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ABSTRACT 

This thesis investigated the effect of different foods such as spices (green cardamom 

and black cardamom), vegetables (beetroot), cereal grains (purple maize), fruits (chokeberry 

and Queen Garnet plum) and bioactive molecules (sodium nitrate and cyanidin 3-glucoside) 

on risk factors for metabolic syndrome using a diet-induced obese rat model. Obesity, insulin 

resistance, impaired glucose tolerance, atherogenic dyslipidaemia, hypertension and endothelial 

dysfunction are the major components of metabolic syndrome. Maintaining a healthy lifestyle 

including regular exercise together with a healthy and balanced diet has been recommended as 

the first-line of defence to prevent metabolic syndrome. However, with the growing prevalence of 

obesity worldwide, this complex disorder is considered to be a clinical challenge and an 

important public health concern. While current pharmaceutical drug therapies for obesity show 

some benefits, there are also multiple side effects. Hence, complementary and alternative 

therapies have become popular to reduce the incidence of metabolic syndrome with the aim of 

decreasing future health risks. 

Nature has provided us with an immense diversity in the form of plants and herbs, 

which contain a wide range of chemicals, produced to protect the plants from environmental 

stress factors and pathogenic infections. These foods have been used since antiquity as the 

therapeutic interventions in traditional health care systems. However, the effectiveness of 

many of these plants and their bioactive molecules in the treatment of human diseases has yet to 

be fully explored.   

Hence, in this thesis, I have examined these food sources in a validated diet-induced 

rat model of metabolic syndrome mimicking most of the changes in the human syndrome. 

High-carbohydrate, high-fat diet induced obesity, impaired glucose tolerance, dyslipidaemia, 

hypertension, cardiovascular remodelling including ventricular dilatation, cardiomyocyte 

hypertrophy and cardiac fibrosis, reduced ventricular function, hepatic steatosis, hepatic 

inflammation and portal fibrosis and increased plasma markers of liver damage.  

A comparison of green and black cardamom showed that black cardamom 

ameliorated the changes in cardiovascular and hepatic structure and function and decreased 

visceral adiposity whereas green cardamom worsened both liver function and cardiovascular 

structure and function. Both beetroot, naturally high in nitrates, and the same dose of sodium 

nitrate improved cardiovascular and hepatic structure and function as well as glucose 

metabolism but failed to reduce visceral adiposity. Anthocyanin-rich chokeberry, purple 

maize and Queen Garnet plum reduced body weight gain, visceral adiposity, improved liver 
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enzymes and improved cardiovascular and hepatic structure and function. Cyanidin 3-

glucoside, the most common anthocyanin, showed similar effects as the Queen Garnet plum 

at the same dose. As similar responses were observed in cyanidin 3-glucoside and Queen 

Garnet rats, it is proposed that cyanidin 3-glucoside is the key bio-active molecule to reduce 

the diet-induced metabolic, cardiovascular and liver changes. 

Anthocyanin-rich Queen Garnet plums gave the most beneficial effects in the obese 

rat model, so this intervention was chosen to proceed with a 12 week clinical translation 

study in obese or over-weight humans. These subjects showed a marked decrease in blood 

pressure and fasting blood glucose concentrations, but no change was observed in body 

weight, total body fat mass and plasma lipids. 

These studies from the thesis clearly indicate that these natural food sources have the 

potential to reverse or attenuate most of the risk factors associated with metabolic syndrome. 

In contrast, green cardamom exacerbated adiposity, decreased liver function and worsened 

cardiovascular structure and function. The most likely mechanism of action of these natural 

sources is the prevention of infiltration of inflammatory cells into organs and tissues. From 

these studies, it is evident that dark-coloured foods are very effective in the attenuation of 

cardio-metabolic risk factors associate with metabolic syndrome.  
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1. Metabolic syndrome, prevalence, relevant animal models and dose 

translation to humans 

1.1. Why metabolic syndrome? 

 Metabolic syndrome is the cluster of metabolic complications such as obesity, 

dyslipidaemia, impaired glucose tolerance and insulin resistance together with hypertension 

(1, 2) influenced by environmental factors including lifestyle and diet (3-5). Different 

organisations have specified different requirements for classifying patients under the 

definition of metabolic syndrome (6-10). These requirements have been summarised in Table 

1.1. Many complications are not included in the definition of metabolic syndrome, such as 

fatty liver, oxidative stress, inflammation and endothelial dysfunction, but these are 

frequently found in patients with metabolic syndrome (1, 3). The prevalence of metabolic 

syndrome has reached a level where it is considered as a worldwide health problem. Table 

1.2 summarises the prevalence of metabolic syndrome in different countries according to the 

different definitions.  

 The high prevalence of metabolic syndrome makes it extremely important to find 

effective treatments or preventions. Hence, it is important to understand the mechanisms 

associated with the development of metabolic syndrome in rodents, the pathophysiological 

similarities and differences between humans and rodent models and finally the translatability 

of results from rodent models to humans.  

Page 2 of 151



Table 1.1 Definitions of metabolic syndrome  

 WHO (1998) (6) EGIR (1999) (7) 
NCEP ATP III 

(2005 revision) (8) 
IDF (2005) (9) 

Harmonised 

definition (2009) 

(10) 

Compulsory Insulin resistance Hyperinsulinaemia None Central obesity None 

Requirements 
Insulin resistance or diabetes, 

plus any two of the five criteria 

Hyperinsulinaemia, plus 

any two of the four 

criteria 

Any three of the 

five criteria 

Central obesity, plus any 

two of the four criteria 

Any three of the 

five criteria 

Central obesity 

Waist:hip ratio (>0.90 in 

males, >0.85 in females) or 

BMI >30 kg/m2 

Waist circumference 

(≥94 cm in males, ≥80 

cm in females) 

Waist 

circumference 

(>102 cm in males, 

>88 in females) 

Waist circumference 

(≥94 cm in males, ≥80 

cm in females) 

Population- and 

country-specific 

definitions 

Hyperglycaemia 

Impaired glucose regulation, 

type 2 diabetes or insulin 

resistance 

Hyperinsulinaemia; 

fasting plasma glucose 

≥6.1 mmol/L 

Fasting glucose 

≥100 mg/dl 

Fasting glucose ≥100 

mg/dl or previously 

diagnosed type 2 

diabetes 

Fasting glucose 

≥100 mg/dl 

Dyslipidaemia 

(Triglycerides) 

Triglycerides ≥150 mg/dl or 

HDL-cholesterol (<35 mg/dl in 

males, <39 mg/dl in females) 

Triglycerides ≥180 

mg/dl or HDL-

cholesterol <40 mg/dl or 

Triglycerides ≥150 

mg/dl or treated for 

dyslipidaemia 

Triglycerides ≥150 

mg/dl or treated for 

dyslipidaemia 

Triglycerides ≥150 

mg/dl or treated for 

dyslipidaemia 
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Dyslipidaemia 

(Cholesterol) 

treated for dyslipidaemia 

HDL-cholesterol 

(<40 mg/dl in 

males, <50 mg/dl 

in females) 

HDL-cholesterol (<40 

mg/dl in males, <50 

mg/dl in females) or 

treated for dyslipidaemia 

HDL-cholesterol 

(<40 mg/dl in 

males, <50 mg/dl in 

females) or treated 

for reduced HDl-

cholesterol 

Hypertension ≥160/90 mmHg ≥140/90 mmHg 

>130/85 mmHg or 

treated for 

hypertension 

>130/85 mmHg or 

treated for hypertension 

≥130/85 mmHg or 

treated for 

hypertension 

Other criteria 

Microalbuminuria (urinary 

albumin excretion ≥20 μg/min 

or albumin:creatinine ratio ≥20 

mg/g) 

    

Abbreviations used: WHO, World Health Organisation; EGIR, European Group for the Study of Insulin Resistance; NCEP ATP III, National 

Cholesterol Education Program Adult Treatment Panel III; IDF, International Diabetes Federation; BMI, body mass index; HDL, high-density 

lipoprotein.   
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Table 1.2 Prevalence of metabolic syndrome 

Country of survey Definition used Year of survey Age group Prevalence 

Johannesburg metropolitan 

area, South Africa (11) 

Harmonised definition 

(10) 
Started in 1990  

29% in African population 

46% in Asian Indian population 

Australia (12) 
NCEP ATP III 

2004/2005 25-74 years 
27.1% in men; 28.3% in women 

IDF 33.7% in men; 30.1% in women 

Kuwait (13) 
IDF 

2006 20-65 years 
36.2% 

NCEP 24.8% 

Australia (14) 

ATP III 

1999-2000 ≥ 25 years 

22.1% 

WHO 21.7% 

IDF 30.7% 

EGIR 13.4% 

India (15) NCEP ATP III 2010-2011 ≥ 30 years 
29% in women; 23% in men; overall 

25.6% 

Taiwan (16) WHO - 19-95 years 18.5% males; 14.7 % females 

USA (17) NCEP 1999-2002 ≥ 20 years 
33.7% males; 35.4% females; 34.5% 

overall 
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IDF 39.9% males; 38.1% females; 39% overall 

USA (18) NCEP ATP III 2003-2006 ≥ 20 years 
35.1% in men; 32.6% in women; 34% 

overall 

Spain (19) 

Revised NCEP ATP III 

2001-2003 ≥ 20 years 

28.2% in men; 26.3% in women; overall 

27.2% 

IDF 
36.9% in men; 28.1% in women; overall 

32.2% 

Harmonised definition 
38.9% in men; 28.4% in women; overall 

33.2% 

Abbreviations used: WHO, World Health Organisation; EGIR, European Group for the Study of Insulin Resistance; NCEP ATP III, National 

Cholesterol Education Program Adult Treatment Panel III; IDF, International Diabetes Federation   
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1.2. Obesity and insulin resistance  

Diabetes is a metabolic disease characterised by hyperglycaemia resulting from 

defects in insulin secretion, insulin action, or both (20). The International Diabetes Federation 

estimates that in 2013, there were over 382 million diabetic patients world-wide with an 

additional 316 million with impaired glucose tolerance, associated with 5.1 million diabetes-

related deaths and a burden of USD 548 billion on the world’s health-care systems (21). 

Depending on the underlying cause, the usual classification is as either type-1 or type-

2 diabetes (20). In type-1 diabetes, the destruction of pancreatic β-cells leads to absolute 

insulin deficiency (20). Type-2 diabetes, which accounts for 90-95% of all diabetes cases, is 

characterised by varying degrees of insulin resistance with inadequate compensatory increase 

in insulin secretion (20). In type-2 diabetes, an initial β-cell compensatory hypertrophy and 

hyperplasia is followed by an insulin secretory defect largely mediated by progressive loss of 

β-cell functions such as glucose-stimulated insulin secretion ultimately leading to β-cell 

apoptosis induced by glucotoxicity and lipotoxicity (22, 23). High glucose concentrations 

down-regulate the expression of insulin, GLUT2, glucokinase, voltage-dependent Ca2+ 

channels, and their transcription factors, all involved in glucose-stimulated insulin secretion 

(22). Free fatty acids derived from adipose tissue largely contribute to the lipotoxic effects on 

the β-cell through endoplasmic reticulum (ER) stress and NO-mediated β-cell apoptosis (23).  

The pathogenesis of insulin resistance depends on increased ectopic fat deposition in 

organs such as the liver and muscle from diets rich in saturated fats and lipogenic sugars, 

rather than from increased circulating free fatty acids (24-27). Fructose is a lipogenic sugar 

since metabolism to 2-carbon units produces the substrates for synthesis of fatty acids in vivo. 

Further, insulin resistance leads to dysfunctional responses from key insulin-sensitive 

lipogenic transcriptional factors such as liver X receptors (LXRs) and sterol regulatory 

element-binding protein 1c (SREBP-1c) (28). However, in an insulin-resistant state, SREBP-

1c is paradoxically up-regulated, due to activation of cleavage of SREBP-1c by ER stress 

leading to the stimulation of insulin-independent lipogenesis in an insulin-resistant liver (29). 

Other transcriptional factors such PPARα and PPARγ improve insulin sensitivity by 

decreasing ectopic fat accumulation and enhancing insulin signalling resulting in enhanced 

blood glucose control (30, 31). Many extra-pancreatic hormones are key regulators of both 

insulin secretion and sensitivity including glucagon-like peptide 1 (GLP-1) (32), insulin-like 

growth factor-1 (IGF-1) (33), and apelin (34, 35), as well as classical adipokines including 
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interleukin-6 (IL-6), tumour necrosis factor-alpha (TNF-α), adiponectin, leptin, resistin and 

visfatin (36, 37).  

1.3. Adipokines in insulin resistance 

Adipose tissue secretes many bioactive factors, known as adipokines, to regulate 

energy intake and fat storage (38). Increased deposition of fat as white adipose tissue has 

been postulated to be part of the evolutionary process with the assumption of “survival of the 

fattest” (3). The circulating concentrations of adipokines such as adiponectin, leptin, resistin 

and visfatin secreted by adipocytes in white adipose tissue regulate insulin secretion and 

sensitivity. Increased adipose tissue increases production of cytokines including TNF-α and 

IL-6, and adipokines including leptin, adiponectin, resistin and visfatin (38). These 

adipokines have complex roles in the regulation of insulin secretion and sensitivity (Figure 

1.1). Further, chronic inflammation associated with obesity could lead to development of 

insulin resistance in obesity by the increased production of pro-inflammatory cytokine 

mediators such as TNF-α and IL-6 (39). The increased production of TNF-α and the 

increased expression of its receptors have been associated with obesity in both animals and 

humans (38).  

Adipokines such as leptin, adiponectin, resistin and visfatin play a role in 

development of obesity, insulin resistance, diabetes, inflammation and auto-immunity (40) 

and also control energy intake and expenditure (41). These adipokines exhibit anti-

inflammatory effects that could improve insulin resistance and obesity-related diseases (42-

44) and they cross the blood-brain barrier to control satiety and hunger by acting on the 

hypothalamus (41).  

Basal concentrations of leptin were higher in obese compared to insulin-resistant 

patients who had higher concentrations than insulin-sensitive patients (45). Intravenous 

glucose tolerance tests with tolbutamide showed decreased plasma leptin concentrations in 

insulin-resistant patients where no changes were observed in insulin-sensitive and obese 

patients, indicating that elevated plasma leptin concentrations are associated with insulin 

resistance independent of obesity and insulin sensitivity (45). Calorie restriction for 8 weeks 

in 162 obese/overweight patients on a weight loss program decreased body weight as well as 

plasma leptin and insulin concentrations (46). The same study was continued for another 24 

weeks where subjects were given general dietary guidelines to maintain the weight loss, but 

without calorie restrictions or specific follow-up instructions. Subjects who started with 
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higher plasma leptin and insulin and lower plasma ghrelin concentrations, regained their lost 

weight (46), confirming the involvement of these hormones in the development of obesity 

with insulin resistance. In male Sprague-Dawley rats, continuous subcutaneous leptin 

infusion for 48 hours decreased fasting plasma insulin, glucose, IGF-1 and C-peptide 

concentrations and improved insulin sensitivity (47), while chronic leptin infusion increased 

arterial pressure and decreased fasting blood glucose and insulin concentrations (48).  

 

Figure 1.1 The mechanisms of action of adipokines in increasing insulin resistance 

Leptin binding to the Lepr-b isoform of leptin receptor (Lep-R) activates the Janus 

kinase (JAK)-signal transducer and activator of transcription (STAT) pathway (JAK-STAT) 

in the hypothalamus, directly acting on skeletal muscle to increase AMP-activated protein 

kinase (AMPK). Whether this action of leptin on skeletal muscle increases or decreases 

glucose uptake and insulin-stimulated glucose metabolism remains controversial (49-51). 

Leptin binding to lepr-b has a direct impact on glucose homeostasis, as leptin acts on skeletal 

muscle increasing glucose uptake and insulin-stimulated glucose metabolism (52, 53), but 

inhibits insulin secretion from β-cells (54) and glucagon secretion from α-cells (55) and 

increases expression of GLUT-4 and uncoupling proteins-1 and -3 in adipose tissue (56, 57). 

Similarly, in vitro and in vivo studies with chronic leptin treatment particularly in leptin 

deficiency showed increased glucose uptake and movement of GLUT-4 to plasma 

membranes with normalized glycogen synthase and glucose oxidation in skeletal muscle and 

hepatic cell lines (51, 58-61). 
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Increased concentrations of adiponectin were associated with improved insulin 

resistance and decreased total body fat mass in an in-patient study on 33 obese adolescents 

treated for 9 months with moderate physical activity (62). Low plasma adiponectin 

concentrations were reported in 128 patients with diabetes or diabetic coronary artery disease 

(63), while weight reduction increased plasma adiponectin concentrations with improved 

insulin resistance (64). Hypoadiponectinemia may contribute to insulin resistance and may 

accelerate atherogenesis associated with obesity as serum adiponectin concentrations are 

lower in obesity and increase after weight loss (65). Increased plasma adiponectin 

concentrations may improve regulation of insulin sensitivity (66). 

Increases in adiponectin concentrations and adiponectin receptors AdipoR1 and 

AdipoR2 stimulate AMPK phosphorylation and activation in skeletal muscle and liver (67) 

and increase glucose utilization and fatty-acid metabolism (67). Adiponectin globular domain 

(ACRP30) enhanced muscle fat oxidation and glucose transport via AMPK activation and 

acetyl-CoA carboxylase inhibition (68). In transgenic mice, ACRP30 reduced expression of 

gluconeogenic enzymes such as phosphoenolpyruvate carboxylase (PEPCK) and glucose-6-

phosphatase (G6Pase) associated with elevated phosphorylation of hepatic AMPK, which 

may account for inhibition of endogenous glucose production by adiponectin (69, 70). 

Adiponectin in gAd Tg, ob/ob or ApoE-deficient mice activated PPARα, which increased 

fatty-acid metabolism and energy consumption with decreased triglyceride content in the 

liver and skeletal muscle, thereby increasing insulin sensitivity (71). 

Resistin increases with an increase in adipose tissue in rodents and also in patients 

with type 2 diabetes (72), inhibiting insulin-stimulated glucose uptake causing impaired 

glucose tolerance and metabolism (73). Increased serum resistin concentrations were shown 

in obese diabetic patients compared with obese non-diabetic controls (74). In obese subjects, 

concentrations of resistin were increased compared to lean individuals (75) and decreased 

after weight loss with sibutramine or orlistat treatment for 6 months (76). In 2141 subjects, 

increased resistin concentrations were measured in women with metabolic syndrome, with 

men showing no changes in resistin concentrations with or without metabolic syndrome (77). 

Extremely high resistin concentrations were shown in patients with stable angina pectoris or 

acute coronary syndrome with positive correlations between resistin concentrations and 

obesity, serum lipids, inflammatory markers and insulin resistance (78).  

Infusion of resistin in male Sprague-Dawley rats induced hepatic insulin resistance 

(79). In resistin-knockout mice, increased AMPK activity and decreased gluconeogenic 
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enzyme expression improved glucose homeostasis (80) and also increased cytokine 

signalling-3 expression (SOCS-3), a negative regulator for insulin with inhibition of insulin 

receptor (IR) and activation of IRS-1 by phosphorylation contributing to insulin resistance 

(81). Human hepatoma (HepG2) cells treated with resistin showed decreased phosphorylation 

of AMPK, GLUT-2 mRNA expression and glycogen synthesis with increased expression of 

G6Pase and PEPCK leading to hepatic insulin resistance (82).  

The roles of visfatin in insulin resistance, insulin-mimetic effects, and diabetes are 

controversial as some studies showed improved insulin resistance (83-85) while other studies 

showed negative effects on insulin resistance (86-88). Higher fasting visfatin concentrations 

were measured in patients with diabetes or impaired glucose tolerance with increased pro-

inflammatory cytokines such as TNF-α, IL-6 and IL-1β and NF-κB activation (89-91). 

Patients with long-term type-1 diabetes showed elevated serum visfatin, TNF-α and IL-6 

concentrations (86). These increased visfatin concentrations could cause β-cell deterioration 

(86). Increased plasma visfatin concentrations were observed in obese children and women 

(92, 93) whereas other studies in obese subjects showed lower plasma visfatin concentrations 

(94, 95). Increased visfatin concentrations caused smooth muscle inflammation with impaired 

endothelial function (96), with increased risk of coronary artery disease (97, 98) and vascular 

disease (99). In contrast, visfatin improved insulin resistance (100). Extracellular visfatin in 

HepG2 cells increased glucose production, mRNA expression of PEPCK and G6Pase and 

stimulated gluconeogenic enzyme expression via phosphorylation of cyclic AMP-responsive 

element-binding protein (100). Resistin and visfatin concentrations increased with increased 

visceral adipose tissue (72, 101), with increased resistin and visfatin concentrations leading to 

inflammation, increased TNF-α, IL-6, pre-B cell formation and other inflammatory markers, 

inhibiting insulin signalling therefore decreasing insulin action (91). 

1.4. Cardiovascular remodelling and hypertension  

Cardiovascular remodelling is a process of change in the size, shape and function of 

the heart as a physiological response to metabolic or hormonal changes in the body (102, 

103). These physiological responses lead to the development of molecular and cellular 

changes, including hypertrophy, necrosis and apoptosis of the myocyte, fibroblast 

proliferation and fibrosis in the interstitium (103). These changes lead to abnormalities in 

myocardial function including impaired contractility and relaxation, diminished cardiac pump 

function, dilatation and increased sphericity of the heart. Ultimately, these changes lead to 

systolic and diastolic cardiac dysfunction, which forms the basis of heart failure and death 
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(103). Hypertension appears to be the strongest predictor of cardiovascular mortality out of all 

the components of metabolic syndrome. The pathological mechanisms of hypertension in 

metabolic syndrome are not fully understood. Hypertension in metabolic syndrome has 

multifactorial causes with the following mechanisms thought to play a pivotal role in the 

pathophysiology of metabolic syndrome hypertension, these include: sympathetic 

hyperactivation, increased renin-angiotensin-aldosterone activity and endothelial dysfunction 

(104). 

1.5. Inflammation  

Inflammation is part of the non-specific immune response that occurs in reaction to 

any injury to the tissues. In some pathological conditions, the inflammatory process becomes 

continuous and subsequently leads to the development of chronic inflammatory diseases such 

as obesity (105, 106). Initially, a link between obesity and inflammation was established 

through the expression of by the increased plasma concentrations of pro-inflammatory 

markers including cytokines and acute phase proteins such as C-reactive protein (CRP) in 

obese subjects (107-109). CRP is now considered an independent risk factor for the 

development of cardiovascular disease (110). Many inflammatory markers present in the 

plasma of obese individuals originate from adipose tissue (108). Thus, obesity is now defined 

as the state of chronic low-grade inflammation, which is initiated by the morphological 

changes in the adipose tissue (111). Some of the pro-inflammatory cytokines from adipose 

tissue interfere with the signalling pathway for insulin. This ultimately leads to insulin 

resistance (112). Liver is the other tissue that is affected by excess adipose tissue and pro-

inflammatory cytokines produced by adipose tissue. Chronic activation of nuclear factor-κB 

(NF-κB) by cytokines leads to the development of insulin resistance in liver (113, 114). The 

development of hepatic steatosis and non-alcoholic fatty liver disease in presence of insulin 

resistance has been established (115-118). 

1.6. Non-alcoholic fatty liver  

Non-alcoholic fatty liver disease is a clinical condition that includes a wide spectrum 

of liver complications ranging from simple steatosis to steatohepatitis, advanced fibrosis and 

cirrhosis (119). The liver is a metabolic workhorse that performs a range of biochemical 

functions including metabolism of lipids. Hepatic steatosis develops when there is excess 

deposition of triglycerides in the hepatocytes. This pathological condition can develop when 

the total input of fatty acids is more than the total output (120). Sources of fatty acids in the 

liver include the hepatic free fatty acid uptake from blood and de novo lipogenesis. The 
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output of fatty acids from the liver can be through fatty acid oxidation and fatty acid export 

within very low-density lipoproteins (120). The disturbances in hepatic input and output of 

lipids can occur in the conditions of dyslipidaemia, obesity and insulin resistance (119, 121). 

Steatosis is characterised by excess fat storage and it can progress to steatohepatitis and 

finally leads to cirrhosis and structural and functional abnormalities of the liver. Some 

patients only develop steatosis whereas others develop steatohepatitis and fibrosis. 

1.7. Classical animal models of obesity and metabolic syndrome 

 Animal experiments have contributed significantly to the understanding of human 

biochemistry, physiology, pathophysiology and pharmacology. Different models have been 

developed, characterised and then successfully used for the development of preventions or 

cures for human diseases. One of the important human conditions is metabolic syndrome and 

this can be successfully induced in rodents. Many animal models have been used in metabolic 

syndrome research to mimic the human conditions (122). These animal models have been 

consistently used to identify both the roles of various regulators in the body that may be 

responsible for the development of metabolic syndrome in humans and some of the treatment 

strategies against metabolic syndrome (122-124). Review articles have identified the 

usefulness of these animal models; however, few models reproduce the range of changes that 

metabolic syndrome produces throughout the human body (122, 123, 125-133). The animal 

models currently used include the genetic models that develop metabolic syndrome 

spontaneously, genetically modified models to induce metabolic syndrome and the models in 

which the metabolic syndrome is induced using specialised diets. 

1.8. Genetic models of obesity and diabetes  

Genetic models of obesity and diabetes include db/db mice, ob/ob mice, Zucker 

diabetic fatty rats, Otsuka Long-Evans Tokushima Fatty rats and Goto-Kakizaki rats. These 

models are primarily useful in identifying treatments for metabolic syndrome consequent to 

genetic defects. However, the models also induce other pathological conditions associated 

with metabolic syndrome in humans (122).  

ob/ob mice have a mutation in the leptin gene, important since leptin controls energy 

intake and expenditure. These leptin-deficient mice become obese at a very early age. 

Obesity accompanies hyperinsulinaemia, hyperglycaemia and impaired glucose tolerance and 

non-alcoholic fatty liver disease (122, 134). However, they do not develop hypertension or 

dyslipidaemia (122). db/db mice and Zucker diabetic fatty rats have a mutation in the gene 
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for leptin receptor, impairing leptin signalling (135, 136). Similar to ob/ob mice, db/db mice 

and Zucker diabetic fatty rats show signs of early-life obesity, hyperinsulinaemia, 

hyperglycaemia and cardiovascular complications along with dyslipidaemia (122, 136). 

However, they fail to develop hypertension (122). These 3 models suggest the importance of 

leptin in control of metabolism in the body and also the role of leptin or leptin signalling 

defects in the development of metabolic syndrome. 

Otsuka Long-Evans Tokushima Fatty rats have decreased cholecystokinin-1 receptor 

density. Cholecystokinin is a peptide hormone secreted from L-cells of intestine that 

regulates digestion and food intake. These rats show progression of obesity with increasing 

age, correlated with higher food intake due to deficiency of cholecystokinin-1 receptor. These 

rats also show dyslipidaemia, hyperglycaemia, impaired glucose tolerance and insulin 

resistance along with hypertension and cardiovascular complications (122). Goto-Kakizaki 

rats are non-obese and spontaneously diabetic. These rats develop hyperglycaemia at a very 

early age; they also show cardiac hypertrophy and systolic dysfunction along with signs of 

kidney damage at later stages of life. The other symptoms of metabolic syndrome observed in 

this model are impaired glucose tolerance, dyslipidaemia, insulin resistance and 

hyperinsulinaemia but hypertension is not observed (122, 137). An inbred model for obesity 

has been identified at the National Institute of Nutrition, Hyderabad, India (138). Both males 

and females from this strain show similar responses. This strain (WNIN/Ob) develops 

obesity, probably through hyperphagia, at a very early stage of life and hyperglycaemia and 

hyperinsulinaemia by 28 days of age. They have lower lean mass and much higher fat mass 

compared to their lean littermates along with dyslipidaemia. These rats show 

hyperleptinaemia probably with normal leptin and leptin receptor locus. A defect on 

chromosome 5 near leptin receptor locus has been suggested as the cause of obesity; 

however, this has not been confirmed (138, 139).  

Although these rodent models provide a reasonably reproducible pathological 

condition, they do not mimic the actual pathophysiology in humans as the occurrence of 

genetic defects in either leptin or cholecystokinin receptors leading to metabolic syndrome, 

obesity and diabetes is quite rare (122, 140). 

1.9. Artificially induced metabolic syndrome in animals 

Metabolic syndrome can be artificially induced in experimental animals, usually mice, 

through genetic engineering where a particular gene of interest is knocked out or made non-

Page 14 of 151



functional. These genetic models define the role of a particular protein or receptor in the 

pathophysiology of metabolic syndrome. For example, GLUT-4, IRS-1, IRS-2 and insulin 

receptor knockout mice have been studied (141-145). These genetically engineered models 

do not mimic the human condition of metabolic syndrome but they can provide useful 

information about a particular protein, its receptor and the intracellular pathways involved in 

the regulation of metabolism (122).  

A commonly used strategy to induce metabolic syndrome in animals, especially 

rodents, is the use of hypercaloric diets. It is argued that the diet-induced models best mimic 

the human conditions as they share similar mechanisms in the development of metabolic 

syndrome (122). The diets used to induce metabolic syndrome include fructose, sucrose, 

animal and plant fats. Different research groups have characterised different combinations of 

these components in different species and strains of rodents. Some examples of the 

combinations of diets include high-carbohydrate diets (either fructose or sucrose as 

carbohydrate), high-fat diets (either animal or plant fats) and combination high-carbohydrate, 

high-fat diets (122). These diets differ in the contribution of carbohydrate and fat to available 

calories and the sources of fat. Basically, the aim of these studies is to provide excess energy 

from diet, which is the major cause of human metabolic syndrome and obesity (129). Most of 

the diet-induced models show symptoms of metabolic syndrome including central obesity, 

dyslipidaemia, impaired glucose tolerance, insulin resistance and hypertension along with 

cardiovascular complications as well as non-alcoholic fatty liver disease (122).  

It is argued that a combination of simple sugars and animal fat serves as the best 

model to mimic metabolic syndrome in rodents (122). This type of diet mimics the 

Western/cafeteria diet that is rich in fructose, sucrose and animal fat. Also, the prevalence of 

metabolic syndrome is very high in developed countries (Table 1.2). This may directly reflect 

the role of high-carbohydrate, high-fat diets in the development of metabolic syndrome. 

Based on this assumption, we have characterised an animal model with complex diet 

composition including fructose, condensed milk and beef tallow, which induced a range of 

complications that are generally found in metabolic syndrome patients (146). These 

complications included hyperinsulinaemia, impaired glucose tolerance, central obesity, non-

alcoholic fatty liver disease, cardiac remodelling, hypertension and endothelial dysfunction 

along with mild renal damage and increased pancreatic islet mass (146). The high-

carbohydrate, high-fat diet mimics the full range of metabolic syndrome changes occurring in 

either vegetarian or non-vegetarian populations, depending on the source of the increased 
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fats. However, the complexity and variability of the human diet cannot be mimicked by a 

fixed rodent diet on a day-to-day basis. An advantage of the rat model is the shortened time 

period to develop the syndrome of months rather than years or decades as in humans. This 

model has been used earlier to test natural products for the attenuation of metabolic syndrome 

(147-149). The different responses shown by these interventions clearly suggest that this 

model is capable of responding to the pharmacological interventions.  

Monosodium glutamate-induced obesity: Monosodium glutamate given by 

subcutaneous injection induces obesity in mice and rats (150-152) together with glucose 

tolerance, dyslipidaemia, liver dysfunction and hyperinsulinaemia (151). Monosodium 

glutamate in rats and mice did not affect body weight when it was given in diet (up to 20% of 

diet) or in drinking water (2%) (153). It has been argued that monosodium glutamate does not 

reflect human obesity in rats and mice (153, 154) since, in humans, monosodium glutamate is 

taken in foods and not as an injection. Thus, results with injected monosodium glutamate in 

mice and rats cannot be extrapolated to oral ingestion in humans.  

Intrauterine growth restricted rats: This is also a very recently developed model 

based on the Barker hypothesis (155). The rat model was developed through bilateral ligation 

of uterine artery to reduce the blood flow to the foetus (156). At birth, rats showed lower 

insulin concentrations and body weight compared to control rats. After 7 weeks of age, 

fasting blood glucose and insulin concentrations were higher in these rats than control. After 

15 weeks of age, the growth restricted rats showed lower insulin with higher fasting blood 

glucose concentrations than their normal controls. By 26 weeks of age, rats showed obesity 

and very high fasting blood glucose concentrations, a characteristic of type 2 diabetes (156, 

157). A similar model has been developed by restricting the diet to the pregnant mothers 

(158).  

Although there are differences between the physiology of humans, rats and mice, 

appropriate animal models can provide an excellent initial point to study either the causes or 

treatment strategies for metabolic syndrome. This provides the basic understanding of the 

intervention strategy before going into human trials. At this point, in vitro assays may help 

provide more information on the possible effects of the proposed interventions. 

In this thesis, the high-carbohydrate, high-fat diet-induced model of the metabolic 

syndrome in rats was used (146). This diet mimicked the human diet associated with the 

development of metabolic syndrome. It produced changes in metabolic, cardiovascular and 
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hepatic structure and functions such as excessive abdominal fat deposition with increases in 

body weight of 10-15%, impaired glucose tolerance (pre-diabetes), elevated blood pressure 

by 30-40 mmHg and increased plasma lipid concentrations together with increased plasma 

liver enzymes compared with corn starch diet-fed rats (146). Histological evaluation of heart 

and liver showed increased infiltration of inflammatory cells and fat vacuoles in the liver. 

This was accompanied by increased left ventricular stiffness and decreased aortic reactivity 

(146). Corn starch is a slowly digestible complex carbohydrate (159) and functions as a 

control for the HCHF diet where the primary carbohydrate is fructose. Unlike fructose, corn 

starch does not increase blood glucose, plasma insulin or free fatty acid concentrations (159, 

160). This model would be an appropriate model of the human metabolic syndrome (146). 

1.10. Human experimental models 

Human trials are essential in the development of drug therapies. New compounds are 

firstly identified in animal studies as potential human treatments. Experimental parameters 

such as dosage, dietary composition and exercise can be controlled in animal studies, but are 

much more difficult to control in outpatient studies in humans. Table 1.3 describes some of 

the human trials for interventions against the symptoms of metabolic syndrome. 

1.11. Translation to clinical practice: difficulties and limitations 

Translation of results from rodent studies to human trials remains a problem. For 

example, quercetin attenuated the symptoms of metabolic syndrome in rodent models (161, 

162). It is one of the most commonly found flavonoids in the human diet, yet prevalence of 

metabolic syndrome is increasing in the community. Two well-studied compounds against 

metabolic syndrome are curcumin and resveratrol with an immense literature available for 

these compounds in vitro and in vivo (163-165). However, the successful translation of these 

interventions to humans has not yet been reported. 

Relevant human doses have been estimated from rodent doses (166, 167), but these 

doses assume high oral bioavailability for compounds given in the food while drug 

metabolism may vary between rats and humans. Further, the food matrix is a well-known 

variable affecting absorption of food components. The length of dosing is important, with the 

average life-span of laboratory rats of about 2 years being much less than the average human 

life-span of 75-80 years in many countries. Thus, 8 week interventions in rats are 

approximately 6 year interventions in humans, based on life-span. Longer interventional 
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studies in humans, at higher doses, may be necessary to show therapeutic benefits. This may 

impose safety issues in the use of new interventions in humans. 
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Table 1.3 Treatments used in humans against metabolic syndrome 

Subject 
Study type and 

model 
Study duration Treatment and dose Exclusion criterion Effects 

19 females; 

11 males 

(18-75 years age) 

(168) 

Randomised, double-

blind, 2-arm, 

parallel-group, 

placebo-controlled; in 

type 2 diabetes 

patients 

2 weeks 

5µg exenatide (1st 

week); 10µg exenatide 

(2nd week) 

clinically important medical conditions 

or had used sulfonylureas, meglitinides, 

a-glucosidase inhibitors, pramlintide, 

exogenous insulin, or weight-loss drugs 

within the prior 2 months; fasting 

triglycerides >4.5 mmol/L, >1 episode 

of severe hypoglycaemia within 6 

months, treatment with corticosteroids 

within 2 months, treatment with an 

investigational drug within 30 days, or 

current treatment with drugs known to 

affect gastrointestinal motility 

Lowerd post-prandial 

glucose and triglyceride 

excursion; no change in 

free fatty acids 

24 females; 

5 males 

(18-30 years age) 

(169) 

Randomised 

crossover; obese 

subjects (BMI ≥30) 

2 study visits; at 

least 7 days apart 

Cereal prepared with 6g 

ground cassia cinnamon 

during study visit 

Allergy to wheat, cinnamon and 

sucralose; pregnancy; type 1 or type 2 

diabetes 

Lowered postprandial 

glucose 
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875 patients 

(55-80 years age); 

normal (n=282); 

overweight (n=405); 

obese (n=150); 

severely obese 

(n=38) 

(170) 

Essential 

hypertension; double-

blind treatment with 

losartan compared to 

atenolol 

LIFE trial; 

cardiovascular 

death/fatal or 

non-fatal 

myocardial 

infection/stroke as 

endpoint 

Losartan & atenolol 
Underweight (BMI 

<18.5 kg/m2) 

Shift from concentric to 

eccentric hypertrophy in 

both the treatment groups; 

higher cardiovascular 

mortality despite 

antihypertensive treatment 

in obese subjects 

7447 subjects (57% 

females); 

(55-80 years age) 

(171) 

PREDIMED trial; 

Parallel group, 

multicentre, 

randomised; 

Type 2 diabetes or any 

3 of following: 

smoking. 

Hypertension, higher 

LDL-c, lower HDL-c, 

obesity, family history 

of coronary heart 

Primary end-

points: 

myocardial 

infarction, stroke 

and death from 

cardiovascular 

causes; Secondary 

end-points: 

stroke, 

myocardial 

infarction, death 

Mediterranean diet with 

extra-virgin olive oil 

(1L/week) or 

Mediterranean diet with 

nuts (30g/day) 

- 

Mediterranean diet without 

energy-restriction reduces 

the risk of major 

cardiovascular events 

among high-risk persons 
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disease from 

cardiovascular 

causes and death 

from any cause 

35 males (mean age: 

53.8 ± 5.8 years) 

(172) 

Mild 

hypercholesterolaemia 

18 weeks (6 

weeks treatment 

followed by 6 

weeks gap 

followed by 6 

week treatment) 

Chokeberry juice, 250 

mL/day 
No earlier pharmacological treatment 

Decreased serum 

triglycerides, serum 

total/LDL-c, improved 

endothelial function, 

42 males; 

54 females 

(25-65 years age); 

BMI 25-35 kg/m2 

(173) 

Double-blind, 

randomised, placebo 

controlled 

crossover trial; 

central obesity and 

high serum 

triglycerides 

6 weeks treatment 

followed by 5 

week washout 

Quercetin, 150 mg/day 

Smoking; insulin-dependent diabetes 

mellitus; liver, gastrointestinal, or 

inflammatory diseases; a history of 

cardiovascular events; abnormal thyroid 

function; use of anti-obesity 

medications, dietary supplements, or 

anti-inflammatory drugs; cancer; recent 

major surgery or illness; pregnancy or 

breast-feeding; alcohol abuse; 

participation in a current weight loss 

program; necessity for a medically 

apoE3 genotype- 

decreased blood pressure, 

serum TNFα, no change in 

serum total cholesterol, 

triglyceride, glucose; 

apoE4 genotype- reduction 

in HDL, serum TNFα, no 

change in serum total 

cholesterol, triglyceride, 

glucose, no change in 
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supervised diet; >5 kg weight loss 

within the 3 month prior to the study 

blood pressure 

30 males; 

12 females 

(18-75 years age) 

(174) 

Randomised, double-

blind crossover trial; 

Blood pressure: 

systolic 140-

170mmHg & diastolic 

90-105mmHg 

4 weeks 

Potassium bicarbonate 

or potassium chloride 

(potassium, 6.4 

mmol/day) 

Impaired renal function, secondary 

cause of hypertension, chronic 

diarrhoea, history of ulcer disease, 

previous stroke, ischaemic heart 

disease, heart failure, diabetes mellitus, 

malignancy, liver disease, pregnancy or 

breastfeeding, oral contraceptive pills 

Improved endothelial 

function, reduced 

cardiovascular risk factors; 

potassium bicarbonate – 

improved calcium and 

bone metabolism 

 

338 males; 

352 females 

(25-64 years age) 

(175) 

Randomised control 

trial 
6 months 

Increase in 

consumption of fruits 

and vegetables 

Cardiovascular disease other than 

hypertension, gastrointestinal disease, 

cancer, serious psychiatric disorders, 

hypercholesterolaemia, recent traumatic 

events 

Reduction in systolic and 

diastolic blood pressure by 

4mmHg and 1.5mmHg, 

respectively 

4 males; 

44 females 

(mean age: 50 ± 3 

years) (176) 

Randomised 

controlled study 
8 weeks 

Freeze-dried 

blueberries, 50g/day 

<21 years age; taking medications for 

hypoglycaemic, hypolipidemic, anti-

inflammatory or steroidal medications; 

liver, renal or thyroid disorders; 

anaemia; consuming antioxidants or fish 

oil supplements regularly; smokers; 

Decrease in blood pressure 

Decreased LDL & lipid 

peroxidation 

Trend towards decrease in 

body weight 
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consuming alcohol regularly; pregnant 

or lactating females 

289 subjects; 

males (45-74 years 

age); females (55-74 

years age) 

(177) 

Randomised, double-

blind, parallel trial; 

carotid intima–media 

thickness (0.7-2.0 mm 

on at least one side) 

18 months 
Pomegranate juice, 240 

mL/day 

Coronary heart disease, diabetes, 

BMI>40kg/m2, hepatic disease, cancer 

in previous 2 years, HIV, hepatitis B or 

C, uncontrolled hypertension, untreated 

or unstable hypothyroidism 

Rate of carotid intima–

media thickness 

progression was slowed 

45 subjects 

(69-80 years age) 

(178) 

Randomised, placebo-

controlled, double-

blinded study 

3 months 
Pomegranate juice, 240 

mL/day 

History of stroke or transient ischemic 

attack; myocardial infarction during the 

preceding 6 weeks; surgically untreated 

left main coronary artery lesion with 

>50% diameter narrowing; coronary 

revascularization procedure during the 

preceding 6 months; current unstable 

angina pectoris; abnormal lung uptake 

on previous scintigram or positron 

emission tomogram; class IV congestive 

heart failure; or ejection fraction <30% 

at time of study entry; significant co-

morbidity; current use of tobacco 

Decreased myocardial 

ischaemia and improved 

myocardial perfusion; no 

negative effects on lipids, 

blood glucose, 

haemoglobin A1c, body 

weight or blood pressure 
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products; or alcohol or drug abuse 

28M; 28F, (30-60 

years age) 

(179) 

Randomised double-

blind, placebo-

controlled parallel 

trial; BMI≥30kg/m2; 

Stable hypertension 

with systolic 

<160mmHg and 

diastolic <100mmHg 

for 6 months 

3 months 

379mg green tea extract 

(including 208mg of 

epigallocatechin-3-

gallate) 

Secondary hypertension and/or 

secondary obesity; diabetes; history of 

coronary artery disease; stroke 

congestive heart failure; malignancy; 

history of use of any dietary 

supplements within 3 months before the 

study; current need for modification of 

antihypertensive therapy; abnormal 

liver, kidney or thyroid gland function; 

clinically significant inflammatory 

process within respiratory, digestive or 

genitourinary tract, or in the oral cavity, 

pharynx or paranasal sinuses; history of 

infection in the month before the study; 

nicotine or alcohol abuse 

Decreased blood pressure, 

total plasma cholesterol, 

triglycerides and LDL-c 

with increase in HDL-c; 

decreased inflammatory 

markers like TNFα and C-

reactive protein; improved 

insulin resistance 
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1.12. Natural products in treatment of metabolic syndrome  

Ayurveda and Chinese medicine have been treating diseases using natural products 

for several millennia and age-old anecdotal reports strongly suggest a role for diet in both 

preventive and therapeutic medicine (180, 181). Indian spices have a traditional history of use 

as both preventive and therapeutic medicines (181). Several reviews have discussed the use 

of herbal medicines including spices in the treatment of the symptoms of the metabolic 

syndrome such as diabetes (181, 182), insulin resistance (183), hypertension and other 

cardiovascular diseases (184) and inflammation (185).  

Cardamom is a perennial herb, indigenous to the Indian subcontinent. Phytochemical 

studies of cardamom revealed a wide variety of compounds, including α-terpineol, myrcene, 

subinene, limonene, cineol, α-phellandrene, menthone, α and β-pinene (186), cis/trans-linalol 

oxides, trans-nerolidol (187), β-sitostenone, γ-sitosterol, phytol, eugenyl acetate (188), 

bisabolene, borneol, citronellol, p-cymene, geraniol, geranyl acetate, stigmasterol and 

terpinene (189). Cardamom essential oil traditionally has been used as a tonic to the digestive 

system, as well as a component of many sensual aphrodisiac blends. The oil has the aroma of 

freshly dried cardamom pods, far superior to the comparatively flat steam-distilled variety of 

this oil. Cardamom oil may relieve spasm, possibly making it beneficial for colitis, irritable 

bowel syndrome, indigestion and cramps. In addition, cardamom oil can relieve nausea and 

may be useful for morning sickness in pregnancy. In vitro studies suggest that cardamom 

inhibited platelet aggregation when induced with agents such as ADP, epinephrine, collagen 

and the calcium ionophore, A 23187 (190). Furthermore, cardamom reduced blood pressure 

in rats probably by acting through cholinergic and calcium antagonist mechanisms (191). 

There is no clear literature evidence that intervention with cardamom, either black or green, 

decreases the signs of the metabolic syndrome, although improvements in individual signs 

have been published. 
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Figure 1.2 The fate of dietary nitrate, derived from consuming beetroot juice. Systemically 
absorbed nitrate is concentrated 10-fold in the salivary glands (left panel) and undergoes an 
enterosalivary circulation where it is reduced to nitrite by bacterial nitrate reductases on the 
dorsal surface of the tongue, and swallowed into the stomach providing a source of 
systemically available nitrite/NO. Right panel, Nitrite is transported in the arterial circulation 
to resistance vessels, where lower O2 tension favors the reduction of nitrite to NO, causing 
vasodilatation, with consequent lowering of BP (adapted from Webb J. A; 2008). 

Further, beetroot as a rich source of nitrates has also shown beneficial effects in 

treating metabolic syndrome risk factors (192). Ingestion of beetroot juice and conversion of 

nitrates to nitric oxide is illustrated in Figure 1.2. Nitric oxide (NO) is one of the most 

important signalling molecules in our body (192). Although NO is involved in virtually every 

organ system within our body, it is known primarily for maintaining normal blood pressure 

and blood flow to tissues and protecting the cardiovascular system from insult and injury 

(193). A deficiency in NO production or availability is a hallmark of several disease 

conditions. It is evident from animal models that high-carbohydrate, high-fat diet causes 

endothelial dysfunction (146) and dietary nitrate consumption improved endothelial function 

along with decrease in visceral fat (194). However, there is no evidence from dietary 

interventions that beetroot juice will produce similar effects to inorganic nitrates and the 

pleiotropic effects of nitrates are unclear.  
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Further, colour fruits and vegetables rich in bioactive compounds, such as flavonoids 

and polyphenols, have also shown potential health benefits (164, 195). Anthocyanins are one 

group of widely-available polyphenols as water-soluble natural pigments responsible for red 

blue or purple colours in fruits and vegetables (196). Cyanidin, delphinidin, malvidin, 

pelargonidin, peonidin and petunidin are the major types of dietary anthocyanins (197). 

Major dietary sources include coloured fruits and vegetables such as berries (blueberry, 

bilberry, chokeberry), purple carrot, black currant, red radish, purple maize, red cabbage and 

purple sweet potato (196, 198). 

Epidemiological studies show that increased consumption of diets rich in 

anthocyanins reduce the risk of  developing cardiovascular diseases (199). Animal and cell 

culture studies using a variety of anthocyanins as dietary interventions suggest that high 

anthocyanin intake may prevent the increase in blood glucose, blood pressure, serum lipids, 

adiposity, oxidative stress and inflammation. Purple carrot juice (5% of the diet) reduced 

abdominal obesity, blood pressure, plasma lipids, hepatic steatosis, cardiac fibrosis and 

inflammation and improved glucose tolerance in high-carbohydrate, high-fat fed rats (200). 

Chokeberry fruit juice (5, 10 and 20 ml/kg body weight) for 30 days reduced total 

cholesterol, LDL-C and triglycerides in 4% cholesterol-containing diet (201). Chokeberries 

(100 and 200 mg/kg body weight) also reduced visceral adiposity, blood glucose, serum 

triglyceride, cholesterol and LDL-cholesterol and increased in fructose-fed rats (202). In the 

same study, anthocyanin supplementation increased plasma adiponectin concentrations and 

inhibited the expression of pro-inflammatory cytokines such as TNF-α and IL6 in the adipose 

tissue along with down-regulation of other adipogenic markers such as Gsk3β, PPAR-γ, 

Fabp4, Fas and Lpl expression with up-regulation of the important intermediates of the 

insulin signalling cascade (IRS1, IRS2, PI3K, Glut1, Glut4 and Gys1) (202). In diabetes 

induced by high-fructose diet and simultaneous single injection of streptozotocin (20 mg/kg), 

dietary supplementation with chokeberry fruit extract (0.2%; ~400mg/g of anthocyanin 

glycosides in the extract) decreased antioxidant status of vital organs, total plasma cholesterol 

and blood glucose (203). In Zucker rats fed a high fat diet, 2% dietary blueberry or 1% whole 

tart cherry powder supplementation reduced plasma triglycerides, fasting insulin, HOMA-IR, 

glucose tolerance, abdominal fat mass and increased adipose and skeletal muscle PPAR-alpha 

and PPAR-gamma activity along with reductions in TNF-α, IL-6 and nuclear factor-κB in the 

plasma and the adipose tissue (204, 205). At the same dosage after 90 days, tart cherries 

reduced fasting blood glucose, hyperlipidaemia, hyperinsulinaemia and fatty liver with 
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increased hepatic PPAR-alpha expression in Dahl salt-sensitive rat (206). Anthocyanins from 

back soybean seed coats (cyanidin 3-glucoside, delphinidin 3-glucoside, and petunidin 3-

glucoside; 10-100 μg/mL) inhibited TNF-alpha-mediated VCAM-1 expression in human 

umbilical vein endothelial cells (207). In the same cell line, delphinidin inhibited oxLDL-

induced cell viability loss primarily by up-regulating proteins involved in cellular anti-

oxidative systems including Bcl-2 and Bax protein (208). These results suggest that the 

responses to anthocyanins may be mediated by their anti-inflammatory and anti-oxidative 

properties and up-regulation of the insulin signalling cascade.  

Anthocyanins also have direct protective effects on the heart. Hearts from male 

Wistar rats fed on a diet based on anthocyanin-containing maize kernels for 8 weeks were 

more resistant to regional ischaemia and reperfusion insult induced in an isolated heart 

preparation (209). This diet also reduced the infarct size in coronary occlusion and 

reperfusion model (209). Anthocyanin extract from black rice (5 g/kg diet) lowered body 

weight gain, serum triglyceride, raised hepatic CPT-1 expression and inhibited plate 

hyperactivity suggested by decreased thromboxane A₂, the thrombogenic ratio of 

thromboxane A₂ and prostacyclin, serum calmodulin and soluble P-selectin expression in 

high fat-fed rats (210).  

Human studies concur with the therapeutic responses produced in animal models to 

dietary anthocyanins. In patients with metabolic syndrome, chokeberries extract (3 x 100 

mg/day) for two months decreased both systolic and diastolic blood pressure, endothelin-1, 

total cholesterol, LDL-c, triglycerides, TBARS, catalase activity and induced superoxide 

dismutase activity (211). In hypercholesterolaemic patients, 320 mg/day of purified 

anthocyanins isolated from bilberries and blackcurrants increased brachial artery flow-

mediated dilatation, cGMP and HDL-cholesterol concentrations and decreased the serum 

soluble vascular adhesion molecule-1 and LDL cholesterol concentrations (212). 

Anthocyanins also improved endothelial function in these patients as well as in isolated rat 

aortic rings and these effects were abolished by NO-cGMP inhibitors suggesting the role of 

NO-cGMP signalling pathway in anthocyanin-mediated vasodilation (212). 

In view of the potentially beneficial effects of these natural foods, anthocyanin-

containing foods are a promising potential therapeutic strategy to treat the major risk factors 

of metabolic syndrome. However, to date there are no studies that have evaluated the efficacy 

in treating all the signs of metabolic syndrome using these natural products despite an 

increase in demand for natural product-based therapies. Hence, I have studied the two 
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varieties of cardamom, beetroot and different sources of anthocyanins in a high-carbohydrate 

high-fat rat model, mimicking most of the signs of metabolic syndrome. Additionally, I have 

also studied Queen Garnet plum juice, as this intervention attenuated most of the risk factors 

of metabolic syndrome in rats, in the treatment of obese or overweight human volunteers to 

characterise the translational effects.  
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2. Aims and Hypothesis  

2.1. Animal studies  

The first aim was to determine whether different food sources when added to a high-

carbohydrate, high-fat diet, can attenuate metabolic syndrome disorders including central 

obesity, elevated blood pressure, dyslipidaemia and elevated blood glucose concentrations in 

a rat model of human metabolic syndrome disorders. 

For interventions with cardamom, beetroot, sodium nitrate, chokeberry, purple maize, 

cyanidin 3-glucoside and Queen Garnet plums in rats fed a high-carbohydrate, high-fat diet, 

the hypotheses to be tested are: 

• Following 8 weeks administration of these foods, there will be a reduction in body 

weight gain, systolic blood pressure and fasting blood glucose concentrations as well 

as improvements in blood lipid profile compared to rats fed a high-carbohydrate, 

high-fat diet only.  

• Following 8 weeks administration of these foods, there will be a decrease in total 

body fat and improvement in hepatic and cardiovascular function and structure.  

• Following 8 weeks administration of these foods, there will be a reduction in the 

plasma insulin and leptin concentrations.  

2.2. Translation to humans  

The second aim of this thesis is to study and explore the translational effect of Queen 

Garnet plums, in mild-hypertensive obese or over-weight human volunteers  

The specific hypotheses tested were that:  

• Following 12 weeks administration of Queen Garnet plum juice, there will be a 

reduction in body weight gain, systolic blood pressure and fasting blood glucose 

levels as well as an improvement in blood lipid profile compared to placebo group.  

• Following 12 weeks administration of Queen Garnet plum juice, there will be a 

decrease in total body fat mass and increase in muscle mass.   

  

Page 31 of 151



 

 

 

 

 

 

 

 

 

 

 

CHAPTER 3 
  

Page 32 of 151



3. General methods and materials 

3.1. Animal experiments  

3.1.1.  Rats 

The experimental groups consisting of male Wistar rats (aged 8–9 weeks; weight 330-

340 g) were obtained from Animal Resource Centre, Murdoch, WA, Australia and 

individually housed at the University of Southern Queensland’s Animal House Facility. All 

experimental protocols were approved by the Animal Experimentation Ethics Committee of 

the University of Southern Queensland under the guidelines of the National Health and 

Medical Research Council of Australia. The composition of the corn starch (C) and high-

carbohydrate, high-fat (H) diets is given in Table 3.1 (200). C and H rats received their diets 

for 16 weeks and C+treatment and H+treatment rats received C and H diets for first 8 weeks 

while, during the final 8 weeks, both diets were supplemented with treatments by replacing 

equivalent amounts of water. The drinking water in all H diet-fed groups was augmented with 

25% fructose for the duration of the study. Body weight and food and water intakes were 

measured daily and feed efficiency (%) was calculated (149) using the following equation: 

feed conversion efficiency (%)= 
increase in body weight(%)

daily energy intake(kJ)  x 100  

Increase in body weight (%): body weight difference between day 56 (week 8) and day 112 

(week 16); daily energy intake: average of daily energy intake from week 8 to week 16.  

Table 3.1 Composition of C and H diets 

Ingredient, g/kg C H 

Corn starch 570.0 - 

Powdered rat feed 155.0 155.0 

HMW salt mixture 25.0 25.0 

Fructose - 175.0 

Beef tallow - 200.0 

Condensed milk - 395.0 

Water 250.0 50.0 
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Energy, kJ/g 11.23 17.93 

 

The sample size was determined using Resource Equation Method (213). The degree 

of freedom for the error term used to test the adiposity change in this study is over 20 (ideally 

between 10 to 20), which means sample size of 8 per group is more than the number 

necessary to achieve the scientific objective. Rats were divided into 4 groups of 10-12 rats for 

each study: (i) corn starch (C), (ii) high carbohydrate, high fat (H), (iii) C + treatment (n = 

10-12), (iv) H + treatment (n = 10-12). All experimental groups were housed in a 

temperature-controlled (about 21-23ºC), 12-h light/dark cycle environment with access to 

water and food ad libitum. Parameters [systolic blood pressure (SBP), oral glucose tolerance 

test (OGTT) and dual energy X-ray absorptiometric (DXA)] were measured. The 

experimental design for rat studies has been outlined in Figure 3.1.  

 

Figure 3.1 Experimental protocol 
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3.1.2.  Body Composition Measurements 

For rats, dual-energy X-ray absorptiometric (DXA) measurements using a Norland 

XR36 DXA instrument (Norland Corp., Fort Atkinson, WI, USA) were performed after 16 

weeks of feeding, 2 days before rats were killed for pathophysiological assessments under 

anaesthesia with Zoletil (tiletamine 25 mg/kg and zolazepam 25 mg/kg) and Ilium Xylazil 

(xylazine 15 mg/kg) via intraperitoneal injection. DXA scans were analysed using the 

manufacturer’s recommended software for use in laboratory animals (Small Subject Analysis 

Software, version 2.5.3/1.3.1; Norland Corp.) (146). The precision error of lean mass for 

replicate measurements, with repositioning, was 3.2%. Visceral adiposity index (%) was 

calculated from wet weights of fat pads at euthanasia (214). 

3.1.3.  Echocardiography 

Echocardiography was performed by trained cardiac sonographers at the Medical 

Engineering Research Facility, The Prince Charles Hospital, Brisbane, Australia. Rats were 

anaesthetised via intraperitoneal injection with Zoletil (tiletamine 10 mg/kg, zolazepam 10 

mg/kg; Virbac, Peakhurst, NSW, Australia) and Ilium Xylazil (xylazine 6 mg/kg, IP; Troy 

Laboratories, Smithfield, NSW, Australia). Echocardiographic images were obtained using 

the Hewlett Packard Sonos 5500 (12MHz frequency fetal transducer) at an image depth of 3 

cm using two focal zones. Measurements of left ventricular posterior wall thickness and 

internal diameter were made using two-dimensional M-mode taken at mid-papillary level. 

Left ventricular M-mode measurements at the level of the papillary muscles were used to 

define wall thicknesses and internal diameters at systole (s) and diastole (d). The measured 

wall thicknesses were the posterior wall (LVPW) and the interventricular septum (IVS). The 

left ventricular internal diameter in diastole (left ventricular end-diastolic diameter) is 

abbreviated as LVIDd while the corresponding end-systolic measurement is abbreviated as 

LVIDs. Fractional shortening (FS;%) was defined as (LVIDd - LVIDs) / LVIDd x 100 (16). 

The left ventricular end-diastolic dimension, ventricular wall thickness and its fractional 

shortening were used as a measurement of cardiac geometry and systolic function. Other 

measurements included early diastolic mitral flow velocity (E), peak mitral flow velocity at 

atria1 contraction (A), deceleration time and the period between mitral valve closure and 

mitral valve opening (MC-MO) (215). 
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3.1.4.  Oral glucose tolerance test  

Oral glucose tolerance tests were performed after 0, 8 and 16 weeks of diet. After 12 h 

of food deprivation, including replacement of 25% fructose in water with tap water, blood 

glucose concentrations were measured in blood samples taken from the tail vein. 

Subsequently, each rat was treated with glucose (2 g/kg) via oral gavage. Tail vein blood 

samples were taken every 30 minutes up to 120 minutes following glucose administration. 

The blood glucose concentrations were analysed with a Medisense Precision Q.I.D glucose 

meter (Abbott Laboratories, Bedford, MA, USA) (160).  

3.1.5.  Blood pressure and abdominal circumference 

In rats, systolic blood pressure was measured after 0, 8 and 16 weeks under light 

sedation with intraperitoneal injection of Zoletil (tiletamine 10 mg/kg, zolazepam 10 mg/kg), 

using an MLT1010 Piezo-Electric Pulse Transducer (ADInstruments) and inflatable tail-cuff 

connected to a MLT844 Physiological Pressure Transducer (ADInstruments) and PowerLab 

data acquisition unit (ADInstruments, Sydney, Australia). The tail cuff was inflated to inhibit 

the pulse signal and pump was slowly released to enable the return of the pulse signal. The 

pressure where the first pulse signal returned was recorded as the systolic pressure. The 

pressure was recorded at least 5 times per rat and the mean value of the readings was taken. 

Abdominal circumference was measured using a standard measuring tape under light 

sedation (160).  

3.1.6.  Isolated heart preparation 

The diastolic stiffness constant and the contractility of the hearts of the rats were 

assessed using the Langendorff heart preparation. Rats were euthanized with an 

intraperitoneal injection of pentobarbitone sodium (Lethabarb, 100 mg/kg, Virbac, Peakhurst, 

NSW, Australia). Once anaesthetised, heparin (200 IU, Sigma-Aldrich Australia, Sydney, 

NSW, Australia) was injected into the right femoral vein. The heart was stunned in ice-cold 

crystalloid perfusate (modified Krebs-Henseleit bicarbonate buffer (KHB) containing [in 

mM]: NaCl 119.1; KCl 4.75; MgSO4 1.19; KH2PO4 1.19; NaHCO3 25.0; glucose 11.0 and 

CaCl2 2.16) upon removal. The aorta was then isolated and cleared of extraneous fat and 

cannulated via the dorsal root (with the tip of the cannula positioned immediately above the 

coronary ostia of the aortic stump) and perfused in a non-recirculating Langendorff manner at 

100 cm of coronary perfusion pressure. The buffer was bubbled with carbogen (95% O2/ 5% 

CO2), giving a pH of 7.4 and the temperature maintained at 36.9 ± 0.5°C. The hearts were 
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punctured at the apex with a small piece of polyethylene tubing to facilitate Thebesian 

drainage. The isovolumetric ventricular function was measured by inserting a latex balloon 

into the left ventricle via the mitral orifice connected to a Capto SP844 MLT844 

physiological pressure transducer and Chart software on a Maclab system. All left ventricular 

end-diastolic pressure values were measured by pacing the heart at 250 beats per minute 

using an electrical stimulator by touching two electrodes to the surface of the right atrium. 

End-diastolic pressure was obtained starting from 0 mmHg up to 30 mmHg. The right and 

left ventricles were separated and weighed.  

To assess myocardial stiffness, stress (δ, dyne/cm2) and tangent elastic modulus (E, 

dyne/cm2) for the midwall at the equator of the left ventricle were calculated by assuming 

spherical geometry of the ventricle and considering the midwall equatorial region as 

representative of the remaining myocardium. Myocardial diastolic stiffness was calculated as 

the diastolic stiffness constant (k, dimensionless), the slope of the linear relation between E 

and δ (216). To assess contractile function, developed pressure [systolic pressure (mmHg) -

diastolic pressure (mmHg)], maximal +dP/dT (rate of positive rise of pressure) and maximal -

dP/dT (rate of negative rise of pressure) were calculated at a diastolic pressure of l0 mmHg 

(217). 

3.1.7.  Organ bath studies 

Contractility of the thoracic aorta was assessed using organ bath studies. Thoracic 

aortic rings (4 mm in length) were dissected out and suspended in an organ bath chamber 

with a resting tension of 10 mN. Tissues were bathed in a modified Tyrode’s solution 

containing [in mM]; NaCl 136.9; KCl 5.4; MgCl 1.05; CaCl2 1.8; NaHCO3 22.6; NaH2PO4 

0.42; glucose 5.5; ascorbic acid 0.28 and sodium ethylenediaminetetra-acetic acid (EDTA) 

0.1 (Sigma-Aldrich Australia). The Tyrode’s solution was bubbled with carbogen (95% O2/ 

5% CO2) and the temperature maintained at 35 ± 0.5°C. Force of contraction was measured 

isometrically with Grass FT03C force transducers connected via amplifiers to a Macintosh 

computer via a MacLab system. The aortic rings were allowed to settle and equilibrate for 

approximately 60 min, with regular washing every 15 min. Cumulative concentration-

response (contraction) curves were measured for noradrenaline (Sigma-Aldrich Australia, 

NA; from 1x10-8 to lx10-4 M) to examine changes to the force of contraction; concentration-

response (relaxation) curves were measured for acetylcholine (Sigma-Aldrich Australia, 

ACh; from 1x10-8 to lx10-4 M) or sodium nitroprusside (Sigma-Aldrich Australia, SNP; from 

1x10-8 to lx10-4 M) in the presence of a submaximal contraction to noradrenaline (146, 217). 
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Results were analysed as the maximal increase or decrease in force of contraction, in mN, for 

each drug concentration (160).  

3.1.8.  Organ weights 

The right and left ventricles were separated after perfusion experiments and weighed. 

Following removal of the heart, the liver, retroperitoneal, epididymal and omental fat pads 

were collected and blotted dry for weighing. Organ weights were normalised relative to the 

tibial length at the time of their removal (in mg/mm) (160).  

3.1.9.  Histology of heart and liver 

Immediately after removal, heart and liver tissues were fixed in 10% buffered 

formalin with three changes of formalin every third day to remove traces of blood from the 

tissue. The samples were then dehydrated and embedded in paraffin wax. Thin sections (5-7 

μm) of left ventricle and the liver were cut and stained with haematoxylin and eosin stain for 

determination of inflammatory cell infiltration. Sections of 5-7 μm thickness of the left 

ventricle were cut and floated onto glass slides for staining of inflammatory cells. Before 

staining, sections were cleared of paraffin by immersion in xylene (three 2-minutes changes). 

Sections were then hydrated with 100% (twice), 90% and 70% ethanol (2 minutes each). 

After brief wash with distilled water, sections were placed in haematoxylin stain (100 mL 1% 

aqueous haematoxylin, 75 mL 5% aluminium sulphate, 25 mL Lugol’s iodine, 8 mL acetic 

acid glacial and 50 mL glycerol) for 6 min. Sections were then washed in the water bath for 2 

minutes then immersed in 70% ethanol for approximately 2 minutes, followed by eosin stain 

(1 g eosin powder and 100 ml 90% ethanol; diluted 1:1 with 90 % ethanol) for 6 min. The 

sections were then dehydrated in 95% and 100% (three times) ethanol (2 minutes each) and 

sections were then cleared in xylene, mounted in Depex mounting medium and cover-slipped. 

Slides were scanned Olympus microscope (Olympus-Australia, Notting Hill, VIC, Australia) 

for imaging and analysis.  

Collagen distribution was observed in the left ventricle following picrosirius red 

staining. These sections followed the same deparaffinisation and hydration process as 

described above. Sections were then transferred to distilled water for a brief wash and then 

bathed in phosphomolybdic acid (0.2% in distilled water) for 2 minutes to inhibit background 

autofluorescence and non-specific staining. Later, sections were placed in the collagen-

selective stain picrosirius red (0.1% Sirius Red F3BA in saturated picric acid) for 90 min. 

The sections were then washed in 0.1 N HCl for 2 min, followed by dehydration with 95% 
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and 100% (three times) ethanol (2 minutes each). Sections were then mounted as described 

above. Laser confocal microscopy (Nikon A1R+ upright Confocal Microscope, Tokyo, 

Japan) was used to determine the extent of collagen deposition in selected regions (146, 160). 

3.1.10.  Plasma analyses 

In rats, blood was collected from the abdominal aorta following euthanasia and 

centrifuged at 5000x g for 15 minutes within 30 minutes of collection into heparinised tubes. 

Plasma was separated and transferred to Eppendorf tubes for storage at −20°C before 

analysis. Plasma concentrations of total cholesterol, triglycerides, non-esterified fatty acids 

(NEFA), activities of plasma alanine transaminase (ALT) and aspartate transaminase (AST) 

were determined using kits and controls supplied by Olympus using an Olympus analyser 

(AU 400 Tokyo, Japan). Plasma insulin and leptin concentrations (ALPCO, USA) were 

estimated using a commercial ELISA kit according to manufacturer-provided standards and 

protocols (146, 160).  

3.1.11.  Statistical analysis 

For rat experimental studies, all data sets were represented as mean ± standard error 

of mean (SEM). Comparisons of findings between groups were made via statistical analysis 

of data sets using one-way and two-way analysis of variance (ANOVA). When interaction 

and/or the main effects were significant, means were compared using Newman-Keuls 

multiple-comparison post hoc test. A p-value of <0.05 was considered as statistically 

significant. All statistical analyses were performed using Graph Pad Prism version 6.00 for 

Windows. 

3.2. Clinical trial  

3.2.1.  Study outline and recruitment of volunteers 

The human study was a randomised, double-blinded, placebo-controlled trial, 

involving adult volunteers residing in Melbourne. The trial was conducted at Victoria 

University Nutrition Clinic, Melbourne, Australia. Potential volunteers were recruited from 

the general public by newspaper advertisement and staff members at Victoria University by 

University-wide emails and posters after attaining study approval from Victoria University 

Human Research Ethics Committee (HRE14281) and registered with ANZCTR (Australia 

New Zealand Clinical Trial Registry). Human volunteers with a BMI greater than 25kg/m2 or 

a waist circumference > 94 cm (male) or > 80 cm (female) along with systolic blood pressure 

130-150 mmHg and diastolic blood pressure 85-100 mmHg were recruited. 
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After recruitment, participants were coded and allocated into groups based on their 

physical characteristics including age, body weight and BMI. Stratified randomisation was 

used to ensure all baseline variables associated with the outcome were evenly distributed. 

Treatment and placebo were packed in opaque brown bags and the principal investigator 

implemented the allocation sequence and assigned the participants into their groups.  Due to 

minimal similarities in taste and colour between treatment juice and placebo juice, 

participants were informed that they are involved in a research project testing the effects of 

two different fruit drinks. At the beginning of the study, all eligible volunteers were informed 

about the details of the study including that they would be randomly assigned into a drink 1 

or drink 2 groups. Formal consent was obtained from all participants. Staff and participants 

involved in the intervention process of the trial were blinded to group assignment. The 

randomisation code was broken only after data collection and analysis was completed. The 

inclusion and exclusion criteria for the study are presented in Figure 3.2.  

 

Figure 3.2 Eligibility criteria and study design  

3.2.2.  Administration of juice 

Treatment and placebo juice was packed in 2 L plastic bottles. All participants 

received 2 x 2 L treatment or placebo drink packed in opaque brown bags with blinded label 

for 12 weeks and participants were requested to drink 250 ml every morning. The ingestion 

of the drinks was monitored fortnightly during the general consultations and a drink calendar 

was also handed out along with the drinks and collected every fortnight for12 weeks. The 

dietary intake was monitored through 3-day food diaries collected fortnightly. Along with 
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food diaries, participation in physical activity was also recorded and submitted during 

fortnightly visits. The food diaries and physical activity records were analysed using Food 

Works Professional 2009, version 6 (Xyris Software, QLD, Australia Pty Ltd). 

3.2.3.  Anthropometric measurements  

  Anthropometric measures were taken during fortnightly consultations in accordance 

with standard equipment and technique. Measurements were taken thrice with the mean of 

the measurements used as the final reading. Height was measured after the removal of shoes 

using a stadiometer to the nearest millimetre. Body weight was taken using digital scales 

(Tanita Inner Scan, BC-545, Cloverdale, WA, Australia) when heavy clothing was removed. 

BMI was calculated using the following formula: BMI = weight (kg)/height2 (m) (218). 

Waist circumference was measured to the nearest 0.1 cm at the midway point between the 

lowest costal border and the iliac crest in a horizontal plane (above the umbilicus). Hip 

circumference was measured in a horizontal plane at the maximum posterior protuberance of 

the buttocks. Waist to hip ratio (WHR) was calculated using the following formula: WHR = 

Waist circumference (cm)/hip circumference (cm). 

3.2.4.  Blood pressure measurement  

Blood pressure was measured in a seated position using Omron HEM-7320 (OMRON 

HEALTHCARE Co., Ltd., Kyoto, Japan), an automated digital blood pressure monitor, 

where the inflatable cuff of the sphygmomanometer was positioned at the brachial artery in 

the right upper extremity of each subject. Blood pressure was measured thrice with the final 

blood pressure reading obtained by calculating the mean of the three readings. Heart rate was 

also recorded using the automated digital blood pressure monitor. 

3.2.5.  Body composition 

  Dual-energy X-ray absorptiometric (DXA) measurements were performed on all 

participants at the beginning and end of the study using a GE-Lunar iDXA sxcanner 

(Silverwater, NSW, Australia). Participants were requested to wear light clothing and remove 

all the jewellery before the scan was performed. Scans were analysed using the 

manufacturer’s recommended software. 

3.2.6.  Basal metabolic rate 

 Participants were recommended to fast overnight for at least 10h and basal metabolic 

rate (BMR) measured using a metabolic cart (closed circuit spirometry). The gas exchange 
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was measured by indirect calorimetry by comparing room air with exhaled air samples. 

Participants were asked to rest for 15-25 minutes while the BMR test was performed. The 

participant breathes through a mouthpiece and valve attached to the volume displacement 

spirometer. The equipment consists of a closed system because the subjects will rebreathe 

only the gas in the spirometer. A canister of soda lime in the breathing circuit absorbs the 

carbon dioxide in exhaled air. A drum attached to the spirometer revolves at a known speed 

to record oxygen uptake from the changes in the system’s volume.  

3.2.7.  Blood collection and plasma analysis 

 Following an overnight fast of at least 10 h, 10 ml of forearm venous blood was 

collected using the ethylenediaminetetraacetic acid (EDTA) Vacutainer system at baseline and 

post-intervention (BD vacutainer tubes, Becton, Dickinson and Company). Using Samsung 

LABGEOPT10 Analyser (Point of Care Diagnostics, Sydney, Australia), blood concentrations 

of glucose (GLU), total cholesterol (CHOL), triglycerides (TGA), high-density lipoproteins 

(HDL) and low-density lipoproteins (LDL) and enzyme activities gamma-glutamyl 

transferase (GGT), alanine transaminase (ALT) and aspartate transaminase (AST) were 

determined by adding 75 µl of blood to Samsung Labgeo PT10 Biochem 9 test cartridge. The 

remaining blood was then centrifuged for 15 minutes at 3000 g at 4 ◦C. Plasma was collected 

into aliquots and frozen at −80◦C for further analysis. 

3.2.8.  Statistics 

For the clinical trial, data were presented as the mean and standard deviation and were 

analysed using SPSS package, version 22 (SPSS, Chicago, IL, USA). Target sample size was 

calculated to include a minimum of 14 participants per group to detect significant differences 

in systolic blood pressure, one of the main measured outcomes with 90 % power (n= 

2*202/252 *10.51), based on the previous findings (211). One way ANOVA was performed to 

compare all baseline data between groups. Mixed model ANOVA was used to analyse the 

effects of the intervention, time, and the interaction (time*group) between the intervention 

and time with pairwise comparisons (adjusted for multiple comparisons by Bonferroni’s post-

hoc test). When the interaction and/or the main effects were significant, means were 

compared using Tukey’s multiple comparison post-hoc test. The significance level was set 

as p <0.05. The precision of the primary and secondary outcomes for each group were 

calculated using 95% confidence intervals. 
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4. Green and black cardamom in a diet-induced rat model of metabolic 

syndrome 

4.1. Summary 

Both black (B) and green (G) cardamom are used as flavours during food 

preparation. This study investigated the responses to B and G in a diet-induced rat 

model of human metabolic syndrome. Male Wistar rats were fed either a corn starch-

rich diet (C) or a high-carbohydrate, high-fat diet with increased simple sugars along 

with saturated and trans fats (H) for 16 weeks. H rats showed signs of metabolic 

syndrome leading to visceral obesity with hypertension, glucose intolerance, 

cardiovascular remodelling and non-alcoholic fatty liver disease. Food was 

supplemented with 3% dried B or G for the final 8 weeks only. The major volatile 

components were the closely related terpenes, 1,8-cineole in B and α-terpinyl acetate in 

G. HB rats showed marked reversal of diet-induced changed with decreased visceral 

adiposity, total body fat mass, systolic blood pressure and plasma triglycerides, and 

structure and function of the heart and liver. In contrast, HG rats increased visceral 

adiposity and total body fat mass, and increased heart and liver damage, without 

consistent improvement in the signs of metabolic syndrome. These results suggest that 

black cardamom is more effective in reversing the signs of metabolic syndrome than 

green cardamom. 

4.2. Introduction 

Spices are used to flavour foods but they may also be effective as functional foods to 

improve health or decrease the risk of disease (219-221). In particular, spices may decrease 

the metabolic syndrome defined as the cluster of obesity, hypertension, diabetes and non-

alcoholic fatty liver disease (10). These metabolic perturbations lead to chronic changes in 

the structure and function of the heart, liver, kidneys and pancreas (222). The prevalence of 

metabolic syndrome is high in both developing and developed countries including USA 

(34%), India (25.6%), Kuwait (24.8%) and Australia (22.1%) (12, 13, 15, 223, 224).  

Cardamom is a well-known spice with both green (Elettaria cardamomum Maton) and 

black (Amomum subulatum Roxburgh) varieties, both in the family Zingiberaceae, used in 

culinary and traditional medicine practices. Black cardamom is grown in the north-eastern 

Indian state of Sikkim as well as in neighbouring Nepal and Bhutan (224) while green 

cardamom is grown in the southern Indian states of Tamil Nadu, Kerala and Karnataka (225) 
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with Guatemala as the other major source. Dry pods of cardamom contain volatile oils, 

phenolic acids, lipids and sterols (224, 225). Both black and green cardamom contains 

terpenes in the essential oils, with 1,8-cineole and α-terpineol found in black cardamom and 

α-terpinyl acetate and 1,8-cineole in green cardamom (224, 225).  

Green cardamom has been used since the 4th century BC by Indian Ayurvedic 

practitioners and ancient Greek and Roman physicians for the treatment of indigestion, 

bronchitis, asthma and constipation, and to stimulate appetite in anorexia (226-228); other 

indications include diarrhoea, dyspepsia, epilepsy, hypertension, cardiovascular diseases, 

ulcers, gastro-intestinal disorders and vomiting (191, 229, 230). Similarly, black cardamom is 

used by Ayurvedic and Unani practitioners for many ailments including indigestion, 

vomiting, rectal diseases, dysentery, liver congestion, gastrointestinal disorders and 

genitourinary complaints (228, 231).  

Rats fed with high-carbohydrate, high-fat diet for 8 weeks developed visceral adiposity, 

impaired glucose tolerance with increase plasma insulin concentrations, increased systolic 

blood pressure, structural damage to the heart and liver and elevated plasma lipid 

concentrations (146). Therefore, I have compared the cardiovascular, liver and metabolic 

responses to green and black cardamom in a high-carbohydrate, high-fat diet-fed rat model of 

human metabolic syndrome (146). These measurements included systolic blood pressure, 

echocardiography, vascular reactivity, cardiac collagen deposition, stiffness, plasma 

biochemistry and histology for structural changes on heart and liver. Addition of black 

cardamom to the diet improved the signs of metabolic syndrome much more effectively than 

green cardamom. Further, green cardamom may worsen heart and liver structure. 

4.3. Materials & methods   

4.3.1.  Analysis of green cardamom and black cardamom 

100mg of black or green cardamom was extracted in 3 mL of 100% ethanol by 

sonication for 10 minutes. After centrifugation, an aliquot of the supernatant was transferred 

to a vial and injected into a HP 6890 GC and 5973 MS (Agilent Technologies, Mulgrave, 

Victoria, Australia). The analysis was performed using on a HP-5MS GC column (Agilent 

19091S-433), 30 m x 0.25 µm, with a flow rate of 0.9 mL/minute helium at an average 

velocity of 35 cm/second. The oven settings were an initial 50°C held for 5 minutes, with a 

ramp of 10°C per minute up to 250°C, a total run time of 30 minutes. Inlet temperature was 

250°C with an injection of 1 µL and split ratio of 50:1. MS setting were EM voltage 71, 
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source 230 and quadrupole 150, with a scan for masses between 35 and 350 amu. 

Constituents were identified by comparison of peak MS spectra with GC MS libraries of 

NIST, Adams and Wiley with threshold match of >95%. Powdered black and green 

cardamom were analysed for protein, fat, total carbohydrates and energy value by Symbio 

Alliance, Brisbane, QLD, Australia.  

4.3.2.  Rats and diets 

The experimental group consisting of 72 male Wistar rats (9-10 weeks old; weighing 

335-340 g) were randomly divided into 6 experimental groups (n=12 each) and fed with corn 

starch (C), corn starch + black cardamom (CB), corn starch + green cardamom (CG), high-

carbohydrate, high-fat (H), high-carbohydrate, high-fat + black cardamom (HB) or high-

carbohydrate, high-fat + green cardamom (HG). CB, CG, HB and HG rats were fed with a 

basal C and H diet for the first 8 weeks of the protocol and for the next 8 weeks, these rats 

were treated with the same diet supplemented with 3% green or black cardamom (30 g/kg 

replacing 30 ml/kg water in the food).  

Experimental procedures such as body composition, oral glucose tolerance, 

echocardiography, blood pressure, isolated heart preparation, organ bath, plasma analysis and 

histology were conducted as described in Chapter 3.1.   

4.4. Results 

4.4.1.  Cardamom analysis  

Black cardamom contained 1,8-cineole as the major volatile constituent (>65%) while 

green cardamom contained α-terpinyl acetate (>72%) that was not present in black cardamom 

(Table 4.1). Black cardamom had increased carbohydrate content but decreased fat content 

compared to green cardamom (Table 4.1).  

Table 4.1 Cardamom analysis 

Variable Green cardamom Black cardamom 

GC-MS (area %)   

α-terpinyl acetate 72.73 -* 

1,8-cineole 10.61 65.52 

α-terpineol 0.86 3.29 
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Limonene 0.38 3.59 

α-pinene 1.50 2.84 

β-pinene 0.23 3.43 

Composition   

Energy (KJ/100 g) 1557 1477 

Protein (% w/w) 10.8 9.3 

Total fat (% w/w) 10.3 1.7 

Moisture (% w/w) 12.2 9.4 

Total carbohydrate (%) 58.4 73.9 

Values are represented as mean of duplicate analysis; * not detected by GC-MS. 

4.4.2.  Metabolic parameters  

Food and water intake was decreased in H, HB and HG rats compared to C, CB and 

CG rats, respectively (Table 4.2). Rats fed with C, CG, CB group received plain drinking 

water and H, HG and HB rats received 25% fructose in the drinking water, thereby increasing 

the cumulative energy intake in all H diet-fed rats. CG and HB rats showed a significant 

increase in water intake, compared to C and H rats respectively, where the cumulative energy 

intake was not altered. (Table 4.2). Feed conversion efficiency was increased in H rats 

compared to C rats but reduced by black cardamom (CB, HB) compared to green cardamom 

(CG, HG) (Table 4.2). Black cardamom groups showed decreased body weight gain and 

abdominal circumference compared to green cardamom and high-carbohydrate, high-fat diet-

fed groups (Table 4.2). Body mass and visceral adiposity indices were reduced in HB rats 

only (Table 4.2). Bone mineral density was increased in H rats compared to C rats and 

normalised by black cardamom treatment only. Total body lean mass increased in H and HB 

rats compared to C, CB and CG rats. In HG rats, total body lean mass decreased but total 

body fat mass increased (Table 4.2). Black cardamom reduced total body fat in both CB and 

HB groups (Table 4.2). These changes in total body fat are consistent with abdominal fat 

measurements where black cardamom decreased and green cardamom increased abdominal 

fat pads (Table 4.2).  

Plasma lipid concentrations were increased in H rats compared to C rats (Table 4.2). 

CB, CG and HB rats showed decreased plasma lipid concentration, in contrast to HG rats. 
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Plasma insulin concentrations almost quadrupled in H rats compared to C rats (Table 4.2); 

these concentrations were decreased by both black and green cardamom. Oral glucose 

tolerance test showed improved glucose metabolism in C rats compared to H rats, while no 

significant changes were seen either with green or black cardamom treatment (Table 4.2).   
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Table 4.2 Dietary intakes, body composition and anthropometrics, organ wet weights, changes in glucose tolerance test, plasma insulin and 

plasma biochemistry in C, CG, CB, H, HG and HB diet-fed rats (n=8 rats/group) 

Variable C CG CB H HG HB 

P values 

Diet Treatment Interaction 

Food intake (g/d) 33.8±0.7a 35.1±0.7a 34.6±0.8a 26.9±0.7ab 24.2±0.5b 25.0±0.6ab <0.0001 0.55 0.0157 

Water intake (mL/d) 23.9±1.4b 36.8±2.0a 27.2±2.0b 26.6±1.2b 28.0±1.0b 35.0±1.3a 0.65 <0.0001 <0.0001 

Cardamom intake (g/d) 0.0±0.0c 1.1±0.0a 1.1±0.0a 0.0±0.0c 0.7±0.0b 0.8±0.0b <0.0001 <0.0001 <0.0001 

Cumulative energy intake 

from water (kJ) 

0.0±0.0c 0.0±0.0c 0.0±0.0c 6231.7±696

.5b 

6446.6±347

.4b 

7950.8±492

.9a 

<0.0001 0.0554 0.0554 

Cumulative energy intake 

from food (kJ) 

21637±732 22440±689 22151±417 24761±672 24681±129 24893±670 0.0001 0.88 0.85 

Cumulative energy intake (kJ) 21637±732b 22440±689b 22151±417b 30993±725a 31127±142a 32844±929a <0.0001 0.40 0.51 

Feed conversion efficiency 

(%) 

1.6 ±0.3c 3.1±0.2c 1.3±0.5c 8.4±1.2 a 8.1±0.5 a 4.8±1.2bc <0.0001 0.0029 0.0202 

Initial body weight (g) 336.4±2.5 337.8±2.1 337.1±1.9 336.3±1.9 338.8±2.4 336.2±1.1 >0.99 0.59 0.89 

Body weight at 8 weeks (g) 392.1±7.4b 401.3±9.6b 389.8±4.7b 477.3±15.3a 488.3±14.3a 462.4±11.9a <0.0001 0.25 0.78 

Body weight at 16 weeks (g) 417.1±8.3c 434.9±8.8c 408.7±5.8c 560.6±17.9a 574.1±19.2a 506.3±10.8b <0.0001 0.0023 0.15 

Body weight gained (8-16 

weeks) (%)* 

6.4±1.3b 8.3±1.2b 4.8±1.2b 17.2±1.3a 17.6±1.1 a 9.5±2.4b <0.0001 0.0003 0.0578 
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Visceral adiposity index (%) 4.5±0.2b 4.2±0.4b 4.4±0.2b 7.2±0.6ab 8.7±0.5a 5.7±0.4b <0.0001 0.0057 0.0015 

Abdominal circumference 

(cm) 

20.0±0.2b 21.5±0.3ab 18.3±0.2c 23.9±0.4a 23.1±0.3a 20.7±0.3b <0.0001 <0.0001 0.0011 

Body mass index (kg/m2) 5.6±0.2b 5.9±0.2b 5.6±0.1b 6.7±0.2a 7.1±0.1a 5.9±0.1b <0.0001 0.06 0.78 

Bone mineral content (g) 12.7±0.4c 13.1±0.6c 12.0±0.3c 16.0±0.7ab 17.9±0.4a 13.8±0.6c <0.0001 <0.0001 0.0223 

Total body lean mass (g) 295±7b 297±7b 297±7b 329±9a 267±10c 311±6b 0.36 0.0019 0.0008 

Total body fat mass (g) 100±7c 112±19c 77±8d 203±19b 270±15a 140±17c <0.0001 <0.0001 0.0108 

Tissue wet weight (mg/mm)          

Retroperitoneal adipose tissue 171±10c 153±16c 137±9c 375±48b 488±43a 234±28c <0.0001 0.0002 0.0011 

Epididymal adipose tissue 119±8b 109±12b 95±9b 225±23a 268±28a 144±15b <0.0001 0.0008 0.0113 

Omental adipose tissue 85±7b 96±10b 100±8b 190±19a 227±27a 137±13b <0.0001 0.0282 0.0129 

Liver 261.8±10.1b 248.6±11.3b 226.3±4.7c 336.3±12.3a 345.9±10.4a 282.4±11.0b <0.0001 <0.0001 0.15 

Glucose metabolism and 

plasma biochemistry 

         

OGTT-AUC (mmol/L min) 659±13c 722±18b 715±28bc 799±9a 818±19a 763±7a <0.001 0.0574 0.0364 

Plasma insulin (μmol/L) 2.0 ±0.2b 0.9±0.1b 1.3±0.2b 5.7±1.3a 2.2±0.5b 2.8±0.5b <0.001 0.0014 0.11 

Plasma leptin (ng/ml) 3.3±0.5b 5.3±0.8b 1.9±0.5b 7.9±1.0a 9.1±0.6a 3.4±0.5b <0.001 <0.0001 0.07 

Plasma ALP (U/L) 131±7cd 170±13cd 113±4 214±18b 261±23a 178±15c <0.001 0.0001 0.66 
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Plasma ALT (U/L) 30.1±2.0c 34.8±2.3bc 25.5±0.8c 39.0±3.8a 38.3±1.6bc 35.4±2.4bc 0.0003 0.0376 0.35 

Plasma AST (U/L) 61.5±1.5b 67.2±3.5b 59.2±1.7b 90.2±5.6a 62.2±2.0b 59.3±1.2b 0.0024 <0.0001 <0.0001 

Plasma total cholesterol 

(mmol/L) 

1.8±0.1bc 1.5±0.1c 1.7±0.1c 2.2±0.1a 2.0±0.1ab 1.8±0.1bc <0.001 0.0042 0.0487 

Plasma triglycerides (mmol/L) 0.9±0.1b 0.7±0.1b 0.5±0.1b 2.2±0.4a 2.3±0.3a 1.1±0.2b <0.001 0.0032 0.1 

Plasma NEFA (mmol/L) 3.8±0.6bc 2.1±0.2c 2.2±0.2c 6.6±0.8a 6.2±0.4a 4.1±0.5bc <0.001 0.0008 0.1 

Each value is a mean±S.E.M. Means within a row with unlike superscripts differ, P<0.05. ALP, alkaline phosphatase; ALT, aspartate transaminase; AST, 

aspartate transaminase; NEFA, non-esterified fatty acids. 

* Body-weight gain calculated as percentage of body weight increase from 8 weeks to 16 weeks (8 weeks) 
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4.4.3.  Cardiovascular structure and function  

Compared to C rats, H rats increased left ventricular weight and internal diameter in diastole as 

a sign of eccentric hypertrophy, without changes in relative wall thickness, increased stroke volume or 

cardiac output (Table 4.3). H rats also showed impaired cardiac function seen as increased systolic 

blood pressure and diastolic stiffness with increased diastolic, systolic and stroke volumes and 

decreased fractional shortening, developed pressure and dP/dt (Table 4.3). Green cardamom rats 

showed impaired cardiac function seen as decreased fractional shortening, increased wall stress, 

increased diastolic stiffness, decreased developed pressure and decreased dP/dt in HG rats. 

Additionally, diastolic, systolic and stroke volumes and cardiac output were elevated with green 

cardamom supplementation. HB rats showed normalised volumes, no signs of eccentric hypertrophy 

and normalised estimated left ventricular mass and hence improved cardiac function (Table 4.3). HB 

increased the heart rate and therefore the cardiac output. However, HB rats showed decreased systolic 

blood pressure, LV wet weight and diastolic stiffness constant when compared to H and HG rats; no 

significant changes were observed in CB rats (Table 4.3).  

The LV of H rats showed greater infiltration by inflammatory cells (Figure 4.1D) as well as 

increased interstitial collagen deposition (Figure 4.1J) compared to C rats (Figure 4.1A and G, 

respectively). Black cardamom normalised the inflammatory state and markedly reduced collagen 

deposition in HB rats (Figure 4.1F and L, respectively). The reduction in LV fibrosis is consistent with 

the reduced diastolic stiffness constant in black cardamom rats. Green cardamom rats showed greater 

inflammatory cell infiltration (Figure 4.1B and E) and increased collagen deposition (Figure 4.1H and 

K) with hypertrophied cardiomyocytes in HG rats compared to H and HB rats and in CG rats 

compared to C and CB rats. No significant differences were observed between C and CB rats (Figure 

4.1C and I).  

H rats showed diminished vascular contraction to noradrenaline in isolated thoracic aortic rings 

compared to C rats (Figure 4.2A). Additionally, H rats showed decreased smooth muscle-dependent 

and endothelium-dependent relaxant responses to sodium nitroprusside and acetylcholine, respectively 

(Figure 4.2B and C). Black cardamom rats showed increased vascular contraction to noradrenaline as 

well as increased smooth muscle-dependent and endothelium-dependent relaxant responses to sodium 

nitroprusside and acetylcholine, while HG rats failed to improve aortic function (Figure 4.2). These 

effects were associated with normalised systolic blood pressure in HB rats (Table 4.3). 
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Figure 4.1 Haematoxylin and eosin staining of left ventricle (original magnification ×20) showing 
inflammatory cells (marked as “in”) as dark spots outside the cardio myocytes in rats fed the C (A), 
CG (B), CB (C), H (D), HG (E) and HB (F) diet. Picrosirius red staining of left ventricular interstitial 
collagen deposition (original magnification ×20) in rats fed the C (G), CG (H), CB (I), H (J), HG (K) 
and HB (L) diet. Collagen deposition is marked as “cd” and hypertrophied cardiomyocytes are marked 
as “hy”. 

 

Figure 4.2 Cumulative concentration-response curves for noradrenaline (A), sodium nitroprusside (B) 
and acetylcholine (C) in thoracic aortic rings from rats fed the C, CB, CG, H, HB and HG diet. Data 
are shown as means ± S.E.M. significantly different end-point means indicated by different letters, 
P<0.05 and n=8/group. 
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Table 4.3 Changes in cardiovascular structure and function in C, CG, CB, H, HG and HB diet-fed rats (n=8 rats/group)  

Variable C CG CB H HG HB P values 

 

      Diet Treatm

ent 

Interactio

n 

Heart rate (bpm) 268±21b 236±10b 299±22b 352±22a 255±19b 317±19ab 0.0164 0.0024 0.18 

LVIDd (mm) 6.61±0.27b 7.81±0.16a 7.07±0.18b 7.86±0.36a 8.11±0.16a 7.24±0.26b 0.006 0.003 0.06 

LVIDs (mm) 3.46±0.12b 4.44±0.18a 3.35±0.16b 4.20±0.16a 4.45±0.28a 3.48±0.24b 0.08 <0.0001 0.15 

Fractional shortening (%) 53.0±1.5a 43.3±1.5b 55.3±1.9a 51.4±3.6ab 45.0±3.3b 50.4±2.3a 0.44 0.0016 0.42 

(+)dP/dt (mmHg/S) 1298±56a 1200±63.a 1265±54 a 842±42 b 883±59 b 1186±61 a <0.0001 0.0045 0.0063 

(-)dP/dt (mmHg/S) -858±38a -687±42c -734±27cb -437±38d -532±39 d -712±38cb <0.0001 0.0125 <0.0001 

Diastolic stiffness (k) 22.7±0.7b 23.6±0.9b 22.2±0.8b 28.5±0.5a 27.3±0.5a 24.1±0.8b <0.0001 0.0014 0.0286 

Diastolic volume (μL) 313±36b 504±29a 377±29b 530±68a 562±33a 408±42b 0.0043 0.0037 0.07 

Systolic volume (μL) 44±5b 95±11a 42±6b 80±9a 100±16a 49±10b 0.06 <0.0001 0.24 

Stroke volume (μL) 269±38b 409±22ab 335±28b 445±63a 463±31a 359±37b 0.0092 0.06 0.11 

Cardiac output (mL/min) 71.9±13.0b 96.0±5.5b 101.2±10.6b 157.2±23.7a 119.6±16.1ab 115.4±14.4ab 0.0017 0.88 0.0451 

Estimated LV mass, Litwin (g) 0.80±0.03b 1.04±0.04a 0.90±0.04ab 1.15±0.07a 1.15±0.06a 1.03±0.07a <0.0001 0.0364 0.06 

LV+septum wet weight 

(mg/mm tibial length) 

17.9±1.7b 19.6±0.7ab 16.6±0.5b 21.9±0.7a 22.8±1.0a 18.0±0.8b 0.0009 0.001 0.41 
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Relative wall thickness 0.56±0.04 0.48±0.01 0.53±0.01 0.52±0.03 0.48±0.01 0.56±0.02 0.86 0.0122 0.32 

Systolic blood pressure 

(mmHg) 

132±3c 135±2c 132±2c 161±3a 151±2b 136±1c <0.0001 <0.0001 <0.0001 

Systolic wall stress (mmHg) 80.4±5.1b 111.5±5.7a 72.9±5.2b 105.5±8.1a 112.8±9.2a 81.2±7.2b 0.047 <0.0001 0.22 

Each value is a mean ± S.E.M. Means within a row with unlike superscripts differ, P<0.05. 
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4.4.4.  Liver structure and function  

In comparison to C rats, H rats had elevated plasma ALP, ALT and AST activities 

with increased liver weights. Black cardamom supplementation improved liver function, 

indicated by the decreased plasma activities of these enzymes. Green cardamom decreased 

plasma ALT and AST activity, but increased plasma ALP activity (Table 4.2).  

H rats (Figure 4.3D) showed increased hepatic lipid deposition and inflammatory cell 

infiltration compared to C rats (Figure 4.3A). Black cardamom decreased the macrovesicular 

steatosis and portal inflammation in HB rats (Figure 4.3F). In contrast, HG rats showed 

further increases in hepatic lipid deposition and inflammatory cell infiltration compared to H 

and HB rats (Figure 4.3E) and CG rats compared to C and CB rats (Figure 4.3B). No changes 

in tissue morphology, inflammatory cell infiltration or macrovesicular steatosis were seen in 

CB rats compared to C rats (Figure 4.3C). 

 

Figure 4.3 Haematoxylin and eosin staining of hepatocytes (original magnification ×20) 
showing inflammatory cells (marked as “in”) and hepatocytes with fat vacuoles (marked as 
“fv”) in rats fed the C (A), CG (B), CB (C), H (D), HG (E) and HB (F) diet. 

4.5. Discussion 

Rats fed on a diet with increased simple sugars such as fructose and sucrose together 

with increased saturated and trans fats developed abdominal obesity, hypertension, 

endothelial dysfunction and cardiac fibrosis together with an increase in ventricular stiffness, 

dyslipidaemia, liver inflammation, increased plasma lipid concentrations and impaired 

glucose tolerance (122, 232-234). These changes closely mimic human metabolic syndrome. 

Hence, I have used this rat model to investigate whether green or black cardamom can 

reverse these alterations in metabolic, cardiovascular and liver parameters and data from this 

study suggests that black cardamom attenuated the symptoms of metabolic syndrome, 

whereas green cardamom exacerbated adiposity. However, green cardamom improved 

glucose metabolism and decreased plasma insulin concentrations. These results suggest that 

green cardamom increased glucose uptake in liver and other organs, converting glucose to fat 

and thereby increasing fat vacuoles in hepatocytes. Also, given the anti-microbial properties 

of α-terpinyl acetate rich essential oil (235), it is hypothesised that green cardamom could 
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have damaged or altered the gut microbiota. Although the microbiota can influence dietary 

nutrient harvest, the diet can also impact on the microbial community composition and 

function (236). This suggests that green cardamom could have altered the gut microbiota 

which regulates intestinal absorption of lipids and metabolism of fatty acids and therefore 

increased fat absorption, leading to raised plasma lipid concentrations and liver wet weight.  

There is no clear literature evidence that intervention with cardamom, either black or 

green, decreases the signs of the metabolic syndrome, although improvements in individual 

signs have been published. A green cardamom intake of 3 g/day lowered blood pressure in 

mildly hypertensive patients (237) and anti-inflammatory effects of green cardamom oil were 

measured in carrageenan-induced plantar oedema in male albino rats (227). Black cardamom 

improved alcoholic fatty liver (238), lowered lipids in cholesterol diet-fed rabbits (239, 240), 

improved glucose metabolism in fructose-fed rats (241) and decreased inflammation in 

carrageenan-induced paw oedema in rats (231). It is assumed, but not proved, that the volatile 

oils are the major bioactive principles of cardamom. Further, cardamom contains unknown 

amounts of phenolic and flavonoid components that may have biological activity. The major 

constituent of volatile oil from black cardamom, 1,8-cineole, has potential effects in 

metabolic syndrome as this terpene dose-dependently reduced blood pressure in 

normotensive rats (242) and in nicotine-induced hypertensive rats (243), and also showed 

endothelium-dependent vasorelaxation in male Wistar rats (244). Given the few studies 

reporting the therapeutic effects of green and black cardamom, the aim of this study was to 

determine the responses to chronic dietary supplementation of α-terpinyl acetate-containing 

green cardamom and 1,8-cineole-containing black cardamom in rats fed either low-fat, corn 

starch diet or a high-carbohydrate, high-fat diet as a model of metabolic syndrome. The 

responses to green and black cardamom were markedly different. Black cardamom reduced 

visceral adiposity; similarly, male Wistar rats fed with eucalyptus leaf extract containing high 

amounts of 1,8-cineole showed marked decreases in adipose fat mass (245), leading to a 

decreased inflammatory cytokine release by adipose tissue (246). This effect of black 

cardamom on adipose tissue could result from decreased infiltration of inflammatory cells in 

adipose tissue, as shown here in heart and liver. In contrast, green cardamom further 

increased visceral adiposity with decreased lean mass confirming that decreased muscle mass 

increases visceral adiposity (247). In HG rats, increased visceral adiposity could be a source 

of components of the renin-angiotensin system (RAS), with regulation of their production 

related to obesity-hypertension (248). Both angiotensin type 1 and 2 receptors have been 

localized to adipocytes and angiotensin II has been demonstrated to regulate adipocyte 
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growth and differentiation, lipid metabolism, and expression and release of adipokines and 

RAS components, and to promote oxidative stress leading to infiltration of macrophages and 

increase in to cardiac tissue contributing to increase in blood pressure (248).  

Black cardamom improved liver function since the liver wet weight and activity of the 

liver plasma enzymes were lower than high-carbohydrate high-fat diet-fed rats and 

approximated those of corn starch diet-fed rats. Similarly, improved hepatic function was 

measured with black cardamom extract in alcohol-induced liver damage (238). Black 

cardamom may protect the liver by increasing the expression of voltage-dependent anion 

channels that trigger the opening of mitochondrial membrane permeability transition pores 

(249). Black cardamom also decreased plasma lipid concentrations in patients with ischaemic 

heart disease (250) which is consistent with the current study and this action should decrease 

liver steatosis and insulin resistance, thus improving liver function. However, further studies 

using black cardamom are warranted to understand the mechanisms underlying these 

improvements in hepatic function and plasma lipid concentrations.  

In contrast, green cardamom increased liver wet weight and increased plasma 

activities of ALT, AST and ALP as markers of active liver damage (251). In humans, green 

cardamom extract in Arabic coffee showed no effect on plasma liver enzyme activity (252). 

From histological evidence, green cardamom further increased infiltration of inflammatory 

cells in the liver of high-carbohydrate, high-fat-fed rats; in contrast, green cardamom showed 

anti-inflammatory effects in acute carrageenan-induced plantar oedema in male albino rats 

(227). Green cardamom did not change the increased plasma lipid profile in H rats, consistent 

with the presence of increased fat deposition in the liver. 

Increased plasma free fatty acid concentrations and liver enzyme activities cause 

endothelial dysfunction leading to hypertension (253). The high-carbohydrate, high-fat diet 

led to structural and functional changes in the heart. Cardiovascular abnormalities included 

increased left ventricular stiffness, increased relative wall thickness, reduced fractional 

shortening, reduced ejection fraction and increased estimated left ventricular mass (146). 

Black cardamom normalised plasma free fatty acids concentrations, liver enzyme activities, 

thoracic aortic ring reactivity and cardiac structure and function. In patients with ischaemic 

heart disease, black cardamom (3 g/day) improved the plasma lipid profile and enhanced the 

fibrinolytic activity and antioxidant status, although cardiovascular parameters were not 

reported (254). Green cardamom showed a smaller decrease in blood pressure, no changes in 

heart structure or thoracic aortic ring reactivity and increased inflammatory cell infiltration 

and collagen deposition, consistent with some changes in liver enzyme activities and 

Page 58 of 151



insignificant changes in plasma free fatty acid concentrations. Green cardamom at 3 g/day for 

12 weeks in mildly hypertensive subjects decreased blood pressure with no changes in 

plasma cholesterol and triglycerides (237), although liver function and heart structure were 

not measured. Green cardamom extract with Arabic coffee showed increased total cholesterol 

and LDL concentration with no effect on blood pressure (252).  

The improved cardiovascular function in HB rats could be due to 1,8-cineole, as this 

compound decreased mean aortic pressure following increased values with hexamethonium, 

atenolol or methylatropine (242). Further, 1,8-cineole (0.1 mg/kg/day) reduced hypertension 

induced by chronic nicotine administration and a higher dose (1 mg/kg/day) increased plasma 

nitrate concentrations (243). Our results suggest that the improved vascular relaxant 

responses to acetylcholine following black cardamom led to decreased blood pressure. Black 

cardamom reduced left ventricular infiltration of inflammatory cells, local collagen 

deposition and left ventricular stiffness. Echocardiographic assessment of HB rats showed 

improved left ventricular function and decreased left ventricular dimensions. The total wet 

weight of the heart was also reduced. These results suggest that green and black cardamom 

produce different responses on cardiac structure and function, and on vascular 

responsiveness. Black cardamom improved the signs of metabolic syndrome, but the 

metabolic, cardiovascular and liver responses to the H diet were not improved by green 

cardamom in this study. Green cardamom (3 g/kg body weight) in mice showed altered 

energy metabolism, increased oxidative stress and morphological changes in heart structure 

(255). Further, an increased dose of green cardamom in Arabic coffee may increase 

cardiovascular risk (252). In this study, 30 g/kg food of either green or black cardamom was 

used to provide a daily dose of ~1.5 g/kg body weight, half the dose shown to increase 

oxidative stress in mice (255), which corresponds to ~20 g/d cardamom in a 70 kg human, 

based on body surface area comparisons between rats and humans (167). This dose would 

seem too high to be obtained from the diet, suggesting that black cardamom may be useful in 

a combination with other functional foods to improve the signs of the metabolic syndrome in 

humans. 

4.6. Conclusions 

Black cardamom attenuated the signs of metabolic syndrome while green cardamom 

exacerbated adiposity, decreased liver function and worsened cardiovascular structure and 

function However, green cardamom decreased plasma insulin and the liver enzymes, ALT 

and AST. These responses suggest that black cardamom containing 1,8-cineole may improve 

cardiac, hepatic and metabolic parameters, unlike the green cardamom containing α-terpinyl 
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acetate, which had no effect on heart and liver structure. Further investigations on these 

closely related terpenes will be necessary to understand their role in the improvement of the 

signs of metabolic syndrome, which is a limitation of the current study. Components other 

than the volatile oils such as phenolic and flavonoid constituents may also contribute to the 

differences in activity. In addition, black cardamom contains increased carbohydrates and this 

component may improve gastrointestinal function as dietary fibre decreases obesity (256, 

257).   
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5. Effect of dietary inorganic nitrate on cardio-metabolic risk factors in 

rats 

5.1. Summary 

Dietary inorganic nitrates improve cardiovascular diseases and dyslipidaemia with 

anti-inflammatory effects that may inhibit the progression of metabolic syndrome. In this 

study, we investigate whether dietary inorganic nitrates and a nitrate-rich source such as 

beetroot improve cardiovascular, liver and metabolic function with changes in mRNA 

expression. Rats fed with a high-carbohydrate, high-fat diet (H) for 16 weeks develop many 

of the signs of human metabolic syndrome such as abdominal obesity, changes in 

cardiovascular and hepatic structure and function, hypertension and impaired glucose 

tolerance compared to rats fed a corn starch diet (C). We measured cardiovascular, liver and 

metabolic parameters to compare responses to either sodium nitrate (N) at ~11 mg/kg/day or 

5% beetroot juice (B) providing approximately the same dose of sodium nitrate fed during the 

last 8 weeks. H rats supplemented with either sodium nitrate (HN) or beetroot (HB) showed 

reduced systolic blood pressure, improved cardiovascular structure and function, plasma 

triglycerides, plasma lipid profile and plasma liver enzymes (P<0.05). Histological 

examination showed reduced inflammatory cell infiltration in heart and liver of HN and HB 

rats together with decreased left ventricular fibrosis. N and B treatment exhibited decreased 

CTGF, MCP1, MMP2, PPARα and AMPKα mRNA expression in left ventricle with no 

change in TGFβ. Neither treatment altered total fat mass or visceral adiposity, with no change 

in metabolic gene expression including PPARα and AMPKα in liver and skeletal muscle 

tissue. Our findings show that inorganic nitrates and beetroot are effective in reversing 

cardiovascular, liver and metabolic complications and alter left ventricular gene expression in 

this rat model of human metabolic syndrome, without changing obesity. Importantly, these 

findings suggest that inorganic nitrates are the most likely bioactive component of beetroot. 

5.2. Introduction  

The prevalence of cardiovascular diseases and mortality is increasing worldwide (258, 

259) with an associated increase in the prevalence of obesity (260, 261). Obesity is a major 

risk factor for most cardiovascular diseases such as hypertension, coronary heart disease and 

myocardial infarction leading to heart failure (262, 263). In recent years, many countries have 

focused on improvement of diet, particularly in population groups with an increased risk of 

cardiovascular disease. Many clinical trials have shown that increased fruit and vegetables in 

diet reduced blood pressure and other cardiovascular diseases (264, 265), hypothesising that 
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these protective effects were related to high polyphenol or antioxidant contents in these fruits 

and vegetables. Consumption of green leafy vegetables and beetroot with increased inorganic 

nitrates (NO3
-) content may protect against coronary heart disease (265). Recently, a meta-

analysis and several clinical studies (266-268) suggest that consumption of dietary inorganic 

nitrates and beetroot juice reduced blood pressure. These dietary inorganic nitrates reduces to 

nitrites (NO2
-) and to nitric oxide (NO) via salivary bacteria and in the acidic environment of 

the stomach (193). NO is produced by NO synthase (NOS) in endothelial cells to regulate 

vascular dilatation and inhibit inflammatory cells and platelet aggregation (269). Previous 

studies with beetroot and inorganic nitrates showed decreased blood pressure, and improved 

endothelial and cardiac function associated with decreased bodyweight (193, 194, 270, 271).    

Feeding rats with a high-carbohydrate, high-fat diet induced endothelial dysfunction 

(146). Endothelial dysfunction leads to hypertension (272), atherosclerosis (273), stroke 

(274) and cardiovascular structural and functional damage (146). Dietary nitrates can be 

converted to the pleiotropic molecule NO (275). Although the importance and molecular 

function of NO have been widely published, there is no clear evidence that dietary inorganic 

nitrates could also help in cardiovascular protection in metabolic syndrome. Thus, this study 

has compared beetroot and inorganic nitrate for attenuation of cardiometabolic risks in rats 

fed a high-carbohydrate, high-fat diet mimicking human metabolic syndrome. 

Cardiovascular, hepatic and metabolic parameters were measured for this comparison along 

with heart, liver and skeletal muscle gene expression. 

5.3. Material and methods 

5.3.1.  Rats and diets 

The experimental group consisted of 72 male Wistar rats (8-9 weeks old were 

randomly divided into 6 experimental diet groups (n=12 each) and fed with their respective 

diets for total 16 weeks, either corn starch (C), C + sodium nitrate (CN), C + beetroot juice 

(CB), high-carbohydrate, high-fat (H), H + sodium nitrate (HN) or H + beetroot juice (HB). 

Beetroot juice as commercially available BEE IT stamina shots was purchased from local 

health-food shops and sodium nitrate was purchased from Sigma-Aldrich Australia.  C, CB 

and CN rats were fed with C diet for the first 8 weeks and then with C, C + B and C + N diets 

for the last 8 weeks. H, HB and HN rats were fed with H diet for the first 8 weeks and then 

with H, H + B and H + N diets for the last 8 weeks. B 50 ml/kg (containing ~215 mg nitrates) 

and N 215 mg/kg were supplemented along with the basal diets by replacing equivalent 

amounts of water. 
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Experimental procedures such as body composition, oral glucose tolerance, 

echocardiography, blood pressure, isolated heart preparation, organ bath, plasma analysis and 

histology were conducted as described in Chapter 3.1.   

5.3.2.  Real-time polymerase chain reaction 

 Approximately 5-7 minutes after euthanasia, left ventricle, liver and skeletal muscle 

portions were snap-frozen in liquid nitrogen and stored at −80°C in a 5-ml cryovial tubes 

until quantitative analysis of RNA transcripts. Total RNA was extracted from approximately 

15 mg of tissue using 1000 mg of ceramic/silica beads in TRIzol® Reagent (Invitrogen, 

Melbourne, Australia) (276). Extracted RNA concentration was quantified spectrometrically 

at 260 nm and DNase treated using the commercially available RQ1 RNase-free DNase kit 

(Promega Corporations, Madison, USA) to ensure the sample was free from DNA 

contaminates. First strand cDNA was then generated from 0.3 µg of template RNA using the 

commercially available iScript™ cDNA synthesis kit (Bio-Rad Laboratories, Hercules, USA) 

using random hexamers and oligo dTs as described (276). cDNA was stored at -20°C for 

subsequent analysis.  

Real-time PCR was conducted using MyiQ™ single colour ‘real-time’ PCR detection 

system (Bio-Rad Laboratories, Hercules, CA) with iQ™ SYBR Green Supermix (Bio-Rad 

Laboratories, Hercules, USA) as the fluorescent agent. Forward and reverse oligonucleotide 

primers for the genes of interest were designed using OligoPerfect™ Suite (Invitrogen, 

Melbourne, Australia) (Table 5.1). To compensate for variations in RNA input amounts and 

reverse transcriptase efficiency, mRNA abundance of the genes of interest was normalised to 

housekeeping gene, β-actin, for heart, liver and skeletal muscle. Real-time PCR reactions 

were run for 50 cycles of 95°C for 15 sec and 60°C for 60 sec. Relative changes in mRNA 

abundance were quantified using the 2-ΔΔCT method (277) and reported in arbitrary units. CT 

values for β-actin were not altered by dietary intervention. 

5.4. Results 

5.4.1.  Cardiovascular structure and function  

H rats showed increased left ventricular internal diameter in diastole (LVIDd) and left 

ventricular wet weight as signs of eccentric hypertrophy compared to C rats. This change in 

LVIDd was observed with no change in relative wall thickness in either of the groups (Table 

5.2). H rats showed impaired systolic function seen as decreased fractional shortening, 

developed pressure and dP/dt with increased left ventricular diameter in systole (LVIDs), 

diastolic stiffness and systolic wall stress (Table 5.2). H rats showed increased diastolic, 
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systolic and stroke volumes, cardiac output and estimated left ventricular mass compared to C 

rats, with increases in heart rate. 

Table 5.1 Real-time PCR primer sequences.  

Gene Forward primer (5’-3’) Reverse primer (5’-3’) 

β-ACTIN CTAAGGCCAACCGTGAAAAGA CCAGAGGCATACAGGGACCAAC 

CTGF AAGGACCGCACAGTGGTT AGAACAGGCGCTCCACTC 

TGFβ TTTAGGAAGGACCTGGCTTG TGTTGGTTGTAGAGGGCAAG 

MCP1 GCCGTGTGTTCACAGTGCT AGTTCTCCAGCCGACCATT 

MMP2 ACAGTGACACCACGTACAAGC CATTCCCTGCGAAGAACACAG 

AMPKα ACTCTGCTGATGCACATGCT AGGGGTCTTCAGGAAAGAGG 

PPARα TGTCGAATATGTGGGGACAA ACTTGTCGTACGCCAGCTTT 

CTGF, connective tissue growth factor; TGFβ, transforming growth factor beta; MCP1, 

monocyte chemotactic protein; MMP2, matrix metalloproteinase-2; AMPKα, 5’ adenosine 

monophosphate-activated protein kinase alpha; PPARα, peroxisome proliferator-activated 

receptor alpha. 

Treatment of H rats with B and N decreased the LVIDd and LVIDs compared to H 

rats, with no change in left ventricular posterior wall diameter in systole and diastole. These 

effects were accompanied by increased fractional shortening with B and N (Table 5.2). 

Diastolic stiffness, systolic volumes, cardiac output, systolic wall stress and wet weight of left 

ventricle with septum were normalised with B and N, while heart rate was decreased with B 

and N treated rats. HB and HN rats increased diastolic volume and B and N treatment 

increased ejection time along with left-ventricular developed pressure compared to C and H 

rats (Table 5.2). Treatment of H rats with B and N normalised estimated left-ventricular mass 

and wet weight along with decreased systolic blood pressure (Table 5.2).  

 In isolated thoracic aortic rings, H rats showed decreased vascular contraction with 

noradrenaline (Figure 5.1A) and decreased vascular relaxation with sodium nitroprusside and 

acetylcholine compared to C rats (Figure 5.1B and C). B and N rats showed improved 

Page 65 of 151



contraction and relaxation in isolated thoracic aortic rings (Figure 5.1A, B and C), correlated 

with decreased systolic blood pressure in HB and HN rats.   

 Compared to C rats (Figure 5.2A and G), H rats showed increased infiltration of 

inflammatory cells (Figure 5.2D) and increased interstitial collagen deposition (Figure 5.2J). 

HB and HN showed decreased infiltration of inflammatory cells (Figure 5.2B, C, E and F) 

and reduced collagen deposition (Figure 5.2H, I, K and L), while no other changes were 

observed with tissue morphology appearing normal.  

  

Figure 5.1 Cumulative concentration-response curves for noradrenaline (A), sodium 
nitroprusside (B) and acetylcholine (C) in thoracic aortic rings from C, CB, CN, H, HB and 
HN rats. Data are shown as means ± SEM. End-point means without a common alphabet in 
each data set significantly differ, P<0.05 and n=10/group. 

H diet-fed rats resulted in significant increases in CTGF, MCP1 and MMP2, mRNA 

expression (Figure 5.3A, C and D) compared to C rats. However, the H diet did not alter the 

TGFβ mRNA expression (Figure 5.3B) compared to C rats. H diet-fed rats increased AMPKα 

and decreased PPARα mRNA expression (Figure 5.4A and B) compared to C rats. HB and 

HN rats decreased CTGF, MCP1 and MMP2 mRNA expression (Figure 5.3A, C and D) and 
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no change in TGFβ mRNA expression (Figure 5.3B). HB and HN rats showed decreased 

AMPKα and increased PPARα mRNA expression (Figure 5.4A and B) compared to H rats.  

 

Figure 5.2 Haematoxylin and eosin staining of left ventricle (original magnification ×20) 
showing inflammatory cells (marked as “in”) as dark spots outside the myocytes in C (A), CB 
(B), CN (C), H (D), HB (E) and HN (F) rats. Picrosirius red staining of left ventricular 
interstitial collagen deposition (original magnification ×20) in C (G), CB (H), CN (I), H (J), 
HB (K) and HN (L) rats. Collagen deposition is marked as “cd” and hypertrophied 
cardiomyocytes are marked as “hy”. 

 

Figure 5.3 Left ventricular mRNA expressions of CTGF (A), TGFβ (B), MCP1 (C) and 
MMP2 (D) in C, CB, CN, H, HB and HN rats. Data expressed in arbitrary units normalised to 
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βACTIN. Means without a common alphabet in each data set significantly differ, P<0.05 and 
n=10/group. 

 

 

Figure 5.4 Left ventricular, hepatic and skeletal muscle mRNA expression of AMPKα and 
PPARα in C, CB, CN, H, HB and HN rats. Data expressed in arbitrary units normalised to β-
actin. Means without a common alphabet in each data set significantly differ, P<0.05 and 
n=10/group. 
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Table 5.2 Changes in cardiovascular structure and function in C, CB, CN, H, HB and HN diet-fed rats (n=10 rats/group). 

Variable C CB CN H HB HN 

P values 

Diet Treatmen

t 

Interactio

n 

Heart rate (bpm) 272±23b 271±8b 245±14b 365±24a 298 ±8b 240 ±35b 0.0308 0.0036 0.07 

IVSd (mm) 1.9±0.1 1.8±0.0 1.9±0.0 2.0±0.1 1.8 ±0.0 2.0 ±0.0 0.16 0.017 0.61 

LVIDd (mm) 6.9±0.2b 6.8±0.1b 6.4±0.2b 8.7±0.4a 6.4 ±0.2b 6.5 ±0.2b 0.001 <0.0001 <0.0001 

LVPWd (mm) 1.7±0.1 1.8±0.0 1.8±0.0 1.8±0.0 1.8 ±0.1 1.8 ±0.0 0.57 0.72 0.72 

IVSs (mm) 3.2±0.1 3.1±0.1 3.3±0.1 2.9±0.1 3.1 ±0.1 3.3 ±0.1 0.23 0.0393 0.23 

LVIDs (mm) 3.8±0.2b 3.7±0.2b 3.8±0.2b 4.8±0.4a 3.8 ±0.2b 3.4 ±0.3b 0.24 0.0133 0.0178 

LVPWs (mm) 2.9±0.1 2.8±0.1 2.8±0.1 2.9±0.1 3.0 ±0.1 3.1 ±0.1 0.0475 0.85 0.32 

Fractional shortening (%) 48.5±2.1b 58.8±0.6a 54.3±1.2a 42.3±2.7b 55.5 ±1.0a 58.5 ±0.8a 0.14 <0.0001 0.0027 

Ejection time (ms) 80.1±2.5b 93.2±2.1a 95.6±2.4a 72.9±3.9b 85.9 ±2.1a 88.4 ±2.0a 0.0014 <0.0001 1 

Ejection fraction (%) 85.8±2.0 81.1±1.7 77.6±1.4 82.5±2.4 81.3 ±1.9 81.7 ±2.8 0.85 0.1 0.22 

Diastolic volume (μL) 359±38b 341±25b 275±32b 688±66a 281 ±36a 292±33a 0.0061 <0.0001 <0.0001 

Systolic volume (μL) 60±10b 59±9b 60±8b 121±22a 61 ±11b 51 ±16b 0.12 0.0282 0.0321 

Stroke volume (μL) 309±33b 282±21b 215±28b 567±38a 220 ±31b 242 ±22b 0.0037 <0.0001 <0.0001 
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Cardiac output (mL/min) 88.7±13.6b 77.1±6.4b 62.8±9.6b 184.4±19.0a 65.5±10.0b 62.4±12.1b 0.0087 <0.0001 0.0001 

LV developed pressure 

(mmHg) 

54.7±3.4ab 62.4±5.1a 68.2±4.7a 44.7±3.6b 64.2±4.2a 66.8±3.8a 0.37 0.0004 0.38 

(+)dP/dt (mmHg/S) 1148±75a 1229±67a 1197±66a 825±84b 1210±64a 1242±78a 0.1 0.0022 0.0334 

(-)dP/dt (mmHg/S) -705±52a -785±56a -758±47a -473±47b -767±50a -783±55a 0.08 0.0006 0.034 

Diastolic stiffness (k) 22.9±0.6b 23.1±0.4b 22.6±0.7b 28.6±0.7a 24.3±0.6b 23.8±0.9b <0.0001 0.0008 0.0013 

Estimated LV mass, Litwin (g) 0.8±0.1b 0.7±0.0b 0.8±0.0b 1.1±0.1a 0.8±0.0b 0.8±0.0b 0.0071 0.0035 0.0393 

LV+septum wet weight 

(mg/mm tibial length) 

17.8±0.5b 17.1±0.4b 15.3±0.5c 20.1±0.6a 17.6±0.4b 16.2±0.4bc 0.0023 <0.0001 0.15 

Right ventricle wet weight 

(mg/mm tibial length) 

4.6±0.5ab 4.1±0.1b 3.7±0.2c 5.6±0.4a 4.9±0.3ab 4.1±0.2b 0.0059 0.0015 0.62 

Relative wall thickness 0.5±0.03b 0.5±0.02b 0.5±0.02b 0.6±0.03a 0.5±0.02b 0.5±0.01b 0.08 0.0497 0.0497 

Systolic blood pressure 

(mmHg) 

129±3b 126±1b 123±2b 151±2a 134±2b 132±2b <0.0001 <0.0001 0.0034 

Systolic wall stress (mmHg) 87.7±7.0b 85.8±6.6b 83.4±6.5b 111.2±7.4a 82.4±7.3b 74.9±5.8b 0.49 0.0114 0.0483 

Each value is a mean ± SEM. Means within a row with unlike superscripts differ, P<0.05  
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Table 5.3 Dietary intakes, body composition and anthropometrics, organ wet weights, changes in glucose tolerance test, plasma insulin 

and plasma biochemistry in C, CB, CN, H, HB and HN diet-fed rats (n=10 rats/group). 

Variable C CB CN H HB HN 

P values 

Diet Treatmen

t 

Interact

ion  

Food intake (g/d) 32.7±1.3ab 35.1±0.6a 36.0±0.8a 26.9±0.9c 25.5±0.5c 25.2±0.6c <0.0001 0.09 0.06 

Water intake (ml/d) 25.5±1.6a 24.9±1.2ab 26.3±2.0a 26.8±2.3a 24.9±0.6a 28.5±1.1a 0.35 0.26 0.76 

Beetroot juice intake (ml/d) 0.0±0.0 1.7±0.0a 0.0±0.0 0.0±0.0 1.1±0.0b 0.0±0.0 <0.0001 <0.0001 <0.0001 

Nitrate intake (mg/d) 0.0±0.0 7.3±0.0a 7.9±0.0a 0.0±0.0 5.3±0.0b 5.4±0.0b <0.0001 <0.0001 <0.0001 

Energy intake (kJ/d) 393±15b 395±6b 399±9b 565±14a 554±8a 585±13a <0.0001 0.28 0.51 

Feed conversion efficiency 

(%) 

1.8±0.2b 1.7±0.2b 1.7±0.3b 5.4±0.7a 4.5±0.5a 3.8±0.7a <0.0001 0.22 0.31 

Body weight gained (8-16 

weeks) (%) 

7.4±1.9b 6.8±0.8b 5.6±1.4b 15.1±0.9a 12.0±0.9a 11.2±1.5a <0.0001 0.13 0.4 

Visceral adiposity index (%) 4.6±0.2b 4.3±0.6b 4.4±0.2b 7.6±0.5a 6.2±0.5a 6.4±0.5a <0.0001 0.14 0.4 

Abdominal circumference 

(cm) 

20.3±0.2c 20.5±0.3c 20.1±0.3c 22.5±0.4a 21.3±0.4b 21.2±0.2b <0.0001 0.06 0.07 

Body mass index (kg/m2) 5.2±0.4b 5.0±0.1b 4.8±0.2b 6.3±0.3a 5.7±0.1b 5.8±0.2b <0.0001 0.13 0.69 
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Bone mineral content (g) 12.7±0.4b 12.7±0.3b 11.5±0.2b 15.6±0.5a 15.1±0.4a 14.7±0.4a <0.0001 0.0202 0.57 

Total body lean mass (g) 298±7a 272±7ab 270±5ab 302±9a 283±7a 285±8a 0.11 0.0027 0.72 

Total body fat mass (g) 101±8b 104±9b 96±5b 187±20a 181±13a 189±11a <0.0001 0.99 0.78 

Tissue wet weight (mg/mm)          

Retroperitoneal adipose tissue 171.5±9.3b 147.5±23.9b 148.2±5.9b 303.1±22.7a 288.0±28.0a 300.6±22.1a <0.0001 0.62 0.88 

Epididymal adipose tissue 118.0±6.8b 90.3±10.6b 86.6±4.5b 173.9±20.4a 150.5±9.2a 159.2±15.1a <0.0001 0.08 0.78 

Omental adipose tissue 84.8±6.3ab 97.2±13.8ab 94.7±5.8ab 132.1±17.1a 152.0±16.2a 131.7±18.2a 0.0001 0.49 0.81 

Liver 223.5±6.9b 218.0±5.8b 193.8±6.3b 335.4±11.1a 256.6±9.5b 258.7±14.2b <0.0001 <0.0001 0.0011 

Glucose metabolism and plasma 

biochemistry 

        

OGTT-AUC (mmol/L min) 751±12c 670.1±7.5de 639.3±6.2e 827.4±12.9a 797.1±18.5b 695.3±12.2d <0.0001 <0.0001 0.0154 

Plasma insulin (μmol/L) 1.9±0.4b 2.0±0.5b 1.7±0.3b 4.1±0.5a 2.3±0.4b 2.1±0.4b 0.0416 0.0091 0.0242 

Plamsa leptin (μmol/L) 6.5±0.7ab 6.3±1.1ab 6.4±0.5ab 10.3±1.2a 8.1±0.9ab 8.5±0.6ab 0.0007 0.36 047 

ALP (U/L) 115.3±8.3c 136.9±6.6c 135.8±12.3c 325.8±27.6a 235.8±18.8b 228.3±17.1b <0.0001 0.0488 0.001 

ALT (U/L) 26.3±1.5b 26.4±1.1b 29.3±1.1b 34.3±1.6a 29.3±1.2b 30.1±1.4b 0.0007 0.17 0.0269 

AST (U/L) 67.3±6.1b 60.4±1.9b 60.8±1.3b 87.5±3.0a 61.3±2.9b 63.9±3.6b 0.0064 <0.0001 0.0144 

Total cholesterol (mmol/L) 1.9±0.1b 1.3±0.1c 1.5±0.1c 2.6±0.2a 1.4±0.1c 1.6±0.1c 0.0013 <0.0001 0.009 
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Triglycerides (mmol/L) 0.5±0.1b 0.4±0.1b 0.5±0.1b 1.8±0.3a 0.9±0.2b 0.8±0.1b <0.0001 0.0036 0.0083 

NEFA (mmol/L) 1.3±0.2b 1.3±0.1b 1.4±0.1b 5.4±0.6a 2.4±0.3b 2.5±0.3b <0.0001 <0.0001 <0.0001 

Each value is a mean ± SEM. Means within a row with unlike superscripts differ, P<0.05. 

*In all groups body-weight gained calculated as percentage of body weight increase from 8 weeks to 16 weeks. OGTT-AUC, oral glucose 

tolerance test-area under the curve;  ALP, alkaline phosphatase; ALT, aspartate transaminase; AST, aspartate transaminase; NEFA, non-

esterified fatty acids. 
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5.4.2. Dietary intake, body composition and plasma biochemistry  

Food intakes were higher in C, CB and CN rats than in H, HB and HN rats, 

respectively (Table 5.3). Due to this difference, the average daily intake of nitrates was 

higher in CB and CN rats than in HB and HN rats, respectively (Table 5.3). Neither B nor N 

treatment altered food, water or energy intakes (Table 5.3). H rats increased feed conversion 

efficiency, body weight gain, abdominal circumference and body mass index compared to C 

rats, while these parameters were reduced in HB and HN rats compared to H rats (Table 5.3). 

Bone mineral content was higher in H rats than HB and HN rats, and all were higher than C, 

CB and CN rats (Table 5.3). HB and HN rats had unchanged total body fat mass compared to 

H rats and increased total body fat mass compared to C, CB and CN rats. These changes in 

total body fat are consistent with changes in omental and epididymal fat pads (Table 5.3). 

Total body lean mass was unchanged in HB and HN rats. 

Plasma concentrations of total cholesterol, triglycerides and NEFA were increased in 

H rats compared to C, HB or HN rats, while C rats had higher total cholesterol concentrations 

than HB and HN rats (Table 5.3). Plasma leptin concentrations were increased in H rats 

compared to C rats and B and N-treatment did not change leptin concentrations. H rats also 

had higher fasting blood glucose concentration compared to C rats. B and N treatment 

decreased blood glucose concentrations. The plasma glucose response to oral glucose 

tolerance area under the curve was greater in H rats than C rats (Table 5.3). B and N-

treatment improved glucose clearance compared to H rats. However, N treated rats showed 

greater clearance compared to B treated rats (Table 5.3). Plasma insulin concentrations 

almost doubled in H rats compared to C, HB and HN rats (Table 5.3).  

5.4.3. Hepatic structure and function  

Compared to C rats, H rats had increased liver wet weight with increased plasma 

activities of ALT, ALP and AST as markers of liver damage; B and N treatment decreased 

these parameters compared to H rats. Liver wet weight and plasma activities were unchanged 

in CB and CN rats compared to C rats, except an increased plasma ALP in CB and CN rats 

compared to C rats (Table 5.3). H rats (Figure 5.5D) showed increased hepatic lipid 

deposition and inflammatory cell infiltration compared to C rats (Figure 5.5A) while HB and 

HN rats showed decreased inflammatory cell infiltration (Figure 5.5E and F) compared to H 

rats. CB and CN rats showed minimal macrovesicular steatosis and portal inflammation and 

tissue morphology appeared normal (Figure 5.5B and C). However, no changes in AMPKα 
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and PPARα mRNA expression were observed in hepatic tissue (Figure 5.4C and D) or 

skeletal muscle (Figure 5.4E and F).  

 

Figure 5.5 Haematoxylin and eosin staining of hepatocytes (original magnification ×20) 
showing inflammatory cells (marked as “in”) and hepatocytes with fat vacuoles (marked as 
“fv”) in C (A), CB (B), CN (C), H (D), HB (E) and HN (F) rats. 

5.5. Discussion 

Increases in dietary fruits and vegetables reduced blood pressure (275) but the 

cardioprotective effects of these diets remain contradictory and the mechanisms of action for 

these effects are unclear (278). Further, green leafy vegetables and beetroot with increased 

nitrates (265) improved cardiovascular health (268) hypothesised to be due to in vivo nitric 

oxide generation from nitrate. However, the daily dose of nitrates in these studies have 

exceeded the current recommended level of 3.7 mg/kg/day (275). In this study, we have used 

a lower dose of 12 mg/kg/day in rats which converts to ~2.5 mg/kg/day in a 70 kg human 

based on body surface area comparisons between rats and humans (167).   

This study has measured the molecular and physiological effects in high-

carbohydrate, high-fat diet-fed rats that mimic most of the signs of cardiometabolic disorders 

in humans. This diet produced increased blood pressure, left ventricular stiffness, vascular 

dysfunction, inflammatory cell infiltration in heart and liver, and collagen deposition in the 

left ventricle associated with increased CTGF, MCP1 and MMP2 mRNA expression. 

Decreased blood pressure and diastolic stiffness with both interventions correlated with 

decreased collagen deposition in left ventricle and normalised CTGF mRNA expression. 

Overexpression of MMP2 and CTGF increased collagen deposition in heart and aortic walls 

(279, 280) which was seen in H diet-fed rats. CTGF, activated by upstream TGFβ signal, 

stimulates the proliferation of connective tissue cells such as fibroblasts and extracellular 

matrix (281). In this study, decreased collagen deposition occurred with no change in the 

upstream activator TGFβ mRNA expression which is contradictory to previous studies (282). 

Our results also suggested that nitrate and beetroot interventions improved vascular function 

by improving endothelial function, perhaps by in vivo conversion of nitrate to nitrite 

increasing NO concentrations (275). NO inhibits endothelin-1 and release of noradrenaline 
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(283) so will increase cyclic guanosine monophosphate (cGMP) in smooth muscle (284) and 

improve vascular function (285). This improved vascular function is consistent with previous 

studies suggesting that NO normalised the MCP1 mRNA expression which inhibited the 

inflammatory cytokines such as TNF-α, induced signal transducer and activator of 

transcription (STAT3) phosphorylation, inducible nitric oxide synthase and cell adhesion 

molecules that attract inflammatory cells to the endothelial surface and facilitate their 

entrance into the vessel wall by inhibiting the activation of nuclear factor-κB (284, 286). 

Extending these effects could be the reason for reduced inflammatory cell infiltration in left 

ventricle and liver with both treatments. 

In addition, this diet caused widespread metabolic changes including increased 

abdominal fat deposition, plasma lipids, plasma liver enzymes and liver weight, and impaired 

glucose tolerance when compared to rats fed a low-fat, corn starch-rich diet (146). 

Dysfunction of the left ventricle correlates with metabolic changes, oxidative stress and 

increase in inflammatory cell infiltration, and an increase in left ventricular fibrosis and 

stiffness (287). Intervention with either sodium nitrate or beetroot juice containing the same 

dose of sodium nitrate attenuated or reversed the changes in heart and liver structure and 

function. Further, these interventions reversed most of the metabolic changes but did not 

reduce total body weight. 

Both nitrate- and beetroot-treated rats decreased fat vacuoles, hepatic inflammation 

and liver wet weight directly correlating to the reduction of plasma activity of liver enzymes 

and free fatty acids. NO activated AMPKα as an energy sensing enzyme which is activated in 

response to cellular stress by increasing intracellular cGMP (288). Increased AMPKα 

activation increases fatty acid oxidation and improves glucose homeostasis by increasing the 

peroxisome proliferator-activated receptor gamma coactivator-1 alpha (PGC-1α). In C2C12 

murine monocytes, beetroot showed increased activation of PGC-1α with increased glucose 

uptake (289). In our study, both interventions improved the glucose homeostasis similar to 

previous study with nitrates in endothelial nitric oxide synthase-deficient mice model (194). 

However, neither treatment changed AMPKα mRNA expression in liver and skeletal muscle. 

In heart, the increased AMPKα expression in H diet rats was normalised in beetroot and 

nitrate-treated rats, suggesting that reduced blood pressure and improved cardiovascular 

function with either treatment reduced the cellular stress and workload, therefore normalising 

AMPKα expression. The results also suggest that increased AMPKα expression and 
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activation relates to tissue-specific conditions and could be an alternative mechanism for 

improving glucose homeostasis in disease states.  

The activation of PPARα during energy deprivation regulated lipid metabolism in the 

liver and increased NO production (290). Few studies have explained how the improved 

relationship between PPARα and NO production benefits cardiovascular health (290). 

Activation of PPARα also increased mitochondrial fatty acid β-oxidation (291). Treatment 

with beetroot or nitrate did not change PPARα expression in liver or skeletal muscle but 

increased expression in the heart. Similarly, low dose treatment with nitrates showed no 

PPARα activation and expression in muscle and liver (292). However, plasma triglycerides 

and NEFA decreased with reduced fat vacuoles in liver. These results suggest that PPARα 

expression and activation is tissue-specific in beetroot and nitrate treatment. Additionally, 

endothelial nitric oxide synthase-deficient mice treated with sodium nitrate decreased body 

weight and visceral adiposity (194), where in our study, the same dose or nitrate had no 

effects on body weight and adiposity. 

5.6. Conclusions 

Our integrative study suggested that in the high-carbohydrate, high-fat diet fed rats, 

mimicking human metabolic syndrome conditions, beetroot and inorganic nitrate treatment 

reduced blood pressure, cardiovascular function and structure by normalising CTGF, MCP1 

and MMP2 mRNA expression in heart along with decreased plasma total cholesterol, 

triglycerides and no-esterified fatty acids. Both interventions improved hepatic structure, 

glucose metabolism and decreased plasma insulin, and liver enzymes independent to AMPKα 

and PPARα mRNA expression. In addition, all these changes were seen with no change in 

body weight and total fat mass.  
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6. Effect of chokeberry and purple maize in reversing the signs of diet-

induced metabolic syndrome in rats 

6.1. Summary 

Increased consumption of fruits and vegetables reduces signs of metabolic syndrome, 

leading to their definition as functional foods. This study measured cardiovascular, liver and 

metabolic parameters following chronic administration of either chokeberry juice (CB) or 

purple maize (PM) as sources of polyphenols, especially anthocyanins such as cyanidin 3-

glucoside, in rats with diet-induced metabolic syndrome. Male Wistar rats (8-9 week old) 

were fed with corn starch diet (C) or high-carbohydrate, high-fat diet (H) diet and divided 

into six groups (n=12/group) for 16 week feeding with C, C with CB or PM for last 8 weeks 

(CCB or CPM), H, H with CB or PM for last 8 weeks (HCB or HPM). CB and PM-fed rats 

received approximately 8 mg cyanidin 3-glucoside/kg/day. H rats developed many of the 

signs of human metabolic syndrome such as abdominal obesity, hypertension, impaired 

glucose tolerance, changes in cardiovascular and hepatic structure and function and increased 

pro-inflammatory markers compared to rats fed C diet. Both CB and PM treatments were 

effective in reversing the cardiovascular, liver and metabolic signs in this rat model of human 

metabolic syndrome, suggesting that cyanidin 3-glucoside attenuated or reversed the signs of 

metabolic syndrome by preventing inflammation-induced damage to organs. 

6.2. Introduction  

Fruits and vegetables rich in antioxidant phytochemicals such as flavonoids and 

polyphenols are effective in attenuating the signs of metabolic syndrome (195, 293). An 

increased intake of fruits and vegetables intake has been associated with a decrease in 

cardiovascular diseases (294), and better control of type 2 diabetes (295) and non-alcoholic 

fatty liver disease (296). Anthocyanins are bioactive flavonoids that give red to purple 

colours to fruits and vegetables. Regular consumption of anthocyanins has been credited with 

reduced risk of chronic diseases such as obesity, non-alcoholic fatty liver, diabetes and 

cardiovascular diseases (196, 297, 298). It is estimated that ~1000 mg of polyphenols, up to 

215 mg of anthocyanins are consumed daily by an average adult in the USA. (298, 299).  

Black chokeberry (Aronia melanocarpa) is described as an attractive garden plant, 

native to eastern North America but now grown widely in northern Europe, primarily Poland, 

where the sour fruit is eaten raw or processed into a wide range of foods. Black chokeberries 

are rich in cyanidin anthocyanins, chlorogenic acids and proanthocyanidins, and also contain 
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quercetin flavonols (300). While these components indicate that black chokeberries may be 

an effective functional food, more rigorous studies are needed to support popular indications 

for heart disease, hypertension, hyperlipidaemia and urinary tract infections, as well as 

actions against bacteria and viruses, and to strengthen memory and digestion (301, 302). In 

metabolic syndrome subjects, chokeberry extract decreased blood pressure and plasma lipid 

concentrations with no change in body weight (211). In rats fed with fructose-rich diet, 

chokeberry attenuated body weight gain and insulin resistance (303).  

Purple corn has been cultivated in the Andean region, especially Peru and Bolivia, for 

centuries where it is used as a food and a colourant in a drink believed to improve health 

(304, 305). Treatment with purple maize (Zea mays) decreased abdominal adiposity (306), 

improved glucose metabolism (307) and decreased blood pressure (308) in high-fat diet fed 

rats. However, these is no clear evidence that intervention with these anthocyanin-containing 

traditional functional foods will improve the range of organ dysfunction of the metabolic 

syndrome, despite improvements in individual signs.  

We have previously shown that rats fed with a high-carbohydrate, high fat-diet 

developed the signs of metabolic syndrome such as abdominal adiposity, non-alcoholic fatty 

liver, elevated plasma lipid concentrations, impaired glucose and insulin tolerance, 

hypertension and cardiovascular remodelling mimicking the human condition (146). In this 

model, we have shown that anthocyanin-rich purple carrots or Queen Garnet plums improved 

glucose tolerance, reduced abdominal adiposity, reduced plasma lipid concentrations, 

normalised inflammation and fibrosis in the heart and liver, and improved cardiovascular 

structure and function (200, 309).  

 This study has compared the cardiovascular, liver and metabolic responses of two 

foods, chokeberry and purple maize, at the same daily dose of anthocyanins in a high-

carbohydrate, high-fat diet-fed rat model of human metabolic syndrome (146). These 

measurements included systolic blood pressure, echocardiography, vascular reactivity, 

collagen deposition and stiffness of heart, plasma biochemistry and histology for structural 

changes on heart and liver. We suggest that an adequate intake of cyanidin-type anthocyanins 

can normalise the metabolic, cardiovascular and liver changes induced by a high-

carbohydrate, high-fat diet, possibly by decreasing infiltration of inflammatory cells in the 

organs. 
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6.3. Materials & methods  

6.3.1.  Analysis of chokeberry juice and purple maize flour 

Chokeberry juice (CB) was supplied by Fasbay Pty Ltd, Sydney, Australia and purple 

maize flour (PM) was supplied by Spectrum Ingredients Pte Ltd, Singapore. The anthocyanin 

contents were determined by HPLC based on the method outlined in the British 

Pharmacopoeia 2014 (Eur. Pharm 2394) using an Agilent 100 series HPLC system. Briefly, 

samples were prepared by extraction by 2% v/v HCl in methanol, using sonication for 15 

minutes in volumetric flasks, then made up to volume and diluted as required to be within the 

standard calibration. Analysis was performed using a gradient of mobile phases A (water and 

formic acid, 91.5:8.5) and B (acetonitrile, methanol, water and formic acid, 

22.5:22.5:41.5:8.5) over 56 minutes. The gradient ran from 7 to 25% B in 35 minutes, to 65% 

at 45 minutes followed by 100% B to 50 minutes and return to 7%. The column used was a 

Phenomenex 250mm C18 5µm column with a flow rate of 1 mL per minute and temperature 

30°C. Detection and quantification were performed using a diode array detector (DAD) at 

535nm with cyanidin chloride (PhytoLab, CAS No. 528-58-5, B# 80022 5368) as the 

calibrating standard. Total anthocyanins were calculated as cyanidin chloride and cyanidin 3-

glucoside by mass correction.  

6.3.2.  Rats and diets 

 The experimental groups consisted of 72 male Wistar rats (8-9 weeks old; weighing 

335 ± 3 g) were randomly divided into 6 groups (n = 12 each) and fed with maize starch (C), 

maize starch + chokeberry juice (CCB), maize starch + purple maize flour (CPM), high-

carbohydrate, high-fat (H), high-carbohydrate, high-fat + chokeberry juice (HCB) and high-

carbohydrate, high-fat + purple maize flour (HPM). C and H rats received their respective 

diets for 16 weeks and CCB, CPM, HCB and HPM rats received C and H diets respectively 

for first 8 weeks while both diets were supplemented with chokeberry juice 50 ml/kg or 

purple maize flour 50 g/kg by replacing equivalent amounts of water for a further 8 weeks.  

Experimental procedures such as body composition, oral glucose tolerance, 

echocardiography, blood pressure, isolated heart preparation, organ bath, plasma analysis and 

histology were conducted as described in Chapter 3.1.   
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6.4. Results  

6.4.1.  Diet and body composition 

 CB and PM contained similar concentrations of total anthocyanins (Table 6.11) with 

cyanidin 3-glucoside as the major anthocyanin. The average daily intake of anthocyanins was 

higher in CCB and CPM rats compared to HCB and HPM rats, as the food intake was higher 

in CCB and CPM rats (Table 6.2). 

 Compared to C rats, H rats consumed less food but a similar amount of water (Table 

6.2). Despite the lower food intake, the mean energy intake, feed efficiency, and therefore the 

increases in body weight, were higher in H rats than in C rats (Table 6.2). Consequently, 

chronic H diet feeding for 16 weeks increased measures of abdominal circumference, body 

mass index, total body fat mass and the individual abdominal fat pads, and increased the 

visceral adiposity index (Table 6.2). No change in total body lean mass was measured (Table 

6.2). The bone mineral content was higher in H rats compared to C rats (Table 6.2).  

Table 6.1 Chokeberry juice and purple maize flour analysis 

Variables Chokeberry juice/ 100 ml Purple-maize flour/ 100 g 

Total anthocyanins (mg) 240 220 

Energy (KJ) 279 1,592 

Protein (g) 16.1 7.8 

Total fat (g) 0.5 4.2 

Total carbohydrates (g) 0.2 76.7 

Values are represented as mean of duplicate assays. 

Treatment with either CB or PM for 8 weeks, starting at 8 weeks of the feeding 

period, did not change food or water intake (Table 6.2). Compared to controls, CB treatment 

groups consumed same energy and PM treatment groups had higher energy intake.  However, 

lower feed conversion efficiency and body weight gain were observed in HCB and HPM rats 

(Table 6.2). Both treatments decreased total body fat mass, except CPM rats had higher total 

body fat mass compared to C rats (Table 6.2). Abdominal fat (retroperitoneal, epidydimal and 

omental fat pads), body mass index and visceral adiposity index decreased in both HCB and 

HPM rats (Table 6.2). Bone mineral content and total lean mass were unchanged in both 
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HCB and HPM rats, except HCB rats had decreased bone mineral content compared to H rats 

(Table 6.2).   

6.4.2.  Plasma biochemistry and glucose handling 

Plasma concentrations of total cholesterol, triglycerides and non-esterified fatty acids 

(NEFA) were increased in H rats compared to C rats (Table 6.2). HCB and HPM rats showed 

decreased plasma lipid concentrations, compared to H rats. However, HPM rats had higher 

concentrations of triglycerides and NEFA than HCB rats (Table 6.2). Plasma leptin 

concentrations were doubled in H rats compared to C rats. HCB and HPM showed 

normalised leptin concentrations, consistent with the changes in total fat mass and abdominal 

fat pads (Table 6.2).  

H rats had increased fasting blood glucose concentrations compared to C rats; HCB 

and HPM rats showed similar concentrations to C rats (Figure 6.1). The plasma glucose 

response to oral glucose loading was greater in H rats than C rats (Figure 6.1). At 120 

minutes, HCB and HPM rats along with C rats had lower plasma glucose concentrations 

compared to H rats (Figure 6.1). Plasma insulin concentrations almost doubled in H rats 

compared to C, HCB and HPM rats (Table 6.2). This change is consistent with glucose 

tolerance area under the curve (Table 6.2); similarly, HCB and HPM rats had improved 

glucose metabolism compared to H rats (Table 6.2).  
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Table 6.2 Dietary intakes, body composition and anthropometrics, organ wet weights, changes in glucose tolerance test, plasma insulin 

and plasma biochemistry in C, CCB, CPM, H, HCB and HPM diet-fed rats (n=10 rats/group) 

Variable C CCB CPM H HCB HPM 

P values 

Diet Treatmen

t 

Interacti

on 

Food intake (g/d) 32.9±1.1a 33.2±0.6a 34.1±0.4a 27.1±0.8b 26.4±0.8b 28.5±0.7b <0.0001 0.11 0.7 

Water intake (ml/d) 27.4±2.1 24.3±1.5 27.2±1.8 26.6±1.4 26.5±1.6 29.7±1.5 0.34 0.2 0.55 

Chokeberry juice intake (ml/d) 0.0±0.0 1.7±0.0a 0.0±0.0 0.0±0.0 1.4±0.0b 0.0±0.0 <0.0001 <0.0001 <0.0001 

Purple maize powder intake (g/d) 0.0±0.0 0.0±0.0 1.8±0.0a 0.0±0.0 0.0±0.0 1.5±0.0b <0.0001 <0.0001 <0.0001 

Anthocyanins intake (mg/d) 0.0±0.0 4.2±0.0a 4.0±0.0a 0.0±0.0 3.8±0.0b 3.4±0.0b <0.0001 <0.0001 <0.0001 

Energy intake (kJ/d) 369±12d 378±7d 409±5c 580±17b 570±19b 640±17a <0.0001 0.0005 0.39 

Feed conversion efficiency (%) 2.4±0.3b 2.1±0.3b 2.9±0.3b 7.1±0.9a 4.4±1.3b 5.5±0.9ab <0.0001 0.16 0.25 

Body weight gained (8-16 weeks) 

(%) 

8.2±1.4b 7.7±1.4b 8.3±1.3b 21.6±2.6a 9.9±2.8b 10.8±1.6b 0.0004 0.0051 0.0075 

Visceral adiposity index (%) 4.9±0.4b 4.4±0.3b 4.8±0.2b 8.9±0.9a 6.1±0.5b 6.0±0.3b <0.0001 0.0021 0.0137 

Abdominal circumference (cm) 19.2±0.1c 18.2±0.2d 19.1±0.1cd 22.3±0.3a 19.7±0.4c 20.7±0.2b <0.0001 <0.0001 0.0022 

Body mass index (kg/m2) 5.0±0.2d 4.8±0.1d 4.7±0.1d 7.3±0.2a 5.7±0.1c 6.4±0.2b <0.0001 <0.0001 0.0002 

Bone mineral content (g) 11.3±0.3c 11.4±0.3c 11.5±0.3c 15.8±0.4a 13.5±0.5b 14.8±0.4a <0.0001 0.0166 0.009 
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Total body lean mass (g) 309±12 303±12 307±11 311±14 305±11 304±8 0.98 0.87 0.98 

Total body fat mass (g) 74.3±7.6d 94.4±8.4d 113.7±8.5cd 224.6±12.6a 144.4±17.2c 177.3±10.4b <0.0001 0.0203 <0.0001 

Tissue wet weight (mg/mm)          

Retroperitoneal adipose tissue 179.7±15.3c 141.9±13.7c 173.0±12.6c 521.7±45.6a 279.2±38.2b 311.8±16.7b <0.0001 <0.0001 0.0003 

Epidydimal adipose tissue 93.4±7.9c 83.3±6.9c 95.4±5.2c 278.5±22.5a 155.4±15.2b 156.8±11.7b <0.0001 <0.0001 <0.0001 

Omental adipose tissue 106.6±8.1d 91.8±8.0d 101.1±5.5d 261.1±21.3a 141.0±12.3cd 193.1±9.9b <0.0001 <0.0001 0.0002 

Liver 214.2±6.7c 188.8±6.2c 204.1±5.5c 319.6±8.9a 250.7±11.1b 268.6±7.0b <0.0001 <0.0001 0.0111 

Glucose metabolism and 

plasma biochemistry 

         

OGTT-AUC (mmol/L min) 591±12d 645±9c 613±6d 786±18a 658±7c 694±6b <0.0001 0.001 <0.0001 

Plasma insulin (μmol/L) 1.4±0.3b 1.1±0.2b 1.7±0.3b 4.1±0.5a 2.3±0.4b 2.6±0.6b <0.0001 0.042 0.07 

Plamsa leptin (μmol/L) 5.3±0.7b 4.9±0.6b 6.1±0.5b 11.1±0.9a 7.0±1.5b 7.9±1.0b <0.0001 0.06 0.06 

ALP (U/L) 181±12c 214±16c 166±12c 312±18a 252±20bc 265±18bc <0.0001 0.17 0.0224 

ALT (U/L) 29.6±2.1b 28.1±2.2b 29.7±1.5b 43.2±2.8a 34.6±3.9ab 38.0±3.1ab <0.0001 0.19 0.4 

AST (U/L) 60.4±1.9b 60.9±2.7b 64.0±1.6b 83.5±3.1a 63.1±7.9b 64.6±2.9b 0.0099 0.0383 0.0099 

Total cholesterol (mmol/L) 1.5±0.2b 1.5±0.1b 1.6±0.1b 2.2±0.0a 1.6±0.1b 1.6±0.0b 0.0038 0.0166 0.0039 

Triglycerides (mmol/L) 0.5±0.0c 0.4±0.0c 0.5±0.0c 1.6±0.2a 0.7±0.1c 1.0±0.1b <0.0001 <0.0001 0.0005 
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NEFA (mmol/L) 1.3 ±0.2c 1.2 ±0.1c 1.4 ±0.1c 3.4 ±0.2a 1.8 ±0.4c 2.3 ±0.3b <0.0001 0.0036 0.0073 

Each value is a mean ± SEM. Means within a row with unlike superscripts differ, P<0.05. 

* In all groups body-weight gained calculated as percentage of body weight increase from 8 weeks to 16 weeks. OGTT-AUC, oral glucose tolerance test-

area under the curve;  ALP, alkaline phosphatase; ALT, aspartate transaminase; AST, aspartate transaminase; NEFA, non-esterified fatty acids. 

Table 6.3 Changes in cardiovascular structure and function in C, CCB, CPM, H, HCB and HPM diet-fed rats (n=10-8 rats/group) 

Variable C CCB CPM H HCB HPM 

P values 

Diet Treatme

nt 

Interacti

on 

Heart rate (bpm) 277±18b 246±9b 256±15b 335±16a 243±9b 265±11b 0.06 0.0001 0.06 

IVSd (mm) 1.9±0.1ab 1.8±0.0b 1.9±0.0ab 2.1±0.1a 1.9±0.1ab 1.9±0.0ab 0.09 0.11 0.38 

LVIDd (mm) 6.4±0.2b 6.7±0.3b 7.0±0.1b 7.9±0.3a 7.1±0.2b 7.2±0.2b 0.0005 0.51 0.0139 

LVPWd (mm) 1.8±0.1b 1.7±0.0b 1.8±0.0b 2.1±0.0a 1.9±0.1b 1.9±0.0b 0.0001 0.0393 0.23 

IVSs (mm) 3.2±0.2b 3.0±0.1b 2.9±0.0b 3.8±0.1a 3.2±0.1b 3.3±0.1b <0.0001 0.0022 0.42 

LVIDs (mm) 3.7±0.2 4.0±0.2 3.7±0.2 4.5±0.2 3.7±0.3 4.3±0.3 0.07 0.58 0.06 

LVPWs (mm) 2.9±0.1b 2.6±0.1b 2.7±0.1b 3.4±0.1a 3.2±0.1ab 3.0±0.1ab <0.0001 0.0099 0.32 

Fractional shortening (%) 50.9±2.1a 53.7±0.8a 53.4±0.9a 47.5±2.1ab 58.0±1.2a 55.7±1.4a 0.39 0.0002 0.0392 

Ejection time (ms) 79.6±2.3 93.3±3.4ab 86.0±2.7 92.8±2.9ab 86.4±3.9 95.0±3.0ab 0.0486 0.33 0.0053 

Ejection fraction (%) 87.3±1.4 83.3±1.3 84.6±1.6 89.0±2.2 84.1±4.0 83.6±2.9 0.8 0.14 0.85 
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Diastolic volume (μL) 353±34b 365±33b 364±22b 515±39a 386±28b 395±37b 0.01 0.15 0.07 

Systolic volume (μL) 45±10b 57±8a 56±8a 90±10a 65±23a 63±12a 0.0203 0.72 0.11 

Stroke volume (μL) 268±18b 298±20b 307±18b 425±29a 306±26b 322±19b 0.0018 0.13 0.002 

Cardiac output (mL/min) 92.3±11.2b 70.4±13.6b 78.6±6.6b 144.8±21.7a 93.0±7.7b 100.3±10.7b 0.0038 0.0165 0.41 

LV developed pressure 

(mmHg) 

69.6±3.5a 71.4±4.1a 64.8±5.6a 43.7±3.6b 63.7±5.7a 60.2±3.8a 0.001 0.06 0.0444 

(+)dP/dt (mmHg/S) 1147±61a 1285±53a 1195±65a 784±66c 1089±63a 1002±76ab <0.0001 0.0044 0.33 

(-)dP/dt (mmHg/S) -782±51a -804±49a -795±43a -489±57b -700±44a -711±52a 0.0002 0.0316 0.08 

Diastolic stiffness (k) 22.9±0.8b 22.3±0.4b 23.1±0.6b 28.6±0.6a 23.9±0.7b 24.2±0.5b <0.0001 0.0002 0.0006 

Estimated LV mass, Litwin (g) 0.93±0.06b 0.79±0.08b 0.88±0.02b 1.14±0.05a 1.01±0.06ab 1.10±0.04ab <0.0001 0.05 0.99 

LV+septum wet weight 

(mg/mm tibial length) 

16.1±0.5c 15.3±0.5c 15.0±0.5c 19.5±0.8a 16.9±0.8c 18.5±0.5b <0.0001 0.0268 0.23 

Right ventricle wet weight 

(mg/mm tibial length) 

3.8±0.2 3.8±0.2 4.0±0.2 4.4±0.2 4.3±0.3 5.0±0.4a 0.0018 0.18 0.6 

Relative wall thickness 0.50±0.03 0.57±0.09 0.53±0.02 0.56±0.03 0.51±0.01 0.48±0.01 0.63 0.69 0.29 

Systolic blood pressure 

(mmHg) 

130±2b 130±3b 132±2b 152±2a 120±1b 134±3b <0.0001 <0.0001 <0.0001 

Systolic wall stress (mmHg) 83.0±4.0b 79.1±4.3b 75.3±11.8b 119.6±7.6a 76.8±7.5b 89.5±9.7b 0.0171 0.0129 0.06 

Each value is a mean ± SEM. Means within a row with unlike superscripts differ, P<0.05.  
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Figure 6.1 Effect of CB and PM on oral glucose tolerance in C, CCB, CPM, H, HCB and 
HPM rats. Data are shown as mean ± SEM. End-point means without a common alphabet in 
each data set significantly differ, P<0.05 and n=10/group. 

6.4.3.  Cardiovascular structure and function  

Compared to C rats, H rats showed eccentric hypertrophy, characteristic of increased 

preload, measured as increased left ventricular internal diameter in diastole (LVIDd) without 

any changes in relative wall thickness or end systolic dimensions (Table 6.3). H rats showed 

impaired systolic function with decreased fractional shortening and increased wall stress 

compared to C rats (Table 6.3). However, ejection time and ejection fraction were not 

affected (Table 6.3). Diastolic and stroke volumes and consequently the cardiac output were 

increased in H rats compared to C rats. These effects were seen with increased heart rate in H 

rats compared to C rats (Table 6.3). These changes in H rats were accompanied by increased 

LV wet weight and elevated systolic blood pressure (Table 6.3).  

Both CB and PM treatment improved LV function by decreasing LVIDd and 

normalising developed pressure (Table 6.3). Ejection time, ejection fraction, fractional 

shortening and LVIDs were unaffected in both treatment groups (Table 6.3). Systolic wall 

stress, cardiac output, diastolic and stroke volumes and heart rate were normalised with both 

CB and PM treatment. However, systolic volume was elevated in both HCB and HPM rats 
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with no change in relative wall thickness (Table 6.3). In the isolated Langendorff heart, LV 

stiffness was increased while LV dP/dt was decreased in H rats; these changes were 

normalised in HCB and HPM. These effects were accompanied by decreased LV wet weight 

and systolic blood pressure in both HCB and HPM rats (Table 6.3).  

Histological evaluation of the left ventricle after 16 weeks showed greater infiltration 

of inflammatory cells into the LV with H diet feeding (Figure 6.3D), as well as increased 

interstitial collagen deposition (Figure 6.3J) compared to C rats (Figure 6.3A and G). HCB 

and HPM rats showed normalised inflammatory cell numbers (Figure 6.3E and F) and 

markedly reduced ventricular collagen deposition (Figure 6.3K and L). The reduction in LV 

fibrosis and inflammation was consistent with the reduced diastolic stiffness in HCB and 

HPM rats (Table 6.3), while CCB (Figure 6.3B and H) and CPM (Figure 6.3C and I) rats 

showed minimal changes. No other changes were observed and tissue morphology appeared 

normal.  

H diet feeding diminished α1-adrenoceptor-mediated vascular contraction to 

noradrenaline (Figure 6.2A), endothelium-independent relaxation to sodium nitroprusside 

(Figure 6.2B) and endothelium-dependent relaxation to acetylcholine (Figure 6.2C) in 

isolated thoracic aortic rings compared to C rats. HCB and HPM rats showed increased 

responses to noradrenaline (Figure 6.2A), sodium nitroprusside (Figure 6.2B) and 

acetylcholine (Figure 6.2C) in isolated thoracic aortic rings of HCB and HPM group (Table 

6.3).  

6.4.4. Hepatic structure and function  

 Plasma alkaline phosphatase (ALP), alanine transaminase (ALT) and aspartate 

transaminase (AST) activities were increased in H rats compared to C rats, indicating liver 

damage (Table 6.2). HCB and HPM showed lowered but not normalised ALP, ALT and AST 

activities (Table 6.2). H rats showed increased inflammatory cell infiltration and lipid 

deposition as fat vacuoles in the liver (Figure 6.4D) compared to C rats (Figure 6.4A). In 

HCB and HPM rats, macrovesicular steatosis and portal inflammation were decreased 

compared to H rats (Figure 6.4E and F). Livers from CCB and CPM rats showed normal 

tissue architecture (Figure 6.4B and C). 
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Figure 6.2 Cumulative concentration-response curves for noradrenaline (A), sodium 
nitroprusside (B) and acetylcholine (C) in thoracic aortic rings from C, CCB, CPB, H, HCB 
and HPM rats. Data are shown as mean ± SEM. Significantly different end-point means and 
indicated by different letters, P<0.05 and n=10/group. 

 

Figure 6.3 Hematoxylin and eosin staining of the lef- ventricle (original magnification ×20) 
showing inflammatory cells (marked as “in”) as dark spots outside the myocytes in C (A), 
CCB (B), CPM (C), H (D), HCB (E) and HPM (F) rats. Picrosirius red staining of left-
ventricular interstitial collagen deposition (original magnification ×20) in rats fed the C (G), 
CCB (H), CPM (I), H (J), HCB (K) and HPM (L)diet. Collagen deposition is marked as “cd” 
and hypertrophied cardiomyocytes are marked as “hy”. 
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Figure 6.4 Hematoxylin and eosin staining of hepatocytes (original magnification ×20) 
showing inflammatory cells (marked as “in”) and hepatocytes with fat vacuoles (marked as 
“fv”) in C (A), CCB (B), CPM (C), H (D), HCB (E) and HPM (F) rats. 

6.5. Discussion 

 Consumption of high-carbohydrate, high-fat diet in rats mimics the signs of the 

metabolic syndrome in humans (146). Rats fed with this diet developed abdominal obesity, 

hypertension with endothelial dysfunction, cardiac fibrosis together with increased left-

ventricular stiffness, dyslipidemia, inflammation in heart and liver, increased plasma liver 

enzyme concentrations and impaired glucose tolerance. Excess fat deposition in the abdomen 

increases chronic low-grade inflammation, oxidative stress, dyslipidemia, non-alcoholic fatty 

liver disease, cardiovascular diseases, type 2 diabetes and insulin resistance (120, 310-314). 

In this study, we showed that both chokeberry and purple-maize attenuated the metabolic, 

cardiovascular and liver changes in rats fed a high-carbohydrate, high-fat diets in rats. We 

suggest that these improvements derive from decreased inflammatory cell infiltration as a 

consequence of decreased pro-inflammatory cytokines released from reduced abdominal fat 

pads as cyanidin 3-glucoside, a common anthocyanin present in both the interventions, 

showed anti-inflammatory activity (315). 

Abdominal adipose tissue is a dynamic organ producing adipokines that have pro-

inflammatory or anti-inflammatory responses. Dysregulated production of these adipokines 

leads to obesity and also induces low-grade inflammation and insulin resistance (316). In our 

diet-induced obese rats, plasma leptin concentrations were increased; treatment with either 

chokeberry or purple maize reduced both plasma leptin concentrations and abdominal fat 

mass. Similar results were shown with chokeberry extract expression (303) and in our 

previous studies with cyanidin 3-glucoside and Queen Garnet plums (309). All these 

interventions contain cyanidin 3-glucoside as the major anthocyanin and this compound is the 

likely bioactive component. Since leptin is pro-inflammatory, reduced leptin concentrations 

should reduce inflammation throughout the body, as we have shown in the heart and liver.  

An increased abdominal fat mass in obesity leads to abnormal regulation of 

adipogenesis (314, 317). These results were consistent with the effects observed using an 
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anthocyanin rich purple maize extract in C57BL/6J mice, showed decrease in abdominal fat 

pads and reduced body weight (318). Decrease in adipose tissue decreases the production of 

pro-inflammatory cytokines and adipokines (38), where decrease in leptin concentration were 

observed in CB and PM treated groups. Similarly in fructose-rich diet-fed rats, CB and PM 

treatment also improved glucose metabolism which is consistent with the known effects of 

anthocyanin foods. It is also known that increased adipose tissue associated with obesity are 

linked with abnormal regulation of PPARγ plays a major role in glucose metabolism and 

energy homeostasis, and regulator of adipogenesis (319, 320). As excessive fructose feeding 

decreased PPARγ mRNA expression in white adipose tissue and treatment with chokeberry 

extract increased PPARγ mRNA expression (303).  

Further, KK-Ay mice treated with anthocyanins also showed similar changes along 

with decrease in mean diameter of the visceral adipose cells and subcutaneous adipose cells, 

suggesting that anthocyanin supplementation inhibits lipid accumulation (321). Long-term 

fructose feeding induces the excess hepatic lipid storage in both humans and rodents (322-

324). It is well known that the liver plays a major role in lipid metabolism and our current 

data suggests that CB and PM treatment decreased triglycerides and non-esterified free fatty 

acids which attenuated the liver steatosis. Cyanidin 3-glucoside showed increased 

phosphorylated AMP-activated protein kinase (pAMPK) and decreased lipoprotein lipase 

activity in skeletal muscle and adipocytes (321). In addition, purple sweet potato treatment in 

diet-induced obese mice and HepG2 hepatocytes showed similar phosphorylation of AMPK 

(325). AMP-activated protein kinase (AMPK) regulates and monitor cellular energy balance 

(326) and pAMPK stimulates free fatty acid oxidation via activation of acetyl coenzyme –A 

carboxylase in skeletal muscle (327) and regulates lipolysis and lipogenesis by converting 

adipocytes into lipid oxidizing cells (328). Anthocyanins also down regulated lipid-

metabolism proteins, sterol regulatory element-binding protein-1c and fatty acid synthase via 

AMPK inhibitor compound C (325, 329). Additionally, in C57BL/KsJ db/db mice treated 

with purple maize extract also increased pAMPK and decreased phosphoenolpyruvate 

carboxykinase and glucose 6-phosphatase gene expression in liver and glucose transporter 4 

expressions in skeletal muscle (330). Therefore, decrease in adipose storage leading to 

decrease in body weight gain and improved hepatic function and glucose metabolism. 

CB and PM treatment also improved cardiovascular structure and function by 

decreasing plasma levels of non-esterified free fatty acids (NEFA). Increase in plasma NEFA 

inhibits aortic endothelia nitric oxide synthase via oxidative mechanism and causes 

hypertension (331). In subjects with metabolic syndrome, supplementation with CB extract 
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and PM extract powder decreased blood pressure and plasma lipids (211, 308). Similarly, 

many epidemiological studies suggest that increase in the dietary intake of anthocyanin rich 

strawberries, blueberries and moderate levels of red wine is associated with a reduction in 

cardiovascular health disease (298). However there is no direct evidence that anthocyanins 

are helpful in decreasing the cardiovascular diseases. Increase in expression of eNOS 

enhances nitric oxide release improves endothelial function (332). In cultured bovine artery 

endothelial cells, cyanidin 3-glucoside increased the expression of endothelial nitric oxide 

synthase (eNOS) in (333). Similarly, chokeberry juice treatment showed improved 

endothelial function in porcine coronary arteries by redox-sensitive activation (334). CB and 

PM treated groups also showed consistent results in improved endothelial function and 

decreased blood pressure.  

In our previous study, rats treated with cyanidin 3-glucoisde, anthocyanin-rich purple 

carrots and Queen Garnet plum juice showed similar responses to CB and PM, such as 

decreased blood pressure, left ventricular stiffness and collagen depots in the LV (200, 309). 

In this study, we have treated rats either with 3.2 ml/kg BW of CB juice or 3.1 mg/kg BW of 

PM powder, corresponding to ~43 ml/day CB or ~45 g/day PM to achieve a dose of ~110 mg 

of anthocyanins in a 70 kg human, based on body surface area comparison between rats and 

humans (167). However, the dose of quercetin glycosides in this study was low at around 

1 mg/kg/day, much lower than the quercetin dose of around 50 mg/kg/day used to reverse 

signs of metabolic syndrome in the same model (148). This indicates that anthocyanins are 

the major bioactive compound in CB and PM. 

6.6. Conclusions 

In conclusion, the effects of CB and PM in a diet-induced rat model of human 

metabolic syndrome are consistent with the reported effects of anthocyanins as it is the only 

common polyphenol group present in both the treatments. These findings suggest that 

chokeberry or purple maize might be beneficial in attenuating obesity and metabolic 

syndrome disease conditions. However, further investigation on CB and PC along with 

anthocyanins are necessary to understand the mechanism of action. Similar responses in CB 

and PM treated rats suggest a clinical trial corresponding to the same dose from this study to 

determine if these positive effects can be translated to humans with signs of metabolic 

syndrome. 
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7. Cyanidin 3-glucoside improves diet-induced metabolic syndrome in rats 

7.1. Summary 

Increased consumption of dark-coloured fruits and vegetables may mitigate metabolic 

syndrome. This study has determined the changes in metabolic parameters, and in 

cardiovascular and liver structure and function, following chronic administration of either 

cyanidin 3-glucoside (CG) or Queen Garnet plum juice (QG) containing cyanidin glycosides 

to rats fed either a corn starch (C) or a high-carbohydrate, high-fat (H) diet. Eight to nine-

week-old male Wistar rats were randomly divided into six groups for 16-week feeding with 

C, C diet with CG or QG, or H or H diet with CG or QG. C or H diets were supplemented 

with 115 mg/kg food of CG either as a powder or in 50 ml of QG from week 8 to 16. H diet-

fed rats developed signs of metabolic syndrome including visceral adiposity, impaired 

glucose tolerance, hypertension, cardiovascular remodelling, increased collagen depots in left 

ventricle, non-alcoholic fatty liver disease, increased plasma liver enzymes and increased 

inflammatory cell infiltration in heart and liver. Both CG and QG reversed these 

cardiovascular, liver and metabolic signs. However, no intact anthocyanins or common 

methylated/conjugated metabolites could be detected in the plasma samples and plasma 

hippuric acid concentrations were unchanged. Our results suggest CG is the most likely 

mediator of the responses to QG but that the pharmacokinetics of oral CG in rats require 

further investigation.  

7.2. Introduction 

The prevalence of obesity is increasing, now reaching epidemic proportions (260, 

261). Obesity is accepted as a chronic, low-grade inflammatory state with increased oxidative 

stress (335, 336). Controlling inflammation is one mechanism to either reverse or attenuate 

obesity and associated tissue and organ changes (335). Eating fruits and vegetables can 

prevent chronic disease including cardiovascular disease and possibly prevent body weight 

gain (293). Increased consumption of polyphenol-containing fruits and vegetables provides 

anti-inflammatory responses that could reduce the risk factors for metabolic syndrome, 

producing cardiac and hepatic protection (297, 337-339). The most common polyphenols are 

flavonoids, and many flavonoids have been studied for their role in reducing obesity, 

probably by antioxidant or anti-inflammatory mechanisms (195, 340). Flavonoids are 

widespread in nature, including the anthocyanins commonly found in dark-coloured fruits 

and vegetables including Red Delicious apples, chokeberries, black beans, black plums and 
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wild blueberries (341); an example is cyanidin 3-glucoside (CG) (Supplementary Figure 1A) 

Anthocyanins are produced by plants as secondary metabolites to protect against 

environmental stress factors and fungal infections (342) and they also promote health in 

humans (298, 343). Their pharmacokinetics and metabolism have been reported (344, 345). It 

is estimated that the average daily oral intake is ~1000 mg of polyphenols in adults in the 

USA (298) and ~65 mg of anthocyanidins in Europe (346). As vegetables and fruits are rich 

in polyphenols, they may supply an adequate dietary intake of polyphenols including 

anthocyanins.  

CG has shown responses in experimental models that indicate a potential role in 

reversing the signs of the metabolic syndrome. CG decreased obesity and circulating 

triglycerides in an in vivo study using KK-Ay mice (347). In vitro, CG decreased 

inflammation in isolated vascular endothelial cells and monocytes (348) and produced an 

insulin-like effect in human omental adipocytes and 3T3-L1 cells (349).  

The Queen Garnet plum is a variety of the Japanese plum (Prunus salicina Lindl) 

with a high anthocyanin (mainly CG) content up to 272 mg/100 g fresh fruit, being 5-10 fold 

higher than other plums (350). Consumption of Queen Garnet plum juice (QG) decreased 

malondialdehyde concentrations in plasma and urine as a biomarker of oxidative stress (350, 

351) and reduced platelet activation-related thrombogenesis in healthy volunteers (351). 

Other food sources of CG and other cyanidin glycosides also improved signs of metabolic 

syndrome. As examples, purple corn decreased body fat and hyperglycaemia in a high-fat 

diet-fed mice (306) and Moro orange supplementation decreased the high-fat diet-induced 

increases in lipid deposition in liver and wet weight in mice as symptoms of non-alcoholic 

fatty liver (352) and fat accumulation (353). Similarly, high-fat diet-fed mice given either 

blueberry or purple corn supplementation reduced central adiposity (354), abdominal fat pads 

and hyperglycaemia (306). Additionally, chokeberry juice decreased blood pressure in 

humans with metabolic syndrome (211). Purple carrot juice containing anthocyanins 

improved glucose tolerance, decreased body weight gain, and improved cardiovascular and 

liver structure and function in rats fed a high-carbohydrate, high-fat diet (200). However, 

there is no clear evidence that CG is the active anthocyanin in improving these signs of 

metabolic syndrome. 

Thus, this study has compared CG and QG in rats fed a high-carbohydrate, high-fat 

diet for attenuation of signs of the human metabolic syndrome. Cardiovascular, hepatic and 

metabolic parameters were measured for this comparison. Further, plasma samples were 
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screened for intact anthocyanins and their common metabolites (methylated/conjugated forms 

and hippuric acid) as a measure of anthocyanin absorption and metabolism. 

7.3. Materials and methods 

7.3.1.  Cyanidin 3-glucoside and Queen Garnet plum juice  

Pure CG was supplied by Biosynth AS, Sandnes, Norway. Fresh Queen Garnet plums 

were harvested in February 2013 and QG was prepared and analysed for anthocyanins and 

quercetin glycosides (350, 355). The QG was also analysed for protein, fat, total sugar, 

dietary fibre and energy value by a commercial laboratory (Symbio Alliance, Brisbane, QLD, 

Australia). QG was supplied by Nutrafruit Pty Ltd, Toowong, QLD, Australia. 

7.3.2.  Rats and diets 

The experimental group consisted of 72 male Wistar rats (8-9 weeks old) were 

randomly divided into 6 experimental diet groups (n=12 each) and fed with corn starch (C), C 

+ cyanidin 3-glucoside  (CCG), C + Queen Garnet plum juice  (CQG), high-carbohydrate, 

high-fat (H), H + cyanidin 3-glucoside (HCG) or H + Queen Garnet plum juice (HQC) for 16 

weeks. CG 115 mg/kg food was thoroughly mixed in the diet; 50 ml/kg food QG plum juice 

containing 2.3 mg/ml anthocyanins and 0.31 mg/ml quercetin glycosides replaced an 

equivalent volume of water.  

Experimental procedures such as body composition, oral glucose tolerance, 

echocardiography, blood pressure, isolated heart preparation, organ bath, plasma analysis and 

histology were conducted as described in Chapter 3.1. Plasma was screened for intact 

anthocyanins, their common methylated and conjugated metabolites as well as hippuric acid 

by HPLC (350, 351, 356).  

7.4.Results 

7.4.1.  Diet intake, body composition and plasma biochemistry 

 The major flavonoids present in QG were anthocyanins, mainly cyanidin 3-glucoside 

and cyanidin 3-rutinoside (Table 7.1, Figure 7.1) and quercetin glycosides (Table 7.1). The 

nutritional composition of the QG used in this study is shown in Table 7.1. Food intakes were 

higher in C, CQG and CCG rats than in H, HQG and HCG rats, respectively (Table 7.2). Due 

to these differences, the average daily intake of anthocyanins was higher in CCG and CQG 

rats than in HCG and HQG rats, respectively (Table 7.2).  
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Neither CG nor QG treatment altered food, water or energy intakes (Table 7.2). H rats 

increased feed conversion efficiency, body weight gain, abdominal circumference and body 

mass index compared to C rats, while these parameters were reduced in HCG and HQG rats 

compared to H rats (Table 7.2). Bone mineral content was higher in H rats than HCG and 

HQG rats, and all were higher than C, CCG and CQG rats (Table 7.2). HCG and HQG rats 

had decreased total body fat mass compared to H rats and increased total body fat mass 

compared to C, CCG and CQG rats. These changes in total body fat are consistent with 

changes in omental and epididymal fat pads (Table 7.2). Total body lean mass was 

unchanged by CG or QG treatment. 

Table 7.1 Composition of the Queen Garnet plum juice by analysis 

Variables Queen Garnet plum juice 

Cyanidin 3-glucoside (mg/100 ml)#, a 200 

Cyanidin 3-rutinoside (mg/100 ml)#, a 30 

Quercetin glycosides (mg/100 ml)#, b 31 

Energy (KJ/100 ml)* 374 

Protein (g/100 ml)* 1.1 

Total fat (g/ 100 ml)* < 1 

Total sugars (g/100 ml)* 15.2  

Fibre (g/ 100 ml)* < 1 

Sodium (g/100 ml)* 0.073 

Values are represented as mean of duplicate analysis.  

# Analysed by authors.  

a See Supplementary Figure 1 for chemical structures.  

b Sum of quercetin 3-glucoside, quercetin 3-rutinoside and quercetin 3-galactoside; calculated 

as quercetin 3-glucoside equivalents.  

* Analysed by a commercial laboratory (Symbio Alliance, Brisbane, QLD, Australia). 
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Table 7.2 Dietary intakes, body composition and organ wet weights in C, CCG, CQG, H, HCG and HQG diet-fed rats (n=10 rats/group) 

Variable C CCG CQG H HCG HQG 

P values 

Diet Treatme

nt 

Interactio

n 

Food intake (g/d) 33.1±1.8a 33.6±0.8a 33.4±0.5a 26.5±0.9b 25.8±0.7b 25.5±0.5b <0.0001 0.74 0.55 

Water intake (ml/d) 30.6±2.1a 30.5±2.3a 29.5±1.3a 25.7±1.1b 23.6±1.0b 22.0±0.7b <0.0001 0.18 0.57 

Plums juice intake (ml/d) 0.0±0.0 0.0±0.0 1.7±0.0a 0.0±0.0 0.0±0.0 1.3±0.0b <0.0001 <0.0001 <0.0001 

Anthocyanins intake (mg/kg/d) 0.0±0.0 9.9±0.0a 9.8±0.0b 0.0±0.0 7.6±0.0c 7.4±0.0c <0.0001 <0.0001 <0.0001 

Quercetin glycoside intake 

(mg/kg/d) 

0.0±0.0 0.0±0.0 1.3±0.0b 0.0±0.0 0.0±0.0 1.0±0.0b <0.0001 <0.0001 <0.0001 

Energy intake (kJ/d) 370±24b 375±15b 375±5b 557±17a 553±9a 531±6a <0.0001 0.5 0.33 

Feed conversion efficiency (%) 2.1±0.4b 2.2±0.4b 1.3±0.2b 7.9±1.8a 4.1±0.6ab 4.2±0.7ab <0.0001 0.0293 0.15 

Body weight gain (8-16 weeks) 

(%) 

8.4±1.3c 8.1±1.1c 5.6±0.5c 22.1±3.6a 12.9±1.1b 12.7±0.8b <0.0001 0.0038 0.1 

Visceral adiposity index (%) 4.8±0.4b 4.8±0.2b 4.8±0.3b 9.2±1.1a 6.7±0.5b 6.6±0.4b <0.0001 0.0485 0.0485 

Abdominal circumference (cm) 20.7±0.2b 20.4±0.2b 20.6±0.3b 22.8±0.2a 21.1±0.2b 21.3±0.2b <0.0001 0.0013 0.0042 

Body mass index (kg/m2) 5.6±0.2bc 5.1±0.1c 4.6±0.1c 6.9±0.3a 5.9±0.2b 5.5±0.1bc <0.0001 <0.0001 0.31 

Bone mineral content (g) 11.3±0.3c 11.5±0.4c 11.4±0.2c 16.9±0.7a 15.5±0.5b 14.4±0.2b <0.0001 0.0055 0.0029 
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Total body lean mass (g) 318±11a 302±7a 279±3ab 308±19a 307±6a 279±9ab 0.66 0.0074 0.64 

Total body fat mass (g) 72±8c 86±8c 94±5c 217±18a 162±6b 160±6b <0.0001 0.11 0.0008 

Tissue wet weight (mg/mm)#          

Retroperitoneal adipose tissue 172.1±17.1b 177.3±12.4b 178.1±10.9b 527.7±84.4a 279.6±23.1b 271.8±20.4b <0.0001 0.0081 0.0057 

Epididymal adipose tissue 98.6±8.3b 94.3±7.8b 97.7±7.5b 236.2±31.9a 150.5±10.4b 149.7±9.4b <0.0001 0.0175 0.0198 

Omental adipose tissue 101.8±9.4c 92.2±7.1c 97.2±7.2c 250.4±35.9a 160.4±17.6bc 163.6±10.4bc <0.0001 0.0255 0.0431 

Total abdominal fat 372.5±32.8b 363.7±17.8b 373.0±23.7b 1014.3±151.1a 590.5±43.7b 585.1±36.1b <0.0001 0.0111 0.0146 

Liver 194.2±9.7c 197.5±6.5c 201.9±6.7c 299.2±14.3a 233.7±8.4b 236.7±8.3b <0.0001 0.0105 0.0014 

Each value is a mean ± SEM. Means within a row with unlike superscripts differ, P<0.05. 

* In all groups, the body weight gain (8-16 weeks) is calculated relative to body weight at 8 weeks.  

# Normalized against tibial length at the time of removal. 

Table 7.3 Changes in glucose tolerance test, plasma hormones, plasma metabolites and plasma biochemistry in C, CCG, CQG, H, HCG and 

HQG diet-fed rats (n=10 rats/group) 

Variable C CCG CQG H HCG HQG 

P values 

Diet Treat-

ment 

Interact

ion 

OGTT-AUC (mmol/L min) 691±22b 666±17b 646±38b 843±27a 709±12b 727±37b 0.0008 0.0164 0.27 

Plasma insulin (μmol/L) 1.8±0.5b 1.8±0.7b 1.7±0.2b 3.9±0.3a 2.1±0.4b 1.9±0.3b 0.0019 0.0041 0.0088 

Page 101 of 151



Plamsa leptin (μmol/L) 7.3±0.7b 7.2±0.9b 7.1±0.9b 11.8±0.9a 8.6±0.8b 8.9±1.0b 0.001 0.09 0.13 

Plasma total cholesterol (mmol/L) 1.6±0.1b 1.6±0.1b 1.4±0.1b 2.4±0.1a 1.7±0.0b 1.6±0.1b <0.0001 <0.0001 0.0049 

Plasma triglycerides (mmol/L) 0.4±0.0c 0.4±0.0c 0.4±0.1c 1.9±0.2a 0.9±0.2b 0.6±0.1b <0.0001 <0.0001 <0.0001 

Plasma NEFA (mmol/L) 1.5±0.2c 1.5±0.1c 1.1±0.1c 4.9±0.3a 1.6±0.2c 2.4±0.4bc <0.0001 <0.0001 0.0005 

Plasma hippuric acid (ng/ml) 85±60 86±45 59±82 139±69 91±69 80±49 0.63 0.70 0.69 

Plasma ALP (U/L) 123.7±5.2c 116.5±11.6c 123.8±6.5c 315.8±17.2a 192.2±14.5b 212.8±12.0b <0.0001 <0.0001 <0.0001 

Plasma ALT (U/L) 25.9±1.9c 23.0±1.5c 20.4±1.5c 45.9±2.9a 27.0±2.0c 31.9±1.3bc <0.0001 <0.0001 0.0403 

Plasma AST (U/L) 61.1±1.9b 61.8±1.4b 58.2±3.8b 86.6±2.1a 62.0±2.0b 62.4±2.1b <0.0001 <0.0001 0.0002 

Each value is a mean ± SEM. Means within a row with unlike superscripts differ, P<0.05. 

Table 7.4 Changes in cardiovascular structure and function in C, CCG, CQG, H, HCG and HQG diet-fed rats (n=10-8 rats/group) 

Variable C CCG CQG H HCG HQG 

P values 

Diet Treatm

ent 

Interaction 

Heart rate (bpm) 307±16a 264±13b 253±11b 339±18a 249±8b 269±8b 0.09 0.0001 0.56 

IVSd (mm) 1.9±0.1 1.9±0.1 1.8±0.0 2.0±0.1 1.8±0.1 1.8±0.1 0.49 0.0429 0.49 

LVIDd (mm) 6.3±0.2c 6.9±0.1b 7.0±0.2b 7.9±0.1a 6.9±0.2b 7.0±0.1b <0.0001 0.53 <0.0001 

LVPWd (mm) 1.6±0.0b 1.7±0.0b 1.7±0.0b 1.9±0.0a 1.8±0.1b 1.7±0.1b 0.0056 0.33 0.0056 

IVSs (mm) 2.8±0.2 2.9±0.1 3.0±0.1 3.1±0.1 3.0±0.1 3.0±0.1 0.27 0.71 0.27 

LVIDs (mm) 3.2±0.3b 3.5±0.1b 3.4±0.1b 4.1±0.2a 3.7±0.2b 3.5±0.1b 0.0153 0.31 0.0482 

LVPWs (mm) 2.5±0.1 2.9±0.0 2.8±0.1 2.8±0.1 3.0±0.2ab 3.0±0.1ab 0.0186 0.0186 0.62 
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Fractional shortening (%) 53.9±2.5a 58.4±1.7a 59.8±2.3a 45.8±2.1b 57.3±1.5a 57.1±1.3a 0.0157 0.0003 0.21 

Ejection time (ms) 70.4±2.4c 77.6±1.4bc 75.3±2.1bc 90.6±2.4a 83.4±4.1bc 84.3±2.1bc <0.0001 0.76 0.0193 

Ejection fraction (%) 80.2±1.9 81.6±1.3 82.6±1.9 83.6±1.8 78.6±4.4 82.3±1.8 0.41 0.77 0.33 

LV developed pressure (mmHg) 70.2±4.7a 70.8±3.7a 72.7±5.4a 49.4±5.1b 67.2±4.1a 68.6±3.9a 0.0138 0.0302 0.09 

(+)dP/dt (mmHg/S) 1096±64a 1046±73a 1077±60a 809±74b 1006±59ab 986±61ab 0.0065 0.23 0.14 

(-)dP/dt (mmHg/S) -714±48a -756±36a -734±50a -506±44b -669±39a -686±39a 0.0085 0.0363 0.09 

Diastolic stiffness (k) 22.9±0.8b 22.5±0.6b 23.4±0.8b 28.6±0.6a 23.8±0.8b 24.8±0.9b <0.0001 0.042 0.0093 

Diastolic volume (μL) 356±24b 344±18b 357±24b 533±49a 360±33b 361±18b 0.0069 0.0096 0.0093 

Systolic volume (μL) 48±7b 45±3b 42.3±3b 85±11a 71±10ab 48±5b 0.0054 0.0044 0.033 

Stroke volume (μL) 308±27 ab 298±19 ab 314±23 ab 397±18a 289±40 ab 313±20 ab 0.06 0.1 0.05 

Cardiac output (mL) 88.1±7.5b 78.9±6.7b 81±8.8b 127.5±8.7a 71.7±10.0b 84.7±6.7b 0.0115 0.0041 0.0333 

Estimated LV mass, Litwin (g) 0.73±0.00b 0.84±0.03b 0.80±0.03b 0.99±0.05a 0.82±0.07b 0.83±0.03b 0.0001 0.18 0.0015 

LV+septum wet weight (mg/mm 

tibial length) 

16.1±0.5b 14.6±0.4b 16.5±0.5b 19.5±0.8a 16.6±0.5b 16.1±0.5b 0.0154 0.0154 0.0027 

Right ventricle wet weight 

(mg/mm tibial length) 

3.8±0.2 ab 4.2±0.2 ab 3.9±0.1 ab 4.4±0.2 ab 4.9±0.2a 4.0±0.2 ab 0.06 0.41 0.17 

Relative wall thickness 0.52±0.01 0.48±0.01 0.50±0.01 0.50±0.02 0.48±0.03 0.50±0.01 0.46 0.46 0.46 

Systolic blood pressure (mmHg) 123±3b 123±1b 126±3b 157±4a 133±1b 129±2b <0.0001 0.0001 <0.0001 

Systolic wall stress (mmHG) 91.3±5.2b 81.2±2.5b 78.3±4.7b 118.0±8.7a 86.9±8.6b 85.1±3.5b 0.007 0.0004 0.1 

Each value is a mean±S.E.M. Number of repetitive experiments indicated within parenthesis. Means within a row with unlike superscripts differ, P<0.05. 
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Figure 7.1 Chemical structures of cyanidin 3-rutinoside (A) and cyanidin 3-glucoside (B) as 
the characteristic anthocyanins in QG. 

 

Figure 7.2 Effect of cyanidin 3-glucoside and Queen Garnet plum juice on oral glucose 
tolerance in C, CCG, CQG, H, HCG and HQG rats. Data are shown as mean ± S.E.M. End-
point means without a common alphabet in each data set significantly differ, P<0.05 and 
n=10/group. 

7.4.2.  Plasma biochemistry, oral glucose tolerance and plasma metabolites 

 Plasma concentrations of total cholesterol, triglycerides and NEFA were increased in 

H rats compared to C or to CG and QG-treated rats, while HQG rats had higher NEFA 

concentrations than HCG rats; HCG and HQG rats had higher concentrations of triglycerides 

than CCG and CQG rats (Table 7.3). Plasma leptin concentrations were increased in H rats 

compared to C rats; leptin concentrations were normalised in HCG and HQG rats (Table 7.3). 
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H rats also had higher fasting blood glucose concentration compared to C rats. CG and QG 

treatment decreased blood glucose concentrations. The plasma glucose response to oral 

glucose loading was greater in H rats than C rats (Figure 7.2). At 120 minutes, HCG and 

HQG rats had lower plasma glucose concentrations than H rats (Figure 7.2). Plasma insulin 

concentrations almost doubled in H rats compared to C, and CG and QG-treated rats. This 

change is consistent with glucose tolerance curves (Table 7.3). 

 Neither cyanidin 3-glucoside nor cyanidin 3-rutinoside, the main QG anthocyanins, 

could be detected in the plasma of CG or QG-treated rats. Cyanidin glucuronide, the most 

common conjugated metabolite of cyanidin-based anthocyanins, was tentatively identified in 

some plasma samples after QG treatment. However, further evaluation was not undertaken 

since the concentration of this metabolite was below the limit of quantification. No other 

conjugated or methylated anthocyanin forms could be detected. Plasma hippuric acid 

concentrations were not different in CG and QG-treated rats (Table 7.3).  

 

Figure 7.3 Haematoxylin and eosin staining of left ventricle (original magnification ×20) 
showing inflammatory cells (marked as “in”) as dark spots outside the myocytes in C (A), 
CCG (B), CCG (C), H (D), HCG (E) and HCG (F) rats. 

 

Figure 7.4 Picrosirius red staining of left ventricular interstitial collagen deposition (original 
magnification ×20) in C (A), CCG (B), CQG (C), H (D), HCG (E) and HQG (F) rats.; 
Collagen deposition is marked as “cd” and hypertrophied cardiomyocytes are marked as 
“hy”. 

7.4.3.  Cardiovascular structure and function  

 H rats showed increased left ventricular internal diameter in diastole (LVIDd) and left 

ventricular wet weight as signs of eccentric hypertrophy compared to C rats. This change in 

LVIDd was observed with no change in relative wall thickness in either of the groups (Table 

8.4). H rats showed impaired systolic function seen as decreased fractional shortening, 

developed pressure and dP/dt, increased left ventricular diameter in systole (LVIDs), diastolic 
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stiffness and systolic wall stress (Table 7.4). H rats also showed increased diastolic, systolic 

and stroke volumes, cardiac output and estimated left ventricular mass compared to C rats, 

without any change in heart rate. 

 Treatment of H rats with CG and QG decreased LVIDd and LVIDs compared to H 

rats, with increased left ventricular posterior wall diameter in systole in HCG and HQG rats 

but diastolic diameter remained constant. These responses were accompanied by increased 

fractional shortening with CG and QG (Table 7.4). Diastolic stiffness, diastolic and systolic 

volumes, cardiac output, systolic wall stress and wet weight of left ventricle with septum 

were normalised with CG and QG, while heart rate was decreased with CG and QG 

normalised ejection time compared to H rats (Table 7.4).  

   

 

Figure 7.5 Cumulative concentration-response curves for noradrenaline (A), sodium 
nitroprusside (B) and acetylcholine (C) in thoracic aortic rings from C, CCG, CQG, H, HCG 
and HQG rats. Data are shown as means±S.E.M. End-point means without a common 
alphabet in each data set significantly differ, P<0.05 and n=10/group. 

Compared to C rats (Figure 7.3A and 7.4A), H rats showed increased infiltration of 

inflammatory cells in the left ventricle (Figure 7.3D) and increased interstitial collagen 
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deposition (Figure 7.4D). CG and QG suppressed the infiltration of inflammatory cells 

(Figure 7.3B, C, E and F) and reduced collagen deposition (Figure 7.4B, C, E and F), while 

no other changes were observed and tissue morphology appeared normal. 

In isolated thoracic aortic rings, H rats showed decreased vascular contraction with 

noradrenaline (Figure 7.5A) and decreased vascular relaxation with sodium nitroprusside and 

acetylcholine compared to C rats (Figure 7.5B and C). CG and QG rats showed improved 

contraction and relaxation in isolated thoracic aortic rings (Figure 7.5A, B and C). 

7.4.4.  Hepatic structure and function  

 Compared to C rats, H rats had increased liver wet weight with increased plasma 

activities of ALT, ALP and AST as markers of liver damage. HCG and HQG rats had 

decreased liver wet weight and plasma ALP, ALT and AST activities compared to H rats. 

Liver wet weight and plasma activities were unchanged in CCG and CQG rats compared to C 

rats (Table 7.3). H rats (Figure 7.6D) showed increased hepatic lipid deposition and 

inflammatory cell infiltration compared to C rats (Figure 7.6A) while HCG and HQG rats 

showed decreased inflammatory cell infiltration (Figure 7.6E and F) compared to H rats. 

CCG and CQG rats showed minimal macrovesicular steatosis and portal inflammation and 

tissue morphology appeared normal (Figure 7.6B and C). 

 

Figure 7.6 Haematoxylin and eosin staining of hepatocytes (original magnification ×20) 
showing inflammatory cells (marked as “in”) and hepatocytes with fat vacuoles (marked as 
“fv”) in C (A), CCG (B), CQG (C), H (D), HCG (E) and HQG (F) rats. 

7.5. Discussion  

 Cyanidin-based anthocyanins, the characteristic polyphenols in QG, are one of the 

most abundant pigments in nature, being responsible for the dark red colours of many fruits 

and vegetables (357). Since continued human health has been associated with an increased 

intake of fresh fruits and vegetables, it is important to determine the anti-diabetic, anti-

obesity and anti-inflammatory activities of purified cyanidin-based anthocyanins, especially 

cyaniding 3-glucoside, as well as foods containing these compounds in relevant rodent 

models of human disease. QG contain both anthocyanins and quercetin glycosides, 

suggesting that either could produce the physiological responses. However, the dose of 
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quercetin glycosides in this study was low at around 1 mg/kg/day, much lower than the 

quercetin dose of around 50 mg/kg/day or the rutin dose of around 100 mg/kg/day used to 

reverse signs of the metabolic syndrome in the same model (148, 358). This indicates that 

cyanidin 3-glucoside is the major bioactive compound in QG.  

The high-carbohydrate, high-fat diet-fed rat mimics most of the signs of metabolic 

syndrome in humans. This diet increased abdominal fat deposition, plasma lipids, liver 

enzymes, liver weight, infiltration of inflammatory cells in heart and liver, blood pressure and 

collagen deposition, and impaired glucose tolerance. In addition, increased left ventricular 

stiffness and diminished aortic responses were observed when compared to rats fed a low-fat, 

corn starch-rich diet (146).  

Both CG and QG improved cardiovascular and hepatic structure and function and 

reduced metabolic parameters such as body weight gain, visceral adiposity index and total 

body fat mass induced by the H diet, consistent with the metabolic responses to purple carrots 

(200) and purple corn (306), both dietary sources of cyanidin glycosides. CG increased fatty 

acid oxidation via AMP-activated protein kinase (AMPK) (359). AMPK activation leads to 

acetyl-CoA carboxylase phosphorylation and inactivation, which stimulates CPT1 

expression, thereby increasing fatty acid oxidation, leading to decreased abdominal fat and 

improved glucose metabolism (359). Decreases in total body fat mass correlated with 

decreases in visceral adiposity as CG and QG reduced the weight of all abdominal fat pads. 

Leptin is a hormone secreted from adipose tissue (360) and the decrease in adipose tissue 

with CG and QG correlated with decreased plasma leptin concentrations. Similarly, CG and 

QG supplementation improved plasma lipid profiles by reducing plasma concentrations of 

triglycerides, total cholesterol and NEFA.  

Dysfunction of the left ventricle correlates with metabolic changes, oxidative stress 

and increased inflammatory cell infiltration, with an increase in left ventricular fibrosis and 

stiffness (287). This study also shows that CG and QG improved cardiovascular function. 

The decrease in left ventricular weight suggests that CG and QG remodelled the structural 

damage caused by the H diet. It is clear from echocardiographic assessment that CG and QG 

improved systolic function and decreased left ventricular dimension, probably by adapting to 

the reduced wall stress. Additionally, CG and QG rats decreased the ejection time with no 

change in ejection fraction suggesting that a decreased rate of contraction was required to 

eject the smaller diastolic volume, correlating with reduced blood pressure and reduced left 

ventricular internal size during systole and diastole. Decreased blood pressure and diastolic 
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stiffness with CG and QG supplementation also correlated with decreased collagen 

deposition in left ventricle. Our results also suggested that CG and QG supplementation 

improved vascular function by improving endothelial function, perhaps by increasing NO 

concentrations as shown in similar studies with anthocyanin-containing chokeberry and 

bilberry extracts (361). This improved vascular function by CG and QG is consistent with the 

findings that anthocyanins inhibited inflammatory cytokines such as TNF-α, induced 

signal transducer and activator of transcription (STAT3) phosphorylation, inducible NO 

synthase, IL-1β and IL-6 by inhibiting the activation of NF-κB (348, 362, 363). Extending 

these effects could be the reason for reduced inflammatory cell infiltration in left ventricle 

and liver with supplementation of CG and QG. Both CG and QG supplemented rats showed 

decreased liver weight, with decreased fat vacuoles and decreased hepatic inflammation. 

Decreases in liver weight, adipose tissue and inflammation directly correlated with reduction 

of plasma activity of liver enzymes.  

The absence of intact anthocyanins and their common methylated and conjugated 

metabolites in plasma was similar to the results of previous studies in which these compounds 

were not detected in plasma of rats and pigs following feeding with anthocyanin-containing 

foods (blackberries or blueberries) (364-366). This was presumed to be due to the rapid 

absorption and metabolism of the anthocyanins. Similar findings of observed biological 

effects but no detected anthocyanins were also reported with pre- and mildly hypertensive 

human subjects (367). In these subjects, blood pressure was lowered with tea containing 

delphinidin and cyanidin glycosides, but the anthocyanins were not detected in the collected 

plasma and urine samples, possibly because of insufficient sensitivity of the HPLC method to 

detect the anthocyanins (367). Further, hippuric acid, a colon microbial/liver-derived 

metabolite of dietary polyphenols and anthocyanins, may represent the final product of the in 

vivo biotransformation of these plant compounds. However, it can also be generated by the 

metabolic degradation and transformation of amino acids and fibre (364). Similar plasma 

hippuric acid concentrations between treatments, following 8 weeks of CG or QG diet, is also 

consistent with the findings of a study in which rats received either a control diet or a 

blueberry powder-supplemented diet (364). Plasma hippuric acid concentrations in rats can 

therefore not be considered as a reliable biomarker to assess anthocyanin absorption and 

metabolism. However, a relationship between the urinary excretion rate of hippuric acid and 

the ingested amount of blueberry anthocyanins has been demonstrated (364), suggesting that 

urinary hippuric acid, in contrast to plasma, could represent a potential biomarker for 
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anthocyanin absorption and metabolism. Due to technical reasons, no urine samples were 

available for biochemical analysis.  

Further, the metabolism of the anthocyanins, especially cyanidin glycosides, by gut 

microbiota to protocatechuic acid (21, 368), one of a group of hydroxybenzoic acids that 

reduce blood pressure and improve lipid profiles (369), could be another reason for the 

improvements in CG and QG rats and could also explain the low or absent anthocyanin 

concentrations in plasma. Mice fed with a high-fat, high-sucrose diet became obese with 

increased plasma concentrations of cholesterol and triglycerides; treatment with anthocyanin-

containing cranberry juice reversed these features of metabolic syndrome. These effects were 

associated with decreases in intestinal inflammation and increases in gut bacteria especially 

Akkermansia spp. (370). In mice, Akkermansia muciniphila increased with increased dietary 

polyphenol intake and attenuated the high-fat diet induced metabolic syndrome disorders 

(371). Increased Bifidobacteria in faeces together with increased urinary concentrations of 

anthocyanin metabolites including syringic acid, p-coumaric acid, 4-hydroxybenzoic acid and 

homovanillic acid confirm the important role of anthocyanins/polyphenols as bacterial 

substrates (372). The colonic metabolites of anthocyanins such as phenolic acids produced by 

gut bacteria may act as potential systemic bioactive compounds to produce the positive 

responses to anthocyanins (373, 374). Further, anthocyanins may act as prebiotics to increase 

the growth of beneficial gut bacteria (373). The current study is limited as gut microbiota was 

not analysed.  

7.6. Conclusion 

Both CG and QG containing cyanidin glycosides dosed at ~8 mg/kg body weight 

showed similar responses in reversing the signs of metabolic syndrome in rats fed a high-

carbohydrate, high-fat diet. Reduction of body weight gain with decreased abdominal fat pads 

and improved lipid profile and glucose metabolism along with improved cardiovascular and 

hepatic structure and function suggests that both CG and QG can be possible treatments for 

reversing or attenuating the complications of metabolic syndrome. However, further 

investigation on CG and QG will be necessary to understand the mechanisms underlying their 

improvement of the signs of metabolic syndrome. Similar responses were observed in CG 

and QG rats, indicating that further investigations with QG are warranted to determine if 

these positive effects can be translated to obese or overweight humans.  
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8. Effect of Queen Garnet plum juice in mildly hypertensive obese or 

over-weight subjects: a randomised, double-blind, placebo-controlled 

study 

8.1. Summary 

The studies from Chapters 6 & 7 have shown that anthocyanins and anthocyanin-rich 

food attenuated metabolic syndrome risk factors in a validated rat model of human metabolic 

syndrome. The aim of this study was to determine whether Queen Garnet plum juice (QG) 

reduced blood pressure, adiposity and other metabolic syndrome risk factors in obese or over-

weight adult humans. This study comprised 29 obese or over-weight subjects treated with QG 

or placebo drinks (250 ml/day) for 12 weeks. QG supplementation for 12 weeks decreased 

blood pressure, fasting plasma glucose and LDL, and increased fasting plasma HDL, whereas 

no changes in total body fat mass or body weight were observed. Our findings show that QG 

but not placebo attenuated some of the risk factors of metabolic syndrome. We assume that 

the major anthocyanin in QG, cyanidin 3-glucoside, is the most active component, with 

possible additive effects of flavonoids such as quercetin glycosides. 

8.2. Introduction  

Dietary habits and lifestyle in general are major risk factors for the development and 

progression of metabolic syndrome risk factors (375). The prevalence of the metabolic 

syndrome and incidence of cardiovascular diseases is increasing worldwide (376). As a 

consequence, costs for health care are rising and there is a strong demand for preventive 

strategies that can be easily implemented by the majority of the population. Diets rich in 

fruits and vegetables are among the recommended lifestyle modifications to decrease the risk 

of cardiovascular diseases, but they can also reduce the complications associated with 

disturbed metabolic states or already established disorders (337, 377). There is increasing 

evidence that anthocyanin-rich products may be beneficial in patients with cardiovascular 

diseases or metabolic disorders. In humans, cranberries rich in anthocyanins, flavonols and 

proanthocyanidins showed improved lipid profiles and lowered plasma insulin concentrations 

(378, 379). Similarly, pomegranate juice rich in anthocyanins and tannins decreased blood 

pressure in patients with carotid artery stenosis (380). Further, cherry juice reduced body 

weight blood pressure and LDL in diabetic subjects (381). Queen Garnet plums are a rich 

source of anti-oxidant anthocyanins that attenuated thrombosis in humans (351) and 

metabolic syndrome risk factors in rats (Chapter 7). 
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The aim of the present intervention study was to investigate the hypothesis that 

regular intake of QG for 12 weeks could improve cardiometabolic risk factors in obese or 

over-weight humans. 

8.3. Materials and methods 

8.3.1.  Queen Garnet plum juice and Raspberry cordial 

Queen Garnet plums were harvested in February 2015 and plum juice (QG) was 

prepared as described (350). Placebo was prepared by diluting a commercial raspberry 

flavoured cordial (ingredients: water, sugar, acidity regulator [E330], flavour, natural colour 

[E163], preservatives [E211, E223] Coles Smart Buy – Raspberry flavoured cordial (Coles, 

Brisbane, QLD, Australia) 1:4 with water. All study beverages were heated to 72 °C, held for 

5 minutes prior to packing into identical 2 L plastic bottles and stored at 4 °C prior to 

distribution to participants. The drinks were analysed for anthocyanins and quercetin 

glycosides, energy, protein, fat, total sugar, fibre, vitamin C and several B-vitamins (Table 

8.1). 

8.3.2.  Experimental design, participant recruitment and randomisation 

This study was a randomised, double-blind, placebo-controlled trial involving 29 

human volunteers residing in Melbourne between the ages of 20 and 60 years, with a mean 

age of 45. Participant recruitment and randomisation were performed as shown in Figure 3.2. 

8.3.3.  Administration of juice and fortnightly visits 

All participants received 2 x 2 L treatment or placebo drink packed in opaque brown 

bags with blinded label every fortnight for 12 weeks. Participants were requested to drink 250 

ml every morning. Anthropometric and blood pressure measures were taken during 

fortnightly consultations using standard equipment and techniques as described in Chapter 

3.2  

 

 

 

 

 

Page 114 of 151



Table 8.1 Composition of the study drinks by analysis    

Variables Placebo drink QG drink 

Cyanidin 3-glucoside (mg/100 mL) 0.1 76 

Cyanidin 3-rutinoside (mg/100 mL) 0.1 25 

Quercetin glycosides (mg QGE/100 mL)* 0.4 31 

Energy (kJ/100 g) 186 213 

Protein (g/100 mL) 1 1.1 

Fat (g/100 mL) 0.1 0.1 

Total sugar (g/100 mL) 7.8 8.5 

Fibre (g/100 mL) <0.1 <0.1 

*Sum of quercetin 3-glucoside, quercetin 3-rutinoside and quercetin 3-galactoside; calculated 

as quercetin 3-glucoside equivalents 

Table 8.2 Baseline measurement stats    

Variables Placebo group 

(n=14) 

Treatment group 

(n=15) 

p Value 

Body weight (kg) 91±15 86±19 0.89 

Body mass index (kg/m2) 32±5 31±5 0.46 

Age (years) 38.4±14.2 47±11 0.37 

Systolic blood pressure (mmHg) 139±5 142±7 0.27 

Diastolic blood pressure (mmHg) 91±3 92±4 0.37 

Values are expressed as mean ± standard deviation (SD), n = number of subjects in group.  

8.4. Results 

8.4.1.  Study Participants 

 There were 94 volunteers screened for enrolment into the study, with 62 volunteers 

excluded from study bases on exclusion criteria, obese or overweight but not hypertensive or 

taking blood pressure medication (Figure 3.2). A total of 32 volunteers were randomised into 

two groups to receive QG or placebo. The data analysis was completed for 14 participants in 
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placebo group and 15 participants in QG group (Figure 3.2). In addition, there was no breach 

of the blinding process identified throughout the intervention period. 

8.4.2.  Participant characteristics 

  Baseline general characteristics of participants who completed the study are shown in 

Table 8.2. There were no significant differences recorded in the baseline characteristics such 

as age, body weight, body mass index, systolic blood pressure and diastolic blood pressure 

between QG and placebo groups 

8.4.3.  Anthropometric parameters  

 Baseline and post-intervention anthropometric parameters such as body weight, BMI, 

waist circumference, hip circumference, waist to hip ratio and percentage body fat (Table 8.3) 

had no significant changes between groups for all post-intervention anthropometric variables. 

No significant changes were observed in energy intake, physical activity (Table 8.5) and 

resting respiratory exchange ratio (Table 8.3).  

8.4.4.  Cardiovascular parameters  

 The cardiovascular parameters including heart rate, systolic and diastolic blood 

pressure are presented in Table 8.3. There were significant differences between groups and 

change over time in systolic and diastolic blood pressure in treatment group (Figure 8.1). A 

significant decrease in heart rate over time was recorded in both the groups.  

8.4.5.  Fasting plasma lipids, liver enzymes and glucose 

 QG treatment for 12 weeks decreased fasting plasma LDL and placebo drink 

decreased HDL. QG treatment for 12 weeks decreased fasting plasma glucose and placebo 

drink decreased gamma-glutamyl transpeptidase (Table 8.4). However, no changes were 

observed in plasma total cholesterol, triglycerides, alanine transaminase, aspartate 

transaminase and creatinine for either group. 
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Table 8.3 Anthropometric & cardiovascular parameters baseline and post-intervention 

Variable Group Baseline Week 12 Group Time Interaction 

Anthropometry and body composition measurements 

Body weight (kg) Placebo 92.5±14.7 92.7±14.0 0.3 0.8 0.4 

Treatment 86.6±20.7 86.2±21.9 

Waist (cm) Placebo 107.5±14.0 107.5±13.3 0.5 0.3 0.4 

Treatment 103.7±14.9 104.3±14.9 

Hip (cm) Placebo 115.2±12.2 116.2±12.1 0.1 0.2 0.2 

Treatment 109.2±9.7 109.2±9.8 

Waist to hip ratio Placebo 0.93±0.06 0.92±0.05 0.3 0.8 0.08 

Treatment 0.94±0.06 0.95±0.06 

Respiratory exchange 

ratio 

Placebo 0.86±0.06 0.84±0.07 0.8 0.5 0.5 

Treatment 0.85±0.7 0.85±0.5 

Total body lean mass 

(kg) 

Placebo 50.1±9 50.1±9 0.7 0.8 0.3 

Treatment 51.1±11 51.3±11 

Total body fat mass 

(kg) 

Placebo 37.3±13 37.4±13 0.2 0.9 0.6 

Treatment 32.4±14 32.4±14 

Total fat (%) Placebo 42.2±9.8 42.25±9.9 0.5 0.3 0.4 

Treatment 62.1±96.2 37.83±9.9 

Android (% fat) Placebo 48.8±10.7 48.8±11.2 0.3 0.9 1.0 

Treatment 45.1±11.4 45.1±10.3 

Gynoid (% fat) Placebo 43.3±10.1 43.4±10.1 0.1 0.3 0.5 

Treatment 37.5±11.1 37.4±10.9 

Android to gynoid 

ratio (% fat) 

Placebo 1.1±0.2 1.14±0.2 0.1 0.4 0.3 

Treatment 1.2±0.2 1.42±0.8 

Page 117 of 151



Bone mineral content 

(g) 

Placebo 2799±552 2807±531 0.4 0.8 0.4 

Treatment 2965±598 2951±580 

Cardiovascular measurements 

Systolic blood 

pressure (mmHg) 

Placebo 140±3 138±2 0.05 <0.001 <0.0001 

Treatment 142±6 130±4*# 

Diastolic blood 

pressure (mmHg) 

Placebo 92±5 91±4 0.006 <0.0001 <0.0001 

Treatment 92±4 83±2*# 

Heart rate (bpm) Placebo 77±8 73±7# 0.4 0.013 0.6 

Treatment 76±8 71±7# 

Values are expressed in mean ± SD. * p<0.05, compared to other group, # p<0.05, compared 

to baseline of each intervention. 

 

Figure 8.1 Effect of QG and placebo drinks on systolic and diastolic blood pressure. Data are 
shown as mean ± SD. 
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Table 8.4 Fasting plasma analyses at baseline and post-intervention 

Variable Group Baseline Week 12 Group Time Interaction 

Glucose (mmol/L) Placebo 5.5±0.3 5.6±0.3 0.7 0.016 0.0005 

Treatment 5.8±0.7 5.2±0.4*# 

Gamma-glutamyl 

transpeptidase (U/L) 

Placebo 21.9±15.4 14.6±5.7* 0.2 0.3 0.031 

Treatment 26.2±28.2 29.2±25.1 

Alanine transaminase 

(U/L) 

Placebo 34.6±11.3 35.6±13.8 0.9 0.5 0.7 

Treatment 33.6±20.4 36.6±24.2 

Aspartate 

transaminase (U/L) 

Placebo 18.7±5.8 21.3±10.1 0.4 0.5 0.6 

Treatment 22.1±13.5 22.4±8.8 

Creatinine (µmol/L) Placebo 65.9±22.9 76.8±17 0.5 0.1 0.2 

Treatment 66.9±22.3 67.5±24.4 

Cholesterol (mmol/L) Placebo 5.1±1.1 5.1±0.8 0.7 0.2 0.3 

Treatment 5.2±0.9 4.8±0.8 

Triglycerides 

(mmol/L) 

Placebo 1.5±0.6 1.5±0.8 0.8 0.9 0.9 

Treatment 1.4±0.7 1.4±0.5 

High-density 

lipoprotein (mmol/L) 

Placebo 1.1±0.3 0.9±0.2* 0.1 0.8 0.001 

Treatment 1.1±0.2 1.2±0.2 

Low-density 

lipoprotein (mmol/L) 

Placebo 3.3±0.9 3.3±0.6 0.5 0.1 0.034 

Treatment 3.4±0.9 2.9±0.6* 

Values are expressed in mean ± SD. * p<0.05, compared to other group, # p<0.05, compared 
to baseline of each intervention. 

8.5. Discussion 

This human trial was conducted to evaluate the effect of Queen Garnet plum juice on 

weight management and metabolic syndrome risk factors in over-weight or obese men or 

women. QG plums contain both anthocyanins and quercetin glycosides, suggesting that either 

could produce the physiological responses. The anthocyanin dose in the current study was 
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~250 mg/day, which is higher than other human studies and the dose translated from animal 

studies (211, 309, 380, 382) and the quercetin glycoside dose in this study was around ~77 

mg/day. It has been previously shown that a quercetin dose of 150 mg/day (double the dose 

from 250ml QG juice) is required to produce positive effects such as reduced blood pressure, 

LDL and plasma inflammatory markers in humans with metabolic syndrome (162, 383). This 

suggests that the positive effects seen with QG juice could be either primarily mediated by 

anthocyanins or a synergistic effect in combination with quercetin glycosides. Further 

investigation is required to determine the possible interactions of these compounds to produce 

the beneficial effects.  

Table 8.5 Self-reported dietary intake and physical activity  

Variable  Group Baseline  Week 12 Group Time Interaction 

Total energy intake 

(kJ/day) 

Placebo 7215±1624 7819±2473 0.8 0.9 0.7 

Treatment 7068±2403 7716±1773 

Protein (g/day) Placebo 88±31 97±28 0.7 0.6 1 

Treatment 84±40 95±37 

Fat (g/day) Placebo 70±43 68±39 0.4 0.8 0.9 

Treatment 65±29 67±33 

Saturated fat (g day) Placebo 27±11 28±9 0.9 0.4 0.6 

Treatment 24±14 25±13 

Carbohydrates (g/day) Placebo 171±62 203±57 0.5 0.7 0.9 

Treatment 163±83 199±70 

Sugar (g/day) Placebo 77±21 86±18 0.9 0.9 0.5 

Treatment 76±23 81±21 

Fibre (g/day) Placebo 22±6 23±8 0.7 0.5 0.3 

Treatment 21±8 24±8 

Salt (mg/day) Placebo 2361±827 2404±801 0.6 0.5 0.8 

Treatment 2167±716 2044±624 
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Total work (MET 

min/week) 

Placebo 3404±2054 3089±1983 0.8 0.4 0.1 

Treatment 2879±1978 2994±1865 

Values are expressed in mean ± SD. MET, metabolic equivalent task.  

The major results of the study were the decreases in blood pressure and fasting plasma 

glucose concentrations in the QG treatment group. In a controlled randomised study, the 

antihypertensive activity of an extract of Hibiscus sabdariffa (9.6 mg of anthocyanins/day) 

was compared with that of captopril (50 mg/d) in 75 patients with mild to moderate 

hypertension for a period of four weeks; both showed decreased systolic and diastolic blood 

pressure with no significant differences related to antihypertensive effectiveness and 

tolerability between the groups (384). Similarly, a double-blind placebo-controlled parallel 

study with Aronia melanocarpa (100 mg of anthocyanins/day) for six weeks in subjects with 

myocardial infarction showed decreased systolic and diastolic blood pressure (385). Three 

years of pomegranate juice (20 mg of anthocyanins/day) reduced carotid intima-media 

thickness and decreased systolic blood pressure (380). These beneficial effects were related 

to antioxidant mechanisms because an increase in serum paraoxonase-1 activity, decreases in 

the levels of antibodies against oxidised LDL, and an increase in total antioxidant status were 

observed in the patients supplemented with pomegranate juice (380). Additionally, 

anthocyanins showed an inhibitory effect on both protein and mRNA concentrations for 

endothelin-1 and increased the protein concentrations for endothelial nitric oxide synthase 

(386). Similar to the current study, Aronia melanocarpa juice supplementation in metabolic 

syndrome subjects decreased blood pressure and endothelin-1 concentrations suggesting that 

the blood pressure lowering effects of anthocyanins are related to regulation of the production 

of ET-1 and NO in the vascular wall (211). In addition, dietary administration of 

anthocyanin-rich foods such as purple maize, purple sweet potato and red radish showed 

decreased systolic and mean blood pressures in Spontaneously Hypertensive Rats by 

preservation of endothelial nitric oxide and prevention of serum lipid oxidation, but inhibition 

of angiotensin converting enzyme (ACE) activity was not found (387). In contrast, some of 

the anthocyanin-containing foods and the anthocyanin, delphinidin, possess ACE-inhibitory 

activity (388-390). Therefore, it is important to investigate further to understand the possible 

mechanisms of QG juice. 

Beyond the blood pressure lowering effects, QG treatment decreased fasting plasma 

LDL concentrations with no change in HDL, total cholesterol or triglycerides. Similarly, 
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Aronia melanocarpa extract administration decreased total cholesterol, LDL and triglycerides 

concentrations with no change in HDL (211). Further, triglycerides, total cholesterol and 

LDL concentrations were reduced with grape powder and grape seed proanthocyanidin 

extract (~5 mg anthocyanins/day) (391, 392). Further, experiments on rats also showed that 

QG administration (~8 mg/kg/day) improved glucose metabolism and decreased fasting 

blood glucose concentrations (Chapter 7). Similarly, Viburnum dilatum extract containing 

~25 mg/g cyanidin glycosides exerted hypoglycaemic effect in diabetic rats through 

inhibition of α-glucosidase (382).  

Additionally, in diabetic patients, Aronia melanocarpa juice consumption decreased 

mean fasting blood glucose concentrations (393). Similar observations of decreased fasting 

glucose concentrations were seen in this study with QG supplementation. In vitro studies 

using anthocyanin-rich foods showed beneficial effects for regulating glucose are associated 

with insulin-releasing stimulatory properties and protective effects on pancreatic β-cells (394, 

395). It may be of importance that the volunteers in our study were free of a history of type 2 

diabetes and thus, a separate investigation on the glucose reducting properties of QG in 

diabetic subjects is justified. 

The dietary intake and physical activity level was monitored throughout the 

intervention period and participants were requested to maintain usual dietary habits and 

physical activity during the intervention time, and there was no significant change reported in 

either treatment or placebo groups for all domains. A previous human trial evaluating the 

efficacy of anthocyanin ingestion only asked participants to maintain habitual diet and 

lifestyle during the intervention period, with no significant change observed in mean daily 

intakes of nutrients reported over the 12-week treatment period (396).  

8.6. Conclusion 

Not all of the benefits shown in the animal studies were translated to the current study 

in humans. However, the results from these studies show that anthocyanins from QG may be 

of benefit to human subjects with cardiometabolic risk factors as far as reduction of blood 

pressure and fasting plasma glucose and LDL concentration are concerned. Further 

investigations on QG are important to determine the beneficial effects in improving glucose 

metabolism in type 2 diabetic humans. In rats, QG treatment for 8 weeks reversed most of the 

signs of metabolic syndrome, it is important to understand that 8 weeks in rats is equivalent 

to four years in humans (397), the duration of the current study could be a possible limitation 
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in reversing the signs of metabolic syndrome. Hence, it would be important to study the 

potential benefits of long-term supplementation of QG, which may lead to reduced body 

weight and fat mass. 
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9. General conclusions and future directions  

9.1. Conclusions 

It is well established that human metabolic syndrome is produced by a combination of 

genetic and environmental factors. Sedentary lifestyles with less physical or recreational 

activities and diets rich in fat and sugars giving a decreased quantity and quality of nutrients 

are the most important environmental risk factors (375). Rapid urbanisation has led to 

cultivation of unhealthy foods and sedentary lifestyles, escalating a constellation of adverse 

health consequences of metabolic syndrome risk factors namely obesity, diabetes, 

cardiovascular and liver diseases (as discussed in Chapter 2). These unhealthy events consist 

of a complex cascade of molecular and cellular changes that alters hormonal control such as 

insulin, and increases expression of pro-inflammatory cytokines that result in inflammation 

(as discussed in Chapter 2). Metabolic syndrome is prevalent throughout the world (as 

described in Chapter 1), hence understanding and controlling these pathological changes is of 

great clinical importance.  

Research in metabolic syndrome, as in other human diseases, relies on appropriate 

animal models to test possible interventions in humans and animals. These studies have 

contributed enormously to the understanding of human biochemistry, physiology, 

pathophysiology and pharmacology (122). Different models have been developed, 

characterised, and then successfully used for the development of preventive measures or 

cures for human diseases (122). One of the important human conditions is metabolic 

syndrome, which has been successfully mimicked in rodents (as described in Chapter1). The 

high-carbohydrate, high-fat diet contained 17.5% fructose, 20% beef tallow with 

predominantly saturated and trans fats and an additional 25% fructose in drinking water. 

Sixteen weeks of feeding this diet to young male Wistar rats induced abdominal adiposity, 

impaired glucose tolerance, dyslipidaemia, hyperinsulinaemia, increased plasma leptin and 

malondialdehyde concentrations, increased systolic blood pressure, endothelial dysfunction 

together with inflammation, fibrosis, hypertrophy, increased stiffness and delayed 

repolarisation in the left ventricle of the heart (146). Additionally, this diet induced hepatic 

steatosis with increased plasma activity of liver enzymes, renal inflammation and fibrosis and 

increased pancreatic islet size, and so this state appropriately mimics the human metabolic 

syndrome. Initially, I used this diet-induced rat model of metabolic syndrome to study the 

responses to interventions with green and black cardamom, beetroot and inorganic nitrates, 

different food sources of anthocyanins including chokeberry, purple maize and Queen Garnet 
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plums and the purified anthocyanin, cyanidin 3-glucoside, for the last 8 weeks of the 16 week 

protocol. Subsequently, the most successful intervention from rat studies has been chosen to 

examine the translational effects in mild-hypertensive obese or over-weight humans.  

Initially, in Chapter 5, green and black cardamom were studied for their effects in this 

diet-induced metabolic syndrome model in rats. Green and black cardamom had volatile 

components which are the closely related terpenes, α-terpinyl acetate and 1,8-cineole 

respectively (Table 5.1). Black cardamom improved cardiovascular and hepatic function, 

decreased body weight gain and total body fat mass whereas green cardamom exacerbated 

adiposity, decreased liver function and worsened cardiovascular structure and function. These 

differences might arise from differences in the absorption and metabolism of these volatile 

oils or other components such as phenolics and flavonoids. From this chapter, it is clear that 

the definition of cardamom as a spice does not adequately describe the different biological 

characteristics. However, this study should be extended to determine the effects of two major 

volatile components, α-terpinyl acetate and 1,8-cineole, at the same dose as pure compounds.  

Later, I studied beetroot containing inorganic nitrates and the same dose of sodium 

nitrate (Chapter 6), which showed similar responses in improving cardiovascular and hepatic 

function and glucose metabolism, and reduced inflammatory cell infiltration in heart and 

liver. The changes in cardiovascular function related to improved endothelial function by 

nitric oxide derived from nitrates. Both interventions also decreased blood pressure which 

then reduced the preload and afterload of the heart and cardiac energy expenditure, and 

altered the fibrotic and metabolic gene expression in left ventricle. However, no changes 

were observed in body weight, total body fat and metabolic gene expression in liver and 

skeletal muscle with either of the treatments.  

Further, chokeberry and purple maize containing polyphenols mainly anthocyanins 

(studied in Chapter 7) showed improved glucose metabolism, endothelial function, cardiac 

and hepatic structure, reduced inflammatory cell infiltration in heart and liver, and total body 

fat mass. In addition, these interventions reduced blood pressure and cardiac fibrosis, and 

improved cardiovascular function. The remarkably similar responses to chokeberry and 

purple maize when the anthocyanin dose was similar strongly supports cyanidin glycosides as 

an excellent dietary supplement for the management of metabolic syndrome related risk 

factors.  
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In Chapter 8, I studied the responses to cyanidin 3-glucoside for comparison with the 

same dose of this anthocyanin from a new variety of Japanese plums, the Queen Garnet plum, 

in young male rats fed with high-carbohydrate, high-fat diet. Both treatments showed similar 

responses in improving glucose metabolism, cardiovascular and hepatic structure and 

function and plasma lipid profile along with decreased total body fat mass, body weight gain 

and inflammatory cell infiltration in heart and liver. These results clearly suggest that 

anthocyanin-containing foods produce important health benefits in attenuating metabolic 

syndrome risk factors and so will be a suitable supplementation to translate into humans. 

Further, in Chapter 9, I have chosen Queen Garnet plum juice to study these translational 

effects in mild-hypertensive obese or over-weight humans. Results from this randomised 

double-blind placebo-controlled study for 12 weeks showed decreased blood pressure, fasting 

plasma blood glucose and LDL concentrations and increased HDL concentrations, with no 

change in body weight and fat mass, suggesting that all the effects from Queen Garnet plum 

juice rat study have not been translated into humans with a short-term intervention.  

In summary, phytonutrients present in foods can potentially be used  to reduce the symptoms 

of metabolic syndrome, cardiovascular disease and fatty liver disease. This thesis has  shown 

that increasing these foods in the diet or selected components of these foods can improve 

many or even all of the symptoms of the metabolic syndrome and associated complications. It 

is also evident that all the physiological or morphological changes seen in animals were not 

translated into humans in a short-term trial possibly since metabolic conditions vary from 

individual to individual. This thesis also suggests that the combination of two or more natural 

food sources or bioactive molecules in addition to nutritional advice can be used to improve 

translational effects in reducing or attenuating the risk factors of metabolic syndrome. 

Overall, food can be used as a medicine if taken in the proper amount and in the proper way. 

9.2. Observed limitations and future directions 

It is now generally accepted that an increased intake of fruits and vegetables decreases 

the risk factors of metabolic syndrome. However, the mechanism of action of these foods and 

their bioactive molecules still remains unclear, which is a major limitation for these studies. 

From this thesis, it is evident that different food sources have different beneficial effects in 

decreasing metabolic risk factors. The investigations in this thesis raised several questions 

which are possible limitations and need to be addressed by further investigations. I have 

shown reduced inflammatory infiltrates in the heart and liver of obese rats with most of the 

interventions, but the anti-inflammatory mechanisms in these studies remain unanswered. It 
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is known that adipose tissue functions as an endocrine organ and produces pro-inflammatory 

cytokines and adipokines which cause inflammation and insulin resistance and affect 

cardiovascular and hepatic function. Hence, further studies are warranted to understand the 

mechanisms involved in improving the health benefits of humans. These studies could 

include: 

• α-terpinyl acetate and 1,8-cineole investigation to understand the beneficial effects of 

black cardamom. 

• Nitric oxide molecular mechanism in improving the glucose metabolism and reducing 

inflammation.  

• Investigating NF-κB mediated inflammation such as TNF-α, IL-1, IL-6, IL-8 and 

COX-2. 

• Effects on diversity of gut microbiota population and metabolism with anthocyanins. 

• Combination of beetroot juice and anthocyanins in preclinical studies and proceeding 

with larger clinical trials to study the synergistic effects.  

• Understanding the mechanism of lipolysis and steatorrhea using these bioactive 

molecules (either 1,8-cineole or nitrates or anthocyanins) in the reduction of visceral 

adiposity.   

• Long-term effects of QG supplementation in a diabetic cohort for understanding the 

mechanisms of the improvement in glucose utilization.  
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