.12)
Then
n
Df(pg) =Y plg ™", (1.13)
i=1

which is the a-order entropy [23].
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Example 1.7. (x%-distance) Let
F)=@t-1>% t>0 (1.14)
Then

n

Dy () = . L2 (1.15)

is the x2-distance between p and q.
Finally, we have:

Example 1.8. (Variational distance). Let f (t) = |t — 1|, t > 0. The correspond-
ing divergence, called the variational distance, is symmetric,

Dy(p,q) = Ipi —ail-
=1

For other examples of divergence measures, see the paper [16] by J. N. Kapur,
where further references are given.

2. SLATER TYPE INEQUALITIES

Suppose that I is an interval of real numbers with interior I and f:I—=R is
a convex function on I. Then f is continuous on I and has finite left and right
derivatives at each point of I Moreover, if z,y € I and x <y, then

D™ f(x) <D¥f(x) <D™ f(y) < D" (y),

which shows that both D~ f and D% f are nondecreasing functions on I. Tt is also
known that a convex function must be differentiable except for at most countably
many points.

For a convex function f: I — R, the subdifferential of f denoted by Of is

o

the set of all functions ¢ : I — [—00,00] such that () CR and
f(x)> fla)+(x—a)p(a) forany z,acl. (2.1)

It is also well known that if f is convexon I ,then df isnonempty, DV f, D~ f ¢
df andif ¢ € df , then

D f(x) <¢(x) < D' f(2) (2.2)

for every = € I. In particular, ¢ is a nondecreasing function. If f is differentiable
convex on I, then 8f = {f'}.

The following result is well known in literature as Slater’s inequality. For the
original proof due to Slater, see [25]. For related results, see Chapter I of the book
[21] or Chapter 2 of the book [22].

We shall here follow the presentation in [6] pp. 129-130] where a slightly more
general result for Slater’s inequality is provided:

Lemma 2.1. Let f:I — R be a nondecreasing (nonincreasing) convex function
on I, z; €I, p; >0 with P, =% p;>0 and for a given ¢ € f assume
that Y1 pip (z;) #0. Then one has the inequality

Pn ;pzf( z) S f ( Z?leigo (l‘l) > . (23)
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Proof. Let us give the proof for the case of nondecreasing functions only.
In this case ¢ (z) >0 for any = €I and

E?:l piTitp (T4)
Z?=1 pip ("TZ)

being a convex combination of z; € I with the nonnegative weights
pip ()

2?21 pip (i) ’

Now, if we use the inequality (2.2) we deduce

f@)—f(z) > (x—z;)p(x;) forany z,z;€1,i€{l,..,n}. (2.4)

Multiplying (2.4) by p;/P, >0 and summing over i € {1,...,n}, we deduce

el

ie{l,..,n}.

[ (x) - % Zpif (1) > - Pi Zpiw(fﬂi) — Pi Zpixup(xi) (2.5)
mi=1 " i=1 n o

for any = € I. If in (2.5)) we choose
2?21 pixip ({El)

x = ,
ZZ; pip (i)
then we deduce the desired inequality (2.3)). O

If we would like to drop the assumption of monotonicity for the function f, then
we can state and prove in a similar way the following result (see also [6]):

Lemma 2.2. Let f:I — R be a convex function, z; € I , p; >0 with P, >
0 and X! pip(z;) #0 for a given ¢ € df. If
Z?zl pizip (i)
~r 7.5 €1
Zi=1 pip (xl)
then the inequality (2.3]) holds true.

Proof. Since
Z?:l PiTip ()
ZZT'L:1 Pi ()
hence we can use the inequality and proceed as in the above Lemma The
details are omitted. [l

el

The following inequality is well known in literature as Karamata'’s inequality, see
[21, pp. 298] or [22, p. 212]:

Lemma 2.3. Assume that 0 <a<a; <A<, 0<b<b <B<x for
each i € {1,...,n}. Then for p; >0, 3" p; =1, one has the inequalities
K2 < Z?:l Piaib;
T3 piai > pibi

< K? (2.6)
. _ Vab+VAB
with K= Jigevea =

Using Karamata’s result, we may point out the following reverse of Jensen’s
inequality that may be useful in applications.
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Lemma 2.4. . Let f:[0,00) = R be a monotonic nondecreasing convex function.
Assume that 0 < r < z; < R < oo foreach i€ {1,.n} , (pi)i=1,..n 15 a
probability distribution and for a given ¢ € Of consider

K(rR) = Vre(r +\/R<p(R)

Vre(R) + v/Re(r)

Then we have the inequality

> pif() < f <K2(r, R)> pimi> : (2.7)
i=1 i=1
Proof. From Lemma 2.3] we know that

S onste) < f (St 29

If we apply Karamata’s inequality for a; = z; , b; = p(x;), we get successively

Stopae)) _ o Slipewle) s~
f( Z?:lpﬁﬁ(xz) > B f (Zl 1p2xl ZZ 1p1 (xl) ;pz 1,)
f <K2<T,R)Zpixi>’

since, obviously, ¢(z;) € [¢(r), »(R)] being monotonic nondecreasing on [r, R].
The inequality (2.7) is thus proved. a

IN

3. SOME INEQUALITIES FOR f-DIVERGENCES
The following result may be stated:

Theorem 3.1. Let f : [0,00] — R be a differentiable, convex and normal-
ized function, i.e. f(1) =0 and 0 <r <1 < R < oco. If there exists a real
number m so that

—oco<m< f'(x) forany z€ (r,R), (3.1)
then for any probability distribution p,q € P with
r< Pi <R forany i€{l,..,n} (3.2)

7

(if =0 and R = oo, the assumption (3.2)) is always satisfied), one has the
inequality

D%(M)m) . D2 (@d) (3.3)

Ong(p,q)Sf(Df/@’q)_ W7
where ®, (z) = af' (x), 4 (2) = (x — 1) f' (z) forx € [0,00] and Dy (p,q) # m.

Proof. Consider the auxiliary function f,, (x) = f(x) —m(x—1) , z € [0,00].
Since f! (z) = f'(x) —m, z € (r,R), it follows that f,, is differentiable, convex
and monotonic nondecreasing on (r, R), and we may apply Lemma to get

o (B ek (5)
;qlfm <q’> = i1 Gifm ( l)

(3.4)
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It is easy to see that
S Pi . pi pi
Z%:fm <> =) U {f <> m(l)] =Dy (p,q)
i1 qi = qi qi
i=1 i

> pif (p> —m=Ds, (p,q) —m
i=1

4qi

and

1 pl 7
E:q.f 12
ZCIz‘f <Qi)

=1

where @, (z) has been defined above.
Also, one may observe that

> af, (2) => [f’ (2) - m} =Dy (p.q) —m
i=1 ' i=1 v

and
s (ch* (p,9) —m) _ (D‘p* (p,q) —m> . (un (p.g) —m 1)
"\ Dy (p,q) —m Dy (p,q) —m Dy (p.q) —m
_ <D<1>* (p.q) — m) . Da. (p.9) = Dy (p.9)
Dy (p,q) —m Dy (p,q) —m
_ f<Dq>* (p,q)—m> I M (oY)
Dy (p,q) —m Dy (p,q) —m
which gives, by , the desired inequality . O

If one would like to drop the assumption of lower boundedness for the derivative f’
(see (3.1))), one may need to impose another condition as described in the following
theorem:

Theorem 3.2. Let f:[0,00) = R be a differentiable, convexr and normalized
function and 0 <r <1< R < oo . As above, consider @, (x) = zf' () and
assume that for two probabilities p and q satisfying one has Dy (p,q) #

0 and
Dy (p,q) — '
Then one has the inequality

(3.6)

OSDMM®§f<D®@ﬂ»-

Dy (p.q)
The proof follows in a similar way as the one in Theorem by utilizing Lemma
221 We omit the details.
Now we can point out another result for f-divergences when bounds for the
likelihood ratio g are available:

Theorem 3.3. Let f : [0,00] — R be a differentiable conver and normalized
function and 0 <r <1< R < oo and let K(r,R) be as stated in Lemma [2.4) If
there exists a real number m so that

—oo <m < f'(z) forany x € (r,R)
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then for all probability distributions p,q € P satisfying
r<Pi<R for each i€ {1,...n},

7

one has the inequality
Dy (p.q) < f(K*(r, R)) — m(K?*(r, R) — 1).

Proof. As in Theorem the function f,,(z) = f(x) —m(x—1) is differentiable,
convex and monotonic nondecreasing on (r, R) . If we apply Lemma we get

n | i 2 n
E @i fm < ) < fm < (r,R) - qi— )
i1 qi —1 q;

f(K*(r,R)) — m(K2(rR -1),

which completes the proof. (|

4. APPLICATIONS FOR PARTICULAR DIVERGENCES

We consider the Kullback-Leibler distance

KL (p,q sz log (p2>

that is the f-divergence for the convex function f: (0,00) — R, f (t) = tlogt.
If we take the convex function f (t) = — logt, then the corresponding f-divergence

St (2) B[ e (2)] - Fove(3) - o

for all probability distributions p,q € P.
For the function f (t) = —logt we have

is

D, (1) :=tf (t) = —1 and P4 (¢t) := (tfl)f’(t):$, t>0.
Nowfor0<r<1<R<ooandm——§wehave
m< f(t)=— ;forany te(r,R)

and the condition (3.1)) is satisfied.
We also have

Ds. (p,q) = 1 and Dy (p,q Zq—’+1—1_—1—p (4.p)

where
n

DXZ(PMI):Z pi— ) Zpl—

i=1
is the y2-distance between p and g¢.
We also have

n 9
q;
D‘I)g b, q Z% p1 :Z;Z_lzDX2(qap)
i=1
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Therefore, for any probability distribution p,q € P with

r < % <R forany i€{l,..,n}
we have by (3.3)) the inequality
1+ 41
OSKL(q,p)§1n< TR 1>
—1—-D,- (¢,p) + 5
1 D,z (¢,p)

which is equivalent to

0< KL (q7p) < <R (Dx2 (}(gf)l“r 1) - 1> _ - (DXZD(X;’;?_{):[) — (41)

Observe that

D'l>* (pa Q) _ -1 _ 1
= = > 0,
Dy (pgq)  —1=Dy2(q,p) Dy2(q,p) +1
then by the inequality (3.6) we have
0 < KL(g,p) <In(Dy2 (q,p) +1) (4.2)

for any p,q € P.
We notice that the inequality (4.2]) can be obtained from (4.1)) by letting R — co.
Now, for the function f (t) = tlogt, we have

D, (t):=tf (t) =tlogt +t.
Then
i Y2 . pi -
Z%( logf > => pilog= +> p;
4 i=1 kR —

and
Dy (p,q Z(h <log+1) =1-KL(q,p).
Then, if we take p,q € P Wlth 1 > KL(q,p), by utilizing the inequality (3.6) we

get
1+ KL (p, )ln(l—i-KL(p,q))
~1-KL(q,p) 1-KL(g,p)) "
For o > 1 consider a-order entropy

n
)= pia ",
=1

which is an f-divergence for the convex function f (t) = ¢¢.
We have

0< KL(p,q) < (4.3)

K(r.R) = Y1 I'0) +\/Rf’(R) _ ri+RS
U VPR + VR(r)  riR®FT 4 REipST

We have
f () =at*t > aret
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If we apply Theorem [3.3] then for all probability distributions p,q € P satisfying

O<r§&§R<oof0reach 1€ {1,...,n},

3

we have the inequality
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a @ 2a
2 R2
ret ) (4.4)

Dq, (p,q) < = ——
o (@) (réR =
o (3 2
$ 1 RS
—aret (1 :_21+ 21a-1> -1
rzR =2 4+ R2r =2
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