
Randomized Quasi-Random Testing

This is the Accepted version of the following publication

Liu, Huai and Chen, Tsongyueh (2016) Randomized Quasi-Random Testing.
IEEE Transactions on Computers, 65 (6). 1896 - 1909. ISSN 0018-9340

The publisher’s official version can be found at
http://ieeexplore.ieee.org/document/7156100/
Note that access to this version may require subscription.

Downloaded from VU Research Repository https://vuir.vu.edu.au/32692/

0018-9340 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/TC.2015.2455981, IEEE Transactions on Computers

1

Randomized Quasi-Random Testing
Huai Liu, Member, IEEE, and Tsong Yueh Chen, Member, IEEE

Abstract—Random testing is a fundamental testing technique that can be used to generate test cases for both hardware and software
systems. Quasi-random testing was proposed as an enhancement to the cost-effectiveness of random testing: In addition to having
similar computation overheads to random testing, it makes use of quasi-random sequences to generate low-discrepancy and
low-dispersion test cases that help deliver high failure-detection effectiveness. Currently, few algorithms exist to generate quasi-random
sequences, and these are mostly deterministic, rather than random. A previous study of quasi-random testing has examined two
methods for randomizing quasi-random sequences to improve their applicability in testing. However, these randomization methods still
have shortcomings — one method does not introduce much randomness to the test cases, while the other does not support
incremental test case generation. In this paper, we present an innovative approach to incrementally randomizing quasi-random
sequences. The test cases generated by this new approach show a high degree of randomness and evenness in distribution. We also
conduct simulations and empirical studies to demonstrate the applicability and effectiveness of our approach in software testing.

Index Terms—Random testing, quasi-random testing, randomized quasi-random sequence, adaptive random testing, failure-detection
effectiveness, test case distribution.

F

1 INTRODUCTION

RANDOM testing (RT) [1], [35] is a basic testing technique,
involving selection of test cases in a random manner

from the input domain (the set of all possible inputs). It has
been extensively used in the testing of hardware [21] and
software systems [34]. RT can automatically generate a large
number of test cases at low cost, using little information
of the system under test, and with little human bias. Fur-
thermore, its “randomness” helps make it possible to reveal
failures that cannot be detected by some systematic testing
techniques (such as those based on code coverage [46], finite
state machines [22], and model checking [8]). RT has been
successfully used to detect failures for various systems, such
as network protocols implementations [44], Windows NT
programs [20], and embedded systems [40].

A number of researchers [2], [4], [19], [45] from different
areas have independently conducted investigations into the
behavior and patterns of software failures, and have re-
ported the common observation that failure-causing inputs
(those inputs that can reveal software failures) are normally
clustered into contiguous failure regions. Given that failure
regions are contiguous, non-failure regions should also be
contiguous. Suppose that a test case t does not reveal a
failure, then test cases that are spread further away from
t may have a higher chance of being failure-causing than
those close to it (t’s neighbors): An even spread of test cases
can help to improve the failure-detection effectiveness of RT.
A number of innovative methods have been proposed based
on this intuition, such as adaptive random testing (ART) [14]
and quasi-random testing (QRT) [12].

A preliminary version of this paper was presented at the 9th International
Conference on Quality Software (QSIC 2009) [28].

• H. Liu is with the Australia-India Research Centre for Automation
Software Engineering, RMIT University, Australia.
E-mail: huai.liu@rmit.edu.au

• T. Y. Chen is with the Department of Computer Science and Software
Engineering, Swinburne University of Technology, Australia.
E-mail: tychen@swin.edu.au

QRT makes use of quasi-random sequences to generate
test cases. Due to the low discrepancy and low disper-
sion offered by quasi-random sequences, QRT can achieve
an even distribution of test cases, which helps deliver a
higher effectiveness of failure detection than RT. How-
ever, quasi-random sequences face some significant chal-
lenges with respect to testing, including that only a limited
number of distinct quasi-random sequences exist, and that
they are generated by deterministic algorithms. In other
words, quasi-random sequences are less “random” than
random/pseudorandom sequences. These issues restrict the
applicability of quasi-random sequences in testing. To ad-
dress these problems, Chen and Merkel [12] have exam-
ined two methods to randomize quasi-random sequences,
namely Cranley-Patterson Rotation [16] and Owen’s Scram-
bling [38]. However, these two methods also have shortcom-
ings: The former does not introduce much randomness into
the sequences; while the latter requires advance knowledge
of the number of test cases to be generated, that is, it does
not allow for an incremental generation of test cases.

In a preliminary study [28], we have proposed an
innovative approach to incrementally randomizing quasi-
random sequences. In this paper, we not only present a
formal algorithm with a more detailed discussion of the ap-
proach, named randomized quasi-random testing (RQRT),
but also conduct experimental studies to comprehensively
demonstrate its applicability and effectiveness. A larger
scale of simulations have been applied to show the test case
distribution and failure-detection effectiveness of RQRT un-
der various situations. In addition, an empirical study has
been conducted to further demonstrate the effectiveness of
RQRT for real-life programs and various faults.

The rest of this paper is organized as follows: In Sec-
tion 2, we introduce the background information; Section 3
presents our randomization approach. In Section 4, we de-
scribe the simulations and empirical studies that investigate
the performance of the new approach; the results of the
experiments are reported in Sections 5. In Section 6, we

0018-9340 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/TC.2015.2455981, IEEE Transactions on Computers

2

discuss the threats to validity of our study, and Section 7
summarizes the paper.

2 BACKGROUND

2.1 Adaptive random testing
Failure-causing inputs decide two basic features of all faulty
programs, the failure rate and the failure pattern. The failure
rate (denoted θ in this paper) refers to the ratio of the num-
ber of failure-causing inputs to the number of all possible
inputs; the failure pattern refers to the geometry of failure
regions, and their distributions over the input domain. The
failure pattern has been investigated in various areas of soft-
ware engineering, and it has been commonly observed that
failure-causing inputs tend to cluster into contiguous failure
regions [2], [4], [19], [45]. Based on such an observation,
Chen et al. [14] proposed that test cases should be evenly
spread over the input domain for achieving a high failure-
detection effectiveness.

One popular approach to evenly spreading test cases is
adaptive random testing (ART) [14]. There are various ART
algorithms to achieve the notion of an even spread [14], [32],
[41], [43], with a typical one being the fixed-size-candidate-
set ART (FSCS-ART) [14]. FSCS-ART maintains two sets
of test cases: the executed set (consisting of the executed
test cases); and the candidate set (containing k randomly
generated inputs as candidates for the next test case). A
candidate is selected as the next test case if it has the greatest
distance to its nearest neighbor in the executed set.

Many simulations and empirical studies have been con-
ducted to examine the performance of ART, with its failure-
detection effectiveness often evaluated and compared with
that of RT, based on the F-measure, the expected number
of test cases required to detect the first software failure. It
has been shown that ART normally has a lower F-measure
than RT, that is, ART normally requires fewer test cases to
detect the first failure. In some circumstances, the F-measure
of ART can be as low as 50% of that of RT, which is the
theoretical upper bound for the effectiveness of a testing
method [13].

2.2 Quasi-random sequences
Discrepancy and dispersion are two popular metrics for
measuring how evenly a set of sample points are distributed
inside a d-dimensional unit hypercube Id = [0, 1)d. Discrep-
ancy examines whether different subdomains in Id have an
equal density of points, and can be calculated [5], [7] as
follows:

discrepancy = sup
D

∣∣∣∣A(D)

N
− |D|
|Id|

∣∣∣∣ , (1)

where N is the total number of sample points, D refers to
any subdomain of Id, A(D) denotes the number of points
inside D, |·| is the size of a region/set, and sup represents
the supremum of a data set.

Dispersion measures the distribution by examining the
size of the largest empty spherical region (containing no
point) inside Id. One straightforward way to calculate dis-
persion is to measure the maximum distance from any point
to its nearest neighbor [5].

Based on the definitions, we can say that lower discrep-
ancy and dispersion indicate a more even distribution of the
points.

Quasi-random sequences (point sequences with low dis-
crepancy and low dispersion) are widely used in various do-
mains, including global optimization [36], high-dimension
integral approximation [24], and path planning [5]. Several
algorithms [7], [26], [42] have been developed to generate
different quasi-random sequences. The Sobol sequence [6],
[42] is a popular quasi-random sequence, which can achieve
a discrepancy of as low as O(logdN). A Sobol sequence
can be represented by a set of points T1, T2, · · · , where
Ti = (t1i , t

2
i , · · · , tdi) is the ith point in a d-dimensional

sequence, tji = p/2q is the jth coordinate of Ti, q is a
positive integer satisfying 2q−1 ≤ i < 2q , and p is an
odd integer in the range (0, 2q) that is decided through
a series of complex calculations. For example, in a one-
dimensional unit hypercube I1 = [0, 1), the Sobol sequence
is: 0.5 (that is, 1/21), 0.25 (1/22), 0.75 (3/22), 0.375 (3/23),
0.875 (7/23), 0.125 (1/23), 0.625 (5/23), · · · . In this paper,
unless otherwise specified, the Sobol sequence is used as
the quasi-random sequence.

2.3 Quasi-random testing

A major disadvantage of ART is that it normally incurs
a high computational overhead: FSCS-ART, for example,
requires O(n2) time to generate n test cases. The compu-
tation overhead for generating n quasi-random points, in
contrast, is only O(n), similar to that of pure RT. Chen
and Merkel [12] proposed quasi-random testing (QRT),
which applies quasi-random sequences in software testing.
As discussed in Section 2.2, quasi-random sequences are
generated using deterministic algorithms, and thus may
not be as “random” as random/pseudorandom sequences.
Chen and Merkel used two methods to randomize quasi-
random sequences before applying them to test real-life pro-
grams: Cranley-Patterson rotation [16] and Owen’s Scram-
bling [38]. Cranley-Patterson rotation involves rotation of
a quasi-random sequence using a random vector V =
(v1, v2, · · · , vd) inside Id, where vj is the jth coordinate of
V , and 0 ≤ vj < 1. Each point Ti = (t1i , t

2
i , · · · , tdi) in the se-

quence is displaced to a new position T ′i = (t
′1
i , t

′2
i , · · · , t

′d
i),

where t
′j
i =

{
tji + vj if tji + vj < 1,

tji + vj − 1 if tji + vj ≥ 1.
Owen’s Scram-

bling [38] effectively implements random permutations
of each point in the sequence. Compared with Cranley-
Patterson rotation, Owen’s Scrambling is more precise in
terms of maintaining the essential features of quasi-random
sequences, such as low discrepancy and low dispersion.

These randomization methods also have some problems
in practice. With the Cranley-Patterson rotation, the relative
positions of most points remain unchanged, meaning that it
does not add much randomness beyond a simple random
displacement. For Owen’s scrambling method, before the
random permutations can be conducted, it is necessary for
the number of points that are going to be generated to
be specified in advance, which makes it impractical for
incremental generation of test cases, an intrinsic aspect of
random testing methods such as ART and RT.

0018-9340 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/TC.2015.2455981, IEEE Transactions on Computers

3

In the following section, we present a novel approach
which not only enables incremental test case generation, but
also adds a high degree of randomness to the test cases.

3 RANDOMIZED QUASI-RANDOM TESTING

Given a quasi-random sequence, our randomization ap-
proach consists of two steps: random shaking and ran-
dom rotation. Firstly, a non-uniform distribution is used to
shake the coordinates of each individual point in the quasi-
random sequence into a random number within a specific
value range. Then, as with the Cranley-Patterson rotation
method, a randomly generated vector is applied to displace
all points. In this study, the cosine distribution [33] is used
to illustrate our approach — a random variable x conforms
to the cosine distribution if its probability density function,
pdf(x), is as follows:

pdf(x) =
1

2πB

[
1 + cos

(
x−A
B

)]
, (2)

where A and B are two real numbers deciding the value
range of x.

From Eqn. (2), we can get x ∈ [A− πB,A+ πB], that is,
A is the central location of x’s value range, and B decides
the scale of the value range.

Fig. 1 shows pdf(x) with A = 0 and B = 1.

f(x)

0

0.1

0.2

0.3

0.4

-4 -3 -2 -1 0 1 2 3 4
x

Fig. 1. Cosine distribution

In order to distinguish our approach from the orig-
inal QRT, we name it randomized quasi-random testing
(RQRT), and outline its algorithm below. Compared with the
Cranley-Patterson rotation method, RQRT adds additional
randomness through the random shaking (Statements 8 to
10 in the algorithm). In order to retain a low discrepancy
and a low dispersion, a specific kind of distribution (such
as the cosine one in this study) should be used to ensure
that points closer to the centre of the value range (that
is, the original Sobol point

(
t1i , t

2
i , · · · , tdi

)
) have a higher

probability of being selected into the randomized sequence.
Compared with Owen’s scrambling method, our approach
does not need to know in advance how many points are
required, and can therefore incrementally randomize quasi-
random points. Furthermore, the approach makes use of a
parameter α (Statement 1 in the algorithm), the different
values of which can result in different types of sequences:

Intuitively speaking, a smaller α implies that the resulting
sequences will maintain most attributes of quasi-random
sequences (such as low discrepancy and low dispersion),
but are less “random”; a larger α indicates that the resulting
sequences are more random, but may lose some character-
istics of quasi-random sequences.

Algorithm RQRT
1: Input a real number α, where α > 0
2: Set S = {}, where S denotes a randomized quasi-random

sequence (S1, S2, · · · , Si, · · ·), Si = (s1i , s
2
i , · · · , sdi) is the ith

point in S, and sji is the jth coordinate of Si
3: Randomly generate a vector V =

(
v1, v2, · · · , vd

)
inside a

d-dimensional unit hypercube Id = [0, 1)d

4: Set i = 1
5: while Termination condition is not satisfied do
6: Generate the ith point Ti =

(
t1i , t

2
i , · · · , tdi

)
of the Sobol

sequence
7: for all j = 1, 2, · · · , d do
8: SetA = tji andB = α

2π·2q , where q refers to a positive
integer satisfying 2q−1 ≤ i < 2q

9: Generate a random number x according to Eqn. (2)
10: set sji = x+ vj −

⌊
x+ vj

⌋
11: end for
12: Construct a new point Si =

(
s1i , s

2
i , · · · , sdi

)
13: Add Si into S and increment i by 1
14: end while

Figs. 2 and 3 further illustrate how RQRT randomizes
the Sobol sequence when d = 1. As mentioned above,
the randomization effectively consists of two steps: ran-
dom shaking and random rotation. After the original Sobol
points are generated (refer to the circle dots in Figs. 2(a)
and 3(a)), the cosine distribution is used to randomly shake
the points (refer to the curves in Figs. 2(b) and 3(b)). Note
that the range of the cosine distribution is dynamically
adjusted throughout the testing process, as shown by the
difference between the curves in Figs. 2(b) and 3(b). A
pre-defined random vector is then used to further rotate
the shaken points (refer to the square and triangle dots in
Figs. 2(c) and 3(c)). Such a randomization process can also
be regarded as random generation based on certain types
of distributions, as shown in Figs. 2(d) and 3(d): RQRT
generates test cases according to a dynamic profile, which
is adjusted while test cases are incrementally generated.

4 EXPERIMENTAL STUDIES

We conducted simulations and empirical studies to investi-
gate the performance of RQRT. The design and settings of
these experimental studies are discussed in this section.

4.1 Research questions

The main purpose of RQRT is to deliver high failure-
detection effectiveness through an even spread of test cases.
Our experimental studies aimed at answering the following
two research questions:

RQ1 How evenly can RQRT distribute test cases?
RQ2 How effectively can RQRT detect software fail-

ures?

0018-9340 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/TC.2015.2455981, IEEE Transactions on Computers

4

(a) Original 1st Sobol point

(b) Random shaking

(c) Random rotation

(d) Effective distribution

Fig. 2. Randomization of the 1st Sobol point

(a) Original 2nd and 3rd Sobol points

(b) Random shaking

(c) Random rotation

(d) Effective distribution

Fig. 3. Randomization of the 2nd and 3rd Sobol points

4.2 Variables and measures

4.2.1 Independent variables

The independent variable in our experiment is the test case
selection strategy under study. Our proposed RQRT method
is an obvious candidate. In addition, we selected three
benchmark techniques to provide baselines for comparison.

The first benchmark technique is RT. In reality, it is
not easy to generate genuinely random inputs, especially
according to a certain probability distribution. One popular
way is to make use of pseudorandom number generators,
which are widely used in various domains, such as com-
puter modeling, and experiment design. In this study, we
implemented RT based on the Mersenne Twister [31], which

can generate a large amount of pseudorandom numbers
according to the uniform distribution.

ART was also selected as a benchmark technique because
QRT (and RQRT) was motivated by the same fundamental
principles as ART (that even spreading of test cases will
enhance the failure-finding effectiveness). Among all ART
algorithms, FSCS-ART was the first, and also the most
studied one. For ease of comparison with the numerous
previous studies on ART [9], [12], [30], we selected FSCS-
ART as the ART algorithm in our experiment. In the rest of
this paper, unless otherwise specified, it is FSCS-ART being
referred to when ART is mentioned.

RQRT is directly related to QRT, so it is important to
include also QRT in our experiment. As mentioned above,
QRT with Owen’s Scrambling does not support incremental
generation of test cases — the number of test cases to be
generated needs to specified in advance. Such a shortcoming
is especially problematic for random techniques, such as
RT, ART, QRT, and RQRT. The randomness in these tech-
niques makes it extremely difficult to predict how many test
cases would be required, even if testers have some prior
knowledge of the failure rate. As shown in the previous
study [11], the number of test cases to detect the first failure
in each individual testing run (which, different from the F-
measure, is defined as the F-count [13]) of RT or ART has
a very large value range; for example, for a given failure
rate θ, the F-count of RT will range from 1 to over 10/θ,
even though the theoretical F-measure of RT is only 1/θ.
The safest way to implement QRT with Owen’s Scrambling
is to predefine a very large number for test case generation,
but this may result in many generated test cases not being
executed, and thus significantly reduce the efficiency and
the cost-effectiveness of QRT, which is contrary to the ex-
pected benefits of QRT. Because of this, we did not select
QRT with Owen’s Scrambling as a benchmark technique,
but instead chose QRT with Cranley-Patterson Rotation,
which can generate test cases incrementally. In the rest of
this paper, unless otherwise specified, QRT with Cranley-
Patterson Rotation is intended when QRT is referred to.

A new ART method, random border centroidal voronoi
tessellations (RBCVT), has recently been proposed [41], a
search algorithm based on which (RBCVT-Fast) can achieve
a similar computational overhead to QRT and RQRT. How-
ever, because RBCVT-Fast faces the same challenge as QRT
with Owen’s Scrambling, of not being able to generate test
cases in a fully incremental way, it was also not selected as
a benchmark technique in our study.

4.2.2 Dependent variables

For RQ1, we used the discrepancy and dispersion metrics to
evaluate the test case distribution of RQRT. Because it would
be extremely difficult, if not impossible, to obtain the exact
value of discrepancy according to Eqn. (1), we calculated the
approximate value as follows:

discrepancy ≈ 1000
max
i=1

∣∣∣∣A(Di)

N
− |Di|
|Id|

∣∣∣∣ , (3)

where N is the total number of test cases selected so far, Di

denotes a randomly selected subdomain of Id, and A(Di)
refers to the number of points inside Di. Eqn. (3) has been

0018-9340 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/TC.2015.2455981, IEEE Transactions on Computers

5

widely used in previous studies [9], [30] to approximate the
value of discrepancy.

As explained in Section 2.2, the dispersion can be calcu-
lated as the maximum distance from any point to its nearest
neighbor, as shown in the following:

dispersion =
|S|

max
i=1

dist(Si, η(Si,S\Si)), (4)

where dist(a, b) denotes the distance between two points a
and b, and η(a,P) refers to point a’s nearest neighbor in a
set of points P.

For RQ2, similar to previous studies on ART and
QRT [9], [12], [25], [30], [32], we evaluated the failure-
detection effectiveness based on the F-measure, which refers
to the expected number of test cases required to detect
the first software failure, as defined in Section 2.1. Chen
and Merkel [13] have demonstrated that the F-measure
is particularly suitable for analyzing the effectiveness of
random testing strategies (such as ART and RT), which
normally generate test cases in an incremental way. The
actual F-measure values depend not only on the individual
testing technique, but also on the failure rates and failure
patterns; furthermore, they do not conform to a normal
distribution. To clearly and precisely show the differences in
failure-detection effectiveness among the techniques under
study, we therefore also used the F-ratio, which refers to
the ratio between the F-measure of the testing technique
under study (ART, RQRT, or QRT) and that of RT. Note that
in the comparison among different techniques, the ranking
of performance is the same for both the F-ratio and the F-
measure.

4.3 Simulations
Chen and Merkel [12] conducted some simulations to derive
the F-measure of the original QRT. However, these simu-
lations were limited to the simple situation of there being
only one single compact failure region (the most favorable
condition for ART and QRT). Furthermore, although it is
intuitive that RQRT or QRT should offer an even spread
of test cases, few simulations [28] have been conducted to
experimentally confirm the test case distribution. In this
study, we have conducted more comprehensive simulations,
through which we not only measure how evenly RQRT can
spread test cases (for RQ1), but also evaluate its failure-
detection effectiveness under various conditions (for RQ2).

In the simulations for RQ1, the input domain was de-
fined as a d-dimensional unit hypercube Id = [0, 1)d, d = 1,
2, 3, 4, and the number of test cases was set as 100, 500,
1000, 1500, 2000, · · · , 10000.

For RQ2, we evaluated the F-measures using simulations
with similar experimental settings to those used in previous
studies [9], [25], [30]. In these simulations, a d-dimensional
unit hypercube Id was used to simulate the program input
domain. In order to simulate faulty programs, the failure
rate (θ) and failure pattern were pre-defined, and the result-
ing failure regions (whose size and shape were decided by θ
and the failure pattern, respectively) were randomly placed
inside the input domain. In our experiments, various failure
patterns were used to show the relationship between the
failure-detection effectiveness of RQRT and different factors.
The simulated failure patterns are described as follows:

• In the first series of simulations, the failure pattern
was defined as a single hypercube failure region, ran-
domly placed within Id; d was set to 1, 2, 3, 4, 7, and
10; and θ was set to 0.75, 0.5, 0.25, 0.1, 0.075, 0.05,
0.025, 0.01, 0.0075, 0.005, 0.0025, 0.001, 0.00075,
0.0005, 0.00025, 0.0001, 0.000075, and 0.00005. The
main purpose of these simulations was to examine
to what extent the failure-detection effectiveness de-
pends on d and θ.

• The second series of simulations examined the
failure-detection effectiveness of RQRT on less com-
pact failure regions. In these simulations, d = 2, 3;
θ = 0.001; and the failure pattern was defined as a
single hyperrectangle failure region randomly placed
within Id. For the hyperrectangle failure region, an
integral parameter γ was used to define the ratio
among edge lengths of the rectangular/cuboid re-
gions (1 : γ when d = 2 and 1 : γ : γ when d = 3).
In our simulations, γ was set as 1, 4, 7, 10, 20, 30, 40,
50, 60, 70, 80, 90, and 100. Note that γ = 1 means
the failure region is a hypercube. A hyperrectangle is
less compact than a hypercube, with the compactness
decreasing as γ increases.

• The objective of the third series of simulations was to
investigate the performance of RQRT when there are
multiple distinct failure regions. In these simulations,
d = 2, 3; θ = 0.001; and the failure pattern was
defined as a number (δ) of equal-sized hypercube
failure regions randomly placed within Id, where
δ = 1, 4, 7, 10, 20, 30, 40, 50, 60, 70, 80, 90, and
100.

• The fourth series of simulations were conducted
to investigate the performance of RQRT when one
failure region is predominant in size among all the
distinct failure regions. In these simulations, d = 2,
3; θ = 0.001; and δ = 1, 4, 7, 10, 20, 30, 40, 50, 60, 70,
80, 90, and 100. The failure pattern was defined as δ
hypercube failure regions, with one region’s size set
as 30%, 50%, or 80% of the total size for all δ regions,
and the remaining (δ−1) regions each being an equal
proportion of the remaining size (70%, 50%, or 20%).

• In many practical situations, failure may not be re-
lated to all input parameters. In the original ART
algorithms, test cases are evenly spread in the d-
dimensional input domain, but this may not guar-
antee that they are also evenly distributed in any
d′-dimensional space, where d′ < d: ART may not
perform very well when the software fault is only
related to some of the input domain parameters, as
shown in previous studies [25]. In this study, we
also conducted simulations to see whether such a
problem can be solved by RQRT. In the simulations, θ
was set to 0.01, 0.005, 0.001, and 0.0005; and the pair
of d and d′, denoted (d, d′), was set to (2, 1), (3, 1),
(3, 2), (4, 1), (4, 2), and (4, 3). The failure pattern was
defined as a single hypercube failure region in the d′-
dimensional space.

The above simulations were designed to cover the differ-
ent factors that may affect the failure-detection effectiveness
of the testing techniques under study, and thus to present

0018-9340 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/TC.2015.2455981, IEEE Transactions on Computers

6

TABLE 1
Basic information of object programs

Program Basic function Input domain
d From To

bessj0 Bessel function of the first kind 1 (−500) (500)
bessj Bessel function of general integer order 2 (2,−500) (102, 500)

plgndr
Legendre polynomials associated with

3 (−1, 10− 1.1) (12, 100, 1.1)spherical harmonics

select
Select the mth smallest element from

4 (−500,−500,−500,−500) (500, 500, 500, 500)an array containing n real numbers∗
∗Note: In this study, we set n = 4 and m = 2 for the program select, that is, d = 4 for select in our experiment.

a full picture of their performance. As shown in previous
studies [9], [25], [30], ART has the best performance when θ
and d are small, and there is only one single compact failure
region. However, the F-measure of ART becomes larger as
d, θ, γ, and δ increase; furthermore, the failure-detection
effectiveness of ART is similar to that of RT when the failure
region is only present in d′-dimensional space (d′ < d).

4.4 Object programs and mutants

Although simulations (reported in the previous section) can
help provide a comprehensive picture of RQRT’s perfor-
mance under various conditions (different failure patterns,
θ, d, etc.), it is still necessary to conduct empirical studies
to investigate its failure-detection effectiveness for real-life
programs.

When choosing the object programs, one critical con-
sideration was that they should accept numeric inputs —
the application of quasi-random sequences to non-numeric
program inputs, which is also a very challenging research
project, is still under investigation. It was also necessary
to consider that various factors should be involved in the
empirical studies. Although it is often difficult to control the
values of θ and the failure patterns in empirical studies of
real-life programs, it was still possible to choose programs
with different values of d (the number of input parameters
of the program under test). In this study, four C programs
(bessj0, bessj, pldndr, and select) were chosen as
the object programs. These programs, which were extracted
from Numerical Recipes [39], implement scientific functions,
as summarized in Table 1. Among these programs, bessj0,
bessj, and plgndr have a fixed number of input parame-
ters (d = 1, 2, and 3, respectively), and the program select
picks the mth smallest element from n real numbers, where
both m and n are changeable. Our investigation showed
that different values of m and n resulted in quite different
features (including θ and failure patterns) in the mutant
programs (the faulty versions created by seeding errors; to
be discussed below). To better control the experiment, we
fixed the values of m and n, setting n = 4 and m = 2,
so that: (i) the program select has d = 4 (different from
the other three programs); and (ii) the program would not
execute a simple function selecting the minimum (where
m = 1) or maximum (where m = 4) value, in which case
a large portion of the program would not be executed or
covered by most test cases.

Faults were seeded into the object programs based on
the mutation analysis technique [17]. A C mutation tool,
Csaw [18], was used to generate various mutants, each of

which was related to a single fault injected into an object
program. Table 2 summarizes the statistical data for the
mutants of each object program. In Table 2, Mt refers to the
total number of mutants generated for each object program;
Mi denotes the number of mutants that are syntactically
incorrect and thus cannot be compiled; Ma is the number
of mutants with execution problems (such as overflow and
infinite loop);Me refers to the number of equivalent mutants
(that is, those mutants with θ = 0); Ml represents the
number of mutants with θ ≥ 0.1; and Ms denotes the
number of mutants with 0 < θ < 0.1. Readers can refer
to a previous study [29] for how to distinguish different
groups of mutants, such as the identification of equivalent
mutants (related to Me), and the calculation of θ for each
mutant (related to Ml and Ms). In our study, we only used
the mutants with 0 < θ < 0.1, that is, the mutant sample
size for each object program is actually Ms in Table 2.

TABLE 2
Basic information of mutants

Program Mt Mi Ma Me Ml Ms

bessj0 832 276 0 103 221 232
bessj 1180 345 39 135 308 353
plgndr 556 120 12 221 9 194
select 1322 469 62 305 464 22

Note: Mt =Mi +Ma +Me +Ml +Ms.

4.5 Experiment design and data collection

4.5.1 Settings for RQRT
In the experiment, the cosine distribution (refer to Fig. 2)
was used in the random shaking process of RQRT. The
cosine distribution can be easily constructed by applying
a basic function (cos−1(·)) to a uniformly distributed ran-
dom variable. Although there are many other non-uniform
distributions that have similar functions, their construction
may involve more work — the triangle distribution, for
example, requires two independent uniformly distributed
random variables, and it would therefore be more expensive
to implement this, or other complicated distributions (such
as the semicircle).

To investigate the impact of different values of α, we
selected RQRT with α = 0.1, 1.0, and 2.0, which are denoted
by RQRT 0.1, RQRT 1.0, and RQRT 2.0, respectively.

4.5.2 Number of candidates in ART
In ART, a fixed-sized candidate set is maintained, from
which the next test case will be generated. The size of the

0018-9340 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/TC.2015.2455981, IEEE Transactions on Computers

7

candidate set (normally denoted by k) is determined by
testers. Previous studies [14] have shown that the failure-
detection effectiveness of ART improves as k increases,
but becomes marginal after k exceeds 10. In line with the
previous studies, in this study, we also set k = 10.

4.5.3 Discrepancy and dispersion

A sufficient amount (W) of data was collected to enable
a reliable estimate of the mean value of discrepancy or
dispersion, with a confidence level (1 − β) × 100%, and
accuracy range ±r%. Based on the central limit theorem, we
can calculate

W =

100 · Φ−1
(

2−β
2

)
· σ

r · µ

2

, (5)

where µ and σ are the mean and the standard deviation
of the metric, respectively; and Φ−1(·) refers to the inverse
standard normal distribution function. In our study, we set
the confidence level to 95% (β = 0.05), and the accuracy
range to ±5% (r = 5).

4.5.4 F-measure

In the simulations, when a point inside a failure region was
selected, a failure was said to be detected. In the empirical
studies, a failure was detected in a mutant when a test
case caused the mutant to show behavior different from
that of the base program. In both the simulations and the
empirical studies, test cases were generated until a failure
was detected, with the number of test cases executed that
far, the F-count (as defined in Section 4.2.1), recorded. Such
a process was repeated until the mean F-count value could
be considered as a reliable approximation of the F-measure
with a 95% confidence level, and ±5% accuracy range (refer
to Eqn. (5) and the related discussion).

5 EXPERIMENTAL RESULTS

5.1 Answer to RQ1: Test case distribution

The discrepancy and dispersion values for RQRT 0.1,
RQRT 1.0, and RQRT 2.0 are given in Figs. 4 and 5, which,
for ease of comparison, also include the results for RT, ART,
and QRT.

From Figs. 4 and 5, it can be observed that the discrep-
ancy values for the RQRT methods are significantly lower
than those for ART and RT. With respect to dispersion,
RQRT and ART have similar values, both being much lower
than that of RT. Compared with QRT, RQRT has marginally
higher discrepancy and dispersion, and, as expected, these
values increase slightly as α increases. From these obser-
vations, it can be concluded that the randomized quasi-
random sequences generated by our approach still preserve
a low discrepancy and a low dispersion: Overall, RQRT
delivers a more even distribution of test cases than ART
and RT.

5.2 Answer to RQ2 – Part 1: Failure-detection effective-
ness for various simulated failure patterns

5.2.1 Failure-detection effectiveness for compact failure re-
gions

Fig. 6 shows the F-ratios of RQRT 0.1, RQRT 1.0, RQRT 2.0,
ART and QRT for a single hypercube failure region.

Based on the simulations’ results, we can make the
following observations:

• All three RQRT methods always have F-ratios less
than 1, that is, RQRT always outperforms RT in terms
of the F-measure.

• Among the three RQRT methods, RQRT 0.1 has the
best performance, followed by RQRT 1.0, and then
RQRT 2.0. In other words, the failure-detection ef-
fectiveness of RQRT improves as α decreases.

• When d and θ are small, ART performs better than
RQRT, but when d or θ is large, RQRT can outper-
form ART.

• QRT outperforms RQRT when d = 1, but they have
similar effectiveness when d > 1.

The results, in terms of the performance ranking among
QRT and the three RQRT methods, are as expected, and mir-
ror the ranking observed for discrepancies and dispersion
(Figs. 4 and 5). The results also imply that, in addition to test
case distribution (measured by discrepancy and dispersion
in this study), there are other factors (such as d and θ) that
are strongly correlated with the failure-detection effective-
ness: In particular, ART may have worse performance than
RT when θ or d is very large, conditions which have been
documented as unfavorable for ART [9], [30]. In contrast, the
impact of d and θ on RQRT’s performance is less significant:
Although F-measure values for RQRT also increase as d or
θ increases, the change is much less than that for ART.

5.2.2 Relationship between failure-detection effectiveness
and failure region compactness

Fig. 7 shows the failure-detection effectiveness for a single
hyperrectangle failure region, with various values of γ.

From Fig. 7, it can be observed that, unlike ART (whose
performance deteriorates with less compact failure regions),
RQRT performs consistently well, regardless of the failure
region compactness. RQRT and QRT have similar perfor-
mance for this kind of failure pattern.

5.2.3 Relationship between failure-detection effectiveness
and the number of distinct failure regions

Fig. 8 reports the failure-detection effectiveness for multiple
equal-sized hypercube failure regions, with various values
of δ.

It can be observed from Fig. 8 that none of the tech-
niques under study (RQRT, ART, or QRT) can significantly
outperform RT when there are many distinct, equal-sized
failure regions. This result is as expected, because none of
the techniques are designed to perform well when failure-
causing inputs are not clustered.

0018-9340 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/TC.2015.2455981, IEEE Transactions on Computers

8

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0 2000 4000 6000 8000 10000

D
is

cr
e

p
a

n
cy

Number of test cases

RT ART RQRT_0.1 RQRT_1.0 RQRT_2.0 QRT

(a) d = 1

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0 2000 4000 6000 8000 10000

D
is

cr
e

p
a

n
cy

Number of test cases

RT ART RQRT_0.1 RQRT_1.0 RQRT_2.0 QRT

(b) d = 2

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.10

0 2000 4000 6000 8000 10000

D
is

cr
e

p
a

n
cy

Number of test cases

RT ART RQRT_0.1 RQRT_1.0 RQRT_2.0 QRT

(c) d = 3

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0 2000 4000 6000 8000 10000

D
is

cr
e

p
a

n
cy

Number of test cases

RT ART RQRT_0.1 RQRT_1.0 RQRT_2.0 QRT

(d) d = 4

Fig. 4. Discrepancy of various methods

0.00

0.01

0.02

0.03

0 2000 4000 6000 8000 10000

D
is

p
e

rs
io

n

Number of test cases

RT ART RQRT_0.1 RQRT_1.0 RQRT_2.0 QRT

(a) d = 1

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0 2000 4000 6000 8000 10000

D
is

p
e

rs
io

n

Number of test cases

RT ART RQRT_0.1 RQRT_1.0 RQRT_2.0 QRT

(b) d = 2

0.05

0.10

0.15

0.20

0.25

0.30

0 2000 4000 6000 8000 10000

D
is

p
e

rs
io

n

Number of test cases

RT ART RQRT_0.1 RQRT_1.0 RQRT_2.0 QRT

(c) d = 3

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0 2000 4000 6000 8000 10000

D
is

p
e

rs
io

n

Number of test cases

RT ART RQRT_0.1 RQRT_1.0 RQRT_2.0 QRT

(d) d = 4

Fig. 5. Dispersion of various methods

5.2.4 Relationship between failure-detection effectiveness
and predominant failure region size

Fig. 9 shows the failure-detection effectiveness for multiple
hypercube failure regions with one predominant region.

Based on Fig. 9, it can be observed that when there is
a predominant failure region, RQRT has a similar perfor-
mance to ART and QRT; that all techniques outperform RT;
and that their performance improves as the relative size of
the predominant region increases.

5.2.5 Failure-detection effectiveness when the failure is not
related to all input parameters

Table 3 summarizes the F-measures for RQRT when only
some input parameters are failure-related.

It can be observed from Table 3 that, unlike ART, RQRT
(and QRT) continues to have lower F-measures than RT
when the software failure is only related to some of the
input parameters (d′ < d). This result is actually not sur-
prising, because a theoretical foundation for quasi-random
sequences includes that if the sequence has low discrepancy
and low dispersion in Id, then it will also have low dis-
crepancy and low dispersion in any d′-dimensional space
(d′ < d) [37].

In summary, as guaranteed with an even spread of test
cases in any d′-dimensional space, RQRT constantly delivers
a better performance than RT, regardless of whether the
failure is related to all or only some of the input parameters.

5.3 Answer to RQ2 – Part 2: Failure-detection effective-
ness for object programs

The results of the empirical studies for each object program
are summarized in Fig. 10. In the figure, the boxplot displays
the range of F-ratios for each of the three RQRT methods,
for ART, and for QRT, with the lower and upper bounds
of the box denoting the 1st and 3rd quartiles of F-ratios,

respectively. The line inside the box indicates the median F-
ratio; the bottom and top whiskers represent the minimum
and maximum F-ratio values, respectively; and the dot
denotes the average F-ratio across all mutants under study
for each object program.

Based on Fig. 10, the following observations can be
made:

• For the overwhelming majority of mutants, all three
RQRT methods have F-ratios less than 1, that is, their
F-measures are generally less than those of RT.

• RQRT 0.1 outperforms ART for bessj0 and bessj,
but not for plgndr or select. ART outperforms
RQRT 1.0 and RQRT 2.0 for all object programs.

• The average F-ratio values for QRT are always less
than those for RQRT.

• RQRT 0.1 always has better performance than
RQRT 1.0 and RQRT 2.0 in terms of F-measures.

The first observation is as expected: By making use
of low-discrepancy and low-dispersion sequences, RQRT
achieves a better failure-detection effectiveness than RT.

Although the second observation is not very consistent
with the simulation results, it should be noted that no mat-
ter how many real-life programs are examined, empirical
studies can only represent some special cases, and may
especially favor a particular technique. In this study, the
performance of ART with plgndr was very good. A further
investigation determined that the plgndr mutants have
low θ values (between 0.00012 and 0.00258), a condition
known to be favorable for ART [9], [30], and therefore
explaining ART’s good performance.

Finally, the observed ranking among QRT and the three
RQRT methods is also as expected: As shown in Section 5.1,
QRT normally has a more even distribution of test cases than
RQRT, which is correlated with a higher failure-detection
effectiveness. Based on the results of the simulations and

0018-9340 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/TC.2015.2455981, IEEE Transactions on Computers

9

0.5

0.6

0.7

0.8

0.9

1

1.1

5E-050.00050.0050.050.5

F
-r
a
t
io

θθθθ

ART RQRT_0.1 RQRT_1.0 RQRT_2.0 QRT

(a) d = 1

0.6

0.7

0.8

0.9

1

1.1

1.2

5E-050.00050.0050.050.5

F
-r
a
t
io

θθθθ

ART RQRT_0.1 RQRT_1.0 RQRT_2.0 QRT

(b) d = 2

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

5E-050.00050.0050.050.5

F
-r
a
t
io

θθθθ

ART RQRT_0.1 RQRT_1.0 RQRT_2.0 QRT

(c) d = 3

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

5E-050.00050.0050.050.5

F
-r
a
t
io

θθθθ

ART RQRT_0.1 RQRT_1.0 RQRT_2.0 QRT

(d) d = 4

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

5E-050.00050.0050.050.5

F
-r
a
t
io

θθθθ

ART RQRT_0.1 RQRT_1.0 RQRT_2.0 QRT

(e) d = 7

0.8

1.3

1.8

2.3

2.8

3.3

3.8

4.3

5E-050.00050.0050.050.5

F
-r
a
t
io

θθθθ

ART RQRT_0.1 RQRT_1.0 RQRT_2.0 QRT

(f) d = 10

Fig. 6. Failure-detection effectiveness of various methods for a single hypercube failure region

0.6

0.7

0.8

0.9

1

1.1

0 10 20 30 40 50 60 70 80 90 100

F
-r
a
t
io

γγγγ

ART RQRT_0.1 RQRT_1.0 RQRT_2.0 QRT

(a) d = 2

0.6

0.7

0.8

0.9

1

1.1

0 10 20 30 40 50 60 70 80 90 100

F
-r
a
t
io

γγγγ

ART RQRT_0.1 RQRT_1.0 RQRT_2.0 QRT

(b) d = 3

Fig. 7. Failure-detection effectiveness of various methods for a single hyperrectangle failure region

0.6

0.7

0.8

0.9

1

1.1

0 10 20 30 40 50 60 70 80 90 100

F
-r
a
t
io

δδδδ

ART RQRT_0.1 RQRT_1.0 RQRT_2.0 QRT

(a) d = 2

0.6

0.7

0.8

0.9

1

1.1

0 10 20 30 40 50 60 70 80 90 100

F
-r
a
t
io

δδδδ

ART RQRT_0.1 RQRT_1.0 RQRT_2.0 QRT

(b) d = 3

Fig. 8. Failure-detection effectiveness of various methods with multiple equal-sized hypercube failure regions

0018-9340 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/TC.2015.2455981, IEEE Transactions on Computers

10

0.6

0.7

0.8

0.9

1

1.1

0 10 20 30 40 50 60 70 80 90 100

F
-r
a
t
io

δδδδ

ART RQRT_0.1 RQRT_1.0 RQRT_2.0 QRT

(a) 30% predominant, d = 2

0.6

0.7

0.8

0.9

1

1.1

0 10 20 30 40 50 60 70 80 90 100

F
-r
a
t
io

δδδδ

ART RQRT_0.1 RQRT_1.0 RQRT_2.0 QRT

(b) 50% predominant, d = 2

0.6

0.7

0.8

0.9

1

1.1

0 10 20 30 40 50 60 70 80 90 100

F
-r
a
t
io

δδδδ

ART RQRT_0.1 RQRT_1.0 RQRT_2.0 QRT

(c) 80% predominant, d = 2

0.6

0.7

0.8

0.9

1

1.1

0 10 20 30 40 50 60 70 80 90 100

F
-r
a
t
io

δδδδ

ART RQRT_0.1 RQRT_1.0 RQRT_2.0 QRT

(d) 30% predominant, d = 3

0.6

0.7

0.8

0.9

1

1.1

0 10 20 30 40 50 60 70 80 90 100

F
-r
a
t
io

δδδδ

ART RQRT_0.1 RQRT_1.0 RQRT_2.0 QRT

(e) 50% predominant, d = 3

0.6

0.7

0.8

0.9

1

1.1

0 10 20 30 40 50 60 70 80 90 100

F
-r
a
t
io

δδδδ

ART RQRT_0.1 RQRT_1.0 RQRT_2.0 QRT

(f) 80% predominant, d = 3

Fig. 9. Failure-detection effectiveness of various methods with multiple hypercube failure regions with a predominant region

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

ART RQRT_0.1 RQRT_1.0 RQRT_2.0 QRT

F
-r
a
t
io

(a) bessj0 (d = 1)

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

ART RQRT_0.1 RQRT_1.0 RQRT_2.0 QRT

F
-r
a
t
io

(b) bessj (d = 2)

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

ART RQRT_0.1 RQRT_1.0 RQRT_2.0 QRT

F
-r
a
t
io

(c) plgndr (d = 3)

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

ART RQRT_0.1 RQRT_1.0 RQRT_2.0 QRT

F
-r
a
t
io

(d) select (d = 4)

Fig. 10. Failure-detection effectiveness of various methods for real-life programs

0018-9340 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/TC.2015.2455981, IEEE Transactions on Computers

11

TABLE 3
F-measures of various methods when the failure is related to only some of the input parameters

d d′ Testing method F-measure
θ = 0.01 θ = 0.005 θ = 0.001 θ = 0.0005

2 1

RQRT 0.1 57.21 114.20 539.62 1113.99
RQRT 1.0 76.23 145.61 725.56 1493.64
RQRT 2.0 78.57 157.74 783.71 1586.23
ART 96.08 189.48 996.84 1975.79
QRT 57.22 110.49 532.87 1096.96

3

1

RQRT 0.1 57.34 114.54 534.32 1123.98
RQRT 1.0 75.59 146.39 721.58 1493.95
RQRT 2.0 78.16 158.26 789.29 1598.77
ART 103.12 197.64 1020.31 2009.87
QRT 56.61 109.83 531.95 1096.01

2

RQRT 0.1 67.10 137.14 684.87 1315.29
RQRT 1.0 70.05 137.45 686.30 1339.27
RQRT 2.0 72.07 139.68 700.91 1370.77
ART 93.21 192.79 973.18 1987.53
QRT 67.97 135.88 681.16 1320.31

4

1

RQRT 0.1 57.64 113.73 537.76 1117.78
RQRT 1.0 75.93 146.56 725.57 1493.79
RQRT 2.0 78.78 157.59 784.09 1578.13
ART 98.37 197.98 970.15 2022.04
QRT 56.42 109.66 532.18 1096.40

2

RQRT 0.1 67.61 137.40 686.10 1307.37
RQRT 1.0 70.00 138.55 688.19 1337.73
RQRT 2.0 72.11 140.22 701.89 1383.56
ART 108.97 214.50 1044.55 2126.33
QRT 67.03 135.30 680.64 1319.57

3

RQRT 0.1 77.38 144.92 767.01 1472.65
RQRT 1.0 77.60 149.01 777.73 1488.65
RQRT 2.0 77.75 149.48 781.64 1490.07
ART 104.81 208.93 983.61 1927.09
QRT 76.04 152.58 768.50 1507.93

empirical studies, we can conclude that both QRT and RQRT
outperform RT.

Table 4 summarizes a further comparison of the F-
measures for all testing techniques applied to all mutants
of the object programs. In the table, each cell contains
the number of mutants for which the technique named in
the topmost cell has better failure-detection effectiveness (a
lower F-measure) than the technique named in the leftmost
cell — for example, the number “353” in the top right cell
in Table 4(b) means that QRT outperforms RT for all 353
mutants of bessj. Because the F-measures do not follow
normal distribution, parametric hypothesis testing cannot
be applied to analyze the results. In this study, therefore, hy-
pothesis testing based on the Holm-Bonferroni method [23]
was used to determine the statistical significance of the
performance differences. In the hypothesis testing, there
were totally 60 (= 4 programs ×15 pairs of techniques) null
hypotheses (H0), each of which was that each pair of testing
techniques have similar F-measures on a certain program.
For each pair of technique on every object program, we
calculated the p-value, and ordered all the 60 p-values from
smallest to largest, that is, p1 ≤ p2 ≤ · · · ≤ p60. Given
the significance level 0.05, we found the minimal index l
such that pl > 0.05

61−l . All the null hypotheses associated with
p1, p2, . . . , pl−1 were rejected, while other hypotheses were
not. Rejection of H0 implies that the difference in F-measures
between the two techniques was statistically significant, a
situation indicated by bold typeface in Table 4.

The hypothesis testing results show that RQRT sig-
nificantly outperforms RT in terms of F-measures. When
comparing RQRT with ART, it was found that for two ob-

ject programs (bessj0 and bessj), RQRT 0.1 significantly
outperforms ART, but for other cases (RQRT 0.1 compared
with ART for plgndr and select, and RQRT 1.0 and
RQRT 2.0 compared with ART for all four programs), ART
significantly outperforms RQRT; in other words, we cannot
statistically distinguish the failure-detection effectiveness of
RQRT and ART. Given that RQRT has a very low compu-
tational overhead (O(n), the same as RT), RQRT is more
cost-effective than RT and ART. The results show that,
except in three cases (RQRT 0.1 compared with QRT for
plgndr; and RQRT 0.1 compared with QRT, and RQRT 1.0
compared with QRT for select), QRT significantly outper-
forms RQRT.

A further investigation of the experimental results re-
vealed that the failure-detection effectiveness of RQRT is
more stable than that of QRT, but that they become less sta-
ble as α decreases (although the average F-ratios improve).
Table 5 summarizes the F-ratio mean values and standard
deviations for the three RQRT methods and QRT, for the
object programs. It is clear from the table that for lower
value of α, the performance improvement of RQRT over RT
(measured by F-ratio in this study) has larger variation. Fur-
thermore, RQRT always has less F-ratio variation than QRT.
Intuitively speaking, in addition to a more even distribution
of test cases, a smaller α also implies that the test cases
are less random: They are very close to the deterministic
Sobol points. Such test cases with less randomness may
be favorable for some mutants (the failure-causing inputs
of which are close to the Sobol points), while unfavorable
to others (the failure-causing inputs of which happen to
lie in the middle between Sobol points). This also explains

0018-9340 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/TC.2015.2455981, IEEE Transactions on Computers

12

TABLE 4
Pairwise comparison of F-measures among RT, ART, QRT, and RQRT

(a) bessj0
RT ART RQRT 0.1 RQRT 1.0 RQRT 2.0 QRT

RT N/A 228 231 229 230 231
ART 4 N/A 212 7 7 224
RQRT 0.1 1 20 N/A 7 5 220
RQRT 1.0 3 225 225 N/A 10 231
RQRT 2.0 2 225 227 222 N/A 231
QRT 1 8 12 1 1 N/A

(b) bessj
RT ART RQRT 0.1 RQRT 1.0 RQRT 2.0 QRT

RT N/A 352 353 353 353 353
ART 1 N/A 317 11 1 331
RQRT 0.1 0 36 N/A 7 3 256
RQRT 1.0 0 342 346 N/A 17 346
RQRT 2.0 0 352 350 336 N/A 350
QRT 0 22 97 7 3 N/A

(c) plgndr
RT ART RQRT 0.1 RQRT 1.0 RQRT 2.0 QRT

RT N/A 194 194 194 194 194
ART 0 N/A 0 0 0 0
RQRT 0.1 0 194 N/A 75 52 92
RQRT 1.0 0 194 119 N/A 69 113
RQRT 2.0 0 194 142 125 N/A 139
QRT 0 194 102 81 55 N/A

(d) select
RT ART RQRT 0.1 RQRT 1.0 RQRT 2.0 QRT

RT N/A 22 22 22 22 22
ART 0 N/A 1 0 0 1
RQRT 0.1 0 21 N/A 11 2 12
RQRT 1.0 0 22 11 N/A 3 11
RQRT 2.0 0 22 20 19 N/A 17
QRT 0 21 10 11 5 N/A

the difference between QRT and RQRT: QRT has a more
even test case distribution, but with less randomness. In
summary, there is a trade-off in the test cases generated
by RQRT methods between the even-spreading (which is
strongly correlated with good failure-detection effective-
ness) and the randomness (which is related to the stability
of the effectiveness).

6 THREATS TO VALIDITY

The threats to the validity of this study are discussed in this
section.

The main potential threat to internal validity is related to
the implementation of the RQRT methods, which, because
of the availability of a popular Sobol sequence generator [7],
only required a small amount of programming. All the
code has been carefully checked, and we are confident that
all the testing methods were correctly implemented in our
experiments. One major drawback of our implementation
is the dimensionality: The Sobol sequence generator we
used can only generate Sobol sequences with the dimension
from 1 to 40; thus, the RQRT methods under study in
this paper cannot be applied to the programs with much
higher dimensions. Nevertheless, there exist other quasi-
random sequences and generators in the literature, and the
application of them into RQRT will result in more RQRT
implementations that can be used in higher dimensional
cases.

The major threat to external validity concerns the set-
tings in the experiments. Although a number of different
conditions (failure patterns, θ, d, etc.) have been considered
in the simulations, it is extremely difficult, if not impossible,
to comprehensively imitate the real-life scenarios. Further-
more, the object programs and fault-seeded mutants used
in the empirical studies were just special cases, and cannot
fully represent the general case. Even though we have
conducted both simulations and empirical studies, it is not
possible to claim that our conclusions are universally valid,
for any program.

The threat to construct validity relates to the measure-
ment: In this study, we used the F-measure to evaluate and
compare the failure-detection effectiveness of RQRT, ART,
QRT, and RT. As discussed in Section 2.1, the F-measure
is particularly suitable for random testing strategies, which
normally generate test cases in an incremental way. Com-
pared with the F-measure, the other two popular measures
(the P-measure – the probability of at least one failure being
detected by a given set of test cases; and the E-measure –
the expected number of failures to be detected by a given
set of test cases) both require that the number of test cases
be known in advance, and are thus less appropriate for
measuring the effectiveness of a random testing strategy
such as RQRT.

There should be little threat to the conclusion validity of
this study: The simulations and empirical studies involved a

0018-9340 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/TC.2015.2455981, IEEE Transactions on Computers

13

TABLE 5
Mean values and standard deviations of F-ratios for RQRT

Program Mean value Standard deviation
RQRT 0.1 RQRT 1.0 RQRT 2.0 QRT RQRT 0.1 RQRT 1.0 RQRT 2.0 QRT

bessj0 0.6382 0.8012 0.8390 0.5988 0.1130 0.0629 0.0548 0.1223
bessj 0.7763 0.8374 0.8628 0.7649 0.0464 0.0275 0.0242 0.0476
plgndr 0.7564 0.7606 0.7650 0.7562 0.0230 0.0229 0.0222 0.0231
select 0.8966 0.9000 0.9186 0.8951 0.0310 0.0275 0.0265 0.0315

sufficiently large number of experimental runs to guarantee
statistically reliable F-measure values, and hypothesis test-
ing was conducted to verify the statistical significance of the
empirical study results.

7 CONCLUSION

The failure-detection effectiveness of random testing (RT)
can be improved by evenly spreading the test cases across
the input domain. Adaptive random testing (ART) is a fam-
ily of algorithms that achieve this notion of an even spread.
Many ART algorithms, however, have high computational
overhead, which may reduce their cost-effectiveness in test-
ing, and thus affect their use in practice. Quasi-random
testing (QRT) was proposed as an enhancement to the
failure-detection effectiveness of RT, while maintaining the
computational overhead at linear order. In QRT, test cases
are generated based on quasi-random sequences, which are
sets of points with low discrepancy and low dispersion.
However, the two randomization methods used in the
original QRT have some shortcomings, including that one
does not introduce much randomness into the sequences,
and that the other does not support incremental test case
generation.

In this paper, we have presented an innovative approach
to randomizing quasi-random sequences using a simple
non-uniform distribution. The approach, randomized QRT
(RQRT), can produce many random sequences with low
discrepancy and low dispersion, and normally performs
significantly better than pure RT in terms of the F-measure
— but maintains the same linear order of computational
overhead as RT. Compared with ART, RQRT has a very low
computational overhead, but, as shown in the experimental
studies, has a comparable failure-detection effectiveness,
meaning that RQRT is the more cost-effective technique.
Compared with the original QRT, RQRT not only introduces
more randomness to the test cases but also supports their
incremental generation.

The most important future work relates to extension of
RQRT into more complicated non-numeric application do-
mains. Although the randomized quasi-random sequences
are naturally applicable to programs with numeric inputs,
it is critical, yet challenging, to expand the research into
converting these pure numeric sequences into test cases
of complex input types, a step which will significantly
improve the applicability of RQRT. Since some research has
already been conducted into applying ART to non-numeric
domains [3], [15], [27], one potential research direction is
to investigate how to integrate RQRT with these studies. In
addition, because it has been demonstrated that ART can
achieve higher code coverage than RT [10], RQRT should
also be able to deliver high coverage, something which

should be evaluated using more empirical studies. In this
paper, we have used only one simple non-uniform distribu-
tion (the cosine distribution), to illustrate our randomization
approach, but many other non-uniform distributions have
been identified in the literature that have similar attributes
to this distribution: It will be worthwhile to study the
applicability and effectiveness of different distributions in
the randomization of various quasi-random sequences. It
was also observed that there is a trade-off between the
randomness and the even distribution, which will also be
an interesting topic for further study.

ACKNOWLEDGMENT

The authors would like to thank Dave Towey for the invalu-
able discussion.

REFERENCES

[1] V. D. Agrawal. When to use random testing. IEEE Transactions on
Computers, 27(11):1054–1055, 1978.

[2] P. E. Ammann and J. C. Knight. Data diversity: an approach to
software fault tolerance. IEEE Transactions on Computers, 37(4):418–
425, 1988.

[3] A. Barus, T. Y. Chen, F.-C. Kuo, H. Liu, R. Merkel, and G. Rother-
mel. A novel linear algorithm for adaptive random testing on
programs with non-numeric inputs. Technical Report TR-UNL-
CSE-2014-0004, University of Nebraska – Lincoln, 2014.

[4] P. G. Bishop. The variation of software survival times for different
operational input profiles. In Proceedings of the 23rd International
Symposium on Fault-Tolerant Computing, pages 98–107, 1993.

[5] M. S. Branicky, S. M. LaValle, K. Olson, and L. Yang. Quasi-
randomized path planning. In Proceedings of the 2001 IEEE In-
ternational Conference on Robotics and Automation, pages 1481–1487,
2001.

[6] P. Bratley and B. Fox. Algorithm 659: Implementing sobol’s quasir-
andom sequence generator. ACM Transactions on Mathematical
Software, 14(1):88–100, 1988.

[7] P. Bratley and B. Fox. Implementation and tests of low discrepancy
sequences. ACM Transactions on Modeling and Computer Simulation,
2(3):195–213, 1992.

[8] M. Chen and P. Mishra. Property learning techniques for efficient
generation of directed tests. IEEE Transactions on Computers,
60(6):852–864, 2011.

[9] T. Y. Chen, F.-C. Kuo, and H. Liu. Application of a failure driven
test profile in random testing. IEEE Transactions on Reliability,
58(1):179–192, 2009.

[10] T. Y. Chen, F.-C. Kuo, H. Liu, and E. W. Wong. Code cover-
age of adaptive random testing. IEEE Transactions on Reliability,
62(1):226–237, 2013.

[11] T. Y. Chen, F.-C. Kuo, and R. Merkel. On the statistical properties of
testing effectiveness measures. The Journal of Systems and Software,
79(5):591–601, 2006.

[12] T. Y. Chen and R. Merkel. Quasi-random testing. IEEE Transactions
on Reliability, 56(3):562–568, 2007.

[13] T. Y. Chen and R. Merkel. An upper bound on software test-
ing effectiveness. ACM Transactions on Software Engineering and
Methodology, 17(3):16:1–16:27, 2008.

[14] T. Y. Chen, T. H. Tse, and Y. T. Yu. Proportional sampling strategy:
A compendium and some insights. The Journal of Systems and
Software, 58(1):65–81, 2001.

0018-9340 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/TC.2015.2455981, IEEE Transactions on Computers

14

[15] I. Ciupa, A. Leitner, M. Oriol, and B. Meyer. ARTOO: adaptive
random testing for object-oriented software. In Proceedings of
the 30th International Conference on Software Engineering (ICSE’08),
pages 71–80. ACM Press, 2008.

[16] R. Cranley and T. N. L. Patterson. Randomization of number
theoretic methods for multiple integration. SIAM Journal on
Numerical Analysis, 13(6):904–914, 1976.

[17] R. A. DeMillo and A. J. Offutt. Constraint-based automatic
test data generation. IEEE Transactions on Software Engineering,
17(9):900–910, 1991.

[18] M. Ellims, D. Ince, and M. Petre. The Csaw C mutation tool: Initial
results. In Testing: Academic and Industrial Conference Practice and
Research Techniques - MUTATION (TAICPART-MUTATION 2007),
pages 185–192, 2007.

[19] G. B. Finelli. NASA software failure characterization experiments.
Reliability Engineering and System Safety, 32(1–2):155–169, 1991.

[20] J. E. Forrester and B. P. Miller. An empirical study of the robustness
of Windows NT applications using random testing. In Proceedings
of the 4th USENIX Windows Systems Symposium, pages 59–68,
Seattle, 2000.

[21] J. D. Golic. New methods for digital generation and postprocess-
ing of random data. IEEE Transactions on Computers, 55(10):1217–
1229, 2006.

[22] R. M. Hierons. Testing from a nondeterministic finite state
machine using adaptive state counting. IEEE Transactions on
Computers, 53(10):1330–1342, 2004.

[23] S. Holm. A simple sequentially rejective multiple test procedure.
Scandinavian Journal of Statistics, 6:65–70, 1979.

[24] L. K. Hua and Y. Wang. Applications of Number Theory to Numerical
Analysis. Springer, Berlin, 1981.

[25] R. Huang, X. Xie, J. Chen, and Y. Lu. Failure-detection capability
analysis of implementing parallelism in adaptive random testing
algorithms. In Proceedings of the 28th Annual ACM Symposium on
Applied Computing (SAC 2013), pages 1049–1054, 2013.

[26] L. Kuipers and H. Niederreiter. Uniform distribution of sequences.
Dover Publications, 2005.

[27] Y. Lin, X. Tang, Y. Chen, and J. Zhao. A divergence-oriented ap-
proach to adaptive random testing of java programs. In Proceedings
of the 2009 IEEE/ACM International Conference on Automated Software
Engineering (ASE’09), pages 221–232, 2009.

[28] H. Liu and T. Y. Chen. An innovative approach to randomising
quasi-random sequences and its application into software testing.
In Proceedings of the 9th International Conference on Quality Software
(QSIC 2009), pages 59–64, 2009.

[29] H. Liu, F.-C. Kuo, and T. Y. Chen. Comparison of adaptive random
testing and random testing under various testing and debugging
scenarios. Software: Practice and Experience, 42(8):1055–1074, 2012.

[30] H. Liu, X. Xie, J. Yang, Y. Lu, and T. Y. Chen. Adaptive random
testing through test profiles. Software: Practice and Experience,
41(10):1131–1154, 2011.

[31] M. Matsumoto and T. Nishimura. Mersenne twister: A 623-
dimensionally equidistributed uniform pseudo-random number
generator. ACM Transactions on Modeling and Computer Simulation,
8(1):3–30, 1998.

[32] J. Mayer. Lattice-based adaptive random testing. In Proceedings of
the 20th IEEE/ACM International Conference on Automated Software
Engineering (ASE 2005), pages 333–336, New York, USA, 2005.
ACM.

[33] M. P. McLaughlin. A compendium of common probability
distributions. http://www.causascientia.org/math stat/Dists/
Compendium.pdf, 1999.

[34] T. Menzies and B. Cukic. When to test less. IEEE Software,
17(5):107–112, 2000.

[35] G. J. Myers. The Art of Software Testing. John Wiley and Sons,
second edition, 2004. Revised and updated by T. Badgett and T.
M. Thomas with C. Sandler.

[36] H. Niederreiter. Quasi-monte carlo methods for global optimiza-
tion. In Proceedings of the 4th Pannonian Symposium on Mathematical
Statistics, pages 251–267, 1986.

[37] H. Niederreiter. Random Number Generation and Quasi-Monte-Carlo
Methods. SIAM, 1992.

[38] A. B. Owen. Randomly permuted (t, m, s)-nets and (t, s)-
sequences. In Monte Carlo and Quasi-Monte Carlo Methods in
Scientific Computing, volume 127 of Lecture Notes in Statistics, pages
299–317, 1995.

[39] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery.
Numerical Recipes in C: The Art of Scientific Computing. Cambridge
University Press, 1992.

[40] J. Regehr. Random testing of interrupt-driven software. In
Proceedings of the 5th ACM International Conference on Embedded
Software (EMSOFT’05), pages 290–298. ACM Press, 2005.

[41] A. Shahbazi, A. F. Tappenden, and J. Miller. Centroidal voronoi
tessellations — a new approach to random testing. IEEE Transac-
tions on Software Engineering, 39(2):163–183, 2013.

[42] I. M. Sobol. On the distribution of points in a cube and the approx-
imate evaluation of integrals. USSR Computational Mathematics and
Methematical Physics, 7(4):86–112, 1967.

[43] A. F. Tappenden and J. Miller. A novel evolutionary approach
for adaptive random testing. IEEE Transactions on Reliability,
58(4):619–633, 2009.

[44] C. H. West and A. Tosi. Experiences with a random test driver.
Computer Networks and ISDN Systems, 27(7):1163–1174, 1995.

[45] L. J. White and E. I. Cohen. A domain strategy for computer pro-
gram testing. IEEE Transactions on Software Engineering, 6(3):247–
257, 1980.

[46] H. Zhu, P. A. V. Hall, and J. H. R. May. Software unit test coverage
and adequacy. ACM Computing Surveys, 29(4):366–427, 1997.

Huai Liu is a Research Fellow at the Australia-
India Research Centre for Automation Software
Engineering, RMIT University, Australia. He re-
ceived the BEng in physioelectronic technology
and MEng in communications and information
systems, both from Nankai University, China,
and the PhD degree in software engineering
from the Swinburne University of Technology,
Australia. His current research interests include
software testing, cloud computing, and end-user
software engineering.

Tsong Yueh Chen is a Professor of Software
Engineering at the Department of Computer Sci-
ence and Software Engineering in Swinburne
University of Technology. He received his PhD in
Computer Science from The University of Mel-
bourne, the MSc and DIC from Imperial College
of Science and Technology, and BSc and MPhil
from The University of Hong Kong. His current
research interests include software testing and
debugging, software maintenance, and software
design.

	sent 20150825 n2006054082 Liu, Huai.pdf
	Iyer-Raniga, Usha- n2006046404- A greenhouse gas.pdf
	Abstract
	Introduction
	Method
	Unit of assessment and system boundary
	Inventory
	Impact assessment

	Results
	Discussion
	Limitations
	Exclusion of travel
	Partition methodology
	Stadium life time and attendance
	Exclusion of upstream construction processes

	Conclusion
	Acknowledgement
	Funding
	References

