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Abstract 

The accelerated seeded precipitation (ASP) of calcium salts from simulated municipal wastewater RO 

brines using calcium carbonate seed is compared to the much more effective but more expensive 

ASP using calcium phosphate seed. The aim of this study was to identify the test water 

compositional limitations of ASP using calcium carbonate seed, and to elucidate the chemistry 

responsible for the different performance of calcium carbonate and calcium phosphate as seed 

materials in the ASP of calcium from municipal wastewater and magnesium-bearing groundwater.  

The results of seeded precipitation of calcium from simulated wastewaters and groundwater with 

varying composition using CaCO3 seed was found to only be effective in the absence of phosphate 

and at conditions where the driving force for MgCO3 formation was low. Seeded precipitation using 

CaHPO4 seed greatly outperformed CaCO3 seeded precipitation at the high carbonate-high 

magnesium concentration conditions where inhibition was the greatest for CaCO3 seeded 

precipitation.  

SEM images of the seed particles after seeded precipitation showed CaCO3 seeds that appeared to 

be covered with a thin layer of precipitate. SEM images of the solid formed after CaHPO4 seeded 

precipitation, however, showed seed that had a thick covering of very small particles.  
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1. Introduction 

Municipal wastewater and groundwater are valuable water resources for inland locations in 

Australia at times of water shortage, and play an integral role in sustainable water management 

strategies of water authorities in inland regions. Due to their salt content, however, their 

indiscriminate use for irrigation can lead to soil sodicity and crop failure, and many water authorities 

have included desalination in their strategic plans for the delivery of fit-for-purpose recycled water 

to their community.   

Desalination in inland regions poses a major challenge – the management of the resultant brine 

concentrate. Extraction of excessive quantities of low salt water from the feedwater during the 

reverse osmosis (RO) desalination process leads to salt concentrations that are greater than the 

solubility of certain salts, such as calcium carbonate, calcium sulfate or calcium phosphate, resulting 

in the formation of mineral scale on the membranes and the reduction in clean water flux through 

the membranes. To avoid the development of this scale, the recovery of low salt water during the 

reverse osmosis treatment is kept to values of typically 70% to 80% of the wastewater volume, 

depending on the wastewater constituent concentrations. The management of the resulting 20% to 

30% of the feed volume can be a major burden to the water authority, and represents a major 

underutilization of the wastewater, particularly at times of drought when wastewater and 

groundwater resources are called upon more strongly in order to meet the water needs of the 

community. 

Waste brine management and wastewater utilization can be improved by the use of interstage 

treatment of the RO concentrate to remove scale precursor ions. Interstage treatment involves 

operating the RO at water recoveries that are not conducive to scale formation, treatment of the 

resulting RO concentrate to remove the scale precursor ions via precipitation and solid-liquid 

separation, and then further treating the RO concentrate via another RO stage or by recycling to the 

feed stream to extract more low salt water. The solid-liquid separation process adopted depends 

largely on scale and economic considerations. This can be sedimentation and microfiltration as was 

piloted by Gabelich et al. [1], ceramic filtration as piloted by Sanciolo et al. [2], moving bed filter or 

any other solid-liquid separation process that can achieve the desired low turbidity (< 1 NTU) for the 

subsequent RO treatment.  

Antiscalants can be added downstream of the ASP stage, i.e. at the second RO stage, as their use in 

the first stage may hinder the interstage precipitation and removal of scale precursor ions if the ASP 

process operates at low supersaturation. Alternatively, antiscalant can be added at the first RO stage 
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and removed by adsorption on CaCO3 seed prior to interstage treatment [3]. In some circumstances, 

the judicious choice of antiscalant may allow antiscalnt use in the first RO stage without adverse 

effects in the downstream ASP stage. Sanciolo et al. [2], for example, adopted ASP involving CaHPO4 

precipitation on CaHPO4 seed and used an antiscalant that is not effective against CaHPO4 scale 

formation but is effective against CaCO3 scale formation (Flocon 135) in the first RO stage, thus 

providing some protection against CaCO3 scale without adversely affecting CaHPO4 precipitation in 

the ASP stage.  

The removal of scale precursors in high recovery RO has been achieved via ion exchange [4], 

chemical precipitation [1] or seeded precipitation [5]. Interstage demineralization of RO 

concentrates has been shown to be effective for mildly brackish river water treatment [5, 4] for tap 

water treatment [6], [7] and for groundwater treatment [8]. Literature studies involving the 

application of interstage deminerilization to high recovery RO of municipal wastewater, however, 

are very few [9, 2]. 

The choice of seed material to be used in ASP is often dictated by the composition of the solution to 

be treated, with the composition of the seed usually being that of the salt to be precipitated.  Lin 

and Singer [10], for example, compared the use of quartz, dolomite and calcite as seed materials for 

calcium carbonate precipitation from calcium carbonate solution, and found that only calcite had the 

ability to initiate calcium carbonate precipitation. Similarly, Lioliou et al. [11] investigated seeded 

precipitation from stable calcium carbonate supersaturated solutions using calcite and quartz seed 

and found that calcite induced precipitation but quartz did not. The choice of seed material is, 

however, more difficult when one is dealing with solutions that contain interfering substances. Our 

earlier work on high recovery RO of municipal wastewaters [2] , that were supersaturated with 

respect to calcium carbonate, showed that the removal of calcium from the 70% water recovery RO 

concentrate produced from this wastewater via accelerated seeded precipitation (ASP) using calcium 

carbonate seedwas not effective.  The use of calcium phosphate seed (CaHPO4), however, allowed 

the reduction of the calcium concentration from 250 mg/L to 10 mg/L. The poor performance of 

calcium carbonate seed was attributed to the presence of magnesium and phosphate at levels that 

interfere with the seeded precipitation process [12-24]. The high concentration of calcium, 

magnesium and phosphate in the wastewater was attributed to the combined effect of high 

evaporation rate, low flow and groundwater infiltration.  

The presence of small quantities of phosphate has been found to markedly slow the precipitation of 

calcium carbonate from supersaturated solutions [20]. The inhibitory effect of phosphate on calcium 

carbonate precipitation has been attributed to the chemisorption of aqueous CaHPO4 species [21], 
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which blocks the active calcium carbonate surface sites, preventing or slowing further calcium 

carbonate deposition. Similarly, the presence of magnesium ions has been found to retard calcium 

carbonate precipitation [25] and inhibit calcium carbonate crystal growth [19]. A competitive 

adsorption model involving Ca2+ and Mg2+ was found to give a good fit to the experimental data. The 

inhibitory effect of magnesium ions on unseeded precipitation has also been attributed to the 

increase in interfacial tension of the newly formed nuclei [16]. 

Our previous studies of calcium carbonate precipitation in simulated RO brines at pH 10 [26] 

confirmed the slowing influence of magnesium and phosphate ions on calcium precipitation in the 

absence of seed, and served to elucidate the solution conditions responsible for calcium carbonate 

supersaturation in RO brines at this pH. Solutions were equilibrated at pH 10 for 2 hours prior to 

filtration through 0.45 micron filter and it was found that the filtrate of solutions without 

magnesium or phosphate  had low residual calcium concentrations. The filtrate of solutions 

containing magnesium had the highest residual calcium concentration. The presence of phosphate 

on its own was also found to lead to elevated calcium concentrations at the end of the experiment. 

The combined addition of magnesium and phosphate was found to result in higher residual calcium 

levels than with these two components added individually. Seeded precipitation experiments using 

CaCO3 seed also showed that the presence of magnesium and phosphate also significantly affects 

seeded precipitation of calcium from RO brines.  

In this paper, calcium carbonate seeded ASP is tested at different concentrations of magnesium and 

carbonate, in the presence and absence of phosphate ion, and compared to the much more effective 

but more expensive ASP using calcium phosphate seed. The aim of this study was to elucidate the 

test water compositional limitations of interstage ASP using calcium carbonate seed, and the 

chemistry responsible for the different performance of calcium carbonate and calcium phosphate as 

seed materials in the ASP of calcium from municipal wastewater and magnesium-bearing 

groundwater RO concentrates to achieve high RO water recovery. 
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2. Methods 

2.1 Seed materials 

The particle size of the CaCO3 (Ajax chemicals) and CaHPO4 (BDH chemicals) used as seed were 

determined using a Malvern Zetasizer Nano-ZS. The powders were dispersed in ASP treated (10 g/L 

CaCO3 or CaHPO4, pH 10) RO brine that had been filtered through a 0.45 micron cellulose acetate 

membrane filter. The composition of this RO brine is given in a previous publication [2]. The powders 

were polydisperse with a high proportion of the particles (>30%) with a diameter larger than 6,000 

nm, and exhibiting poor suspension stability. The CaCO3 seed particles with diameters below 6,000 

nm were found to have diameters between 13 and 450 nm with the most frequent diameters being 

between 20 and 250 nm. The CaHPO4 seed particles with diameters below 6,000 nm were found to 

have diameters between 350 and 2,000 nm with the most frequent diameter being between 600 

and 1100 nm. The surface area was determined using a Micromeritics TriStar Surface Area and 

Porosity analyser to be 0.96 m2/g for CaCO3 seed and 2.3 m2/g for CaHPO4 seed.  

2.2 Solutions 

2.2.1. Seeded precipitation trials 

The solution magnesium, phosphate and carbonate concentrations used are shown in Table 1. The 

solution Mg2+ : Ca2+ ratio and CO3
2- : Ca2+ ratio are shown in Table 2. Ten millilitre aliquots of the 

required stock salt solutions were delivered to a 200 mL glass reaction vessel and made up to 100.0 

mL with deionised water. All solutions were made 6.25 mM with respect to Ca2+, 10.2 mM with 

respect to CO3
2-, 60.7 mM with respect to NaCl, 4.3 mM with respect to K+, 2.7 mM with respect to 

NH4
+ and 11.4 mM with respect to SO4

2-. The test solutions were acidified with three drops of 

concentrated HCl prior to pH adjustment to 10.0 with dropwise addition of 10 M and/or 1 M NaOH, 

with constant stirring using a magnetic stirrer. A 5 minute period was allowed for pH equilibration at 

pH 10.0. A 10 mL sample of the pH 10 solution was taken and filtered through a 0.45 micron 

cellulose acetate filter after the 5 minute equilibration period (t=0 sample). 0.9 g of seed material 

(CaCO3 or CaHPO4) was added to the remaining 90 mL of pH 10.0 solution, and samples were taken 

and filtered through 0.45 micron cellulose acetate filters after 15 minutes. The pH was monitored 

and kept at 10.0 for the duration of the trial. Control runs identical to the above procedure except 

for the calcium carbonate seed addition were also performed. 
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Table 1: Parameter settings for the 3 x 23 full factorial seeded precipitation experiments (mM) using 
no seed, 10 g/L CaCO3 seed, or 10 g/L CaHPO4 seed at pH 10.0.  

Parameter Low High 
Mg2+  7.6  15.2 

HPO4
2-  0 0.58 

CO3
2- 10.2  30.6 

 

Table 2: Ratios of solution magnesium, calcium and carbonate concentrations at start and after 
unseeded precipitation in the absence of phosphate. LC= low carbonate dose, HC = high carbonate 
dose, LM = low magnesium dose, HM = high magnesium dose. 

Parameter 
Settings 

Pre-unseeded precipitation  
Solution Conditions 

Post-unseeded precipitation  
Solution Conditions 

Mg2+:Ca2+ratio CO3
2-:Ca2+ratio Mg2+:Ca2+ratio CO3

2-:Ca2+ratio 

LC-LM 1.2 1.6 1.8 1.9 

HC-LM 1.2 4.9 3.6 12.9 
LC-HM 2.4 1.6 3.0 1.7 
HC-HM 2.4 4.9 6.6 11.6 

 

2.2.2 Analyses 

Analysis of the filtrate for calcium and magnesium was performed using atomic absorption 

spectroscopy after acidification, using a nitrous oxide- acetylene flame and 3,000 mg/L potassium 

addition to mitigate interferences. The precipitate Ca and Mg content was determined from the pre-

ASP and post-ASP aqueous concentrations of these metals. 

SEM images were taken using a Zeiss Electron Microscope fitted with an Oxford detector (20mm2). 

Samples of the suspensions were filtered through 0.45 micron filters. The filter membrane was 

rinsed by pushing 2 mL of deionised water through the membrane using a syringe. The membranes 

with the filtered solids were dried at 90°C overnight and subsequently coated with carbon for SEM 

imaging.  

2.2.3 Critical nucleus size calculations 

The number of monomer in a critical nucleus was calculated using the following equation [16]:𝑔𝑔𝑐𝑐 =
32𝜋𝜋𝑉𝑉𝑚𝑚2𝛿𝛿3

3(𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑆𝑆𝑎𝑎)3
                                                                         (1) 
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Where Vm = Volume of monomer (m3/molecule), δ = Interfacial energy (J/m2), k = Boltzman Constant 

(J/°K), T = temperature (°K), and Sa = degree of supersaturation. A value of 6.13 x 10-29 was used for 

the Vm for CaCO3 [16]. The interfacial energy was estimated using the following empirical 

relationship [16]: 

δ = 2028.4 x [Mg2+] + 68.4                                                                   (2) 

The degree of supersaturation was calculated from the ionic product (IP) and the Ksp of amorphous 

CaCO3 (9 x 10-7, [27] according to the following equation: 

𝑆𝑆𝑎𝑎 =  � 𝐼𝐼𝐼𝐼
𝐾𝐾𝐾𝐾𝐾𝐾

�
1/2

                                                                         (3) 

 

3. Results and Discussion 

According to the classical theory of homogeneous nucleation, the onset of precipitation is preceded 

by the formation of clusters. These form when the solution is supersaturated with respect to the 

precipitating salt. If the size of a cluster exceeds a critical size, a nucleus forms and the subsequent 

growth of nucleus leads to a visible solid or precipitate. The time interval between the onset of 

supersaturation and the formation of a cluster of critical size is defined as the induction period, tind. 

It has been found that substances such as Mg 2+ ions and HPO4
2- ions can increase this induction time 

and thus slow precipitation [9, 20]. Magnesium ions can also increase the critical cluster size [15], 

thus slowing precipitation or preventing precipitation. The addition of seed material decreases the 

induction time by increasing the concentration of clusters in the vicinity of the seed surface, thus 

accelerating the rate of association between clusters and reaching the critical size sooner [28]. 

3.1 Seeded precipitation experiments 
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The Mg2+, HPO4
2- and CO3

2- ions content of the tests solutions used in these experiments were 

chosen to simulate the composition of RO concentrates from phosphate and magnesium-bearing 

wastewaters and magnesium-bearing groundwaters, and, which exhibit supersaturation with 

respect to calcium carbonate. The effect of seed type (CaCO3 or CaHPO4) on the rate of calcium 

precipitation at 15.2 mM Mg at different CO3 levels is shown in Figure 1. The effect of two different 

magnesium concentrations and two different carbonate concentrations in the presence and in the 

absence of phosphate (see Table 1) without seed, with CaCO3 seed or with CaHPO4 seed was 

investigated. The results after a 15 minute equilibration period are shown in Figure 2 to Figure 4.  

 

Figure 1: Effect of seed type, no HPO4
2- addition, 6.25 mM starting calcium concentration, 15.2 mM 

starting Mg concentration, (a) 10.2 mM CO3
2-, (b) 30.6 mM CO3

2-. 

It can be seen from Figure 1 that the residual calcium concentration after unseeded precipitation is 

different at the two different carbonate concentrations, and that the addition of seed reduces the 

induction time from more than 30 minutes (no seed) to less than 5 minutes. The extent of 

precipitation after seed addition can also be seen to vary under the different test conditions.  

 

3.1.1 Precipitation in the absence of added seed 

The effect of simply raising the pH of the solution to 10.0 (i.e., without seed addition) on the 

precipitation of calcium is shown in Figure 2. Allowing for a calculated 8% experimental error, 
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unseeded precipitation of calcium in the absence of phosphate (see Figure 2(a)) can be seen to be 

enhanced by increasing carbonate concentration and inhibited by increasing Mg concentration.  

The inhibitory effect of Mg, however, was found to be less at high carbonate (HC) concentrations, 

suggesting that an increase in bulk carbonate concentration favours Ca adsorption/precipitation 

over Mg adsorption/precipitation. The inhibitory effect of Mg on the unseeded precipitation of 

CaCO3 in solution has been well documented [16, 17, 18, 12, 19] and has been attributed to the 

lengthening of the induction time due to an increase in interfacial tension at the nuclei surface which 

results in a smaller concentration of coagulated clusters and a larger critical size of nuclei [16].  

  



10 
 

Figure 2: Residual calcium concentration in the absence (a) and in the presence (b) of phosphate at 
various starting magnesium and carbonate levels  

Figure 3: Residual magnesium concentrations in the absence (a) and in the presence (b) of 
phosphate at various starting magnesium and carbonate levels 

Figure 4: Ca:Mg mole ratio of the precipitate in the absence (a) and in the presence(b) of phosphate 
(Low carbonate-high Mg unseeded data point off scale – no decrease in Mg concentration detected) 

  

(a) (b) 

(b) (a) 

(b) (a) 
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The residual calcium concentration at any given time after chosen test conditions have been 

achieved depends on the induction period and the critical nucleus size below which precipitation 

does not take place.  The influence of degree supersaturation (Sa) and [Mg] on the resulting 

interfacial energy (δ) and number of monomers in the critical nucleus size (gc) was estimated using 

classical nucleation theory [16] from the no-phosphate unseeded precipitation data shown in Figure 

2(a). The results are shown in Table 3. 

Table 3: Number of monomers in a critical nucleus, unseeded precipitation 

 
  [Ca] (mM) [CO3] (mM) [Mg] (mM) δ Sa  gc 

LC base case No Mg 6.25 10.2 0 0.068 8.4 60 
HC base case No Mg 6.25 30.6 0 0.068 15.8 27 
Initial 
conditions LC-LM 6.25 10.2 7.6 0.084 8.4 110 

 
LC-HM 6.25 10.2 15.2 0.099 8.4 183 

 
HC-LM 6.25 30.6 7.6 0.084 14.6 55 

 
HC-HM 6.25 30.6 15.2 0.099 14.6 92 

Post- 
unseeded 
precipitation LC-LM 3.80 7.1 7.0 0.083 5.5 208 

 
LC-HM 5.00 8.6 14.8 0.098 6.9 240 

 
HC-LM 2.00 26.0 7.2 0.083 7.6 124 

 
HC-HM 2.30 26.2 14.8 0.098 8.1 189 

The post-unseeded precipitation residual [Ca] levels in Table 3 can be seen to correlate well with the 

estimated gc values – the higher the gc, the higher the residual [Ca]. This trend is due to the 

combined effect of Mg on the interfacial energy, and the degree of supersaturation (Sa). Comparison 

of the low carbonate (LC), no-Mg, base case with the LC initial conditions (before unseeded 

precipitation has taken place) shows that increasing the [Mg] from zero to 7.6 mM and 15.2 mM at 

low carbonate condition (10.2 mM) increases the calculated number of monomers in the critical 

nucleus (gc) from 60 to 110 and 183 respectively. The subsequent unseeded precipitation reduces 

the supersaturation from 8.4 to 5.5 and 6.9 respectively and further increases the gc to 208 and 240 

respectively. At the high carbonate condition (HC), the same [Mg] increases gives rise to a similar 

increase in gc relative to the HC- no-Mg, base case (27, 55, 92). The subsequent unseeded 

precipitation reduces Sa from 14.6 to 7.6 and 8.1 respectively, and increases gc to 124 and 189 

respectively.  

Comparison of Figure 2(a) and Figure 2(b) shows that phosphate can mildly enhance or inhibit 

unseeded calcium precipitation, depending on the carbonate level. The presence of phosphate 

mildly enhanced calcium precipitation at the low carbonate (LC), high magnesium (HM), condition, 
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and mildly inhibits calcium precipitation at both HC conditions. These effects appear to be 

counterintuitive as an increase in carbonate level would be expected to decrease the ability of the 

phosphate anion to compete with the carbonate anion for available calcium surface sites, thereby 

decreasing the inhibitory effect of phosphate with increasing carbonate concentration. This suggests 

that the adsorbing phosphate species that interferes with calcium carbonate precipitation is 

uncharged, as indicated by previous literature studies that show that the inhibitory effect of 

phosphate can be attributed to the chemisorption of the uncharged aqueous CaHPO4 species [21], 

which blocks the active calcium carbonate surface sites, preventing or slowing further calcium 

carbonate deposition. 

Magnesium seems to not be involved in the mild inhibitory effect of phosphate at both LC and HC 

conditions. The magnesium precipitation was found to be largely unaltered by the presence of 

phosphate (compare Figure 3(a) with Figure 3(b)). Both low carbonate conditions yielded an increase 

in precipitate Ca:Mg ratio (i.e. less Mg in the precipitate) as a result of phosphate addition (Compare 

Figure 4(a) with Figure 4(b)), suggesting that phosphate addition can decrease the inhibitory effect 

of Mg by blocking Mg adsorption sites at these low carbonate conditions. The residual Mg (Figure 3) 

and the Ca:Mg ratio of the precipitate (Figure 4) were, however, unaltered by phosphate addition at 

the HC-LM condition. This is consistent with the low inhibitory effect of magnesium at HC-LM 

condition (see Figure 2(a)). A marked decrease in the precipitate Ca:Mg ratio was observed for the 

HC-HM experiment on phosphate addition (see Figure 4(b)), suggesting the formation of carbonated 

apatite and/or magnesium-substituted carbonated apatite [29] under these conditions. The test 

solutions are expected to be supersaturated with respect to these apatites (pIAPHAP metastable 

equilibrium solubility (MES) distributions between 110 and 125 [30], pIAPHAP (Ca10(OH)2(PO4)6) for 

the current experiment was 54).  

3.1.2 Precipitation in the presence of calcium carbonate seed 

The addition of seed to a supersaturated solution is believed to accelerate precipitation due to van 

der Waals attractive force between the seed and the clusters. This results in a higher concentration 

of clusters near the surface of the seed than that in the bulk liquid phase, and therefore, the rate of 

association between clusters is accelerated. Modelling of the effect of seed on the induction time for 

calcium carbonate precipitation in the absence of impurities using classical nucleation theory has 

been performed [28]. This effect is, however, influenced by changes to the clusters and to the seed 

surface brought about by the presence of interfering substances. Further research with a focus on 

the effects of different seed and the presence of solutes on the cluster concentrations in the vicinity 

of the seed is warranted. 
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The addition of 10 g/L CaCO3 seed was found to be effective in lowering the calcium concentration 

from the unseeded precipitation levels at the LC-LM and the HC-LM conditions (see Figure 2(a)). As 

expected, increasing the Mg concentration was found to inhibit the seeded precipitation. In contrast 

to the unseeded precipitation case, however, the inhibitory effect of Mg at the HM condition is 

greater at the HC concentrations. At the HC-HM condition, the residual calcium concentration was 

very similar to that of unseeded precipitation, suggesting a high level of inhibition. It appears that 

conditions with lower driving force for formation of magnesium carbonate, either because of low Mg 

or low carbonate, allowed the CaCO3 seed to accelerate calcium carbonate precipitation to some 

degree. The involvement of Mg is confirmed by comparison of Figure 2 with the residual Mg 

concentration data in Figure 3 which shows that some Mg is being precipitated at the HC conditions. 

The higher involvement of Mg in the HC-HM situation is also reflected in the lower precipitate Ca:Mg 

ratio (~2, Figure 4). It is interesting to note, however, that a low precipitate Ca:Mg ratio is not 

necessarily concomitant with a greater inhibitory effect. The precipitate Ca:Mg ratio was also low for 

the HC-LM situation (3) where the CaCO3 seed was very effective at removing calcium (Figure 3), 

suggesting that the HC-LM conditions are conducive to MgCO3 precipitation independently of CaCO3 

precipitation while the HC-HM condition is conducive to magnesium adsorption and modification of 

the seed surface properties leading to inhibition. 

According to the cluster coagulation model [16], the induction time for unseeded calcium carbonate 

precipitation depends on the interfacial tension (surface energy) of the precipitating solid. The 

adsorption of Mg onto the calcium carbonate surface was found to increase the induction time of 

calcium carbonate precipitation. This was due to an increase in interfacial tension of the CaCO3 

clusters, and a smaller coagulation concentration of clusters and a larger critical size of nuclei, 

resulting in longer induction time. The cluster coagulation model also revealed that the addition of 

seed decreased the induction time by allowing a higher concentration of coagulation clusters to be 

achieved in the region near the seed crystals. The higher coagulation concentration of clusters was 

attributed to the van der Waals attractive force between the clusters and seed crystals.  

The effect of Mg on calcium carbonate seeded precipitation of calcium has recently been studied 

and it was found that the presence of Mg inhibits calcium carbonate crystal growth [19]. A 

competitive Langmuir type adsorption model involving Ca2+ and Mg2+ was found to give a good fit to 

the crystal growth data, and it was found that the rate of crystal growth depends on the solution 

Mg:Ca ratio rather than the total Mg concentration. In these constant supersaturation experiments 

at variable CO3
2-: Ca2+ ratios up to 1, as the Mg concentration was increased, the maximum inhibitory 

effect of Mg was found to occur at solution Mg:Ca ratios above 1. Comparison of this finding with 
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the current results suggests that the relative quantities of Mg and Ca may also be important 

determinants of inhibition under the test conditions of the current experiment. The solution Mg:Ca 

and the CO3
2-: Ca2+ ratios for the current experiments are shown in Table 2. It can be seen that the 

Mg:Ca ratio was 3.6 at the HC-LM condition where very little Mg inhibition was observed, whereas 

the Mg:Ca ratio was 6.6 at the HC-HM condition where the inhibitory effect of Mg was the greatest. 

The presence of phosphate was also found to be inhibitory to calcium precipitation using CaCO3 

seed, particularly at the HC-LM condition where CaCO3 seed was found to be most effective in the 

absence of phosphate. The small decrease in residual Mg observed in the absence of phosphate at 

the HC-LM condition was not observed in the presence of phosphate, suggesting a lower 

involvement of Mg in the observed inhibitory effect. The lower involvement of Mg was also evident 

in the precipitate Ca:Mg ratio which was found to increase from 3.2 to 6.7 by the presence of 

phosphate. It would appear that phosphate, which is believed to adsorb as CaHPO4(aq) [21], adsorbs 

on the seed or nuclei surface and prevents or hinders the Mg-Ca co-adsorption that is associated 

with the inhibitory effect of Mg [19]. The adsorption of phosphate on calcium carbonate has been 

studied using NMR [31] and it has been found that the adsorbing phosphate species form a 

carbonated apatite-like phase at low surface concentration (3-37 µmole P (sorbed). g-1 CaCO3, at pH 

7 to 8), and some of this phase was found to be converted to brushite (CaHPO4.2H2O) at higher 

surface concentrations (63 µmol. P sorbed g-1 CaCO3, pH 7.5). Given the similar available quantities 

of phosphate and CaCO3 in the current experiment (58 µmole P for every gram of CaCO3) and the 

high pH of 10, which is conducive to higher phosphate adsorption,  it may be speculated that high 

solution carbonate concentrations facilitate the formation of the carbonated apatite like surface 

species and phosphate inhibition of seeded calcium precipitation.  

The CaCO3 seeded precipitation results presented in the current study suggest that calcium 

carbonate seeded ASP is limited to waters that do not contain phosphate and conditions that are not 

conducive to the formation of MgCO3. Municipal wastewaters typically contain phosphorus 

concentrations between 20 and 50 mg/L (0.8 to 1.6 mM phosphate, [32] and CaCO3 seeded ASP 

performance would be expected to be severely adversely affected at these phosphate levels. For 

groundwaters, which typically contain no phosphate and considerable quantities of Mg [33, 34] the 

key determinant of the suitability of CaCO3 are expected to be the alkalinity of the groundwater and 

the calcium level relative to the Mg level. Generally, calcium carbonate seeded ASP would be 

expected to only be suited to RO concentrates from groundwaters with low alkalinity (in excess of 

the stoichiometric requirement for calcium carbonate precipitation) and/or high Ca levels relative to 

the Mg levels. Calcium carbonate seeded ASP performance would be expected to be good for RO 

concentrates from brackish surface waters with relatively low Mg and higher Ca levels, high alkalinity 
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and little or no phosphate content, as was found in literature studies of calcite seeded ASP for RO 

concentrates of Colorado River water [5].  

3.1.3 Precipitation in the presence of calcium phosphate seed 

In the absence of phosphate (Figure 2(a)), seeded precipitation using CaHPO4 seed was found to be 

as effective as with CaCO3 seed at both LM concentrations, and at the LC-HM concentration, but 

greatly outperformed CaCO3 seeded precipitation at the HC-HM concentration. This suggests that 

CaHPO4 may be useful for ASP treatment of RO concentrates from highly carbonated groundwaters 

such as those in Australian gasfields, and that CaCO3 seed may be the cheaper option for waters with 

low phosphate and low potential for MgCO3 formation. The cost of agricultural grade CaCO3 is 

approximately half the cost of agricultural grade CaHPO4. 

Comparison of Figure 2(a) with the residual Mg concentration data in Figure 3(a) shows that Mg is 

being precipitated at all conditions tested, but particularly at the HC-HM condition in the presence of 

CaHPO4 seed. The precipitate Ca:Mg ratio data (Figure 4(a)) shows that the two metals are being 

precipitated in approximately equal quantities in the case of CaHPO4 seeded precipitation. The ratio 

of Ca:Mg in the precipitate (Figure 4) was found to be approximately 1.5 and 1 for the HC-LM and 

HC-HM conditions respectively. The presence of phosphate did not significantly affect the quantity 

of Mg precipitated with the calcium (compare Figure 3(a) and Figure 3(b)), and the Ca:Mg ratio 

remained close to 1 (Figure (b)). The close to equal quantities of Ca and Mg in the precipitate 

suggests that a mixed metal carbonate is being formed, i.e. dolomite, CaMg(CO3)2 or, coincidentally, 

equal quantities of CaCO3 and MgCO3. 

The use of CaHPO4 seed can also be seen to avoid the inhibitory effect of phosphate. Comparison of 

the Figure 2(a) with Figure 2(b) shows that the inhibitory effect that was seen to be very pronounced 

with CaCO3 seeded precipitation was not evident. The presence of phosphate was found to mildly 

enhance calcium removal at the low carbonate concentration, and mildly inhibit calcium removal at 

the HC-HM concentration. These results are consistent with the surface precipitation of calcium 

phosphate on the calcium phosphate seed and/or on the CaCO3 nuclei thus preventing their growth. 

The better performance of CaHPO4 seed than CaCO3 seed at the HC-HM condition may be 

attributable to the heterocoagulation of the positively charged calcium phosphate [35] and the 

negatively charge calcium carbonate [36] or dolomite [37] clusters at pH 10, resulting in a shorter 

induction time for calcium carbonate precipitation due to a higher concentration of clusters in the 

vicinity of the seed surface. This is a similar scenario to that proposed by [16] for the effect of CaCO3 

seed crystals where the reduction in induction period of calcium carbonate precipitation is believed 
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to be caused by the higher coagulation concentration of clusters in the region near the seed surface. 

In this situation, however, the seed and the clusters have like charge and the driving force for 

coagulation is only from the van der Waals attractive force between the clusters and seeds [16]. The 

different surface charge of CaCO3 and CaHPO4 would also be expected to influence the susceptibility 

to interference from magnesium. The positively charged magnesium species present at pH 10 (Mg2+, 

Mg(OH)+) are more readily adsorbed onto the negative CaCO3 surface than the positive CaHPO4 

surface, thus blocking surface adsorption sites for calcium adsorption and precipitation on CaCO3 

seed. Since seeded precipitation is a surface chemical phenomenon and the two different seed 

material were dosed at the same rate of 10 g/L, the higher surface area of the CaHPO4 seed (2.3 

m2/g) than of CaCO3 seed (0.96 m2/g) may also have contributed to the better performance of 

CaHPO4.  

It is noteworthy that the heterocoagulation of seed and nuclei clusters can also be induced by 

adsorption of surfactants that adsorb on both the seed and the nuclei surface, thus rendering both 

hydrophobic. Such an approach has been seen in the literature where the adsorption of asphaltenes 

(surface active amphipathic crude oil components) onto clay particles was found to enhance the 

particle’s ability to act as seed for calcium carbonate precipitation [38] This approach may be useful 

in the development of less expensive and more effective seed materials for calcium precipitation 

from municipal wastewater.  

The results of Vralstad et al. [38], and the stark difference in performance of calcium carbonate and 

calcium phosphate seed materials seen in previous studies on municipal wastewater [2 and in the 

current study on simulated wastewater, point to the prospect of further studies to investigate the 

feasibility of modification of the surface properties of calcium carbonate seed to improve its 

performance as seed by making them more like those of calcium phosphate, e.g., by making the 

calcium carbonate seed less negatively (or positively) charged by adsorption of cationic species (e.g., 

Al3+, Al(OH)2+, Al(OH)2
+), or to develop novel seed materials of the desired surface properties from 

inexpensive materials. The possibility also exists, as has been demonstrated in literature, of 

improving the performance of calcium carbonate by rendering the surface hydrophobic via 

surfactant adsorption.   
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Figure 5: SEM image of the solid produced at high Mg (15.2 mM) and high CO3 (30.6 mM), in the 
presence of phosphate (56 mg/L) on a cellulose acetate 0.45 micron filter used to remove the solids 
from the mother liquor : (a) in the absence of added seed; (b) in the presence of CaCO3 seed; (c) in 
the presence of CaHPO4 seed; (d) detail from image 5(b) showing calcium aragonite-like crystals, (e) 
detail from image 5(b) showing cubic calcium carbonate seed crystal with thin layer of precipitate; (f) 
detail from image 5(c) showing what appears to be precipitated material on CaHPO4 seed; (g) detail 
of image 5(c) showing traces of fine precipitate on the membrane material. The inserts in images 
5(b) and 5(c) are low magnification images of CaCO3 seed and CaHPO4 seed respectively. 
 
3.2 Morphology of precipitate in the presence and in the absence of seed  

The SEM image of the solid produced at the HC-HM concentration (Figure 5) shows that the calcium 

carbonate particles produced in the absence and in the presence of the two different seeds are very 

different. In the absence of seed (Figure 5(a)) the precipitated amorphous calcium carbonate formed 

irregular shaped flake-like structures of approximately 0.1 – 0.2 micron in diameter on drying.  

(a) (b) (c) 

(d) (f) (e) (g) 
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The particles seen in the solid produced from the CaCO3 seed experiment, however, are very 

different (Figure 5(b)). A number of spindle-like structures that are approx. 0.5 micron in length can 

be seen (see Figure 5(d)). These resemble the spindle-like structures of aragonite crystals that are 

favoured in the presence of magnesium (Park 2008). These particles appear to have formed 

independently of the seed, and comparison of these to the rhombus shape of the added CaCO3 seed 

shown in the Figure 5(e) and in the insert of Figure 5(b) confirms that they are not the original seed 

material. These images suggest that the amorphous calcium carbonate precipitated before CaCO3 

seed addition is converted to aragonite during the 12 hour drying period and that the layer of 

material on the seed is responsible for the poor seeded precipitation observed in the experiments 

(see Figure 2). Closer inspection of the calcite crystal in Figure 5(d) shows that the surface of the 

calcite crystal appears to be covered with a thin layer of material that softens the sharp edges of the 

crystal. The appearance of the CaCO3 seed is consistent with what would be expected if a thin layer 

of material forms on the surface of the seed and blocks further crystal growth.  

The appearance of the particles formed in the presence of CaHPO4 (Figure 5(c)) is different to that in 

the absence of seed and in the presence of CaCO3. The particles are much smaller and they form 

large compact aggregates. Comparison of these to the shape of the added seed shown in the Figure 

4(c) insert confirms that they are not the original seed material.  Closer inspection of one of these 

aggregates (Figure 5(f)) shows what appears to be the sharp edge of an underlying CaHPO4 seed, 

covered with a layer of precipitated material. This image is consistent with what would be expected 

from the heterocoagulation of the CaHPO4 seed with the calcium carbonate nuclei. 

4. Summary and Conclusions 

The effect of magnesium and phosphate at various carbonate concentrations on the seeded 

precipitation of calcium was studied. It was found that CaCO3 seeded ASP is vulnerable to 

interferences from magnesium and phosphate. The interference by magnesium was found to 

greatest in the presence of high carbonate concentration, suggesting that this interference involves 

the formation of MgCO3 on the seed surface or on the CaCO3 nuclei.  

The addition of phosphate ion was found to decrease the effectiveness of calcium precipitation using 

CaCO3 seed under all test conditions, suggesting the adsorption of calcium phosphate onto the 

newly formed calcium carbonate nuclei thus preventing their growth. ASP using CaCO3 seed may, 

therefore, not be suitable for RO concentrates from municipal wastewaters as these may contain 

interfering phosphate levels (if the phosphate is not removed during coagulation pre-treatment). For 

groundwaters, which typically contain no phosphate and considerable quantities of Mg, calcium 

carbonate seeded ASP would be expected to be effective at low alkalinity (in excess of the 
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stoichiometric requirement for calcium carbonate precipitation) and/or high Ca levels relative to the 

Mg levels. For surface waters, which generally would be expected to have low phosphate levels, 

CaCO3 seeded ASP performance would be expected to be good at relatively low Mg and higher Ca 

levels and high alkalinities.  

In the absence of phosphate, seeded precipitation using CaHPO4 seed was found to be as effective as 

with CaCO3 seed at both low magnesium concentrations, and at the low carbonate-high magnesium 

concentration, but greatly outperformed CaCO3 seeded precipitation at the high carbonate-high 

magnesium concentration where inhibition was the greatest for CaCO3 seeded precipitation. This 

suggests that CaHPO4 may be useful for ASP treatment of RO concentrates from highly carbonated 

groundwaters such as those in Australian gas fields. 

In the presence of phosphate, CaHPO4 seeded precipitation was found to be more effective than 

CaCO3 seed under all conditions tested, particularly at HC-HM conditions where CaCO3 seeded 

precipitation was ineffective. This confirms previous studies with this seed material that showed it to 

be an effective, albeit more expensive, option for ASP treatment of wastewater that contains 

phosphate. 

SEM images of the seed particles after seeded precipitation under conditions where CaCO3 seeded 

precipitation was ineffective showed CaCO3 seeds that appeared to be covered with a thin layer of 

precipitate, and a number of small aragonite-like crystals that appear to have formed independently 

of the seed. In contrast to this inhibited crystal growth system of CaCO3 seeded precipitation, SEM 

images of the solid formed after CaHPO4 seeded precipitation showed seed that had a thick covering 

of very small particles, as would be expected from the favourable conditions for hetercoagulation of 

CaHPO4 seed with CaCO3 nuclei.  

The results presented in this paper elucidate the conditions under which CaCO3 seeded precipitation 

may be employed, and point to further areas of research into the ASP treatment of concentrates 

resulting from RO treatment of magnesium and phosphate-bearing waters. These results also point 

to complex interactions between seed and solution components that warrant more fundamental 

studies to give a clearer understanding of the mechanisms involved.   
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