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Abstract

Water grids are a diverse and interconnected water supply systems that are
emerging in response to the pressures of climate variability, climate change,
and population growth. Water grid operation is guided by operating rules, which
aim to manage supply and demand to meet multiple management criteria such
as maximising water security, minimising operational cost, and minimising
energy use. However, the diversity and interconnectedness of these water grids
increases the number of possible configurations of the operating rules, and
combined with uncertainty in forecast conditions, makes find optimal operating
rules more challenging. Further, trade-offs between the criteria mean that
multiple sets of operating rules can be considered optimal. Thus, this thesis
proposes and demonstrates a framework of methods to meet these challenges
and identify a set of optimal operating rules to support short-term — 1 to 5 year —

operational planning of water grids.

This framework centres around multi-objective simulation-optimisation of the
water grid to find a set of operating options that are Pareto-optimal for multiple
management objectives and for forecast conditions over the short-term planning
period. Each of these operating options comprises a set of operating rules for
major grid infrastructure. However, this Pareto-optimal set is large and complex,
and characterised by trade-offs between objectives; it is difficult to select a
single option for implementation without applying preferences on the objectives
or assessing performance of options against additional criteria. To this end, a
combination of cluster, visual, and post-optimisation analysis is used firstly to
shortlist a set of operating options from the Pareto-optimal set. Then, multi-
criteria analysis is used to assess and rank the performance of the shortlisted
operating options against the full set of management criteria and to choose an

operating option to form the basis of an operational plan.

The operating rules resulting from multi-objective optimisation will be optimal for
the inflows that are input to the simulation-optimisation model. Optimising to
forecast streamflow conditions allows the operating rules to be tailored to
expected inflows for the planning period. Incorporating the uncertainty in these

forecasts also allows operating rules to be robust to a range of possible inflows.
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This study also demonstrates how forecast streamflow information, with
uncertainty, can be used within the framework to improve objective performance

of the operating rules.

This framework is demonstrated for a case study based on the South East
Queensland Water Grid. This case study identifies a set of operating rules that
is both optimal for the management objectives and performs well across

multiple management criteria and inflow scenarios for the planning period.
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Chapter 1: Introduction

Chapter 1: Introduction

1.1 The challenges of water grid management

The water grid is a highly complex and interconnected water supply system that
is emerging as a response to the increasing pressures of drought, climate
variability, climate change, and population growth. These water grids comprise a
diversity of water sources that are connected to demands across catchments
via multiple supply paths. Typically, water grid operation is guided by operating
rules, which need to satisfy multiple objectives or criteria such as maximising
water security, minimising operational cost, minimising energy use, and
minimising flood risk; whilst taking into account forecast inflows and demands
over the next 1-5 years. The many supply-demand possibilities, combined with
the trade-offs between multiple objectives and uncertainty in forecast inflows
and demands, makes determining optimal operating rules difficult. Therefore
decision support tools are needed to assist the decision-maker in identifying

optimal operating rules.

This section contains the following conference paper describing the water grid
and its benefits, and surveys two examples of water grids in Australia — the
South East Queensland and Victorian Water Grids — to identify the key
challenges for water grid management. It concludes by suggesting a decision
support framework to meet these key challenges. It also outlines several
research questions for this decision support framework, which are used to

establish the research aim and research questions in Section 1.2.

Ashbolt, S. C., Maheepala, S., and Perera, B.J.C., 2011, 'Towards a
framework for optimal operation of water grids', 34" IAHR World
Congress — Balance and Uncertainty, 10" Hydraulics Conference, 33"
Hydrology & Water Resources Symposium, Engineers Australia,

Brisbane, Australia.
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Chapter 1: Introduction

Towards a framework for optimal operation of
water grids

S. C. Ashbolt, S. Maheepala and B.J. C. Perera

Abstract: The concept of a water grid is emerging in the Australian water
industry as a potential solution to address water scarcity in urban areas. A water
grid comprises a network of pipelines that interconnect bulk water sources
across supply systems to allow water from areas of surplus to be moved to
areas that face a shortfall, managing risk at a regional level beyond the

catchment. The operation of water grids raises new challenges, such as:

* optimising movement of water across a complex network to meet

multiple objectives such as resource and energy efficiency, operational

cost and environmental flows;

* incorporating multiple sources of uncertainty; and
* implementing water trading and markets.

This paper reviews such challenges of water grid management and outlines a

framework to further investigate some of the research questions.

Keywords: water grid, urban water management, operational planning,

systems modelling

1. Introduction

Water grids are becoming a critical component of strategies to meet present
and future water needs of urban areas. A water grid consists of a network or
‘grid’ of pipes and open channels that connects water sources to water
demands in a region, and may comprise traditional sources such as surface and

groundwater storages, as well as alternative sources such as desalination,
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Chapter 1: Introduction

stormwater and recycled water. Examples of water grids in Australia include

those in southeast Queensland and Victoria.

Water grids may arise due to a need to increase water supply in over-allocated
catchments by extending supplies beyond the catchment boundaries. This
consolidates resource and risk management at a regional level and facilitates
water markets and trading. Whilst water security might be the initial objective of
implementing a grid, management may involve additional objectives such as
minimising cost and energy usage, managing water quality, and optimising
environmental flows. The implementation of a grid introduces challenges for
water resource managers in operating a network with the increased diversity of
sources and pathways for supply. Existing water resources studies have not

addressed these challenges in terms of water grid operations.

This paper outlines part of an ongoing research project on management and
operation of water grids. This paper describes details and outcomes of this
project thus far, including what constitutes a water grid; the operation of such
grids; the key challenges faced in operation of these grids; and a preliminary
framework to investigate some of the research questions these challenges

raise.
2. What is a Water Grid?

A water grid is a network of one-way and reversible pipelines that connect water
sources to customers throughout a region, not limiting supply to within a river
basin. Water grids operate at the bulk water supply level and are here defined
as involving multiple supply paths of a given source to its connected demands.
They differ from a more linear branched network, which typically conforms to
river basin boundaries. Whilst no standard definition exists in the literature,

some examples of what the authors consider as grids are shown in Figure 1.
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Figure 1: Examples of water grids

It should be noted that the term ‘grid’ in regard to water supply is a relatively

new concept and is not prevalent in the literature beyond Australia and is more
commonly used to refer to electricity grids. Nevertheless many supply systems
currently in operation could be considered grids. Moreover, whilst this research

focuses on outcomes relevant to water grids, the outcome may be relevant to
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Chapter 1: Introduction

other supply systems not considered as grids.

Benefits of moving to a water grid may include:

Increased supply system yield through access to greater storage

capacity and demand

Increased water availability without the construction of new sources or

storages

Ability to manage supply risks at a regional scale, rather than source-by-

source

Increased capacity to address local management issues

Reduced reliance on local climatic conditions, by reducing the impact of

spatial variability in surface water flows

Risk-spreading, or the ability to transfer problems in one area to a benefit
for other areas, e.g. minimising spills from a storage in a flood-prone

area through transfers to drought-affected storages

Increased flexibility in options to meet water quality and quantity
requirements for each demand and environmental need in a ‘fit-for-

purpose’ manner

Ability to mix supply sources to improve water quality
Increased cost efficiency or access to low-cost sources

Increased capacity for water markets and trade

2.1. Examples of water grids

The following sections briefly outline two examples of water grids in Australia in

terms of the drivers for developing a water grid; key features of these grids;

governance arrangements; operations; and key challenges faced.

2.1.1. South East Queensland Water Grid

The South East Queensland Water Grid is designed to provide water security to
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the south east region of the state of Queensland, in the face of drought, future
climate changes, and population growth. The grid network includes the
interconnection of surface water storages, groundwater sources, a wastewater
recycling scheme, and desalination plants which by implementation in 2008
resulted in a 14% increase in the system yield (Queensland Water Commission,
2009). Construction of the grid involved restructuring institutions and statutes to

better manage the grid, which also includes an emerging water market.

When first conceived, the main objective of the SEQ Queensland Water Grid
was to provide water supply security beyond the individual surface water
storage schemes: during the ‘Millennium’ drought (starting around year 2000),
the three major supply reservoirs declined from 60% of combined capacity in
April 2004 to 17% in August 2007 (Queensland Water Commission, 2009).
Since then, significant rainfall events increased the volume held in the surface
water storages such that they reached 100% capacity in October 2010

(Segwater, 2010). Thus, new objectives for grid management have arisen.

Key challenges now centre around how to optimise the operation of the grid,
given multiple objectives and constraints, and include (Dennien et al., 2009);
(Dennien, 2010):

* Optimising operations for multiple objectives such as energy

consumption, operational cost and minimising reservoir spills

* Identifying, preferencing and quantifying objectives for grid management

and operations

* Incorporating climate uncertainty/variability and change

« Satisfying contractual obligations that may conflict with other objectives:
minimum levels of desalinated or recycled water must be maintained

even if resource, energy and cost outcomes are reduced by doing so

« Utilising off-peak operations to minimise energy consumption

« Emergency management of the complex network for events such as

flooding, equipment breakdown
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* Managing differing water quality due to blending of a number of sources
* Maintaining level of service and compliance with market rules
* Availability and validation of data on the water grid network

* Involving all service providers and stakeholders: prior to grid
implementation, a government restructuring act reformed the water
supply industry, leading to establishment of new statutory authorities,

roles and responsibilities

« Adapting the decision support framework to meet these challenges

Decision making in water grid operations is influenced by operating rules and
objectives in the System Operation Plan (Queensland Water Commission,
2010) under the market rules (Queensland Government, 2008). Decisions are
supported by simulation of water supply and demand using Wathnet (Kuczera,
1997); demand forecasting using the End Use Model (Water Services
Association of Australia, 2006); and a spreadsheet based model for economic
analysis. The models use 5 year supply and demand forecasts; data are

updated monthly. Monthly instructions are issued.
2.1.2. Victorian Water Grid

The Victorian Water Grid involves the construction of pipelines that connect
regional water supply systems across the state of Victoria. The augmentation of
water supply systems in Victoria has been driven by recent low level rainfall and
record low inflows, which dropped to 28% of long-term average inflows in 2006
(Department of Sustainability and Environment, 2008), as well as in response to
predicted climate change. These rainfall patterns are evidently a significant
departure from those for which the original supply system was designed. An
expanded water grid allows water to be more readily traded between regions in
Victoria to increase security of supply by reducing the impact of localised

droughts and maximising available storage.

The Victorian Government plans large-scale infrastructure development and

controls use of water in the grid. The management and operation of regional
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catchments, water supply, and distribution systems is the responsibility of the
regional and metropolitan water authorities (Department of Sustainability and
Environment, 2010). The Victorian grid is currently not operated as a grid by a

single entity.

Water resources are currently managed for supply security. However
management objectives may change in the future depending on the climatic
conditions, i.e. they may switch from simply providing a level of service for
customers, to minimising financial cost or energy usage. Decision making for
the Melbourne region is supported by the REALM water supply monthly model
(Perera et al., 2005) for assessing options in planning and forecasting supply
and demand. The REALM model uses rules-based linear programming to
determine water allocations on each timestep, and works alongside an
optimisation tool OPTIMISR (Kularathna, 2009) currently under development to

meet optimisation needs for the entire forecast period.

Key challenges for Victorian grid management include (Preston et al., 2010);
(White, 2010):

* Optimisation over various spatial scales

* Including multiple objectives (e.g. cost) in decisionmaking that may

change dependent on climatic conditions

* Integrating decision support models into water supply models

« Adapting existing models and knowledge to address the new challenges
* Applying the regulatory framework and objectives in changing conditions
* Optimising institutional arrangements

* Integrating and managing additional water sources and customers into

the grid
» Linking operational and investment planning
* Overcoming political and institutional barriers to water trading

* Reflecting the true value of water in allocation and pricing of supply
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3. Key Challenges in Water Grid Management

Management of water grids entails the short-term planning and operation of
water sources and allocation of water to meet demands, whilst meeting other
rules or objectives as determined by policy or legislation. Grid management is
generally concerned with operation of a system once in place, rather than
longer term planning for system design and augmentation. Grid management
generally involves monthly decisions for operation of bulk pipelines, sources

and storages, planning ahead for periods of 1 to 5 years.

Objectives for water grid management may be guided by levels-of-service
promised to customers and organisational and governmental policy and

regulations. Objectives may include:

« Optimising water use efficiency, including frequency, duration, and

severity of restrictions

* Minimising energy use and greenhouse gas emissions

* Providing suitable water quality for each demand or matching source

guality to end use
* Minimising cost of supply

* Meeting environmental water quantity and quality needs in water ways

and receiving waters

Many of the issues in water grids arise from the challenge of integrating an
increasingly complex and heterogeneous new network, with multiple flow paths
and directions. Newly linked subsystems may have differing management rules
and objectives, established separately without optimisation over the entire
network. Within this network, multiple sources of uncertainty also need to be
considered, including climatic variability and change and infrastructure reliability.
It also requires mixing of multiple sources, including the water quality

implications.

The following sections briefly outline the key challenges and associated issues
identified in water grid operations. These are organised around the key themes
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emerging from the examples of water grids investigated in Section 2.1.
3.1. Optimal Operation

Optimal operation involves maximising the efficiency of water resource use in
terms of the desired or required management objectives and targets. The
complexity of this task is affected by the nature of the system and the number of

objectives to be considered. Management questions include:

* How do we optimise operations for multiple objectives, such as
maintaining environmental flows, and minimising cost and energy use?

This involves:

© Managing conflicting demands

o Addressing conflicts between the multiple management goals or

objectives of a complex network

o Incorporating or modifying existing operating rules, constraints and

service delivery requirements

o Accounting for changes in source priorities and rules under different

climatic conditions

* How do we move from a primarily rules-based to an optimised network?

How do we link between outcomes of different decision timescales in

systems modelling and management (e.g. operations and planning)?

* How do we manage or address shortcomings in the heterogeneity and

complexity of information to be collected, maintained and assessed?

* How do we determine objectives and their relative importance?
* How do we arrive at a suitable value for water?

Optimal operation requires a system modelling or decision support tool capable
of optimising the grid network to multiple objectives, whilst incorporating
condition-based operating rules and constraints. Outputs should be able to link

smoothly to other system models, or the tool should be able to incorporate
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different timescales or decision/management outcomes. Flexibility in input data
and modelling of system features would be desirable in order to address the
heterogeneity and complexity of the system. If multiple supply systems or
institutions have been recently been merged, decision-making practices may
vary system-by-system and original models may need to be replicated based on

data availability or for calibration purposes.

The experience in water resource optimisation has primarily focused on
optimising supply to meet required demands or to maximise economic
objectives, and for long-term planning or network design. Optimisation for an
operational timeframe, and incorporating level of service and energy efficiency
goals would be a novel element in a multi-objective optimisation framework. The
applicability of current methodology used for water planning timescales and for
energy grid operations should be investigated within the water grid operations

framework.

The choice of objectives is also an important aspect in the optimisation of the
systems. Methods must consider the complexity in selection of objectives, their

guantification and relative importance (weighting).

Techniques that may contribute to the required solutions include multi-objective

optimisation techniques, such as:

* Weighted summation techniques that aggregrate multiple objectives to a

single objective

* Multi-objective methods such as evolutionary or genetic algorithms that
produce two or three dimensional Pareto fronts showing trade-offs

between objectives

* Simulated annealing
* Linear programming
* Goal programming

* Hybrid methods such as a combination simulated annealing and genetic

algorithms
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Multi-criteria analysis is another technique which has been widely used in water
resources to compare options in terms of their performance against multiple

management objectives.

The most common software tools for urban water allocation in Australia are
REALM (Perera et al., 2005) and Wathnet (Kuczera, 1995). Source Rivers
(eWater CRC, 2010) is also an emerging tool that serves a similar purpose.
Broadly, these are simulation models that use linear programming techniques
that operate on each timestep to optimise one objective, but also incorporate
constraints such as environmental flows. Extension of these would be needed

to improve multi-objective optimisation capabilities.
3.2. Incorporating uncertainty

Given the increased complexity and diversity in the components that comprise a
water grid and their interactions, there is likelihood of increase in the sources of
uncertainty. This uncertainty is a key component of acknowledging risk in
decisionmaking and may significantly affect the outcome. The combination of
multiple sources of uncertainty may be greater than individual sources alone.
Therefore a key question is how, within a water grid management
decisionmaking process, do we incorporate or acknowledge uncertainty in
demand; climate and streamflow, infrastructure reliability, and management

objectives?

We need the capability to incorporate sources of uncertainty into
decisionmaking tools. This should be well integrated either within or in addition
to multi-objective optimisation as it will likely have a significant impact on initial
conditions and behaviour of a system. Understanding of the degree of
uncertainty involved in a system will inform confidence in the modelling
outcomes. Uncertainty will pertain not only to system components, but also the

model algorithms themselves.

Whilst incorporation of uncertainty in infrastructure and objectives would be a
new area, climate uncertainty has been addressed in water allocation planning

models using various methodologies, such as: stochastic timeseries of variables
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of distribution of parameters, stochastic fuzzy programming, interval
programming, placing bounds of certainty on solutions, and Monte-Carlo
simulation. A significant consideration for these methods is the associated

intensity in use of computer resources or run time.
3.3. Market operation and the institutional space

A water grid may involve water trading, where participants are given licences
and entitlements to transfer and pricing is set centrally or a water market, where
pricing of water is set by participants in the system. A system may also be in
transition between these states, where flexible markets and price structures are
yet to be determined, and trading is still controlled by a central body. Each of
these operation modes will involve unique methodology and challenges for
water allocation. Within or between these operational states, questions faced for

water grid managers include:

* How do we incorporate market operations into water system modelling?
* What is the appropriate pricing to reflect water value or source cost?

* How do we remove institutional or political barriers to optimised

operations or water trading?

In addition, the institutional arrangements need to allow for efficient operation of

water grids and their markets. This raises further questions such as:

* How do we coordinate or consolidate management of newly linked

supply systems and their respective management authorities?

* How do we reconcile multiple management rules and objectives?
* How do we incorporate ‘inherent knowledge’ in systems and modelling?

To date, decisions on the value of water and market structure have been heavily
influenced by local policy and infrastructure. Guidance may be needed on an
approach to institutional restructuring and valuing of water which will best
enable efficient operation of water grids. In this area, there may be something to

learn from electricity grid markets, which have some aspects in common with
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Chapter 1: Introduction

water grid structures and have been in operation in Australia for some time.
Direction on these issues could also be assisted through improved integration in

system simulation and optimisation.
4. Conclusions and further research

A review of the challenges faced in water grid management has led to the
identification of a number of research priorities. These include optimal
operation, accounting for uncertainty, market operation and institutional
arrangements. In light of these challenges, the ongoing research will focus
around a proposed modelling and decision framework to support water grid

operations, shown in Figure 2.

Forecast ; Stakeholder
streamflows Multi -Objective views
Optimisation
k Y
= Sl Mult-Objective pie Outcome
Initial [ Models l« > Optimisation Multi-Criteria (e.g. operatin
conditions (hydrologid Decision Analysis ‘9. op 9

Algorithms instructiong

hydraulic

Level of
service
criteria

Figure 2: A water grid management decision framework

It is proposed that this framework will aid in the identification and linking of tools
and processes that may address the needs of water grid managers. In particular

the research will look to answer the following questions:

* |s this a suitable framework? How does it fit with the current frameworks

used by grid managers?
* What is the required outcome of the framework?
* What is the timeframe (frequency and period) of this process?

* What is/are the most suitable method/s for each component of the
framework to achieve this outcome? How well do current models perform

in this space?

* How do we ensure compatibility between components or models?
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* What are the sources of uncertainty and risk and how can they be

addressed?

« Can we use this framework to reflect the true value of water respective to

stakeholders in decision making? How does the relationship between
cost and value of water affect the determination of operating rules and

objectives?

* What are the optimisation objectives, and how are they decided upon?
What are their performance measures? How is uncertainty in the target

value of objectives handled?

* How do we enable simulation models to produce outcomes required to

guantify performance of the objectives?

* How do we reconcile multiple or conflicting rules and objectives?

* How do we incorporate inherent knowledge and complexity in data,

systems and modelling?

* How do we allow for changes of policy based on initial conditions such as

climate?

* How are stakeholders involved? What form of input is required, where,

and how frequently? How are outputs of the process presented to
stakeholders?

* Wil there be feedback between the outcomes of different components of

the framework? How and when should this occur?

* How do we consider water markets and water trading in decisionmaking?
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1.2 Research aim and research questions

This research addresses two of the key challenges of water grid management

identified in the paper in Section 1.1, namely:

* ldentifying operating rules that are optimal for multiple objectives
* Incorporating uncertainty in streamflow into operational planning

To address these challenges, the paper in Section 1.1 proposed the
development of a framework of modelling methods to assist optimal operation of
water grids. Thus the research aim is to develop and demonstrate a modelling
framework to identify optimal operating rules for water grids, which incorporates

uncertainty in streamflow inputs.

The paper in Section 1.1 also posed a number of research questions, relating to
the research aim of developing and demonstrating a framework for water grid

management. These can be summarised as:
1. What is the desired outcome of this framework?

2. What methods and tools can be used together to achieve the desired

outcome of the framework?

3. Does this framework incorporate some of the key requirements identified
in Section 1.1, such as:

* uncertainty in input data such as streamflow;

* multiple and conflicting management objectives and criteria,
performance measures, and preferences on these objectives and

criteria,;
* changes in these objectives and criteria;
» changes in initial conditions and input data;
« stakeholder values;

« feedback between framework components and planning
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timeframes; and

* existing data and models?

4. Does this framework actually provide the required outcome when

implemented for a case study?

This study aims to answer these research questions by: identifying the required
outcome of a modelling framework for short-term planning; proposing a
framework of methods and tools, based on literature review, that can meet the
required outcome and the key requirements listed in Research Question 3; and
demonstrating the application of this modelling framework to a case study. For

brevity, the modelling framework is hereafter referred to as the ‘framework'.

Section 1.1 identified additional research questions regarding how water
markets, water trading and the value of water can be considered in short-term
operational planning and the modelling framework. These research questions
are not explicitly addressed in this study but are recommended for future

investigation.

1.3 Short-term operational planning

The paper in Section 1.1 identified that key challenges for water grid
management lie in developing short-term operational plans or operating rules.
Short-term planning differs from long-term planning in aim and scope, required
outcome and modelling and data needs. Therefore this study focuses on short-

term planning.

Long-term planning typically considers operating rules and supply measures to
ensure a balance between supply and demand, over a long forecast horizon of
around 50 years. It includes the development of urban water or regional water
strategies and may involve an assessment of system yield. System yield
describes the maximum average demand the system can supply, subject to
long-term climate variability or climate change, without breaching level of
service criteria. The long-term planning process identifies required supply
augmentations — e.g. new reservoirs or alternative water sources such as

recycled water, and desalination — to increase system yield to match long-term
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demand forecasts with an acceptable reliability of supply.

Short-term planning involves identifying operating rules to ensure security of
supply over a shorter period of 6 months to 5 years, usually without
augmentations. The aim is to pro-actively manage variability in supply over the
short-term, based on forward outlooks of streamflow and demand. Efficient
short-term plans may enable delays to augmentation proposed in longer-term
planning. Short-term planning includes development of annual operating plans,
drought response plans, permanent/temporary water saving plans, and water
conservation plans. Operating rules for short-term planning are generally
consistent with the long term operating rules, but can deviate from them with the
intention of addressing short-term issues with security of supply. This deviations
could happen because current conditions and forward outlooks are not
representative of the long-term average conditions used in the long-term

planning studies.

1.4 Research significance

The significance of each component of this research is outlined in each paper
included in this thesis. Overall, there exists limited literature and demonstrated
practice of using the decision support tools proposed for the framework in the
short-term operational planning space, in a combined manner, and beyond one-

or two-reservoir systems. The key novel aspects of this study are:

* Understanding and addressing the challenges of water grid management

« Using multi-objective optimisation for operational planning of complex

multi-reservoir systems

* Providing a framework for incorporating multi-objective optimisation into
the planning process, and demonstrating each step from problem

definition to a final set of operating rules

* Demonstrating the use of streamflow forecasts in multi-objective

optimisation of short-term operating rules for water grids

* Providing a use-case for streamflow forecasts provided by the Bureau of
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Meteorology in Australia

* Providing a use-case of the emerging Source software tool, particularly

for multi-objective optimisation

1.5 Outline of the thesis

This thesis contains eight chapters, outlined in Figure 1.1. The second chapter
reviews the literature to establish a framework of methods that can meet the
needs of operational planning of water grids. This addresses the first three
research questions outlined in Section 1.2, by identifying the required outcomes
of the framework, the methods and tools that can be used to achieve these
outcomes, and whether the framework incorporates the key requirements
identified in Section 1.1. The third chapter introduces a case study of short-term
operational planning for a water grid based on the South East Queensland
Water Grid in Australia. Chapters four to seven examine the fourth research
guestion of whether or not each of the framework components and methods can
provide the required outcomes, by demonstrating their application to the case
study. The fourth chapter demonstrates the application of the first part of the
framework, multi-objective simulation-optimisation, to the case study. This
results in a large Pareto set of operating options, each of which represents a set
of operating rules that are optimal for three management objectives. The fifth
chapter demonstrates the application of the second part of the framework to
interpret the case-study Pareto set, by examining the trade-offs between
objectives and selecting a shortlist of operating options. The sixth chapter
demonstrates the third and final part of the framework, multi-criteria analysis, by
assessing the performance of the case-study shortlist of operating options
against the full set of management criteria and a range of inflow conditions. The
seventh chapter investigates how streamflow forecast scenarios can be used in
multi-objective optimisation to improve objective performance and robustness of
the operating rules. The final chapter provides a summary and conclusions of
this work, assessing the overall ability of the framework to answer the research

guestions, and providing recommendations for further research.
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Chapter 2: Proposing a framework for short-
term operational planning of water
grids

This chapter reviews the literature and water grid practice, to meet the research
aim, outlined in Section 1.2, of developing a framework for short-term
operational planning for water grids. It also considers the first three research

guestions outlined in Section 1.2.

Multi-objective optimisation forms the core of this framework and study. Multi-
objective optimisation allows for a large number of optimal operating
possibilities to be identified from a complex web of possible operating rule
configurations, with a range in objective performance and trade-offs. This differs
from scenario or 'what-if' analysis, which considers a more limited set of
operating rule possibilities of interest to the decision-maker or stakeholder, that
may or may not be optimal in terms of their objectives. However, if desired, a
decision-maker may add 'what-if' scenarios of particular interest to be

considered in the multi-criteria analysis step of the framework.

Although the focus of this framework and study is on meeting the challenges of
short-term operational planning (1-5 years), many of the tools and methods
identified for the framework are also used in longer-term planning. Thus the
framework could be potentially be applied to longer-term planning. However, the
problem definition and input data as discussed in this chapter and demonstrated
in later chapters are specific to the short-term operational planning space and

therefore provide unique challenges.

This chapter contains the following journal paper, which addresses the above

three research questions:

Ashbolt, S. C., Maheepala, S., and Perera, B.J.C., 2014, 'A framework for
short-term operational planning for water grids', Water Resources
Management, 28(8), pp. 2367-2380, Springer Netherlands.
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Chapter 2: Proposing a framework for short-term operational planning of water grids

A Framework for Short-term Operational
Planning for Water Grids

S. Ashbolt & S. Maheepala & B. J. C. Perera

Abstract: Water grids are emerging as a response to water scarcity in many
urban areas. These grids comprise not only traditional surface and groundwater
supplies, but also alternative, climate-independent water sources such as
desalination and wastewater recycling, as well as one and two-way pipelines
connecting surface-water supplies in different regions. The complexity and
heterogeneity of these water supply networks brings new challenges to water
management. Water managers need to determine strategies to operate the
system in terms of multiple objectives, subject to uncertainty and boundary
conditions relating to climate, demand and infrastructure. This paper outlines a
framework of methodologies for developing optimal operating plans for short-

term planning for water grids, in terms of the objectives of interest.

Keywords: Multi-objective optimisation; Operational planning; Optimisation;

Short-term planning; Urban water management; Water supply

1. Introduction

Water supplies in many urban areas have come under strain due to the twin
pressures of population growth and climate variability. Furthermore, projections
indicate a decrease in water availability in many regions due to climate change
(Bates et al. 2008). The resulting water scarcity brings both water supply
insecurity and negative impacts on freshwater ecosystems (Martin-Carrasco et
al. 2013; Rijsberman 2006).

The standard, or ‘first wave’ approach to address water scarcity is to augment

supply through construction of a new dam or groundwater wells. Where these

Ashbolt, S.C.: Short-term operational planning of water grids 28



Chapter 2: Proposing a framework for short-term operational planning of water grids

supplies have been exhausted or are no longer acceptable in environmental or
social terms (Turton and Meissner 2002), a ‘second wave’ approach uses
demand management measures such as water efficient devices, volumetric
water tariffs, education, and water restrictions. Whilst these measures are
important, they have a limit based on basic human needs, at which point they
are no longer sufficient to address water scarcity. Behavioural changes may
also weaken over the long-term (Fielding et al. 2013). Hence a ‘third wave’
approach involves increasing the efficiency of use of existing water sources
through diversification and interconnection of supply to establish ‘water grids’.

The water grid concept was first proposed by Reynolds (1978), as a system
with similarities to the large-scale electricity networks, such as diversity of
supply and inter- regional transfers. Thus the water grid increases water supply
yield, security and resilience on two fronts: firstly by connecting existing water
supplies and demands into a network or ‘grid’; and secondly by constructing
alternative climate-independent water sources, such as desalination and
wastewater recycling. Two-way pipelines allow water storage to be balanced
across catchments, and demands to be supplied via multiple paths and
sources. These connections also insulate against consequences of failure of
individual infrastructure. The diversity of options to meet each demand allows
for the consideration of a number of factors beyond water security, such as cost,
energy use, and water quality. The water grid concept and application has seen
recent growth in response to the aforementioned population and climate change
pressures. Examples include those in Australia in Victoria and South East
Queensland (Department of Sustainability and Environment 2010; Queensland
Water Commission 2010) California (California Department of Water Resources
2010) and under proposal in India (International Water Management Institute
2010).

As these heterogeneous water grids are more complex and diverse than a
traditional catchment-based system, they bring new challenges to water supply
management. Operating rules developed over time for traditional systems, may
not perform as well for new water grids. The larger number of possible supply—
demand and supply path configurations multiply to give an even larger set of
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possible decisions, from which a decision set that provides an optimal outcome
for the entire grid may be difficult to identify. Selection of an optimal outcome is
driven by the management objectives, but the heterogeneity of the grid means
that each infrastructure option will perform differently in terms of these
objectives. Furthermore, when multiple objectives exist, there is likely no single
optimal outcome and trade-offs must occur between them. For example,
desalinated water may have significantly higher cost than freshwater supply, but
higher reliability. A decision-maker (manager of the water grid) must ‘trade-off’
the higher cost of reliable desalinated water against using cheaper surface
water in dams that is needed for water security into the future. The impacts of
decisions on objective performance will also vary over time, depending on
expected surface water inflow and storage levels, as well as operational
constraints or requirements such as minimum flows, contracts for manufactured
water, and costs associated with turning infrastructure on and off. Furthermore,
the objectives themselves may change, for example as reservoirs refill and
there is risk of flooding, minimising spills from reservoirs may become an

additional objective.

In summary, the trade-offs in objectives add another layer of complexity to water
grid planning. Given the diversity of supplies and demands in a water grid, their
interdependencies, as well as changing physical and policy conditions, finding
decisions that provide the best outcomes for the grid as a whole may be very
difficult. Thus, water grid managers require decision support tools to explore
operating options, strategies or rules for managing supply systems to meet
forecast demands under expected inflow and infrastructure conditions. These
tools will need to help identify and assess potential management decisions in

terms of multiple objectives, to support development of an operating plan.
2. Short-term operational planning for water grids

Short-term operational planning is defined here as short to medium term (1-5
year) planning of operation for existing infrastructure, updated on a regular
basis (6—12 months), which meets criteria and rules set out in policy and longer-

term planning. Examples of such operating plans can be seen for South East
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Queensland Water Grid (segwater 2013) and the Colorado River Basin (U.S.
Department of the Interior Bureau of Reclamation 2012). Short-term planning
allows balancing of small capacity storages, but decisions made on these
shorter timescales can also affect long-term planning by impacting water levels
in multi-year capacity storages and reaching triggers for augmentation. It is the
authors’ view that operational planning of water grids is of similar importance to
long-term planning of water grids because lack of clear and optimal strategies to
operate water grids can result in inefficient usage of already built infrastructure
and water resources. Efficient operation of the grid can also prove a
complementary strategy to demand management and augmentation in

addressing the pressures of water scarcity.

Efficient operation can be aided by optimisation, a technique that has been
widely applied to water resources management (Nicklow et al. 2010; Rani and
Moreira 2010; Singh 2012). There are several examples reported in the
literature concerned with finding multi-objective optimal solutions for water
supply networks. They include applications in long-term or strategic planning
(Chang and Chang 2009; Hakimi-Asiabar et al. 2010; Mortazavi et al. 2012),
system design (Babayan et al. 2005; Kapelan et al. 2005; di Pierro et al. 2009),
and real- time operation of water supply (Ahmadi et al. 2014; Broad et al. 2010;
Fallah-Mehdipour et al. 2012). On an operational planning timescale, single
objective optimisation has been conducted for multiple reservoirs (Kularathna et
al. 2011a), and multi-objective optimisation for a single reservoir (Kim 2008),
irrigation network (Fernandez Garcia et al. 2013) and four-reservoir system
(Kumphon 2013). As far as the authors are aware, there have been no
published literature on the application of multi-objective optimisation for
development of short-term operational plans for complex networks such as
water grids, and that outline the additional steps required to implement and
interpret optimisation tools in this context. Thus the objective of this paper is to
identify tools and methods that can be used by the water grid manager to apply
and support multi-objective optimisation. This forms a proposed framework for

decision support in short-term operational planning of water grids.
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3. A framework for short-term operational planning of

water grids

The aim of the framework proposed here is to identify an operating plan for
water grid infrastructure that is optimal in terms of multiple objectives. These
objectives might relate to infrastructure operational cost, water security,
environmental flows, energy use, greenhouse gas emissions, or water quality.
Operational planning decisions are traditionally determined by rules for
operating the system, for example reservoir levels that trigger use of alternative
sources or operation of interbasin transfers. Thus the focus of the framework
may be to determine an optimal set of rules. These operating rules will apply to
the entire planning period (i.e. they should not change on each timestep) and

will inform the operating plan.

The proposed framework is shown in Fig. 1, and discussed in detail in following
sections. It centres around multi-objective optimisation, but a number of
additional elements support the optimisation process. The implementation of the
framework processes [1-7] occurs broadly in sequence of the numbers in the
diagram, however many of these processes are iterative or interdependent.
Stakeholder engagement [1] helps to identify objectives and assessment
criteria of importance to operational planning, their priorities or importance
(criteria weights), and the performance measures against which these are
assessed. The multi-objective optimisation [2] algorithm is used to trial possible
management decisions (decision variables), to find those that have the best
outcomes in terms of the objectives, quantified as objective functions using
information from the simulation model. There may be bounds on decision
variables or constraints on objective functions that reduce the feasible decision

space, e.g. budgetary constraints.

The system simulation [3] model determines the supply—demand behaviour or
the system response to the decision variables and forecast conditions. The
model will simulate at a minimum, water quantity, but may also include water
quality, cost, and energy use, depending on the capability of the model and the

objectives to be quantified. Forecast inflows [c], demands [b], and infrastructure
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conditions [a] and additional operational data [d] for the planning period are
input to the simulation model to provide a basis for decision-making. The multi-
objective optimisation process (simulation and optimisation) results in a number
of sets of potential management decisions (decision variables) which are
optimal in terms of all objectives. These can be plotted as a Pareto front of
decision sets. If the Pareto front has a very large number of solutions, clustering
of results [4] with similar characteristics may reduce the number of possible

decision sets for further comparison.

Finally, in order to select a single decision set, multi-criteria analysis [5] is used
to assess decision sets against a number of criteria, including those identified in
the stakeholder engagement process as well as in long-term planning [e]. The
simulation model and additional data may be used again at this point to
calculate performance of each decision set against the criteria. The effect of
uncertainty in streamflow or demand on criteria performance of potential
decision sets can be assessed using uncertainty analysis [6] or by evaluating
for multiple scenarios of demands/inflows. The outcome of multi-criteria analysis
is an optimal decision set consisting of operating rules or decisions that form the
basis of the operational plan [7]. The methods and requirements for each of the

components are discussed in the following sections.

Ashbolt, S.C.: Short-term operational planning of water grids 33



Chapter 2: Proposing a framework for short-term operational planning of water grids

/a.Infrastruclureconditions // b. Forecast demands // ¢. Forecast inflows //d.AddItIonaIoperalionaldala //e_Long-termpIanning/

Constraints Storage levels Single series or /
Bounds on Capacities

e.g. unit cost, energy use
multiple scenarios
decision variables Constraints\ /
6. Uncertainty
analysis
System data
Decision for selected
5. Multi-criteria analysis

e.q. level of service criteria
arget storage levels

Optimal
decision set

(e.g operating
rules)

3. System
Simulation
Objective functions
variables solutions
/ . Potential
2. Multi-objective Pareto 4. Clustering olutions/
. . of results .
optimisation front/s of decision sets
decision sets /

\ Assessment criteria

Objectives - Performance measures
Performance measures 1. Stakeholder Criteria weights
Engagement

Figure 1: A framework for optimal short-term operational planning for water

7. Operational plan

grids. Rounded rectangular boxes (numbered) indicate framework processes or
elements, rhomboids (lettered) show the inputs, and inputs/outputs between

processes are indicated on the arrows.
4. Inputs

The required inputs for the framework will depend on the objectives, criteria and
the simulation model. This includes both the data type (e.g. streamflow), and
the format (e.g. single or multiple/stochastic timeseries). For the simulation
model, a minimum of forecast streamflow, forecast demand, and forecast/initial
infrastructure conditions will be needed [Fig. 1c, b, a]. Additional data for
calculating objective and criteria performance may include fixed and unit cost
and energy use for each infrastructure element [Fig. 1d]. Long-term planning

criteria and targets may also be considered for multi-criteria analysis [Fig. 1e].

Since operational planning considers the management of existing infrastructure,
for a given set of objectives the initial and forecast conditions are the key
variables altering the decision outcome. Operating decisions are optimal for the
short-term and these conditions. This is in contrast to long-term or strategic
planning where historical, scenario-based or stochastic data may be used to
assess robustness of decisions against possible future conditions. Thus

forecasts of streamflow and demand are integral to sound decision-making.

Although forecasts are subject to uncertainty, they provide a better picture of
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future conditions than relying on historical averages, and moreover, the
predictive uncertainty can be quantified (Krzysztofowicz 2001). For example,
Sankarasubramanian et al. (2009) demonstrated that reservoir inflow forecasts
achieved better results for seasonal and intra-seasonal water allocation in
minimising reservoir spills and meeting end-of-season target storage. Wang and
Liu (2013) used operational inflow forecasts to simulate reservoir operation and
one- month-ahead hedging rules over a 10 year period, showing that they
resulted in less breaches of targets for end-of-month storage, water supply and
environmental demands than using historical average inflow and were mostly

comparable to simulations based on actual observed data.

A variety of methods exist to forecast seasonal or longer-term streamflow, which
fall generally into two categories: 1) statistical methods which derive
relationships between climatic indicators and streamflow, and 2) dynamical
methods which run hydrological models with forecast or historically sampled
climate variables (Wang et al. 2009). Dynamical methods can be further
classified as deterministic or probabilistic forecasts. Deterministic forecasts use
a single scenario of rainfall or climate to provide a single timeseries of forecast
streamflow, whereas probabilistic forecasts (ensemble streamflow prediction)
use multiple climate inputs (ensemble members) to produce multiple or
probabilistic flows (Wang et al. 2011). Multi-model ensemble streamflow
predictions provide further attention to model and parameter error uncertainty
by combining probabilistic forecasts from multiple climate and hydrologic
models (Block et al. 2009). Probabilistic forecasts better capture the potential
range of flows, based on uncertainty in climate projections and/or hydrological
models, allowing for more transparent and risk-based decision-making
(Krzysztofowicz 2001). Any of these forecasts may be ‘correct’; information is
only given about the expected probability of each flow estimate. Forecast skill
depends highly on initial catchment conditions, model, model user, location, and
time of year (van Dijk et al. 2013; Wang et al. 2011).

In order to use probabilistic streamflow forecasts, water managers must
determine how to integrate them into decision-making. Ideally all ensemble
members would be simulated for optimisation, especially where probabilistic
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objectives are desired, however this would result in an infeasible number of
simulation runs and Pareto fronts. Therefore is most practical to use a single
value or timeseries of the most probable flow, and to assess the impact of
uncertainty in flow, using simulation only, when evaluating options at the multi-
criteria analysis stage. At this point, uncertainty analysis of solution performance
using the probabilistic forecasts can provide some insight into the effect of input
conditions on the optimal decisions. This could involve either directly sampling
the probability distribution to obtain low, medium or high flow scenarios, or
where the criteria are probabilistic in nature, random sampling using Monte
Carlo simulation methods (Mannina and Viviani 2009; Vrugt et al. 2003; Yang et
al. 2005). An alternative or additional approach would involve using a few
streamflow possibilities, e.g. low, medium and high flows selected from the
probabilistic forecast or historic distribution, to generate multiple Pareto fronts.
These would then form multiple sets of options which would in turn need to be
assessed for performance under all the same flow scenario/s. This approach

would however multiply the simulation-optimisation computer run-time.

A number of methods have been used to forecast short-term demands, many
similar to those used for streamflow forecasting. Linear regression analysis is a
relatively straightforward technique that develops statistical relationships
between demand and a number of predicted variables. However this method
struggles with non-linear relationships and noisy data (Adamowski and
Karapataki 2010). Similarly, time series models relate forecasts to past values in
the timeseries. They do not consider climate data during the modelling process,
but are useful where such data is not available (Adamowski and Karapataki
2010). Artificial neural networks (ANNSs) are a learning algorithm used to
develop more complex non-linear relationships in a demand model, and have
been found to outperform regression and time series models in case study
comparisons (Adamowski et al. 2012; Bougadis et al. 2005). Donkor et al.
(2012) suggest that the forecast horizon and timestep are the key drivers to
selecting a demand forecast method and model; also of consideration is the
data available to represent the many variables that influence demand. They

consider that ANNs are the most commonly used for operational planning, and
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that probabilistic forecasting methods will help to improve decision outcomes.
Similar to streamflow, uncertainty in demand forecasts can be considered by
assessing multiple Pareto fronts or calculating performance against criteria

using uncertainty analysis.

Depending on the model input data, forecast streamflow and demand values
may not be on the time-step of the simulation model: a disaggregation method
may be required, e.g. from seasonal forecasts to a daily timeseries. This could
be achieved by selecting periods of the historical record that match the total
forecast value, or by developing statistical relationships between historic flow on
different timescales. For example, Abrishamchi et al. (2006) used a ratio of
long-term average monthly to seasonal streamflow to disaggregate their
seasonal streamflow forecasts to a monthly timestep for reservoir operation
modelling. Additionally, the forecast horizon may be shorter than the timeframe
of the planning period; in this case historical data will be required to extend the

time series.

The proposed framework emphasises streamflow and demand forecasts as
inputs to the simulation model, as they provide the best picture of possible
conditions to which decisions are to be applied. Rather than suggest here a
particular method, coordination with local hydrologists, climate scientists and
retail water authorities is encouraged to utilise existing forecasts or tools for the
case study regions. Preferably, these forecasts will include probabilistic
elements, so that uncertainty can be assessed. This is of particular importance
to streamflow. Where streamflow forecasts are not available, information about
expected climate outlooks may be used to select appropriate segments from the
historical record; or low, medium and high historical flow scenarios can be
tested. The impact of uncertainty in demand or streamflow can be considered
by using a limited number of flow scenarios as inputs to the simulation-
optimisation process to produce a number of Pareto fronts, and/or assessing
performance of criteria under select scenarios; this choice will depend on the

chosen criteria and the computer and time resources available.

5. Multi-objective optimisation
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Optimisation is the process of finding the option or options out of a range of
alternatives that performs “best” in terms of the objectives of interest to the
decision maker. The objective performance is assessed by the optimiser using
objective functions, which one may seek to minimise or maximise. Objectives
for water grid operational planning may include: minimising operating cost,
maximising security of supply or meeting environmental flows. The
corresponding objective functions may be, respectively, the sum of fixed and
variable infrastructure operating costs; total or average system storage for the
planning period; and the deviation of environmental flows from target values.
The objective functions may be subject to soft or hard constraints that are
represented in the simulation model or the optimiser, such as infrastructure
capacities, budget constraints, and minimum and maximum flow requirements.
The optimisation process involves changing multiple decision variables, which
represent choices or elements of the system, to produce the different
alternatives which are assessed by the objective functions. Decision variables
for the water grid may be the operating rules or releases or transfers from water
sources, for example the trigger storage volume in the reservoirs below which to
increase production of alternative sources, or the threshold difference between
regional storage levels at which to switch pipe direction. These decision
variables may be subject to constraints which limit the possible values of each
of the variables.

For multi-objective optimisation, improvements in the value of one objective
function, without degrading performance of the other functions will result in a
better solution. Such an improvement is called a Pareto improvement, and a
solution that is not dominated by any other solution is called a Pareto optimal
solution. Thus the aim of a multi-objective optimisation is to find a set of Pareto
optimal solutions, that approximate a Pareto front, a set of solutions that are
optimal in terms of all objectives. Where trade-offs exist between multiple
objectives, there will be no single optimal solution. These trade-offs can be
explored, and selection of a single option will depend on the value that one
places on each objective. In the water grid, a key trade-off might be that

between water security and cost, driven by the higher cost of manufactured or
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alternative water sources.

A number of algorithms for multi-objective optimisation exist, which differ in their
approach to searching the feasible decision variable space. These algorithms
may be available as computer source code or in toolboxes such as Matlab
(Mathworks 2011) and must be dynamically linked with the system simulation
model, or integrated into the system simulation software such as is the case for
Source IMS (Blackmore et al. 2009) and AquatorGA (Vamvakeridou-Lyroudia et
al. 2010). In water resources management, multi-objective optimisation has
been explored widely in long-term planning, system design, operations, and
parameter determination using genetic algorithms (Hincal et al. 2011; Nicklow
et al. 2010; Tolson et al. 2004), fuzzy methods (Yang and Yang 2010; Zarghami
2010), ant colony optimisation (Kumar and Reddy 2006; Maier et al. 2001;
Mortazavi N et al. 2009) and particle swarm techniques (Gaur et al. 2011,
Kumar and Reddy 2007; Reddy and Kumar 2009).

Evolutionary algorithms, of which genetic algorithms are a subset and most
common technique, have recently been applied to a variety of water resource
applications (Nicklow et al. 2010). These are based on simulating competitive
evolution with random mutation to explore the decision space. For each
iteration, the most successful ‘offspring’ (population) are chosen as the basis for
further mutation. This continues for a set number of iterations (generations) until
probable convergence is reached. The advantages of genetic or evolutionary
algorithms for optimisation (as compared to ‘classical’ techniques) lie in their
ability to find global optima in complex non-linear decision spaces by using
random search; many other techniques using point-by-point deterministic
searches will find only the local optima (Deb 2004; Rani et al. 2013). Genetic
algorithms can also handle discrete as well as continuous decision variables,
e.g. set operating possibilities. Thus, genetic algorithms have the flexibility to be
applied to a wide variety of decision variables and decision spaces. They also
allow utilisation of parallel computing resources, with parallel evaluation of
individuals in the population, as opposed to single solution search techniques
(Deb 2004; Sharif and Wardlaw 2000). Overall, genetic algorithms have shown

greater performance and speed than other techniques in determining optimal
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solutions for case studies of planning for complex water resource systems
(Jothiprakash et al. 2011; Mortazavi N et al. 2009).

With reference to the previously described nature of the water grid, there is a
high likelihood of a complex decision space and discrete decision variables.
Therefore a genetic algorithm is suggested for this framework, with preference
to those available in existing software tools. The non-dominated sorted genetic
algorithm (NSGA II) (Deb et al. 2002) is one of the most popular genetic
algorithms (Reed et al. 2013) and has already been applied and favourably
compared in many applications in water resource planning (Chang and Chang
2009; Fernandez Garcia et al. 2013; Shokri et al. 2013; Tabari and Soltani
2013). This popularity is reflected in its availability in the Source IMS water
supply planning tool (Welsh et al. 2013) which also has functionality for
simulation modelling. Thus the NSGA- Il application in Source is a suitable

candidate for application in this framework.
6. Simulation modelling

As discussed, multi-objective optimisation requires evaluating the value of the
objective function. For water resources management, most of this information is
typically obtained using a simulation model, which models the system response
to input conditions and forms the core of decision support. The simulation model
determines the effect of different decision variable values on the variables used
to calculate the objective functions. This combined interactive simulation-
optimisation is becoming a common approach to water resources management
(Rani and Moreira 2010).

The simulation models themselves may differ in the way they determine water
allocation and releases from reservoirs. Water allocation may be rules-based, or
they may have limited optimisation capabilities to efficiently allocate water on
each time-step by using techniques such as network linear programming.
Simulation models with such capabilities include REALM (Perera et al. 2005),
WATHNET (Kuczera 1997), Source IMS (Welsh et al. 2013), Riverware (Center
for Advanced Decision Support for Water and Environmental Systems 2011)

and WEAP (Stockholm Environment Institute 2011). Many simulation models
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have been linked to a multi- objective optimisation algorithm for water resources
planning. For example, Vamvakeridou- Lyroudia et al. (2010) integrated a
module of a multi-objective algorithm with the Aquator simulation software to
optimise a reservoir control curve; Kularathna et al. (2011a) have linked a single
objective optimisation algorithm tool OPTIMISR to the REALM software for
operational planning; Kularathna et al. (2011b) have linked a multi-objective
optimisation algorithm to REALM for long-term planning; WATHNET has been
linked to a number of algorithms for long-term planning (Mortazavi et al. 2012;
Mortazavi N et al. 2009); and a module for multi- objective optimisation has

been developed for Source IMS (Blackmore et al. 2009).

To support the needs of the proposed framework, a simulation model will ideally

have the ability to:

* link and inter-operate with a multi-objective optimisation algorithm
* run in an automated fashion for optimisation
« explicitly model the decision variables of interest

* generate data needed for calculating objective functions and criteria

performance measures

* handle multiple supply paths using optimisation or rules-based methods

* represent grid features such as wastewater recycling, desalination, and

two-way pipelines
Desirable features include:

» capacity for uncertainty/stochastic analysis

* an existing application to the case study with a calibrated and validated

model

If a currently implemented simulation model has most of these features then it is
the sensible choice. Otherwise, the Source IMS software tool is suggested as a
suitable and simple simulation candidate because it can meet the capabilities

outlined above, including fully integrated optimisation capabilities using NSGA
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Il, as well as limited Monte Carlo analysis functionality for uncertainty analysis
(Blackmore et al. 2009).

7. Multi-criteria analysis

The multi-objective optimisation process produces a Pareto front of optimal
solutions in terms of all objectives. These must be examined further to select a
final decision set which informs the operating plan. The aim is to select a
decision set that reconciles trade-offs in a way that represents the values of
stakeholders, balancing outcomes for different purposes (e.g. human and
environmental demands) and objectives, as well as meeting policy-based

targets.

Multi-criteria analysis (MCA) is a tool or framework that assists decision-makers
in identifying trade-off solutions, allowing for subjectivity and compromises in
the decision process. It involves ranking or scoring the performance of decision
options against multiple criteria. These criteria may be quantitative, semi-
guantitative or qualitative, and consider a range of factors outside the scope of
systems modelling. The MCA process facilitates communication of decision
options and their implications, allowing for more transparency and wider

participation in decision-making. MCA typically involves identifying:
« aset of decision options
* aset of criteria against which to assess these options

» performance measures to assess options against the criteria

weights to represent the importance of each criteria

The decision options will be obtained from the multi-objective optimisation
outcome, ie. decision sets on the Pareto front. For each point on the Pareto
front, the optimisation algorithm provides information about the objective
performance and the decision variables that were used. Determination of the
criteria, performance measures and weights is aided by the involvement of
stakeholders in the decision process. These criteria can be changed over time,

to reflect changes in policy and values. Criteria are the targets or objectives for
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short-term planning, examples of which include drinking water quality targets;
minimum environmental flows; operating cost; and level of service and risk
criteria as set out in long-term planning. The simulation model and the multi-
objective optimisation outcomes can provide data to help calculate the
performance measures. Criteria weights then allow performance measures to

be combined to a single score or ranking for each decision option.

MCA has been widely used as a decision support model in water resource
management. Commonly used methods include: multi-criteria value functions
(e.g. weighted summation), outranking (e.g. PROMETHEE, ELECTRE),
distance to ideal point methods (e.g. compromise programming, TOPSIS),
pairwise comparison (e.g. AHP), and fuzzy set analysis. For water resources
management, fuzzy set analysis (El-Baroudy and Simonovic 2004),
compromise programming (Geng and Wardlaw 2013), AHP (Chung et al. 2011),
ELECTRE (Bolouri- Yazdeli et al. 2014), and PROMETHEE (Mutikanga et al.
2011) have been the most popular (Hajkowicz and Collins 2007). These
methods have been used both standalone and in combination with multi-
objective optimisation models, and have been widely applied in policy
evaluation, strategic or long-term planning, and infrastructure selection
(Hajkowicz and Collins 2007). Hajkowicz and Higgins (2008) compared the
performance of a range of methods for six water management decision
problems and found strong agreement between methods on the outcome of the
decision process. They suggested that thoughtful structuring of the decision

problem and understanding of the method used was most important to success.

For this framework, a simple to use MCA methodology is desirable, allowing for
frequent updates in criteria and preferences as they change with each
operational planning cycle. Hajkowicz and Higgins (2008) found that weighted
summation was in agreement with other methods but is relatively easy to
understand and use, able to be modelled with a simple spreadsheet. Hence,
unless a technique is already well known or used by the water grid manager,

weighted summation is suggested as the method for MCA in this framework.

Dependent on the population size of the genetic algorithm, the Pareto front may
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contain too many solutions to feasibly evaluate in multi-criteria analysis, so a
representative subset may be chosen. This can be done by clustering solutions
in terms of their performance against the objectives, either by visual means or
using a cluster analysis algorithm (Zio and Bazzo 2011). K-means clustering is
a simple and widely used clustering method which assigns data points to non-
overlapping clusters, represented by their centroid or mean (Wu 2012). The
user specifies the number of clusters, k, to be located by the clustering
algorithm, and the centroids are optimised based on the least squared distance
of the clustered data points. In this application, a variation, k- medoid clustering,
would be used to restrict cluster centroids to a member of the dataset so that a
feasible decision variable set is selected. Thus this framework may incorporate
k-medoid clustering into the methodology, when needed to easily reduce the

number of decision options for assessment.
8. Implementation of the framework

This framework will be demonstrated for a case study based on features of the
South East Queensland Water Grid in Australia. This grid includes major
reservoirs, a desalination plant, potable recycled water treatment plants, two-
way pipelines connecting these supply sources and the major demand centres,
as well as various local surface and groundwater supply schemes. The case
study will use the Source software tool (Welsh et al. 2013), which is capable of
integrated simulation and multi-objective optimisation using genetic algorithm
NSGA-II (Blackmore et al. 2009). The Source software tool also has basic
functionality for Monte Carlo analysis, which can be used for analysis of
uncertainty surrounding potential operating plans due to the forecast inputs.
Inputs will include locally available streamflow forecasts, demand forecasts, and
initial and forecast infrastructure conditions. Management objectives include
minimising cost and maximising water security, and decision variables include
storage volume trigger values in operating rules for manufactured water
production and pipeline direction. Multiple streamflow scenarios will be used to
assess the impact of uncertainty on decision set performance. Multi- criteria

analysis using weighted summation, as well as stakeholder engagement, will
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aid in identifying objectives, criteria, weights and performance measures to
derive an optimal set of operating rules which can form the basis of an

operating plan.
9. Conclusions

This paper identified challenges and suggested a gap in decision support for
water grid management. This triggered the development of a framework of
methods to better support short-term operational planning of water grids. The
framework is tailored for the needs of water grids and operational planning by
explicitly considering multiple objectives, complex and heterogeneous water
supply systems, and forecast conditions. The framework has the flexibility to
consider a range of decision variables and objectives, and for these to change
between planning cycles. The framework can be applied to any case study, with
the methods or tools adapted to suit.

Specific methods have been suggested for each of the framework elements.
Previous applications of these methods indicate they have the capabilities to
meet the desired outcomes of each stage of the framework. Multi-objective
optimisation, coupled with a simulation model, allows for the exploration of
many possible operating rules or decisions and quantification of the outcomes
in terms of the objectives of interest. The use of forecast inflows and demands
allows decisions to adapt and be tailored to the expected conditions.
Uncertainty analysis or multiple scenarios of flow and demand using
probabilistic forecasts provides information on the possible range of
performance against management criteria. Multi-criteria analysis and
stakeholder engagement provide flexibility and transparency in decision-making

by exploring and reconciling trade-offs inherent in the decision possibilities.

Thus this paper has provided proof of concept of a framework to be applied to
short-term planning for water grids. It is recommended that application of this
framework and its methods can improve decision-making in water grid
management. However, this framework is not intended as a ‘black-box’: whilst
specific methods and tools have been suggested, thought needs to be given in

their implementation and interpretation, as well as to what is appropriate for the
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case study. The complexity in models and data need only be at a level suitable
to give an adequate understanding of the supply system. This is especially true
for forecast streamflows and demands, as these need to be used with an
understanding of their assumptions and capabilities. Thus, familiarity with both
the system and the tools used are required. Ultimately, the framework is a
decision support tool, allowing numerous options to be identified and quantified,
and the trade-offs and contingencies inherent in the choices to be considered

when making a final decision.
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Chapter 3: Case study

The previous chapter identified a framework of methods and tools to assist
operational planning of water grids that satisfied the first three research
guestions in Section 1.2. The literature review in Chapter 2 provided a proof-of-
concept that the proposed framework and methods can meet the challenges
and needs of water grid management. However, a case study is required to help
demonstrate the fourth research question, namely:

5. Does this framework actually provide the required outcome when

implemented for a case study?

This research question can be answered by applying the methods and tools
recommended for each of the framework components in Chapter 2, to a case
study. This case study is based on the SEQ Water Grid, with some details and
processes simplified for the purposes of this research. Information about the
SEQ Water Grid is used to develop a case study to demonstrate the methods
and tools of the framework in Chapters 4-7. This chapter provides a brief
overview of the South East Queensland Water Grid, its system characteristics
and current short-term operational planning process. It is this short-term
operational planning process that is the focus of this research. Further details of
the case study — e.g. the simulation-optimisation model, operating rules,
objectives, criteria, decision variables, and input data — are provided in
Chapters 4-7.

3.1 System Characteristics

The South East Queensland (SEQ) Water Grid serves 3.1 million people in the
south east region of the state of Queensland, Australia. It is designed to provide
water security in the face of drought, future climate changes, and population
growth. The water grid consists of 26 dams, both on- and off-stream; 2
borefields; 51 weirs; 3 advanced water treatment plants that provide purified
recycled water to drinking quality standards; 37 water treatment plants; 18

service reservoirs; a desalination plant; 22 pump stations; and 600km of bulk
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water supply pipelines. One- and two-way pipelines link water supply systems
extending from Sunshine Coast in the north, to Gold Coast to the south, and
Stradbroke Island to the east. With the implementation of this infrastructure in
2008, the water grid resulted in a 14% increase in the system yield compared to
the previously disconnected water supply systems (Queensland Water
Commission 2009). The connection of supply systems also necessitated
restructure of management institutions, with 17 separate management entities
being replaced by a single bulk water authority (Seqwater) and five water
retailers. The SEQ Water Grid is illustrated in Figure 3.1.
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Figure 3.1: South East Queensland Water Grid regional extent and key

infrastructure. The legend is provided on the following page. © Seqwater
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3.2 Short-term operational planning

Current at May 2014, short-term operational planning of the SEQ Water Grid is
governed by the System Operating Plan (SOP) (Queensland Water
Commission 2012). The SOP provides hydrological guidance to the Queensland
Bulk Water Supply Authority, Seqwater, for optimum use of storages and
manufactured water within the grid, including key infrastructure operating rules
and water security criteria. It also sets out the need for an Annual Operations
Plan (AOP). The AOP is developed by Seqwater every 6 months and
demonstrates how it intends to meet forecast water demands for the next 12
months (Seqwater 2014). The plan involves assessing the current status of the
grid, and developing and comparing a number of alternative operating options

that consider:
* expected hydrological conditions based on the climate outlook
« forecast demand scenarios

« compliance with water security criteria and operating rules outlined in the
SOP

* current infrastructure capabilities and constraints, including maintenance,

recommissioning or decommissioning

* water quality issues or constraints
 reliability of system infrastructure and vulnerability to failure
* operational cost

Assessment of operating options is undertaken using the South East
Queensland Regional Water Balance Model (SEQRWBM). The SEQRWBM
consists of a WATHNET (Kuczera 1997) model with Excel interface, and is used
to simulate the behaviour of the water grid over the next 5-10 years, on a
monthly timestep, using single or multiple stochastic scenarios of inflow. An
operating option is chosen for implementation from amongst the alternatives,

based on its ability to provide an appropriate balance between water security
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and cost criteria for expected inflow and demand conditions, whilst meeting
system constraints. This operating option guides operations over the next 12
months, and outlines operating modes or operating rules for key infrastructure
such as the direction and flowrate in two-way pipelines, production of
desalinated and potable recycled wastewater, and target storage levels.
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Chapter 4: Multi-objective simulation-
optimisation

Chapter 2 presented a framework for short-term operational planning of water
grids, and Chapter 3 introduced a case study which will be used to test that this
framework provides the desired framework outcome. This chapter examines the
multi-objective simulation-optimisation components of the framework in more
detail, as highlighted in Figure 4.1, and demonstrates their application to short-
term planning for the case study. This is expected to result in a Pareto-optimal
set of operating options, which forms the input to the next part of the framework.
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Figure 4.1: The framework for short-term operational planning of water grids,
highlighting the components relating to multi-objective optimisation, covered in
this chapter.

As the South East Queensland Regional Water Balance Model is not available
for reuse, its input data and network schematic, as well as publicly available
data such as storage characteristics and the Annual Operating Plan, are used to
build a new simulation-optimisation model tailored to demonstrating the

framework.
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This chapter contains the following journal paper, which demonstrates the

components of the framework highlighted in Figure 4.1:

Ashbolt, S. C., Maheepala, S., and Perera, B.J.C., 2016, 'Using
Multiobjective Optimization to Find Optimal Operating Rules for Short-
Term Planning of Water Grids', Journal of Water Resources Planning and
Management, 04016033, ASCE.
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Chapter 4: Multi-objective simulation-optimisation

Using Multiobjective Optimization to Find
Optimal Operating Rules for Short-Term Planning
of Water Grids

Stephanie C. Ashbolt; Shiroma Maheepala; and B. J. C. Perera

Abstract: Water grids are emerging as a means to address water scarcity in
urban areas. These water grids are more complex than traditional supply
systems, bringing new challenges to water-grid management. This paper seeks
to address these challenges by demonstrating the capability of multiobjective
optimization to aid in short-term operational planning for water grids. A
framework for applying multiobjective optimization to short-term operational
planning is demonstrated for a case study based on the South East Queensland
Water Grid in Australia. The aim of the case study application is to find short-
term (1 year) operating rules that maximize water security, minimize operational
cost, and minimize spills from reservoirs. The results of the optimization process
are a number of operating options, comprising sets of operating rules that
perform optimally in terms of the objectives. The range of operating rules and
objective performance found in the optimization process allows the decision-
maker to explore the trade-offs in decision-making and to choose a set of

operating rules based on their preferences on the management objectives.

Author keywords: Multiobjective optimization; Operational planning; Short-
term planning; Simulation; Urban water management; Water grid; Water supply

planning.
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1. Introduction

Water grids are interconnected regional-scale water supply systems that aim to
increase water supply yield, security, and resilience. They build on traditional
catchment-based surface and groundwater supply systems by establishing
alternative water sources such as desalination and wastewater recycling, and
by connecting these sources across catchments with one-way or two-way
pipelines. This creates a diversity of water supply options, each of which will
perform differently in terms of management objectives such as maximizing
water security and minimizing cost. The objective performance of the supply
options will also vary depending on system conditions such as inflows, storage
levels, and infrastructure constraints. To guide the operation of the water grid,
water grid managers need to develop short-term operating plans every 3-12
months that identify operating rules for key infrastructure over the next 1to 5
years. These operating rules will in turn inform the operating decisions made on
a monthly or submonthly basis. The operating rules should perform optimally in
terms of multiple management objectives and for the expected system
conditions, without compromising longer-term performance. Thus decision-
makers require decision support systems that can negotiate this complex
decision and objective space to identify optimal operating rules for short-term

planning for water grids.

Previous studies have indicated the potential of multiobjective optimization to
optimize operating rules for water supply networks. On the short-term planning
timescale, multiobjective optimization has been applied to optimize operation of
single reservoir (Giuliani et al. 2014) and multireservoir systems (Kumphon
2013; Schardong and Simonovic 2015; Smith et al. 2015). However, in
multireservoir system applications, single-objective optimization is more
commonly employed (Hincal et al. 2011; Li et al. 2014; Vieira et al. 2011). For
the water grid, some current operational plans use single-objective optimization
or scenario modeling to identify operating rules (Kularathna et al. 2011;
Seqwater 2014), but multiobjective optimization has been applied only on the

long-term planning timescale (Cui et al. 2013; Paton et al. 2014). There has
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been no reported application of multiobjective optimization to short-term
operational planning for water grids and limited demonstration of how to
integrate multiobjective optimization into real-world decision-making (Maier et
al. 2014).

Thus the current paper seeks to demonstrate the application of multiobjective
optimization to short-term operational planning for water grids. It is proposed
that multiobjective optimization can assist decision-makers in navigating the
complex decision space to find operating rules that are optimal in terms of the
management objectives. These optimized operating rules are expected to
improve objective performance compared to the use of longer-term operating
rules, since the operating rules are updated and optimized to the expected
conditions. Multiobjective optimization also allows the decision-maker to explore
a variety of possibilities in terms of the decision and objective space and
consider the trade-offs in decisions, reducing policy myopia (Giuliani et al. 2014;
Wu et al. 2010). However, multiobjective optimization can present challenges in
its application. To this end, a framework for short-term optimal operational
planning for water grids was proposed in Ashbolt et al. (2014). This paper
demonstrates the core multiobjective optimization components of this
framework, for a case study based on the South East Queensland Water Grid in
Australia. The objective performance of the resulting sets of optimal operating
rules are evaluated and compared to rules-based operation based on long-term

operating rules.
2. Framework

A framework for short-term operational planning for water grids is shown in
Figure 1. This framework is updated from the framework described in Ashbolt et
al. (2014). This paper tests the multiobjective optimization components of the
framework, shaded in Figure 1. The aim of these components is to optimize the
operating rules for the short-term planning timeframe. The multiobjective
optimization process involves (numbers and letters indicate elements in Figure
1):

* Problem formulation (2): identifying the (a) objectives of relevance to the
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decision-maker and other stakeholders and (b) objective functions that
guantitatively describe objective performance; the (c) operating rules that
are to be optimized; (d) decision variables that comprise the operating
rules; and (e) a system depiction that identifies and describes the
infrastructure to be included in the analysis. Stakeholder engagement (1)
can be used to aid the problem formulation, but is not covered in this

paper.

« Simulation (3): developing a system simulation (3) model representing
the water supply system according to the system depiction, and including
the operating rules, decision variables, any constraints, and (depending
on the particular simulation model) the objective functions. Inputs to the
simulation model include (e) infrastructure conditions, (f) forecast
demands and inflows, and (g) any additional operational data required to

compute the objective functions.

« Optimization (4): configuring a multiobjective optimization (4) algorithm
that dynamically links with the simulation model to optimize system
operating rules with respect to the objective functions by trialing
alternative decision variable values within a user-defined range. The
objective functions may be calculated by the optimization algorithm if

they are not determined by the simulation model.
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Figure 1: Framework for optimal operational planning for water grids;
components covered in this paper are shaded; rounded rectangles (numbered)
indicate decision processes; parallelograms (lettered) indicate decision inputs;
arrows indicate interactions between components (adapted from Ashbolt et al.
2014).

The output of the multiobjective optimization process is a Pareto-optimal set of
operating options (Pareto set). Each operating option comprises a set or vector
of decision variables with associated objective function performance for the
planning time period. These decision variables comprise the operating rules.
Whilst not covered in this paper, the framework recommends that the decision-
maker then use a combination of cluster (5), postoptimization (6), and visual
analysis (7) to identify a shortlist of operating options. These can be assessed
against additional management criteria in multicriteria analysis (8) and
preference weights on these criteria are used to choose an operating option that

will form the basis of the operational plan (9).

Ashbolt et al. (2014) suggest suitable tools and processes to implement the
components of the framework, based on ease-of-use and flexibility. The
suggested tools are used in the case study presented here, described in the

following sections. However, existing tools can be used where possible,
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assisting the transfer of knowledge and providing consistency across planning
timeframes and processes. A key example of this is the use of existing
simulation models, which assists in gaining trust in the simulation-optimization
process (Basdekas 2014). Since short-term operational plans must be updated
on a regular basis, the decision- maker has the opportunity to regularly refine
and update the process, learning more about the problem formulation and the

tools over time.

The following section describes the case study. Subsequent sections describe
the framework components and their application to the case study. This is
followed by presentation and discussion of the Pareto set resulting from the
multiobjective optimization process, including a comparison to the performance,
for the planning period, of base-case operation using existing longer-term

operating rules.
3. Case Study

The case study is based on the water grid in Southeast Queensland, Australia.
This water grid supplies 3.6 million people and aims to provide water security
and climate resilience in the face of drought, future climate changes, and
population growth. These aims are achieved through the use of diverse water
sources including surface and groundwater supplies, a wastewater recycling
scheme, a desalination plant; and the use of two-way pipelines to link
catchments and water sources to demands across the region. This creates a
diverse and highly interconnected system. A simplified version of this system
used as this case study, based on information obtained from publicly available
documents and directly from the water supply managers. While every effort has
been made to represent the key elements of the real-life water grid,
simplifications have been required in the problem formulation and simulation
model. Due to these simplifications, the results of this case study should not be
compared directly to operation of the actual system.

Current operational plans in South East Queensland have a 1-year horizon, with
impacts of operating decisions on the objectives assessed over a longer period

of 5 years (Seqwater 2014). These plans are updated every 6 months.
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Therefore a 5-year planning period is used to apply the framework to this case
study. In other words, the operating rules are optimised for 5 years; the chosen
operating rules can then be implemented for the 1 year planning period. It would

be expected that the framework would then be reapplied every 6 months.
4 Problem Formulation

The problem formulation forms the basis of the system representation in the
simulation model and determines the objective functions and decision variables
to be used by the optimization algorithm. The problem formulation includes
developing a system depiction of the case-study system to be optimized, and
identifying the operating rules, decision variables, and objectives and objective
functions that govern its operation. This process may be repeated iteratively as
the decision-maker gains new insights from the multi- objective optimization
process (Kasprzyk et al. 2012). The problem formulation is also informed by the

planning timeframe that is used.
4.1. System Depiction

Figure 2 provides an illustration of the case study supply—demand network. This
network corresponds to the infrastructure considered in current Southeast
Queensland operational planning, but with aggregation of some pipelines and
demands. Supply sources include 28 dams and weirs, 3 borefields, a
wastewater recycling scheme, and a desalination plant. The wastewater
recycling scheme involves treatment of wastewater to potable quality. This
water is supplied to the major reservoir, Wivenhoe Dam, when the dam levels
are low. At other times, it is supplied to industrial demands. These sources are
connected to demands across the region by a network of seven two-way

pipeline interconnectors, one-way pipelines, and streams.

Ashbolt, S.C.: Short-term operational planning of water grids 71



Chapter 4: Multi-objective simulation-optimisation

NOOSA
MacDonald

L

SUNSHINE
Sunshine

Wivenhoe-
Croshy

MAROOCHY
Cooloolabin

NORTH PINE ,

L3

Herring
Lagoon
North

\. Stradbroke
Leslie
i Harrison

EDLANDS

o o oo o m om

e

#

-
-~

L]
.

Desalinations
]

'
i
: Hinze n
=L y  Little :
; Merang l :
Somerset 1 e
. » LY GOLD COAST »
- BRISBANE e mewmm o omowm o=
L 'ResermirfDam
e Groundwater
A . SEFRACRE R . Borefield
! Toowoomba P 4 4 _
; Cressbrook |; _( A .We|r
1
. ' South . Water
il ! Maclean e
5 Ccr‘oee?: Perserverance ' '
o TOOWOOMBA "' ' i % REGION
e mmmma Logan 1 : Pipeline
g A . { i
1 | Moogerah : : Bromelton = ' | < TUE-REY >
U 0SS | aroomn | 4 D -
i Ripeline]
K 5
- Moagereu’l* i Wyaralong iimmon ’ Stream
[ | *
’ BREMER ¢ . LOGAN r

Figure 2: South East Queensland Water Grid network as simplified and

represented in the system simulation model
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4.2. Operating Rules

Operating rules govern system behavior and state the actions to be taken as a
function of variables such as hydrological conditions and storage volume (Lund
and Guzman 1999; Oliveira and Loucks 1997). For traditional catchment-based
surface water supply systems, the aim of these rules is usually to maximize
available stored water and minimize chance of spills or flooding from the
system, while meeting policy and regulatory constraints. Such rules may

include:

» Storage targets: volumes to be maintained/reached in reservoirs;

+ System-wide release rules: volumes to be released from reservoirs;
* Allocation rules: dividing releases between multiple demands;

* Hedging rules: allowing deficits now to minimize deficits later;

* Space rules: equalizing volume in multiple reservoirs with respect to

anticipated refill;

* Flood control rules: balancing flood storage volumes;

* Demand-dependent storage rules: maintaining volume relative to

demands; and

* Hydropower production or energy storage rules: minimizing loss of

potential energy.

For the water grid, reservoir operation would still be managed using storage
rules similar to those listed in the preceding paragraph. Firstly, however, bulk-
level water supply rules are needed to govern supply, transfer, and allocation
across the water-grid region, and the production of alternative water sources
such as desalination. These bulk-level operating rules then influence the
operation of reservoirs within the catchment. It is these bulk-level rules that are
the focus of the case study presented here, and releases from reservoirs are
guided by the bulk-level rules. Where there is a choice between reservoirs and

this choice is not specified by the bulk-level rules, water will be drawn evenly
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from these reservoirs to maintain an equal ratio of volume to capacity.

Thus the aim of the case study is to optimize bulk-level operating rules for the
key grid infrastructure, namely the two-way pipeline interconnectors,
wastewater recycling scheme, and desalination plant. Operation of this
infrastructure is determined by the capacity of the surface water storages and
will determine the volume to be drawn from the storages. The format of these
operating rules are based (where available) on operating rules and policies
used in current South East Queensland Water Grid short-term operational
planning (Seqwater 2014). These operating rules are shown in Figure 3, in the
callout boxes attached to the infrastructure they govern. This figure is drawn
from the same network shown in Figure 2, but shows only the infrastructure
relevant to the operating rules, and only the operating rules that are to be
optimized. The operating rules are storage-dependent rules that specify the
percentage of surface water storage fullness (ratio of current available volume
to capacity), or the difference between storage fullnesses in reservoirs that
trigger a change in the operating mode, production volume, or flow rate of the
infrastructure. Different configurations of these operating rules will form the
different operating options that result from optimization. Figure 3 also shows the
decision variables that constitute these operating rules, discussed in the next

subsection.
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A base-case operating option is also identified for the case study so that the
objective performance of operating options found in the optimization process
can be compared to rules-based operation using existing operating rules. These
operating rules are represented by inserting fixed values in place of the decision
variables in the operating rules shown in Figure 3. These fixed values are drawn
where possible from operating rules or policy in the current South East
Queensland operating plan (Seqwater 2014). These base-case operating rules
have generally been formulated to perform well over the longer-term and for a
range of possible conditions. Thus it would be expected that optimizing these
rules for the current or expected conditions would improve performance. Table 1
shows the values used to replace the decision variables to represent the base-

case operating rules.
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Table 1: Values Used to Replace the Decision Variables in the Operating Rules

to Create Fixed Operating Rules to Represent the Base Case of Rules-Based

Operation

Decision Decision variable name Base case

variable (rules-based
operation) (%)

A Desalination Full Threshold 40

B Desalination 2/3 Threshold 50

C Desalination 1/3 Threshold 60

D Potable Recycled Water (PRW) Threshold 40

E Northern Pipeline Interconnector (NPI) Threshold 50

F NPI Flowrate Threshold 60

G Southern Pipeline Interconnector (SPI) Threshold 50

H SPI Flowrate Threshold 60

I Eastern Pipeline Interconnector (EPI) Threshold 60

J EPI Flowrate Threshold 60

K Brisbane to Nth Pine Threshold 50

L Brisbane to Nth Pine Flowrate Threshold 60

M Maroochy to Baroon Threshold 50

N Ewen Maddock to Baroon Threshold 50

O NPI 2 Threshold 50

P NPI 2 Flowrate Threshold 60

4.3. Decision Variables

The decision variables are variables that can be altered by the optimization

algorithm to alter the operating rules, e.g., the trigger points that change the

operation of infrastructure. These should be numerical, but can be either

discrete (a set of values) or continuous (a range of values). For this case study,

the decision variables are the thresholds of storage fullness in the operating

rules that trigger the changes in operating mode, production volume, or flow

rate. There are 16 decision variables in total, forming a decision variable set or

vector of [A, B, C, ... P]. The decision variables are identified alongside the
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operating rules they comprise in Figure 3, with one decision variable for each
operating rule. For the purposes of optimization, these decision variables are
unconstrained, with feasible continuous values ranging from 0 to 1

(representing 0 to 100%).
4.4. Objectives and Objective Functions

The aim of the multiobjective optimization process is to find operating rules that
perform optimally in terms of the management objectives. Objective
performance is represented by objective functions, which in turn depend on
information reported by the simulation model. Management criteria for short-
term operational planning in South East Queensland currently include water
security and operational cost. Proposed operating rules are also assessed for
their potential to minimize flood risk or spills from storages, meet environmental
flow and water quality targets, and minimize energy use (Seqwater 2014).
Three of these concerns are included as objectives in this case study:
maximizing water security, minimizing operational cost (including energy cost),
and minimizing spills from reservoirs. Environmental flows are also included as
minimum flow requirements or constraints within the model. It is anticipated that
environmental flow, water quality, and energy-use criteria will be considered as
part of multicriteria analysis after optimization. Objective functions have been

identified for the three objectives as follows.

The first objective is to maximize water security. Operational plans for the South
East Queensland water grid do not include an explicit water security objective,
but water security concerns are expressed through level of service criteria and
risk criteria (Queensland Water Commission 2012). The key aim of these
criteria is to avoid low levels of system storage. Thus, this case study includes
an objective of maximizing the minimum surface water-storage volume
experienced over the planning period. This objective is represented by
maximizing an objective function determining the minimum storage volume as

shown in Equation 1:

MinimumSystemStorage =min( SystemStoragefort=1, ..., T) Eq. 1
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where t is a time-step of the planning period of length T; and System Storage is
the sum of storage volumes in the surface water storages (megalitres) for the

time-step t.

The second objective of minimizing operational cost can be represented by an
objective function summing the total cost of infrastructure operation on each
time-step. Costs for this case study come from the same source used in South
East Queensland (SEQ) operational planning, the Final report SEQ grid service
charges (Queensland Competition Authority 2012). This report includes flow-
based costs of major infrastructure elements such as pumping stations,
treatment plants, and manufactured water sources. Since these costs include
the cost of energy use, minimizing cost could also reduce energy consumption.
Cost data are not available for switching direction in the pipeline, which will
incur labor and other costs and thus in reality would affect the operational cost.
Therefore a nominal value of AUS $40,000 per switch in pipeline direction is
included in the objective function to avoid frequent switches. Checks confirmed
that this nominal cost was sufficient to avoid frequent switching of pipeline
direction in the planning period. The total cost objective function adds the costs
for each time-step to reach a total cost for the time period as shown in Equation

2:

T

TotalCost= Y[ Y Unit Cost * FlowRate + Y $ 40,000 * Switch] Eq. 2

t=1 f€F pEP

where t is a time-step of the planning period of length T; fis a node or link in the
network (e.g., treatment plant, pumping station, or desalination plant) of the
entire set F with a unit cost ($/ML) and flow rate (ML/day); and p is a two-way
pipeline in the entire set P with a cost ($) assigned to each Switch in direction.

The third objective is to minimize spills from the reservoirs in order to reduce the
risk of flooding as well as place a value on surface water that might otherwise
be spilled due to the effect of the minimum storage objective. This objective is
expressed as the objective function in Equation 3, which adds the spills for each

time-step to determine a total spill volume for the time period :
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T

TotalSpillVolume = Z

t=1

Z Spill Volume

r€R

Eq. 3

where t = time-step of the planning period of length T; r = reservoir of the entire

set R; and Spill volume is given in ML.

No bounds (constraints) are put on the values of the objective functions to be
considered by the optimization model. Additionally, due to the simplified nature
of the case-study system, the values of the resulting objective functions should
not be considered as representative of the real system, but used for

comparative purposes only.
5. Methods and Techniques

5.1. System Simulation

System simulation software is needed to model the behavior of the water grid
network under a set of operating rules. In the background framework paper
(Ashbolt et al. 2014), Source (Dutta et al. 2013) was suggested as a suitable
system simulation (and optimization) software tool for the purposes of the
operational planning framework. Source is capable of modeling a variety of
urban water supply system features in a node-link format, and also includes
modules for integrated multiobjective optimization, catchment rainfall-runoff
modeling, and river management. A function editor can be used to create
functions to determine or represent the operating rules, decision variables, and
objective functions. These functions can call upon system variables or other
functions to determine their value and can be applied to the relevant nodes or
links in the network. The optimization module interrogates the functions that
represent decision variables and objective functions to perform the optimization.
Given the capabilities of Source, this software tool was chosen to simulate (and
optimize) the water grid for this case study.

A simulation model was constructed, using Source, to represent the case study
as per the node-link network in Figure 2. Given the relatively short assessment
period of 5 years, a daily time-step was chosen for simulation. This also allows

the behavior of smaller storages such as weirs to be represented. Monthly

Ashbolt, S.C.: Short-term operational planning of water grids 80



Chapter 4: Multi-objective simulation-optimisation

inflow time-series and average monthly demand, sourced from current SEQ
models, were disaggregated to a daily time-step with equal weighting. A 5-year
period of the available modeled data, namely January 1, 2001, through
December 31, 2005, was chosen as the inflow scenario, with initial conditions
based on a long-term simulation ending at January 1, 2001. This time period is
of lower flow conditions than average, with a mean flow of 9,961 ML/month
compared to 37,958 ML/month for the whole period of available inflow data from
July 1890 to June 2007. This would be expected to place the system under
stress. Ideally, operating rules would be optimized across multiple inflow and/or
demand scenarios; however, this significantly increases the model run time. For
this paper, a single-scenario optimization is deemed sufficient for the framework
proof-of-concept. Simulation can be used to assess performance of the

operating rules against multiple inflow scenarios.

The simulation model also includes minimum environmental flow demands,
storage losses, in-stream losses, storage-based restrictions on medium-priority
demands, and diversions to off- stream storages. Functions were created to
represent or calculate the decision variables, objective functions, and operating
rules. Network Linear Programming using the RELAX IV algorithm (Bertsekas
and Tseng 1994) is used to manage orders along multiple supply paths and

implements the reservoir operating rules of equal draw-down of storages.

In order to compare the objective performance of optimized operating rules to
the performance of rules-based operation using longer-term rules, the
simulation model was used to determine objective performance of the base-

case operating option using the existing operating rules outlined in Table 1.
5.2. Multiobjective Optimization

The multiobjective optimization process is an attempt to find operating options
that are optimal in terms of the objective functions, by trialing different values of
the decision variables that comprise the operating rules. The result of this
process is a Pareto set of non- dominated operating options where no one
option is better than any of the others in terms of performance against all

objectives. In other words, for any given option, no other option will give an
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improvement in any of the objectives without sacrificing performance in another
objective. This a posteriori approach allows for full consideration of the trade-
offs in objective performance before articulating preferences on the objectives
(Blasco et al. 2008; Zio and Bazzo 2011). This is particularly useful as it can be
difficult to articulate preferences when the range of feasible objective

performance is not known.

A genetic algorithm is used for optimization of the case study, as suggested in
the background framework paper (Ashbolt et al. 2014). Genetic algorithms
perform well when solving complex, nonlinear, and discontinuous problems
since they have the ability to perform both exploration (global search) and
exploitation (local search) of the search space and can exploit parallel
computing to reduce run time (Nanda and Panda 2014; Reed et al. 2013).
Genetic algorithms also do not require simplification of the optimization
problem, so they can be linked directly to a simulation model. For this reason,
they have been used widely in conjunction with simulation models in water-
resource planning (Nicklow et al. 2010; Peralta et al. 2014). The ability to use
existing and trusted simulation models can provide greater confidence in the
results as well as a link to other planning processes through a common

representation of system behavior (Labadie 2004).

The particular genetic algorithm used for this case study is NSGA-II (Deb et al.
2002), which has been used previously to optimize water supply operating rules
for multiple objectives (Giuliani et al. 2014; Peralta et al. 2014), and performs
well across a range of optimization problems (Wang et al. 2014). The NSGA-II
algorithm is available in the Source software tool also used for simulation of this
case study. The algorithm is linked directly to the simulation module. The default
settings for the NSGA-Il Source implementation were used. The default settings
are a crossover probability of 0.9, mutation probability of 0.5, crossover
distribution index of 5, mutation distribution index of 10, and a random seed for
the first generation. Due to the random seed used, five optimization runs were
undertaken, with five random seeds. The nondominated solutions from these
five Pareto sets are then combined. A population of 200 and 150 generations
were used for each seed, as inspection of the hypervolume (Zitzler and Thiele
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1998) indicated this to be more than sufficient to converge on a well-distributed
Pareto set. Ideally, the parameters of the NSGA- Il algorithm would be
calibrated to this problem, but the emphasis here is on proof-of-concept and
user-friendly tools that can be implemented without expert knowledge. The
population size is considered the key parameter to influence the reliability and
efficiency of genetic algorithms, with the influence of algorithm parameters
being most evident when the computational budget is limited (Deb 2001; Gibbs
et al. 2015).

6. Results and Discussion

The result of a multiobjective optimization process is a Pareto set of non-
dominated operating options. Applying the case study problem formulation and
method described in the previous sections, a Pareto set of 677 non-dominated
operating options was obtained from a total set of 1,000 options found from the
five optimization runs. This Pareto set of operating options is optimal in terms of
the three objectives of maximizing minimum surface water storage, minimizing
operational cost, and minimizing spill from reservoirs, for the 5-year planning
period (2001-2005). This Pareto dataset and source code for the following
figures are available at https://github.com/StephanieCA/OptimisationWaterGrid.

Each of the operating options of the Pareto represents a set of 16 decision
variable values comprising the operating rules. The objective performance and
trade-offs of the Pareto set are shown in two-dimensional plots for pairs of
objectives in Figure 4. The performance of the base-case operating option
(rules-based operation), determined by simulation of fixed operating rules, is

also shown in these figures as a large circle.

Figure 4(a) shows that there is a fairly linear trade-off between increasing
minimum system storage and increasing total cost. However, this increase
occurs in roughly three bands of minimum storage for cost. The grayscale
shading indicates that total spill increases with minimum storage across these
bands. While there is some increase in spill with minimum storage and cost,
these bands indicate that a number of operating options have similar cost but

different minimum storage and total spill. This suggests that different
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proportions of the high-cost water sources are being used for similar cost, with

each source having different or conflicting impacts on the storage and spill.

Figure 4(b) shows that a clearer relationship exists between minimum system
storage and total spill. For operating options with lower volumes of minimum
storage, there is only a slight increase in spill with minimum storage. However,
there is an inflection point beyond which there is a strong trade-off of increasing
minimum storage for increasing total spill volume. This implies that for the
operating options below this inflection point, a significant portion (in volumetric
terms) of the surface water storages remain below capacity. For operating
options beyond the inflection point, the increase in minimum storage places
storages closer to capacity, resulting in higher quantity of spill. As for Figure
4(a), the grayscale indicates that cost varies significantly with spill and minimum
storage, but that higher cost (lighter gray/white) is associated with higher spill

and minimum storage.

Figure 4(c) shows a more-complex relationship between total cost and total
spill. In the preferred region of lowest spill and lowest cost, the operating
options create a small curve, where a decrease in spill trades-off for an increase
in cost. However, for most of the operating options with medium to high spill
volume, increasing cost is correlated with increasing spill. This may be due to a
greater use of desalinated or potable recycled water, leaving surface water
storage closer to capacity and increasing the probability of spills in response to
high flow events. The grayscale indicates that these operating options also have
fairly high minimum storage (darker gray). Finally, there are a range of operating
options from medium to high cost with similar low levels of spill, and mostly low
minimum storage (lighter gray). As per Figure 4(b), this may be partly due to
most storages remaining below capacity despite an increase in minimum

storage (which comes at a cost).
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Figure 4: Pairwise decision maps of the Pareto set, showing values of the three
objective functions of minimum system storage, total cost, and total spill
volume; arrows on the axes indicate the direction of preference of each
objective function: (a and b) towards bottom right corner; (c) towards left corner;
grayscale is used to indicate the relative value of the third objective missing
from each plot, with darker grays indicating better values (higher minimum
storage, lower total cost and spill) and lighter grays indicating worse values
(lower minimum storage, higher total cost and spill); the objective performance
of the base-case operating option is shown by the larger circles.
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The complex relationships between the three objectives, shown in Figure 4,
suggest that different combinations of infrastructure usage can result in similar
cost, but with different results for minimum storage and spill. This is likely due to
the different characteristics of the higher-cost infrastructure. Greater production
of desalination would be expected to increase the operational cost (compared to
the use of surface water) and leave more water in reservoirs, increasing the
minimum surface water storage and spill volume. Greater use of the two-way
pipeline interconnectors, however, would be expected to also increase cost but
potentially reduce spills without changing the minimum storage by drawing
water from reservoirs that have higher storage fullness. Different proportions of
use of these infrastructures would create the complexity seen in the trade-off

curves.

Figure 4 also shows the objective performance of the base-case operating
option using longer-term rules. While the base-case appears to outperform a
few operating options in terms of the two-objective trade-offs in Figures 4(b and
c), in terms of all three objectives, it is dominated by all the optimized operating
options in terms of the three objectives. For example, one operating option has
a higher minimum storage of 324 GL (compared to 275 GL), lower spill of 314
GL (compared to 318 GL), and a lower cost of $5,409 million (compared to
$5,519 million).

Table 2 provides more details of selected operating options from the Pareto set:
the operating options with lowest and highest total cost, lowest total spill, and
highest minimum storage, as well as a moderate operating option with relative
average performance on each of the three objectives and the base-case of
rules-based operation. This table shows the objective performance, costs and
production volumes of each of these operating options. The switching of
pipeline direction appears to have little effect on the total cost, but is highest for
the lowest spill option. Pumping cost is mostly associated with the flowrate in
the two-way pipelines. Again, higher flowrate in the pipeline avoids spill but also
increases cost. Treatment cost is associated with use of surface water and is
the majority of the total cost. Higher desalinated water production is associated
with higher cost, spill, and minimum storage.
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Table 2. Details of objective performance, costs, and production volumes for selected operating options. Shading indicates the highest

value for each column.
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Lowest Total Cost 332 328 5,180 0.28 23 1.2 4503 652 0.14 15 0
Highest Total Cost 378 417 5,542 0.2 43 338 4509 652 0.35 486 0.23
Lowest Total Spill 303 239 5,412 1 52 192 4515 652 0.35 272 0.23
Highest Total Spill 534 439, 5,520 0.28 27 338 4502 652 0.21 486 0.23
Lowest Min. System Storage 308 128 5,232 0.28 51 1.2 4527 652 0.35 15 0.23
Highest Min. System Storage 484 440 5,530 0.12 33 338 4507 652 0.19 486 0.23
Moderate/Balanced Option 328 332 5,186 0.28 23 7.6 4504 652 0.14 22 0
Base Case 318 275 5,519 0.12 51 313 4503 652 0.35 448 0
Ashbolt, S.C.: Short-term operational planning of water grids 87




Chapter 4: Multi-objective simulation-optimisation

Figure 5 shows the objective performance of the operating options given in
Table 2, and how the performance of these operating options varies with
different scenarios of inflow. The objective performance of the optimized
operating options is shown as a bar plot. The inflow for optimization is around
the second percentile of 5-year total flow. The lines indicate how the objective
performance varies from the 10th to the 90th percentile flows, shown by two
crosses connected by bars. These lines indicate that cost varies relatively little
with inflow, but that minimum storage and total spill increase in flow. The spill is
most significant, likely due to large flood events. This highlights the importance
of including inflow sensitivity in multicriteria analysis, as this may change the
operating option that is selected. However, while the performance varies with
inflow scenario, this plot does not indicate whether this changes the optimality
of the operating rules. Indeed, Figure 5 shows that operating options with higher
minimum storage in the optimized inflow scenario also have higher minimum

storage across inflow scenarios.
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Figure 5: Objective performance of selected operating options; bars show the
performance with the inflow scenario used in optimization; crosses indicate the
performance with the 10th percentile 5-year low flow (lower cross), and the 90th
percentile 5-year high flow (higher cross), connected by lines; a part log axis is

used for clearer presentation.

Figure 6 shows histograms indicating the frequency and range of decision
variables in the Pareto set. This plot shows that most of the optimized decision
variable values vary across the possible range of 0 to 1 (representing O to
100%), but the values are often concentrated over a small range. This suggests
that these decision variables may have a realm of optimality. Conversely, other
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decision variable values are distributed throughout the feasible range. The

objective performance may be more sensitive to these decision variables.
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Figure 6: Histograms showing distributions of values of each decision variable
across the Pareto set on separate plots; x-axis values range from 0 to 1,

representing the decision variables values of 0 to 100%.

7. Conclusions

This paper demonstrates how multiobjective optimization can be used to find
optimal operating rules for short-term planning for a complex water supply
network such as a water grid and provide an improvement in objective
performance over rules-based operation. The application of this method to a
case study based on the South East Queensland water grid, using eWater

Source software, shows that multiobjective optimization can be applied to a
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real-life water grid using publicly available tools and without requiring computer
programming or complex mathematical knowledge. This successful

implementation of the multiobjective optimization components of the framework
also indicates the potential of the framework to support operational planning for

water grids.

The operating options resulting from the multiobjective optimization process
allow the trade-offs between multiple operating possibilities to be examined
before placing preferences on the objectives. This transparency is the key to the
a posteriori method of multiobjective optimization, and it allows the decision-
maker to comprehend the decision and objective space before choosing a final
operating option. For the case study, increasing the minimum system storage
over the planning period generally comes at a trade-off of higher operational
cost and higher volume of spills from reservoirs. These operating options
represent a wide range of operating rules, represented by the decision

variables.

The complexities in the trade-offs between operating options and distributions of
the decision variables for the case study made it difficult to draw specific
conclusions about the trade-offs between objectives and their relationship to the
decision variables. Visual analysis tools are useful in understanding the
objective and decision spaces. Such an understanding will provide the
foundation for selecting promising operating options for further analysis, and for
identifying sensitive or insensitive decision variables. For these reasons, further
visual analysis is recommended as part of the framework, and a suite of visual
analysis tools for analyzing the Pareto set will be demonstrated in a future

paper.

Similarly, the large and complex Pareto set of the case study highlights the
difficulty in identifying a single operating option to form the basis of the
operating plan. For this reason, cluster, visual, and postoptimization analysis
tools were recommended in the framework, for selecting a shortlist of promising
operating options from the Pareto set. Multicriteria analysis can then be used to

assess the operating options against additional management criteria. These
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criteria may include long-term planning criteria and objectives to ensure that
short-term optimal operating rules do not compromise long-term performance.
The remaining components of the operational planning framework for water

grids will be demonstrated in future papers.

Finally, this paper assumes perfect knowledge of streamflow by optimizing
operating rules to a historical planning period using modeled flow. This shows
the potential benefits of optimization, but is evidently not the case in reality.
Ideally, multiple possible scenarios of flow encompassing the range of historical
or forecast conditions may be used for optimization, or optimized operating
rules will be assessed against these multiple scenarios postoptimization. The
sensitivity of operating rules to the inflow scenarios may be included as a
criterion in multicriteria analysis, which is not part of the framework covered in
this paper. Both the use of streamflow forecast scenarios and multicriteria

analysis are part of the framework to be included in future papers.
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Chapter 4 identified a Pareto set of 677 operating options for the case study.
Each operating option comprises 16 operating rules that provide optimal
outcomes for the 1 year planning period and 5 year assessment period in terms
of the three management objectives of maximising minimum system storage,
minimising operational cost, and minimising spills from reservoirs. As concluded
in the previous chapter, the size and complexity of the Pareto set makes it
difficult to understand the trade-offs and select a single operating option. Thus
this chapter proposes a combination of cluster, visual and post-optimisation
analysis methods to interpret the Pareto set, to understand the relationships
between objectives and identify a shortlist of operating options for further
analysis. These components create an expanded version of the framework

presented in Chapter 2, as shown in Figure 5.1.
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Figure 5.1: The framework for short-term operational planning of water grids,

highlighting the components used for interpreting the Pareto set, covered in this
chapter.

This chapter contains the following journal paper, which demonstrates the

application of the framework components highlighted in Figure 5.1:

Ashbolt, S. C., Maheepala, S., and Perera, B.J.C., 2016, 'Interpreting a
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Pareto set of operating options for water grids: a framework and case

study', Hydrological Sciences Journal, Submitted.
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Interpreting a Pareto set of operating options for
water grids: a framework and case study

Stephanie C. Ashbolt, Shiroma Maheepala, B. J. C. Perera

Abstract

Multi-objective optimisation is being increasingly applied in water supply
management to identify optimal operating options. However, a key challenge in
the implementation of multi-objective optimisation is interpreting the large and
multi-dimensional Pareto-optimal set. This paper shows how cluster, visual and
post-optimisation analysis can aid the decision-maker in addressing this
challenge. This is demonstrated for a case study based on South East
Queensland Water Grid, Australia, as part of a broader operational planning
framework. Firstly, cluster analysis identifies a smaller set of representative
options to aid in visual analysis. Secondly, visual analysis technigues are used
to identify the trade-offs between objectives, the relationships between decision
variables and objective performance, and to shortlist promising operating
options. Finally, post-optimisation analysis techniques identify efficient operating
options from the Pareto set, based on decision-maker preferences. Together
these techniques can be used to identify a shortlist of operating options, for

further consideration using multi-criteria analysis.

Keywords: visual analysis, post-optimisation analysis, cluster analysis, Pareto-

optimal set, multi-objective optimisation, water supply planning

Softwarel/data availability

The case study dataset, diagrams, and results, as well as the source code
(Jupyter notebooks and R project file) used to generate them are available to

view at https://github.com/StephanieCA/visualisation-pareto-set.qgit. To run the

Jupyter notebooks requires Jupyter Notebook with the interactive Python
(IPython) kernel, and the Python programming language. For this study, version

4.1.0 of Jupyter, IPython 4.1.1 and Python 2.7.6 were used. These are free and
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open source. Installation instructions for Jupyter Notebook, including IPython
and Python, are available at

https://jupyter.readthedocs.org/en/latest/install.html. R (Project for Statistical

Computing) is required to run the R project file. R version 3.1.1 was used, with
R Studio version 0.99.879. R is available free at https://www.r-project.org/. R

Studio provides a graphical user interface for R and is free and open source,

available at https://www.rstudio.com/products/rstudio/download!/.

1 Introduction

Urban water supply networks are growing in complexity as they are expanded,
interconnected and diversified to meet the challenges of climate variability,
climate change and population growth. Water supply managers need to identify
operating rules for these systems that satisfy multiple objectives such as
maximising water security, reliability, and environmental flows; and minimising
operational cost, flood risk and energy use. Multi-objective simulation-
optimisation is a useful decision support tool to navigate this complexity. It can
help the water manager to find operating rules amongst a vast number of
possibilities, that are optimal in terms of the management objectives. A
posteriori multi-objective optimisation of these operating rules results in a
Pareto set of operating options, each of which is optimal (non-dominated) in
terms of all objectives due to the trade-offs between them. Examining the
Pareto set a posteriori allows the decision-maker to consider the performance
possibilities and trade-offs before supplying preferences on the objectives and
selecting a single operating option (Coello Coello et al., 2007). However, the
Pareto set usually contains a large number of operating options in a complex
multi-dimensional objective and decision space, which can be overwhelming to
interpret (Lotov and Miettinen, 2008). Further, the decision-maker needs to
reduce this Pareto set to a shortlist or smaller set of alternatives that is easier to
comprehend, compare and assess against additional management criteria (Brill
et al., 1990). Multi-criteria analysis can then be used apply preferences select a
single operating option for implementation (e.g. Kasprzyk et al., 2013;

Malekmohammadi et al., 2011; Matrosov et al., 2015). The preferences of
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decision-makers may evolve during consideration of the Pareto set, as the
relationships between objectives become understood (Brown et al., 2015). Thus
tools and guidance are required for interpreting and comprehending the Pareto
set, to understand the relationships between objectives and decision variables,
to refine preferences on objectives, and to identify efficient options from the
Pareto set as a shortlist for multi-criteria analysis. Indeed, the ability to visualise
trade-offs and select efficient operating options has been identified as one of
the research challenges and barriers to the implementation of multi-objective
optimisation algorithms (Branke et al., 2008; Maier et al., 2014).

Guidelines on the application of optimisation algorithms recommend a range of
techniques for interpreting or managing the Pareto set (Branke et al., 2008;
Deb, 2001). These techniques fall into three broad categories: cluster, visual,
and post-optimisation analysis. Cluster analysis can help reduce the number of
operating options by grouping those with similar objective and/or decision
variable performance (Zio and Bazzo, 2011). This reduced set of operating
options allows for easier application of visual analysis techniques, or can be
used to identify a shortlist of operating options that encompass the full range of
objective performance. Visual analysis is useful for exploring the
multidimensional Pareto set, identifying innovative operating options, and
understanding relationships between the decision variables and the objectives
(Fleming et al., 2005; Giuliani et al., 2014b; Kollat and Reed, 2007). Finally
post-optimisation analysis techniques are a group of analysis tools that are
implemented after optimisation to identify efficient and/or preferred operating
options on a numerical basis (Deb, 2001). Combinations of several visual, post-
optimisation, and cluster analysis techniques have been shown to help in the
understanding the trade-offs of the multi-objective Pareto set (Kasprzyk et al.,
2013; Kollat and Reed, 2007; Matrosov et al., 2015; Zio and Bazzo, 2011).
Additionally, many of these techniques have been discussed in depth in the
optimisation literature (e.g. Blasco et al. 2008; Lotov and Miettinen 2008).
Miettinen (2014) also provides a review of different visual analysis techniques
and how they can be used to compare a shortlist of alternatives obtained from

multi-objective optimisation or multi-criteria analysis. However, a gap exists in
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demonstrating how cluster, visual, and post-optimisation analysis techniques
can be applied in combination, to a real-world large Pareto set, to understand
the decision and objective space, and from this understanding to identify a
shortlist a posteriori. Thus in this paper, the authors demonstrate how cluster,
visual, and post-optimisation analysis techniques can be used in water supply
operational planning to better understand the Pareto set and to generate a
shortlist of operating options for multi-criteria analysis. Application of these
techniques is expected to result in a shortlist of operating options that represent
the breadth of the Pareto-optimal set, efficiency of trade-offs in objectives, and
the preferences of decision-makers. This is demonstrated for a case study of
short-term operational planning for a complex water supply network based on

the water grid in South East Queensland, Australia.

2 Case study

This paper examines a case study considering the multi-objective optimisation
of operating rules for short-term operational water supply planning. The case
study is based on the water grid in South East Queensland, Australia. This
water grid consists of 28 surface water storages, 3 groundwater borefields, a
wastewater recycling scheme for potable reuse, a desalination plant, and 48
urban and irrigation demands. Seven two-way pipeline interconnectors also
connect these water sources and demands across catchment boundaries. The
case study has three management objectives for 5 year short-term planning:
minimising total operational cost, minimising total spill volume from storages,
and maximising the minimum system storage volume. These are the objectives
against which operating rules were optimised, measured by three objective
functions which are aggregated over the five-year planning period. There are 16
operating rules identified for optimisation. These govern the operating mode
and flow rate of the 7 two-way pipeline interconnectors, wastewater recycling
scheme and desalination plant. These operating rules include 16 decision
variables (A, B, ..., P), which represent the thresholds of storage levels which
trigger a change in the operating mode or flow rate, and thus alter the operating

rules. These decision variables can range in value from 0O to 1, and refer to the
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ratio of 'fullness' (volume/capacity) of local, regional, or system-wide surface
water storage. The key features of the case study system, as well as the
operating rules and decision variables are shown in Figure 1. In Ashbolt et al.
(2016) multi-objective simulation-optimisation was applied to the case study
using the Source simulation-optimisation software (Dutta et al., 2013) to identify
operating rules that are optimal in terms of the three management objectives.
Source uses the NSGA-II genetic algorithm (Deb et al., 2002). Further details of
the multi-objective simulation-optimisation process is provided in Ashbolt et al.
(2016).

The result of multi-objective optimisation of the case study problem was a
Pareto set of 677 operating options that are optimal in terms of the three
objectives of minimising total operational cost, minimising total spill, and
maximising minimum storage (Ashbolt et al., 2016). These 677 options were the
non-dominated options obtained from combining five Pareto sets of 200
individuals optimised using different random seeds. The objective performance
of the Pareto set of operating options is shown in the scatter plot in Figure 2.
The cluster, visual, and post-optimisation analysis techniques discussed in
Section 3 will be used to better understand this Pareto set and to shortlist

promising operating options for further multi-criteria decision analysis.
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Figure 1: Schematic of the case study network, showing major infrastructure and
supply-demand regions. The operating rules which govern this infrastructure are
outlined in the call-out boxes. The decision variables pertaining to these operating rules
are highlighted in bold (A, B, ..., P). The supply-demand regions also include a number
of demands as well as pipelines, streams, weirs and groundwater supplies, not shown on
this figure but included in the simulation model.
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«— Total Spill (GL)

Figure 2: Objective performance of the case study Pareto set of operating options.
Points with lighter shades indicate greater distance or depth from the viewer. The
preferred direction of objective performance is indicated by arrows on each axis label
and lies towards the bottom front of the figure.

3 Methods, Techniques and Application

3.1 Framework

The method forms part of a framework for operational planning for water grids,
first presented in Ashbolt et al. (2014) and shown in Figure 3. Steps 1 to 4 of the
framework concern problem formulation and multi-objective simulation-

optimisation of operating rules. Steps 2-4 were demonstrated in Ashbolt et al.,
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Figure 3: Framework for operational planning for water grids, adapted from (Ashbolt
et al., 2014). Processes are represented as rounded rectangles 1-9, and inputs as
parallelograms a - j. Methods for interpreting the Pareto set, including cluster, visual
and post-optimisation analysis are highlighted in the figure and form the methodology
for this study.

(2016), and the outcome is a Pareto set of operating options such as that
presented in Figure 2. Steps 5 to 7 involve methods for interpreting and
understanding the Pareto set and reducing it to a shortlist of efficient operating
options and/or those that reflect decision-maker preferences. Step 8 involves
multi-criteria analysis to assess the shortlist against additional management
criteria, and rank options by incorporating preferences on this criteria. The
highest ranked option can be used to inform an operational plan in Step 9.

Steps 5 to 7, highlighted in Figure 3, are demonstrated in this paper.

Steps 5 to 7 work as follows. The multi-objective optimisation process results in
a large Pareto set of operating options. Each operating option consists of a set
of decision variables that is optimal in terms of objective performance. These
decision variables represent the operating rules. Cluster analysis is used to
divide the operating options of the Pareto set into a small number of groups with
similar objective performance. The cluster representatives at the centre of each
of these clusters form a reduced set of options that cover the full range of
objective performance and make visual analysis easier. Cluster representatives

can also be added directly to the shortlist, if the decision-maker wishes to create
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a shortlist encompassing the full range of objective performance. Visual
analysis helps to explore the trade-offs between objectives and the relationships
between decision variables and objective functions. During visual analysis, the
decision-maker may also identify promising operating options to add to the
shortlist, based on their preferences. Their preferences may also evolve during
this process. Multiple visual analysis techniques are presented as part of this
step, since each of these techniques differ in their abilities to illustrate the
decision variable and objective function space, and thus the insights they
provide. Finally, post-optimisation analysis techniques is used to identify
efficient operating options from the entire Pareto set to add to the shortlist.
Several post-optimisation analysis techniques are available, each of which
differs in how it measures efficiency and how or whether it incorporates
preference weights on the objectives. The decision-maker could select a final
option using a single post-optimisation analysis technique and a single set of
preferences. However, this reduces the advantages of a posteriori analysis,
where the full Pareto set of possibilities is examined. Further, each technique
and preference scenario will likely identify a different operating option as most
efficient, creating some uncertainty in this selection process. Therefore it is
recommended that the decision-maker implement multiple post-optimisation
analysis methods and preference scenarios, and add multiple operating options
to the shortlist for further consideration. The shortlist identified from both visual
and post-optimisation analysis can then be further examined and assessed

using multi-criteria analysis to select a final operating option.

During the visual and post-optimisation analysis, preferences on the objectives
are used to guide the selection of efficient or promising operating options for the
shortlist. These preferences may be those of the decision-maker and/or
stakeholders, and may range from a single explicit (numerical) set of preference
weights to a more general preference for objective performance. For the case
study, an example of an explicit set of preferences would be a 70% weighting
on cost, and 15% weighting each on minimum storage and spill, and an
example of a general preference may be for selecting low-cost operating

options. These preferences may arise or be refined during visual or post-
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optimisation analysis. Multiple preference scenarios may also be considered, to
create a shortlist that encompasses a range of objective performance. For the
case study, current operational planning does not include explicit preferences
on the objectives. Therefore the authors create three hypothetical preference
scenarios to be considered whilst shortlisting operating options: for balanced
operating options, i.e. those that perform relatively equally in terms of the three
objectives; for low cost operating options; and for at least one high minimum
storage option. These preference scenarios are used to guide the identification
of promising operating options from the visual analysis and post-optimisation
analysis examples. Due to the reproducible or repeated nature of the analysis,
these preferences could be updated as further information is gathered, or as

they change over planning cycles.

The cluster, visual, and post-optimisation analysis components (Steps 5-7) of
the operational framework are described and demonstrated in Sections 3.2, 3.3,
and 3.4, through application to the case study Pareto set. As discussed in
Ashbolt et al., 2014, a single suite of simple and readily available tools are
recommended and demonstrated as suitable for implementing each component
of the framework. For implementation to other systems, alternative tools may be
added or substituted according to the preferences or needs of the decision-
maker. The output of these analyses is a shortlist of operating options for the
case study, described in Section 4. The shortlist can be used in multi-criteria
analysis for selection of a final option, however this step will be covered in a
future paper. The visual analysis techniques implemented in Section 3.3 also
result in various insights into the Pareto set, including the relationships between
objectives and between decision variables and objective functions. Both R (R
Core Team, 2015) and IPython (Pérez and Granger, 2007) have been used to
implement the cluster, visual and post-optimisation analysis, and the scripts
used for this analysis are made available for the reader at
https://github.com/StephanieCA/visualisation-pareto-set.

3.2 Cluster analysis

Cluster analysis is a method used in data mining to group data-points with
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similar characteristics, and can be achieved using one of a variety of algorithms
(Nanda and Panda 2014; Wu 2012). It can be applied to the Pareto set to divide
it into a number of groups (clusters) with similar objective performance
(Obayashi and Sasaki, 2003; Pryke et al., 2007; Zio and Bazzo, 2010) or
decision variable values (Cela and Bollain, 2012). A representative operating
option from each cluster can then be used to form a reduced set of operating
options that can be used to simplify visual representation of the Pareto set.
Even when the entire Pareto set is represented in visual analysis, cluster
membership can also be used to highlight or group operating options based on
similarity in objective performance or decision variable values. The reduced set
of cluster representatives could also be added directly to the shortlist to provide
a set of options that encompass the full range of objective performance (Zio and
Bazzo, 2011), if there are no preferences on the objectives or decision

variables.

Epsilon-dominance sorting is one technique for reducing the size of the Pareto
set during the optimisation process, by adapting the population size between
generations to achieve a user-specified resolution in objective performance
(Laumanns et al., 2002; Salazar et al., 2016). However, the resolution is likely to
remain too large for some of the visual analysis techniques, or for direct addition
to the shortlist. Nevertheless, optimisation algorithms that incorporate epsilon
dominance could be used to improve the diversity, convergence and reduce the
resolution of the Pareto set. This reduced resolution may also make
visualisation easier. However, such an algorithm is currently not available in the

Source software used for this case study so is not implemented here.

For application of the framework in Figure 3, a cluster analysis algorithm is
required that can divide the Pareto set a posteriori into a given number of
roughly even-sized non-overlapping clusters around a representative operating
option (cluster representative). This cluster representative must be a member of
the Pareto set, rather than interpolated from cluster members. Only one cluster
analysis algorithm is desired, to produce a single reduced set for visual
analysis. However, different clustering algorithms will likely identify different

cluster groupings and representatives (Cela and Bollain, 2012; Nanda and
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Panda, 2014), and so the decision-maker should consider adjacent operating

options if selecting cluster representatives for the shortlist.

K-medoids is a simple partitioning prototype-based algorithm that divides a
dataset into non-overlapping clusters around representative medoids (Kaufman
and Rousseeuw, 1990; Wu, 2012). It involves optimisation to group a dataset of
vectors into a specified number of clusters, such that the distance from each
medoid (central datapoint in the cluster) is minimised. The medoid becomes the
cluster representative, and is a member of the Pareto set. K-medoids is
available in R (R Core Team, 2015) as the function pam in the cluster package
using the partitioning around medoids (PAM) algorithm (Maechler, 2013). The
user specifies the number of clusters, k, and the algorithm randomly selects k of
the data points as medoids, allocating the remaining data points to the nearest
cluster medoid. The process is then repeated by swapping in alternate medoids
to find the configuration that has the lowest distance of cluster members to
medoid. Where the user does not wish to specify a particular number of
clusters, the function pamk in the fpc R package (Hennig, 2013) can be used to
implement the pam algorithm and determine the optimal number of clusters (k)
using the silhouette method (Rousseeuw, 1987), within a range specified by the

user.

The pamk function is applied to the case study Pareto set of 677 operating
options, to identify clusters and cluster representatives (medoids) based on the
values of the three objective functions, and with an upper limit of 20 clusters. As
a result, 10 clusters are identified. The clusters and their medoids are
highlighted on the Pareto set scatterplot in Figure 4, with points coloured
according to cluster membership, and cluster medoids indicated as larger
points. The cluster medoids provide a reduced Pareto set of 10 operating
options, encompassing the range of objective performance. This reduced set
can be used for the visual analysis techniques. For this case study, the medoids
are not added directly to the shortlist, but instead considered for the shortlist

when they are presented during visual analysis.

For the case study, the Pareto set is clustered according to objective function
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Figure 4: Scatterplot of the Pareto set clustered using k-medoid algorithm, with 10
clusters identified as different colours and markers. Medoids of clusters are indicated

by black markers.

values, since the aim is to aid in visualisation of objective performance, rather
than directly produce a reduced set for shortlist. Further, the case study has no
preferences on decision variables that may lead to consideration of clusters
based on these values. However, alternative approaches could be to cluster
based on decision variable values, or both decision variable and objective
function values. For the latter case, the objective function values can be
normalised to place them on the same scale as the decision variables (i.e. 0 to

1). Cluster analysis results from these alternative approaches are shown in the

Ashbolt, S.C.: Short-term operational planning of water grids 113



Chapter 5: Interpreting the Pareto set

datafiles at https://github.com/StephanieCAl/visualisation-pareto-set.qit, and in

the supplementary figures. All three clustering approaches result in different
clusters for the case study, indicating that decision variables do not always
correlate closely with objective performance. Thus the decision-maker should
be mindful of these limitations when identifying or choosing clusters, and

choose the cluster scenario/s that best reflect their needs or interests.

In summary, cluster analysis can be used to group operating options with similar
objective performance and/or decision variable values, to assist in visual
analysis. Clustering can also be used to identify operating options for the
shortlist, however the decision-maker should be mindful that clusters based on
objective functions may differ significantly in their decision variables. Thus it is
recommended that clustering based on objective performance not be used to
directly reduce the Pareto set for shortlist if there are preferences on the
decision variables. Instead, clustering is best used to aid in visualisation. When
shortlisting, the decision variables of adjacent cluster members with similar
objective performance should be considered. For the case study, 10 clusters
and cluster representatives are identified based on objective function values,
resulting in a set of options which encompass the full range of objective
performance of the case study Pareto set. These are used to aid the visual

analysis techniques.

3.3 Visual analysis

The following subsections describe a number of visual analysis techniques and
demonstrate their application to the case study multi-objective Pareto set.
These techniques are summarised in Table 1. Numerous techniques have been
included as they each elucidate different aspects of the decision variable and
objective function space, or present the Pareto set in a different format.
Additionally, the techniques are suited either to demonstrating the full Pareto set
or a reduced set of cluster representatives (cluster medoids). Cluster
membership can also be colour-coded in visual analysis, to enable operating

options with similar objective performance to be traced between plots.
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Table 1: Summary of visual analysis techniques presented as part of the

framework for interpreting the Pareto set.

Technique Input Best illustrates
1 |Scatterplot, 3D |Entire Pareto set| Objective function performance of 2 or
Scatterplot 3 objectives
2 |Scatterplot Entire Pareto set| Objective function performance of > 3
matrix objectives; relationships between
objective functions and/or decision
variables
3 |Histogram Entire Pareto set| Distribution of objective functions or
decision variables
4 | Density plot Clusters Distribution of objective functions or
decision variables
5 |Line diagram Cluster Objective function performance of > 2
representatives |objectives
6 |Bar chart Cluster Objective function performance of > 2
representatives |objectives
7 |Radar chart Cluster Objective function performance of > 2
representatives |objectives
8 |Parallel Entire Pareto set| Objective function performance of > 2
coordinates objectives or decision variable values
9 |Leveldiagram |Entire Pareto set|Relationships between decision
variables and objective function
performance
10 |Decision maps |Entire Pareto set|Objective function performance of 3
objectives
11 |Glyph plot Entire Pareto set| Objective function performance of > 3
objectives; relationship between
decision variables and objective
function performance
12 |Heatmap Cluster Objective function performance of > 2
representatives |objectives and decision variable

values
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Sequential or parallel examination of the figures resulting from visual analysis
can provide insight into different aspects of the objective function and decision
variable spaces. Whilst there is some cross-over in the information presented
by the visual analysis techniques in Table 1 — e.g. line diagram, bar chart, and
radar chart — they present this information in different formats which may lead to
different insights. However, a decision-maker may wish to choose a subset of
these techniques depending on the number of objectives, what the decision-
maker wishes to illustrate, and preferences of a decision-maker for a particular
format (e.g. line diagram vs radar chart). In this paper, we present all these
techniques and discuss their insights for the case study, thus providing some
information on the key advantages of each technique. The visual analysis
techniques in the following subsections are presented in a sequential manner,
with each technique demonstrated by providing progressive insight into different
aspects of the case study. However, it is recommended that the decision-maker

consider these figures in parallel.

Whilst the primary purpose of visualisation is to understand the characteristics
of the Pareto set, promising operating options may be selected for the shortlist if
they reflect decision-maker preferences. During the application of the visual
analysis techniques to the case study, a number of operating options are

identified for the shortlist, which are presented in Section 4.
3.3.1 Scatterplot and scatterplot matrix

The results of optimisation are most commonly visualised as a scatterplot of the
objective function performance of the Pareto set, as was shown in Figure 2.
This type of graph is straightforward to interpret when there are only two
objectives. However, the plot becomes more difficult to interpret for three
objectives, and cannot show more than three objectives. For example, in Figure
2 it is somewhat difficult to discern the nature of the trade-offs. Instead, a
scatterplot matrix can be used to represent three or more objective functions as
a series of 2-dimensional plots (Cleveland, 1985). This involves plotting
scatterplots of all possible combinations of variables as pairwise comparisons.

Such a plot allows the relationships between variable pairs to be more clearly
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seen. The diagonal of the scatterplot matrix is also frequently plotted as a
histogram or kernel density plot, which illustrates the distribution of values of
each variable. A scatterplot matrix of the objective function performance of the
case study Pareto set is shown in Figure 5, including histograms indicating the
distributions of the values of the three objective functions. The plot points are
coloured and marked according to cluster membership, with the same scheme
as used in Figure 4 and subsequent plots. This enables clusters, i.e. operating
options with similarity in overall objective performance, to be traced across the

subplots and plots.
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Figure 5: Scatterplot matrix showing pairwise comparisons of the objective function
performance of the case study Pareto set of operating options. Points are coloured
according to cluster membership. This colouring is consistent between subplots and the
other figures shown in visual analysis. Histograms showing the distribution of each
objective function are plotted on the diagonal.
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The scatterplot matrix in Figure 5 illustrates the trade-offs between objectives
for the case study more clearly than the three dimensional scatterplot in Figure
2. The plots of minimum system storage against total cost (Figures 5 b and d)
indicate that cost increases fairly linearly with minimum storage across the
operating options. This is as expected, since the use of higher cost sources
such as desalination to meet demand is likely to leave more surface water in the
storages. However, these plots also indicate that there is a range in value of
minimum storage for a given cost, indicated by the dashed lines marked on
Figure 5 d, which cross roughly three bands in the 2-dimensional slice of the
Pareto surface. This suggests that the remaining objective function, total spill
from reservoirs, has a strong influence on the optimality of the operating
options. Indeed, Figures 5 ¢ and g clearly show that spill increases with
minimum storage. Figures 5 ¢ and g also show that spill remains at a relatively
constant low volume across low to medium minimum storage operating options,
but there is an inflection point beyond which an increase in minimum storage is
associated with a significant increase in spill. This is an expected consequence
of higher storage volumes placing reservoirs closer to capacity and therefore
increasing the risk of spill. However, Figures 5 f and h show a more mixed
relationship between total spill and cost. Approximately half of the operating
options have similar low spill volumes, but range widely in cost. The remaining
operating options with higher spill volumes tend to see an increase in cost with
spill. This suggests that some high cost infrastructure increases spill, whilst
others have little effect on spill. Finally, the histogram in Figure 5 e indicates that
operating options are fairly evenly distributed across the range of possible total
cost, but Figures 5 a and i indicate that operating options are skewed towards

high minimum storage and low spill volume.

Scatterplots or a scatterplot matrix can also be used to examine the relationship
between decision variables and the objective functions. Figure 6 shows
scatterplots of the values of the case study Desalination Full Production
Threshold decision variable against the three objective functions. This decision
variable represents the threshold of system storage fullness (ratio of volume to

capacity) below which desalinated water is produced at full capacity. These
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figures indicate that overall, an increase in the Desalination Full Production
Threshold correlates with an increase in minimum system storage, cost and
spill. This relationship is strongest for cost and spill, and at higher decision
variable values. This means that initiating full production of desalinated water at
higher storage volumes is associated with higher minimum storage, cost and
spill over the planning period. This is as expected, since greater use of
desalinated water to meet demand should leave more surface water in the
reservoirs, increasing minimum storage and likelihood of spill. This desalinated

water comes at a higher cost than the surface water sources.

-
*»
»
-

Desalination Full Production Threshold

g o e O
(a) Minimum Storage (GL) — (b) «—— Total Cost ($ million) (c) «— Total Spill (GL)

Figure 6: Scatterplots of desalination full production threshold (decision variable)
plotted against the three objective functions: (a) Minimum storage, (b) Total Cost and (c)
Total Spill. Arrows on the x axes indicate preferred direction of objective function.

In summary, the scatterplot is a straightforward method to illustrate the objective
performance and trade-offs of the Pareto set. However the scatterplot is limited
to three dimensions, and the three-dimensional format can be difficult to read.
The scatterplot matrix makes the Pareto set trade-offs easier to discern by
plotting all possible combinations of variables in two-dimensions. The key
drawback of the scatterplot matrix is that only partial trade-offs are shown on
each plot, and what might appear to be a promising operating option on the two-
objective plane may not be when the other objectives are considered. Thus
promising operating options may not be selected for the shortlist from the
scatterplot. Instead the three-dimensional scatterplot is best used to provide a
simple overview of objective performance, and the scatterplot matrix to

understand objective trade-offs in more detail and to investigate relationships
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between the objective functions and the decision variables. Indeed a scatterplot
matrix of all decision variables and objective functions can be used to identify

interesting relationships between objective and decision variable pairs.
3.3.2 Histogram and density plot

A histogram provides an illustration of the distribution of a dataset, by dividing
the dataset into a number of bins over set intervals across the range of the
dataset and counting how many points of the dataset fall into each bin. It can be
used to examine the distribution and density of the objective functions or
decision variables of the Pareto set. The scatterplot matrix of the case study
Pareto set in Figure 5 included histograms indicating the distribution of the
objective functions throughout the entire Pareto set. Figures 5 a, e, and i
showed that whilst the operating options are fairly evenly distributed in cost,

there are a higher concentration of high minimum storage and low spill options.

The density plot is closely related to the histogram. It estimates the likely
density or distribution of a variable, assuming that the data given are a sample
of a larger set. In this application, the key advantage of the density plot over the
histogram is that it provides similar information but with a smoothed line rather
than bars. This allows distributions of multiple datasets or subsets to be plotted
legibly on the one figure. The density plot is particularly useful for illustrating the
distribution of objective functions or decision variable values for each cluster, to
assess their similarity or differences. Figure 7 uses kernel density estimation,
applied in Python's pandas data library, to compare the distribution of values of
the case study Desalination Full Production Threshold decision variable for
each cluster. This plot shows that many of the clusters have similar and
overlapping values of this decision variable. The main exceptions are Cluster 5
with particularly low values and Clusters 1 and 4 with a wide range in values,
across much of the feasible range (0 to 1). Although the clusters were
determined by objective function value, and have similar performance (as
shown in Figure 4), Figure 7 indicates that this does not mean they have
similarity in the decision variable values. The conclusion is that the decision

variables of an operating option at one point in the three-dimensional objective
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function space of the case study are not necessarily similar to those of

operating options at adjacent points.
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Figure 7: Density plot of Desalination Full Production Threshold decision variable for
each cluster

In summary, both the histogram and the density plot can be used to understand
the distribution of operating options within the objective and decision spaces.
The histogram is best suited to illustrating the distribution of individual objective
functions or decision variables. The density plot can be used to overlay and
compare distributions of variables between clusters. This indicates whether or
not operating options that are adjacent in the objective space are also adjacent
in the decision space. This similarity or dissimilarity of decision variables should
be considered when selecting an operating option from the cluster
representatives. It must be noted that since the density plot provides a
smoothed estimated distribution rather than actual values of the Pareto set, it is

not as accurate as the histogram and should be used only for comparative
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purposes.
3.3.3 Line diagram and bar chart

The line diagram and bar chart are both straightforward visual analysis methods
that can be used to illustrate objective performance of multiple operating options
on a single two-dimensional plot. They require the use of the reduced set of
cluster representatives, in order to have a legible number of lines or bars. Both
the line diagram and bar chart provide the same information, but with a different
format for plotting the values. A line diagram of the objective performance of the
10 case study cluster representatives (medoids) is shown in Figure 8 and a bar
chart of the same set is shown in the supplementary files. For both plots, the x-
axis indicates each cluster medoid, and the y-axis shows the objective function
values. Each objective function value is normalised relative to the minimum and
maximum values of the entire Pareto set, with O representing the best value
(minimum cost and spill, maximum minimum storage), and 1 the least-preferred
or worst value (maximum cost and spill, minimum minimum storage). This
normalisation allows the objective function values to be plotted on the same
axis, and indicates the relative performance of each operating option within the
entire Pareto set. Lines or bars that are further apart indicate a stronger trade-

off between objectives.

Figure 8 clearly shows that there is considerable variation in objective
performance between operating options. It also shows that many operating
options have strong trade-offs between objectives, indicated by larger distance
between lines. For Medoids 1, 4, and 6, higher cost and total spill trade-off for
higher minimum storage, to varying degrees. Medoids 3, 5, 7 and 8 provide
lower spill, with a trade-off of lower minimum storage and higher cost. Medoids
2 and 9 appear to be the most balanced operating options, with more similar
relative objective performance. Medoid 2 is a low cost operating option that
provides lower spill and lower cost than Medoid 9, for a relatively small trade-off
in minimum storage. This option might be shortlisted if water security is not an
immediate concern; otherwise Medoid 9 provides a similarly balanced option

with higher minimum storage, for a modest trade-off in cost and spill. In this
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case, both are added to the shortlist.

In summary, the line diagram and bar chart can be used to compare a reduced
set of operating options, such as cluster representatives. They are simple
techniques that allow the decision-maker to compare relative objective
performance and trade-offs of selected operating options. These plots provide
similar information: the bar chart makes the values of the objective functions
easier to discern, but the line diagram would be more suited to a larger number
of objectives. From these plots, promising operating options can be identified for
the shortlist, based on decision-maker preferences. The key disadvantage of
these figures is that they are limited in the number of objectives and operating

options they can clearly present.
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Figure 8: Line diagram of normalised objective performance (y-axis) for each cluster
medoid (x-axis) of the case study. A value closer to 0 is closer to the ideal point
(minimised for cost and spill, maximised for storage) and 1 is farthest from the ideal
point.
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3.34 Radar chart

The radar chart and the closely related spider-web diagram or star coordinate
plot can be used to represent the multi-objective performance of operating
options on a two-dimensional plot (Deb, 2001; Miettinen, 1998). Capability to
plot radar charts is available in most spreadsheet or statistical software. Multiple
operating options are either presented as separate lines on the one plot or on
separate plots. Figure 9 shows a set of radar charts, one for each of the 10
cluster medoids of the case study Pareto set. Each objective function has a
separate radial axis, and lines plot the objective function values. These values
are normalised, as for the line diagram, from 0 to 1 relative to the rest of the
Pareto set. A value of O represents the 'best' value (minimum cost and spill,
maximum minimum storage), and 1 the 'worst' value (maximum cost and spill,
minimum minimum storage) in the entire Pareto set. The best value is oriented
at the centre of the radar chart and the worst at the outer circle. The space
enclosed by the lines is filled to provide an idea of the 'shape’ of each operating
option. This shape provides a simple visual clue to the objective performance of
each operating option. A larger size indicates a poorer objective performance,
such as the high cost and spill of Medoid 1. The shape also provides an
indication of the balance or trade-off between objectives. Medoids 2 and 9,
which were shortlisted from the line diagram and bar chart as relatively
balanced operating options, have smaller triangles with sides of similar length.
The radar charts suggest Medoid 10 as promising, with low spill and cost, for a
moderate trade-off in minimum storage. Thus this operating option is added to
the shortlist.
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Figure 9: Radar chart showing normalised objective performance of cluster medoids,
with best performance at the centre of the circles and worst performance at the outer
circle. Colours of each medoid are the same as those used to identify their clusters in

other figures.

In summary, the radar chart provides an overview of a small set of operating

options, where the size and shape of the polygon creates a picture of the

relative objective performance and balance between objectives. Although

operating options can be drawn on the one plot as for the line diagram and bar

chart, separate plots can represent more objectives and/or operating options in

a legible manner. Overall it is a helpful tool in providing a snapshot of selected

options and for selecting promising operating options for the shortlist.

3.3.5

Parallel coordinates

Parallel coordinates (also called parallel axis or value path) is a popular method

for representing many dimensions on a two-dimensional plot (Inselberg, 2009).
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This method can be used to compare relationships between objectives and/or
decision variables, and is often used in optimisation studies to examine the
Pareto set (e.g. Giuliani et al. 2014a; Kasprzyk et al. 2013; Kasprzyk et al.
2012). It can be considered is an enhancement of the line diagram, with the x-
axis plotting a series of parallel y-axes, one for each variable. Each of these
parallel y-axes indicate the values of a variable, bounded by the variable's
maximum and minimum values. Each member of a dataset is plotted as a value
on each of the parallel y-axes, connected by lines between adjacent axes. This
plot gives a qualitative assessment of the spread of the variables, and of the
trade-offs between adjacent variables (Deb, 2001). If the axes are oriented such
that the preferred direction is the same, parallel lines between adjacent axes
indicate a positive relationship between the two variables. Crossing lines, on the
other hand, indicate a trade-off between variables, with a steeper slope
indicating a stronger trade-off. The relationships are most clearly shown
between adjacent axes: reordering of axes is required to highlight relationships
between certain variable pairs. Unlike the line diagram, the entire Pareto set
can be represented on the parallel coordinate plot. However, the plot can still be
difficult to read with a large number of axes or lines. Colouring schemes can
help to track lines across the parallel axes, by 'brushing’ options according to
cluster membership or the values of one or more objectives. This 'brushing’
technique can be used to identify potential options of interest, such as those

that perform in the best 5-10% for each objective (Inselberg, 2009).

Figure 10 shows a parallel coordinates plot of the objective function
performance of the case study Pareto set. Due to the large number of decision
variables of the case study, decision variables are not included on this plot.
However, an example is included in the supplementary files. This plot was
constructed using the pandas library in Python programming language. Again,
as for previous figures, the objective function values are normalised respective
to the minimum and maximum values, with O representing the best value
(minimum cost and spill, maximum minimum storage), and 1 the least-preferred
or worst value (maximum cost and spill, minimum minimum storage). The

operating options are 'brushed' (coloured) to highlight the options that perform
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Figure 10: Parallel coordinates plot showing objective performance of the Pareto set,
brushed for the top 5% of each objective. Objective function values are normalised from
0 to 1, with 0 indicating the value closest to the ideal (preferred) point of highest
minimum storage and lowest total cost and total spill.

in the top 5% for each objective (highest minimum storage, lowest cost and
spill), with the remainder of the Pareto set shown in grey. It is clear from this plot
that there are strong trade-offs between objectives, indicated by the steep and
crossing lines. These trade-offs are strongest between minimum storage and
total cost. However, for some operating options there is correlation (parallel
lines) between cost and spill. The plot also indicates that operating options that
perform best in terms of total cost (blue lines) perform fairly well in terms of
minimum storage and total spill, with a relatively small trade-off in these two
objectives required to obtain the lowest cost. The top 5% options for minimum
storage, however, are amongst the highest cost and highest spill options: it is
clear that achieving the best performance in terms of minimum storage comes
with a strong trade-off in terms of cost and spill. The top 5% performing options
of total spill have a wide range of cost and minimum storage, although generally
achieving the lowest spill requires a trade-off for low minimum storage and
moderate cost. Considering these brushed options, the lowest cost option is
added to the shortlist, since the low cost options have low spill and perform
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fairly well in terms of minimum storage.

In summary, the parallel coordinates plot is capable of illustrating the entire
Pareto set and multiple objectives or decision variables on the one two-
dimensional plot. The 'brushing’ technique can be used to track certain options
across the plot and is particularly useful for examining the objective
performance or decision variables of a subset of operating options of interest,
and how they compare to the rest of the Pareto set. This plot is also useful for
illustrating the strength of the trade-offs between objective functions, indicated
by the steepness of the slope between adjacent axes.

3.3.6 Level diagram

The level diagram was proposed for Pareto sets with more than 2 dimensions
by Blasco et al. (2008), and further demonstrated by Zio and Bazzo (2011). The
level diagram plots the relationships between the objectives and decision
variables, and the overall objective performance. It consists of a set of two-
dimensional scatterplots of the entire Pareto set, one for each objective function
and/or decision variable. Each x-axis represents the value of the objective or
decision variable, and each y-axis the distance from the ideal point on the multi-
objective plane. The distance from the ideal point is represented by the 1-norm,
which is the sum of the normalised objective function values. The objective
functions are normalised relative to their respective minimum and maximum
values of the Pareto set, with 0 being closest to, and 1 farthest from, the
preferred value. The 1-norm provides a measure of overall, equally weighted,
objective performance. Since the y-axes are synchronised between plots, points
can also be directly compared across the y-axes. By analysing the level
diagrams, the decision-maker can understand the relationships between
decision variables and objective performance, and identify points closest to the

ideal 0 value of the 1-norm.

Figure 11 shows the level diagram for the case study objective functions and
decision variables of the entire Pareto set, with points coloured according to
cluster, to aid comparison between plots. The lowest 1-norm values (best

overall objective performance) correspond to Cluster 2 (red points), which has
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lowest cost (Figure 11 s), low spill (Figure 11 q), and above average minimum
storage (Figure 11 r). The low values of 1-norm suggests overall efficiency in
trade-offs. Thus the option with the lowest 1-norm value, which lies within
Cluster 2, is added to the shortlist.

Figure 11 can also provide some insights into the relationship between the
decision variables and objective performance. As suggested by the scatterplots
in Figure 6, there is a correlation between the desalination full production
threshold decision variable and objective performance (Figure 11 p). This
relationship also exists to a lesser extent for the other two desalination
thresholds (Figures 11 n and o). This suggests that when desalination
production is initiated at higher storage fullnesses (closer to 1, indicating 100%),
it reduces overall objective performance (raises 1-norm). For most of the
remaining decision variables, there appears to be no clear relationship between
the decision variable values and objective performance, represented by the 1-
norm. This could be due several factors: the objective functions are not highly
sensitive to the decision variables; the decision variable thresholds are not
reached during the planning period; or that similar objective performance can
result from different combinations of operating modes. Despite this, for some
decision variables, values are concentrated in a particular region (e.g. the NPI
and NPI 2 Thresholds in Figures 11 a-d), suggesting there may be an optimal
region for these decision variables.

The level diagram also suggests potential reasons for the bands in the
relationship between the minimum storage and cost objective functions that
were seen in Figure 5 d, since these bands are also present in the level
diagram for minimum storage (Figure 11 r). The operating options in the
leftmost band belong to Clusters 5, 7 and 8, and have low minimum storage,
lowest spill and higher values of Brisbane to Nth Pine Flow Threshold and SPI
Flow Threshold (Figures 11 f and I). Higher values of these thresholds,
representing the level below which maximum flow is initiated in these two-way
pipelines, likely results in an increase in the flow-rate in these two-way
pipelines. This increase in flowrate is associated with lower minimum system

storage and spill. Similarly, operating options in the middle band of low to
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moderate minimum storage in Figure 11 r, corresponding to Clusters 3, 10, and
some of Cluster 7, have low spill and higher values of SPI Flow Threshold
(Figure 11 1), representing higher flowrate in the SPI two-way pipelines. On the
other hand, clusters on the highest band of minimum storage, corresponding to
Clusters 1, 2, 4, 6, and 9 in Figure 11 r, have mostly higher spill and minimum
storage than the other clusters, but overlap in cost (Figure 11 s). The key
differences for this band is the generally higher use of desalination indicated by
high desalination thresholds in Figure 11 n and o, but lower flow in two-way
pipelines indicated by low Brisbane to Nth Pine and SPI Flow Thresholds
(Figures 11 f and I). Overall, this suggests that operating options with higher
volumetric use of two-way pipelines result in lower minimum storage and spill

but similar cost to operating options with higher volumetric use of desalination.

In summary, level diagrams are particularly useful for identifying the
relationships between decision variables and overall objective performance,
represented by the 1-norm. By colouring these plots according to cluster
membership, we can identify some reasons for the differences in objective
performance. The 1-norm also helps to identify a high-performing operating
option, assuming an equal weighting of objectives, which can be added to the
shortlist. The 1-norm could also be used to identify the best performing
operating options for each cluster, assuming equal preference on the objectives
(Zio and Bazzo, 2011, 2010).
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3.3.7 Decision maps

Decision maps are a method for projecting vectors of more than two dimensions
on to a two dimensional plot, and have been used to represent multi-objective
Pareto sets (e.g. Lotov and Miettinen 2008; Mortazavi et al. 2012; Paton et al.
2014). The decision map enables the decision-maker to examine the Pareto set
in two dimensions, whilst at the same time having information about the entire
set of objective function values. In the case of three objective functions, the
decision map can be plotted with the first two objective functions as a series of
two-dimensional curves or slices of the three-dimensional surface, with the
value of a third objective noted on each curve in a similar manner to contour
lines of a topographic map. Alternatively, the first two objectives can be plotted
as a scatterplot, with colour-coding to represent the relative value of the third
objective. In this format it is an extension of the 2-dimensional scatterplots as
seen in the scatterplot matrix (Figure 5). In the case of four objectives, the
fourth objective can be set as a constraint (fixed value) to produce a three-
objective slice of the four dimensional plane. For cases of four or more
objectives, decision maps are best viewed in interactive software: scroll bars on
the x and y axes can be used to change the three-dimensional slices by
changing the values of the fourth and fifth objectives. This technique is called
interactive decision maps (IDM) (Castelletti et al., 2010; Kollat and Reed, 2007;
Lotov et al., 2004). Alternatively, matrices can be used to display multiple three-

objective decision map slices.

Figure 12 shows a decision map of the entire case study Pareto set, with
minimum storage and cost plotted on the x and y axes respectively. Values of
total spill are represented using shading: white shading indicates the best
performing values (lowest spill), and black the worst performing values (highest
spill), with shades ranging through the spectrum of grays in between. This plot
provides further information as to the reason for the three bands or fronts seen
in the trade-off curve between minimum storage and cost, also seen in the
scatterplot (Figure 5) and level diagram (Figure 11 r). The decision map shows

that each band, from left to right (lower to higher minimum storage) is

Ashbolt, S.C.: Short-term operational planning of water grids 132



Chapter 5: Interpreting the Pareto set

5600 . T

5550 +

5500 |-

5450 |

5400

5350

«— Total Cost ($ million)

5300

5250

5200

5150

150 250 350 450
Minimum Storage (GL) —

Figure 12: Decision map showing case study objective function values of minimum
storage (GL) (x-axis), total cost ($ million) (y-axis) and total spill (normalised,
shading) for the entire Pareto set. Arrows show the direction of preference of the x and
y axes. White points indicate those with lowest (best) values of spill, and black
indicates highest (worst) values of spill. Values in between are indicated by the
spectrum of grays between white and black.

associated with progressively higher values of spill. The two left-most bands
were found in analysis of the level diagrams (Figure 11) to have greater flowrate
in two-way pipelines, and the right-most band was associated with higher
volumetric use of desalination. The results from the decision map and the level
diagram thus suggest that there are two operating paradigms that can result in
similar cost but with different effects on the other two objectives. The first is one
that favours greater use of two-way pipelines, avoiding spill but not adding
significantly to the overall minimum storage. The second is one that favours the
use of desalination, increasing minimum storage but also increasing spill. The

second band may represent some overlap in these two paradigms.

In summary, the decision map improves on the scatterplot matrix of objective
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functions (Figure 5), by providing information about the value of additional
objectives or criteria, within a two-dimensional plot. These plots are useful for
exploring the trade-offs between objectives and identifying promising regions in
the objective space, and can provide a large amount of information on a single
plot. However, it can be difficult to identify individual points on the plot, unless
an interactive plot is used. For this reason, operating options are not identified

from the decision map for the case study shortlist.

3.3.8 Glyph plots

Glyph plots can be considered an extension of the decision map (Section 3.3.7).
They are a form of scatterplot that uses size, colour, orientation and
transparency of the glyphs (points) on a two or three-dimensional graph to
represent up to 7 dimensions or objectives. They are often used for multi-
objective optimisation applications of four or more objectives (Kasprzyk et al.,
2013; Matrosov et al., 2015; Reed and Kollat, 2013). With many objectives,
glyph plots can become difficult to read, but they do allow the relative values of
particular points to be identified or interrogated if an interactive software tool is
used. Although a decision map is sufficient for a three objective problem such
as the case study, glyphs can also be used to represent the value of other

management criteria or decision variables of interest.

Figure 13 shows an example of a glyph plot for the case study's three objective
functions and the Brisbane to North Pine Flow Threshold decision variable. This
shows the relationship between the three objectives and this decision variable.
The three objective functions are shown using the x-axis, y-axis and shading,
same as for the decision map in Figure 12. However, the relative size of each
point is also varied to indicate the values of the Brisbane to North Pine Flow
Threshold decision variable for each operating option, with the larger points
having a value closer to 1 and smaller points a value closer to 0. This threshold
indicates the fullness (between 0 to 1) of the receiving regional storages below
which the Brisbane to North Pine two-way pipeline will operate at maximum
flow. The glyph plot suggests that there is a wide range in values of the

Brisbane to North Pine Flow Threshold, but that higher thresholds (closer to 1),
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Figure 13: Glyph plot showing case study objective functions of minimum storage (GL)
(x-axis), total cost ($ million) (y-axis), total spill (normalised, glyph shading), and
Brisbane to North Pine Flow Threshold (glyph size) for the entire Pareto set. White
glyphs indicate those with lowest (best) values of spill, and black glyphs indicates
highest (worst) values of spill, with colours ranging through the colour spectrum in
between. Larger circles indicate values of Brisbane to Nth Pine Threshold closer to 1,
and smaller circles indicate values closer to 0.

are associated with lower minimum storage and lower spill. This confirms the

findings of the level diagram.

In summary, the glyph plot is a convenient method for showing the relationships
between three or more objective functions on the same two-dimensional plot,
for the entire Pareto set. It is similar to the decision map, but is capable of
showing a greater number of dimensions on a single plot. Therefore it is most
useful for presentation in print. However, for online presentation, the interactive
decision map may be preferred. The glyph plot may also be used to indicate the
values of certain decision variables or criteria, and how they relate to objective

performance. In this way it is a useful tool to query the relationships between
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decision variable and objective spaces. However, it can be more difficult to
isolate or compare particular operating options using the glyph plot, compared
to the line diagram or parallel coordinates plot. Therefore, for the case study, the

glyph plot is not used to identify options for the case study shortlist.

3.3.9 Heatmaps

Heatmaps can be used to represent a large number of variables on the one
plot, by plotting a matrix of colour shaded boxes which are used to indicate
relative values of variables. In this way, the values of the objective functions and
decision variables for each operating option can be presented and compared
side by side (Kasprzyk et al., 2012; Pryke et al., 2007). Whilst it is possible to
show the entire Pareto set, a heatmap is much easier to read when the reduced

set of cluster representatives are used.

Figure 14 shows a heatmap of the decision variables and objective function
values of the cluster medoids of the case study Pareto set. The values of the
objective functions and decision variables have been normalised from O to 1,
respective to their minimum and maximum values amongst the cluster medoids,
to allow their relative values to be mapped as a spectrum of blue shades. The
lightest blues indicate a value of a decision variable closest to 0, and an
objective function closest to the preferred value. The darkest blues indicate a
value of decision variable closest to 1 and an objective function farthest from
the preferred value. From this plot it can be seen that there is significant
variation in the values of the decision variables and objective functions between
cluster representatives. However, some decision variables, e.g. NPl and NPI 2
Thresholds, show a tendency to higher decision variable values, indicated by
darker shades. The lighter shades highlight the best-performing medoids in
terms of each objective. Medoid 2 performs best in terms of cost, Medoid 1 and
4 best in terms of minimum storage, and Medoids 5, 7, and 8 all perform well in
terms of spill. Despite similarity in spill, the decision variables of the three low
spill medoids (5, 7, and 8) vary significantly. From this figure, Medoid 2 is added
to the shortlist, since it is a operating option that performs well in terms of cost,

and fairly well in terms of the other two objectives. The heatmap indicates that
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this option favours less use of desalination (triggered at lower thresholds of
system storage volumes) and lower flowrate in the Brisbane to Nth Pine and
SPI pipelines (with maximum flowrate triggered at lower thresholds of receiving

storage fullness).

0.9
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Figure 14: Heatmap of decision variable and normalised objective function values. The
lighter the blue, the closer the value of decision variable to 0 and closer the objective
function to the preferred value (maximum for minimum storage, minimum for cost and

spill).

In summary, heatmaps, unlike the other visual analysis techniques, allow all
decision variables and objectives of a reduced set of operating options to be
represented easily on the one plot, since colour shading is used to simplify
representation. Although the colour shading makes it is difficult to gauge exact
values, this plot is fairly easy to interpret and operating options can summarised

and compared side by side.
3.3.10 Interactive plotting

Interactive plots allow the user to view a plot from different angles and to
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identify the objective function values of the operating options using the mouse.
When these interactive plots are created using an online service, plots can also
be shared easily with collaborators or stakeholders. A number of tools for
interactive plotting exist. Plotly (https://plot.ly) is a free tool which allows the
user to create and format interactive plots online through a graphical user
interface, and does not require programming knowledge. It can be used to
create a number of plot types including the scatterplot, line diagram, and
heatmap. Plotly may also be accessed using the user's preferred programming
language such as Matlab, R, or Python. Alternatively, Glue

(http://www.glueviz.org) is a Python-language tool for creating linked scatter

plots, histograms and images. This tool can be used to brush or link plots,
focusing on a region of the Pareto set that is of interest to the decision-maker.
The resulting plots can also be output to Plotly. Interactive plotting is particularly
useful for parallel coordinates plots, as brushing and reordering of parallel axes
can be applied dynamically. Rosenberg (2015) provides an example of this in

Matlab code, at https://github.com/dzeke/Blended-Near-Optimal-Tools.

Figure 15 shows a screenshot of an interactive 3D scatterplot of the case study
Pareto set, constructed using Plotly. This plot can be explored online at

https://plot.ly/13/~StephanieAshbolt/. Using an interactive plot such as this

allows the shape of the Pareto set to be more easily seen than the static 3D plot
(Figure 2) or scatterplot matrix (Figure 5), by rotating the angle of view.
Additionally, the values of points on the plot may be queried by hovering the

cursor.
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Figure 15: Screenshot of interactive 3D scatterplot of the Pareto set using Plotly
(https://plot.ly/13/~StephanieAshbolt/)

3.4 Post-optimisation analysis

Post-optimisation analysis techniques are methods of determining the most
efficient or optimal point in the Pareto set, in terms of the distance from the ideal
point, preferences on the objectives, and/or the degree of improvement over
other operating options. The ideal point typically describes a hypothetical
operating option comprising the best values of each objective function obtained
from the Pareto set. In most multi-objective problems, this ideal point is

infeasible due to the trade-offs between objectives.

Some post-optimisation analysis techniques such as compromise programming
can be applied to the Pareto set to combine objective functions in a manner
similar to a priori optimisation, and identify a single operating option. However,

the advantage of applying them a posteriori is that it allows exploration of the
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full objective space, with the application of visual analysis and other post-
optimisation techniques. These alternative techniques can be used to
understand the objective and decision spaces, shortlist alternative options, and
assist in developing preferences. The use of multiple post-optimisation
techniques is recommended, since each technique may identify a different
operating options due to the different approaches to defining efficiency and
applying preferences. Additionally, the use of multiple preference scenarios
allows the decision-maker to identify efficient operating options based on the
preferences of different stakeholders; to consider a wider range of operating
option types; or to explore the sensitivity of the selection of efficient operating
options to the supplied preferences. Since it may be difficult to declare a single
technique or preference scenario as intrinsically 'better' than the other, this
uncertainty should be incorporated in a shortlist for further analysis. Thus the
approach recommended here is to identify a number of options for the shortlist
by applying multiple post-optimisation analysis techniques and objective

preference scenarios.
34.1 Compromise programming

Compromise programming is an optimisation technique that has been widely
used in multi-criteria analysis (Zeleny, 1973). It involves finding a decision
option that has minimum distance from the ideal point. In this context, the ideal
point is a hypothetical objective function vector consisting of the most preferred
(minimum or maximum) value of each objective function that exists amongst the
Pareto set. The minimum distance from the ideal point can be determined using
a variety of possible distance metric methods, and preference weights on the
objectives are used to combine the distances for each objective function into a
single value. Ballestero (2007) presented a novel distance metric for
compromise programming for multiple criteria which combines both linear and
guadratic distance metrics. A linear metric favours higher achieving options (in
terms of any one objective) and a quadratic metric favours more balanced
options (across all objectives). The combined metric allows a compromise
between emphasis on balanced and higher achieving options. The function to
find the distance from the ideal point as per Ballestero (2007) is shown in
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Equation 1, and explained further in that paper.

n n n , -
A= § Ly (1- SY ==Y (1-=—Y )(1-y, Equation 1

Where A is the distance (to be minimised), j is an objective function, n is the
number of objective functions, y is the 1-normalised objective function value
(ideal value y = 1, non-ideal y = 0, drawn from feasible values), and Y is the
objective preference weight in %. Weights for each objective function (Y)) act as
coefficients that influence both the preference of objective functions and the
proportion of the distance metrics (degree of balance vs achievement) in the
operating option. Finding the member of the Pareto set with minimum distance
will identify the most efficient option, for the chosen preference weights on the
objective functions. Several scenarios of preference weights can also be
trialled, to address different decision-maker or stakeholder views or to provide a

sensitivity analysis of the effect of the preference weights on the chosen option.

Figure 16 shows two efficient operating options for the case study Pareto set,
identified using compromise programming according to Equation 1, and using
two scenarios of preference weights from the case study (Section 2). The first
option, highlighted in red, results from a fairly balanced weighting scenario with
slight emphasis on cost: a weight of 30% on minimum storage and total spill,
and 40% on cost. Such a preference scenario might be used when there are no
major water security and flooding concerns for the planning period. This point is
close to the lowest cost, and has low spill and moderate performance in terms
of minimum storage. The second operating option, highlighted in blue,
considers a preference scenario of higher emphasis on minimum storage
(60%), with some emphasis on cost (30%) and less on total spill (10%). This
preference scenario is used to identify a more water-secure operating option for
consideration in the shortlist. This option has similar low spill to the first option,
but improves over the first option in terms of minimum storage, for a small
trade-off in cost. These two operating options are added to the shortlist. Despite
having significantly different preference weights on the objectives, the two
operating options are relatively close together in the objective space,

suggesting that this region may be optimal for relatively wide range of
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preferences. Indeed, trialling a preference scenario of 20% on minimum
storage, 50% on total cost and 30% on spill identified the same efficient

operating option as the 40% total cost scenario above.

@ Weights: 30% Minimum Storage, 40% Total Cost, 30% Total Spill
A Weights: 60% Minimum Storage, 30% Total Cost, 10% Total Spill
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Figure 16: Scatterplot of objective function performance of the case study Pareto set,

highlighting (in red and blue) the operating options identified by compromise
programming as the most efficient, for two scenarios of preference weights. Arrows on

axes indicate direction of preference of objectives.

In summary, compromise programming can be used to identify one or more
operating options that are efficient in terms of both distance from the ideal point,

and decision-maker preferences. Preference scenarios can be used to shortlist
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a number of options, or to assess the sensitivity of options to decisionmaker

preferences.
3.4.2 Trade-off quantity and marginal rate of substitution

The trade-off quantity is used to describe a two-dimensional objective space
and is the ratio of improvement in value of one objective function f;, that is
achieved to the detriment in value of another objective function f. The option
with the greatest trade-off quantity is the most efficient operating option in terms
of the objective f.. In essence, it describes the greatest slope between two
adjacent operating options in a two-objective space, identifying the option that
lies closer to the preferred region than its neighbours. For a multi-objective
problem with 3 or more objectives, this trade-off quantity is a partial trade-off as
it describes only two-objectives at a time. The trade-off quantity is calculated as
per Equation 2, for combinations of two-objectives (partial trade-offs) of a multi-

objective space (Miettinen, 1998):
:f+ Equation 2

where A, is the partial trade-off of the objective function f; for objective function
f, for the operating options x* and x°. The operating options should be ordered
such that fi(x?) is an improvement over f(x*). The maximum value of A;; can be
considered the most efficient operating option in terms of objective /; i.e. the
largest trade-off for unit of j, or the greatest slope in the trade-off curve of two
objective functions. These partial trade-offs can be determined for all objective
pairs. Since the trade-off quantity is directional along the partial trade-off curve,
two maximum values A;; and A;; and their corresponding operating options will
be identified for a given pair of objectives, as one travels along the curve in both

directions.

For the case study Pareto set of three objectives, six sets of partial trade-off
guantities can be determined. The points of maximum trade-off (A) for the six
combinations of objective functions of the case study Pareto set are shown in
Figure 17. From this plot, two options are selected for the shortlist: the operating

options with maximum trade-offs of minimum storage for cost and cost for
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minimum storage, shown as the red and blue dots respectively in Figure 17.

These are chosen as greater preference is placed on these two objectives for

the case study.

. Max trade-off of min storage for cost
A Max trade-off of cost for min storage
Y Max trade-off of min storage for spill
W Max trade-off of spill for min storage
@ Max trade-off of cost for spill
’ Max trade-off of spill for cost
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Figure 17: Scatterplot of objective function performance of the case study Pareto set,
highlighting points of maximum trade-off. Arrows on axes indicate direction of

preference of objectives.

The trade-off quantity can also be used in combination with the Marginal Rate of
Substitution (MRS) method to determine the operating option with the most
efficient trade-off, based on the values of the decision-maker (Deb, 2001;
Miettinen, 1998). This requires an indifference curve describing acceptable
trade-offs, established from stakeholder or decision-maker consultation. The
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point at which this indifference curve intersects the trade-off curve of the Pareto
set is defined as the most efficient option. Since such consultation was beyond

the scope of this case study, the indifference curve is not demonstrated here.

In summary, the trade-off quantity identifies efficient options in terms of the
maximum gain in one objective for unit loss of another. This identifies operating
options in the Pareto surface which lie closer to the optimal region than their
neighbours due to unevenness in the curve of the Pareto set. Unlike
compromise programming, it does not consider preferences on the objectives
and thus efficient options may be located across the full objective range. A key
limitation of this method for a problem with more than two objectives, is that it
looks at partial trade-offs only, and the number of possible combinations of
partial trade-offs may identify a large number of efficient options. Thus this
technique is most useful for cases with two objectives.

3.4.3 Pseudo-weight vector approach

The pseudo-weight vector approach is a method which describes the relative
performance or ‘pseudo-weight' of each objective function, for each operating
option in the Pareto set. The pseudo-weight vector, for minimised objectives, is
a vector of relative distances of a operating option from the worst (maximum)
values of the objective functions, calculated as per Equation 3 (Deb, 2001):

(F = £ =)

w.= Equation 3

S (o ()

m=1

where w; is the weight of objective function f; (representing the i-th objective) for
operating option x, f™ and ™" are the maximum and minimum values
respectively of the objective function f, and m is an objective of the set of M
objectives. The higher the value of w;, the better the operating option in terms of
that objective, since it reflects a greater distance from the worst value. The
pseudo-weights of each objective function for each operating option are
calculated as a ratio of relative distance from the worst value for that objective
function (the numerator in Equation 3), to the sum of all objective function

distances from worst values for that operating option (the denominator in
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Equation 3). For each operating option, a vector of pseudo-weights (one for
each objective) is determined, which will sum to 1. Equation 3 applies to
objective functions that are minimised: in order to incorporate those that are
maximised, the objective function values can simply be negated. For
visualisation purposes, the pseudo-weight vector approach is best applied to
the cluster representatives to reduce the number of options for comparison. The
decision-maker can then choose the option that has ‘pseudo-weights' closest to
weights that reflect their objective preferences. However, if a specific preference
weight is given by the decision-maker, this can easily be compared to a table of
pseudo-weight vectors for all operating options. Such a table is provided in the

supplementary files.

Figure 18 indicates the pseudo-weights of each of the cluster medoids of the
case-study Pareto set, calculated according to Equation 3. These pseudo-
weights are shown with the scatterplot so that the operating options and their
pseudo-weights can be considered in the context of the objective space. The
pseudo-weights vary significantly across operating options. Medoids 2 and 9,
which were identified in the line diagram (Figure 8) as relatively balanced
options, are confirmed as such here, with weights for each of the three
objectives close to 0.33. Since these operating options are already included in
the shortlist, an option is also sought the shortlist that is reasonably balanced
but places greater weight on minimum storage (~50%). Medoid 6 has a pseudo-
weight vector of 0.53 for minimum storage, 0.20 for total cost, and 0.28 for total

spill. Therefore this operating option is added to the shortlist.
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Pseudo-Weights

(Min Storage, Cost, Spill)
Medoid 1: (0.78, 0.09, 0.12)
Medoid 2: (0.28, 0.37, 0.35)
Medoid 3: (0.28, 0.27, 0.46)
Medoid 4: (0.61, 0.06, 0.33)
Medoid 5: (0.05, 0.40, 0.55)
Medoid 6: (0.53, 0.20, 0.28)
Medoid 7: (0.27, 0.14, 0.59)
Medoid 8: (0.15, 0.30, 0.56)
Medoid 9: (0.38, 0.29, 0.33)
Medoid 10: (0.20, 0.37, 0.42)
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Figure 18: Scatter plot of objective function performance of the case study Pareto set,
indicating cluster medoids as larger circles and their pseudo-weight vectors in the
legend. Arrows on axes indicate direction of preference of objectives.

In summary, the pseudo-weight vector approach is similar to compromise
programming in that it allows the decision-maker to identify an operating option
that reflects their preferences on the objectives. However, the key difference is
in how the preferences are incorporated. The compromise programming
approach takes preference weights as an input to identify a single operating
option. The pseudo-weight vector approach, on the other hand, allows the
decision-maker to examine the preference weights of the entire Pareto set and

to select an operating option based on their preferences, in the context of the
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other options. Compromise programming and the pseudo-weight vector also
have different approaches to incorporating weights and determining distance
from the ideal/non-ideal point, which can result in an operating option having
different weights and pseudo-weights. For example, for the case study Pareto
set, operating option 472 is identified in compromise programming as the most
efficient option for a weight of 30% on minimum storage, 40% on total cost and
30% on total spill. However, this operating option has a pseudo-weight vector of
26%, 39% and 36% respectively.

4 A shortlist of promising operating options

Application of the visual and post-optimisation analysis techniques in the
previous sections showed how these techniques can be used to identify a
number of candidate operating options for a shortlist. This shortlist provides a
reduced set of operating options of a manageable size for further decision
analysis, and reflects the interests or preferences of the decisionomaker. The
shortlist can be used as input to multi-criteria analysis, where the options may
be assessed against additional criteria. Alternatively, the shortlist may be
presented as-is for discussion and selection by decision-makers and

stakeholders.

A total of nine operating options were identified for shortlist in the visual and
post-optimisation analysis of the case study Pareto set. These options are
summarised in Table 2, alongside their source (visual or post-optimisation
analysis technique) and key characteristics for which they were chosen. These
options were chosen based on either providing a balance or relatively similar
performance between objectives (Options 139, 219, and 510), higher
performance for cost (Options 296, 406, and 472), or higher performance for
minimum storage (Options 349, 671, and 673), reflecting the three preference
scenarios on objectives stated for the case study in Section 2. Whilst some of
these options were selected for higher performance on minimum storage or
cost, most of the visual or post-optimisation analysis techniques were able to
show that the trade-off in-terms of the other objectives remained reasonable,

i.e. better performance in one objective was not at the expense of a particularly
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large trade-off in the other two objectives. This can be seen through the
objective performance of the shortlist as shown as a series radar charts in
Figure 19. Radar charts were chosen since they are a useful tool for
summarising the objective performance or shape of a small set of operating
options (Section 3.3.4). The radar charts show that most of the shortlisted
operating options perform well for minimum storage, and fairly well for the other
two objectives. The key exceptions are Options 671 and 296, which were
identified as providing efficient trade-offs compared to neighbouring operating
options, but did not guarantee overall high performance in cost and minimum
storage. Option 349 also placed a higher priority on minimum storage which

came with a larger trade-off in terms of cost and spill.
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Table 2: Shortlist of operating options, the source of their selection (in visual

and/or post-optimisation analysis), and key characteristics

Operating Option

Source

Characteristic

Medoid 2 Line diagram/bar chart; Balanced option with lower

(Option 219) heatmap cost.

Medoid 9 Line diagram/bar chart Balanced option with higher

(Option 510) minimum storage.

Medoid 10 Radar chart Well-performing/balanced

(Option 139) option with low spill and cost.

Option 406 Parallel coordinates Lowest cost option.

Option 472 Level diagram; compromise | Lowest 1-norm; efficient

programming option for weight of 30% on

minimum storage, 40% on
total cost, and 30% on total
spill.

Option 673 Compromise programming | Efficient option for weight of
60% on minimum storage,
30% on total cost and 10% on
total spill.

Option 671 Trade-off quantity Maximum trade-off of
minimum storage for cost.

Option 296 Trade-off quantity Maximum trade-off of cost for
minimum storage.

Medoid 6 Pseudo-weight vector Emphasis on higher minimum

(Option 349)

storage with pseudo-weight of
53% on minimum storage,
20% on total cost and 28% on

total spill.
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Figure 19: Radar charts of the objective performance of the shortlist of operating
options for the case study Pareto set.

Each of the visual or post-optimisation analysis techniques examined either the

entire Pareto set or the cluster representatives (medoids) from a different

perspective or using different metrics. Despite these differences, Table 2

indicates that many of the shortlisted operating options were identified by more
than one technique. This provides some confidence in the efficiency of these
options, but also reflects the overlaps in the information provided by the visual
analysis techniques in this space. For example, the line diagram and heatmap
were used to identify Medoid 2 (Option 219) for the shortlist. However, the
heatmap provides additional information on the decision variables, and the line
diagram (or bar chart) provide a clearer picture of objective performance. Thus
using both visual analysis techniques remains useful for understanding the
Pareto set. The post-optimisation analysis techniques had no overlap in the
identification of efficient options, even for the same weights on the objectives,
demonstrating the utility of applying different post-optimisation analysis

techniques for creating a robust or diverse shortlist.

The selection of cluster medoids for the shortlist may raise some concerns
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regarding how well they represent they are of the decision variables within their
cluster, since clustering for the case study was performed based on objective
functions only. As was found in Sections 3.2 and 3.3.2, and shown as an
example for Medoid 2 in the supplementary files, there is signficant within-
cluster variation in decision variable values. By examining adjacent cluster
members, a decisionmaker could adjust their choice of operating option to one
with similar objective performance but more preferred decision variable values.
For example, a cluster member with decision variables closer to those of the
previous planning period might be chosen. This may be a more palatable
option, since it would require a less radical change in the operating rules
between planning periods. However, since decision variable preferences or
historic values are not available for the case study, the ccluster medoids will
remain on the case study shortlist.

The shortlist provides a smaller reduced set of options that are easier to
analyse or compare. The visual analysis techniques presented in this study that
used cluster representatives as their input can be reapplied to the shortlist to
provide more insight into the characteristics of this reduced set, including their
decision variables. However, without a clear set of preferences on objectives
from the decisionmaker, or without agreement between post-optimisation
analysis techniques, it is difficult to select a single operating option from the
shortlist. Multi-criteria analysis can be used to explicitly incorporate preferences
on the objectives to rank operating options, and to consider their performance
against other criteria not included in optimisation. The performance against
additional criteria may also help to differentiate operating options. For example,
two operating options in the case study may have similar objective
performance, but may perform significantly differently when assessed against
different inflow scenarios, or for their ability to meet or exceed environmental
flow requirements. This additional information may make the selection process

easier.

5 Summary and Conclusions

This paper has demonstrated how cluster, visual, and post-optimisation analysis
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techniques can be used to assist a decision-maker in comprehending a Pareto
set and reducing it to a manageable set for further assessment against
management criteria. These techniques form part of a framework for operational
planning for water grids, and were demonstrated for a Pareto set of 677
operating options for a case study based on the South East Queensland Water
Grid.

A shortlist of nine promising operating options were identified from the Pareto
set of 677 options, using insights from visual and post-optimisation analysis.
Cluster analysis aided the visual analysis by producing a reduced set that
reflected the range of objective performance in the Pareto set. The visual and
post-optimisation analysis techniques allowed the selection of operating options
for the shortlist using both explicit articulation of preferences (compromise
programming), and implicit articulation of preferences within the context of the
entire Pareto set (pseudo-weight vector, visual analysis). The use of both
different preferences on objectives and different visual and post-optimisation
analysis techniques resulted in the shortlist of a number of operating options
with a range of objective performance. This shortlist is of a manageable size for
comparing operating options in more detail, however the selection of a single
option remains difficult. It is recommended that multi-criteria analysis be used to
assess and compare operating options against additional criteria and explicitly
incorporate preferences on these criteria to select a final operating option.

A range of visual analysis techniques have been presented for the framework,
which help to understand the trade-offs between objectives and the
relationships between the decision variables and objectives. Each of the visual
analysis techniques differs in how they illustrate the objective function and
decision variable space. They may plot the entire Pareto set, or a reduced set of
cluster representatives. They may show the objective function performance
and/or decision variable values; the relationships between objective functions
and decision variables; or the distribution of decision variables or objective
functions. Finally they may have different approaches to showing the multiple
dimensions of the decision space, e.g. the multiple plots of the scatterplot matrix

or the single glyph plot. Applications of each of the techniques allowed different
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insights into the characteristics of the decision and objective space of the case
study. Therefore it is recommended that a decision-maker, at least initially, trials
multiple visual analysis techniques to capture the range of information they can
provide. Use of scripts for visual analysis, such as those provided for the case
study, can assist this process. Through implementing these techniques, the
decision-maker can identify those that provide the insights required for their
case study or those that suit their preferences. It is also recommended that
cluster analysis is used to reduce the Pareto set to a manageable size to
support implementation of many of the visual analysis techniques. The use of
reusable code such as that provided alongside this case study, will help to make

the cluster and visual analysis process faster and repeatable.

Three post-optimisation analysis techniques were included in the framework, to
help identify efficient operating options. Each of these techniques differ in their
approach to measuring efficiency. As a result, even for the same scenario of
preference weights, different options may be identified using different
techniques. The compromise programming and pseudo-weight vector
approaches also differ in their method of incorporating preferences. Combining
these two approaches could take advantage of these differences. Firstly,
application of the pseudo-weight vector approach could help to identify or
reinforce decision-maker preference weights. Then these weights could be used
in compromise programming to identify the most efficient operating option in the
Pareto set. It is possible that this may provide a similar outcome to single-
objective optimisation using a weighted objective function combining multiple
objectives. However, the advantage of the multi-objective optimisation process
is that it allows the decision-maker to see the operating option that reflects their
objective preferences in the context of other feasible operating options, and to
consider a range of options for further analysis. This may result in a different
option being considered, or at the very least provides an understanding of the
advantages or disadvantages of the chosen option over the other feasible

options.

Whilst this case study has shown some cross-over between shortlisted options

identified from the visual and post-optimisation techniques, in general the
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different techniques and preference scenarios identified different options for
shortlist. Therefore, the implementation of multiple post-optimisation analysis
techniques and preference scenarios, alongside visual analysis techniques, is

recommended to capture a diverse and robust shortlist for further analysis.
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Chapter 6: Multi-criteria analysis

In Chapter 5, the case study Pareto set of 677 operating options was reduced to
a shortlist of nine operating options using cluster, visual and post-optimisation
analysis. These operating options are optimal for the three management
objectives and reflect different scenarios of decision-maker preferences and
measures of efficiency in objective trade-offs. The optimisation process
considered only three of a wider set of management criteria as objectives, and a
single inflow scenario; the shortlist is of a manageable size for assessment
against the full set of management criteria as well as additional inflow
scenarios. As recommended in the framework, multi-criteria analysis can be
used to assess performance of operating options against multiple management
criteria, and to select a single operating option using preferences on the criteria.
Thus this chapter applies multi-criteria analysis to the shortlist of nine operating
options from Chapter 5, using the framework components highlighted in Figure
6.1.
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rules depiction conditions demands operational data preferences Performance measures
I‘ and inflows / I i Criteria weights
Y l \ Storage levels e.g. cost, energy use

; Capacities
/ b. Objective functions d. Decision varlabies Constraints

A 4 Ob]ectn.re
functions 3. System
4. Multi-objective simulation
optimisation
Decision
ariables
Pareto-optimal set of
operating options
P 9 op 6. Post- Dpumlsallon

analysus

System data
for selected

Efficient operating operating options

options

1 Shortlist § o
5. Cluster Reduced 7. Visual - 8. Multi-criteria Chosen -
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Figure 6.1: The framework for short-term operational planning of water grids,

highlighting the components used in multi-criteria analysis applied in this

chapter.

This chapter contains the following journal paper, which demonstrates the
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application of the multi-criteria analysis framework components, highlighted in

Figure 6.1:

Ashbolt, S. C. and Perera, B.J.C., 2016, 'Multi-criteria analysis to select
an optimal operating option for a water grid', Submitted to Water

Resources Planning and Management.
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Multi-criteria analysis to select an optimal
operating option for a water grid

Stephanie C. Ashbolt, B. J. C. Perera

Abstract

Water supply systems are diversifying and expanding in response to climate
pressures and population growth. However, these water grids present
challenges for the water supply manager in identifying optimal operating options
for the short-term. This study demonstrates the final step in a framework to
address these challenges, multi-criteria analysis, using a case study based on
the South East Queensland water grid. A shortlist of nine water grid operating
options have been identified, which are optimal in terms of minimizing total
operational cost, maximizing water security, and minimizing spills from
reservoirs, over a five-year period. This study assesses the performance of
each of these nine operating options against a wider set of eighteen criteria
reflecting cost, supply reliability, environmental flow, water quality, reservoir spill,
and water security concerns. The weighted summation multi-criteria analysis
technique is used to combine and rank performance of the nine operating
options against the eighteen criteria. An operating option is selected that
performs best on average across the eighteen criteria and four scenarios of
preference weights. This operating option comprises a set of operating rules
that can form the basis of a short-term optimal annual operating plan.

Keywords: decision support; framework; multi-criteria analysis; operating rules;
multi-objective optimization; short-term planning; water grid; weighted

summation.

1 Introduction

Water grids are diverse and interconnected water supply systems that are
emerging as a response to the challenges of drought, climate variability, climate

change, and population growth in urban areas. These water grids include inter-
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basin transfers, alternative supply sources, and centralized management. They
connect traditionally separate catchments or sources to increase supply
availability in a manner similar to national electricity grids (Desai et al. 2005;
Reynolds 1978; Spiller 2008). Operation of water grids is typically guided by
operating rules that aim to meet multiple and competing criteria or objectives,
such as minimizing operational cost, energy use, and flood risk; and maximizing
water security and environmental flows. Determining optimal operating rules for
these water grids is challenging due to trade-offs between objectives or criteria,
differing decision-maker or stakeholder values on objectives or criteria,
uncertainty in forecast streamflow and demand, and the heterogeneity and
complexity of the supply-demand network. These factors make predicting
outcomes of operating decisions more difficult. Thus decision support and
analysis tools are required that are capable of meeting these challenges. To
address these challenges, Ashbolt et al. (2014) proposed a framework for short-
term planning for water grids, shown in Figure 1. This framework aims to
support the decision-maker to identify an optimal set of operating rules, or
operating option, for a water grid. It is this operating option that will provide the
basis for a short-term (1-5 year) operational plan. Further details on the
rationale and methodology of this framework are provided in Ashbolt et al.
(2014).

In Ashbolt et al. (2016a) the authors demonstrated how the core component of
this framework, multi-objective simulation-optimization (Figure 1, Steps 3 & 4),
can be used in water grid management to identify a set of operating options that
are optimal both for selected management objectives or criteria and for
expected conditions over the planning period (Figure 1, a-g). This Pareto-
optimal set of operating options is generally large and complex, due to the
trade-offs between multiple objectives. Ashbolt et al. (2016b) demonstrated the
use of cluster, visual and post-optimization analysis techniques to better
understand the trade-offs and characteristics of the Pareto-optimal operating
options and to identify a shortlist of operating options (Figure 1, Steps 5 to 7).
However, additional preference information and assessment against a broader

set of management criteria are required to select a single option from the
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shortlist. This broader set of criteria includes those excluded from optimization
to limit the computational and conceptual complexity or due to their qualitative
nature. Thus, the next step in the framework is the application of multi-criteria
analysis to a shortlist of operating options to select a single operating option
(Figure 1, Step 8). This can be achieved by assessing performance against a
number of management criteria beyond those used in optimization, such as
meeting environmental flows, supply reliability, storage targets and cost.
Preferences or weights on these criteria are then used to combine performance
into a single score to rank solutions. The highest ranked operating option could

then be used to form an operational plan (Figure 1, Step 9).

1. Stakeholder
i f 1}
[Engagemenl 2. Problem formulation

N h

> >
i' a. Objectives c. Operating e. System f. Infrastructure g. Forecast h. Additicnal i. Objective j. Assessment Criteria
rules depiction conditions demands operational data preferences Performance measures
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/b. Objective functions / d. Decision vanables Cogstrlalmts

Y Objective:
o functions 3. System
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+ + f operatin i i i 9.0 ti I pl
analysis Pareto set analysis ptizns Ing analysis ‘operating option perational plan

Figure 1: A framework for short-term operational planning for water grids,

adapted from Ashbolt et al. (2014). Highlighted elements are those
demonstrated in this paper. Inputs are shown in parallelograms a to j;
processes/steps as boxes 1 to 9.

Multi-criteria analysis is a method that assists decision-makers to a select a
trade-off solution from a set of alternatives by assessing performance against a
range of criteria, whilst allowing for subjectivity and compromise. It has been
widely applied in water resources planning and management (Hajkowicz and
Collins 2007), including in combination with multi-objective optimization (Ko et
al. 1994; Kularathna et al. 2011; Malekmohammadi et al. 2011; Weng et al.

2010). It is a useful tool for: assessing performance of options against
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guantitative and/or qualitative criteria beyond those included in the multi-
objective optimization model; incorporating decision-maker and stakeholder
values and preferences; and selecting one option from amongst a number of

theoretically equally optimal options that result from multi-objective optimization.

A number of methods are available for applying multi-criteria analysis.
Commonly applied methods in the water resources management domain
include: value functions such as weighted summation and weighted
multiplication; outranking approaches such as ELECTRE [ELimination Et Choix
Traduisant la REalité] (Figueira et al. 2010) and PROMETHEE [Preference
Ranking Organization METHod for Enrichment of Evaluations] (Brans and
Mareschal 2005); distance to ideal point methods such as compromise
programming (Ballestero 2007; Zeleny 1973); pairwise comparisons such as
Analytic Hierarchy Process (AHP) (Saaty 1987); and fuzzy set analysis (Buckley
1984; Leberling 1981). Multi-criteria analysis techniques differ in their approach
and complexity in ranking and combining criteria performance, and whether
they assess quantitative (cardinal) data, qualitative (ordinal) data, or both. As
discussed by (Hajkowicz and Higgins 2008), whilst it is important to select an
appropriate method to suit the case study problem, these methods can provide
similar rankings if the decision problem (criteria, decision options, weights and
performance measures) is well structured and considers the limitations of the
technique. Therefore any of these methods could feasibly be applied by the
water resources manager as part of the framework in Figure 1. Selection would
be based on the specifics of their case study decision problem, and preferences
for or familiarity with the techniques. However, in the absence of such
preferences or familiarity, the background paper to this framework (Ashbolt et
al. 2014) recommends weighted summation, since it is a simple and transparent
guantitative (cardinal) technique (Hajkowicz and Higgins 2008), which can be
easily understood and demonstrated for the case study presented in this paper.
This technique is discussed further in Section 3.4.

This paper demonstrates the application of the multi-criteria analysis component
of the framework presented in Figure 1, to a shortlist of operating options for the
case study described in Section 2. The application of multi-criteria analysis in
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this study involves four components of the framework, as highlighted in Figure
1: identification of assessment criteria, performance measures, and criteria
weights (input j); collation of additional operational data required to calculate the
criteria performance measures (input h); measurement of the performance of
shortlisted operating options using the system simulation model (Step 3); and
multi-criteria analysis to combine performance and criteria preference weights
(Step 8). Stakeholder engagement (Step 1) is recommended as a valuable tool
to involve stakeholders in decision-making and to help identify criteria,
performance measures and weights for input j. However, explicit stakeholder
engagement to identify criteria, performance measures and weights has been
beyond the scope of the case study. Instead, this is achieved implicitly by
drawing from current operational plans for the system upon which the case

study is based.

Implementation of multi-criteria analysis to a shortlist of operating options is
expected to identify a set of operating rules for short-term planning that are both
optimal in terms of the management objectives and satisfy the management
criteria according to decision-maker preferences. This set of short-term optimal
operating rules, or operating option, can form the basis of an operational plan.
This forms Step 8 of the framework illustrated in Figure 1, and combined with
the previous studies (Ashbolt et al. 2016a; Ashbolt et al. 2016b), is expected to
demonstrate the ability of the framework as a whole to support short-term

operational planning for water grids.

2 Case study and a shortlist of operating options

The case study is based on the key features of the South East Queensland
water grid located in the state of Queensland, Australia. A schematic of the case
study water grid and its operating rules are illustrated in Figure 2. The water grid
comprises 28 surface water storages, three groundwater borefields, a
wastewater recycling scheme for potable or non-potable reuse, a desalination
plant, and 48 urban and irrigation demands. These supplies and demands are
connected by a network of one- and two-way pipelines and streams, with many

demands connected to multiple sources via multiple paths.
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Figure 2: Schematic of the case study water grid, showing major infrastructure
and supply-demand regions. The major infrastructure operating rules are
outlined in the call-out boxes. The decision variables pertaining to these
operating rules are highlighted in bold (A, B, ... P). The supply-demand regions
include a number of demands as well as pipelines, streams, weirs and

groundwater supplies not shown on this figure but included in the simulation

model.
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Short-term operational planning for this case study involves determining
operating rules for the major infrastructure for the next 12 months. This planning
process is repeated every 6 months, and looks at the impacts of potential
operating rules over a longer five-year assessment period (Seqwater 2014).
Therefore, although the operational plan is intended to apply for a one-year
outlook (planning period), assessment of options occurs using a five-year
outlook period (assessment period). There are 16 operating rules, shown in
Figure 2 (callout boxes). The operating rules contain thresholds based on
surface water storage volume, highlighted as A to P in Figure 2, that when
reached, trigger changes in operation of the desalination plant, wastewater
recycling scheme, and two-way pipelines. It is these thresholds that can be
altered as decision variables to determine optimal operating rules for the

planning period.

In Ashbolt et al. (2016a), a daily simulation-optimization model was developed
using eWater Source (Dutta et al. 2013) to model the supply-demand behavior
of the water grid and to optimize the operating rules for a five-year assessment
period of 2001-2005. The operating rules were optimized by changing the
decision variables (A-P in Figure 2) that comprise the rules. Multi-objective
simulation-optimization was used to determine the optimal decision variables for
maximizing water security (minimum system storage), minimizing operational
cost, and minimizing spills from reservoirs, and for 2001-05 observed inflow.
This multi-objective simulation-optimization process, using the NSGA-II genetic
algorithm (Deb et al. 2002), resulted in a set of 1000 operating options, 677 of
which were Pareto-optimal (non-dominated) in terms of the three management
objectives and for the inflow and demand conditions experienced over the five-
year assessment period. This Pareto-optimal set (Pareto set) outperformed
operation according to a base case of fixed rules configured to perform well

over longer-term conditions.

The objective performance of the Pareto set and the base case is shown in
Figure 3; more detail of the case study and simulation-optimization process is
provided in Ashbolt et al. (2016a). Figure 3 shows that in general, for this

planning period, operating options that provide increased minimum system
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storage trade this increased performance for increases in total cost and total
spill. Because of the size and trade-offs of the Pareto set, it is difficult to select a
single operating option from this set without further understanding the reasons

for the trade-offs or implementing preferences on the objectives.
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Figure 3: Objective performance of the Pareto set of operating options for the
case study from Ashbolt et al. (2016a). Each plot shows two of the three
objectives on the x and y axes, with arrows indicating direction of preference.
Greyscale indicates the relative value of the third objective, with darker greys
indicating better performance, and whites indicating poorer performance. The
large circles indicate the performance of a base case scenario of fixed/historical

operating rules.
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In Ashbolt et al. (2016b), a combination of cluster, visual, and post-optimization
analysis techniques were applied to the Pareto set of 677 options of Ashbolt et
al. (2016a). These techniques were used to understand the relationships
between the operating rules and objective performance, and to identify a
shortlist of operating options for further analysis. The shortlisting process
identified nine promising operating options, based on efficiency in objective
trade-offs and three scenarios of decision-maker preferences on the objectives:
for balanced performance (relatively equal performance across the three
objectives), for low cost, and for high minimum storage. Further details of the
process are provided in Ashbolt et al. (2016b). Figure 4 shows the objective
performance of these nine operating options, relative to the best and worst
performance in the Pareto set. These radar charts indicate that many of the
options have close to highest (best) minimum storage, or lowest (worst) cost, or
spill, but not all three. Others offer relatively equal performance (balance)
across the three objectives. Each of these options are named according to their
number in the Pareto set as presented in Ashbolt et al. (2016b), and represent a
different set of 16 operating rules governing desalination production, potable

reuse of recycled water and direction and flow-rate of two-way pipelines.
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Operating Option 349

Minimum Storage
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Figure 4: Shortlist of operating options selected from the Pareto set of 677

operating options, numbered as presented in Ashbolt et al. (2016b).

Table 1 outlines the decision variables A-P that differentiate the nine shortlisted
operating options, and are used to comprise the operating rules in Figure 2. For
example, Option 139 directs recycled water for potable reuse via the Western
Corridor Recycled Water System when system storage fullness is below 99% of
capacity. Options 406, 472, and 673, on the other hand are unlikely to use
recycled water for potable reuse as it is only triggered when system storage is
below 2% of capacity. Table 1 also indicates that Options 296 and 349 trigger
full desalination production at the highest levels of system storage, 55% and
22% respectively. These options have the highest cost according to Figure 4,
showing how desalinated water use is a considerable component of cost.
Further details on the relationships between the decision variables and

objective performance are provided in Ashbolt et al. (2016b).
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Table 1: Decision variables A-P for the nine optimal operating options
shortlisted from Ashbolt et al., (2016b) corresponding to the variables in the
operating rules shown in Figure 2. NA (not applicable) indicates that a particular
desalination threshold is not used, since it is superseded by one of the other
thresholds. Items in bold indicate highest values amongst options, bold italic

indicates lowest values.

Decision variable Option

139| 219 296 349 406| 472 510 671 673
A [NPI2 Direction 100%| 83%)| 95%| 89%| 85%| 97%| 97%| 93%| 96%
B |NPI2 Flowrate 59%(100%| 66%| 62%)| 70%)| 46%| 71%| 98%| 97%
C |NPI Direction 86%)| 93%| 92%)| 89%| 90%| 85%| 90%| 85%| 94%
D [NPI Flowrate 59%| 88%| 99%|100%| 0%| 37%| 96%(100%| 98%
E [Brisbane to Nth Pine Direction 59%| 47%| 66%| 91%| 48%| 14%)| 2%| 48%| 28%
F [Brisbane to Nth Pine Flowrate 0%| 3%| 5% 5% 0%| 0%| 3%| 43%| 0%
G [Maroochy to Baroon Direction 99%| 96%| 97%|100%| 6%| 99%| 80%(100%| 97%
H |Ewen Maddock to Baroon Direction | 64%| 64%)| 78%)| 99%| 45%| 82%| 86%(100%| 96%
I |EPI Direction 6%| 17%| 34%)| 19%)| 7%| 36%| 33%| 67%| 14%
J |[EPI Flowrate 67%| 42%| 82%| 74%)| 0%| 54%| 84%| 54%| 65%
K |SPI Direction 61%| 71%| 66%| 6%]| 82%)| 64%| 99%| 76%| 81%
L |SPI Flowrate 83%| 1%| 0%| 0%| 0%| 0%| 1%| 71%| 0%
M [WCRWS 99%)| 73%| 82%| 86%)| 2%| 2%| 95%| 54%| 2%
N [Desalination Full Production 2%| 1%)| 55%| 22%| 1%| 2%| 4%)| 12%| 18%
O |Desalination 2/3 Production 11%| NA[ NA[ 93%| 10%| 3% NA| 18%| NA
P [Desalination 1/3 Production NA| 5%| NA[ NA| NAl 4%]| 71%| NA|[ NA

Despite the reduced number of options shown in Figure 4, it remains difficult to
select a single operating option without explicit preferences on the objectives or
information about performance against additional management criteria. Thus
multi-criteria analysis is used in this paper to select one of these nine shortlisted
operating options for implementation by assessing and ranking performance
based on a full set of case study management criteria and preferences on these

criteria, over a wider range potential inflows than that used in optimization.

3 Method

The method implements multi-criteria analysis of the nine shortlisted operating
options. It has four parts: identifying management criteria and performance

measures; developing one or more sets of preference weights for each of the
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criteria; assessing the performance of the shortlisted operating options against
these criteria, using the simulation model; and applying multi-criteria analysis
using weighted summation to score and rank the operating options. These are

discussed in the following sub-sections.

3.1 Management criteria and performance measures

The first step in multi-criteria analysis involves identifying the management
criteria and how performance of operating options should be measured for each
criterion. For the case study, the criteria and performance measures are mostly
identified from those considered both explicitly and implicitly in current South
East Queensland (SEQ) operational planning, represented by the Annual
Operations Plan (AOP) (Seqwater 2014). These criteria and their performance
measures are described in the following sections, and summarized in Table 2

and in Section 3.1.7.
3.1.1 Total operational cost

Total operational cost is a key criterion in the AOP, and was also an objective in
the optimization of the case study operating rules as described in Section 2.
Operational cost is measured in two components, summed over the five-year
assessment period. The first component is the total operational cost due to
pumping, treatment, and production of water at different points in the network.
These costs are sourced from the Queensland Competition Authority (2012).
The second component is a nominal cost per switch in pipeline direction. Whilst
cost data is not available for switching pipeline direction, discussion with grid
managers revealed that frequent switches are avoided as they are expected to
incur labor and other operational costs, as well as potential water quality issues
due to change in flow direction. Therefore a nominal cost of $40,000 (AUD) was
added to total operational cost, identified through sensitivity testing as sufficient
to reduce frequency of switching but still low enough to allow switching to occur.
In future, this nominal cost should be updated. Total operational cost is
measured according to Equation 1:
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TotalCost = il[le‘d:UnitCost *FlowRate + X;,D$4O,OOO * Switch} Equation 1
t=1| fe pe
where Total Cost is the total operational cost, which is the sum of: the Unit Cost
multiplied by the Flow Rate at a node or link in the network, f, of the set F; and
the nominal cost of $40,000 per Switch in pipeline direction for each two-way
pipeline p, in the set P. These costs are summed across each timestep t of the
entire planning period T. The total operational cost should be minimized where

possible.
3.1.2 Total spill volume

A total spill volume criterion is not explicitly included in the AOP. However, it was
one of the objectives in the optimization of the operating rules described in
Section 2, with the aim to minimize spills (uncontrolled releases) from reservoirs
to reflect the value of surface water and potentially reduce the risk of flooding.
For the same reasons, it is included in this case study. Performance for this

criterion is measured using Equation 2:

.
TotalSpill Volume = Z[ZSpillVolume} Equation 2
t=1lreR

Where Total Spill Volume is determined as the sum of the Spill Volumes for
each reservoir r in the set R, for each timestep t over the entire planning period

T. The aim of operation is to minimize the value of this performance measure.
3.1.3 Environmental flows

Environmental flows are also not explicitly addressed in the AOP. However,
minimum passing flows are required at certain points in the river network, and
are included as minimum flow requirements in the simulation-optimization
model. Therefore the ability to meet these flow requirements is included as a
criterion in this case study. The ability of an operating option to meet
environmental flow requirements can be measured by the quantity of the
environmental flow deficit, measured as the deviation below the minimum flow.

This is calculated as per Equation 3:
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De = Z|:i(EFR —EF)} Equation 3
ecE| t
where Dg is the deficit in minimum environmental flows, calculated as the
difference between the minimum environmental flow required, EFg, summed
over all timesteps t in the planning period of length T, and for all environmental
flow requirement points e in the set E. When the flow volume is greater than the
minimum flow, a deficit of zero is recorded. The aim of operation is to minimize

the value of this performance measure.
3.1.4 Demand

The ability to meet demand is a key consideration in the AOP. This is
considered by assessing current status of supply assets and comparing their
volumetric capacity to demand. Since this capacity assessment requires
information on asset status, which is unavailable for the case study assessment
period, it is not included in this study. However, an alternative criterion, with
similar aim, is the volumetric reliability of supply. This criterion can be measured
in the simulation model, and is included in this study. Performance of this
criterion is measured as the ratio of volume supplied to demands to the volume

ordered by demands, as per Equation 4:

iz
i[dezDvo}

Equation 4

where Rs is volumetric reliability of supply, Vs is the volume of water supplied,
and V; is the volume of water ordered by a demand d of the set of demands D
on timestep t, summed over each timestep for the planning period of length T.

The aim is to maximize values of this performance measure.
3.1.5 Water quality

Water quality concerns in the AOP center around compliance with contractual
requirements, the Australian Drinking Water Guidelines (National Health and
Medical Research Council 2016), and community aesthetic expectations.
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Health-related water quality issues are considered as a hard constraint that
must be met, and are largely addressed by not using water sources with current
guality concerns, and maintaining minimum flows in the major pipelines. Whilst
information on water quality output of assets for the assessment period is not
available for the case study, a criterion for maintaining minimum pipeline flows
can be included. The key minimum flow requirements are in the SPI, NPI, NPI2,
and EPI two-way pipelines (Figure 2). Performance against this minimum
pipeline flow criterion can be measured by the deficit or deviation from the
minimum flow, when flow is less than the minimum flow. This is calculated

according to Equation 5:

Dp = Z{i(MFR —MF)} Equation 5
peP| t

where D, is the deficit in minimum flow in the pipelines, calculated as the
difference between the minimum flow required, MFg, and the minimum flow in
the pipeline MF, summed over all timesteps t in the planning period of length T,
and for all pipelines p in the set P. When the flow volume is greater than the
minimum flow the deficit is recorded as zero. The aim is to minimize the value of

this performance measure.
3.1.6 Water security

Water security for South East Queensland is measured by the water security
criteria, consisting of risk criteria and level-of-service (LOS) objectives. These
are set out in the System Operating Plan (Queensland Water Commission
2012) and Annual Operations Plan (AOP) (Seqwater 2014). They are
represented as storage targets, listed in Table 2, however performance can be
improved beyond these targets. Most of the criteria are measured relative to the
combined volume of the Grid 12 storages, which comprise approximately 90%
of total grid storage capacity: Wivenhoe, Somerset, North Pine, Hinze, Baroon
Pocket, Leslie Harrison, Ewen Maddock, Cooloolabin, Lake Kurwongbah, Lake
MacDonald, Little Nerang and Wappa Dams. The water security criteria are

included in this case study.

There are four risk criteria, R1 to R4 (see Table 2). These set out the acceptable
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probability of the combined Grid 12 storage volumes falling below 40% of
combined capacity in the next 1 and 5 years, and below 30% in the next 3 and 5
years respectively. This probability can be determined by simulating the
behavior of operating options over 1,000 replicates of 1, 3 or 5-year stochastic
inflow, and counting the fraction of replicates where the combined 12 key
storage volumes fall below 30% or 40% of capacity. The performance of each

risk criterion is measured as per Equation 6:

_ N,whereFg41» <F
N

R Equation 6

r

where R is the risk criterion, Fgriqi2 represents the percentage Grid 12 storage
fullness, F the percentage storage fullness threshold relevant to the criterion
(e.g. 40%), and N, is the number of replicates, of length relevant to the criterion
(1, 3 or 5 years). These performance measures are to be minimized, and should

be below the target values in Table 2.

The level of service criteria, L1 to L7, set out the acceptable average recurrence
of the combined Grid 12 storage volume dropping below 40%, 30%, 10%, and
5% of combined capacity; and the Wivenhoe, Baroon Pocket, and Hinze Dams
dropping below the dead storage volume (see Table 2). Their performance is
measured as the Average Recurrence Interval (ARI), which is the average
number of years between spell events; a spell is a period of time when a
storage or storages fall below the relevant percentage storage fullness
threshold. The ARI can be calculated as the inverse of the average Annual Spell
Probability (ASP) across 1,000 replicates of 10-year stochastic inflow. The ASP
describes the probability that any one year will contain a spell event. The ASP

for a single replicate is calculated as per Equation 7:

- YS,F :
ASPg = ~ Equation 7

where ASPsk is the annual spell probability for falling below F percentage
storage fullness, calculated by dividing the number of years, Ys , where
storage/s, S, fall below F, by the number of years in the replicate, Y. For this

case study, Y is equal to 10 years. For example, criterion L1 calculates ASP,
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as the number of years where the Grid 12 volume falls below 40% of capacity
(Ys, 40), divided by the 10 year replicate length (Y).

The ARIsF, the average recurrence interval of the storage or storages S falling
below F percentage fullness, is then calculated as per Equation 8:

1

ARIgp =
SF Average(ASPS’F )forr eR

Equation 8

which is the inverse of the Average of the ASPsr values across all replicates r in
the set R. These performance measures are to be maximized, and should be

above the target values in Table 2.

Additional water security criteria considered in the AOP include the probability of
the Grid 12 volume reaching 40% and 60% of capacity in 10 years. These are
not part of the risk criteria but are two of the four criteria explicitly used to
compare possible operating plans in the Annual Operations Plan May 2014
(Seqwater 2014) (alongside total cost C1 and the risk criterion R2). These
additional criteria are also included in this case study and their target values are
listed in Table 2. They can be calculated in the same manner as the risk criteria,

but using longer stochastic inflow replicates of 10 years.
3.1.7 Criteria summary

The previous sections identified eighteen criteria, in six categories, for the case
study multi-criteria analysis. These criteria are listed in Table 2. This table also

includes required thresholds that must be met for the water security criteria.

Criteria performance is measured over multiple scenarios of inflow to capture
probability and uncertainty in the performance measures. For the water security
criteria, the probabilities and average recurrence intervals are measured using
1,000 stochastic inflow replicates and evaluated over 1, 3, 5, or 10 year
outlooks as stated for each criterion. For the remaining criteria, performance is
averaged across five inflow scenarios from across the five-year historic
probability distribution, described in Section 3.3. This inflow assessment across
multiple scenarios provides an indication of robustness or sensitivity of criteria

performance to different inflow conditions that might be experienced over the

Ashbolt, S.C.: Short-term operational planning of water grids 182



Chapter 6: Multi-criteria analysis

Table 2: Criteria and required values

Category Criterion |Description Required
thresholds
Total Cost C1 Total operational cost ($ million AUD) N/A
Spills/Flooding S1 Total spill volume (GL) N/A
Environmental El Environmental flow deficit (GL) N/A
Flows
Demand D1 Volumetric reliability of supply N/A
Water Quality Q1 Pipeline minimum flow deficit (GL) N/A
R1 Probability of Grid 12 storages falling below 40% |< 0.2%
in 1 year
R2 Probability of Grid 12 storages falling below 40% |< 5%
in 5 years
R3 Probability of Grid 12 storages falling below 30% |< 0.5%
in 3 years
R4 Probability of Grid 12 storages falling below 30% |< 1%
in 5 years
Al Probability of Grid 12 storages falling below 40% | N/A
in 10 years
A2 Probability of Grid 12 storages falling below 60% | N/A
in 10 years
L1 Average Recurrence Interval of Grid 12 falling > 25 years
Water Security below 40%
L2 Average Recurrence Interval of Grid 12 falling > 100 years
below 30%
L3 Average Recurrence Interval of Grid 12 falling > 1,000 years
below 10%
L4 Average Recurrence Interval of Grid 12 falling > 10,000 years
below 5%
L5 Average Recurrence Interval of Wivenhoe Dam | > 10,000 years
reaching dead storage
L6 Average Recurrence Interval of Baroon Pocket > 10,000 years
Dam reaching dead storage
L7 Average Recurrence Interval of Hinze Dam > 10,000 years

reaching dead storage

five-year assessment period, and incorporates some of the risk in solution

performance due to inflow uncertainty (Higgins et al. 2008). Averaging is a

relatively risk-tolerant approach, with equal weighting on over- and under-

performance (Mortazavi-Naeini et al. 2015). However, various measures of

robustness exist, each of which will affect the performance of a given option
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based on its acceptance of risk (Giuliani and Castelletti 2016). Therefore this
robustness measure may be changed in the future to reflect changes in
decision-maker preferences. In the meantime, the minimum and maximum
values are also reported to help identify options that may significantly under- or

over-perform for selected inflow scenarios.

3.2 Preference weights

Section 3.1 identified eighteen criteria, in six categories: cost, spills/flooding,
environmental flows, demand reliability, water quality, and water security; the
next step is to identify one or more scenarios of preference weights for each of
these criteria. These preference weights can be used in multi-criteria analysis to
combine criteria performance to a single score for each option. In practice,
internal and/or external stakeholder engagement is generally used to help
identify preference weights on the criteria. Stakeholder interaction may result in
a single consensus or compromise set of preference weights, or multiple sets of
weights that reflect contrasting opinions. However, stakeholder engagement is
outside the scope of this case study. Instead, four sets of preference weights
are formulated based on four preference scenarios: two hypothetical, and two
based on the preferences implied in the Annual Operations Plan (AOP)
(Seqwater 2014). Implementing these preference scenarios will provide a
degree of sensitivity analysis in how changes in criteria preferences affect

performance of solutions and the selection of the highest-ranked option.

The four scenarios of criteria preference weights are shown in Table 3.
Preference Scenario 1 has equal weighting on all eighteen criteria, which
assumes essentially no preferences for one criteria over another. This scenario
means that each criterion performance measure will be summed equally, but
will also provide a higher effective weight on the water security criteria as they
number thirteen of the eighteen criteria. Preference Scenario 2 has an
emphasis on cost and water security criteria, with a total of 40% weighting on
each category, reflecting these concerns as key objectives and requirements in
the AOP and prioritizing options that perform well on these measures.

Preference Scenario 3 adjusts Scenario 1 to have equal weighting across the
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six categories of criteria, compensating for the higher number of water security
criteria in the total. Preference Scenario 4 puts higher weighting of 20% each on
the four key criteria explicitly considered in the AOP: total cost (C1), probability
of key storages falling below 40% in 5 years (R2), probability of key storages
falling below 40% in 10 years (A1) and the probability of key storages falling
below 60% in 10 years (A2). This scenario would be expected to best represent
current operational planning. These four preference scenarios are used in the

multi-criteria analysis described in Section 3.4.
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Table 3: Four preference weight scenarios for the case study, showing percentage weights for each of the eighteen criteria, totaling to

100%. ARI refers to the Average Recurrence Interval; Grid 12 refers to the 12 largest storages, comprising 90% of the total.

Preference Weights (%)

Scenario 1 |Scenario 2 Scenario 3 Scenario 4
(Equal (Cost and security |(Equal weighting |(Emphasis on 4

Category Criterion |Description weighting) |emphasis) of categories) key criteria)
Total Cost C1 Average Total Operational Cost ($ AUD) 5.6 40 16.7 20
Spills/Flooding S1 Average Total Spill (ML) 5.6 5 16.7 1.4
Environmental Flows El Average Environmental Flow Deficit (ML) 5.6 5 16.7 14
Demand D1 Average Volumetric Reliability of Supply 5.6 5 16.7 1.4
Water Quality Q1 Average Two-Way Pipeline Minimum Flow Deficit (ML) 5.6 5 16.7 1.4
R1 Probability of Grid 12 falling below 40% in 1 year 5.6 3.1 1.3 1.4
Risk Criteria R2 Probability of Grid 12 falling below 40% in 5 years 5.6 3.1 1.3 20
R3 Probability of Grid 12 falling below 30% in 3 years 5.6 3.1 1.3 14
2 R4 Probability of Grid 12 falling below 30% in 5 years 5.6 3.1 1.3 1.4
§ Additional Risk Al Probability of Grid 12 falling below 40% in 10 years 5.6 3.1 1.3 20
& Criteria A2  |Probability of Grid 12 falling below 60% in 10 years 5.6 3.1 1.3 20
% L1  |ARI of Grid 12 falling below 40% 5.6 3.1 1.3 1.4
= L2 ARI of Grid 12 falling below 30% 5.6 3.1 1.3 1.4
. L3 ARI of Grid 12 falling below 10% 5.6 3.1 1.3 14
Leveéﬁzesrgwce L4  |ARI of Grid 12 falling below 5% 5.6 3.1 1.3 1.4
L5 ARI of Wivenhoe Dam reaching dead storage 5.6 3.1 13 14
L6 ARI of Baroon Pocket Dam reaching dead storage 5.6 3.1 1.3 1.4
L7 ARI of Hinze Dam reaching dead storage 5.6 3.1 13 14
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3.3 Assessment of criteria performance

The simulation model described in Section 2 is used to assess the criteria
performance of the nine operating options according to the performance
measures described in Section 3.1. As described in Section 3.1, the water
security criteria are simulated using 1,000 stochastic replicates of 1-10 year
inflow, to determine probabilistic and average recurrence performance
measures. The remaining criteria are simulated to determine their average
performance across five scenarios of inflow, spanning the historical flow
duration curve of five-year inflows: the 10™, 25", 50", 75", and 90™ percentiles.
These inflow scenarios are generated by sampling periods of the historical
inflow timeseries that match the 10™, 25™, 50™, 75", and 90" percentile total
inflow volumes, as per the method described in (Ashbolt and Perera 2016).
These inflow volumes are different to the single period of inflow for 2001-2005
used in optimization, which corresponded to observed inflow over the
assessment period. The result of this performance assessment will be a

decision matrix which shows the criteria performance for each operating option.

3.4 Weighted summation

Weighted summation is used to combine the criteria performance measure for
each option using the preference weights. It is a simple and commonly used
method for multi-criteria analysis that can be implemented in spreadsheet or
other software. In short, it involves normalizing performance on a common
scale, with larger values indicating better performance, multiplying that
performance by weights, and summing these weighted measures into an overall
utility function. Although it is a simple technique, it can provide similar results to
other techniques, providing that careful attention is made to simplifications or
assumptions in transforming and aggregating criteria (Hajkowicz and Higgins
2008). Key assumptions of the weighted summation technique include: that
good performance on one criteria can offset poor performance in another; that
linear normalization of criteria performance is appropriate; and that qualitative

performance measures may be treated as quantitative when combining criteria
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performance. These assumptions are considered appropriate for this case study
application, which deals only with quantitative criteria which can be traded-off

against one another in a linear fashion.

The weighted sum of each alternative option can be determined by Equation 9:

A;:i w norm(a;)fori=1,2,3,...,m

j=1 Equation 9
where A; is the weighted sum of an alternative option, /; j is a criterion of a set of
n criteria; w; is the preference weight for criterion j; and norm(a;) is the unity-
normalized performance of alternative i for criterion j, on a scale from O to 1,
where 0 indicates worst performance and 1 indicates best performance,
calculated as per Equation 10:

a,j—min(amj]

norm(a,)=

max(amj) _mf”(amj) Equation 10

where gjis the performance of alternative i for criterion j, and a, is the
performance of all alternatives m for the criterion j. The weights w; ... w, across
all n criteria for an option should sum to 1. This weighted summation is repeated

for all alternatives i of the set m.

4 Results and discussion

The nine shortlisted operating options shown in Figure 4 were assessed against
the eighteen criteria, using the performance measures described in Section 3.3.
These performance measures are shown in the decision matrix in Table 4. This
matrix indicates that there is significant variation in performance between
options, as well as trade-offs between criteria. For example, Option 296 has the
best performance for all but two of the water security criteria (highlighted in
bold), with many of the level of service criteria thresholds not reached (DNO).
However, perhaps as a result of these higher storage volumes, this same option
has the highest average spill volume of 2,971 GL over the 5-year planning
period. Option 406 has a different set of trade-offs with the poorest performance
for the risk criteria, volumetric reliability of supply (96.7%), and water quality
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Table 4: Decision matrix of criteria and performance measures for the nine operating options. The best performance across options for

each criterion is highlighted in bold; worst performance in bold italic. For the water security criteria, the performance measure is a

probability across 1,000 stochastic replicates of 1-10 year inflow. For the remaining criteria, performance shown is the average across

10", 25™, 50", 75", and 90™ scenarios of 5-year inflow, with the range in performance (minimum to maximum) indicated in parentheses.

DNO (Did Not Occur) for the water security criteria indicates that the storage threshold was not reached throughout all replicates.

Option
Category Criterion |Description 139 219 296 349 406 472 510 671 673
2,717 | 2,705 | 2,798 | 2,802 | 2,700 | 2,704 | 2,750 | 2,714 | 2,704
(2,715 | (2,703 | (2,763 | (2,797 | (2,695 | (2,700 | (2,745 | (2,710 | (2,699
Total Cost C1 Total Cost ($ million AUD) 2,719) | 2,707) | 2,842) | 2,805) | 2,704) | 2,709) | 2,756) | 2,716) | 2,709)
2,702 | 2,828 | 2,971 | 2,968 | 2,801 | 2,774 | 2,890 | 2,549 | 2,786
(626 - | (700 - | (924 - | (854 - | (742 - | (693 - | (772- | (449 - | (698 -
Spills/ Flooding S1 Spill Volume (GL) 5,058) | 5,190) | 5,305) | 5,329) | 5,078) | 5,066) | 5,257) | 4,898) | 5,069)
299 | 29.1 | 28.1 | 283 | 274 | 30.0 | 28,5 | 28.4 | 28.8
(209-1(19.8-|(19.6-|(20.9-|(19.8-|(209-|(19.6-|(21.0-|(19.6 -
Environmental Flows E1 Environmental Flow Deficit (GL) 38.6) | 37.2) | 35.5) | 35.7) | 35.2) | 38.4) | 36.1) | 36.0) | 36.3)
98.0 | 97.7 | 97.7 | 97.7 | 96.7 | 97.1 | 97.8 | 97.8 | 96.9
(97.8-|(97.2-|(97.4-|(975-|(94.7-|(95.7-|(97.6-|(97.1-|(94.9 -
Demand D1 Volumetric Reliability (%) 98.4) | 98.1) | 98.1) | 98.2) | 97.9) | 98.1) | 98.2) | 98.4) | 98.1)
0917 | 143 | 0970 | 0.883 | 1.81 | 0.846 | 0.534 | 1.29 | 1.36
(0.338 | (0.368 | (0.292 | (0.259 | (0.664 | (0.278 | (0.278 | (0.259 | (0.203
Water Quality Q1 Pipeline Minimum Flow Deficit (GL) -2.77)|-5.27)|-3.48) | -3.19) | - 4.33) | - 2.66) | - 1.33) | - 5.35) |- 5.63)
Risk Criteria R1 Probability of Grid 12 < 40% in 1 year 100%| 60.2%| 45.1%| 46.6%| 100%| 100%| 48.1%| 100%| 56.4%
R2 Probability of Grid 12 < 40% in 5 years 100%| 92.0%| 84.5%| 85.0%| 100%| 100%| 86.1%| 100%| 92.2%
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Option

Category Criterion |Description 139 219 296 349 406 472 510 671 673
R3 Probability of Grid 12 < 30% in 3 years 100%| 98.1%| 95.6%| 96.1%| 100%| 100%| 96.4%| 100%| 98.0%
R4 Probability of Grid 12 < 30% in 5 years 49.9%| 51.7%| 28.6%| 31.4%| 75.0%| 75.0%| 35.3%| 49.9%| 48.3%
Additional Risk Al Probability of Grid 12 < 40% in 10 years 49.9%| 60.8%| 42.3%| 45.2%| 75.0%| 75.0%| 50.1%| 49.9%| 64.6%
Criteria A2 Probability of Grid 12 < 60% in 10 years 100%| 100%| 100%| 100%| 100%| 100%| 100%| 100%| 100%
L1 ARI of Grid 12 < 40% 1.60f 156 1.81 1.79] 1.48 154 175 167 153
> L2 ARI of Grid 12 < 30% 400/ 2.75| 5.23] 480 2.86 3.08/ 4.38/ 4.00f 297
§ ) L3 AR of Grid 12 < 10% DNO| 34.6/ DNO| DNO| DNO| DNO| 1249, DNO| DNO

o Level of Service 5

8 Criteria L4 ARI of Grid 12 < 5% DNO| 9990 DNO| DNO| DNO| DNO| 9990 DNO| DNO
& L5 ARI of Wivenhoe Dam reaching dead storage DNO| DNO|, DNO, DNO| DNO| DNO DNO| DNO 833
g L6 ARI of Baroon Pocket Dam reaching dead storage DNO| 37.1 456/ 57.5| DNO| DNO| 56.8)/ DNO| 49.0
L7 ARI of Hinze Dam reaching dead storage DNO| DNO| DNO|, DNO| DNO| DNO| DNO| DNO| DNO
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(1.81 GL deficit); but lowest average cost ($2,802 million) and environmental
flow deficit (27.4 GL). Overall, none of the options perform best across all
criteria, and at this point it is difficult to identify the best performing option from
the matrix. This selection is further complicated by the multiple preference
scenarios and uneven preferences on the criteria. This highlights the need for
multi-criteria analysis techniques such as weighted summation to score and

rank alternatives using the preference information.

Table 4 also shows the range in performance measures across the five-year
percentile inflow scenarios for the cost, spill, environmental flow, demand, and
water quality criteria. For the water quality criterion, the range in performance,
e.g. 0.20 — 5.63 GL for Option 673, is generally greater than the differences
between the worst and best average measures across the operating options
(0.53 — 1.81 GL). This suggests that the deficit in pipeline minimum flows is
more dependent on reservoir inflow than the operating rules. Total operational
cost, on the other hand, has a similar range within operating options, e.g.
$2,763 — 2,842 million for Option 296, as between the worst and best
performing options ($2,700 — 2,802 million). Thus, for some criteria, it is
important for the decision-maker to appreciate the potential variation in
performance measures due to inflow, particularly where this range might violate
target values. Viewing such information may also cause the decision-maker to

revise performance measures for selected criteria.

Comparing the required threshold values for the water security criteria in Table
2 to the performance measures in Table 4 indicates whether the required
thresholds for the risk and level-of-service criteria are met for the nine operating
options. Due to the water scarce initial conditions at the start of this planning
period, with storages at 45% of capacity, the water security criteria show a high
to 100% probability of storages falling below 40% or 30% in the next 1-5 years
for all operating options. None of the nine options meet the risk criteria
threshold requirements shown in Table 2 of less than 0-1% (depending on
criterion). Likewise, none of the options meet the Level of Service criteria L1
and L2 of > 25 and > 100 years respectively. However, all but option 219 meet
the L3 criterion required value of ARI > 1,000 years and many of the options
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meet the required value of ARI >10,000 years for L5-L7. The failure to meet
many of the water security criteria may trigger the decision-maker to revise the
optimization problem formulation (objectives, decision variables, or constraints),
or to consider additional measures to improve water security, such as enacting

demand restrictions.

Weighted summation was applied to the decision matrix of performance
measures of the nine operating options in Table 4, using the four preference
scenarios in Table 3. Table 5 shows an example of the weighted summation
process for Preference Scenario 1, which places equal weighting on the criteria.
This table shows the normalized weighted performance of each option against
each criterion and the overall weighted sum of each option. The maximum
possible score of 100 indicates best performance. For this preference scenario,
Option 296 performs best, with an overall weighted sum of 73.7/100. This high
performance is due to the combination of high performance and high weighting
on the water security criteria. Option 406 performs worst for this preference
scenario, with a weighted sum of 41.4/100. This is due to it having the lowest
performance and thus a weighted sum of O for the risk criteria, water quality,
and volumetric reliability of demand. Based on this preference scenario alone,
Option 296 would likely be chosen for implementation. However, such a
decision does not take into account the other preference scenarios. For
example, Preference Scenario 2 has a higher weight on cost, for which Option
296 performs poorly due to the trade-off between cost and water security;
therefore Option 296 would be expected to perform poorly for that preference

scenario. Indeed, Table 6 indicates that this is the case.

Table 6 shows the overall weighted sum (across the eighteen criteria) for all four
preference scenarios and nine operating options. None of the options performs
best across all preference scenarios, highlighted in bold. Therefore it is not
straightforward to select the best performing option. However, the average and
range of the weighted sum for each option across the preference scenarios can
be used to combine or summaries performance. Averaging the four weighted
sums for each option combines performance into a single score, with an

assumption of equal weighting on each preference scenarios. By this measure,
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Table 5: Weighted summation for Preference Scenario 1 (equal weighting on criteria). The best performance across options for each

criterion are highlighted in bold; worst performing in bold italic.

Option

Category Criterion |Description 139| 219 296| 349| 406| 472| 510 671| 673

Total Cost Ci1 Average Total Operational Cost ($ AUD) 46/ 53| 0.2 0| 5.6 53 28/ 4.8 53

Spills/ Flooding S1 Average Total Spill (ML) 35 19 0 0 22 26/ 11 56 24

Environmental Flows E1 Average Environmental Flow Deficit (ML) 0.1f 2.0 4.2/ 3.7/ 5.6 0| 32 35 26

Demand D1 Average Volumetric Reliability of Supply 5.6/ 45 4.6 4.6 0/ 17 4.8 5.0 1.0

Water Quality Q1 Average Two-Way Pipeline Minimum Flow Deficit (ML) 39/ 17, 36 4.0 0 42 56 22 20

R1 Probability of Grid 12 storages falling below 40% in 1 year 0| 4.0, 5.6/ 54 0 0| 53 0| 44

Risk Criteria R2 Probability of Grid 12 storages falling below 40% in 5 years 0|/ 294 5.6 54 0 0| 5.0 0o 28

R3 Probability of Grid 12 storages falling below 30% in 3 years 3.00 28 56/ 52 0 0 48 30 32

R4 Probability of Grid 12 storages falling below 30% in 5 years 43| 24| 5.6 5.1 0 0| 42 43| 18

2 . . . Al Probability of Grid 12 storages falling below 40% in 10 years 0l 24 5.6 49 0 0| 45 0| 25
S | Additional Risk Criteria ” - ; -

a3 A2 Probability of Grid 12 storages falling below 60% in 10 years 0 0 0 0 0 0 0 0 0

& L1 ARI of Grid 12 storages falling below 40% 20/ 14 56| 52 0o/ 10 46/ 3.1 0.8

% L2 ARI of Grid 12 storages falling below 30% 2.8 0| 5.6/ 46, 02 07 36 28 05

= L3 ARI of Grid 12 storages falling below 10% 5.6 0| 5.6/ 5.6/ 56/ 56 07 56 5.6

Level of Service Criteria L4 ARI of Grid 12 falling below 5% 5.6 0f 5.6/ 5.6/ 5.6 5.6 0| 5.6/ 5.6

L5 AR of Wivenhoe Dam reaching dead storage 5.6/ 5.6/ 5.6 5.6 56 56 56 5.6 0

L6 ARI of Baroon Pocket Dam reaching dead storage 5.6 0 0 0 5.6 5.6 0| 5.6 0

L7 ARI of Hinze Dam reaching dead storage 56| 5.6/ 56| 5.6 56/ 5.6 56 56 5.6

Weighted Sum 57.6| 42.3| 73.7| 70.4| 41.4| 43.3| 61.3| 62.1| 46.0
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Option 671 performs best with an average weighted sum of 59.7. The range in
the weighted sums provides a picture of the sensitivity of performance to
preference scenarios. This measure indicates that Option 671 also has the
largest range of 40.9 between the lowest and highest scores across the
preference scenarios. This makes this option less attractive if there is
uncertainty in preference scenarios. Option 510, on the other hand, has an
average score of 59.6 close to that of Option 671, with a significantly reduced
range of 5.9 across preference scenarios. This option would be a better
candidate if relative insensitivity to preference scenarios is desired. This option
also performs best for Preference Scenario 4, which is based on the Annual
Operations Plan. Based on these measures, Option 510 is recommended for

this case study for implementation for an operating plan.

Table 6: Weighted sums for each of the operating options and preference
scenarios. Best performing options for each preference scenario, as well as the
highest average weighted sum, and lowest range, are highlighted in bold The
worst performing options for each preference scenario, lowest average

weighted sum and largest range are highlighted in bold italic.

Preference Preference
Preference Scenario 2 Scenario 3 Preference
Scenario 1 (Cost and (Equal Scenario 4
(Equal security weighting of | (Emphasis on
Option | weighting) emphasis) categories) |4 key criteria) | Average | Range

139 57.6 67.0 62.4 30.2 54.3 36.8
219 42.3 61.9 52.0 46.1 50.6 19.7
296 73.7 46.5 51.8 56.8 57.2 27.2
349 70.4 43.2 50.4 52.5 54.1 27.1
406 41.4 62.5 46.5 29.2 44.9 33.3
472 43.3 62.2 48.2 28.9 45.6 33.3
510 61.3 57.7 62.6 57.0 59.6 5.6
671 62.1 72.0 72.9 32.0 59.7 40.9
673 46.0 63.5 47.4 47.4 51.1 17.6

5 Summary and conclusions

This study examined the performance of nine operating options for a case study

water grid, identified from the previous studies (Ashbolt et al. 2016a; Ashbolt et

al. 2016b). Each of these operating options were Pareto-optimal for three
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management objectives: maximizing minimum storage, minimizing operational
cost, and minimizing reservoir spills. However it was difficult to select a single
option due to the trade-offs between objectives. Therefore this study involved
assessing these options against the full set of eighteen management criteria,
including volumetric reliability of supply, water quality, cost, environmental flow
and water security criteria. Clear differences were seen in the decision matrix of
criteria performance of operating options, with trade-offs between criteria. Due
to these trade-offs it remained difficult to select a single preferred operating
option from the decision matrix. Multi-criteria analysis using weighted
summation offered a simple and transparent method to combine criteria
performance to a single score for each option, applying preference weights on
the criteria and averaging the weighted sum across four preference scenarios.
Ranking options by the weighted sum allowed for the selection of a single
candidate operating option, Option 510, which can form the basis of an

operating plan.

In conclusion, this study has shown how multi-criteria analysis can be used to
select a single option from a set of short-term multi-objective optimal operating
options for a water grid. This option can be used to form an annual operating
plan. Along with the previous studies (Ashbolt et al. 2016a; Ashbolt et al.
2016b), this study provides proof-of-concept of the framework proposed in
Ashbolt et al. (2014) to support short-term operational planning for water grids.

This study has also highlighted the advantages of the framework for short-term
operational planning of water grids in using both multi-objective optimization
and multi-criteria analysis together to identify suitable operating options for
water supply management. Multi-objective simulation-optimization allows the
decision-maker to efficiently explore the possibilities in terms of a limited
number of priority management criteria or objectives. Representation of a
greater number of criteria in the optimization process may be infeasible due to
the increasing complexity of the objective space, or the need for multiple
stochastic inflow scenarios for assessing probabilistic criteria. Multi-criteria
analysis is useful in assessing performance against the remaining management

criteria not considered in optimization. Applying multi-criteria analysis to Pareto-
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optimal solutions also allows objective performance to be combined in a single
score in a transparent and flexible manner, placing the chosen solution in
context with the alternative possibilities. It also allows the decision-maker to
distinguish solutions that might otherwise seem similar in the Pareto set. For
example, in terms of the three management objectives considered in the case
study Pareto set, Options 472 and 673 have the same low operational cost.
However, Option 472 performs worst amongst the options in terms of
environmental flow deficit and risk criteria, for a slight reduction in spill in
comparison to Option 673. An alternative approach of using single objective
optimization does not consider the trade-offs between the key criteria and
narrows the search space, reducing the range of operating possibilities that are
considered. Alternatively, using multi-criteria analysis without optimization may
make it difficult to explore the full range of feasible operating rules or to identify

options that are optimal in terms of the priority management criteria.

This case study has considered eighteen criteria, in six categories. The
preference weight scenarios were established based on the six categories,
limiting their complexity. For the water security criteria, where there are multiple
criteria within the one category, equal weighting was assumed for all criteria
within the category. This was considered suitable for this study, since the water
security criteria and performance measures describe similar objectives.
However, a large number of criteria multiplies the uncertainty in developing
preference scenarios due to their subjectivity. Careful consideration of the trade-
off between this uncertainty and the number of criteria and preference weights
is recommended for future studies. Stakeholder input is a key component of
multi-objective optimization and multi-criteria analysis (Brown et al. 2015;
Kodikara et al. 2010; Maier et al. 2014; Wu et al. 2016) and is recommended for
future applications of the multi-criteria analysis component of the framework,
both to refine criteria and performance measures and to combine the

preference weights into a single preference scenario.

For the case study the multi-criteria analysis process was complicated by the
use of multiple scenarios of preference weights on the criteria. This provided
some sensitivity analysis of the weighted sums to the preference weights; each
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preference scenario changed the weighted sum and ranking of operating
options. The average and range in performance was used to assess
performance across scenarios; Option 510 was recommended as a candidate
for the case study operating plan as it had the second highest average
performance, but the lowest range in performance across the four preference
scenarios. Averaging the performance across preference scenarios assumed
egual weighting on each scenario; unequal weighting could be used to
represent weights on the preference scenarios. Alternatively, a single
preference scenario could be developed that represents this compromise.
Regardless of approach, since preference weights are subjective, it is
recommended that a decision-maker test a wider range of preference scenarios
to understand their sensitivity to ranking of options. This could help in
understanding which criteria or preference weights most affect performance and
ranking of options, and require more attention in their selection. In some cases,
different preference scenarios may identify the same option as having best
performance, bringing confidence to the results. For example, in this case study,
whilst the preference scenarios changed the overall ranking of options, both
Preference Scenario 2 and 3 identified the same option (671) as the best
performer. Where it is difficult to articulate preferences, a similar approach could
be used by the decision-maker to identify an option that is robust to a range of
criteria preference weights.

Depending on the availability of data and the preferences of decision-makers,
the multi-criteria analysis presented in this study could be improved by
assessing performance under forecast inflows. In Ashbolt and Perera (2016),
the authors demonstrate the use of streamflow forecasts for this case study to
improve objective performance in optimization of operating rules. However the
forecast horizon is limited to three months, which reduces their utility for the five
to ten year criteria assessment periods. Nevertheless, the three-month forecast
inflow scenarios developed in that study could be used to formulate additional
criteria or performance measures, or be used directly if 1 year forecasts are
developed in the future. Additionally, performance under a range of forecast

demands could be assessed; combining demand scenarios with scenarios of
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forecast streamflow could be used to develop scenarios to assess robustness of
options (Beh et al. 2015; Maier et al. 2016). Similarly, multiple multi-criteria
analysis techniques could be implemented to assess the sensitivity or
robustness of the result to the method that is used (Hajkowicz and Collins
2007).
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Chapter 7: Using streamflow forecasts to
improve short-term operating rules

Chapter 4 demonstrated the multi-objective simulation-optimisation components
of the framework and identified a set of operating rules for the case study water
grid that were Pareto-optimal in terms of the three management objectives of
maximising water security (minimum storage), minimising operational cost, and
minimising spills from reservoirs. This showed the potential of multi-objective
optimisation to optimise operating rules to improve objective performance over
using fixed rules that are tailored to perform well over the long-term. However, a
key limitation was that only a single scenario of inflow timeseries from the
record was used; this does not reflect the reality of uncertainty in predicted

inflow.

As per the recommendations in Chapter 2, it is preferable to use streamflow
forecasts when applying the operational planning framework. Additionally, one
of the key challenges for water grid management outlined in Section 1.2 is
incorporating streamflow uncertainty into operational planning. Thus this
chapter assesses the potential of publicly available streamflow forecast
information, such as that provided by the Bureau of Meteorology in Australia, to
improve objective performance of operating rules. However, the forecast
streamflow forecast information currently available for the case study extends
only to a three-month horizon, rather than the 1 year planning or 5 year
assessment periods. Therefore this chapter instead applies the multi-objective
optimisation component of the framework only, to find operating rules for the
case study using forecast streamflow and a revised three-month planning
period. If forecasts with a 1-year horizon become available in the future, a 1-
year forecast-optimised Pareto set could be input to the other framework

components for the case study covered in Chapters 5 and 6.

This chapter contains the following journal paper, which demonstrates the use
of streamflow forecasts to improve operating rule performance, using the

framework components highlighted in Figure 7.1:
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Ashbolt, S. C. and Perera, B.J.C., 2016, 'Multi-objective optimisation of

short-term operating rules for water grids using streamflow forecasts’,

Submitted to Water Resources Planning and Management.
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Abstract

Multi-objective simulation-optimisation is a useful tool for determining operating
rules for water supply that are optimal for multiple management objectives and
for expected conditions over the planning period. Previous studies have shown
the benefits of streamflow forecasts in improving optimised objective
performance of reservoir operating rules. This study demonstrates a simple
method to update historic inflow scenarios for a case study water grid, using
publicly-available streamflow forecast information. Multi-objective optimisation is
used to find operating rules that are optimal for three management objectives —
maximising minimum system storage, minimising operational cost, and
minimising spills from reservoirs — and for the forecast inflow scenarios. These
forecast-optimised rules are compared to those optimised using inflow
scenarios from the historical distribution, representing operation in the absence
of forecast information. The results across three seasonal (3 month) planning

periods indicate that, on average, operating rules optimised using forecast
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streamflow information perform slightly better in terms of the management
objectives than those optimised using historical inflow information. Using
multiple scenarios of inflow that span the forecast distribution increases the
robustness of operating rules and reduces the risk of under-performance due to
forecast inaccuracy. The results suggest that even a relatively simple method
for incorporating streamflow forecast information into multi-objective simulation-
optimisation has the potential to provide improvements in short-term operating

rules for a water grid.

Keywords

Multi-objective optimisation; operating rules; simulation; streamflow forecasts;

short-term operational planning; water grid

1. Introduction

Water supply managers typically need to develop seasonal (3-month), annual (1
year) or short-term (up to 5 year) operating plans, to identify operating rules that
can achieve their desired outcomes. These desired outcomes are typically
expressed in terms of multiple management objectives or criteria which aim to
maximise water security, minimise energy use, minimise operational cost, or
meet environmental flows. Multi-objective simulation-optimisation is a useful tool
to determine operating rules that are optimal for multiple management
objectives (Ashbolt et al. 2016a; Ashbolt et al. 2014; Kim 2008; Kumphon 2013).
The operating rules found using multi-objective simulation-optimisation will be
optimal not only for the management objectives, but also for the inflow
timeseries that are input to the simulation-optimisation model. Therefore,
operating rules may only remain optimal during the planning period if the inflow
assumptions in the simulation-optimisation process hold true in reality (Beh et
al. 2015; Walker et al. 2013). For this reason, uncertainty in expected inflow
should be incorporated into simulation-optimisation to identify options that
perform optimally over — are robust to — a range of expected inflow probabilities
(Maier et al. 2014).

Multiple inflow scenarios, sampled from the historic inflow record, can be used
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in simulation-optimisation of the water supply system to identify operating rules
that are robust to various inflow possibilities. However, using such historical
inflow scenarios assumes no knowledge of the probability of these scenarios in
the near future; many may be extremely unlikely based on current catchment
conditions (Faber and Stedinger 2001). Streamflow forecasts that reflect both
current catchment conditions and the climate outlook over the planning period
may suggest different probabilities of inflow. The historic-sampling approach
could be updated by selecting inflow scenarios that reflect the forecast
probability distribution for the planning period. Used with optimisation, this
forecast-based sampling approach should allow operating rules to be tailored
for expected conditions over coming months. Although streamflow forecasts are
uncertain, they can provide a more honest and risk-aware indicator of future
conditions than relying on historical averages (Krzysztofowicz 2001; Piechota et
al. 2001); optimising operating rules to multiple scenarios from across the
forecast inflow distribution should improve the robustness of operating rules and
system performance if observed inflow volumes deviate from the forecast

median (Georgakakos and Graham 2008).

Seasonal to annual streamflow forecasts are becoming more widely and
publicly available for catchments in Australia (e.g. Bureau of Meteorology
2015) and the United States (e.g. Harrison and Bales 2016; National Oceanic
and Atmospheric Administration 2016). Whilst the skill of these forecasts varies
across catchments and seasons, the use of streamflow forecasts in operational
planning of single and multiple reservoir systems has been shown to improve
objective performance. Alemu (2011) found that incorporating streamflow
forecasts in multi-objective optimisation improved system performance of 12-
month operating rules for a two-reservoir hydroelectric project. Gelati et al.
(2013) optimised dual-reservoir releases using a multi-stage single-objective
optimisation process to minimise hydropower deficit and meet target storage
levels, using a set of 100 stochastic 9 month forecast inflows based on synthetic
ENSO data. They found that forecast-optimised operation provided
improvements over historical-optimised operation and over rule-curve based

operation. Sankarasubramanian et al. (2009a) demonstrated that simulation of
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water allocation using streamflow forecasts, downscaled from monthly
precipitation forecasts, helped to reduce reservoir spill, increase hydropower
generation and meet end-of-season target storage when compared to the use
of historical values. Gong et al. (2010) demonstrated a simple method to update
reservoir rule curves for three reservoirs using simulations based on streamflow
forecast probabilities, resulting in a reduction in drought emergency days.
Finally, Li et al. (2014) found that using ensemble streamflow forecasts in a
stochastic linear programming model helped to reduce deviations from end-of-

season target storage for a multi-reservoir system with inter-basin transfers.

These studies have all shown the potential of streamflow forecasts to improve
seasonal to annual operating rules for systems of one to three reservoirs. A gap
exists in demonstrating the use of forecast information to improve short-term
operating rules for larger, more complex, water supply systems. These studies
also used forecast inflows developed specifically for the case study. An
additional opportunity arises to discover whether existing publicly available
forecasts, such as those provided by the Bureau of Meteorology in Australia
(Bureau of Meteorology 2015), can be used in a forecast-based sampling
approach to update historically-sampled reservoir inflow data for simulation and

optimisation of operating rules.

In Ashbolt et al. (2016a), the authors of this study showed how multi-objective
simulation-optimisation can be used to identify short-term optimal operating
rules for a case study based on the water grid in South East Queensland,
Australia. The study showed that multi-objective simulation-optimisation can
improve objective performance for the short-term compared to a base-case of
operation using fixed longer-term rules. This formed proof-of-concept of the
core part of a framework for short-term operational planning for water grids,
shown in Figure 1 (3-4). However, the operating rules in that study were
optimised for a single scenario of historical observed flow, assuming perfect
knowledge of inflow volume which cannot be achieved in practice. In Ashbolt et
al. (2014), the authors recommend that multiple inflow scenarios based on
forecast information be used as part of this framework to improve consideration

of uncertainty and estimates of future conditions, particularly in context of
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publicly-available data such as that provided by the Bureau of Meteorology in
Australia. Thus an opportunity exists to demonstrate how this streamflow
forecast information can be used to improve multi-objective performance of

short-term operating rules for this case study.
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Figure 1: A framework for short-term operational planning for water grids, adapted from Ashbolt

et al. (2014). Elements covered in this paper are highlighted in yellow.

Incorporating probabilistic streamflow forecast information into practice remains
a key challenge for water supply management (Brown et al. 2015; Pagano et al.
2002; Sankarasubramanian et al. 2009b). However, developing a method of
translating such forecasts to existing simulation-optimisation models and data
can increase the likelihood of adoption of forecasts by industry (Gong et al.
2010). Therefore this study aims to demonstrate a simple method for leveraging
publicly-available, probabilistic streamflow forecast information to generate a
limited number of inflow scenarios for an existing multi-objective simulation-
optimisation model. The number of scenarios is limited to reduce the
computational burden and thus run-time. This simple method involves sampling
the historical inflow data currently available for the simulation-optimisation
model, based on a distribution of forecast inflow volumes such as those
provided by the Bureau of Meteorology (2015). This method follows two of the
three uncertainty modelling paradigms outlined by Maier et al. (2016): use of
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best available knowledge (publicly available streamflow forecasts); and
guantification of uncertainty (probability distribution of forecasts). It also aligns
with the future research directions discussed by (Maier et al. 2014), by providing
an example of how optimisation with uncertainty could be used in real decision-
making, within a reasonable timeframe. The method is applied to the multi-
objective simulation-optimisation model and water grid case study developed in
Ashbolt et al. (2016a) to optimise operating rules for a seasonal planning
timeframe corresponding to the forecast data availability. These operating rules
are expected to improve objective performance for the planning period,
compared to operating rules optimised to historical inflow. This improvement is
expected since operating rules are optimised for forecast inflow volumes that
should average closer to the observed flow than the average or median historic
inflow volume. The use of multiple scenarios from the forecast distribution is
expected to improve robustness of operating rules if observed inflow deviates
significantly from the forecast median, compared to the alternative of a single

historic or forecast inflow scenario.

2. Case study

The case study was previously defined in Ashbolt et al. (2016a), and involves
identifying short-term optimal operating rules for a complex water supply system
based on the water grid in South East Queensland, Australia. This water grid
serves 3.6 million people and includes: 28 dams and weirs in 11 catchments, 3
groundwater borefields, a desalination plant, and a wastewater recycling
scheme. The supply sources are connected to 48 demands via multiple supply
paths along a network of streams and one- and two-way pipelines that cross
catchment boundaries (inter-basin transfers). Operating rules need to be
determined for this water grid to guide operation of key supply and transfer
systems. These operating rules aim to meet three management objectives:
maximising water security, minimising total operational cost, and minimising
total spills from reservoirs. The operational planning period used in Ashbolt et
al. (2016a) and in recent operational plans for South East Queensland

(Segwater 2014) is one year, with operating rules assessed for objective
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performance over a longer five-year horizon.

Currently, streamflow forecasts are available for catchments located within the
case study area, published online on a monthly basis by the Bureau of
Meteorology (2015). However, these streamflow forecasts have a seasonal
three-month horizon, shorter than the one-year planning or five-year
assessment period normally required for the case study. For the purposes of the
current study, a revised three-month seasonal operational planning period is
examined to enable direct use of the streamflow forecast information. In the
future, the Bureau of Meteorology plans to extend the seasonal forecasts to a 1
year horizon (Wang et al. 2014); these updated forecasts can then be used in
the case study simulation-optimisation model. Regardless of the length of the
planning period used, the method presented in this study can be repeated every
month to reflect updated forecast inflow information.

Four retrospective (past) seasonal planning periods are examined for the case
study: July-September 1989, 1991, 1997, and 2000. These four seasonal
planning periods are chosen to assess the potential improvement in operating
rule performance due to incorporation of streamflow forecast information
compared to using historical inflow information, as well as to assess how the
accuracy in the forecast affects this improvement. Here, forecast accuracy is
measured as the difference between observed flow and the forecast median, as
a single-year variant of the forecast skill score used by the Bureau of
Meteorology, described in Section 2.2. Two of the planning periods are selected
based on their higher forecast accuracy, with the forecast median relatively
close to observed inflow. The other two planning periods are selected based on
their lower forecast accuracy, with the forecast median significantly different to
observed inflow. All four planning periods cover the same July-September
season, to avoid any variability in results due to differing historic forecast skill or
inter-seasonal variability. The four planning periods are examined from the
perspective of a historical decision-maker at July 1989, 1991, 1997, and 2000
respectively. The inflow scenarios developed for these planning periods can be
used to identify short-term operational planning rules using the multi-objective

simulation-optimisation model and streamflow forecast information described in
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the following sub-sections.

2.1. Problem formulation and simulation-optimisation model

In Ashbolt et al. (2016a), a multi-objective optimisation problem was formulated
for the case study. Apart from the difference in retrospective planning periods
and inflow scenarios (described in more detail in Section 3), the problem
formulation and simulation-optimisation model for this study are unchanged
from that described in Ashbolt et al. (2016a). A brief overview is provided here;

the reader is referred to that paper for further detail.

The aim of the case study is to determine operating rules that are optimal in
terms of the three management objectives of maximising water security,
minimising total operational cost, and minimising total spills from reservoirs.
Objective performance is calculated using the three objective functions shown
in Equations 1-3. Where multiple inflow scenarios are used, the aim of
optimisation is minimise or maximise the sum of the objective functions across
simulations using the different inflow scenarios. Since there are trade-offs
between these objectives, e.g. an increase in water security might be obtained
at the expense of an increase in operational cost and spill volume, the results of
multi-objective optimisation will be multiple possible operating options that

represent trade-offs between the three objectives.

The water security objective is measured by an objective function determining
the minimum system storage over the planning period. Minimum System

Storage is calculated as:
Minimum System Storage =min( System Storage fort=1, ..., T) Equation 1

where t is a time-step of the planning period of length T; and System Storage is
the sum of storage volumes in the surface water storages (in megalitres) for the

time-step t. This objective function is to be maximised.

The total operational cost objective concerns costs occurring due to treatment,
pumping, production of manufactured water, and switching direction of the two-
way pipelines. It is measured by the objective function, Total Cost, calculated

as:
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T

Total Cost= [ D Unit Cost * Flow Rate+ Y $40,000 * Switch] Equation 2

t=1 f€F pEP

where t is a time-step of the planning period of length T; fis a node or link in the
network (e.g., treatment plant, pumping station, or desalination plant) of the
entire set F with an associated flow-dependent treatment, pumping or
production Unit Cost (JAUD/ML) and Flow Rate (megalitres/day) on timestep t;
and p is a two-way pipeline in the entire set P with a nominal cost of $40,000
AUD used to penalise a Switch in direction on timestep t. The total cost is the
sum of operational costs over all timesteps of the planning period. This

objective function is to be minimised.

The total spill volume objective is measured by an objective function, calculated

as:

T

Total Spill Volume =Y,

t=1

> Spill Volume

reR

Equation 3

where t is the time-step of the planning period of length T; r is the reservoir of
the entire set R; and Spill Volume is the spill volume from the reservoir in ML.
The total spill is the sum of spill volumes over all timesteps of the planning

period. This objective function is to be minimised.

A daily timestep simulation-optimisation model of the case study was
constructed using eWater Source (Dutta et al. 2013). This model was chosen
based on its ability to simulate and multi-objective optimise operating rules for a
complex water grid (Ashbolt et al. 2014). The key features of the supply system
represented in the model are illustrated in Figure 2. This figure shows a
schematic representation of the major water sources, demand regions, and
pipelines; the operating rules to be optimised; and the decision variables which
constitute the operating rules. Not shown in this figure, but included in the
model are 39 inflows and 48 demand nodes, groundwater supplies, weirs,
smaller pipelines and streams, and a number of environmental flow
requirements. Daily inflow timeseries are available for 39 inflow sites in the
model, disaggregated from monthly calibrated timeseries covering 117 years

from 1890-2007. There are sixteen operating rules, outlined in the callout boxes
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Figure 2: Schematic of the case study network, showing major infrastructure and supply-
demand regions. The operating rules which govern this infrastructure are outlined in the call-out
boxes. The decision variables pertaining to these operating rules are highlighted in bold [A, B,

, P]. The supply-demand regions also include a number of inflows and demands as well as
pipelines, streams, weirs and groundwater supplies, not shown on this figure but included in the

simulation-optimisation model.
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in Figure 2, which govern the direction and flowrate of the seven two-way
pipelines, production volume of the desalination plant, and whether or not the
potable recycled water is directed for reuse in the reservoir or to non-potable
demands. These operating rules contain sixteen decision variables, which form
aset [A, B, C, ... P] also shown in Figure 2. These decision variables represent
thresholds of storage fullness in the operating rules that trigger changes in
operating mode, production volume, or flow rate, and are to be determined by
the optimisation algorithm. The optimisation component of the model is
configured to minimise or maximise the three objective functions in Equations 1-
3 by altering the 16 decision variables, using the NSGA-II genetic algorithm
(Deb et al. 2002).

2.2. Available streamflow forecasts

The Bureau of Meteorology (BoM) is the Australian national weather, climate
and water agency. Each month, it provides three-month-ahead seasonal
streamflow forecasts for a number of catchments across the country, including
within the case study area (Bureau of Meteorology 2015). These forecasts
provide a probability distribution of three-month seasonal total predicted inflow
volumes, and use a Box-Cox transformed multivariate normal distribution to
model intersite correlations (Wang et al. 2009). The probabilistic forecasts are
composed of an ensemble of 5000 equally probable forecast volumes,
produced from simulations using a Bayesian Joint Probability (BJP) model
(Wang et al. 2009). The BJP model is a probabilistic statistical forecast method
that predicts streamflows at multiple sites based on multiple and uncertain
predictors such as climate outlook and initial catchment conditions (Robertson
and Wang 2009). In addition to the probabilistic forecast distribution, an
indication is given of the skill score, i.e. the historical accuracy of the model for
that season. The Root mean Square Error in Probability (RMSEP) indicates the
level of skill for each of the forecast sites and catchments, as the square root of
the average difference between the historical probabilities of the observed value
and forecast median (Wang and Robertson 2011). A RMSEP of <10 is deemed
very low skill, 10-20 low skill, 20-40 moderate skill, and >40 high skill. Forecast

skill depends on the initial catchment conditions, and the time of year (Wang et

Ashbolt, S.C.: Short-term operational planning of water grids 217



Chapter 7: Using streamflow forecasts to improve short-term operating rules

al. 2011); where the skill score is very low, the historical probability distribution

is used for the forecast.

An example of a forecast for one of the sites in the case study area is shown in
Figure 3, for the July-September 2015 season at the confluence of Brisbane
River and Gregors Creek, upstream from Wivenhoe Dam. This season and site
has a high skill, with a RMSEP of 44. Figure 3 shows the probability of
exceedance of a given three-month flow (flow duration curve), based on both
the forecast and historical July-September reference (1970-2015) streamflow
distributions. This shows that for July-September 2015, the forecast distribution
indicated lower than usual streamflow volumes, indicated as a shift in the flow
duration curve compared to the historic flow duration curve. It also shows that,
for this particular year, the forecast was relatively accurate, i.e. that the
observed streamflow was closer in volume to the forecast median (50%
exceedance probability) than the historical median. It is this type of flow duration
curve information that is used in developing forecast inflow scenarios for this

study.
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Brisbane River at Gregors Creek (143009A)
Forecast period: Jul-5ep 2015

T
Forecast

Historical L
Reference (1970+)

Observed
Streamflow

Hindcast RMSEP = 44
{High skill)}H

Streamflow (GL)

BOD 100

Exceedance probability (%)

Generated: 00:32 0BO32016 (ver. 2.1.0/1.1.8)

o Commonwealth of Australia 2016, Australian Bureau of Meteorology
Figure 3: Example forecast and historic flow duration curves for Brisbane River at Gregors
Creek, a forecast site within the case study area. Source: Bureau of Meteorology,

http://www.bom.gov.au/water/ssf/forecasts.shtml

2.3. Forecast sites and spatial grouping of inflows

Seasonal three-month streamflow forecasts are available from the Bureau of
Meteorology (BoM) within four of the eleven case study catchments. These
BoM forecast sites can be used to provide information about the forecast inflow
distribution, to sample historical inflow at nearby inflow sites represented in the
simulation-optimisation model. Four forecast sites are listed in Table 1, Column
2. To identify which forecasts should be linked to which model inflow sites, the
39 model inflow sites are grouped to the four forecast sites, on a per-catchment
basis. The first step in this spatial grouping is to pair the four forecast sites with
four model catchment group representatives (Table 1, Column 3), which are the

most highly correlated inflow sites in the simulation-optimisation model.
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Correlation for these sites is measured based on the available flow-duration

curve, as it will be used to translate streamflow forecast information in Section

3.2.1. The eleven model catchments are then clustered in four model

catchment groups, based on the correlation of July-September inflow with the

four model catchment group representatives, as shown in Table 1, Column 4.

Correlation was used rather than physical distance as it is a more reliable

measure of similarity in streamflow (Archfield and Vogel 2010). Kendall's tau-b

rank correlation coefficient was used to measure this correlation; this measure

is non-parametric and can be used for time-series with zero-flow values (Wang

and Robertson 2011). The four catchment groups in Table 1 are used to

connect forecast and historic inflow distributions to model inflow scenarios as

described in Section 3.2.

Table 1: List of model catchment groups for the case study, including four Bureau of Meterology

(BoM) forecast sites, model catchment group representatives, and model catchments within the

catchment group.

Group

BoM forecast site

Model catchment group

representative

Model catchments

within group

Creek

1 Back Creek at Beachmont Little Nerang Dam Inflow |Gold Coast, Redlands
2 Burnett Creek upstream of Maroon Dam Inflow Bremer, Logan
Maroon Dam
3 Tinana Creek at Tagigan Road | Lake MacDonald Caboolture, Mary,
Downstream Inflow Maroochy, Mooloolah
4 Brisbane River at Gregors Wivenhoe Dam Inflow Brisbane, Pine,

Toowoomba

For the July-September forecast season of the four case study retrospective

seasonal planning periods, the historical forecast skill score of the four BoM

forecast sites is moderate to high (Table 2, Column 2). Three of the four

forecast sites have Root Mean Square Error in Probability (RMSEP) indicating

high skill (>40), with the Tinana Creek forecast site having moderate skill (20-

40). Due to these relatively high skill scores, the forecasts for these sites would

typically be expected to be fairly reliable. The forecast volumes and observed

flows for the two retrospective planning periods at the BoM forecast sites are
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shown in Table 2. Each of the planning seasons and sites has different forecast
inflow and accuracy relative to the historic median. Both the July-September
1989 and 2000 planning periods have average forecast median flows
significantly above the average historic median (85" and 69" percentile).
However the July-September 1989 had higher accuracy, with an average
difference of 14% between the observed inflow and forecast median for the four
case study forecast sites. On the other hand, the July-September 2000
observed flow had lower accuracy, with the observed inflow 67% lower on
average than the forecast median, closer to or below the historic median. Both
the July-September 1991 and 1997 periods had forecast median flows below
the historic medians. However, the 1997 planning period had higher accuracy in
the forecast, with an average difference of -4%. The observed flows for July-
September 1991 were even lower than the forecast medians, with an average
difference of -81%. In summary, a decision-maker planning for the July-
September season would expect reasonably high skill in the forecast on
average. However, the forecasts for the case study planning periods had
varying levels of accuracy, with both under- and over-prediction of inflows and

observed flows both lower and higher than the historic median.
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Table 2: Forecast median, observed (obs.) flow, and percentage difference in volume (% diff.) for the July-September season for the four Bureau of Meteorology

forecast sites and four retrospective planning periods. The percentiles of the forecast and observed flows within the historical distribution for each site are shown in

square brackets [%ile].

BoM forecast site RMSEP 1989 1991 1997 2000
skill Historic |Forecast |Obs. |% diff. Forecast Obs. |% Forecast |Obs. |% diff. Forecast Obs. |% diff.
score |al Jul- median |Flow median | flow diff. |median |flow median |flow
(Jul- Sep (GL) (GL) (GL) (GL) (GL) (GL) (GL) (GL)
Sep) median |[%ile] [%ile] [%ile] [%ile] [%ile] [%ile] [%ile] [%ile]
(GL)
Back Creek at Beachmont |53 0.34 1.1 0.8 -27 0.2 0.1 -50 0.3 0.3 0 04 0.2 -50
[90] [83] [39] (9] [46] [46] [58] [39]
Burnett Creek upstream of |53 0.48 2.2 15 -32 0.1 0 -100 |0.1 0.2 100 14 0.4 -71
Maroon Dam [85] [79] [17] [3] [17] [29] [77] [46]
Tinana Creek at Tagigan 31 1.0 4.2 8.7 107 0.4 0 -100 |0.4 0.3 -25 2.9 1.2 -59
Road [79] [90] [31] [0] [31] [25] [72] [54]
Brisbane River at Gregors |44 6.4 59.4 62.6 |5 3.2 0.8 -75 1 0.1 -90 17 1.9 -89
Creek [84] [85] [39] [18] [21] [6] [67] [30]
Average 45 21 16.7 184 |14 0.98 0.23 -81 0.45 0.225 |4 5.4 0.93 |-67
[85] [85] [32] [8] [29] [27] [69] [42]
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3. Method

3.1. Aim and overview

The aim of the method is to compare the objective performance of operating
rules optimised using inflows based on the forecast inflow probability
distribution, to the objective performance of operating rules optimised using
inflows based on the historical probability distribution. Since any of the inflows
from the forecast or historic probability distributions may be ‘correct’, objective
performance is optimised over multiple inflow scenarios to explicitly address this
uncertainty (Krzysztofowicz 2001). Comparing forecast- and historic-optimised
operating rules should show whether or not integrating streamflow forecast
information into simulation-optimisation can improve objective performance.
These forecast- and historical-optimised operating rules are also compared to
operating rules optimised using a single scenario of observed inflow over the
planning period. This allows the improvement of forecast-optimised operating
rules over historic-optimised to be assessed relative to theoretical maximum
performance that could be obtained using a perfect forecast of observed flow.
These comparisons are done separately for the four retrospective planning
periods described in Section 2. Comparing the relative improvement obtained
from forecasts for the four planning periods should show the impact of forecast
accuracy on objective performance, and the ability of optimisation using
probabilistic inflow scenarios to ameliorate this impact by improving the
robustness of operating rules.

Figure 4 outlines the method used in this study. This method contains four

steps:

1. Developing forecast, historical and observed inflow timeseries scenarios
for input to the simulation-optimisation model, by sampling from historical

inflow data.

2. Developing forecast, historical and observed optimisation problem
formulations using the respective inflow scenarios from Step 1 and the

problem formulation and simulation-optimisation model described in
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Section 2.1.

3. Multi-objective optimisation to obtain forecast-, historical- and observed-
optimised Pareto sets of operating rules, one set for each of the

optimisation formulations from Step 2.

4. Using compromise programming, a multi-criteria analysis technique
(Zeleny 1973), to select and compare one operating option each from the

three Pareto sets from Step 3, using preferences on the objectives.

More detail on each of the steps are provided in the following subsections.

Forecast inflow scenarios: Historical inflow scenarios: .
Step 1 10th, 25th, 50th, 75th, and 90th percentiles || 10th, 25th, 50th, 75th, and 90th percentiles /| OPserved inflows
A 4 Y Y
St 2 Forecast Historical Observed
ep optimisation formulation optimisation formulation optimisation formulation
> M &
Multi-objective
Step 3 optimisation
4 Y a
Forecast-optimised Historical-optimised Observed-optimised
Pareto set of operating options Pareto set of operating options Pareto set of operating options
A4
P 4
Step 4 Preferences > Compromise
on objectives programming
A Y PN
Forecast-optimised Historical-optimised Observed-optimised
selected operating option selected operating option selected operating option

Figure 4: Flow diagram of the four-step method used in this study.

3.2. Developing inflow scenarios (Step 1)

Step 1 of the method involves developing inflow scenarios for three optimisation
formulations: forecast, historical and observed. Each of these problem
formulations requires daily inflow timeseries at each of the 39 inflow nodes in
the simulation-optimisation model. The forecast and historical optimisation
formulations require multiple scenarios of inflow timeseries, generated from the
forecast and historical distributions for the relevant planning periods, to capture
the uncertainty in expected inflows. Optimising to these inflow scenarios should
increase the robustness of operating rules to a range of inflow possibilities and

incorporate some of the risk in solution performance due to inflow uncertainty
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(Higgins et al. 2008). The 10th, 25th, 50th, 75th, and 90th percentile flows are
selected based on the forecast and historical distribution of inflows. These are
the inflows that have 90%, 75%, 50%, 25% and 10% probability of exceedance
respectively. Whilst a greater number of inflow scenarios is desirable, this
limited number of scenarios restricts the run-time of the multi-objective
optimisation model to a manageable timeframe. Unlike the forecast and
historical optimisation formulations, the observed optimisation formulation
requires just a single timeseries of observed data for the four planning periods.
The following sections describe the method for developing forecast, historic and
observed inflow scenarios. This method is repeated for each of the planning

periods.
3.2.1 Forecast inflow scenarios

A simple method is used here to develop inflow scenarios for the forecast
optimisation formulation, based on the available data. This available data
includes: forecast and historic flow duration curves of three-month total inflows
at the four BoM forecast sites described in Sections 2.2 and 2.3; and daily 117-
year (1890-2007) modelled historical inflow timeseries at the 39 simulation-
optimisation model inflow sites described in Section 2.1. The 39 model inflow
sites do not correspond directly to the forecast sites, both in their location and
timestep. Therefore, the 10th, 25th, 50th, 75th, and 90th percentile forecast
streamflow volumes cannot be used directly as model inputs. Instead, the
forecast flow volumes at the forecast sites are spatially mapped to daily forecast
timeseries for each of the model inflow nodes using the flow duration curves at

the forecast and model catchment group representative sites listed in Table 1.

The first stage of developing the forecast inflow scenarios involves identifying
the 10th, 25th, 50th, 75th, and 90th percentile forecast inflow volumes from the
forecast distributions at each of the four forecast sites in Table 1. Figure 5 (a)
and Table 3 (Column 2) show an example of the forecast inflow scenario
volumes for the Brisbane River at Gregors Creek forecast site (Catchment

Group 4 in Table 1) for the July-September 1989 retrospective planning period.
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Table 3: Example of forecast optimisation formulation for Model Catchment Group 4 (Brisbane,

Pine and Toowoomba Catchments), for the July-September 1989 planning period.

Forecast Forecast Forecast percentile | Forecast volume |Time period

scenario inflow relative to historic | for catchment corresponding to

(percentile) |volume at |distribution at group forecast volume for
forecast forecast site representative catchment group
site (GL) (GL) representative

10" 11.8 61 225 Dec-Feb 1992-93

25" 26.6 731 41.4 Nov-Jan 1896-97

50" 59.4 84™ 68.6 Jun-Aug 1892

750 124.2 91 150.2 Nov-Jan 1955-56

90" 207.6 95" 194.3 Jul-Sep 1956

The second stage of developing the forecast inflow scenarios involves
determining where the forecast inflow scenario volumes for the forecast sites fit
within their historic distribution for that season. An example of the July-
September flow duration curve (historic distribution) for the Brisbane River at
Gregors Creek forecast site is shown in Figure 5 (b). The dots in Figure 5 (b)
and the values in Table 3 (Column 3) identify where the inflow volumes of
Figure 5 (a) lie within the historic distribution. This indicates that for this
planning period and catchment group, the forecast predicts a high probability of
above-median inflows, with the 10th-90th percentiles of the forecast distribution
corresponding to the 61st-95th percentiles of the historic distribution for the
forecast site. This stage creates a set of historic-adjusted forecast percentiles
that can be used to translate streamflow forecasts at the BoM forecast sites to

the simulation-optimisation model sites.

Stage three of developing forecast inflow scenarios involves translating the
forecasts for each of the BoM forecast sites Figure 5 (a) to inflow volumes for
each of the model catchment group representatives Figure 5 (c), as per the
catchment group pairings in Table 1. This translation is achieved by determining
the inflow volumes from the historic distribution of the model catchment group
representatives that correspond to the historic-adjusted forecast percentiles
from the second stage. Essentially, for a given forecast inflow scenario, the
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same (historic-adjusted) percentile flow at the forecast site is used as for the
model catchment group representative site. This means that although the
magnitude of inflows at the model sites may be different to those at the forecast
sites, the percentile or quantile of that flow is the same. This approach is used
because the two sites are spatially close and highly correlated, and thus would
be expected to have similar relative flow. Thus a 10th percentile forecast
volume of 11.8 GL for Brisbane River at Gregors Creek forecast site (Table 3
Columns 1 & 2) is translated to a Wivenhoe Dam Inflow 10th percentile forecast
volume of 22.5 GL (Table 3 Column 4): both volumes sit at the same relative

point in the historic distribution, ie. the 61st percentile.

Finally, stage four of the method involves translating the three-month forecast
scenario volumes for the four model catchment group representatives to daily
inflow timeseries at each of the 39 model inflow nodes. This is achieved by
determining the periods of the historic 117 year daily inflow timeseries for the
four model catchment group representatives that most closely match each of
the forecast inflow volumes, on a monthly timescale. These time periods are
then used to sample the modelled historic inflow timeseries for all sites within
the catchment group. For example, the three-month time period within the
historic daily inflow timeseries for Wivenhoe Dam with total volume most closely
matching the 10th percentile forecast inflow of 22.5 GL is December 1992 —
February 1993, as shown in Table 3, Column 5. This time period is then used to
sample timeseries for all model inflow sites in Model Catchment Group 4, i.e.
within the Brisbane, Pine and Toowoomba catchments Table 1. The sampled
inflow timeseries for all of the catchment groups can then be input to the
simulation-optimisation model as the 10th, 25th, 50th, 75th, 90th percentile

forecast inflow scenarios.

Since the forecast volumes at the four BoM forecast sites are spatially
correlated, total seasonal inflow volume is correlated across all catchment
group representatives. However, in developing the forecast inflow scenarios
from historic model flows, different time periods are sampled for each of the four
catchment groups. This means that whilst sub-seasonal spatial correlation is
preserved within catchments and catchment groups, it is not preserved between
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catchment groups. For this case study, it was considered more important to
achieve higher accuracy and coherence in total inflow volume (seasonal
correlation) than flow pattern (sub-seasonal correlation), since operating rules
are used to drive transfers across basin boundaries based on total storage
volume. Sub-seasonal correlation was considered less critical between
catchment groups, since inflows are less correlated between catchment groups
(e.g. Table 2) and because catchment groups are connected only via two-way
pipelines which convey controlled releases from multi-year storages. Seasonal
serial correlation between timesteps is preserved for all sites, since a
continuous time period is sampled. In future, a more sophisticated method for
disaggregating seasonal flow volumes to daily timesteps that preserves spatial
and temporal correlation in flow patterns across basin groups should be
implemented using disaggregation techniques such as k-nearest neighbours
(e.g. Kumar et al. 2000; Lee et al. 2010) or the Schaake Shuffle (Clark et al.
2004).

3.2.2 Historical inflow scenarios

The historical inflow scenarios are determined in a similar manner to the
forecast inflow scenarios. The key difference is that forecast sites and historic-
adjusted forecast percentiles (e.g. Table 3 Columns 2 and 3) are not used to
determine inflow volumes for the four catchment group representatives. Instead,
the 10th, 25th, 50th, 75th, and 90th percentile volumes from the historic
distribution for each of the model catchment group representatives in Table 1
are determined. Next, the periods of the historic 117 year daily inflow timeseries
for the four model catchment group representatives that most closely match
each percentile historic inflow volume are identified. These time periods are
then used to sample all inflow timeseries within the catchment group. An
example of historic inflow scenarios for Model Catchment Group 4 for the July-
September 1989 planning period is shown in Table 4. The 10th, 25th, 50th,
75th, and 90th percentile inflow timeseries scenarios for all of the catchment
groups provide the historical inflow scenarios for the historical optimisation

formulation.
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Table 4: Example of historical optimisation formulation for Model Catchment Group 4 (Brisbane,

Pine and Toowoomba Catchments), for the July-September 1989 planning period.

Historical scenario Historical volume for | Time period corresponding to historical

(percentile) catchment group volume for catchment group
representative (GL) representative

10" 5.3 Jun-Aug 1953

25 12.4 Jun-Aug 1899

50" 17.8 Dec-Feb 1964-65

75" 44.8 Jun-Aug 1966

90" 126.7 Aug-Oct 1973

3.2.3 Observed inflow scenario

The observed inflow scenario involves sampling the historic 117 year daily inflow
recorded for each of the model inflow nodes for the four retrospective planning

periods.
3.2.4 Comparison of inflow scenarios

Table 5 shows shows how the total forecast and historic inflow volumes,
averaged across the five scenarios, compare to the observed inflow for each
planning period. The historic volumes are different for each year, as the
planning year is omitted when calculating the historic distribution. This table
shows that, following translation to model inflows, the prior description of the
relative accuracy of forecasts for the four planning periods for the forecast sites
(Table 2), holds true. Both July-September 1989 and 2000 planning periods
have forecasts higher than average flows. July-September 1989, however, has
forecast average closer to the observed total inflow, whereas July-September
2000 has observed inflow significantly lower than both the forecast and historic
average. Both July-September 1991 and 1997 have forecast average volumes
significantly lower than historic averages. For both periods, the observed inflow
is lower than average, however the July-September 1997 forecast volume is
closer to the observed volume than for July-September 1991. However, it
should be noted that even when the forecast is relatively close to observed
volumes, the volumetric difference is still significant. This highlights the role of

the multiple percentile inflow scenarios in mitigating the impact of forecast
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inaccuracy.

Table 5: Total inflow volumes for case study simulation-optimisation model, for the four planning

periods. The forecast and historic inflow volumes are averaged across the five percentile

scenarios.
July- July- July- July-
September September September September
1989 1991 1997 2000
Forecast Average 474.7 143.0 155.0 385.8
Total Inflow (GL)
Historic Average Total 222.7 307.5 321.8 315.0
Inflow (GL)
Observed Total Inflow 654.7 53.2 89.4 85.2
(GL)

3.3. Optimisation formulations (Step 2)

The inflow scenarios described in the previous section, together with the
problem formulation described in Section 2.1, are used to develop forecast,
historical and observed optimisation formulations for the four retrospective
planning periods. These optimisation formulations are used to configure the
multi-objective simulation-optimisation model. For the forecast and historical
optimisation formulations, operating rules are to be optimised to be robust over
the five inflow scenarios (10th, 25th, 50th, 75th, and 90th percentiles)
representing uncertainty in the forecast and historical distributions. Robustness
can be measured in a number of ways; the choice of measure depends on the
decision-maker's preferences or biases and will effect the performance of a
given option (Giuliani and Castelletti 2016). For this case study, robustness is
measured by maximising minimum system storage, minimising total operational
cost, and minimising total spill volumes from reservoirs, averaged across the
five scenarios of inflow. This is a relatively risk-tolerant approach (Mortazavi-
Naeini et al. 2015; Ray et al. 2014), which assumes equal probability of each
inflow scenario occurring and equal weight on under- or over-performance due

to higher or lower inflows.
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3.4. Multi-objective optimisation (Step 3)

The multi-objective simulation-optimisation model described in Section 2.1 is
used to optimise the 16 operating rules according to the optimisation
formulations described in Section 3.3. For the forecast and historical
optimisation formulations, the model is configured to optimise the operating rule
decision variables to maximise or minimise objective performance over five
simulation scenarios that simulate the five percentile inflow scenarios. For the

observed optimisation formulation, a single simulation scenario is used.

A population of 200 and 150 generations are used for optimisation, as well as
the default settings for the NSGA-Il implementation in Source. These default
settings are a crossover probability of 0.9, mutation probability of 0.5, crossover
distribution index of 5, mutation distribution index of 10, and a random seed for
the first generation. This configuration appears to be sufficient to converge to a
diverse Pareto set before 150 generations, indicated by a plateau in the
hypervolumes of each run (Zitzler and Thiele 1998). Two Pareto sets, based on
two random seeds, are generated for each optimisation formulation; these
provide 400 operating options. When combining the two seeds, some of the
options will be dominated by others, i.e. they are outperformed by another
option in terms of all three objectives. These dominated options can be
discarded, resulting in a combined Pareto set of less than 400 operating
options. The simulation-optimisation process is run for each of the three
optimisation formulations, and for each planning period, resulting in three
Pareto-optimal sets of operating options for each planning period. The
simulation model is also used to determine the performance of the Pareto-
optimal operating options when implemented under observed conditions for the

relevant planning period, as represented by the observed inflow scenarios.

3.5. Compromise programming (Step 4)

In evaluating the impact of inflow scenarios on the objective performance, it is
useful to assess how a single operating option, selected by a decision-maker for
implementation, might change based on each of the optimisation formulations.

Selecting and comparing a single option from each of the forecast-, historical-
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and observed-optimised Pareto sets will allow a more concrete comparison of
the quantitative difference in performance between operating options due to the

differences between inflow scenarios.

Compromise programming (Zeleny 1973) is an optimisation technique, widely
used in multi-criteria analysis, that can be used to select an efficient option from
a Pareto set by placing weights on objectives or criteria. It involves finding the
option of minimum distance to an ideal point represented by a hypothetical
objective function vector comprising the best performance of each objective in
the entire Pareto set. For this case study, the ideal point would be a vector of
the maximum minimum system storage, minimum total cost, and minimum total
spill, found within the Pareto set. The distance of each option to the ideal point
can be measured by one of a number of distance metrics; here, the distance
metric presented by Ballestero (2007) is used. The distance is a combination of
individual objective distances combined using the preference weights. The
function to find the distance from the ideal point as per Ballestero (2007) is

shown in Equation 4, and explained further in that paper.

n n

=> [y (1- Ny (1o v (1 P :
A= [o0g Y1y )1+ 05 2 (555, (1-o00 Y ) (1= y,)] Equation 4

j=1 j=1

Where A is the distance (to be minimised), j is an objective function, n is the
number of objective functions, y is the 1-normalised objective function value
(ideal value y = 1, non-ideal y = 0, drawn from feasible values), and Y is the
objective preference weight in %. Finding the member of the Pareto set with
minimum distance from Equation 4 will identify the most efficient operating
option, for the chosen preference weights on the objective functions.

Equation 4 will be applied to identify a single operating option for each of the
forecast-, historical- and observed optimised Pareto sets, for both planning
periods, using a preference weights of 30% on minimum system storage, 40%
on total cost, and 30% on total spill. This preference scenario reflects a desire
for balanced performance across all three objectives, with a slight emphasis on
minimising cost (Ashbolt et al. 2016b).
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4. Results and discussion

For each of the four retrospective planning periods, three optimisation
formulations — forecast, historical and observed — were developed. These three
optimisation formulation were used to obtain three corresponding Pareto sets of
non-dominated operating options. These Pareto sets are referred to as the
forecast-, historical-, and observed-optimised Pareto sets. Each Pareto set
contains multiple options, none of which can be said to outperform another (are
non-dominated) due to the trade-offs between the three objectives. The
forecast- and historical-optimised Pareto sets indicate operating options that
optimise objective trade-offs across the five percentile forecast and historical
inflow scenarios, whilst the observed-optimised set optimises objective trade-
offs for a single scenario of observed inflow. Each of the operating options
comprises 16 decision variables, which can be used to formulate the operating

rules in Figure 2.

4.1. Objective performance and trade-offs

Figure 6 shows an example of the objective performance of forecast-,
historical-, and observed-optimised Pareto sets for the July-September 1989
planning period. This figure shows the trade-offs between the three objectives,
and the difference in predicted objective performance under each optimisation
formulation (forecast, historical and observed). Each sub-plot shows two of the
objectives on the x- and y-axes, with arrows on the axes indicating the direction
of preferred performance. The relative value of the third objective is indicated by
shading of the points, with darker shading indicating better performance (higher

minimum storage, lower cost and spill).
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Figure 6: Average objective performance of Pareto sets from the forecast (stars), historical
(circles), and observed (triangles) optimisation formulations for the July-September (JAS) 1989
historical planning period. The performance shown is that for that averaged over the forecast,

historical, and observed inflow scenarios respectively.

Figure 6 illustrates that for the July-September 1989 period, all three Pareto
sets show a trade-off between an increase in minimum storage for an increase
in cost (Figure 6a), and a moderate increase in spill (Figure 6b). There is an
increase in total spill with cost (Figure 6c) for the forecast- and historical-
optimised Pareto sets, but there is some scatter in this relationship. There

appears to be relatively little or no increase in spill with cost for the observed-
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optimised Pareto set. An increase in cost is likely associated with increased use
of desalination in particular, leaving more water in the storages (increasing
minimum storage). Whilst it is difficult to determine the exact cause from this
plot, the inflection point in the relationship between cost and minimum storage
likely indicates options that result in the trigger of desalinated water production.
The relationships between the three objectives for the case study and the
decision variables have been elaborated further (for a 5-year assessment
period) in Ashbolt et al. (2016b).

Figure 6 also illustrates the difference in objective performance when operating
rules are optimised according to the three different optimisation formulations, for
the July-September 1989 planning period. The range in cost of the three Pareto
sets are fairly similar, with slightly higher cost for the observed optimisation
formulation. The historical optimisation formulation has lowest minimum system
storage and spill (Figure 6 b). This is expected as it has the lowest total inflow
(Table 5). Performance of the forecast-optimised Pareto set is most similar to
the observed-optimised set for the objective trade-off curve of minimum storage
and total cost (Figure 6 a). This is to be expected, as the average inflow of the
forecast optimisation formulation is closest to the observed inflow (Table 5).
However, the historical-optimised set is closer to the observed-optimised set in
terms of spill (Figure 6 c). The reason for relatively low spill in the observed
optimisation formulation, despite having higher total inflow volume (Table 5)
than the forecast-optimised Pareto set, is less clear. A possible reason is a
greater use of two-way pipelines, which can keep minimum storage higher but
reduce spill by balancing water storages Ashbolt et al. (2016b). Another key
difference between the observed optimisation formulation and the other two
formulation is that operating rules are optimised to maximise performance for a
single inflow condition, rather than average performance across five inflow
scenarios. This may allow the operating rules to be 'more optimal’ for the
narrower range of inflow conditions. Similar behaviour was seen for the three
other planning periods, with differences in relative performance due to the

differences in forecast, historic, and observed inflows.
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4.2. Operating rules

Comparing the decision variables of the forecast-, historical- and observed-
optimised Pareto sets can show how the operating rules vary between the
optimisation formulations and provides possible reasons for the differences in
objective performance seen in Figure 6. Figure 7 illustrates the distributions of
the 16 decision variables for the forecast-, historical- and observed-optimised
Pareto sets for July-September 1989, as kernel-density estimation (KDE) plots.
These decision variables A to P pertain to the operating rules and infrastructure
as shown in Figure 2. KDE plots are a variation on the histogram, where lines
show a smoothed distribution of a variable, allowing for the distributions of
multiple datasets to be overlaid on the one plot (Ashbolt et al. 2016b). The KDE
plots in Figure 7 show that for many of the decision variables, the distributions
of the three Pareto sets are fairly similar: for example, decision variable | and J,
which governs the operation of the EPI two-way pipeline, and decision variables
N-P, which govern the production volume from the desalination plant. However,
the historical-optimised Pareto set shows significant difference to the other two
sets in the distribution of decision variables C, D, and L which govern the
direction and flowrate in the NPI and flowrate in the SPI two-way pipelines.
These figures suggest, for example, that the direction of the NPI two-way
pipelines is switched more frequently (at lower thresholds) for the historic
optimisation formulation than for the forecast and observed optimisation
formulations, to avoid spills from storages or direct water to relatively water-
scarce catchments. In general, the distributions of the forecast-optimised set
track observed set, excepting decision variable B, D and L, which govern
flowrate in the NPI2, NPI and SPI two-way pipelines.
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Figure 7: Distributions of the decision variables for July-September 1989 forecast, historical,

and observed optimised scenarios, as kernel density estimation plots.

4.3. Objective performance under observed conditions

Figure 6 showed the objective performance of three Pareto sets for July-

September 1989, each of which were optimised and assessed to different

average inflow conditions as outlined in Table 5. Based on such a figure, one

Pareto set cannot be said to outperform another, since performance is

dependent on different inflow volumes. Instead, simulating the performance of

the forecast- and historical-optimised Pareto sets using the observed inflow for

each planning period will allow a direct comparison of the Pareto sets and an

idea of their performance as implemented over the planning period.
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Figure 8 shows boxplots of the distribution of performance for each objective
when simulated using observed flow, for each of the four retrospective planning
periods. This figure indicates the differences in distribution of objective
performance between the three Pareto sets, indicated by the median (bar), box
(25th — 75th percentile) and whiskers (minimum to maximum). Whilst there is
significant overlap in the objective performance range, the differences between
distributions of the optimisation formulations vary between planning periods. For
the July-September 1989 planning period (1% column), the median and range of
performance of all three objectives is most similar between the forecast- and
observed-optimised Pareto sets. This is expected, since median forecast inflow
was closer to observed flow than the historic median. For the July-September
2000 planning period (2" column), the correlation between objective
performance is mixed, with the historical-optimised Pareto set having more
similar minimum system storage to observed, but the forecast-optimised set
having more similar cost. However, the variation between Pareto sets is less
than for July-September 1989. This period had lower accuracy in the forecast,
with observed inflow lower than but closest to the historic median. For the July-
September 1997 planning period (3" column), which had higher accuracy in the
forecast, but below-median observed inflow, the distribution of total cost and
spill is most similar between the forecast- and observed-optimised Pareto sets.
However, the minimum storage of the historical-optimised Pareto set is most
similar to the observed-optimised set. For the July-September 1991 planning
period (4" column), there is most similarity between the distributions of the
forecast- and historical-optimised Pareto sets. This may be expected, since
observed flow was significantly lower than both the forecast and historical
median. This period has the lowest observed inflow, and the greatest variation

in objective performance between the three optimisation formulations.
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Figure 8: Boxplots of objective performance of the forecast-, historical- and observed-optimised
Pareto sets for the four retrospective planning periods — July-September 1989, 2000, 1997, and
1991 - simulated using the observed inflow data for each period. Each box and whisker plot
indicates the distribution and range of the 200+ operating options within each Pareto set, with
the boxes indicating 25"-75" percentiles, bars indicating 50" percentiles, and whiskers

indicating minimum and maximum values.

4.4. Optimality under observed conditions

The boxplots in Figure 8 indicate the relative similarity of the forecast-,
historical- and observed-optimised Pareto sets based on performance of
individual objectives. However, they do not compare performance of operating
options across all three objectives simultaneously. This comparison is important,
as multi-objective optimisation is characterised by trade-offs between objectives
and aims to find operating options that outperform others on all three objectives,

i.e. are non-dominated. Whilst the three Pareto sets were non-dominated in
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terms of all three objectives for the optimised inflow, the objective performance
of the forecast- and historical-optimised Pareto sets changed when simulated
for observed inflow conditions. This means that the operating options as shown
in Figure 8 may no longer be non-dominated under observed inflow conditions.
The observed-optimised set, on the other hand, will remain non-dominated as it

was optimised to observed inflow.

The proportion of non-dominated operating options within the forecast- and
historical-optimised Pareto sets were reassessed using the observed inflow.
This can be used as a measure of the relative optimality of the operating
options resulting from the two optimisation formulations for the four different
planning periods. The percentage of non-dominated operating options in each
optimisation is shown in Table 6.

Table 6: Percentage of operating options in the forecast- and historical-optimised Pareto

sets for each of the four retrospective planning periods.

Retrospective planning Optimisation Percentage of operating options that
period formulation are non-dominated for observed
inflow

July-September 1989 Forecast 14

Historical
July-September 1991 Forecast 8

Historical
July-September 1997 Forecast 23

Historical 19
July-September 2000 Forecast 19

Historical 16

This table indicates that for three of the four planning periods, there are a
greater percentage of non-dominated operating options in the forecast-
optimised Pareto sets. The difference is greatest for the July-September 1989
planning period, which had relatively high accuracy and was the only planning
period with observed flow higher than forecast inflow. The July-September 2000
planning period had a higher number of non-dominated forecast-optimised

operating options, despite the historical median being closer to the observed
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flow. The July-September 1991 planning period, which had lowest accuracy in
the forecast, had a slightly higher percentage of non-dominated operating
options for the historical-optimised Pareto set. These results indicate that the
forecast optimisation formulation provided benefits over the use of the historical
optimisation formulation for most of the planning periods. Despite this, the
differences between the historical optimisation formulation were relatively small
for 3 of the 4 planning periods. This suggests that the benefits of using multiple
inflow scenarios have mitigated some of the risk in observed inflow deviating

from both the forecast- or historical-median.

4.5. Comparison of options selected using compromise programming

Compromise programming was used to identify the most efficient operating
option from each of the Pareto sets, measured as the closest to the theoretical
ideal option of maximum minimum storage, minimum total cost and minimum
total spill. Comparing the most efficient options from the forecast-, historical-
and observed-optimised Pareto sets gives an idea of how, for a given set of
decision-maker preferences, the performance might vary based on the different
inflow assumptions used in the optimisation formulations. Table 7 shows the
objective performance of the most efficient operating options from each of the
three Pareto sets for each of the four planning periods, simulated for observed
inflow conditions and using a preference of 30% weighting on minimum system
storage, 40% on total cost, and 30% on total spill. This table shows that whilst
some options have equal performance, none of the operating options
outperforms all the others. Generally, the observed optimisation formulation has
the best performance, which is equalled by the forecast-optimised option for the
July-September 2000 period. The forecast-optimised option outperforms the
historical-optimised option for the July-September 1997 and 2000 planning
periods. However, the historical-optimised option equals or improves on the
forecast-optimised option for the July-September 1991 period. There is most
similarity in cost between the options, perhaps due to the higher weighting on
this objective. Overall, the forecast-optimised options perform better than the
historical-optimised options, and similarly to the observed-optimised options.

However the historical-optimised options also perform reasonably well, and
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there is often a relatively small difference between options.

Table 7: Objective performance of the most efficient operating options selected from the
forecast-, historical- and observed-optimised sets for each of the four planning periods, for a
preference weighting of 30% on minimum system storage, 40% on total cost, and 30% on total
spill volume, simulated using observed inflow. Bold type indicates the best-performing option for

each objective, for each planning period.

Planning period | Optimisation Minimum Total Cost ($ Total Spill

formulation System Storage |million) Volume (GL)
(GL)

July-September | Forecast 1,636 138 13.8

1989 Historical 1,636 137 13.7
Observed 1,640 136 13.9

July-September | Forecast 1,019 136 0.454

1991 Historical 1,022 136 0.406
Observed 1,025 136 0.406

July-September | Forecast 1,035 136 0.209

1997 Historical 1,034 137 0.213
Observed 1,037 136 0.210

July-September | Forecast 1,045 136 0.016

2000 Historical 1,042 137 0.016
Observed 1,045 136 0.016

4.6. Sensitivity analysis

Comparing the objective performance of operating options using the optimised
inflow and observed inflow (e.g. Figures 6 and 8) suggested that the objective
performance is significantly influenced by the total inflow volume. To understand
how changes in the inflow volume affect the objective performance, the
forecast-optimised Pareto set for July-September 1989 was also simulated
using the 10™, 25™, 50", 75", and 90™ percentile historical inflow scenarios.
Figure 9 shows boxplots of the sensitivity of objective performance of the
forecast-optimised Pareto set for July-September 1989 to different inflow
possibilities, including the observed inflow. These figures indicate that the both
the minimum storage and total spill increase significantly with total inflow

volume, to a degree much larger than the differences between optimisation
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formulations seen in Figure 8. The total cost on the other hand, is fairly similar
across the different percentile flow scenarios, with lower cost incurred for 50™
and 75" percentile flows. Overall, the minimum storage and spill objectives are
highly sensitive to the inflow volume, but total cost is relatively insensitive to
inflow volume. This type of sensitivity analysis may be particularly useful for the
decision-maker to consider if there are constraints on the values of the

objectives.
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Figure 9: Performance of forecast-optimised Pareto set for July-September 1989, simulated
using observed (obs) flow, and different percentile scenarios of inflow from the historical

distribution of the July-September season.

The results also indicate that objective performance under observed inflow is
sensitive to the inflow volume used in optimisation. Figure 10 compares the
performance of the observed (obs.) and forecast-optimised (multi-forecast)
Pareto sets shown previously in Figure 8, to Pareto sets optimised using single
forecast 10™, 50" and 90" percentile inflow scenarios for July-September 1989.
The performance shown is that under observed inflow conditions, which for this
planning period, was between the 50" and 75" percentile forecast inflows.
These plots indicate that the observed and multi-scenario forecast-optimised
Pareto sets provide better results in terms of minimum storage and spill. Whilst
the forecast 10™ and 90™ percentile optimised Pareto sets have lower median
cost, this comes at a trade-off for lower minimum storage or higher spill. The

10" percentile scenario experiences significantly higher spill as it was optimised
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to a much lower inflow volume than observed. The 90" percentile scenario

experiences significantly lower spill as it was optimised for higher flow

conditions than observed, but the minimum storage is significantly lower. These

plots indicate the importance of considering multiple inflow scenarios in

optimisation, particularly for the minimum system storage objective.
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Figure 10: Performance of Pareto sets for July-September 1989, optimised to different scenarios

of inflow: observed, averaged across multiple inflows (10, 25", 50", 75" and 90"), 10" percentile

forecast inflow, 50™ percentile forecast inflow, and 90" percentile forecast inflow. For this time

period, total observed inflow was between the volumes of the 50" and 75" inflow scenarios.

5. Summary and conclusions

In summary, this study has shown how including streamflow forecast

information in short-term operational planning for water grids has the potential

to improve multi-objective performance of operating rules. This improvement

was measured as a positive change in objective performance compared to

operating rules optimised to inflows from the historical distribution. This was

demonstrated for a case study water grid, for four retrospective (past) three-

month planning periods, by optimising operating rules to meet multiple

management objectives — maximising water security, minimising operational

cost, and minimising spill volumes averaged across multiple scenarios of

historically-sampled inflow. Forecast-optimised Pareto sets of operating options

were identified by optimising operating rules for inflow scenarios sampled from

historical inflow based on publicly-available forecast probabilities. Similarly,
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historic-optimised Pareto sets of operating options were identified by optimising
operating rules for inflow scenarios sampled from the historic probability

distribution.

On average, forecast-optimised operating options improved objective
performance compared to historic-optimised options and approached close to
the performance of options optimised using a scenario of observed inflow for
the planning period. The results also indicate that even for a planning period
when the median of the forecast distribution is significantly different to the
observed median, operating rules optimised using streamflow forecast
information can still improve over historical-optimised options. This suggests
that impacts on objective performance due to inaccuracy in the forecast may be
ameliorated by optimising options to be robust across multiple scenarios from
the forecast probability distribution. However, in some cases, the historical-
optimised Pareto set performed similarly or outperformed the forecast-optimised
Pareto set, particularly when the forecast was less accurate. Therefore, the
analysis of more planning periods is required before making a definitive
conclusion. Further analysis of the relationships between objective performance
and optimised or observed inflow might provide some insights into the
conditions under which forecast inflow scenarios may provide the greatest

benefit or risk.

Nevertheless, the relatively good performance of the forecast-optimised set
across all planning periods suggests that using forecast information, with
multiple scenarios of inflow, may provide an acceptable trade-off between the
benefits and risks of forecast accuracy. The method shown in this study simply
updates the distribution of sampled inflow based on current and expected
conditions. This provides a small additional operational benefit with minimal
additional effort or change to existing decision processes. Further study would
be required by the decision-maker for their case study and planning season, to
verify these benefits and the acceptable risk vs reward ratio. Whilst comparing
selected efficient options optimised to historical and forecast inflow revealed
only minor potential improvements, a greater advantage found for using

forecast inflows was in increasing the number of options that were optimal (non-
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dominated) for observed inflow. The use of multiple inflow scenarios in
particular, appears to provide benefits in managing inflow risk compared to a

single scenario of inflow, even when the forecast is relatively accurate.

This paper has used a relatively simple method to translate publicly-available
streamflow forecast information to inflow timeseries at 39 inflow nodes in the
case study simulation-optimisation model, using currently available data. This
method was required since forecast inflow timeseries were unavailable at
locations corresponding to the model inflow nodes. Instead, the flow duration
curves, representing the inflow distributions, were used to translate available
streamflow forecast volumes at forecast sites to inflow volumes at nearby
(highly correlated) case study model inflow sites. Whilst sub-seasonal cross-
correlation was preserved within basin groups, only seasonal volumes were
correlated between basin groups. Despite the simplicity of this method for
translating streamflow forecast information, the results indicated potential
improvements in objective performance. This suggests that available forecast
information such as that provided by the Bureau of Meteorology in Australia can

be used to improve existing model inputs with relatively little investment.

Developing and validating a more sophisticated statistical relationship between
streamflow forecasts and the model inflow timeseries would then be expected to
further increase the objective performance of the forecast-optimised operating
rules, by reducing the model uncertainty and improving sub-seasonal spatial
cross-correlation between basin groups. In this study, a single timeseries from
the historic record was used for each of the five forecast inflow scenarios;
stochastic catchment models with spatially and temporally correlated flows
could be used to incorporate variability in the daily patterns of flow and to
generate inflow patterns more consistent with initial catchment condition and
season. Combined with a greater number of inflow scenarios from the
probability distribution this could increase robustness to both different inflow
volumes and different sequencing of the total inflow volume over the time
period. This is important, since the pattern of flow may effect the operating rules
and objective performance (Faber and Stedinger 2001). Ideally, this would be
aided by stronger connection and cross-validation between the catchment
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models used for the operational planning model and those used to provide the

forecasts.

This study has also shown the potential utility of the forecasts provided by the
Bureau of Meteorology to short-term operational planning in Australia. The
latest forecasts by the Bureau of Meterology provide seasonal volumes with a
monthly timestep; improving the method presented here to incorporate this
monthly pattern may reduce the uncertainty in the timing of intra-seasonal flow.
Current plans to extend the 3 month forecasts to 1 year (Wang et al.

2014) should allow the operating rules to be optimised for expected inflows over
the entire annual operational planning period for the case study. An alternative
is to develop a method for extending the 3-month streamflow sequences,
preferably one that preserves serial correlation (Watkins et al. 2000). The
simulation-optimisation process may still be repeated on a monthly or seasonal
basis, since the forecasts are more accurate for the first 3 months (Simonovic
and Burn 1989; Wang et al. 2014).

Finally, a sensitivity assessment of objective performance to total inflow
indicated that for the case study objectives of minimum system storage and
total spill, performance is more sensitive to the inflows experienced during the
planning period than the operating rules themselves. Conversely, the total
operational cost objective is less sensitive to streamflow. Thus it is important for
the decision-maker to simulate the performance of the Pareto set or chosen
operating options under a range of inflow conditions to understand the

sensitivity of objectives to observed or optimised inflow.

In conclusion, the previous study (Ashbolt et al. 2016a) showed how multi-
objective optimisation of annual operating rules using historical inflow can
provide improvements to objective performance compared to rules-based
operation using longer-term operating rules. This study builds on that study by
showing how incorporating seasonal streamflow forecast information in
optimisation can further improve objective performance, by accounting for
expected climate and current catchment conditions and incorporating

uncertainty. Together these studies provide proof-of-concept of key components

Ashbolt, S.C.: Short-term operational planning of water grids 248



Chapter 7: Using streamflow forecasts to improve short-term operating rules

of the framework for short-term operational planning of water grids proposed in
Ashbolt et al. (2014), by optimising operating rules for expected inflow
conditions. Further research might connect these two studies by extending
seasonal forecast inflows to cover the annual operational planning horizon and
testing the method for additional planning periods. Recommended
improvements to the method include the use of forecast-driven stochastic inflow

sequences that account for spatial and temporal correlation and variability.
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Chapter 8: Summary, conclusions and

recommendations

8.1 Summary

This thesis has proposed and demonstrated a framework for short-term
operational planning of water grids. Chapter 1 defined the water grid as a
network or ‘grid’ of pipes and open channels that connects water sources to
water demands across catchments, which may comprise traditional sources
such as surface and groundwater storages, as well as alternative sources such
as desalination, stormwater and recycled water. This interconnectedness, as
well as the presence of climate-independent water sources such as desalination
and recycled water, are key strategies to increase supply system yield to meet
the pressures of population growth, climate variability, and climate change.
These water grids are typically managed to meet multiple objectives such as
maximising water security and environmental flows, minimising operational cost
and energy use, and minimising flood risk. However the complexity of the water
grid, compounded by trade-offs between these objectives, brings challenges to
water grid management in navigating the decision and objective spaces. This
research aimed to develop and demonstrate a framework for operational
planning of water grids that addresses two key challenges, namely: identifying
operating rules for the water grid that are optimal for multiple management
objectives, and incorporating streamflow uncertainty into operational planning.

Chapter 1 also identified four research questions relating to the research aim:
1. What is the desired outcome of this framework?

2. What methods and tools can be used together to achieve the desired

outcome of the framework?

3. Does this framework incorporate some of the key requirements identified

in Section 1.1, such as:

* uncertainty in input data such as streamflow;

Ashbolt, S.C.: Short-term operational planning of water grids 254



Chapter 8: Summary, conclusions and recommendations

« multiple and conflicting management objectives and criteria,
performance measures, and preferences on these objectives and

criteria,;
* changes in these objectives and criteria;
« changes in initial conditions and input data;
» stakeholder values;

» feedback between framework components and planning

timeframes; and
* existing data and models?

4. Does this framework actually provide the required outcome when

implemented for a case study?

Chapter 2 addressed the first three research questions by reviewing the
literature and current practice to identify the needs of short-term operational
planning for water grids, and to propose a novel framework of methods and
recommended tools to meet these needs. The outcome of the proposed
framework is a set of optimal operating rules or operating option that can form
the basis of an operational plan. The framework centres around multi-objective
simulation-optimisation of operating rules, to identify a Pareto set of operating
options that are optimal for a subset of the management criteria, represented as
multiple objectives, and for expected conditions over the planning period.
Cluster, visual, and post-optimisation analysis methods can be used to better
understand the characteristics of the large Pareto set and reduce it to a shortlist
of ~10 operating options for more detailed analysis. Finally, multi-criteria
analysis can be used to assess these operating options against the full set of
management criteria, and to rank or score their performance by using
preference weights on the criteria that reflect decisionmaker and stakeholder
values. This ranking can be used to identify a single operating option for
implementation over the planning period. Uncertainty in streamflow and demand
can be incorporated as multiple input scenarios to the optimisation model, or in

multi-criteria analysis to assess the potential variation in criteria performance.
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Chapter 3 introduced a case study based on the South East Queensland Water
Grid. This case study aims to identify a set of operating rules for the two-way
pipelines, desalination production and wastewater recycling and 1 year planning
period. These operating rules should be optimal for multiple management
objectives and meet multiple management criteria over a 5 year assessment
period. This case study was used to answer the fourth research question, by

demonstrating the application of the framework in Chapters 4 to 7.

Chapter 4 formulated the short-term operational planning problem for the case
study, and demonstrated how multi-objective simulation-optimisation can be
used to find short-term optimal operating rules. Simulation-optimisation was
undertaken using the publicly available Source software tool, which contains a
node-link network simulation module, as well as a fully integrated optimisation
module using the genetic algorithm NSGA-II. This provided a use-case of this
new emerging software tool, which has not been demonstrated widely in the
literature. The problem formulation of the case study identified 16 operating
rules to be optimised to meet three of the management criteria, represented as
objectives in the optimisation model: maximising minimum system storage,
minimising operational cost, and minimising spills from reservoirs, over the 5
year assessment period. Multi-objective simulation-optimisation of the case
study problem formulation resulted in a Pareto set of 677 operating options,
each of which contains a set of operating rules that are optimal in terms of the
three management objectives and for expected inflows and demands over the
assessment period. This Pareto set outperformed a base-case of operation
using fixed longer-term rules, by updating variables in these rules to tailor
operations to predicted system conditions over the short-term. However this
Pareto set remained large and complex, making it difficult to understand the

trade-offs and to select a single operating option.

Chapter 5 used a combination of cluster, visual and post-optimisation analysis
techniques to better understand the Pareto set and to reduce it to a shortlist of
more manageable size for further analysis. Visual analysis, aided by cluster
analysis, was used to understand the trade-offs between objectives and the
relationships between decision variables and objectives, as well as to identify
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promising operating options for the shortlist. A variety of visual analysis
techniques were presented, each of which provided different insights into the
objectives and/or decision variables. Post-optimisation analysis techniques,
such as compromise programming and the pseudo-weight vector, were also
used to identify efficient options using multiple scenarios of preference weights
on the objectives. This resulted in a shortlist of nine operating options with a
range in objective performance, but which were efficient in terms of trade-offs

between the objectives.

Chapter 6 assessed the performance of the nine shortlisted operating options
against the full set of 18 management criteria and a range of inflow scenarios
extending up to a 10 year horizon. This extended the assessment of options
beyond the three management criteria and single inflow scenario used in multi-
objective simulation-optimisation. As with the Pareto set, trade-offs were seen
between criteria performance for each operating option, making selection of a
single operating option difficult. Therefore, multi-criteria analysis, using weighted
summation, was applied to the shortlist to combine performance of each of the
options against the each of the 18 criteria using four scenarios of preference
weights. A single operating option was identified that performed best on average
across the four preference scenarios. This operating option can be used as the

basis of an operational plan.

Finally, Chapter 7 investigated the potential of streamflow forecasts to improve
objective performance of short-term operating rules. A simple method was used
to translate the publicly available seasonal streamflow forecasts provided by the
Bureau of Meteorology in Australia, to input timeseries for the case study
simulation-optimisation model. As these streamflow forecasts have a three-
month outlook, operating rules for the case study were determined using a
revised three-month planning period. Apart from the revised planning period and
streamflow inputs, the simulation-optimisation model and problem formulation
was the same as used in Chapter 4. The operating rules were optimised to
maximise or minimise the average objective performance across five three-
month inflow scenarios from the forecast distribution, to tailor the operating

rules to predicted inflows whilst increasing their robustness to uncertainty in the

Ashbolt, S.C.: Short-term operational planning of water grids 257



Chapter 8: Summary, conclusions and recommendations

predictions. Despite the use of a relatively simple method for translating the
streamflow forecast information to simulation-optimisation model inputs, the
results of multi-objective optimisation indicated that using forecast inflows

improved objective performance over using historical inflow scenarios.

8.2 Conclusions

In conclusion, this thesis has developed and demonstrated a framework for
short-term operational planning of water grids, as per the research aim stated in
Section 1.2. This framework considered two key challenges of water grid
management: identifying operating rules that are optimal for multiple objectives,
and incorporating uncertainty in streamflow into operational planning. This
framework addressed the research gaps outlined in Section 1.4, including:
meeting the challenges of water grid management; applying multi-objective
optimisation to short-term planning of complex multi-reservoir systems; and
demonstrating how multi-objective optimisation can be integrated into the short-
term planning process, including each step from the problem definition to a final
set of operating rules. Application of the framework to the case study
demonstrated its ability to address these research gaps. This framework
incorporates multiple management objectives and criteria, stakeholder and
decisionmaker preferences, uncertainty in input data, existing data and models,
and allows for changes in these over time. Thus this thesis was able also to

satisfy the four research questions outlined in Section 1.2.

The Pareto-optimal set of operating options obtained in Chapter 4 outperformed
the base-case option of using fixed longer-term operating rules, by updating the
decision variables in the operating rules to improve objective performance over
the short-term planning period. However, the performance of the fixed rules was
within the range of the Pareto set in terms of individual objectives. This
suggests that the use of fixed rules that are optimal for system conditions over
the longer-term may not provide significant detriment to operation. However, the
effect of even small improvements in objective performance may compound
over time. Furthermore, the key advantages of multi-objective optimisation, and

the framework more generally, are in allowing the decision-maker to appreciate
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the trade-offs between objectives or criteria and the relationships between
operating rules and objective performance. Both multi-objective optimisation
and multi-criteria analysis help to avoid ‘policy myopia' — focussing on a single
region of the objective or decision space — by considering the entire objective
and criteria possibilities before finalising preferences on the criteria.

A set of easy-to-use and publicly-available tools have been recommended and
demonstrated for implementation of each of the framework components. This
research also demonstrated the use of publicly available streamflow forecast
information, provided by the Bureau of Meteorology, for multi-objective
optimisation of operating rules. However, the flexible nature of the framework
allows for preferred or currently used tools, techniques, criteria, objectives and
input data to be used for alternative case studies, as discussed in Chapter 2.
Using such preferred or currently used methods and information can assist in
problem formulation, which is a key component in the success of multi-objective
optimisation and multi-criteria analysis. This approach can also provide more
confidence in the framework outcome, and enable consistency with other

decision processes such as long-term planning.

Finally, as demonstrated in Chapter 4, the framework can provide linkages
between short- and long-term planning by readjusting longer-term operating
rules for expected conditions over the short-term planning period. This linkage
could be strengthened by applying the framework to the long-term planning
space, by updating the problem definition and input data. Finally, the
implementation of this framework will be an iterative process, as it is reapplied
for each new short-term planning period. This iterative nature of the short-term
planning process allows the decision-maker to update the problem formulation
(e.g. objectives, decision variables, and criteria) as they gain more
understanding of the impacts of these parameters on the outcome, and as

system conditions or preferences change over time.

8.3 Recommendations

This research aimed to address the key challenges of water grid management,

by demonstrating the use of a framework for short-term operational planning.
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For the purposes of this thesis, there were limits in the scope of addressing the

water grid management challenges discussed in Section 1.1, and in

demonstrating the application of framework components to the case study.

Further, some additional research opportunities were identified in the process of

demonstrating the framework components. These remaining research areas are

recommended for further research in the application of this framework for short-

term operational planning. They include:

How to involve stakeholders and reflect their values in the framework,
including in the objectives, criteria, decision variables, criteria weights,

and performance measures.

How to consider water markets and water trading in the framework

How to select objectives, criteria and performance measures for the

framework.

How to incorporate uncertainty in the problem formulation, i.e. the
objectives, criteria, decision variables, performance measures and

preference weights.

Demonstrating the use of forecast demands and demand uncertainty as

inputs to the framework.

Incorporating stochastic streamflow and demand information as inputs to

multi-objective optimisation.

Demonstrating re-optimisation or re-simulation to refine or reassess

operating rules during the planning period, e.g. on a monthly basis.

Demonstrating the application of the framework over multiple planning

periods/cycles, e.g. on a six-monthly basis.

Demonstrating the application of the framework to long-term planning for
the same case study, with different problem definition and input data

suitable for strategic planning.

Extending streamflow forecasts for the case study to cover the entire
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planning period.

* Demonstrating the use of forecast-optimised operating rules for use

throughout the framework.

* Improving the method for translating of Bureau of Meteorology

streamflow forecast information to model inputs.
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