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ABSTRACT 

In most countries, domestic transport of products is predominantly made on roads. Protective 

packaging is used to protect the freight from the shocks and vibration encountered during this 

type of transportation. Inefficient packaging constitutes a significant problem that costs 

hundreds of billions of dollars and has an important environmental impact. An insufficient level 

of packaging increases the occurrence of product damage during transport, whereas excessive 

packaging increases the packages weight and volume which is costly throughout the supply 

chain. 

In order to reduce these costs, packaging protection is currently optimised by simulating the 

vibration produced by road vehicles. Despite these simulations being prescribed by many 

standards, it is broadly acknowledged that these methods oversimplify the Road Vehicle 

Vibration (RVV) which imposes a significant limit on packaging optimisation. More complex 

RVV models have been recently developed to enhance simulations. However, the fundamental 

problem still remains; none of these alternatives consider the different excitation modes 

contained in RVV: i.e. the nonstationary random vibration induced by pavement’s profile and 

vehicle speed random variations; the shocks caused by pavement’s aberrations and 

discontinuities; and the sinusoidal (harmonic) vibration caused by unbalanced wheels and the 

engine-borne vibration. These excitation modes should be included in the RVV simulation to 

ensure that simulations are realistic and accurate and that the packaging will protect against 

vibration during transport without being too excessive. 

Each of these modes is represented by a different mathematical model and cannot be analysed 

with the same statistical tools. This means that they have to be characterised separately in order 

to create an accurate RVV simulation model. This task is challenging because all the excitation 

modes are simultaneously present in the acceleration signal recorded on a vehicle. 

This PhD thesis proposes to use machine learning to separate these modes from a signal. Being 

a first attempt to apply this approach to index RVV, the most common classification algorithms 

are used to identify the two predominant modes; i.e. the nonstationary vibration and the shocks. 
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The important novelty of this approach is that algorithms integrate many RVV analysis methods 

such as moving statistics, the Discrete Wavelet Transform and the Hilbert-Huang Transform. A 

comprehensive evaluation and optimisation of the classification algorithms was performed 

using synthetically generated RVV signal. The best performing algorithm was applied on a real 

measurement dataset. 

The RVV mode decomposition will greatly increase the ability to correctly optimise the level of 

packaging required. An accurate model comprising all the characteristics inherent to RVV will 

be a considerable step forward to reduce unnecessary level of protective packaging without 

risking damage to products.  
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 INTRODUCTION Chapter 1: 

Road transportation is an important element of the product distribution industry. All products 

and goods are at some time transported by road to reach consumers. In Australia, as is the case 

in most countries, road transport vehicles are the main constituent of domestic transportation. 

For instance, the Bureau of Infrastructure (2010) estimated that more than 67 % of finished 

products and other goods are transported by road in Australia, equivalent to 243 billion tonnes 

per kilometres (tkm) of travel. Road transport is also essential to interconnect with other modes 

of transport (rail, air and sea). 

As the structure of the economy is changing, going from local to global production, product 

distribution becomes more extensive and the demand for road transportation increases. In 

Australia, road transportation is growing by about 4 % in volume every year (Austroads, 2005). 

This measure is also supported by the Bureau of Infrastructure (2010) which forecasts a 4 % to 

6 % annual increase in road freight activity from 2010 (Figure 1). This prediction can be 

generalised worldwide as a share of GDP (Gross Domestic Product) is predicted to shift from 

the Americas and Europe to Asia (Figure 2). This means that products and consumer goods will 

be increasingly produced and consumed in many different countries, increasing global demand 

for freight transport. 
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Figure 1: freight transported by road in Australia (data from Bureau of Infrastructure, 2010) 

 

Figure 2: GDP per continent (Data from World Economics Journal, 2016, Australasia countries included 

in Asia) 

Producers, distributors and consumers rely on an effective and reliable transport system. This is 

increasingly crucial to the global economy as consumer goods and products are transported all 

over the planet. The integrity of freight is at risk during transport. Product can be damaged and 

lost throughout the different stages of the transport chain, including during handling and 

transport. The mishandling risk such as dropping a product is principally caused by human error 

and can be mitigated by changing such aspects as: handling procedures, equipment and working 

conditions. Nonetheless, the hazards encountered during transport (e.g. by roads, railways, sea 

and air) are far more difficult to control because they depend on the randomness of the process 
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which makes the road transportation far from risk free. When transported by road, freight is 

subjected to shocks and vibration caused by the interaction between the vehicle and pavements. 

The intensity of shocks and vibration depends on the pavement profile of the road and the 

vehicle suspension. The pavement profile generates random excitation (shocks and vibration) 

which varies as a function of the pavement material and level of maintenance. The quality of the 

material and frequency of maintenance can vary considerably between different regions even 

within the same country, depending on the road usage and availability of resources. There are 

also variations in vehicle suspension design and maintenance. Suspension systems are designed 

to improve ride quality by smoothing out the effect of the shocks and vibration as the vehicle 

travels along the road. There are two principal types of suspension, air and leaf spring 

suspensions, which provide different performances. Vehicles equipped with air suspension tend 

to have a smooth constant ride quality because the stiffness of the pneumatic spring can be 

adjusted for different situations. However, this type of suspension is expensive and there are 

still many transport vehicles equipped with leaf spring suspension, which has a constant 

stiffness, to the detriment of ride quality. The regular maintenance of the vehicle suspension is 

also essential to its good functionality. A poorly-maintained suspension increases the level of 

shocks and vibration induced to the freight.  

Shocks and vibration occurring during road transport can be very harmful to products and 

consumer goods as they are sustained over a long period of time. Even if the intensity of the 

shocks and vibration is not sufficient to cause immediate failure, their sustained action can 

cause fatigue-type failure or product damage through wear (e.g. scuffing). Since road 

transportation has a pivotal role in the global economy, it is imperative to protect products and 

goods from the inherent hazards of this mode of transport. Protective (or distribution) packaging 

is used to protect freight from shocks and vibration in road transport. 

The need for protective packaging has created an important market. In 2015, about 26 billion 

USD was spent worldwide on protective packaging and this amount is estimated to reach 

36 billion USD by 2020 (Consulting, 2015). Protective packaging does not add any value to 

products and consumer goods, but its cost directly affects consumers. Transport costs can be 

reduced by optimising the use of protective packaging. Either insufficient or excessive 

packaging is costly; insufficient packaging increases incidences of damage and excessive 

packaging increases the volume and weight of packages. There is an optimal level of protection 

that gives the minimal cost (Figure 3). 
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Figure 3: economic cost function for protective packaging optimisation (reproduced from Rouillard, 

2007a) 

In practice, transport and packaging cost minimisation is not as trivial as finding a minimum 

point on a curve. The optimal level of protection can be achieved by adjusting both the 

protective packaging and the product robustness (Figure 4).  

 

Figure 4: possible product robustness for a given level of protection (Root, 1997) 

The cost of packaging has to be considered to find the optimal trade-off between protective 

packaging and product robustness. This is not limited to the cost of the cushioning material but 

also to the volume and mass of packages. Larger and heavier packages are costly throughout the 

supply chain process: e.g. they require more warehouse and vehicle space; they are difficult to 

handle and so on. They also have a negative environmental and social impact. For instance, the 

extra transport vehicle requirement increases traffic; consumes more fuel; and causes premature 

road deterioration. The extra cushioning material disposal also increases pollution. Over-
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packaging of goods and products has therefore more than an economic impact; it also 

contributes to increased pollution and vehicle traffic all around the world (Cebon, 1989, Janic, 

2007, Oestergaard, 1991). 

Insufficient packaging also has detrimental consequences because it results in product damage 

and waste. The most appalling example is seen in emerging countries where in some cases, half 

of all food is wasted as it moves between farms and markets,  which is mostly a consequence of 

improper transportation (Fox, 2013). In most cases, products damaged during transport are 

discarded and sent to waste, which directly affects the environment and the consumers’ 

perception of the products. In addition to product waste, the problem of insufficient packaging 

leads to product replacement and reshipping. This increases transport costs due to repetitive 

deliveries (initial shipment, return to the expeditor and reshipment) which also increases traffic, 

fuel consumption and so forth. The issues related to insufficient packaging are more easily 

quantified, which explains the general tendency to over-package products.  

One approach to mitigate the environmental footprint of product transport is to design 

sustainable packaging (Svanes et al., 2010) and create governmental initiatives to sustainable 

packaging, such as the Australian Packaging Covenant which targets the use 70 % sustainable 

materials for packaging by 2020 (APC, 2015). However, applying sustainable practices to 

packaging has a limited impact on the over-packaging issue as the disposal of packaging 

materials is a mere fraction of the whole over-packaging issue. 

The economic and environmental toll of transportation can only be significantly decreased by 

optimising protective packaging systems. More efficient packaging has a positive effect 

throughout the supply chain, including product storage, handling, shipping and packaging 

disposal. As illustrated in Figure 4, product robustness and packaging protection are designed to 

reach an optimal level of protection which depends on the hazards encountered during the 

supply chain. The risk posed by these hazards depends on their likelihood and severity. For 

instance, dropping a package from the top shelf of a five metres high warehouse would result in 

very severe product damage. Nevertheless, for a properly operated warehouse this represents a 

small risk as this type of accident is very unlikely. By contrast, the vibration encountered during 

road transportation is far less severe, but is unavoidable. Therefore, the risk of product defects 

due to Road Vehicle Vibration (RVV) is greater than that of a five metres drop. In this example, 

the level of protection should be optimised as a function of the RVV but not of the risk of a five 

metres drop. 

As previously stated, road transportation is omnipresent in the global economy and it constitutes 

an important risk as road vehicles generate shocks and vibration that can damage products. 

Consequently, road transportation risk corresponds to a preponderant portion of the optimal 
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level of protection. The level of protection required to mitigate the risks posed by road 

transportation is found by simulating the RVV. An optimised package should protect its content 

from the RVV occurring during normal transport condition without over-protecting it, which 

means the packaging should not protect against hazard exceeding normal RVV, e.g. a vehicle 

collisions or unexpectedly rough roads. Products are therefore over-packaged when the RVV 

level is poorly defined and, as stated by Sek (2001), conservative simulation leads to over-

packaging. 

Packaging optimisation can only be as good as the accuracy of the simulation of RVV. The 

characterisation of vehicle vibration is essential to optimise packaging because it can be used to 

produce accurate simulations of the loads and stresses that occur during transport. Due to the 

nature of the dynamic interaction between the road surface and road vehicles, the resulting 

motion is often complex and cannot be characterised by simple statistical means. As discussed 

by Charles (1993), the RVV can be divided into three distinct modes: (1) the nonstationary 

random components representing the different levels of vibration induced to freight depending 

on the vehicle speed and the variation in road surface; (2) the transient components composed of 

the shocks produced by the randomly-occurring road surface aberrations (such as large cracks, 

potholes, speed bumps, drains, rail crossings…); and (3) the harmonic components which are 

vibration produced by the vehicle’s components such as its wheels, drivetrain and engine. The 

last-named components can also be nonstationary in time, for instance, when the vehicle speed 

and gear ratio change but they are fundamentally different from the nonstationary random 

components as they are composed of deterministic functions. A comprehensive analysis of these 

modes and their effect on RVV are presented in Chapter 2, 3 and 4. 

Several RVV simulation methods have been developed to date but none of them can accurately 

simulate RVV. For instance, there are standardised methods which simulate RVV with 

stationary Gaussian random signals (ASTM-D4728, MIL-STD-810F, ISO-13355, ISTA). 

However, even if these methods are supported by the international standard organisation, they 

have a fundamental limitation; they do not consider any of the three RVV modes and assume 

that RVV consist of random Gaussian vibration. To overcome this limitation, enhanced 

simulation methods have been proposed but not broadly adopted by the industry yet. An 

extensive review of these methods is presented in detail in Chapter 2. As shown in this literature 

review, there have been great advances in RVV simulation in the last decade. However, even 

the best RVV simulation methods still have a major limitation; they considered RVV as a single 

mode signal. This assumption creates oversimplified models because it neglects the three 

distinct RVV modes. For instance, the nonstationary component can be simulated as a sequence 

of stationary random segments of different intensities. Segments can be characterised using 
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different methods such as the Random Gaussian Sequence Decomposition (Rouillard, 2007a) or 

the Wavelet-Based Gaussian Decomposition (Griffiths, 2012). The problem with these methods 

is that they cannot properly characterise the transient and harmonic modes because they will try 

to identify them as a Gaussian random vibration. Transient and harmonic components can occur 

at random times but they are fundamentally deterministic processes which cannot be modelled 

as a Gaussian random vibration. 

The transient components have been studied using methods such as moving crest factor 

(Bruscella, 1997) and wavelet decomposition (Wei et al., 2005, Nei et al., 2008). These methods 

properly defined the transient components as the response of the road vehicle to shocks. 

However once again these methods consider RVV vibration as a single mode signal and their 

accuracy is significantly affected by nonstationary components. The nonstationary, transient and 

harmonic components coexist in the RVV signal and need to be identified, separated and 

analysed separately in order to achieve an accurate and realistic characterisation and simulation 

of RVV.  

The objective of the thesis is to identify the different modes buried in RVV signals. Each mode 

needs to be well defined before being identified. The definition of each mode is presented in 

Chapter 3 along with the thesis’ sub-objectives. With the RVV modes clearly defined, a RVV 

signal synthetiser was developed (Chapter 4) to assess the potential signal processing techniques 

in the time domain (Chapter 5) and the time-frequency domain (Chapter 6) which can be used to 

identify the modes. As for the current simulation methods, each technique can identify one 

RVV mode but none of them could accurately identify more than one mode. This is how the 

application of machine learning can benefit mode identification. 

At the beginning of the thesis project, machine learning algorithms were not intended to be 

used. It was only after the assessment of the signal analysis techniques that it became essential 

to the RVV modes’ identification. This is because machine learning allows several analysis 

techniques to be integrated together to classify the modes present in a signal. This greatly 

improves the classification of mixed-mode signals as the outputs of the best analysis techniques 

for each mode are used in conjunction. In other words, it combines all the techniques to work 

together to provide better predictions. An evaluation of several machine learning processes is 

presented in Chapter 7 and the best algorithms for RVV modes detection were optimised 

(Chapter 8) using synthetic signals before being validated on in-situ measurements (Chapter 9).  

The merit of machine learning is that it is directly beholden to the merit of its underlying 

processes. So before looking into machine learning, it is essential to truly understand and master 

the more ‘classical’ RVV analysis techniques. As Newton said: “If I have seen further than 

others, it is by standing upon the shoulders of giants.” 
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 LITERATURE REVIEW OF ROAD VEHICLE Chapter 2: 

VIBRATION SIMULATION METHODS 

Simulation of the complex shocks and vibration induced to products during transportation is a 

necessary step in the development of packaging, in order to test its effectiveness in protecting 

the product (Root, 1997). However, the accuracy of the simulation itself is critical for packaging 

optimisation. Excessively severe simulations will ensure the product’s integrity but may result 

in the use of excessive cushioning material and have a direct impact on distribution costs, 

whereas moderate simulations may result in insufficient protection. Therefore, the simulation 

has to accurately recreate the different shock and vibration elements generated by the vehicle.  

These include vibration generated by road roughness, road surface aberrations (e.g. cracks, 

bumps, potholes) and by the vehicle drivetrain system (e.g. wheels, drivetrain, engine). 

In the last few decades, various methods have been developed to improve the accuracy of Road 

Vehicle Vibration (RVV) simulation. Because of the complex nature of this multi-process type 

of vibration, these methods are varied and each method attempts to address the diverse 

limitations of the current simulation methods. Their frameworks are also different and include 

heuristic-based methods as well as more statistical and signal processing-based methods. A 

review of five simulation methods was presented by Richards (1990), but many new methods 

have been developed since then. Another review is therefore needed in order to present an 

overview of the different simulation approaches available today. The methods proposed by 

standards organisations are discussed first. A considerable amount of literature has been 

published on the shortcomings of these standard methods and present alternative simulation 

methods. These alternatives are separated into five categories: time history replication, non-

Gaussian simulation, nonstationary simulation, transient events simulation and harmonic 

simulation. 
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2.1 Standardised Method 

Eccentric cams fixed under a testing table were among the first devices used to simulate 

transport vibration. This excitation mechanism was simple. When the cams attached under a 

table were spinning fast enough, the product detached from the table at each rotation, creating 

repetitive shocks as described in the ASTM Standard D999. This method is still used today 

(Mahajerin and Burgess, 2010),  even though it was later recognised to produce repetitive 

shocks rather than actual transport vibration. Hence, Kipp (2001) recommends caution in 

extending any conclusions drawn from the technique. 

The natural evolution of the test method was to use single frequency vibration to avoid any 

shock events in the simulation as described in standards IEC 60068 and ASTM D3580. The 

excitation signal for this method consists of sweeping the sinusoidal excitation frequency during 

the test. Once again, this method is criticised because it does not reproduce the randomness of 

the road excitation. It has been suggested to use this method as an investigation and design tool 

rather than a packaging performance test (Kipp, 2000a, 2001, 2008). 

The limitations of these standards led to the use of random vibration as a standard road vibration 

simulation in the early 1980s. This is described in standards: ISTA, MIL-STD-810F, ISO 13355 

and ASTM D4728. These procedures produce random Gaussian vibration from various target 

Power Density Spectra (PDS) representing different types of vehicle. These PDS can be 

obtained from measurements on one or more vehicles or from road profile surveys and vehicle 

dynamic models. However, Rouillard and Sek (2013) concluded that the vehicle measurement-

based PDS method gives better results since they do not require approximation of model 

parameters. 

An advantage of the PDS-based method is the apparent possibility of reducing the testing time 

by increasing the intensity (i.e. Root Mean Square (RMS) value) of the simulation. The 

relationship between actual journey and test durations is inspired on Basquin model: 

 
 

   
 

k

j t

t j

t a

t a
  (eq. 1) 

where tt is the test duration; tj is the actual journey duration; at is the test intensity; aj is the 

actual journey intensity; and k is a constant associated with the material/product tested, and 

where k = 2 (Shires, 2011, Kipp, 2000b) and k = 5 (Ulrich Braunmiller, 1999) are generally 

used. 
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2.1.1 Shortcomings of Standardised Random Vibration Testing 

Random vibration testing based on target PDS is a common simulation method used to test 

packaging effectiveness. However many researchers challenge the validity of the Gaussian 

nature of the vibration produced by this method (even though many standards use this method). 

To understand the major deficiency of this method, the process that underpins the generation of 

the vibration signal must be understood. The synthetic signal (Figure 5 a) is created from a 

target PDS of a RVV signal (Figure 5 b) to ensure that it has the specific frequency spectrum 

contained in the real RVV signal (Figure 5 c). However, PDS do not have any time information; 

they only provide the average signal power density as a function of frequency. Therefore, in 

order to create a random signal, the PDS is transformed into an amplitude spectrum with a 

uniformly-distributed random phase. This spectrum is then transformed into the time domain via 

an Inverse Fast Fourier Transform (IFFT). This produces a random Gaussian signal that 

corresponds to the specific frequency spectrum. 

 

Figure 5: Gaussian signal synthesis of a typical RVV signal: a) Gaussian synthetic signal; b) PDS of the 

vehicle signal used for the synthesis; c) measured vehicle signal 

The problem is that the steady-state nature (constant vibration intensity level i.e. RMS value) of 

the Gaussian signals produced by this method does not represent realistic RVV. Vibration 

fluctuations caused by variations in road roughness (profile characteristics) and vehicle speed 

cannot be represented by a constant RMS value signal (Figure 5 c). The high amplitude events 

are averaged-out in the PDS, so they are not present in the synthetised signal (Figure 5 a). 

Therefore, vibration tests based on PDS alone lack high amplitude events which can have a 

significant effect on product damage (Charles, 1993, Rouillard, 2007a, Kipp, 2008).  
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The target PDS provided in the standards to generate the random signal also concerns 

researchers because they are not necessarily representative of real RVV. These functions 

oversimplify vehicle dynamic behavior. They are approximate representations which include all 

vehicle dynamic behavior and the PDS shape is not accurately represented (Rouillard and Sek, 

2013, Rouillard, 2008).  This has a serious consequence in that the energy of the simulated 

signal is spread across a broader frequency band rather than focused around a narrow frequency 

region as is the case for real vehicles which exhibit mechanical resonances (Rouillard, 2008). 

An important shortcoming also comes from the time compression. The artificial signal 

amplifications that reproduce high amplitude events of vehicle excitation are normally 

distributed (Gaussian) which is not the case with vehicle excitation. Therefore high amplitude 

events have much higher incidence in the time compressed signal which does not reflect reality. 

2.2 Time History Replication 

The more candid way to reproduce RVV without all the shortcomings of PDS-based Gaussian 

reproduction is to play back the time history vibration recorded from vehicle measurements on a 

vibration table. Simple as this solution may be, it presents the following fundamental issues. 

One single time history replication has no statistical significance. In other words, using the time 

replication of one journey is only a sample of all possible journeys (population). This specific 

journey may have been more or less severe than usual (statistical extremum) and there is no way 

to verify this unless many journeys are recorded.  The issue of dealing with several journeys, 

how to select a typical one in an objective manner, remains unresolved.  

The solution could be to replicate different time histories of various journeys in a series to 

increase the test significance. This requires extremely long testing time and since the time 

history signal cannot be significantly compressed (Kipp, 2001). Therefore, it is unrealistic to use 

a series of time histories for packaging testing purposes. 

2.3 Non-Gaussian Simulation 

As previously explained, the PDS-based RVV replication method generates normally 

distributed (Gaussian) acceleration signals. This is problematic because RVV is well known to 

be non-Gaussian, more specifically leptokurtic (high kurtosis value, more details are presented 

in Chapter 4). Therefore for the same RMS value, a Gaussian signal has a lower maximum than 

the leptokurtic signal (Rouillard and Lamb, 2008, Rouillard, 2007a). 

Some researchers addressed this issue by reproducing random vibration from a target PDS using 

different distribution (non-Gaussian) (Otari et al., 2011, Van Baren, 2005, Steinwolf and 

Connon Iii, 2005, Hosoyama et al., 2012). One of the methods used to recreate non-Gaussian 
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random vibration based on a spectrum is to distort the waveforms using Zero-Memory 

NonLinear (ZMNL) monotonic function (Smallwood, 2005). However, this operation is made 

in the time domain, so the spectral proprieties of the synthetised signal are not necessarily 

conserved. To control the spectrum and the kurtosis of the synthetic signal, Van Baren proposes 

in his US patent (Van Baren, 2008) to use adaptive filters. 

The main limitation of the non-Gaussian simulation, however, is its inability to reproduce the 

nonstationary nature of the vehicle excitation. Since the vehicle speed and the roughness of the 

road pavement vary throughout a journey, the vehicle excitation is therefore nonstationary 

(Richards, 1990). This nonstationarity can be evaluated with the variation in time of the 

statistical moments of the signal. For instance when the mean value and the RMS value (or 

standard deviation for zero mean) of a signal do not vary in time, the signal is called weakly 

stationary or stationary in the wide sense. However, because it is usually impractical to prove 

that a signal is strongly stationary (where all the possible statistical moments are time invariant), 

Bendat and Piersol (2011) propose that: “for many practical applications, verification of weak 

stationarity will justify an assumption of strong stationarity.” 

According to that definition, the non-Gaussian simulations described above are necessarily 

stationary because they are based on a fixed distribution, so the statistical moments of the signal 

describing this distribution are time invariant. In that sense, this type of simulation does not 

faithfully represent RVV, which is nonstationary.  

2.4 Nonstationary Gaussian Simulation 

Simulating the nonstationary nature of RVV has been addressed by several researchers. They all 

use a similar approach of decomposing the signal into stationary segments. Several methods 

have been used to decompose a RVV signal into stationary segments. The following section 

presents a review of methods used to decompose the signal. 

It is interesting to note that decomposing a RVV signal into Gaussian segments has shown that 

the non-Gaussianity of the signal is not inherent to the vehicle excitation but it is caused by the 

fluctuation of the RMS values of the signal, i.e. its nonstationary nature (Charles, 1993, 

Rouillard, 2007a, Rouillard, 2007b, Rouillard and Sek, 2000, Rouillard and Sek, 2010, 

Bruscella, 1997). In other words, it is not the vehicle dynamics that make the vibration non-

Gaussian; it is actually caused by the combination of different road roughness levels and vehicle 

speed (constant for a certain period of time) which creates RVV segments of different RMS 

values. This further justifies the use of signal decomposition to accurately simulate RVV.  
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2.4.1 Split Spectra Decomposition 

One of the first initiatives to simulate the nonstationary nature of RVV is to decompose the 

signal into low and high amplitude events. The idea is to calculate two PDS based on 70 % of 

the RVV signal with the lowest acceleration levels and on 30 % with the highest acceleration 

levels (Chonhenchob et al., 2012, Singh et al., 2006). This is based on the hypothesis that the 

low level spectrum represents the vehicle response to road profile random variations and the 

high level spectrum represents the response to transient events such as speed bump, cracks, 

potholes etc. 

The actual selection of the signal amplitude to effectuate the separation in order to calculate the 

PDS is subjective. For instance Wallin (2007) used a 80 %:20 % ratio and Kipp (2008) used a 

three way split spectra for 70 %, 25 % and 5 % of the signal. Kipp (2008) even went further in 

the number of split spectra by proposing to define the probability split spectra as: “the 

probability that an encountered PDS level will be at or below the profile based on all data events 

recorded.” For instance, the profile proposed by him is 100 %, 99 %, 95 %, 90 %, 80 % and 

below. Unfortunately, there is not enough published information on the implementation and 

validation of this method to properly assess it. 

Wolfsteiner and Breuer (2013) also proposed to decompose rail vehicle vibration into several 

PDS. This decomposition seems to be applied in the time domain, but once again, limited 

information exists about how it was achieved. Therefore, it is difficult to assess the potential of 

this technique, but according to the authors it is an effective method to use for finite element 

analysis simulation purposes. 

The split spectra method has not been shown to be effective as very little research has been 

published on the assessment of the technique. At this stage, many of the parameters used to split 

the spectra are arbitrary and subjective. Furthermore, the technique produces an orderly 

sequence (incrementally increasing RMS level) of Gaussian random vibration conforming to a 

single PSD. It is not adequate to deal with realistic nonstationary RVV signals. 

2.4.2 Random Gaussian Sequence Decomposition 

Another approach to deal with nonstationary RVV is to assume that the PDS shape is constant 

and to decompose the signal into Gaussian segments of different amplitude. The Random 

Gaussian Sequence Decomposition (RGSD) was first proposed by Charles (1993) and then 

implemented by Rouillard (2007a). The general idea is to decompose a non-Gaussian 

distribution of the RVV signal into several Gaussian distributions. As shown in Figure 6, a 

leptokurtic normal distribution of RVV can be represented as a sum of Gaussian Probability 

Density Functions (PDFs). 
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Figure 6: Gaussian decomposition in a linear scale on the left and a log scale on the right 

The contribution of every sequence with its standard deviation σi (also called RMS value) is 

weighted with a term called Vibration Dose, Di, to fit the signal distribution, p(x): 
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This Vibration Dose also describes the time fraction for which each Gaussian sequence exists. 

However it does not give any information about the sequence length and position in the signal. 

To provide this information, the Gaussian segments are identified in the time signal using a 

cumulative sum - bootstrap algorithm. It is shown that this algorithm is a robust and reliable 

technique to detect significant changes in the statistics of the instantaneous acceleration 

magnitude signal (Rouillard, 2007a, Rouillard and Sek, 2010). The results however are 

dependent on the signal length (window) used to calculate the RMS value (Rouillard, 2014). A 

short window does not represent the true nonstationarities of the signal and a long window will 

not detect the short-duration nonstationarities. 

The analysis of vibration measurements of different vehicles and roads shows that the statistical 

distribution of the Gaussian segments duration follows a hyperbolic curve (see section 4.1 for 

more detail). These measurements represent a variety of small utility trucks, vans, rigid trucks 

and semi-trailers with various suspension types and payloads riding on randomly selected 

poorly maintained local roads, country roads, urban roads and highways (motorways), located in 

Victoria, Australia. Further detail on measurement conditions are given by Rouillard (2007a). 

These measurement samples provide a good representation of roads in Australia and the 

conclusions drawn could be extended to other developed countries. 

A nonstationary synthetic signal is recreated using the hyperbolic distribution of the segment 

duration combined with the RMS value distribution (based on the Vibration Dose) to first 

produce a modulation function (Figure 7 b). This modulation function is then multiplied by a 
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random Gaussian function (created with the measurement PDS, Figure 7 a) to generate the 

synthetic nonstationary signal used for simulation purpose (Figure 7 c). The level of 

nonstationarity of a signal can be estimated using the ratio of the number of Vibration Dose to 

the expected number of Vibration Dose for a stationary signal (Rouillard, 2014).  

 

Figure 7: random Gaussian Sequence Decomposition: a) random Gaussian function; b) modulation 

function; c) synthetic nonstationary signal 

The Random Gaussian Sequence Decomposition method, although being a significant 

improvement on the split spectra method, cannot properly account for randomly occurring 

shocks and varying harmonics occurring in real RVV signals. The method is limited to 

decomposing nonstationary RVV signals into shorter Gaussian segments. These segments are 

characterised statistically by an RMS distribution and a segment length distribution (explored in 

further detail in Section 4.1). Overall, the method is not appropriate for detecting and 

characterising shocks buried in RVV signals. 

2.4.3 Vehicle and Road Characteristics-Based Simulation 

Another simulation method similar to the RGSD is vehicle and road characteristics-based 

simulation. This method, proposed by Rouillard and Sek (2013), has the benefit of not requiring 

any road measurements to create a simulation. As with the RGSD, it uses a modulated random 

Gaussian function but is entirely based on established models. 

For instance, the vehicle Frequency Response Function (FRF) is computed from parameters of 

different vehicle types which are readily available such as these published by Cebon (1999). 

The vehicle response PDS can be estimated by combining the FRF with the road elevation PDS 
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curve (e.g. ISO-8608) coupled with the vehicle speed (Lu et al., 2010, Garcia-Romeu-Martinez 

et al., 2008). 

A transport journey vibration signal can be synthesised using known road roughness 

classification data and corresponding vehicle speed and segment durations. Vehicle speed 

dependence on the road roughness can be taken into account; higher speed on smooth roads or 

lower speed on rough roads. 

This is a practical and affordable method to simulate RVV, but, according to the authors, it is 

only an approximation of the reality since the signal is based on generic PDS.  

2.4.4 Wavelet Based Gaussian Decomposition 

The Discrete Wavelet Transform (DWT) was used to decompose RVV signals into Gaussian 

components as presented by Griffiths (2012). This method exploits the good resolution in time 

and frequency domain afforded by the DWT to detect the Gaussian segments in the signal 

through an iterative process. 

As shown at Figure 8, the first step of this process is to generate a random Gaussian signal 

based on the PDS of the vibration measured from a vehicle. The DWT is then calculated on 

both the Gaussian and measured signals. The envelope (maximal and minimal values) of the 

DWT of the Gaussian signal is used to sequence the vehicle signal; the segments of a signal are 

considered Gaussian when the DWT of the vehicle signal fits into the envelope. These segments 

are considered as the first Gaussian component and they are extracted from the signal. Once the 

extraction is done, a new Gaussian signal is generated from the PDS of the signal residual and 

the DWT functions comparison is undertaken again for a predetermined number of times. After 

all the iterations, the signal residual is considered as the non-Gaussian part of the signal and is 

fitted with the best Gaussian approximation.  

The iterative loop can also be used a second time on each Gaussian component to improve their 

Gaussian fit. Once the Gaussianity of each component is adequate (based on a kurtosis 

criterion), a synthetic signal is created using the PDS and time duration of the segments of every 

component. Despite the fact that the duration distribution of each segment is not taken into 

account in the proposed algorithm, it is a good method to decompose a nonstationary signal 

with varying PDS between each segment. 

A shortcoming of the Wavelet Based Gaussian Decomposition is that its rational is not clearly 

formulated. It assumes that the spectra of the Gaussian segments are different but this 

hypothesis has not yet been clearly proven and it is subject to questioning. This approach has 

not been adopted by any other third party and therefore is effectiveness remains invalidated. As 
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demonstrated by Griffiths (2012), this technique does not offer any practical improvement on 

the Random Gaussian Sequence Decomposition technique. 

 

Figure 8: flow chart of the Wavelet Based Gaussian Decomposition, (reproduced from Griffiths, 2012) and 

PSD stands for Power Density Spectrum 

2.4.5 Hilbert-Huang Transform 

Another time-frequency analysis method used to analyse the nonstationary nature of RVV and 

road profile is the Hilbert-Huang Transform (HHT). Described in more detail in Appendix A, 

the HHT decomposes signals into the sum of narrow banded signals which can vary in 

frequency and amplitude over time. As with the DWT, the HHT has good resolution in time and 

frequency. 
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Rouillard and Sek (2005) applied the HHT to analyse railcar vibration. Using the HHT, they 

were able to analyse the variation in the frequency structure of the vibration which cannot be 

seen with the more conventional spectral averaging. Ayenu-Prah and Attoh-Okine (2009) 

analysed road profile using the DWT and HHT. They concluded that the HHT was the best 

method to analyse nonstationary road profile because as opposed to the DWT, its time 

resolution is independent of the frequency resolution. 

The application of HHT to RVV is very recent. At about the same time as the author presented 

papers on the topic (Lepine et al., 2014, Lepine et al., 2015), Mao et al. (2015) developed a 

model of the RVV based on the HHT. As shown at Figure 9, the latter characterises a 

“Sampled” signal with the Hilbert spectrum (time-varying spectrum computed from the HHT). 

This “Target” Hilbert spectrum is then used to sequence stationary parts of the signal using 

changing point analysis. These segments are characterised with probability density functions 

which are then used to construct the “Simulated” Hilbert spectrum. Coupled with a random 

phase function, the Simulated Hilbert spectrum is transformed in the time domain to generate a 

synthetic signal with the same nonstationary proprieties than the sampled signal. 

 

Figure 9: flow chart of the HHT RVV simulation, reproduced from Ayenu-Prah and Attoh-Okine (2009) 

The application of the HHT to analyse RVV signals is promising. However, as this technique is 

relatively new, it is difficult to assess is performance based solely on a literature review. A more 

detailed critical evaluation based on its application on realistic RVV signals is presented in 

Chapter 6. 

2.4.6 Bayesian Detector 

A statistic-based approach to decompose the Gaussian sequence of RVV is proposed by Thomas 

(2005) who used a Bayesian detector to identify changes in the level and variance and/or 
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autocorrelation between successive measurement series. To ease the identification, a Box-Cox 

transformation (Box and Cox, 1964) is applied to the vehicle signal to change the measurement 

scale. An Automatic Merging for Optimal Clusters (AMOC) algorithm (Carlstein et al., 1994) is 

used on the transformed signal to divide the different random process of the signal. These 

algorithms may appear complex, but they are well known and widely used in many areas of 

applied statistics. One drawback of this iterative process is its risk of result instability. The 

algorithms also require several coefficients to be fixed. Further experimentation needs to be 

undertaken on this method to provide a significant assessment and guidelines to generalise its 

use. 

2.5 Transient Events Simulation 

Anyone who has ever used a road vehicle would agree that the RVV is not only defined by a 

series of random excitations but it also contains transient events. These events occur, for 

instance, when the vehicle travels over potholes, cracks, manholes, speed bumps, railway 

crossings and so on. Many attempts have been made by researchers to include the transient 

events in RVV simulations. 

However, as Kipp (2001) advocates, this is far from trivial. For instance, simply adding 

(superimposing) impacts to a random signal has serious limitations. The user has to decide how 

many impacts and what amplitude to add and how to appropriately distribute them. The various 

shapes of the impacts also have to be defined taking into account the dynamic behaviour of the 

vehicle (structural modes excited by impact). 

Rouillard and Richmond (2007) proposed a method to include the dynamic behaviour of 

vehicles when generating a synthetic impact using the IFFT of rail vehicles spectrum which was 

modified with a constant zero phase. This transform creates a wave packet similar to the 

impulse vibration response of the vehicle.  

Prior to transient event simulation, their detection is also a challenge that needs to be addressed 

in order to characterise their occurrences in a real signal. The crest factor of the signal is used by 

many researchers to detect transient events (Garcia-Romeu-Martinez et al., 2007, Garcia-

Romeu-Martinez et al., 2008, Steinwolf and Connon Iii, 2005, Bruscella et al., 1999, Rouillard 

et al., 2000, Rouillard and Sek, 2002, Rouillard, 2007a, Rouillard and Sek, 2013), which is the 

ratio between the absolute value of the signal and its RMS value: 
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This method is however highly heuristic because it is based on two subjective criteria: (1) the 

signal segment length used to calculate the RMS value is very important, especially for 

nonstationary signals and (2) the threshold defining a transient event. Bruscella (1997) proposed 

an enhanced method to extract transients based on the moving RMS drop-off distance and the 

crest factor. When these indicators reach a certain threshold a transient event is detected and the 

segment containing it is extracted from the signal. However the main shortcoming is that the 

method remains subjective because the detection relies on too many user-defined variables. 

Lu and Ishikawa (Lu et al., 2008) also used a highly subjective method to detect transient events 

with video analysis to validate the transient detection made on the acceleration data of vehicle 

using Oscope® software (Ono Sokki®). Unfortunately, no further information about the 

software algorithm is provided. Analysis of truck vertical acceleration data and the same data 

with the transient events removed using the Oscope® software shows that shocks are more 

noticeable at certain vehicle speed and increase the frequency range of the vehicle response (Lu 

et al., 2010). Without giving a precise indication on how to detect transients, this paper 

highlights the importance of considering the transient and the random broad-band vibration 

components of a vehicle response separately. 

Wavelet decomposition is proposed by Wei et al. (2005) to detect discontinuities (such as cracks 

and bumps) in road profile data which correspond to transient events on RVV. To do so, the 

road profile is decomposed into frequency sub-bands with the Wavelet. According to this study, 

when a discontinuity occurs in the road profile, some sub-bands are excited more than others 

which facilitates its detection. However, the method was only tested on discontinuities that were 

artificially added on road profile measurement. Therefore the frequencies contained within the 

profile discontinuities are determined by the user and do not necessarily represent reality. Nei et 

al. (2008) validated this technique on real transportation measurement and suggested that signal 

sub-bands decomposition could be an accurate method to characterised transient events on RVV 

measurements. 

2.6 Harmonic Simulation Method 

It is generally accepted that RVV is mainly composed of random processes (including the 

random occurrence of transient events) but that does not mean that harmonic components are 

not also present. This specific type of vibration is not induced by the road but by the vehicle 

itself such as engine or drivetrain-related vibration and unbalanced wheel(s) vibration 

(Gillespie, 1985). While harmonic vibration is well known in railway vehicle vibration (ISO-

13749), to the best knowledge of the author, they are only briefly discussed in term of road 

vehicles by Charles (1993). It is suggested that waterfall plots could be used to study vehicle 

speed dependency to certain vibration, but no application is presented. 



 

Chapter 2: Literature Review  21 

 

 

2.7 Conclusion on Simulation Methods 

RVV simulation methods have been studied for several decades, and even though significant 

improvements on the earliest simulation methods have been made, the current methods contain 

some significant limitations. As described in this literature review, it is recognised that the 

Gaussian PDS-based (standardised), time replication and the non-Gaussian methods are not 

sufficiently accurate to realistically simulate RVV because of their statistical limitations and 

their discrepancies with respect to the real nature of the vibration. 

Despite this major shortcoming, the Gaussian PDS-based method remains broadly used today to 

simulate RVV probably because it is recommended by several international standards. This is a 

proven practice to ensure that the packaging will be effective, but it is far from being the best 

method for optimisation. Its simplification of the nature of RVV generally increases the severity 

of the excitation. Therefore packages that survive the standardised simulation are more likely to 

be over-designed. 

A good simulation method should reproduce at least the two dominant modes present in RVV, 

i.e. the nonstationary random and transient components. So far, a number of effective methods 

have been proposed to characterise the nonstationarities, such as: the Random Gaussian 

Sequence Decomposition (Rouillard, 2007a), Wavelet Based Gaussian Decomposition 

(Griffiths, 2012) and the Bayesian Detector (Thomas, 2005). But no definitive method has been 

developed and validated to identify and characterise the other modes of RVV.  

Two elements should therefore be improved to provide more accurate RVV simulations. First, 

transient and harmonic signal components must be well characterised, and second, a generalised 

method including at least the nonstationary and transient modes must be developed. 
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 HYPOTHESIS AND OBJECTIVE Chapter 3: 

Many methods have been developed to characterise and simulate the RVV. However, the 

common shortcoming of these methods is that they consider only one mode of the RVV. For 

instance, the models that describe nonstationarity of the RVV signals neglect the presence of 

transient and harmonic components. None of the aforementioned methods consider RVV as 

mixed-mode signals composed of nonstationary, transient and harmonic components. 

The main hypothesis of the thesis is that the distinct modes (or components) constituting the 

vibration produced by road vehicles can be reliably detected and separately identified.  

The main objective of the thesis is to develop a technique to identify the two dominant 

components within a RVV signal. Once identified, each of the components can be individually 

analysed using the appropriate method. RVV could be separated into mono-mode signals; i.e. 

the nonstationary random and transient vibration each in a different signal. The characterisation 

of each component would then be improved which means RVV could be more accurately 

simulated. 

3.1 Definition of the RVV Modes 

Throughout the thesis, it is assumed that RVV signals can be decomposed into three modes. 

These modes are also called components to avoid any confusion with the usage of the word 

“modes” in modal analysis. There is not universal definition for these components and the 

following subsections define them in the context of the thesis. 

3.1.1 Nonstationary Components 

The definition of Rouillard (2007a) on RVV nonstationarities is adopted. It defines 

nonstationary components as a sequence of Gaussian random signals of different intensities 

(RMS values). These piecewise intensity variations increase the kurtosis value of the signal. All 

the Gaussian sequences have the same spectral shape. 
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The nonstationary components represent the variation of pavement profiles and vehicle speed. 

For instance, a vehicle will produce different levels of Gaussian random vibration at the same 

speed on two different roads and vice versa.  

3.1.2 Transient Components 

The transient components are referred as shocks in the RVV signal. Harris et al. (2002) define 

these transient components as “a temporarily sustained vibration of a mechanical system. It may 

consist of forced or free vibration or both”. However, this definition makes the difference 

between nonstationary and transient components ambiguous. The transient components are just 

defined in terms of time; so a very short Gaussian segment could be identified as shocks. 

It is therefore important to introduce a notion of the signal’s profile or shape in the definition. 

For instance the more recent definition of transients by Bendat and Piersol (2011) is more 

appropriate: 

“A special class of nonstationary data are those that physically exist only within a finite, 

measurable time interval, that is, where the input process  x t  and the output process  y t  

have nonzero values only for 0  t T . Such data are commonly referred to as transients and 

allow for a greatly simplified analysis because for a pair of sample records  x t  and  y t  with 

zero mean values,  
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 .” (eq. 4) 

This definition of transient components does not qualify a short Gaussian segment as a shock 

because by definition it is not finite; i.e. the Gaussian sequence does not decay by the end of the 

segment. 

Ogata (1995) proposes a definition that clearly makes the distinction between the transient and 

nonstationary components: “The transient response refers to that portion of the response due to 

the closed-loop poles of the system, and the steady-state response [in this case the nonstationary 

components] refers to that portion of the response due to the poles of the input or forcing 

function.” 

The latter definition is the more appropriate for the RVV modes identification. The transient 

components referred to as shocks are therefore defined as a vibration composed of the vehicle’s 

impulse response (transfer function poles) caused by a short duration and finite excitation. 
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3.1.3 Harmonic Components 

The harmonic components constitute the overlooked mode of RVV. It refers to any periodic 

vibration. They principally come from the vehicle itself. They are potentially generated by 

wheels, drivetrain and engine. The periodicity of the vibration depends on the vehicle’s speed 

and the engine’s revolutions. They can be described by time variant sinusoidal function such as: 

      
0

sin 2
 

  
 

t

X t a t f t dt   (eq. 5) 

where  a t  and  f t  are respectively the time variant amplitude and frequency. 

For well-maintained vehicles, the action of this mode is negligible compared to the other two 

modes. The predominance of harmonic components may even indicate a vehicle’s malfunction. 

Because of this lower importance, the harmonic components are only considered in the first part 

of the thesis (Chapters 2 to 6). To respect the timeframe of the candidature, the development of 

the machine learning classifiers was simplified and only the nonstationary and transient 

components are considered in the second part of the thesis (Chapters 7 to 9). The development 

of machine learning classifiers capable of detecting harmonic components in RVV signal is left 

for future research. 

3.2 Sub-Objectives 

The thesis has the objective of developing a technique to identify these components within a 

RVV signal and more precisely the nonstationary and transient components. This main 

objective can be separated by these sub-objectives: 

 RVV Analysis Methods Review - to review the different methods that could be used to 

identify the different RVV modes; 

 Machine Learning Integration - to integrate the best nonstationary and transient analysis 

methods into a machine learning process to develop classifiers which can detect shocks; 

 Evaluation and Optimisation of Machine Learning Classifiers - to evaluate and optimise 

the performance of different machine learning classifiers on the detection of shocks in 

synthetic RVV signals; 

 Real Vehicle Implementation - to develop a machine learning process which trains 

classifiers on synthetic signals and can detect shocks buried in real RVV signals. 

These sub-objectives constitute the main contribution of the thesis by their significance and 

originality. In order to carry-out these evaluations and develop the detection algorithm, 

calibration signals with the RVV properties are needed. The creation of such signals is 

described in the following chapter. 
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 SYNTHETIC ROAD VEHICLE VIBRATION Chapter 4: 

SIGNALS 

The Road Vehicle Vibration (RVV) is qualified as mixed-modes signals due to their multiple 

natures. In order to synthesise realistic RVV signals, the nature of these modes needs to be 

established. During a typical transportation journey the road roughness profile and the vehicle 

speed vary, which creates nonstationary random vibration; the road profile discontinuities and 

aberrations also create transient vibration (shocks) and the vehicle itself generates harmonic 

vibration due to its drivetrain system. These components are characterised by different vibration 

modes which have to be included in RVV simulation because they can cause different types of 

damage to freight. The nonstationary random vibration is more likely to cause fatigue failure 

because it induces a highly repetitive low level of stress. The transient vibration is more likely 

to cause sudden failures because its occurrence is less frequent than the random vibration but its 

stress level could be much higher. Failures caused by harmonic vibration depend on the 

dynamic behaviour of the freight. When the harmonic frequency is close enough to the natural 

frequency of freight, the stress level will increase in time because of the resonance phenomenon. 

Depending on the level of damping in the structure, a small harmonic excitation at natural 

frequency can lead to catastrophic damage. 

To accurately replicate the RVV and simulate its effect on freight, these three vibration modes 

have to be considered. A simulation signal should have a similar degree of nonstationarity and 

level of transient and harmonic components to those of typical RVV signals. The main 

challenge here is to extract these modes in a signal in order to characterise them. This can be 

achieved using different signal analysis methods, which will be addressed in the following 

chapters of the thesis. Since these methods were developed for different applications and types 

of signals, it is important to assess their performance on the three specific modes of RVV.  

Synthetic signals are more appropriate than real RVV signal to evaluate these methods because 

the RVV modes composing the signal can be precisely defined and known. To represent all 

three of them, the synthesis is made in three different sections (Figure 10). Each section is 
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independent and its characteristics can be modified to generate different types of road vehicle 

signal, in order to make it possible to assess the performance of different analysis methods on 

each mode separately or simultaneously. 

 

Figure 10: schema block of the signal synthesis 

To give more detail on the mechanics of the mixed-modes signal synthesis, this chapter explains 

how each mode of the RVV is synthetised and how they individually affect the signals’ overall 

characterisation. 

4.1 Nonstationary Signal Synthesis 

A simple way to synthesise RVV would be to generate a road profile with a nonstationary 

roughness profile superimposed with short negative and positive impulse functions to represent 

the transient components. This road profile combined with a generic vehicle transfer function 

creates a RVV signal. However the major drawback of this technique is that it is difficult to 

know the RMS value of the nonstationary segments once the signal has been synthesised. 

Therefore another technique is used based on the work of Rouillard (2007a) on the synthesis of 

non-Gaussian RVV. The basic idea is to modulate a Gaussian PDS-based signal to create a 

nonstationary signal. The Gaussian signal is synthetised from PDS of RVV. Only the shape of 

the spectrum is needed at the beginning because the signal will be rescaled subsequently. 

Therefore the PDS (Pxx) is normalised with the signal’s power (i.e. RMS
2
): 

  
 

 
ˆ 
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xx

xx

P f
P f

P f f
 , (eq. 6) 

where f  is the frequency resolution of the PDS. This normalised PDS is transformed into an 

amplitude spectrum with a random phase,  , spectrum uniformly distributed between – π and π: 
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        j

xxX f P f f e .  (eq. 7) 

This spectrum is transformed to the time domain using the Inverse Fast Fourier Transform 

(IFFT). The resulting time signal is a Gaussian random signal with an RMS value of 1 (from the 

normalisation). The signal becomes nonstationary when multiplied by a modulation function 

representing the variation in the RMS value of the signal, Figure 10. 

As seen in Figure 11, the modulation function has a direct effect on the signal distribution. The 

more the modulation function has segments with different RMS values, the more leptokurtic 

(high kurtosis value) is the Probability Density Function (PDF) of the signal; i.e. the signal 

distribution shows that high amplitude accelerations occur more often than with a normal 

distribution. This explains why RVV signals are mostly leptokurtic. 

 

Figure 11: effect of nonstationarities on a Gaussian random signal with: a) constant RMS value (stationary); 

b) two segments with different RMS values and same duration; c) five segments with different 

RMS values and same duration; and d) 30 segments with different RMS values and durations; 

where the red line superimposed on PDFs is a Gaussian fit and κ is the kurtosis value of the 

distribution 

Rouillard (2007a) studied the intensity and duration distribution of the Gaussian segments 

composed in typical RVV signals. The segments’ intensity distribution, i.e. the distribution of 
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the RMS value of every segment, can be represented by a two-parameter Rayleigh function 

defined as: 

  
 

2
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2





  
      

m m
P m e   (eq. 8) 

where m is the RMS value of the segment, σ the standard deviation, α the exponential parameter 

and β the scaling factor. Typical distribution is presented in Figure 12.  

 

Figure 12: typical probability distribution of the RMS values of RVV Gaussian segments (based on 

Rouillard, 2007a) 

The duration of the Gaussian segments was also studied by Rouillard. The distribution of the 

duration is modelled by a hyperbolic function as: 

  
 sinh


C

p d
kd

  (eq. 9) 

where d is the segments’ duration and C and k empirical constants. A typical distribution is 

presented in Figure 13. 
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Figure 13: typical distribution of the duration of RVV Gaussian segment (based on Rouillard, 2007a) 

Both distributions can be scaled to recreate different synthetic nonstationary signals which 

represent realistic RVV. These nonstationary signals are used throughout the thesis. 

4.2 Transient Signal Synthesis 

The transient signal represents the response of the vehicle over short time duration and high 

amplitude excitations such as potholes or bumps present on the road. This can be represented by 

the impulse response of the vehicle. The synthesis of the signal relies on the dynamic model of a 

typical vehicle. 

A two degree-of-freedom model of the vehicle, called a quarter-car model, was used for the 

transients synthesis (Figure 14). The model is composed of a sprung mass Ms, an unsprung mass 

Mu, two springs (ks and ku) and two dampers (cs and cu). The numerical values of components 

used in the model represent typical values used by Cebon (1999) for “quarter-car” truck model, 

Table 1. The model input,  x t , is the road profile and the output,  y t , is the vehicle sprung 

mass acceleration. The FRF of the model (Figure 15) shows that the first peak is less damped 

than the second. The response decreases after the second peak and its magnitude is less than 10 

% of the maximum value above 30 Hz. 

In the thesis, what is called a shock is the quarter-car response to an impulse function such as a 

raised single period cosine function. This impulse function can have different amplitude and 

duration representing different road aberrations. 
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Figure 14: two degree-of-freedom vehicle model 

Table 1: components of the two degree-of-freedom 

model of a typical truck (Cebon, 1999) 

Component Value 

Ms 8900  kg 

Mu 1100 kg 

ks 2000 kN/m 

ku 3600 kN/m 

cs 40 kN s/m 

cu 4 kN s/m 
 

 

Figure 15: two degree-of-freedom model of a typical truck 

Detecting shocks when they are the only component in a signal is relatively easy. A detector 

based on a single value threshold will locate the transient. However the task is more complex 

when the shocks are superimposed onto a Gaussian random signal of similar amplitude. The 

task becomes even more complex when the background random signal is nonstationary. A 

single value threshold cannot dissociate the transient from the signal. Therefore, it is pointless to 

generate transient signal of same amplitude and duration. To assess the time-frequency analysis 

tools, the transient signals are superimposed on Gaussian signals of different relative amplitude. 

The relative amplitude and the duration of the impulse used to synthesise the transient event 

superimposed on a Gaussian signal have a direct effect on the signal distribution. As seen in 

Figure 16, a short duration impulse (0.01 s) does not create shocks that modify the signal 

distribution; a medium duration impulse (0.1 s) transforms the normal distribution of the signal 
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into a leptokurtic distribution and an impulse of a longer duration (1 s) skews the distribution. 

The amplitude of the impulse has a direct effect on the kurtosis value of the distribution. 

 

Figure 16: effect of the impulse duration and amplitude of a transient event and its superimposition on a 

Gaussian signal (RMS = 1 m/s2), where the red line superimposed on PDFs is a Gaussian fit and κ 

is the kurtosis value of the distribution 

These shocks can be characterised with three distributions: impulse amplitude, impulse duration 

and time interval between shocks. Since there is no a priori information on the distributions of 

the shocks in RVV signals, they have been assumed Gaussian for the purpose of synthetic 

transient signal generation. 

4.3 Harmonic Signal Synthesis 

The harmonic components of the RVV come from the vehicle itself and more precisely the 

drivetrain system. The main frequency range of these harmonics can therefore be estimated 

from the vehicle speed and characteristics. For instance, an unbalanced wheel with a tyre 

diameter of 800 mm generates sinusoidal excitation from 6 Hz to 11 Hz between 50 km/h and 

100 km/h and the first excitation mode of an engine at 500 to 2000 revolutions per minute is 

8 Hz to 33 Hz. To represent the vehicle’s intrinsic vibration, a synthetic harmonic signal 
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sinusoidal waveform was made to vary between 6 and 30 Hz. Because the speed of the vehicle 

and the engine vary, the amplitude A and frequency f of the waveform can also be time variant 

(eq. 5): 

      
0

sin 2
 

  
 


t

x t A t f t dt .   

It can be constituted of only one waveform or also of waveform harmonics to represent 

vibration emerging from varied sources along the drive train: 

      1 sin 2 sin 2   n

n

x t A f t A nf t , (eq. 10) 

where n is the order of the harmonics. 

As with the transient events, the detection of a mono-component harmonic signal is not a 

challenge. The Fourier transform, or the Hilbert transforms in the case of time variant 

waveform, are well-designed to characterise this type of signal. To assess the time-frequency 

analysis tools, the harmonic signals are superimposed onto Gaussian random signals in order to 

evaluate their performance on more complex applications. As seen in Figure 17, a harmonic 

signal of the same amplitude as the Gaussian signal RMS value (1 m/s
2
) does not greatly affect 

the signal distribution. When the harmonic signal amplitude is twice the Gaussian signal RMS 

the distribution becomes platykurtic (low kurtosis value). The kurtosis of a sine wave being 1.5, 

the kurtosis should never reach such low value as harmonics are not predominant in RVV. 
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Figure 17: Gaussian random signal (RMS = 1 m/s2) superimposed by: a) a 1 m/s2 6 Hz sine wave; b) a 2 m/s2 

6 Hz sine wave; c) a 1 m/s2 30 Hz sine wave; d) a 2 m/s2 30 Hz sine wave; where the red line 

superimposed on PDFs is a Gaussian fit and κ is the kurtosis value of the distribution 

4.4 Conclusion on Synthetic RVV Signal 

The proposed synthetiser is able to generate signals with the three modes present in RVV. The 

characteristics of each mode can be controlled which makes these signals a perfect evaluation 

tool to assess the signal analysis methods used to study these modes. Signals with only one or 

two modes at different levels can be generated to assess how accurately different methods can 

identify and characterise the components. The components have different effects on the signal 

distribution which is described with the kurtosis. The level of random nonstationarity increases 

the kurtosis value and the presence of harmonic components decreases it. The effect of transient 

events on the kurtosis is not as simple. It generally increases it but the magnitude depends on 

the impulse amplitude and duration. 

These synthetic signals are a simplification of real RVV signals and they only consider the 

predominant vehicle dynamic behaviour. Therefore, the best performing methods are validated 

on real RVV signals at the end of the thesis. 
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 TIME DOMAIN ANALYSIS Chapter 5: 

The three modes contained within RVV signals cannot be analysed with the same statistical 

tools. The transient and harmonic components have to be separated from the underlying 

nonstationary random vibration. As was revealed in the literature review in Chapter 2, a myriad 

of existing signal analysis techniques in the time domain can be used to identify each of the 

modes. The objective of this chapter is to review the merits and limitations of the most 

promising techniques, such as the crest factor and moving statistics. It must be noted that the 

results presented in this chapter are typical representation of numerous analyses preformed on 

the topic. 

5.1 Crest Factor 

The crest factor is the ratio between the absolute value and the intensity of a signal. The 

intensity is represented by the Root Mean Square (RMS) value of the signal  x t  of duration D, 

 

  
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 

D

RMSx x t dt
D

 . (eq. 11) 

The crest factor (eq. 3) is calculated from the absolute value of the signal’s extremum divided 

by the RMS value, 

  
 
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
x t

CF t
x

 .  

By definition, the crest factor is sensitive to values standing out from the other values of a 

signal. For instance, it is used in machine monitoring to quantify impulsive loads and detect 

bearing wear. In RVV application, the crest factor is used to detect shocks (transient 

components). However, the nonstationary nature of RVV signals reduces the effectiveness of 

this technique. The presence of shocks increases the crest factor values but the variations in the 

signal intensity also increases it making it difficult to differentiate between the two. 
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Figure 18 shows a Gaussian random sequence of 20 s duration with an average RMS value of: 

20 m/s
2
 from 0 to 8 s, 10 m/s

2
 from 8 s to 15 s and 25 m/s

2
 from 15 s to 20 s, superimposed with 

five transient events (vehicle response to 0.05 m of amplitude and 0.05 s duration impulse 

functions located at 1, 5, 6, 10 and 12 s). The crest factor value of this signal increases at the 

shocks but also when the local RMS value is above the RMS of the full signal (eq. 11). The 

shocks occurring during the 10 m/s
2
 RMS segment (8 s to 15 s) could be easily detected. 

However, the crest factor is not different between the 20 m/s
2
 RMS segment superimposed with 

shocks and the 25 m/s
2
 segment without shocks. The crest factor in its current form cannot 

effectively be used to analyse nonstationary signals because it is a statistic that is computed on 

the whole signal. To make it more effective in this situation, the crest factor must be computed 

from a shorter segment of the signal. This is where the moving statistics could be useful. 

 

Figure 18: a) nonstationary signal superimposed with 5 shocks b) the crest factor 

5.2 Moving Statistics 

Most of the common statistical tools are designed to work with a stationary signal. A signal is 

considered stationary in the wide sense when its first and second moments are time invariant; 

i.e. when its mean and variance do not vary in time (Bendat and Piersol, 2011). The RVV 

signals have constant zero mean, but their variance is not constant. If the signal mean μ is zero, 

the RMS value (eq. 11) equals the square root of the variance, 2 , 

  
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    

D

x t dt
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 . (eq. 12) 

When the synthetic RVV signals are generated with segments of different RMS values they are 

therefore nonstationary. However these segments can be considered stationary. Measuring the 

statistics of a single moving segment (window) of the signals could therefore be useful. 
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5.2.1 Moving RMS 

Measuring the fluctuations in the signals’ RMS values gives an overview of their 

nonstationarities. This can be performed with the computation of the moving RMS of a window 

length, T,  

    
2

RMS

0

1
  

T

m t x t d
T

 . (eq. 13) 

Note how the moving RMS is calculated “forward”  t   to consider the vehicle causal 

reaction from the road excitation. 

The selection of this window length is very important. A shorter window performs better with a 

short nonstationary segment than a longer window, but is ineffective for a long nonstationary 

segment where the longer window performs best. For instance Figure 19 shows that a 0.1 s 

window length is too short to analyse this nonstationary RVV signal because the RMS value 

varies with the signal’s peaks and troughs. On the other hand, the 8 s window is too long to 

reveal the signal’s real RMS variation. Figure 19 shows that the more appropriate window 

length for RVV application is within 0.5 s and 4 s. The same conclusion has been made by 

Rouillard (2014) when quantifying the nonstationarity of vehicle vibration. 

 

Figure 19: effect of moving RMS window length; a) 100 s sample of a nonstationary signal; b) moving RMS 

functions 

Transient components are short and have high amplitude so they have more effect on the 

moving RMS of a shorter window period. For example, the 0.5 s moving RMS function has 

bigger responses to shocks buried in a nonstationary signal than the 4 s moving RMS function 

(Figure 20). However, when the window length is too short (e.g. 0.1 s) the moving RMS 
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becomes too sensitive to any signal amplitude variation and is inadequate to detect the presence 

of shocks. For the synthetic RVV signal used in the analysis, the ideal moving RMS window 

length for shock detection is approximately 0.5 s. Whereas, the 4 s window is better to quantify 

the nonstationarity because it has good RMS variation sensitivity without being too affected by 

transient components. 

 

Figure 20: effect of moving RMS window length; a) 100 s sample of a nonstationary signal superimposed 

with shocks; b) moving RMS functions 

5.2.2 Moving Kurtosis 

The second moment, the variance or RMS
2
 value in the case of a zero mean signal, quantifies 

the intensity (dispersion) of a signal. When increasing in order, the third moment, the skewness, 

quantifies how evenly the data is distributed around the mean and the fourth moment, the 

kurtosis, quantifies how uniformly distributed the data are. Two signals with the same RMS 

value can have different kurtosis if one has a few very high peak values. The kurtosis could also 

be interpreted as how close a signal amplitude distribution is to a Gaussian distribution. 

The kurtosis of signal duration, D, and mean, μ, is defined as: 
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  (eq. 14) 

The kurtosis of stationary Gaussian signals is equal to 3. Signals with peak values of high 

amplitude have a kurtosis greater than 3 and are called leptokurtic. This is the case for signals 



 

Chapter 5: Time Domain Analysis  38 

 

 

with transient events. As shown in Chapter 4, nonstationarity can also explain a high kurtosis 

value. Signals with kurtosis below 3 are called platykurtic. Uniformly distributed data have a 

kurtosis of 1.8 and the cosine and sine functions (harmonic components) have a kurtosis of 1.5. 

The three modes of RVV signals affect the kurtosis of a signal. The nonstationary and transient 

components increase its value and the harmonic components reduce it. Therefore the kurtosis in 

its moving form could be useful to identify each component individually: 
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  (eq. 15) 

Note how the moving kurtosis is calculated “forward”  t   to consider the vehicle causal 

reaction from the road excitation. 

As for the moving RMS, the window length of the moving kurtosis has an important effect on 

the mode detection sensitivity. Window lengths of 4 s and 8 s show similar sensitivity to 

nonstationarities (Figure 21). As seen more in detail in Figure 21 c, their kurtosis value 

increases at the end of important Gaussian random segments. The kurtosis value of the 16 s 

window does not vary much with the change in Gaussian segments. 
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Figure 21: effect of moving kurtosis window length; a) 100 s sample of a nonstationary signal; b) full moving 

kurtosis functions (0-40 y-axis scale); c) moving kurtosis functions zoomed on 0-20 y-axis scale 

Discrepancies appear between the 4 s and 8 s windows when shocks are superimposed onto the 

same nonstationary signal (Figure 22). With the shocks, the 8 s window has a more constant 

kurtosis value than the 4 s window. For the 16 s window, the moving kurtosis is too broad and 

does not have much sensitivity to either nonstationarity or shocks. 
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Figure 22: effect of moving kurtosis window length; a) 100 s sample of a nonstationary signal superimposed 

with shocks; b) full moving kurtosis functions (0-40 y-axis scale); c) moving kurtosis functions 

zoomed on 0-20 y-axis scale 

The comparison of the moving kurtosis functions calculated on the same nonstationary random 

signal with and without superimposed shocks shows that the shocks have an insignificant effect 

on the 4 s window functions (Figure 23 a). Interestingly, there are significant discrepancies 

between the 8 s window functions (Figure 23 b). In this case, the shocks remove the sudden 

kurtosis change appearing at 47 s and 65 s on the signal without shocks.  
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Figure 23: comparison of the moving functions calculated on the same nonstationary random signal with 

and without superimposed shocks using: a) 4 s window and b) 8 s window 

Because the sine functions have inherently a low kurtosis value, their presence in nonstationary 

signals brings the moving kurtosis function down. This is shown in Figure 24 where from 45 s 

to 60 s a 5 m/s
2
 sine wave is superimposed onto the nonstationary signal shown in Figure 21. In 

the presence of a sine wave the moving kurtosis barely goes above 3 for both tested window 

lengths. This completely removes the kurtosis peaks around 50 s which makes the moving 

kurtosis very sensitive to harmonic components. 

 

Figure 24: effect of moving kurtosis window length; a) 100 s sample of a nonstationary signal superimposed 

with a 10 Hz sine wave with an amplitude of 5 m/s2; b) moving kurtosis functions 
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5.2.3 Moving Crest Factor 

As mentioned previously, the crest factor, as a single-value statistic, is designed to be used on a 

stationary signal. Therefore it does not perform well on RVV signals to identify shocks. 

However, it is possible to enhance the crest factor performance on a nonstationary signal by 

using its moving form; i.e. using the moving RMS instead of the overall RMS value in the crest 

factor computation, 
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 . (eq. 16) 

Note how the moving crest factor is calculated “forward”  t   to consider the vehicle causal 

reaction from the road excitation. 

The effect of the window time length, T, was studied by varying the moving crest factor 

window length from 8 s to 64 s of a nonstationary random signal superimposed with shocks. 

Depending on the window length, the moving crest factor is more or less sensitive to the 

signal’s nonstationary segments. As shown in Figure 25, a relatively long window length (64 s) 

is more sensitive to shocks in general (e.g. at 15, 23 and 48 s) but is also sensitive to high RMS 

segments present in the signal (e.g. at 55 s to 65 s segment). On the other hand, the shorter 

window (8 s) is less sensitive to high RMS segments but indicates falsely high values when the 

RMS level drops (e.g. at 30 s). 

 

Figure 25: effect of moving crest factor window length; a) 100 s sample of a nonstationary signal 

superimposed by the shocks; b) moving crest factor functions 
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5.3 Conclusion on Time Domain Analysis 

The mixed modes nature of RVV signals complicates their analysis in the time domain. For 

instance, the nonstationary components make the crest factor analysis inadequate to detect the 

transient components. The moving statistics perform better with nonstationarity and are 

therefore more suited for RVV analysis. Three moving statistics were evaluated, i.e. moving 

RMS, kurtosis and crest factor, and each has different merits. The moving RMS with a window 

length of 4 s performs best to characterise level of nonstationarity while the 0.5 s is better for 

shock detection. With window length combination of a 4 s and 8 s, the moving kurtosis is 

sensitive to nonstationarities and shocks. The same window lengths can also detect the presence 

of harmonic components. For the moving crest factor, an amalgam of short and long windows 

(e.g. 8 s and 64 s) gives the best compromise between nonstationary and shocks sensitivities. 

Unfortunately, none of the time domain analysis techniques presented offers a clear solution. 

They have some merits but they cannot clearly distinguish between the three different modes 

present in RVV. Another analysis domain is required to enhance the modes detection. Including 

the spectral characteristics of each mode with the time-frequency domain brings new solutions 

to analyse RVV signals. 
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 TIME-FREQUENCY ANALYSIS Chapter 6: 

The Road Vehicle Vibration (RVV) is nonstationary and non-Gaussian because of the nature 

and the sporadic presence of its different vibration modes (nonstationary, transient and 

harmonic components). These components can be characterised using time-frequency analysis. 

The spectral variations of the signal over time can be correlated with different components 

which have distinctive frequency spectra. By looking in the time and frequency domains 

simultaneously instead of only in the frequency domain, the signal’s modes can be more easily 

analysed even if they are superimposed. For example, a transport vehicle with a faulty 

transmission system could generate harmonic vibration on a certain gear, so its duration is 

sporadic and short compared to the other RVV modes occurring during the vehicle normal 

operation. The harmonic has therefore virtually no effect on an average spectrum calculated on 

a typical vehicle journey, but has a significant effect in the time-frequency domain at specific 

times of the journey. 

Several methods are used to express a signal in the time-frequency domain. The first methods 

developed were the short-time Fourier transform and Wigner-Ville distribution, also based on 

the Fourier transform. However these methods have an important limitation due to the Gabor 

limit, also known as the signal processing equivalent of the Heisenberg’s Uncertainty Principle.  

More specifically the issue is that an exact frequency cannot be known at an exact time. Fine 

frequency resolution requires long time segment analysis (i.e. coarse time resolution) and fine 

time resolution results in coarse frequency resolution. The short-time Fourier transform and the 

Wigner-Ville distribution are inherently limited by the Gabor limit because of the continuous 

nature of the cosine functions composing the Fourier transform (Newland, 2012). 

This limitation can be minimised using more advanced time-frequency analysis methods such as 

the Hilbert-Huang Transform (HHT) and the Discrete Wavelet Transform (DWT). The 

fundamentals of these methods are presented in Appendix A for the HHT and Appendix B for 

the DWT. These appendices provide enough information to understand and even apply these 

advanced time-frequency analysis methods. 
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In this chapter, these methods are assessed on their capabilities to provide enough information 

to detect and simulate the nonstationary, transient and harmonic components contained in real 

RVV signals. In order to maintain the same statistical distribution, the starting point and 

duration of the different components have to be identified in real RVV signals. Key elements of 

each component also have to be characterised in order to reproduce them properly. These 

elements are: (1) for the nonstationary components, the spectrum and RMS value; (2) for the 

transient components, the shock duration and amplitude and, ideally, the transient waveform; 

and (3) for the harmonic components, their frequency, amplitude and duration. Synthetic RVV 

signals are used to perform this assessment as these elements are a priori known. It must be 

noted that the results presented in this chapter are typical representation of numerous analyses 

preformed on the topic. 

6.1 Hilbert-Huang Transform Assessment 

The HHT is an adaptive time-frequency analysis method providing different types of predictors 

from RVV signals. The HHT uses a sifting process to decompose a signal into different narrow-

banded components, called Intrinsic Mode Functions (IMFs) which have the following 

characteristics as defined by Huang et al. (1998): 

1. in the whole dataset, the number of extrema and number of zero-crossings must either 

equal or differ by at most one; 

2. at any point, the mean value of the envelope defined by the local maxima and the 

envelope defined by the local minima is zero.  

The sifting process is made by fitting a spline function over signal local maxima and a second 

over local minima. The difference of these functions is then subtracted from the signal which 

has the effect of removing the low frequency components of the signal. This process is repeated 

until the number of extrema and zero-crossings remain the same and are equal of differ, at most, 

by one for 8 consecutive iterations (Huang et al., 2003a). The remaining signal becomes the first 

IMF. The next IMFs are then calculated using what remains from the signal using the same 

process. This iterative process stops when no more IMF can be fitted and the residual is called 

the signal trend. As the IMFs are a narrow-banded, their instantaneous frequency and amplitude 

can be computed using Hilbert transform. The instantaneous frequencies and amplitudes can be 

expressed as individual functions or regrouped together to form the Hilbert spectrum which 

presents the amplitude of the instantaneous frequency as a function of the time. 

A more detail description of the HHT is presented at Appendix A. It is important to notice that 

the HHT’s mathematical framework still has to be developed. Therefore, it is good practice to 

assess the capabilities of the HHT on synthetic RVV signals. This assessment is also useful to 
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compare the HHT with the DWT to ultimately select the time-frequency analysis tool that suits 

best the RVV. 

Three synthetic calibration signals were created to assess the HHT performance as described in 

Chapter 4. The first signal used for the assessment is a Gaussian random signal with two 

different RMS values within the same vehicle vibration spectrum. The duration of the signal is 

15 s. From 5 s to 10 s, the average RMS value is 12 m/s² and then 6 m/s² for the remainder of 

the signal (Figure 26 a). The sampling frequency (1024 Hz) is sufficient to provide a smooth 

representation of the signal waveform. The second signal is a stationary Gaussian random signal 

based on the same vehicle vibration spectrum (6 m/s² RMS value) superimposed with five 

shocks (Table 2 and Figure 26 b). The shocks consist of the impulse response function of a 

typical truck (quarter car, such as presented by Cebon, 1999) to a Hanning function excitation 

with varying amplitude and duration. The last signal once again contains the same stationary 

Gaussian random signal, with a 10 Hz sinusoidal waveform of 10 m/s² amplitude superimposed 

between 5 s and 10 s (Figure 26 c). These signals were designed especially to test and evaluate 

the effectiveness of the HHT to identify the three RVV modes. 

 

Figure 26: a) signal comprising three Gaussian segments with two different RMS values; b) stationary 

Gaussian random signal with shocks (asterisk marks); and c) stationary Gaussian random signal 

with a 10 Hz sinusoidal component between 10 s and 15 s 
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Table 2: properties of the road surface aberrations used to produce the synthetic shock  

Impact 

[#] 

Position 

[s] 

Duration 

[s] 

Amplitude 

[m] 

1 1 0.015 0.05 

2 5 0.03 0.05 

3 6 0.15 0.05 

4 10 0.15 0.03 

5 12 0.15 0.02 

6.1.1 Nonstationary Component 

From Figure 27, it appears to be possible to visually identify the different Gaussian components 

using the Hilbert spectrum where the global spectrum amplitude increases between 5 s and 10 s. 

However, this Hilbert spectrum presents some issues concerning the Gaussian characterisation. 

Its general shape contains discrepancies with the Power Density Spectrum (PDS) function of the 

Gaussian signal itself (Figure 28). The dominance of the frequencies around 5 Hz and 10 Hz is 

clearly not represented in the Hilbert spectrum. 

 

Figure 27: Hilbert spectra on Gaussian signal with two different RMS values 



 

Chapter 6: Time-Frequency Analysis  48 

 

 

 

Figure 28: PDS of the Gaussian signal and the sum of the PDS of the signal’s IMF 

The discrepancies between the spectral shapes can also be explained by the IMFs’ instantaneous 

frequencies principle. The high order IMFs have narrower and lower frequency content which 

varies slowly through time, while the low order IMFs have broader and higher frequency 

content which varies quickly. In order to represent the same power density, the low order IMFs 

need greater amplitude which creates a bias in the spectral shape obtained in the Hilbert 

spectrum. To illustrate this, the PDS function of each IMF is presented in Figure 29 where IMFs 

4 and 6 dominate the between 6 Hz to 10 Hz.  

 

Figure 29: PDS function of each IMF 

A second issue appears when these PDS are summed; the frequency content below 6 Hz is over-

represented (Figure 28). This is mainly caused by the IMFs decomposition and their 

instantaneous frequencies. IMFs 6 to 9 show instantaneous frequencies that are artefacts of the 

limit criteria of the decomposition method (Figure 29). The algorithm keeps decomposing the 

signal until the IMF or residual amplitude reach a certain threshold, but since this process acts in 

a similar way to a low pass filter, the remaining signal is modelled only with very low 

frequencies, which creates this bias. Advice on how to deal with this shortcoming is given by 
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Huang and Shen (2005). The nonphysical IMF should be left out of the analysis, but there are 

no guidelines on how to define a nonphysical IMF. Therefore, it is impossible to know that 

IMFs 6 to 9 do have physical sense if the original spectrum of the signal is unknown, as it is the 

case for nonstationary signal. Another technique proposed by Peng et al. (2005) using Wavelet 

Packet Transform (WPT) and correlation test on IMF with the signal can also remove the 

artefact. However, because this technique uses the DWT the HHT loses its fully adaptive 

property. 

6.1.2 Transient Component 

The Hilbert spectrum of the signal with shocks (Figure 30) shows high amplitude values at low 

frequency at 6 s and 10 s which are long duration shocks, but there is no clear evidence of the 

other events. The IMFs themselves could also be used to detect shocks. For instance, IMF 3’s 

amplitude increases at 1 s and 5 s when short duration shocks occur and IMF 4’s amplitude 

increases at 6, 10 and 12 s when the long duration shocks occur (Figure 31). This could give 

information on the shocks’ duration, but once again there are artefacts that could lead to false 

detections based on the IMF amplitude at 4 s and 11 s for instance. One could also use IMF 5 to 

falsely detect shocks. This indicates that the HHT does not enhance shock detection compared 

to time domain analysis where these events can be visually apprised (Figure 26 b). There is also 

no indication on the waveform of the transient with the HHT.  

 

Figure 30: Hilbert spectrum on Gaussian signal superimposed with shocks 
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Figure 31: IMFs 3 to 5 of the Gaussian signal superimposed with shocks 

6.1.3 Harmonic Component 

The Hilbert spectrum shown in Figure 32 reveals concentrated low frequency activity between 

5 s and 10 s. However, this frequency bandwidth is relatively broad and does not represent the 

single frequency sine component. The continuous 10 Hz sine wave is instead represented by 

scattered broad-band components. 

 

Figure 32: Hilbert spectrum of Gaussian signal with a 10 Hz sinusoidal component 

This discontinuity in frequency and amplitude is explained by the shift (or leak) of the sine 

wave from one IMF to another adjacent IMF. The EMD performed on the signal with lower 

relative amplitude to the Gaussian component (RMS value is 10 % of that of the sine amplitude) 

shows that even with a relatively low noise level, the sine wave appears in two IMFs with an 

amplitude fluctuation (Figure 33). This mode-mixing gives a false representation, in the Hilbert 

spectrum, of the stationarity of the sine wave, resulting in misleading information on its 

amplitude, frequency and duration.  
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Figure 33: FIRST TWO IMF of the 10 Hz sinusoidal component with 10 % Gaussian noise 

Huang et al. (2003a) propose a bandwidth limitation as an EMD stoppage criterion to ensure 

that a single frequency component remains in the same IMF. However, to use such a criterion, 

the instantaneous frequency of the component has to be known, which is not necessarily the 

case for RVV. This subjective intervention also limits the fully adaptive nature of the EMD. 

In order to maintain the adaptive nature of the EMD, Wu and Huang (2009) propose the 

Ensemble EMD (EEMD) to avoid mode-mixing between IMFs. This method uses a 

characteristic of the EMD, that of being a dyadic filter bank on Fractional Gaussian noise such 

as a white noise (Flandrin et al., 2004). By adding white noise on a signal, the EEMD ensures 

that the IMFs are the result of the filter bank, such that a mode will more likely remain in the 

same IMF. It is then possible to remove the effect of the white noise by repeating the EMD on 

the signal with different white noise superposition. Since these noises are uncorrelated, the 

effect can be minimised by computing the average of the replicated IMFs.  The effect of the 

additive noise, n
, decreases with the number of EMD repetitions, N, as follow: 

 


 n
N

,  (eq. 17) 

where ε is the amplitude of the added noise. 

EEMD is not broadly used because the mode-mixing problem is not always important enough to 

justify the extra computing time required. The method also has some drawbacks such as not 

totally correcting the mode-mixing issue when the mode frequency is located in the overlapping 

region of the filter bank. Also, nothing guarantees that the mean IMFs respect the definition in 

regards to the number of extrema and zero-crossings. Before using the EEMD, these 

considerations must be assessed in terms of the significance of the mode-mixing problem. 
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6.1.4 Energy Density/Average Period Significance Test 

EEMD uses noise to improve the HHT analysis but in most cases the noise present in a signal is 

undesirable. As presented in Appendix A.4.1, the HHT can be used to distinguish the “noise” 

from a “signal”. For RVV, the nonstationary component, which is a Gaussian random signal, 

can be qualified as “noise” and the transient and harmonic components, which are deterministic, 

can be qualified as the “signal”. So in theory, the noise filtering capacity of HHT can be used to 

separate the different RVV components. 

The first HHT filtering method assessed on RVV is the energy density/average period 

significant test. As explained more in detail in Appendix A.4.1, EMD of white noise (Gaussian) 

has a known logarithmic energy density/average period relationship for every IMF. So EMD 

showing any discrepancy with this relation means it is a signal in the specific IMF which does 

not follow the relationship. The same principle could be applied to other random noises where 

the energy density/average period relationship between IMFs will follow a specific pattern. 

To define the energy density/average period relationship of the nonstationary component of the 

RVV, the distribution of the IMF energy density E in function of the average period T was 

calculated using a Monte Carlo simulation of a Gaussian signal made from the same spectrum 

and 1000 different randomly distributed phase spectral functions. The RMS value of all these 

signals is approximately 8 m/s
2
. The result shows that the spread function has an irregular 

pattern which does not follow the logarithmic decrement of the white noise case (Figure 34). 

 

Figure 34: spread function of the energy/average period relationship of IMFs of 1000 vehicle Gaussian 

signals; the odd IMFs are in blue and the even in green 
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Before using this method to identify the IMFs containing the transient and harmonic 

components of a RVV signal, the effect of the nonstationary Gaussian signal on the distribution 

is assessed. The nonstationary signal is created using the same PDS based Gaussian signal as 

the one used during the Monte Carlo simulation but it’s RMS value varies (Figure 26 a), from 

5 s to 10 s, the average RMS value is 12 m/s² and then it is 6 m/s² for the remainder of the 

signal. The overall RMS value of the signal is 8 m/s
2
,
 
the same as the stationary Gaussian signal 

used in the Monte Carlos simulation. As seen in Figure 35, the nonstationarities affect the 

number of IMFs generated by the EMD. For the same sampling frequency, there are seven IMFs 

for the stationary Gaussian signal and twelve IMFs for the nonstationary. The energy density 

values are situated in the cluster generated by the stationary Monte Carlo simulation which 

means that the energy density/average periods relationship is not affected by nonstationarities. 

 

Figure 35: energy/average period functions of the nonstationary Gaussian signal and Gaussian Monte Carlo 

simulation; the IMFs are in ascending order starting from the left, the odd Monte Carlo IMFs 

are in blue and the even in green 

The energy density/average period significance test shown in Figure 36 is not able to detect a 

harmonic component superimposed on a stationary Gaussian signal (Figure 26 b). As for the 

nonstationary signal, the number of IMFs is superior to those of the stationary Monte Carlo 

simulation. The relationship between the energy density and average period of the harmonic 

signal is within the trend of the Monte Carlo distributions. The IMFs are also positioned near 

the nonstationary Gaussian IMFs. The IMFs containing the harmonic component do not clearly 

stand out of the Monte Carlo distribution or the nonstationary Gaussian IMFs which can be 

caused by the mode-mixing problem which spreads the energy of the harmonic component into 
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several IMFs making the energy density/average period significance test unreliable to detect 

harmonic components.  

 

Figure 36: energy/average period functions of the Gaussian signal superimposed with harmonics and 

Gaussian Monte Carlo simulation; the IMFs are in ascending order starting from the left, the 

odd Monte Carlo IMFs are in blue and the even in green 

As seen in Figure 37, the energy density/average period significance test can detect the IMF 

containing shocks superimposed on stationary Gaussian signal (Figure 26 c). As seen in Figure 

35, the fifth IMF has more energy density than the Monte Carlo spread distribution. The average 

period of the fifth IMF (about 150 samples or 0.15 s) coincides with the average frequency of 

the impulse response used to synthesise the impact in the transient signal (6 Hz). However, the 

problem is that other IMFs are present outside the confidence intervals such as the second, third 

sixth and seventh IMFs, which have no physical relation with the shocks superimposed on the 

Gaussian signal which affects the reliability of the technique. 
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Figure 37: energy/average period functions of the Gaussian signal superimposed with shocks and Gaussian 

Monte Carlo simulation; the IMFs are in ascending order starting from the left, the odd Monte 

Carlo IMFs are in blue and the even in green 

6.1.5 Fractional Resampling Technique 

The energy density/average period significance test does not totally suit the RVV analysis 

which could have been anticipated because it was specifically created for white noise (Wu and 

Huang, 2004). Facing the same issue, Chen et al. (2013) developed the Fractional Resampling 

Technique (FRT), also based on HHT, to detect a signal in fractional Gaussian noise such as red 

(Brownian) noise, see Appendix A.4.2 for more detail. Since the road profile which creates the 

random noise in RVV could be modelled as a red noise (Cebon, 1999), FRT could also be 

applied in RVV signal analysis. Based again on the principle that the nonstationary component 

is the “noise” and the transient and harmonic components are the “signals”, the FRT should 

determine which IMFs contain the shocks and harmonics. 

The first parameter to set up is the initial sampling frequency of the FRT. RVV signals are 

usually over sampled to give a more detailed curve. In other words, the Nyquist frequency is 

well above the highest frequency of the signal which gives several points around signal’s peaks 

and troughs. However oversampled signals spoil the FRT because the average frequencies of the 

first IMFs do not correspond to the filter bank. Following the principle of a dyadic filter bank, 

the first filter or IMF should have an average frequency of 3/4 of the Nyquist frequency but an 

oversampled signal does not have any content at these frequencies so its first IMF has an 

average frequency below this value. The signal resampling does not have any effect if the 

average frequency of the first IMF remains below 3/4 of the Nyquist frequency of the down-
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sampled signals. This leads to a stable normalised average frequency as seen on a stationary 

Gaussian signal created from a vehicle vibration spectrum sampled at 1024 Hz, Figure 38. 

 

Figure 38:  normalised average frequencies of IMFs as a function of the resampling rate for a Gaussian 

signal created from a vehicle vibration spectrum sampled at 1024 Hz 

The decrement of the normalised average frequency is seen on the Gaussian signal at 256 Hz 

sampling frequency. However, shocks superimposed on a stationary Gaussian signal as 

presented in Figure 26 b are not detected with the FRT. The normalised average frequencies of 

the IMFs mostly follow the theoretical linear relationship of the red noise, Figure 39. 
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Figure 39: normalised average frequencies of IMFs as a function of the resampling rate for shocks 

superimposed on Gaussian signal sampled at 256 Hz, with the dashed line representing the 

theoretical relationship 

The harmonic component seems to be detected with the FRT, but this is not totally correct 

(Figure 40). Applied to a signal composed of a harmonic component superimposed on a 

Gaussian signal, the seventh IMF indicates the normalised average frequency and resampling 

rate theoretical function, but it does not represent the harmonic component. The sinusoidal 

frequency of the harmonic component is at 10 Hz but the seventh IMF has an initial average 

frequency of 1 Hz. So the outlining IMF is only an artefact.  
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Figure 40: normalised average frequencies of IMFs as a function of the resampling rate for harmonic 

components superimposed on Gaussian signal sampled at 256 Hz, with the dashed line 

representing the theoretical relationship 

6.1.6 Conclusion on the Hilbert-Huang Transform 

The HHT is an adaptive time-frequency analysis tool with interesting potential but has no 

practical application to RVV in its current state of development. Instabilities due to stopping 

criteria selection and modes-mixing within IMFs are two of the issues that complicate the 

application of the HHT on RVV. This is the drawback of an adaptive signal processing 

technique; it adapts too much to a signal, so the outcome might end-up as complex as the signal 

itself. 

The signal detection and noise filtering capabilities of HHT have interesting features but they 

were found not to be sensitive or reliable enough to be used with RVV signal. It appears that the 

techniques presented are not versatile enough to analyse the multimodal nature of the RVV. 

Considering these limitations, other time-frequency analysis tools such as the DWT, which has 

a complete mathematical framework, might be more appropriate and give a more reliable 

method to analyse RVV signal. 

6.2 Discrete Wavelet Transform Assessment 

As opposed to the HHT, the wavelet transform has a fully proven mathematical framework. 

Therefore the wavelet transform of a RVV signal has an analytic solution and does not need to 

be extensively validated for this application. The wavelet transform consists of series of filters 

applied in sequence on a signal. The outcome of each filter represents a different scale of the 

signal which is related to its frequency content. 
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The DWT is used over the Continuous Wavelet Transform (CWT) to avoid redundancy between 

the scales and to make sure the different components of the signal are present only in one scale 

(see Appendix B for more detail on wavelet transform). The drawback of the DWT is that its 

scalogram is a coarser scale resolution than the CWT. Note here that the DWT results are 

presented in the time-scale domain rather than the time-frequency domain because the analysed 

signal is divided in terms of scales and not frequencies. The scale domain may be transformed 

into the frequency domain depending of the mother wavelets, i.e. the shape of the wavelet. 

There are several types of mother wavelets and it is important to define which one is suited to 

RVV application. Different mother wavelets have been used in the literature to analyse road and 

vehicle vibration signals. Ayenu-Prah and Attoh-Okine (2009), Lee and White (2000), Lee and 

Son (2001), Nei et al. (2008) used the Morlet wavelet to analyse RVV signals but they do not 

justify their choice. Staszewski and Giacomin (1997) justified the usage of the Morlet wavelet 

because its scale can be more easily expressed in the frequency domain since the Morlet wavelet 

is a complex exponential function multiplied by a Gaussian window. Griffiths (2012) employed 

a more extensive selection process. She compared Haar, Mexican hat, Daubechies 2, 6, and 10
i
 

and Morlet wavelets. She suggested that Daubechies 6 and 10 and Morlet wavelets should be 

used to analyse RVV. Wei et al. (2005) also tried several Daubechies wavelets (1 to 10) and 

found that at least three vanishing points are needed to analyse the RVV signal. Nei et al. (2008) 

also used Daubechies 8 wavelet but there is no mention in the paper why this order is used and 

why Morlet wavelets are used for some applications and Daubechies for others. 

Based on a review of the literature, both Morlet and Daubechies wavelets seem to be 

appropriate for with RVV signals. However for indexing the different modes in RVV, the 

Daubechies family is preferred because it has an orthogonal basis which ensures there is no 

redundancy between the scales. This means that there is no correlation between the scales which 

leads to a number of statistical simplifications. 

It is now a question of selecting the order of the wavelet (or its number of vanishing points) 

which corresponds to the k
th
 moments where a function,  f x , equals zero, 

  




 
k

km f x x dx  . (eq. 18) 

The number of vanishing points p of the wavelet function gives an indication of the precision of 

every scale. In other words, any degree-p polynomial can be exactly reproduced in every scale. 

The more vanishing points there are, the more concentrated is the signal information in the 

coarser scales. Therefore fewer coefficients are needed to analyse singularities and 

                                                      
i
 These numbers represent the number of vanishing points of the wavelet. 
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discontinuities. More vanishing points means that the wavelet filters need longer support (more 

filter coefficients); for instance, a Daubechies wavelet with p vanishing moments has 2p − 1 

filter coefficients. 

Because RVV signal analysis does not require real time processing, the filter length is not an 

issue. A high number of vanishing points can be used to further separate the information 

between the scales. In the context of the thesis, 10 vanishing points are used with Daubechies 

wavelets (Daubechies 10). The number was selected using a real typical RVV signal. This 

signal recorded on a truck travelling at 100 km/h on Victorian roads (Australia), was analysed 

with Daubechies wavelets 1 to 15. The RMS value of the first six wavelets was compared for 

every number of vanishing points. As seen in Figure 41, the RMS values reach an asymptote 

around seven or eight vanishing points. That means that the wavelet decomposition of a real 

RVV signal does not change when there are more than eight vanishing points. As the filter 

length of the wavelet analysis is not an issue in this case, the number of vanishing points was 

fixed at 10 to have smoother wavelets with a reasonable length, i.e. 19 coefficients. 

 

Figure 41: RMS values of the first six Dauchechies wavelets of a real RVV signal in function of the number 

of vanishing points 

The Daubechies 10 wavelet has all characteristics required for analysing a RVV signal and its 

performance in detecting nonstationary, transient and harmonic components needs to be 

assessed. The same synthetic signals used for the HHT assessment are used to facilitate the 

comparison between the two time-frequency analysis methods. These components are 

individually tested using scalograms which present the coefficients in detail for every scale as a 

function of time. The finer scale represents the high frequencies with the finer time resolution 

and the coarser scale represents the lower frequencies with the coarser time resolution. 
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6.2.1 Nonstationary Component 

As for the HHT, the performance of the DWT for identifying nonstationary components is 

assessed using the same Gaussian random signal. This signal was synthesised from a vehicle 

vibration spectrum and has two different RMS values sections, 6 m/s
2
 from 0 to 5 s and from 

10 s to 15 s and 12 m/s
2
 from 5 s to 10 s (Figure 42 a). The DWT does not clearly identify the 

high RMS section of the signal (Figure 42 b). The coefficients are higher between 5 s and 10 s 

at scales 2 to 8, but the difference between the RMS sections is not as clear as it was for the 

HHT (Figure 27). This can be explained by the DWT being more sensitive to signal variation 

than to the stationary segment (Hubbard, 1998). In other words, the DWT is better suited to 

detect changing points than to quantify steady-state intensities. 

 

Figure 42: nonstationary signal (a) and its scalogram (b) 

6.2.2 Transient Component 

Shocks are short time high amplitude events in a signal, which can be seen as important signal 

variation. Therefore, the DWT is expected to have an inherent capacity to detect such events. 

This is the case for the stationary Gaussian signal (based on the same vehicle vibration spectrum 

with a constant 6 m/s² RMS level) superimposed with five shocks (Table 2 and Figure 43 a). As 

seen in the scalogram (Figure 43 b), scales seven and eight contain high amplitude coefficients 

when the shocks occur, excluding the first event which has a very short duration, hence not 

much energy (Table 2). This means that the shocks can be mainly expressed with coefficients of 

scale seven and eight (Figure 44). The envelope p, the magnitude of the analytic signal, of this 

reconstruction signal s7-8 also gives a good indication of the shocks’ position; 



 

Chapter 6: Time-Frequency Analysis  62 

 

 

    7 8 7 8     p s t iH s t  , (eq. 19) 

where  7 8  H s t  is the Hilbert transform of the reconstruction signal (see Appendix A.1 for 

more detail on Hilbert transform). 

 

Figure 43: a) signal superimposed with shocks (marked with blue X); b) its scalogram 

 

Figure 44: transients signal reconstruction using scales 7 and 8 of DWT coefficients 

These results show that DWT is relatively well suited to detected shocks buried in a stationary 

random signal. As the shocks have very short duration, detecting them is equivalent to finding 

changing points in the random signal which, as stated in the previous subsection, is a known 

application of the DWT. 



 

Chapter 6: Time-Frequency Analysis  63 

 

 

6.2.3 Harmonic Component 

The DWT performs very well in finding the 10 Hz sinusoidal waveform component (amplitude 

10 m/s
2
) superimposed from 5 s to 10 s on a stationary Gaussian signal (same signal used for the 

HHT assessment, Figure 45 a). The scalogram shows a high amplitude coefficient at scale 6 

when harmonic component is present. The reconstruction of the signal using only this scale also 

clearly shows the waveform (Figure 46) suggesting that the DWT is suited to detect harmonic 

component buried in random signal. 

 

Figure 45: a) signal with harmonic component, b) its scalogram 

 

Figure 46: harmonic signal reconstruction using scale 6 of DWT coefficients 
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6.2.4 Conclusion on Wavelet Transform 

The DWT is a well-established time-frequency (more specifically time-scale) analysis tool. Its 

application to RVV signals presents interesting features. The DWT using Daubechies 10 

wavelet has good detection sensitivity for transient and harmonic components. However, the 

performance at detecting the nonstationary segment is poor due to the sensitivity of the DWT to 

signal state changes which creates misperception between shocks and nonstationary segment 

changes. 

6.3 Conclusion on Time-Frequency Analysis Tools 

The performance of the HHT and the DWT to analyse a synthetic RVV signal was assessed in 

this chapter. Both transforms have specific benefits and limitations. The DWT has the 

advantage over the HHT of being a more established technique with a fully proven 

mathematical framework. Many researchers have worked on its development and applications. 

The HHT does not have yet the theoretical background of the DWT but has important potential 

due to its complete adaptability and its simplicity (few user defined parameters). 

On the test bench, the performance of the HHT was average. It detected the nonstationary 

components but lacked sensitivity for the shocks. The harmonic detection was good, but the 

frequency leakage between the IMFs (mode-mixing) did not allow frequency identification. The 

signal detection methods based on HHT (i.e. energy density/average period significance test and 

FRT) did not present sufficiently acceptable and reliable results due to the type of random signal 

created by the vehicle vibration spectrum. 

On the other hand, the DWT presented promising results in detecting transient and harmonic 

components, but the HHT was better at detecting the nonstationarity segments. This shows that 

the HHT and the DWT complement each other well for a complex mixed-mode signal analysis 

such as RVV signals. 
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 MACHINE LEARNING Chapter 7: 

As seen in the previous chapters, both time and time-frequency analysis tools studied have their 

specific benefits and limitations when applied to RVV signals. The moving statistics such as the 

moving RMS, kurtosis and crest factor cannot clearly distinguish the three modes present in 

RVV signals. The HHT can detect the nonstationary segments of the synthetic RVV signal, but 

it does not have enough sensitivity to detect the transient and harmonic components. On the 

other hand, the DWT performs well at the transient and harmonic detection, but it shows poor 

performance at detecting nonstationary segments. An approach to get the most out of the time 

and time-frequency tools is to combine their outcome to perform the predictions. The 

combination can be done using machine learning processing. With the correct training, some 

machine learning algorithms should be able to detect and index shocks in nonstationary RVV 

signal using all analysis tools together. To simplify this first attempt to use machine learning to 

index the different RVV modes, only the shocks and nonstationary components are assessed, as 

they are the preponderant modes in terms of product damage during road transport. The same 

process could be applied to detect the harmonic components, as the analysis tools used in the 

machine learning algorithms can also detect this type of component. However this is beyond the 

scope of the thesis. 

7.1 Machine Learning Overview 

Machine learning is a branch of Artificial Intelligence that involves teaching (or training) a 

computer program to solve a problem. Once the training process is completed, the program can 

solve similar problems to those used for learning, using the relationship that was learnt during 

training. For instance, a computer can learn to recognise a person’s face by analysing several 

pictures of that person. Once the training is done, the computer can recognise that person’s face 

in other pictures containing other people. This type of machine learning where the analysed data 

are divided into discrete classes is called “classification problem”. 

There is also a second type of machine learning practice known as “regression problem”. 

Instead of dividing a signal into discrete clusters or classes, regression algorithms find 
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relationships between the data variables. This is often used with time series, i.e. time dependant 

data. For instance, the electricity supply-demand of a city can be predicted using the time of the 

day, the date and the temperature forecast. 

The same workflow is used for both classification and regression (Figure 47). It starts with a 

learning dataset which is a set of data where the classes are known. For vehicle vibration, this is 

an acceleration signal where the locations of the shocks are known. This dataset is processed to 

reveal different data behaviours and characteristics in a format compatible with machine 

learning algorithms. This is where machine learning is different to other classification 

approaches because it can base its prediction on several different signal processing methods. For 

instance, it can combine shocks and nonstationary analysis techniques to distinguish transient 

events (shocks) from signal intensity variations (nonstationarity). Once the processing is 

completed, the data is randomly partitioned into two sets: the training set and the validation set. 

Both sets have the same proportion of classes. The training set is used to train the algorithm and 

develop the classifier. The trained classifier is then validated using the validation set. Other 

approaches can be used to validate the model if there is not enough data to divide into two sets, 

such as cross validation where all the data are used for both training and validation, however 

this is not necessary to analyse RVV signals when a synthetic dataset of any size can be used. 

The validation phase is useful to compare the performance of different algorithms. The best 

algorithm is then used to generalise the classification or regression model to a new set of 

dataset. 

 

Figure 47: machine learning workflow 

7.2 Predictors 

Machine learning prediction performance depends on the data processing undertaken before the 

training phase. This processing reveals different signal characteristics and statistics called 

predictors. In order to detect the components of RVV signal, the predictors come from the 

relevant analysis techniques discussed in the previous chapter such as the moving RMS, moving 

crest factor, moving kurtosis, Hilbert-Huang Transform (HHT) and Discrete Wavelet Transform 

(DWT). The integration of the predictors in the classification learning process is shown at 

Figure 48. 
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Figure 48: classification learning workflow for shocks detection 

7.2.1 Moving RMS 

The moving RMS can be used to characterise the nonstationary nature of RVV signals. The 

major shortcoming of this predictor is its dependency on its window duration, i.e. the segment 

length used to compute the RMS values. A shorter window is better to detect the short transient 

events, but is ineffective for long Gaussian changes and vice versa for a longer window. 

Therefore there is no ideal window size. Fortunately, machine learning classification has the 

capability to use multiple predictors. The moving RMS predictors are not limited to one window 

length, so two different window lengths (0.5 s and 4 s) are used. The shorter window is 

expected to be more responsive to shocks and the longer one to signal RMS variation 

(nonstationarities). 

As for the following moving statistics, the moving RMS functions are computed forward in post 

processing to take into account the response of the system (eq. 13). In other words, at one 

moment, the RMS values represent the signal intensity of the next window. The classifiers base 

their prediction using both RMS values (short and long windows) for given moment in the 

signal. The discrete values of the moving RMS functions are the predictors (sufficient statistics) 

for every sampled time. 

7.2.2 Moving Crest Factor 

In general, the moving crest factor of a signal increases with the presence of a shock. Therefore 

shocks can be detected when the crest factor is above a certain threshold. As opposed to the 

moving RMS predictor, the moving crest factor predictor is more accurate when using a longer 
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moving window. This is because a longer window averages out the effect of the shock at the 

crest factor’s denominator without affecting its numerator, which results in a greater sensitivity 

to shocks. However, windows of too long duration have been shown to misclassify short RMS 

variation as shocks. Based on Chapter 5, two crest factor predictors with window lengths of 8 s 

and 64 s are used to develop the machine learning classifiers. 

As for the moving RMS, the discrete values of the moving crest factor functions (eq. 16) are the 

predictors for every sampled time. 

7.2.3 Moving Kurtosis 

The moving kurtosis is the fourth moment of a signal. It gives a measure of the “peakedness” of 

the Probability Density Function (PDF) of a signal segment. Transient and nonstationarity 

components create leptokurtic distribution (kurtosis > 3). Depending on the window length, the 

moving kurtosis does not have the same sensitivity to signal RMS variations and shocks. By 

combining two window lengths (4 s and 8 s), the moving kurtosis functions could identify 

shocks within a nonstationary signal. The discrete values of both functions (eq. 14) are used 

machine learning predictors for every sampled time. 

7.2.4 Hilbert-Huang Transform Predictors 

The HHT is an adaptive time-frequency analysis method providing different types of predictors 

from RVV signals. The HHT divides the signal into different narrow-banded components called 

IMFs which provide information that can be useful for the classification. The IMFs are not 

directly used as predictors because their properties are not explicit and vary too much in time to 

give accurate statistics. Instead, the IMFs instantaneous amplitude and frequency functions are 

used as predictors. These functions vary slowly and reveal trend changes in the signal which 

makes them more efficient predictors. Figure 49 shows for example IMFs 1, 5 and 9 of a signal 

along with IMF 5’s instantaneous amplitude envelope and instantaneous frequency functions.  
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Figure 49: example of the synthetic signal (shocks are in yellow) and the HHT predictors: IMF number 1, 5 

and 9; instantaneous amplitude and frequency functions of IMF number 5 

As presented more in detail in Appendix C, oversampling signals have many advantages for 

shock analysis but Empirical Mode Decomposition (EMD) does not cope very well with it. 

Because there are very few high frequency components in RVV signals, the first IMFs (which 

are composed of the high frequency components) are difficult to compute using EMD. In this 

case, the EMD sifting process is not stable and cannot clearly isolate the signal’s modes which 

results in a substantial amount of leakage and mode drifting between the IMFs. Reducing the 

sampling frequency has been shown to minimise this effect by ensuring constant level of 

frequency content in the first IMF. Therefore, the EMD naturally acts as a filter bank and the 

frequency range of every IMF is steadier. Fewer sifting iterations are required to obtain narrow 

banded IMFs, which greatly improves the computing speed, especially when applied to large 

and mixed-mode signals such as RVV signals. The synthetic RVV signal is sampled at 1024 Hz 

and its spectral density is negligible after 50 Hz. Resampling the signal by a factor 10 creates a 

Nyquist frequency that is above 50 Hz which is sufficient to cover the signal’s spectrum. A low-

pass filter is applied prior to the decimation to avoid any aliasing (Chebyshev Type I IIR filter 

of order 8 with a cut-off at 50 Hz).  

The sampling frequency of the predictors issued from HHT is brought back to its original value 

to match the other predictors. A linear interpolation is used to resample the predictors.  
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7.2.5 Discrete Wavelet Transform 

The DWT is another time-frequency (or more specifically, time-scale) analysis method that 

provides predictors which are more sensitive to signal changes and can be useful for shocks 

detection. The DWT coefficients issued from the Daubechies 10 wavelet analysis are directly 

used as predictors. Figure 50 shows as an example the DWT predictors of four different scales 

of signal. 

 

Figure 50: example of the synthetic signal (shocks are in yellow) and DWT number 1, 5, 9 and 12 

During the DWT analysis, the signal sampling rate is halved for every scale. The number of 

scales is limited to 12, so the largest scale has a frequency range up to 0.25 Hz (for a sampling 

rate of 1024 Hz) which can be considered to be refined enough for RVV analysis purposes. This 

resampling also causes the number of coefficients to decrease at every scale. To create 

predictors with sampling rates that match the original signal and the other predictors, the 

coefficients are replicated to match the sampling rate of the signal as shown in Figure 51. 

Signal: x(t) = x(1) x(2) x(3) x(4) x(5) x(6) x(7) x(8) 

Coefficients scale 1: a1(n) = a1(1) a1(2) a1(3) a1(4) 

Predictor 1: p1(t) = a1(1) a1(1) a1(2) a1(2) a1(3) a1(3) a1(4) a1(4) 

Coefficients scale 2: a2(n) = a2(1) a2(2) 

Predictor 2:  p2(t) = a2(1) a2(1) a2(1) a2(1) a2(2) a2(2) a2(2) a2(2) 

Figure 51: example of the first two DWT predictors’ samples 

7.3 Classifiers Training 

The classifiers used in this chapter were trained using synthetic signals containing nonstationary 

and transient components only which are considered to be the two most important components 

for distribution packaging optimisation purposes. The same process can be applied to the 
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harmonic components which could be part of further studies on the topic once a good shock 

classifier model is fully developed.  

In machine learning, data is king. In general, the classifier prediction accuracy depends on the 

quantity of data used in its training. In the case of the detection of shocks in a RVV signal, it is 

unrealistic to gather significant amounts of data on real vehicles to train a classifier because that 

requires a survey of many kilometres of road profile to know exactly where the aberrations are 

and to drive a vehicle exactly on the surveyed path. It is more appropriate to use synthetic 

acceleration signals that mimic typical RVV as there are no length limitations and the signal 

components are accurately known a priori.  

To define the optimal training dataset size, the classifier training is performed using various 

signals of different duration (100 s to 10,000 s). These are created using the RVV signal 

synthetiser of Chapter 4 with equivalent nonstationary and transient properties (Figure 52). 

Every 100 s segment is composed of at least 15 stationary Gaussian segments of different 

intensity (distribution in Figure 12) and length randomly distributed (distribution in Figure 13).  

 

Figure 52: nonstationary signal synthesis: a) stationary Gaussian signal based on RVV spectrum; b) 

modulation function; c) nonstationary signal with Gaussian sections 

Theses 100 s nonstationary segments are superimposed on 10 randomly distributed vehicle 

shocks responses to different impulses of amplitude and duration ranging between 5 mm and 

40 mm and 0.5 s and 1.4 s, respectively (Figure 53 a). These impulses generate vehicle transient 

responses (i.e. shocks) with maximum absolute amplitudes ranging between 1.6 m/s
2
 and 

22 m/s
2
 (Figure 53 b).  
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Figure 53: transient signal synthesis: a) impulse function; b) vehicle shock responses; c) vehicle shock 

responses superimposed on a nonstationary signal 

The signal format is set to a single-precision floating point which uses 32 bits instead of 64 bits 

for the usual double-precision format. This increases the learning and fitting speed by removing 

the unnecessary precision of the signal. The process is also sped-up by reducing the sampling 

rate of the predictors by the factor of 64. The signals used for the training have a sampling 

frequency of 1024 Hz to ensure the peaks have a good resolution. The predictors are computed 

on these 1024 Hz signals to take advantage of this extra resolution. However there is no need to 

keep this resolution because the impulse functions are longer than 0.5 s. So the predictor 

sampling frequency is reduced to 16 Hz which according to Nyquist theorem is enough to 

analyse 0.5 s period components. To avoid aliasing, a low pass filter is applied before the 

predictor decimations (Chebyshev Type I IIR filter of order 5 with a cut-off at 8 Hz). 

The class identification needed for the classification (Figure 48) is defined using the input 

function shown in Figure 53 a). The class is “no-shock” or “−1” when the input function is zero 

and “shock” or “1” when it is not zero.  

7.4 Classifiers Validation 

The classifier validation is an essential step of machine learning; it assesses the detection 

accuracy. The validation dataset used to assess the classifiers lasts 500 s and has the same 

characteristics as the training dataset (e.g. nonlinear random vibration and shocks distribution, 

10 shocks per 100 s of signal). The position of the shocks is known and is used to assess the 

detection accuracy. 
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7.4.1 Detection Enhancement Algorithm 

The detections made by the selected classifiers are discrete and independent of the predictors’ 

order. In other words, the classification at one time is not affected by and does not affect the 

previous and future classifications. Therefore the causality of the shock responses is only 

considered in the predictor computations and not in the classification algorithms. This means 

that the transient detections can be scattered rather than continuous. For instance, the shock 

buried in the signal in Figure 54 between 48 s and 48.5 s is detected in two distinct segments. 

These incomplete detections decrease the classifier accuracy. 

 

Figure 54: typical discontinuous shock detection of example signal grouped in three continuous sequences 

(A, B and C) 

An algorithm was specially developed to enhance the continuity of the detections for RVV 

analysis and shock detection. The detection enhancement algorithm extends the detection 

sequences to ensure they have at least the same duration as the longest impulse function (i.e. 

1.4 s) which is the period of the first natural frequency of the vehicle shock response. This is 

more than the period of the natural frequency of the two degree of freedom vehicle model used 

to synthesise the signal. 

The algorithm is an iterative process described in Figure 55. It starts at the detection point with 

the maximum absolute value of the signal. It then creates a 1.4 s window starting 0.28 s before 

the absolute maximum. This places the absolute maximum at 20 % of the window length which 

approximately places the window at the beginning of the vehicle shock response. The algorithm 

considers all the data points in this window as a shock if at least 10 % of these data points were 

classified as shock by the classifier as shown in Figure 55 a and b. In this case the window 

points and the continuous detections adjacent to it are considered as a shock segment. This 10 % 

overlap criterion is based on an arbitrary value which only affects the classifier’s operating point 

threshold (see section 7.4.2). If the 10 % detection overlap criterion is negative, the window is 

classified as no-shock and the detection points made by the classifier are voided as shown at 

Figure 55 b and c. This concludes the first iteration. The algorithm continues this iterative 
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process by finding the next maximum absolute detection acceleration excluding the points from 

the segment created in the previous iterations. The windowing process is then performed and the 

10 % detection overlap criterion is applied using all the data points, including those from the 

previous iterations. 

 

Figure 55: detection enhancement of example signal; first iteration (a) and second iteration (b) of the 

extension algorithm and (c) final result 

7.4.2 Detection Accuracy 

Classifiers base their prediction on a sufficient statistic which is calculated from predictors. The 

sufficient statistic is compared to a threshold value to attribute a class to a data point. This can 

be seen as the probability that a data point belongs to one class over the other. For various 

reasons explained in section 8.1, the classification is not necessarily made when there is more 

than a 50 % chance that a data point is from a specific class; other probabilities or threshold 

values are often used. Changing this threshold changes the number of true-detections, 

misdetections and false-detections which can be assessed in terms of sensitivity and specificity.  

In this context, the sensitivity is defined as the proportion of shock data points in the signal that 

are correctly classified as such. Using this definition, the example signal’s sensitivity (Figure 

54) went from 45 % to 90 % through the enhancement process (Figure 55 c). For RVV signal 

analysis purposes however, this detection could be considered perfect (sensitivity equals 100 %) 

because the objective is to characterise the transient amplitude and occurrence. Therefore, the 

sensitivity is assessed in the thesis using a slightly different definition than usual. The transients 
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are considered as a sequence of data points instead of individual data points. The sensitivity 

definition becomes the number of true detection sequences over the total number of shocks, 

 
Number of True Detections

Sensitivity
Number of shocks

  , (eq. 20) 

where a detection has to overlap at least 75 % of the shock duration to be considerate true. As 

for the 10 % overlap criterion, this is an arbitrary value which only affects the classifier’s 

threshold value. 

As opposed to sensitivity, the specificity is the proportion of the signal without shock that is 

correctly classified as such. This represents the true negative rate of the classifier. The definition 

of the specificity is not modified and it is considered as the number of true nondetections data 

points over the number of data points without transients, 

 
Number of Nondetection Data Points

Specificity
Number of Data Points without shocks

 .  (eq. 21) 

The sensitivity and specificity are specific to an operating point, i.e. the threshold value used for 

the detection. Using a low detection threshold increases the sensitivity to the detriment of the 

specificity and vice versa. This relationship is represented by the Receiver Operating 

Characteristic (ROC) curve which displays the sensitivity as a function of the fall-out (i.e. 

probability of a false detection, or 1 – specificity,). The ROC curve always starts at the 

coordinates (0, 0) because when the detection threshold is maximal (i.e. very low detection 

sensitivity), there are no detections, thus there cannot be any true or false detections. It also 

always ends at the coordinates (1, 1) because when the detection threshold is reduced to a 

minimum (i.e. very high detection sensitivity), the whole signal is considered as a detection. 

Therefore all the shocks are necessarily detected which means the sensitivity equals one. This 

also implies that all the signal segments without shocks are falsely classified as shock which 

means the fall-out equals one. As the detection threshold is proportional to the amount of 

detection, the ROC curve is necessarily a monotonic function. However because of the 

enhancement algorithm used on shock detection, there could be some slight divergences to this 

property in some ROC curves presented the in thesis. 

To illustrate how the ROC curve works, three typical curves are presented in Figure 56. The 

ROC curve of the ideal classifier would be a vertical line that goes from 0 sensitivity to 1 and 

the ROC curve of a classifier only based on chance (guessing) would be the diagonal going 

from (0, 0) to (1, 1). For the typical classifier, the ROC curve sensitivity rises rapidly and then 

reaches a plateau. The curve is above the diagonal line which means the typical classifier does 

better than prediction based on chance. 
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Figure 56: typical ROC curves 

A simple method to assess and compare classifiers’ performance is to calculate the Area Under 

the ROC Curve (AUC) (Bradley, 1997, Ling et al., 2003). The ideal classifier has an AUC of 1 

and a classifier based on chance has an area of 0.5. This means that a classifier with an AUC 

above 0.5 has better prediction performance than chance. As pointed out by Fawcett (2004), the 

ROC curves are stochastic rather than deterministic. So without a measure of the variance, 

classifiers cannot be compared. Fawcett calculates the variance of every points of a ROC curve 

using several validation datasets. However to compare AUC values, it is more practical to 

calculate the variance directly from the AUC values calculated from different validation 

datasets. 

All the ROC curves have the same abscissa and ordinate ranges (both 0 to 1) which mean the 

AUC is equivalent to the average value. According to the central limit theorem, the distribution 

of the AUC values can therefore be considered Gaussian. Hence, the confidence interval of the 

AUC values is calculated as: 

 
 , 1

c.i.






 

n
t

n
  (eq. 22) 

where   and    are, respectively, the approximate mean and standard deviation of the AUC 

values calculated on validation datasets of the same size and composition, 
 , 1 n

t  is the 

Student’s t-distribution for a confidence level,  , and the number of validation datasets, n. 

Classifiers with a relative large standard deviation can indicate that a portion of their predictions 

are based on chance.  In this chapter, every AUC value is presented with its 95 % confidence 

interval calculated on 11 validation datasets composed of 50 shocks (500 s of duration).  
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7.5 Classifiers Evaluation and Selection 

An important number of machine learning classifiers have been developed and selecting the best 

classifier for a new application can be cumbersome. There is no standardised nomenclature in 

machine learning. Therefore, the same or very similar classifier algorithms have completely 

different names. Some algorithms are also empirically modified for specific application and are 

not necessarily optimised for others. Since 2006, Mathworks® regrouped and implemented the 

most common classifier algorithms in Matlab® 2015a Statistics and Machine Learning 

Toolbox.  

These classifiers are divided into seven groups: Discriminant Analysis, Naïve Bayes 

Classification, Ensemble, Decision Trees, Nearest Neighbours, Support Machine Support and 

Neural Network. These groups are briefly introduced here and for more information refer to 

Hastie et al. (2005), Rogers and Girolami (2011), Cherkassky and Mulier (2007), Shalev-

Shwartz and Ben-David (2014). 

The performance of the classifiers is assessed with four parameters: the AUC value which 

provide the prediction accuracy; the prediction speed which is the time required to analyse the 

validation dataset, memory requirement of the classifier and the minimum training dataset 

length needed to have maximal prediction accuracy. A basic optimisation is performed on the 

presented classifiers in order to identify those that are suitable for RVV analysis. In the next 

chapter, the parameters of the identified classifiers are refined to provide optimal shocks 

detection performance. 

7.5.1 Discriminant Analysis 

Discriminant Analysis is the most common classifier because of its simplicity. It uses a 

Gaussian distribution to predict the class of dataset. The learning phase consists of fitting a 

Gaussian function to every class for every predictor. To classify a new dataset, the algorithm 

minimises the misclassification error (or cost) using these functions. However, this type of 

algorithm is not compatible with RVV analysis because of its complexity, its number of 

predictors and, more importantly, its non-Gaussian nature of RVV, represented by high kurtosis 

values (see Chapter 4 and 5) causes the different vibration components. 

7.5.2 Naïve Bayes Classification 

Similar to the Discriminant Analysis, the Naïve Bayes Classification fits distribution functions 

on the learning dataset. The difference is that these functions do not need to be Gaussian. An 

important aspect is that every predictor must be independent. Handling non-Gaussian jointed 

distribution becomes rapidly overwhelming and the Naïve Bayes Classification algorithm 

cannot cope with this. This type of algorithm is therefore not suitable for RVV signal analysis. 
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This is because there are many redundancies between the predictors (e.g. two time-frequency 

methods are used, moving statistics are repeated with different window length) which makes the 

predictors highly dependent on each other. 

7.5.3 Decision Trees 

The Decision Tree is also a relatively simple algorithm to classify data. The classification is 

conducted with a cascade of statistical tests as shown in Figure 57. These tests consist of value 

comparisons. For instance, a test is true if the predictor value is greater than a certain threshold, 

otherwise it is false. Tests can sometimes have more than two outcomes and different paths can 

lead to the same final class. 

 

Figure 57: example of Decision Tree made up of 5 binary tests (splits) and 6 final outcomes (a-f) 

The first tests use the predictors that have the most discriminant power, i.e. that have the biggest 

impact on the classification. These tests are defined through an iterative process during the 

algorithm learning. The tree’s complexity is defined by its number of branch splits (or tests). 

For instance, a Decision Tree can be qualified as having a medium complexity if it uses the 

most relevant predictors as branch splits. More complex trees can be created by using the same 

predictors more than once. For instance in Figure 57, the predictor used for Test 2 can also be 

used on the right side of the tree at Test 4 and the thresholds used for both tests are not 

necessarily the same.  

A three spits Decision Tree shows the three predominant predictors of the training dataset which 

are the 9
th
 DWT coefficient, the instantaneous frequency of IMF 4 and the 8

th
 DWT coefficient 

(Figure 58). As the several predictors are computed on the training dataset, the complexity of 

the decision tree rapidly increases making is analysis difficult. 
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Figure 58: first three spits of Decision Tree detecting RVV shocks 

Depending on their complexity, Decision Trees generally have a medium predictive accuracy, a 

fast fitting and prediction speed, low memory usage and are easier to interpret. The optimum 

learning dataset size also depends on their complexity. As shown in Figure 59, a Decision Tree 

with 20 splits quickly reaches an AUC plateau between 0.79 and 0.81 for training datasets 

above 50 shocks. The more complex 82 splits Decision Tree does not clearly reach a plateau 

because its AUC value drops with a certain training dataset size. Its AUC values are also 

generally inferior to those of the 20 splits Decision Tree. This suggests that its extra splits only 

add more uncertainty to the classification and that a more compact Decision Tree has a more 

reliable prediction. Both trees perform fast classification and can analyse a 500 s signal in less 

than 0.05 s
ii
 and require between 20 KB to 60 KB of memory. According to this initial 

optimisation, the more appropriate Decision Tree classifier would have 20 splits and be trained 

from a 200 shocks training dataset (AUC of 0.80). 

                                                      
ii
 Using Windows 7 64 bit with Intel® Xeon® E5-1650, 6 cores, 12 threads, 3.80 GHz, processor and 

32 GB of RAM 
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Figure 59: decision Trees' performance as a function of the number of shocks in training dataset size 

(10 shocks per 100 s of signal; 95 % confidence interval 

7.5.4 k-Nearest Neighbours 

The k-Nearest Neighbours algorithm (kNN) groups the training dataset by class in as many 

spaces as there are predictors. It classifies new data points by grouping them to the most 

common class of their k nearest neighbours. In other words, the classification is made by 

association. If the majority of a data point’s nearest neighbours belong to one class, it is more 

likely that the point belongs to this class too. The accuracy of the classification depends on the 

number of nearest neighbours, k, used in the algorithm. A k value that is too small could lead to 

an over fitted model and an excessively large value could lead to an insensitive model which in 

both cases would provide inaccurate classification. 

For instance, the Figure 60 presents data points where 15 are squares, 5 are circles and the 

lozenge class is unknown. The lozenge’s first nearest neighbour is a square which means it 

would be classified as such by a 1NN classifier. However this particular square seems to be an 

outlier because it is at the bottom right corner of the figure when all the other squares are 

gathered at the upper left corner. This means the lozenge would be more likely misclassified by 

a 1NN classifier. When more than three nearest neighbours are included in the classifier 

algorithm, the lozenge’s predicted class changes to circle, which seems a more appropriate 

classification. However, because the number of circles in this example is limited to five 

occurrences, if the classifier uses more than 11 nearest neighbours any predictions would 
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necessary be squares and create systematic misclassification. It is therefore important to select 

an appropriate number of nearest neighbours that will give the more accurate classifications. 

 

 

Figure 60: kNN process, the lozenge is a new data point and the two classes of the training points are the 

square and circle numbered form the nearest neighbours to the farthest 

Another parameter that can change the kNN classifier’s accuracy is the types of distance used to 

find the nearest neighbours. The most common distance is the Euclidean distance or the 

straight-line between two points. It is mathematically defined as the square root of the squared 

difference of all n dimensions (predictors) between points x and y, 
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In the context of shock detection, 36 detectors are used. Therefore, the distance calculation is 

made in 36 dimensions. 

Another way to define the distance is to consider the data points as vectors and compute the 

collinearity between them. This is called the cosine distance, which is the angle between the 

inner product of two vectors (x, y) expressed as: 
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The kNN algorithms lose accuracy when the classes are not regrouped in well separated 

clusters, because there are no clear boundaries between them. One way to overcome this is to 

weight the contribution of the neighbours depending on their distance from the data points to be 

classified, such as, 
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Weight
Distance

  . (eq. 25) 

This weighting algorithm ensures that the closer neighbours have more influence on the 

classification than the farthest ones. 

The computation speed of kNN algorithms is considered medium to slow. It decreases with the 

number of predictors and the size of the training dataset because they are the reference used to 

classify new data points. For instance, the tested kNN algorithms can classify a 500 s RVV 

signal in around 16 s per 100 s of dataset used in the algorithm training
iii
. Therefore a kNN 

classifier training with a 1500 s signal (300 shocks) will take 240 s to analyse a 500 s signal. 

The memory required for the classifier can also be substantial because all of the training dataset 

has to be included in the algorithm. Fortunately, the memory requirement is not too important 

for this study in which only about 2.7 MB are required per 100 s of training dataset. 

There are three elements that define the kNN classifier accuracy: the number of nearest 

neighbours, the distance and the training dataset length. Figure 61 summarises this information 

by presenting the AUC of different kNN algorithms as a function of the number of shocks used 

in the training dataset. To keep the figure clear, the confidence intervals are not shown because 

they are similar at every point (ranging between 0.022 and 0.042). The 100NN classifiers 

provide slightly more accurate results than 10NN classifiers. This suggests that using only 

10 nearest neighbours may overfit the data. There is not significant accuracy difference between 

Euclidean and cosine classifiers at the same number of nearest neighbours. The weighting 

process does not significantly enhance the classification. 

As it is generally good practice to use the simplest model or algorithm, the 100NN Euclidean 

classifier would be the more appropriate kNN algorithm to detect shocks in RVV signals. This 

classifier reaches an AUC plateau at 0.84 with a training dataset of more than 300 shocks.  

                                                      
iii

 Ibidem ii 
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Figure 61: kNN classifiers' performance as a function of the number of shock in training dataset size 

(10 shocks per 100 s of signal; 95 % confidence interval) 

7.5.5 Ensemble 

Ensemble learning uses an ensemble of simpler classifiers to increase the classification 

performance. These simpler classifiers are for instance Classification Trees, kNN or 

Discriminant Analysis. Ensemble algorithms merge the outcome of an ensemble of classifiers of 

the same type to enhance their classification. The size of this ensemble goes from a few tens to 

many hundreds of classifiers. The ensemble size increases both the classification accuracy and 

processing time. When too large, an Ensemble algorithm can be overtrained and leads to an 

inaccurate prediction. As for the kNN, Ensemble models can be interpreted using the 

importance of every predictor on their outcomes. 

Different categories of algorithms are commonly used such as Subspace, Boosted and Bagged 

(Cherkassky and Mulier, 2007, Rogers and Girolami, 2011). Subspace algorithms are designed 

to work best with kNN algorithm. They basically divide the training dataset into different 

subspaces and applies a kNN classifier on each of them. The algorithm then classifies new data 

points with every kNN classifier and use the average prediction to define their class. The signal 

subspaces are randomly selected and may overlap each other. 

Bagged and Boosted algorithms use a combination of Trees on which they base their prediction. 

Bagged algorithm stands for “bootstrap aggregation”. It generates Decision Trees on different 
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random data samples. The classification is made by using the average response of each of these 

Decision Trees. Boosted algorithm is based on the same principle as the Bagged algorithm but it 

adds a weight to every Decision Tree prediction that minimises the mean-square error of the 

prediction. This algorithm also tends to generate shallower Decision Trees than the Bagged one 

and generally needs a larger ensemble. The Boosted algorithm works best with evenly 

distributed classes. A modification of the algorithm called RUSBoosted (Random 

UnderSampling) can be used for highly skewed data, i.e. where there are fewer occurrences of 

one class as is the case for the amount of shocks presented in the synthetic signal use for the 

learning. This modified version of the Boosted classifier ensures there are the same number of 

class occurrences in every data sample. 

The Subspace algorithms can be slower than the RUSBoosted and Bagged algorithms because 

they use an ensemble of slower classifiers (i.e. kNN). As for the kNN, the computing time 

increases with the length of the training dataset. For instance, a Subspace composed of an 

ensemble of 200 kNN classifiers can classify a 500 s signal in around 50 s per 100 s of dataset 

used to train the classifier
iv
. This is about only three times slower than a standard kNN classifier. 

The Bagged and RUSBoosted algorithms do not depend on the training dataset and can analyse 

the same 500 s signal in 20 s and 7.5 s, respectively, using an ensemble of 200 Decision Trees. 

The Ensemble classifiers have a more extensive memory requirement as their algorithm is 

composed of many simpler classifiers. The Subspace has the biggest requirement with 15 MB 

per 100 s of training dataset. This means that the 1000 shocks training dataset set (10,000 s) 

creates a 1.5 GB classifier. The Bagged classifier requires about half this amount, i.e. 87 MB 

per 100 s and the RUSBoosted requires much less, i.e. 1.5 MB for any training dataset sizes. 

The Subspace algorithm did not improve the kNN classification performance. Figure 62 shows 

that, for any training dataset the AUC values of the Subspace classifier are inferior to the kNN 

classifiers’ values presented in Figure 61. The Bagged and RUSBoosted algorithms slightly 

improve the Decision Trees’ performances. Their AUC values plateau respectively at 0.85 and 

0.83 compared to 0.81 for the best performing Decision Tree. The AUC plateau is reached 

around 50 shocks for the RUSBoosted classifier and around 300 shocks for the Bagged 

classifier.  

                                                      
iv
 Ibidem ii 
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Figure 62: Ensemble classifiers' performance in function of the number of shocks in training dataset size 

(10 shocks per 100 s; 95 % confidence interval) 

7.5.6 Support Vector Machine 

Support Vector Machine (SVM) algorithms are powerful classifiers that only work when the 

data have only two classes. So they can be used as shock detectors for instance. The mechanics 

of SVM is as follows; during the learning phase, the algorithm finds a hyperplane that maximise 

the distance between the two classes’ data points represented in all their dimensions 

(predictors). As for the kNN, there are 36 dimensions. This hyperplane is defined as: 
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 where  ,i iyx , for 1,...,i n  are, respectively, the predictors matrix and class vector of the n 

training data points and  'x x is the matrix predictors inner product. The parameters i
 are 

found by maximising the function: 
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constrained by 
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where C is a regulation parameter. 

The parameter b  is used to scale the Support Vector  ,s syx  such as only the first class exits in 

  1D x and only the second class exits in   1 D x : 

  
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b y y x x  . (eq. 29) 

Figure 63 shows the SVM process for a two dimension classification problem. The zone 

between −1 and 1 regroups the nonseparable data points. These points are classified using 

  0D x  as the boundary line. 

 

Figure 63: SVM process, 1 and 2 are nonseparable and 1 is also misclassified 

There are many cases where it is impossible to solve (eq. 26) in its direct form because no single 

hyperplane can separate the data classes. For example, the dataset shown in Figure 64 cannot be 

divided by a single hyperplane because the cluster of circles is surrounded by squares. 
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Figure 64: dataset that cannot be divided by a single hyperplane and cannot be classified with linear SVM 

This type of problem can be solved using nonlinear transformation by means of Kernel 

functions which transform the data into a space where the classes are more distinct. This process 

is done by replacing the inner product in the linear hyperplane definition by a nonlinear Kernel 

function such as: 
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The more common Kernel functions used on SVM space are polynomial functions of order d, 

    , ' ' 1  
d

G x x x x   (eq. 31) 

and the Gaussian functions also known as radial basic functions, 
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where 2  defines the function’s width. Figure 65 shows that widths greater than 48 give the 

best shock detection performance.  For more mathematical detail on SVM and Kernel functions 

development refer to Kinani and Oudadess (2010), Cherkassky and Mulier (2007). 
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Figure 65: Gaussian function’s width performance in function of the number of shock in training dataset 

size (10 shocks per 100 s; 95 % confidence interval) 

There are no direct physical relations known between the predictors used to analyse RVV 

signals which means there is no a priori preferred Kernel transform to detect shocks. As seen in 

Figure 66, linear (i.e. no Kernel transformation) and polynomial SVMs have poor detection 

performance. Their AUC values highly depend on the training dataset and drop below 0.5 at 

several training dataset size. This suggests that these classifiers are based on chance rather than 

on statistics. Conversely, the Gaussian SVM has high AUC values that quickly plateau when a 

training dataset of more than 300 shocks (1000 s) is used. 
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Figure 66: SVM classifiers' performance in function of the number of shock in training dataset size 

(10 shocks per 100 s; 95 % confidence interval) 

Classification speed and memory size of SVM classifiers depend on the boundary size between 

both classes. When a longer training dataset is used it is more likely to increase this boundary, 

but there is no direct linear relation. For example the Gaussian SVM trained with a 10 shocks 

dataset was able to classify a 300 s signal in 1.4 s while the Gaussian SVM trained with a 

300 shock dataset classified the same signal in 49 s
v
. The memory requirement varies from 

9 MB to 90 MB per 100 s of training dataset size, which is relatively low compared to the other 

classifier types. 

7.5.7 Neural Networks 

Neural Networks are a broadly used classifier that mimics how the brain works. This algorithm 

links the predictors (the inputs) to the classes (outputs) using multi-layered networks called 

hidden layers (Figure 67). The number of hidden layers required depends on the complexity of 

the classification problem. It can go from one to hundreds of layers. Neural networks are 

powerful algorithms with high accuracy but they require a large training dataset especially when 

an extensive number of hidden layers is used. This limits their usage for RVV analysis and 

transients detection. 

                                                      
v
 Ibidem ii 
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According to preliminary investigation, a 1000 shocks (10,000 s) training dataset was not 

sufficient to train Neural Networks with 1 to 10 hidden layers. None of the trained Neural 

Networks could accurately detect a single transient event. More complex Neural Network could 

probably be accurate but that would require a much larger training datasets and perhaps more 

hidden layers, which could imply several weeks of computation. These extensive computation 

requirements are probably caused by the large number of predictors used for the RVV analysis. 

The other classifiers aforementioned do not have these extensive requirements and provide more 

accurate outcomes. Therefore, the Neural Networks are left out of this assessment. 

 

Figure 67: Neural Network with 2 hidden layers and 2 classes (outputs) 

7.6 Classifiers Comparison 

The analysis of each classifier group shows that Decision Tree, kNN, ensemble and SVM 

classifiers are suitable to detect shocks buried in RVV signals. Based on the first assessment, the 

best classifiers of each group are: 20 splits Decision Tree; Euclidean 100NN with no weighting; 

Bagged and RUSboosted ensemble algorithm; and the Gaussian SVM (σ2
 = 48). Their detection 

performances are summarised in Table 3. 



 

Chapter 7: Machine Learning  91 

 

 

Table 3: best performing classifiers from each suitable classifier group, prediction time based on 500 s 

validation signal and the memory requirement is for the optimal training dataset size 

 Average 

AUC 

[ ] 

Prediction 

time
vi
 

[s] 

Optimal training 

dataset size 

[Number of shocks] 

Memory 

requirement 

[MB] 

20 splits Decision Tree 0.81 0.049 200 0.02 

Euclidean 100NN 0.84 243 300 8.1 

Bagged Ensemble 0.85 20 300 520 

RUSBoosted Ensemble 0.83 7.5 50 1.5 

Gaussian SVM (48) 0.83 49 300 3 

 

The 20 splits Decision Tree is the fastest classifier and needs the smallest amount of memory 

but it has one of the lowest AUC.  As none of the other classifiers have very extensive 

prediction time and memory requirement, these advantages are not necessarily important. 

The Euclidean 100NN has an above average AUC but it is the slowest classification speed. It 

can analyse a 500 s signal in 243 s which is about half the signal duration. This relatively slow 

computation speed would therefore have a significative effect on the analysis of very large 

signal database.  

The Bagged Ensemble has the highest AUC but requires the largest memory requirement 

(520 MB), which is insignificant for modern computers. 

The RUSBoosted Ensemble classifier requires the smallest training dataset. It has an average 

AUC, fast classification speed and low memory requirement. As opposed to the Bagged 

Ensemble, this small training dataset requirement could facilitate the RUSBoosted Ensemble 

classifier implementation on real RVV signals. 

The Gaussian SVM classifier has versatile performances, it has: an average AUC; a prediction 

time five times faster than the Euclidean classifier; an optimal training dataset slightly over the 

average. 

7.7 Conclusion on Machine Learning 

Machine learning algorithms produce powerful classifiers that can detect shocks buried in RVV 

signals. Their main advantage compared to more classical approaches is that they use more than 

one predictor to support their prediction. To detect shocks, the classifiers were trained using 
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36 predictors based on the best analysis methods introduced in the previous chapters. As a large 

training dataset is required to construct a machine learning algorithm, the learning and 

classification process can be time consuming. To reduce this time, the processing was optimised 

by reducing the sampling frequency of the predictor and the memory usage by using single-

precision instead of double-precision numbers. This allows the algorithms to be trained in less 

than two hours per classifier using a dataset composed of 1000 shocks buried in 50,000 s long
vii

 

signals.  

A detection enhancement algorithm was also developed to improve the classifiers’ detection 

accuracy based on the physical nature of the shocks input. This algorithm ensures that the 

detections last at least 1.4 s, which is the longest impulse function used in the synthetic RVV 

signals. Any detection shorter than 0.14 s (10% of the longest impulse) is also discarded as it is 

too short to represent realistic shocks. These values are based on the vehicle model presented at 

Chapter 4 and when applied in practice, they may be changed to match the dynamic 

characteristic of the vehicle in question. 

Four parameters were used to assess the classifier performance: the AUC, prediction speed, 

optimal training dataset length and memory requirement. The AUC is calculated on the ROC 

curve where the sensitivity (y-axis) is defined as the ratio between the number of detection 

segments that overlap at least 75 % of shock duration over the number of shocks (eq. 20) and 

the fall-out (x-axis) is defined from the specificity (eq. 21). 

Based on these parameters four out of the seven types of machine learning classification 

algorithms covered in this chapter were found suitable to analyse RVV signals: the Decision 

Tree, kNN, Ensemble and SVM. From those, the best classifiers were defined. The Bagged 

Ensemble was found to have the best average AUC (0.85) but it needs the largest training 

dataset (600 shocks) and memory requirement (520 MB). The 20 splits Decision Tree is by far 

the faster (0.049 s) but it has the lower AUC (0.81). The performances of the Euclidean 100NN, 

RUSBoosted and Gaussian SVM were similar and laid between the Bagged Ensemble and 

Decision Tree. 

There is no single classifier that really stands out from this assessment. The five best performing 

classifiers have similar merits and limitations. These classifiers need to be compared in detail 

before determining which one should be used to detect shocks in RVV signals. Prior to this, 

each classifier needs to be optimised to ensure it is compared at its full potential. 

                                                      
vii

 Ibidem ii 



93 

 

 ROAD VEHICLE VIBRATION CLASSIFIERS Chapter 8: 

Five classifiers were identified as well suited to detect shocks buried in RVV signals: Decision 

Tree, Euclidean 100NN, Bagged Ensemble, RUSBoosted Ensemble and Gaussian SVM. 

Preliminary assessment of their classification performances on RVV showed similar results and 

no algorithm clearly stood out. The classifiers have similar accuracy (AUC within 0.81 and 

0.85). The prediction speed of the Decision Tree is more than 150 times faster than any other 

classifiers, but this does not justify its selection because computing time is not a major issue in 

RVV analysis and the slowest classifier (Euclidean 100NN) performed reasonably quickly for a 

post-processing application. There are differences within training dataset requirements but this 

would only be a valid selection criterion if the classifiers were trained on in-situ dataset (i.e. real 

RVV measurement) where defining the real position of shocks could be difficult and time 

consuming. 

In order to select the best classifier, more specific tools need to be used to compare accuracy 

beyond the AUC value. Prior to this more comprehensive comparison, each classifier algorithm 

is optimised further using these new accuracy measurements as reference. This will ensure that 

more accurate RVV shock classifiers are identified. 

8.1 Classifier Accuracy 

The AUC value is a convenient accuracy measurand because it integrates the classifier 

sensitivity and specificity dependence in a single value (Bradley, 1997, Ling et al., 2003). 

However, this simplicity is also an important shortcoming because it could lead to false 

comparison (Powers, 2012). The potential risk of using AUC to assess accuracy comes from the 

ROC curve. This curve represents the classifier’s sensitivity as a function of its fall-out (i.e. the 

true detection rate as a function of the false detection rate). The AUC represents the area under 

this curve, which gives its global performance but neglects any local behaviour. For instance, 

two classifiers can have the same AUC but clearly different ROC shapes as shown in Figure 68. 

Classifier A has better sensitivity at low fall-out value but reaching 100 % detection rate results 

to a very high fall-out. On the other hand, classifier B has a poor sensitivity at low fall-out but 
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surpasses classifier A’s sensitivity for any fall-out value over 0.23. Classifier A is better for an 

application where low false detection rate is required and classifier B is better for an application 

where high detection rate is more important regardless of the false detection rate. 

 

Figure 68: ROC curve of two classifiers with same AUC values (0.80) 

8.1.1 Optimal Operation Point 

This leads to an important concept in detection theory, the Optimal Operation Point (OOP). 

Classifiers give the probability that a class exists. However, even if the probability is more than 

50 %, it does not necessarily mean than this class will be detected. For example, one could use a 

1 % fall-out classifier to detect a very rare genetic anomaly present in one in a billion persons, 

but this would be a very poor classifier choice. Within ten thousand samples, about one hundred 

will be found positive when it is very likely that none of them is a true positive because the 

likelihood of this anomaly is one over one billion. One could assume that 1 % fall-out is very 

good, but not if it is used to detect very unlikely events. The Bayesian theory and decision cost 

functions are used to overcome this important shortcoming by finding the optimal trade-off 

between the fall-out and the sensitivity for a specific classifier and application. This trade-off is 

known as the OOP. There are a number of different OOPs which can be found on the ROC 

curve using different criteria. 

8.1.1.1 Bayes’ Criterion 

The Bayes’ criterion finds the OOP of a classifier based on the a priori probability and the cost 

of each decision. For a binary detection, a classifier bases its predictions on two hypotheses (H0 

or H1). H0 is called the null hypothesis or the “no shock” class for RVV application and H1 is 

called the alternate hypothesis or “shock” class. The respective a priori probabilities of 
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occurrence of these hypotheses are P0 and P1. The binary case has four possible decision types 

which have their respective cost: 

1. decide H0 when H0 is true with a cost value of C00; 

2. decide H0 when H1 is true with a cost value of C01; 

3. decide H1 when H0 is true with a cost value of C10; 

4. decide H1 when H1 is true with a cost value of C11. 

From the cost values and the a priori probability, the OOP is where the ROC curve derivative 

equals to: 
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where the sensitivity is represented by the probability of detection, PD, and the fall-out by the 

probability of false alarm, PF. More information on the Bayes’ criterion and its development is 

presented in Appendix D. 

8.1.1.2 Minimax Criterion 

There is a fundamental shortcoming with the Bayes’ criterion that limits its usage on the RVV 

signal; the a priori probability of shocks is unknown. In the case of RVV, this probability 

cannot be estimated a priori because it depends on the road condition. By way of an example, 

some unexpected roadworks can significantly increase the likelihood of shocks on a road that 

should have normally been smooth. In such a case, the Minimax criterion can be used to define 

the OOP without using the hypothesis a priori probabilities. This point is where the derivative 

of the ROC curve equals to: 
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More information on the Minimax criterion and its development is presented in Appendix E. 

In many situations it is also difficult to evaluate the cost of missed and false detections. For 

instance, what would be the cost of missing a shock in RVV signal? Should this cost be higher 

than making a false shock detection? These questions are rhetorical because they depend on too 

many parameters and assumptions. One solution to this issue is to give the same cost for missed 

and false detections and to attribute no cost for correct detection. This approach is called the 

Maximum-Likelihood Estimator (MLE) where the OOP is defined as: 

 1D
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 . (eq. 35) 
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8.1.1.3 Neyman-Pearson Criterion 

The Neyman-Pearson criterion is another way to find the OOP without knowing the a priori 

probability and without attributing any decision cost. This criterion is fairly simple. It 

determines the OOP by fixing the fall-out to a certain level and using the point where the ROC 

curve crosses this level. Limiting the maximum level of false detection (fall-out) can be seen as 

fixing the significance level of the detection. For example for a 10 % significance level or fall-

out, the operation point on the ROC is where the fall-out equals 0.1. The selection of the 

significance level depends on what if found acceptable for a given application which is often 

based on an arbitrary selection. A 10% value was used for shock detection purposes as it results 

to a reasonable amount of false detections. As shocks do not need to be defined under ‘strong 

evidence’, the value is twice the significance level proposed by Parsons (2007) for critical 

analysis. 

8.1.2 OOP Selection 

The MLE and the Neyman-Pearson criteria can be used to compare the OOPs of the five 

selected classifiers from Chapter 7. Those criteria are based on the ROC curve which depends 

on the size of the validation dataset. For application on stationary processes, the size of the 

validation dataset varies generally within 10 % and 25 % of the size of the training dataset 

(Rogers and Girolami, 2011, Shalev-Shwartz and Ben-David, 2014). However, much bigger 

validation datasets are required for nonstationary processes in order to cover the variation of the 

signal’s statistical moments in time. For instance, the assessment of the detection performance 

of shocks buried in RVV signals must consider a large variety of shock amplitudes and random 

vibration intensities combinations which cannot be done using a short validation dataset. 

8.1.2.1 Validation Dataset Uncertainty 

The relative classifiers performance assessment of Chapter 7 was performed using a validation 

dataset composed of 500 shocks which is more than the optimal number of shocks required in a 

training dataset for all selected classifiers (within 50 and 300 shocks, Table 3). A large 

validation dataset was used to ensure an accurate validation without a priori knowledge of the 

learning dataset size requirement. This excessively large dataset could, however, induce 

unnecessary and extensive computing time. 

The dataset size can be optimised by computing the AUC value of the five selected classifiers 

for different validation dataset lengths (Figure 69). The stochasticity of these validation datasets 

means the AUC is a probabilistic value and has an inherent uncertainty. The AUC’s uncertainty 

is quantified by separating the validation datasets into five shocks segments (≈ 50 s). AUC 

values are computed for every segment. The overall AUC value and its confidence intervals are 

calculated using the n segments’ average, μ, and standard deviation,  : 
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where 
 , 1 n

t  is the Student’s t-distribution for a confidence level, .  

Figure 69 shows that the classifiers reach an AUC plateau when the validation dataset contains 

about 100 shocks which is approximately a third of the optimal training dataset used to train 

most classifiers. The confidence intervals show that it is possible to significantly distinguish the 

AUC value within some classifiers. 

 

Figure 69: AUC value as a function of the number of shocks buried in the validation dataset (10 shocks per 

100 s; 95 % confidence interval)  

Since a longer dataset is composed of more segments of 10 shocks (100 s), their uncertainty 

necessarily decreases with the validation dataset’s size up to an asymptotical minimum (Figure 

70). The presented classifiers tend towards the same minimal confidence interval range value at 

0.02 (± 0.01). This level of certainty is obtained for every classifier with a validation dataset of 

at least 350 shocks. 
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Figure 70: AUC 95 % confidence interval range as a function of the validation dataset’s size 

8.1.2.2 OOPs Comparison 

Two OOPs were calculated for the five selected classifiers using the MLE and the Neyman-

Pearson criteria on a 500 shocks dataset. These OOPs are presented in Figure 71, where the 

MLE OOPs are circled in red and the Neyman-Pearson OOPs are positioned where the ROC 

curves cross the 0.1 fall-out (dashed-line). 

 

Figure 71: ROC curves and OOP of the five selected classifiers 
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The OOPs’ coordinates (fall-out and sensitivity) and the AUC values from this validation 

dataset are presented in Table 4. These results lead to diverse conclusions on the classifiers’ 

performance. The slope of the Decision Tree ROC curve increases at a slower rate than the 

other ROC curves which gives it the lowest AUC value (0.81); the highest MLE OOP fall-out 

(0.22) and the lowest Neyman-Pearson sensitivity (0.45). In the other hand, this classifier has 

the highest MLE OOP sensitivity (0.79). 

The Euclidean 100NN, RUSBoosted Ensemble and Gaussian SVM all have the lowest MLE 

fall-out (0.17). Among these three, the Euclidean 100NN has the highest MLE and Neyman-

Pearson sensitivities (0.74 and 0.61 respectively) and AUC value (0.85) which makes it the best 

classifier of the group. The Bagged Ensemble has the best Neyman-Pearson OOP with a 

sensitivity of 0.65. It also has the highest AUC value (0.86). 

The 20 splits Decision Tree can be considered the best classifier for its optimal sensitivity, or, if 

a low fall-out value is required, the Bagged Ensemble would be the best classifier. At this point, 

there is no reason to why one classifier should be chosen over the others and more information 

is required to assess the classifiers prediction performance. 

Table 4: OOPs comparison within the MLE, Neyman-Pearson (set at 10 % fall-out) and AUC values for 

the five selected classifiers using a 500 shocks validation dataset 

 MLE Neyman-Pearson AUC 

 Sensitivity Fall-out Sensitivity 

20 splits Decision Tree 0.79 0.22 0.45 0.81 

Euclidean 100NN 0.74 0.17 0.61 0.85 

Bagged Ensemble 0.78 0.20 0.65 0.86 

RUSBoosted Ensemble 0.69 0.17 0.58 0.84 

Gaussian SVM 0.70 0.17 0.54 0.82 

8.1.3 Shock Amplitudes Distribution 

The ROC curve and OOP coordinates give a good indication of the true and false detection rates 

of the classifiers. However, they do not provide any insight into the quality of their detections. 

RVV simulation accuracy depends on the characteristics of each of its modes. As explained 

previously, once the shocks are detected in a RVV signal, they can be extracted and 

characterised independently. The other modes can then be characterised in the remaining signal 

without their parameters being affected by the shocks. 

The main parameter used to characterise shocks is the maximum absolute amplitude which 

defines the severity of the shocks. The classifiers’ detection quality can be assessed by 
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comparing the maximum absolute acceleration distributions for the shocks really present in the 

signal (called real shocks for simplicity’s sake) and the detections (true and false detections) 

using both the MLE and Neyman-Pearson criterion (Figure 72 left). These distributions 

represent the maximum absolute acceleration values of each shock superimposed on the signal 

(real distribution) and each shock detection (detection distribution). Comparing the real and the 

detected shock amplitude distributions gives more insight about the classifiers’ detection quality 

than the sensitivity and fall-out values because it indicates which shock intensities are more 

likely to be misclassified. The RMS value of the signal is indicated on the figure to give a 

relative indication of shock intensities. 

 

Figure 72: maximum absolute acceleration distributions for all the selected classifiers using MLE and 

Neyman-Pearson criteria (left) and Misdetection/Over-detection graph based on these 

distribution (right), σ50%, and σ95% are, respectively, the median and 95th percentile RMS value of 

the stationary Gaussian random segments composing the signal 

Maximum acceleration distributions give a complete representation of the detection accuracy. 

However, the shape of the distributions makes the analysis of the high acceleration region 

difficult. This is because the number of high amplitude shocks is too small in comparison to the 

total number of shocks and the discrepancies within the classifiers’ distribution cannot be easily 
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seen in that region. To ease the analysis, the error between the detection and the real 

distributions is presented on a Misdetection/Over-detection graph (Figure 72 right). This graph 

averages the difference between the number of detections and the real shocks distributed into 

five bins (acceleration ranges). When a bin has more detections than real shocks the Over-

detection rate is calculated by dividing the difference by the number of detection. On the 

opposite, when a bin has more shocks than detections, the Misdetection rate is calculated by 

dividing the difference by the number of real shocks. The lower the value is for both the Over-

detection and Misdetection rate, the better the classification is. 

The significance of the shock amplitude is relative to the intensity of the signal. As presented in 

Figure 73, shocks with maximum absolute amplitude inferior to four times the RMS value 

(standard deviation, σ, for zero mean signals) of the underlying random Gaussian signal are 

barely noticeable and have a little effect on RVV. As RVV are nonstationary signals, the 

intensity cannot be assessed with a single RMS value but it can be assessed with the distribution 

RMS value of the stationary Gaussian random segments composing the signal (in this case a 

Rayleigh distribution, as presented in Figure 12). So to visualise the relative importance of the 

shocks buried in RVV signal, the median, σ50%, and the 95
th
 percentile, σ95%, RMS values and 

four times their respective values, 4σ50% and 4σ95%, are presented on the shock amplitude 

distribution and Misdetection/Over-detection plots. 

 

Figure 73: shock maximum absolute significance relative to the underlying random Gaussian signal RMS 

value (σ) 

The maximum amplitude distributions of the MLE criterion have the same shape for all the 

classifiers, except for the Decision Tree, which has much higher values between 0 and 5 m/s
2
 

(≈ σ95%) (Figure 72 top). Up to 19 m/s
2
 (≈ 4σ95%), almost all the over-prediction rates are above 

0.5 which means that more than half of the detections below 19 m/s
2 

(≈ 4σ95%) are false. Above 

19 m/s
2 
(≈ 4σ95%), the MLE distributions are closer to the real distribution and the over-detection 
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rate is within 0 and 0.1 suggesting that the detections are more accurate for high amplitude 

shocks. 

The Neyman-Pearson criterion creates smaller discrepancies between the detections and the real 

distributions especially at low acceleration. Between 0 and 5 m/s
2 

(≈ σ95%), the shape of the 

distributions varies significantly between classifiers. The error of the distributions goes from an 

over-detection rate of 0.5 (Decision Tree) to a misdetection rate of 0.5 (RUSBoosted Ensemble). 

Similary to the MLE criterion, the 5 m/s
2
 to 19 m/s

2
 (≈ σ95% to ≈ 4σ95%) region is over 

represented but the over-detection rates are slightly lower than the MLE criterion, especially for 

the Gaussian SVM classifier. There are also some misdetections above 19 m/s
2
 (≈ 4σ95%) for the 

Decision Tree (over-detection rate of 0.4), RUSBoosted Ensemble and Gaussian SVM 

classifiers (both an over-detection rate of 0.3). The Euclidean and Bagged Ensemble have a 

perfect detection score in this acceleration region (≈ σ95% to ≈ 4σ95%). In the RVV analysis 

context, the latter misdetections predominantly affect the detection quality. This suggests that 

the Euclidean 100NN and Bagged Ensemble classifiers detect the more important shocks more 

accurately (highest maximum amplitude) when used with the Neyman-Pearson criterion. 

8.1.4 Pseudo Energy Ratio/Fall-Out (PERFO) curve 

Comparison of the distribution of the maximum absolute accelerations of the real shocks and 

the detections reveals a lot of details on the classifiers’ accuracy and detection quality. However 

this is not a convenient approach as the distribution comparison is qualitative rather than 

quantitative. To improve this, the detections’ maximum absolute acceleration correctness can be 

reduced to a single number. 

Since the importance of detecting shocks increases with their amplitude, the classifiers’ 

accuracy and quality can be assessed as the ratio between the detection and the shocks’ 

maximum absolute acceleration pseudo energy, calculated as: 

 
 

 

2

2

Detections' Max Absolute Acceleration

Shocks' Max Absolute Acceleration




R  . (eq. 37) 

As for sensitivity, the pseudo energy ratio depends of the classifier’s detection threshold and 

directly affects the fall-out level. The relationship between the pseudo energy ratio and the fall-

out is presented in Figure 74. In contrast to the ROC curve, the Pseudo Energy Ratio/Fall-Out 

(PERFO) curve does not end at the coordinate (1, 1) and is not monotonic. This is because 

reducing the detection threshold increases the length of signal segments considered as shocks. 

As the segments become longer, they may include more than one shock. However, only the 

absolute acceleration of each segment is considered in the PERFO calculation, such that only 

the shock with the highest amplitude is assessed. Therefore, the larger the detection segments 
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become, the more shocks that are potentially left out of this analysis which explains why the 

pseudo energy ratio drops after a certain point. From Figure 74, it can be seen that this drop 

appears for fall-out from between 0.3 and 0.5 depending on the classifier. As the classifiers 

operate under this fall-out level, it does not affect the current analysis. 

 

Figure 74: PERFO curve for the selected classifiers 

The detection quality can be assessed by observing where the PERFO curve has a pseudo 

energy ratio of one which represents the operation point where the pseudo energy of the 

detection and the actual shocks in the signal are equal. Since the pseudo energy is calculated 

from the square of the maximum absolute amplitude, the lower the fall-out value is at this point, 

the fewer high amplitude false detections that are present in the classification. Hence, the 

PERFO curve measures how accurately the correct amount of pseudo shock energy is detected 

in a signal.  

8.1.5 PERFO Criterion 

As seen on the enlargement of the PERFO curve in Figure 75, there is not necessary an exact 

discrete point on the curve that corresponds to a pseudo energy ratio of one, because the curve is 

calculated from a finite number of possible classification threshold values. The PERFO curve is 
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therefore linearly interpolated to find the fall-out value that corresponds to a pseudo energy ratio 

of one. This point can then be used as a new criterion to define the classifiers’ OOP which will 

be called the PERFO criterion. The fall-out value for each classifier at this new OOP is given in 

Table 5. 

 

Figure 75: enlargement of PERFO curve presented at Figure 74, where the dots correspond to the discrete 

PERFO values 

Table 5: OOPs comparison within PERFO criterion and the “classical criteria” presented in Table 4 (i.e. 

the MLE and Neyman-Pearson) for the selected classifiers using a 500 shocks validation dataset 

 

PERFO MLE Neyman-Pearson 

Fall-out Sensitivity Fall-out Sensitivity 

20 splits Decision Tree 0.08 0.79 0.22 0.45 

Euclidean 100NN 0.03 0.74 0.17 0.61 

Bagged Ensemble 0.04 0.78 0.20 0.65 

RUSBoosted Ensemble 0.08 0.69 0.17 0.58 

Gaussian SVM 0.07 0.70 0.17 0.54 

 

The PERFO criterion effectively defines OOPs for shocks detection application compared to the 

classical criteria (i.e. MLE and Neyman-Pearson). The maximum absolute acceleration 
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amplitudes’ distributions of the detections using the PERFO criterion are close to the real 

shocks (Figure 76). For most shock amplitudes, there are small discrepancies within the 

distributions at high amplitude compared with the other criteria. 

The 20 splits Decision Tree and the RUSBoosted ensemble have the highest PERFO criterion 

fall-out values (0.08). It has a maximum misdetection rate of 0.15 for shocks below 8 m/s
2
 

(≈ σ50%) and a maximum over-detection rate of 0.37 within 8 m/s
2
 and 19 m/s

2 
(≈ σ50% and 

≈ 4σ95%). However, it missed 40 % of the shocks above 19 m/s
2 
(4σ95%), which is where the most 

important shocks are. 

 

Figure 76: maximum absolute acceleration distributions for all the selected classifiers using the PERFO 

criterion (left) and Misdetection/Over-detection graph based on these distributions (right), σ50%, 

and σ95% are, respectively, the median and 95th percentile RMS value of the stationary Gaussian 

random segments composing the signal 

The Euclidean 100NN is the classifier with the lowest PERFO criterion fall-out and its low fall-

out value (0.03) suggests it also has an accurate maximum amplitude distribution, especially 

above 5 m/s
2 

(≈ σ95%). It has a high misdetection rate (0.84) below 5 m/s
2
 (≈ σ95%), but this zone 

is the least important for RVV shocks analysis. Where it is most important (i.e. above 19 m/s
2
, 

≈ σ95%), over-detection rate is null.  

The Bagged Ensemble has a better Misdetection/Over-detection curve than the Euclidean 

100NN even if its PERFO criterion fall-out is slightly higher (0.04). Misdetection and over-

detection rates are lower than the Euclidean 100NN at every point. Its misdetection rate below 

5 m/s
2
 (≈ σ95%) is 0.58 and its maximum over-detection rate is 0.22 within 13 m/s

2
 and 19 m/s

2
 

(≈ 3σ95% and ≈ 4σ95%). 
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The RUSBoosted Ensemble has the worst performance for almost all acceleration bands. It has 

a misdetection rate of 0.95 below 5 m/s
2 

(≈ σ95%) and then reaches a maximum over-detection 

rate of 0.48 within 8 m/s
2
 and 13 m/s

2 
(≈ 4σ50% and ≈ 3σ95%). It also missed 40 % of the shocks 

above 19 m/s
2 
(≈ 4σ95%). 

The Gaussian SVM has a different pattern than the other classifiers. It mostly over-detects 

shocks below 13 m/s
2
 (≈ 3σ95%), and then misdetects them above this level. Its maximum 

misdetection rate (0.5) occurs above 19 m/s
s
 (≈ 4σ95%) which is a major shortcoming for the 

RVV application. 

8.1.5.1 PERFO Uncertainty 

As for the ROC curve, the variance of a PERFO curve depends on the length of the validation 

dataset used for its computation. The longer the validation dataset is, the more shocks it 

includes, which means the classifier decisions based on chance are averaged out and the PERFO 

curve is closer to its real values. This implies that the validation dataset size also affects the 

PERFO OOP and the fall-out value associated with it. The PERFO criterion fall-out value as a 

function of the number of shocks buried in the validation dataset is shown in Figure 77. As for 

the AUC, the confidence intervals are calculated using (eq. 36) and dataset segments of five 

shocks. These confidence intervals are relatively small and allow the discrimination of most 

classifiers’ fall-out value. Only the RUSBoosted Ensemble can be confounded with the 20 splits 

Decision Tree and the Gaussian SVM. 
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Figure 77: PERFO criterion fall-out value as a function of the number of shocks buried in the validation 

dataset (10 shocks per 100 s, 95 % confidence interval) 

As expected, the uncertainty decreases as a function of the number of shocks included in the 

validation dataset. This relationship is shown at Figure 78. Above 350 shocks, the reduction in 

the confidence interval is very minimal excepted for the RUSBoosted Ensemble, which benefits 

from longer validation dataset. However, even with this extra precision, this classifier has the 

highest uncertainty. It appears that 350 shocks is an adequate validation dataset size as the 

difference between the other classifier at this point is more settled which suggests that these 

classifiers reach a ‘steady state’. 

 

Figure 78: PERFO criterion fall-out 95 % confidence interval range as a function of the validation dataset 

size (10 shocks per 100 s) 
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8.1.5.2 Threshold Uncertainty 

The PERFO criterion calibrates the classifiers’ OOP and provides a detection threshold that 

gives the same pseudo energy level as those of the real shocks buried in the signal. By 

definition, this calibration is made by finding the detection threshold that corresponds to the 

pseudo energy ratio of one on the PERFO curve. As the PERFO curve is based on a stochastic 

dataset, it is important to analyse the effect of the PERFO criterion variability on the detection 

threshold. But first, the different definitions of the threshold have to be addressed. 

The Decision Tree, kNN and Bagged Ensemble classifiers use the posteriori probability to make 

their predictions. This value goes from zero to one and, for perfectly calibrated classifiers, a 

class should be predicted when its posteriori probability is above 0.5. However, this is generally 

not the case and the decision threshold has to be calibrated to fit the application. 

The RUSBoosted Ensemble classifier is slightly different because its predictions are based on a 

weighted vote on the hypothesis tests made from its ensemble of decision trees (Seiffert et al., 

2008). Hence, its vote values are not constrained to values between 0 and 1 and can be within 0 

and ∞. For the RUSBoosted Ensemble used in this chapter the vote values vary from 1.8 to 3.8. 

The higher the vote value is, more likely the class exists. As there is no direct probability 

attached to the vote value, this type of classifier does not have a default threshold and has to be 

calibrated. 

The SVM classifiers base their prediction on the distance from the Support Vector, which is 

scaled in such a way that there are only first class samples at a distance greater than 1 and only 

second class samples at a distance less than −1. The zone within 1 and −1 is composed of both 

classes. For a perfectly calibrated classifier, the boundary line (Support Vector) defines where 

both classes have the same likelihood. The threshold calibration defines the distance from the 

Support Vector that should be used to make the classification decisions. This threshold value is 

theoretically within −1 and 1. 

In order to compare the variability of these three different types of decision threshold, their 

uncertainty is normalised by their range R such as: 

 
 , 1





n

U t
R n

  (eq. 38) 

where 
 , 1 n

t  is the Student’s t-distribution for a confidence interval,  ;    is the standard 

deviation and; n is the number of 10 shocks segments in the validation dataset. 

This uncertainty decreases and becomes an asymptotical value as the validation dataset’s size 

increase (Figure 79). The 20 splits Decision Tree reaches this asymptote within less than 
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150 shocks. The other classifiers need a longer validation dataset to reach it (around 400 to 

450 shocks) which is more than the confidence interval plateau of the PERFO criterion fall-out. 

This means that a very long validation dataset is necessary to obtain the best estimate of the real 

optimal detection threshold. This could be caused by the linear interpolation in the OOP 

calculation. 

The 20 splits Decision Tree, Bagged Ensemble and RUSBoosted Ensemble classifiers have a 

very small uncertainty on the threshold value which is less than 2.5 % of their range. The 

Gaussian SVM and Euclidean 100NN have slightly more uncertainty with respectively 5.7 % 

and 6.7 % of their range. All the classifiers have less than 10 % uncertainty of their range when 

using a dataset of at least 150 shocks.  

 

Figure 79: normalised uncertainty on the detection threshold defined with the PERFO as a function of the 

validation dataset size (10 shocks per 100 s, 95 % confidence interval) 

8.2 Classifier Optimisation 

The PERFO criterion fall-out can be used to optimise the classifiers because it is a single value 

which accurately assesses shock detections performance in RVV signals. Each classifier has 

different parameters which can be adjusted to improve detections. These parameters were 

reviewed in Chapter 7 and preliminary adjustments were made to assess the potential of each 

classifier. These adjustments are refined and optimised again using PERFO criterion fall-out to 

produce the best detection performances. The training and validation datasets used for the 

optimisation have 300 and 350 shocks respectively (10 shocks per 100 s). These datasets 
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provide a good trade-off between accuracy and processing time, which is essential in this 

iterative optimisation process. It is assumed that the optimised parameters should not affect the 

PERFO criterion uncertainty for each classifier. The fall-out values are therefore presented with 

the 350 shocks confidence interval range of their respective classifier type (Figure 78). 

8.2.1 Decision Tree 

Decision Tree algorithms are controlled by one main parameter: the number of splits or 

decisions. Figure 80 shows the PERFO criterion fall-out for Decision Trees with up to 82 splits 

(maximum number of splits created by the algorithm for this learning process). The fall-out 

value rapidly drops at three splits to a fall-out of 0.07. This means that based on only the first 

three decision tests (splits), the equivalent of pseudo shocks energy can be detected with a fall-

out of only 7 %. 

Adding more splits only slightly refines the detection accuracy. The minimum fall-out (0.05) is 

obtained at 25 splits, but considering the uncertainty, any number of splits between 22 and 29 

can be considered optimal. Above 29 splits, the Decision Tree’s performance worsens and the 

fall-out significantly increases to up to 0.22. This suggests that the 30
th
 and above splits of the 

tree overfit the training data and deteriorate the classifier’s predictions. 

Interestingly, the PERFO criterion fall-out has far less variability than the AUC. As presented in 

section 7.5.3, the uncertainty associate with AUC values of the 20 and 80 splits Decision Trees 

is so important that cannot their AUC cannot be distinguished (Figure 59). The difference 

between AUC is smaller than their confidence interval range which makes this difference 

insignificant. The PERFO criterion gives more discriminating power as the difference between 

the 20 and 80 splits Decision Trees’ PERFO fall-out is more than 15 times bigger than the 

confidence interval bound. This means the number of splits affects high amplitude detections 

the most as it has a greater effect on the PERFO curve compared to the ROC curve. 
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Figure 80: fall-out at an energy ratio of one as a function of the number of Decision Tree splits 

8.2.2 k-Nearest Neighbours 

There are two parameters that define the kNN classifiers: the number of nearest neighbours, k, 

and the type of distance used to compare the new samples. As seen in Figure 81, both the 

Euclidean and Cosine distance have a similar fall-out value as a function of the number of 

nearest neighbours which corroborate the conclusion of section 7.5.4 where the AUC values as 

a function of the training dataset’s size of both distances followed the same trend. Therefore, 

there are no benefits in using the cosine distance instead of the more common and simpler 

straight-line defined by the Euclidean distance. 

The fall-out value quickly stabilises at 0.04 above 20 nearest neighbours which suggests that 

within the uncertainty any kNN classifiers greater than 20 provide maximal detection accuracy. 

The 100NN used in the previous section was therefore already optimal.  
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Figure 81: fall-out at an energy ratio of one as a function of the number of nearest neighbours for the 

Euclidean and Cosine distances 

8.2.3 Ensemble 

The Ensemble algorithms use several classifiers trained from different segments of the signal to 

detect shocks. The classification accuracy increases as a function of the number of classifiers. 

The optimal number of classifiers is obtained at the point where increasing the ensemble does 

not improve the performance. 

For shock detection applications, the optimal number of classifiers is relatively small (Figure 

82). The Bagged Ensemble slightly improves by using 10 to 150 classifiers. Its PERFO criterion 

fall-out value decreases from 0.05 to 0.04. Afterwards, the fall-out is almost unaffected by the 

number of classifiers. The Bagged Ensemble is composed of Decision Trees, which have a 

minimal fall-out of 0.05 when used in its direct form. So the combination of the predictions of 

more than 150 Decision Trees improves the prediction of a single Decision Tree. 
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Figure 82: fall-out at an energy ratio of one as a function of the number of ensembles used with the Bagged 

and RUSBoosted Ensemble classifiers 

The effect of the number of classifiers used in RUSBoosted Ensemble is insignificant as it 

smaller than the confidence interval of its PERFO criterion fall-out (Figure 82). This means that 

increasing the RUSBoosted Ensemble’s size does not significantly improve its shock detection 

performance. Being also composed of Decision Trees, this ensemble algorithm even exacerbates 

the detection of its subcomponent with an average fall-out of 0.06 considering that the Decision 

Tree has a minimum of 0.05. The RUSBoosted Ensemble should therefore not be considered as 

a viable RVV signals classifier. 

8.2.4 SVM 

As shown in section 7.5.6, from the Kernel tested functions, only the Gaussian functions 

provide accurate SVM classifiers. These functions are controlled by one parameter known as the 

Gaussian coefficient, or function’s width. The preliminary optimisation in this section shows 

that the AUC value tends to a maximum at a Gaussian coefficient above 48.  

However, as seen in Figure 83, the PERFO criterion fall-out shows a different trend. The fall-

out rapidly decreases at a Gaussian coefficient above 25. From 100, the fall-out stabilises 

around 0.03 up to a Gaussian coefficient of 1150, where it starts to increase.  

The discrepancy between the AUC and PERFO criterion optimisations can be explained by 

better detections of high amplitude shocks with a Gaussian coefficient within 48 and 100 which 

has a greater impact on the PERFO curve than the ROC curve. 
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Figure 83: fall-out at an energy ratio of one in function of SVM Gaussian coefficient 

8.2.5 Optimal Classifiers 

A summary of optimised parameters of the best performing classifiers is presented in Table 6. 

There is an improvement in the PERFO criterion fall-out for the Decision Tree and the Gaussian 

SVM. The optimised Euclidean kNN’s fall-out value is slightly higher than the value presented 

in Table 4; this is caused by the calculation’s uncertainty. Considering this uncertainty, there are 

now almost no significant differences within the optimised classifiers’ fall-out value.  

Table 6: best performing classifiers after optimisation 

Classifier 
Optimisation PERFO criterion 

Parameter Value Fall-out 

Decision Tree Number of splits 22-29 0.05 

Euclidean 20NN Number of NN > 20 0.04 

Bagged Ensemble Number of classifiers > 150 0.04 

Gaussian SVM Gaussian coefficient 100-1150 0.03 

 

Optimised classifiers can be compared using their maximum absolute acceleration distribution 

and Misdetection/Over-detection graph (Figure 84). For the purpose of this comparison, the 

minimum optimisation parameter was used, which in most cases gives the simplest classifier. 

The optimised classifiers have distributions that are different to those of the classifiers evaluated 

before. The detections are much more precise at high acceleration shock amplitude. Above 

19 m/s
2
 (≈ 4σ95%), all the classifiers have a maximum over-detection rate below 0.37 and the 

maximum misdetection rate below 0.25. The drawback is that they missed most of the shocks 
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below 7 m/s
2
 (≈ 4σ50%) where the misdetection rates are within 0.67 and 0.93. This shows that 

the optimisation is very specific to the shocks detection application.  

 

Figure 84: maximum absolute acceleration distributions for the optimised classifiers using the minimum 

optimisation parameters (left) and Misdetection/Over-detection graph based on these 

distributions (right) 

It is, once again, difficult to compare the performance of the optimised classifiers because their 

performances are similar. The Decision Tree misdetected shocks in every acceleration 

bandwidth, which suggests it did not obtain a pseudo energy ratio of one. This can be explained 

by the interpolation in the PERFO criterion process. Because the Decision Tree classifier uses a 

limited number of threshold values, there is not necessarily an actual threshold value that gives 

a pseudo energy ratio of one (Figure 75). Therefore, the threshold value interpolated from the 

PERFO criterion does not provide the correct energy ratio. The other classifiers do not have this 

issue because they have a sufficient number of threshold values. 

The 20NN classifier only over-detected (ratio of 0.2) the shocks above 25 m/s
2
 (≈ 5σ95%), which 

means it would provide the most severe shock representation. The Bagged Ensemble provides 

the least severe detections, with a maximum over-detection rate of 0.3 m/s
2
 at 19 m/s

2
 (≈ 4σ95%), 

and a perfect score above 25 m/s
2 
(≈ 5σ95%). The Gaussian SVM has a worse Misdetection/Over-

detection curve than the Bagged classifier at every bandwidth, so even if its PERFO criterion 

fall-out value is inferior to any other classifiers, its performance based on the shock distribution 

suggests that it is not the best classifier for shock detection. 

8.3 Conclusion on Classifiers 

This chapter presented the different criteria used to find the OOP of classifiers, which give the 

optimal detection sensitivity for a certain application. According to the maximum absolute 
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acceleration distribution of the detections, the conventional criteria, i.e. the MLE and Neyman-

Pearson criteria, produced classifiers that over-detect shocks, especially at low acceleration. 

Considering that the high acceleration shocks are more important to detect for a RVV analysis 

purpose, a new criterion was developed based on the pseudo energy of the detections and the 

real shocks. This criterion called PERFO gives more accurate detections than the conventional 

criteria. The maximum absolute acceleration distributions of the detections made with the 

PERFO criterion follow more closely the real shock distribution. 

Using the PERFO criterion, all the classifiers were optimised. It was found that the 

RUSBoosted Ensemble classifier does not improve the performances of its fundamental 

classifier (the Decision Tree). Having no improvement, the RUSBoosted Ensemble is therefore 

not considered as a potential shock classifier. From the remaining classifiers, the 20NN and 

Bagged Ensemble have the best detection performances.  

The optimised classifiers can detect relatively high amplitude shocks (> 4σ50%) buried in 

synthetic RVV signals with a high degree of accuracy and it is now important to evaluate how 

their detections perform on real RVV signals. An assessment of the classifier using acceleration 

signal measured on a vehicle travelling on different road will give a complete appreciation 

performance of machine algorithms at detecting shocks. 
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 MODEL VALIDATION Chapter 9: 

The previous chapters shown how machine learning classifiers can accurately detect shocks 

buried in synthetic Road Vehicle Vibration (RVV) signals. Using the pseudo energy ratio 

between the shocks and prediction (PERFO criterion), classifiers can be optimised to precisely 

detect the high amplitude shocks with low fall-out values. It is now important to assess how 

these classifiers perform on real RVV measurements. 

The minimum number of shocks required to perform supervised machine learning is substantial. 

As shown in Chapters 7 and 8, 300 shocks are needed for the classifier’s training plus a further 

350 shocks for the validation and calibration to be optimal. Therefore, to teach classifiers 

uniquely from real RVV signals, measurement must be performed on a vehicle passing over 

650 well identified shocks. Classifiers are specifically trained for a certain vehicle payloads. 

Therefore for real-live application, it is unrealistic to retrain the classifier with such 

cumbersome training datasets every time the vehicle payload changes. Long measurements can 

be made on road vehicles. However, it is much more complicated to survey long sections of 

roads in order to accurately identify the position of the shocks. 

To overcome this limitation, a learning method integrating both real and synthetic signals to 

train the classifier is postulated (Figure 85). This method requires two datasets of RVV 

measurements to be made on the same vehicle which are: (1) the training measurement dataset 

where the position of the shocks is not identified and (2) the validation measurement dataset 

where the position of the shocks is identified. The training measurement dataset has a long 

duration (3500 s) and is performed on open roads representing normal travelling routes. This 

measurement dataset is used to characterise the vehicle’s dynamics from which a synthetic 

signal is generated. The RVV synthetic signal is nonstationary and contains a sufficient number 

of shocks needed for optimal classifier training. This synthetic signal provides a training dataset 

specific to the vehicle payload. Once the classifier training is completed, the classifiers are 

validated using the validation measurement datasets. These measurement datasets are shorter 

than the training measurement dataset and are performed on road circuits where the position of 
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the shocks is identified. This validation is essential to calibrate the classifier’s threshold and to 

define the validity of the classification. The calibrated classifiers can then be used to identify 

shocks in other measurements made with the vehicle. 

 

Figure 85: learning flow chart to detect shocks buried in real RVV signal  

9.1 RVV Measurement 

All the measurement datasets required to train and validate shock classifiers were performed 

with the same small utility vehicle, Mitsubishi Triton (UTE). The vehicle has a kerb mass of 

1555 kg and can transport a maximum payload of 1165 kg. During the measurement, the only 

payload was the weight of two persons sitting in the cabin (≈ 150 kg). The vehicle has a front 

suspension composed of coil springs with telescopic dampers and a rear suspension composed 

of leaf springs and telescopic dampers. Its wheelbase and track width are 3 m and 1.5 m 

respectively. 

A Slam Stick X accelerometer (Midé Technology, USA) was fixed on the chassis of the vehicle 

near the left leaf spring rear mount. This is approximately 1.5 m away from the Centre of 

Gravity (CG) of the vehicle. As recommended by Long (2016), this position away from the 

centre of gravity reduces the effect of wheel-base filtering which can otherwise create anti-

resonance drops in the measured spectrum. The signal was sampled at 1024 Hz and the 

accelerometer has a range of ± 250 m/s
2
. Only the vertical acceleration was measured as this is 

the main axis affected by shocks. 
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Figure 86: position of the accelerometer on the vehicle rear end, drawing not to scale 

9.1.1 Training Measurement Dataset 

The objective of the training measurement dataset is to characterise the vehicle’s dynamics 

during normal operation. The measurement was performed on 52.8 km of public roads in the 

west of Melbourne, Australia (Figure 87), which represents a mix of typical Australian 

motorways, urban roads and country roads. The information on the vehicle speed and location 

was recorded with a GPS (Table 7). The measurement duration was close to one hour (3500 s). 

The vehicle had a mean speed of 55 km/h with a standard deviation of 29.8 km/h. It reached a 

maximum of 103 km/h. The experimenters occupying the vehicle manually attempted to count 

the shock occurrences during the acquisition. A shock was counted when both experimenters 

agreed that the vehicle encountered a shock. The number of manually-identified shocks during 

the measurement was 117. The overall RMS value of the vehicle vertical acceleration was 

1.6 m/s
2
. 

Table 7: summary of the measurement datasets 

Measurement 

 

Road Type 

 

Time 

[s] 

Speed [km/h] 
Distance 

[km] 

Number of 

shocks 

[ ] 

RMS 

[m/s
2
] 

Mean Standard 

deviation 

Max 

Training dataset Public road 3500 55.6 29.8 103 52.8 117 1.6 

Validation 

dataset 1 

Asphalt 

circuit 

680 38.7 8.5 67.1 7x1 42 1.5 

Validation 

dataset 2 

Off road 

circuit 

450 19.5 6.8 29 10x0.25 40 2.5 
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Figure 87: map of the training measurement dataset 

9.1.2 Validation Measurement Datasets 

The objective of the validation measurement datasets is to calibrate the classifier’s Optimal 

Operation Point (OOP) and to assess how reliably shocks are detected. Therefore, the location 

of the shocks encountered during the measurements needs to be clearly identified. To do so, the 

measurements were performed on closed circuits. As the classifier needs to function with 

varying RMS levels (nonstationary components), asphalted and off-road circuits were used. 

These circuits were located at Victoria University’s Werribee campus. 

The validation measurement dataset 1 was performed on a 1 km circuit of smooth asphalted 

road exempt from any shocks (Figure 88). Six steel plates were fixed on the road pavement to 

generate shocks when in contact with the left wheels of the vehicle (same side as the 

accelerometer). Shocks 2 and 5 were composed of a 10 mm high by 80 mm long steel plate 

which was considered as a small shock. Shocks 3 and 4 were composed of a 15 mm high by 

100 mm long steel plate which was considered as a medium shock. Shocks 1 and 6 were 

composed of a 20 mm high by 150 mm long steel plate which was considered as a big shock. 

The vehicle was driven around the asphalted circuit seven times for a total of 42 shocks (Table 

7). The measurement duration was 680 s. The shocks density (≈ 6.2 shocks per 100 s) is slightly 

inferior to the one used in the synthetic signal (10 shocks per 100 s). The vehicle had an average 

speed of 38.7 km/h (standard deviation and maximum of 8.5 and 67.1 km/h respectively). The 

RMS level of the vertical acceleration was 1.5 m/s
2
 which is similar to the value measured with 

the training measurement dataset. 
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Figure 88: map of the validation measurement datasets and the shock positions 

The validation measurement dataset 2 was performed on a 250 m off road circuit (Figure 88). 

The surface was composed of rough uneven gravel and rocks. Four artificial shocks where 

added to the circuit but there could have been other aberrations on the surface that may have 

generated unidentified shocks. For the first five laps, shocks 2 and 4 were composed of a 15 mm 

high by 80 mm long steel plate and for the remaining five laps they were replaced by a 48 mm 

high by 98 mm long lumber beam in order to increase the shocks amplitude. This change was 

made because these shocks were perceived by the experimenters during the measurement as not 

severe enough for shock detection purpose. Shocks 1 and 3 were composed of a 20 mm high by 

150 mm long steel plate through the 10 laps of the measurement. 

The vehicle went around the off-road circuit ten times (2.5 km) for a total of 40 shocks (Table 

7). The measurement duration was 450 s. The shocks density (≈ 8.9 shocks per 100 s) is close to 

the one used for the synthetic signal (10 shocks per 100 s). The vehicle had an average speed of 

19.5 km/h (standard deviation and maximum values of 6.8 km/h and 29 km/h respectively). The 

RMS level of the vertical acceleration was 2.5 m/s
2
, which is representative of the severity of 

the off-road circuit. 

9.2 Synthetic Training Signal 

It is impractical to perform supervised classifier learning on RVV measurement because the 

required number of perfectly identified shocks is too large. To overcome this issue, a synthetic 

RVV signal can be created using the vehicle’s dynamic characteristics identified from the 
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learning measurement dataset. The nonstationary component of the RVV signal was created 

using the vehicle’s vibration spectrum and the statistical distribution of the RMS whereas the 

transient component was created slightly differently using the Random Decrement signature of 

the vehicle (Figure 89). 

 

Figure 89: flow chart of the synthetic signal creation from the learning dataset 

9.2.1 Nonstationary Component 

The nonstationary component of RVV was modelled with a series of Gaussian signals of 

different RMS values. To represent a realistic spectrum, the Gaussian sequences were created 

from the average Power Density Spectrum (PDS) calculated on the training measurement 

dataset (Figure 90).  
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Figure 90: PDS (Δf = 0.2 Hz, Hanning window, 1405 averages) of the training measurement dataset (linear 

scale at the top and semi-log scales at the bottom) 

To create a Gaussian time signal with the same spectrum as the vehicle, the PDS was then 

scaled into an amplitude (acceleration) spectrum with a uniformly-distributed random phase. 

The frequency resolution of the spectrum was interpolated to match the desired time signal 

duration. Once interpolated, the spectrum was transformed to the time domain with the Inverse 

Fast Fourier Transform (IFFT).  

The RMS value of the resulting signal was then modulated in a random fashion to generate a 

nonstationary signal. The modulation levels were scaled to match the RMS level of the 

measurement, which was 1.6 m/s
2
. Samples of the training measurement dataset and the 

equivalent nonstationary signal are presented in Figure 91. More detail on how the synthesise 

RVV nonstationary signals are given in Chapter 4.  
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Figure 91: typical segment of the training measurement dataset and nonstationary synthetic signal 

9.2.2 Transient Component 

The RVV signal synthetiser presented in Chapter 4 generates shocks from the impulse response 

of the vehicle based on its FRF. However, the excitation input was unknown during in-situ RVV 

measurement, so the vehicle’s FRF cannot be calculated using conventional methods based on 

auto and cross-correlation functions. Therefore, an operational modal analysis approach had to 

be used. 

One proven method to estimate the impulse response of a road vehicle using in-situ 

measurement is the Random Decrement Signature (Ainalis, 2014, Milliken et al., 2001). The 

Random Decrement Signature is based on a convolution process but in contrast with the auto-

correlation function, it is not calculated on every time sample. Instead, the Random Decrement 

Signature uses a triggering condition to average the product of the auto-convolution such as: 

    
1

1




 
N

xx i w i

i

D x t x t
N

,  (eq. 39) 

where  ix t  is the part of the signal that meets the triggering condition and N is the number of 

averages. For instance, the triggering condition can be set on the zero-crossing where the 

Random Decrement Signature will be calculated every time the signal crosses zero. The 

triggering conditions can be alternatively set on a threshold value and on the signal slope 
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polarity. The advantage of the Random Decrement Signature over the auto-correlation function 

is that the function is scaled so it has a constant amplitude which is proportional to the impulse 

response of the vehicle. The signature’s scale can be adjusted with the trigger condition. 

The optimal parameters to estimate the impulse response of the vehicle using Random 

Decrement Signature were studied by Ainalis (2014). The trigger was set on zero-crossing with 

no specific slope polarity or minimal number of points between the averaging. The triggering 

condition provided around 30,000 averages on the training measurement dataset which provides 

an accurate impulse response estimation. A 2 s window was used for the signature length. The 

measurement dataset was filtered with a low-pass filter at 25 Hz (5
th
 order Butterworth) in order 

to estimate only the first two natural frequencies of the vehicle (as per the analytical FRF model 

used in Chapter 4). 

The Random Decrement Signature of the vehicle is presented in Figure 92. The 2 s window was 

sufficient to allow complete decay of the signature. The FFT of the signature gives a scaled 

estimation of the vehicle’s FRF (Figure 93). As seen in the figure, unsprung mass damping (first 

peak) is high compared to the sprung mass damping (second peak) which is unlike the FRF 

model used in Chapter 4. This is because the vehicle’s suspension is designed to have an 

optimal damping with a certain payload and the measurements were performed without any 

significant payload. This means that with a heavier payload, the natural frequency of the sprung 

mass would decrease and the damping of the suspension would be larger than the critical 

damping of the system resulting in a FRF closer to the model used in Chapter 4. Nevertheless, 

this technicality does not affect the machine learning process because the classifiers will be 

trained using this new vehicle model. 

 

Figure 92: Random Decrement Signature of the vehicle 
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Figure 93: acceleration spectrum of the Random Decrement Signature of the training measurement dataset 

To generate shocks, the Random Decrement Signature was convoluted with a sequence of 

randomly distributed half-sine shock (impulse) functions with the same characteristics (duration 

and amplitude) as those used for the classifiers’ training in Chapter 7. This convolution created 

a series of randomly scaled and randomly occurring impulse responses which was then 

superimposed onto the nonstationary signal (Figure 94). The position of the shock functions was 

used to index the shocks during the learning process. 



 

Chapter 9: Model validation  127 

 

 

 

Figure 94: typical segment of the training measurement dataset and synthetic training signal (nonstationary 

and shocks) 

9.3 Classifier Training 

Decision Tree, 20NN, Bagged Ensemble and SVM classifiers were trained with the synthetic 

training signal using their optimal parameters identified in Chapter 8. A signal composed of 

300 shocks (10 shocks per 100 s) was used for the classifiers’ learning and another signal with 

350 shocks was used to build PERFO curves and to calibrate the classifiers’ OOP. 

The synthetic training signal was processed into predictors presented in Section 7.2 (such as 

moving statistic, HHT and DWT). The learning process was sped up by setting the predictors’ 

format to a single-precision floating point (32 bits). Preliminary analysis shows that a factor of 

32 instead of 64 used in Section 7.3 gives a better shock detection sensitivity for these specific 

measurement datasets. This may be caused by the vehicle’s FRF. Since the sprung mass is more 

damped than the unsprung mass, the impulse response of the vehicle is dominated by the 

unsprung mass which has a natural frequency around 11 Hz which falls over the 8 Hz Nyquist 

frequency of the 64 times decimated dataset. The hypothesis is therefore that the sampling 

frequency of predictors must be at least twice the preponderant impulse response frequency. 

9.3.1 Synthetic Calibration 

Under ideal conditions, synthetic RVV signals would be sufficient to fully train, calibrate and 

validate the classifiers. However, as described in the next section this does not seem to be 

possible as the OOPs defined with this synthetic calibration were not sufficiently sensitive to 
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detect the real measurement shocks. The synthetic calibration approach is therefore presented to 

compare the classifiers’ learning with the previous learning performance made in Chapter 8 

from a generic vehicle model. 

The synthetic calibration provides ROC curves with slightly higher AUC values than the 

classifiers trained in Section 8.2.5 (Table 8). Considering the variability of the ROC curves, 

both learning approaches have similar performances.  

Table 8: classifiers’ performance comparison between the learning made in Section 8.2.5 (Generic) and 

the synthetic validation (Vehicle) 

Classifier 

 

AUC PERFO Fall-out 

Generic Vehicle Generic Vehicle 

Decision Tree 0.81 0.86 0.05 0.08 

Euclidean 20NN 0.84 0.86 0.04 0.17 

Bagged Ensemble 0.85 0.92 0.04 0.08 

Gaussian SVM 0.83 0.89 0.03 0.08 

 

The classifiers’ OOP was defined using the PERFO curves computed for the synthetic dataset 

(Table 8 and Figure 95). The Decision Tree, Bagged Ensemble and Gaussian SVM classifiers 

have similar PERFO fall-out values, around 0.08, which is about twice the values seen in 

Section 8.2.5. The 20NN classifier has a higher PERFO fall-out of 0.17, which is more than four 

times its corresponding value in Section 8.2.5. 
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Figure 95: PERFO curves of the synthetic validation dataset 

The interesting point is that even if the 20NN classifier has the highest PERFO fall-out, the 

distribution of its detections is the most accurate in most of the acceleration bandwidths (Figure 

96). For the highest bandwidth, only the Bagged Ensemble classifier has a lower error. 

Compared with the previous learning (Section 8.2.5), the classifiers have a lower misdetection 

rate across the acceleration range. 

 

Figure 96: maximum absolute acceleration distributions of the detections and shocks of the synthetic 

validation dataset (left) and Misdetection/Over-detection graph based on these distributions 

(right), σ50%, and σ95% are, respectively, the median and 95th percentile RMS value of the 

stationary Gaussian random segments composing the signal 
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9.4 Validation on Real Measurements 

Validation using a synthetic validation dataset gave an appreciation of how the classifiers were 

successfully trained but it did not give any insight into their application on real measurement 

datasets. This ultimate assessment can be performed using the same validation procedure 

presented in the previous section on the validation measurement datasets. 

One of the first observations from the validation measurement datasets application is that the 

OOP calibration with a synthetic dataset is inadequate. It appeared that the detection threshold 

defined from the synthetic dataset is not sensitive enough for real shock detection. Using this 

threshold, each classifier detected less than 10 shocks in all the validation measurement datasets 

(composed of more than 80 shocks). The classifiers needed to be recalibrated using the PERFO 

criterion on the validation measurement datasets. 

Before looking at the PERFO curves, it is important to look at the ROC curves to evaluate the 

actual sensitivity of the classifiers. The PERFO curve is a good tool to assess the detection 

algorithm’s maximum amplitude with respect to real shocks’ maximum amplitude. However, it 

does not indicate if the detections are true or false. For instance, a classifier could have a pseudo 

energy ratio of one just by guessing where the shocks are without using any significant 

statistics. This is where the ROC curves have an important role because they represent the 

relationship between the sensitivity and the fall-out which gives a good appreciation of the 

classifiers’ detection accuracy. 

To assess the detection accuracy, ROC curves were computed with the validation measurement 

dataset made on the asphalted circuit (Figure 97). This circuit has potentially fewer unidentified 

shocks than the off-road circuit so it provides more accurate ROC curves. These ROC curves 

lead to very interesting results. The detection of the Decision Tree, 20NN and Bagged Ensemble 

classifiers are not better than a classifier based on random guessing (chance). They have AUC 

values of 0.49, 0.43 and 0.53 respectively. Considering the AUC’s uncertainty calculated in 

Chapter 7, these values are equivalent to 0.5, which represents detecting shocks by guessing. 

Only the Gaussian SVM provides accurate detections with an AUC of 0.94, which is a 6 % 

increase from the synthetic validation. 
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Figure 97: ROC curves of the validation measurement dataset made on the asphalted circuit 

This is very interesting because all the classifiers have AUC values well over 0.5 when 

validated with a synthetic dataset. This means that learning from a synthetic dataset cannot be 

adapted for a real measurement dataset for the Decision Tree, 20NN and Bagged Ensemble 

classifiers; only the Gaussian SVM can manage this adaptation. This could be because the 

Gaussian SVM is the only nonlinear classifier in this evaluation. It is therefore possible that real 

shocks have behaviours that cannot be handled by linear classifiers. Thus, there is no need to 

assess the linear classifiers any further and only the Gaussian classifier is included for the 

remainder of the analysis. 

The Gaussian SVM’s PERFO curve was computed for both validation measurement datasets 

(Figure 98). The off-road curve reaches a pseudo energy ratio of one at a higher fall-out value 

(0.06) than the asphalted curve (0.05). This may be caused by the unidentified shocks present on 

the off-road circuit that could have been detected. The small difference between both values 

suggests that there may not be too many unidentified shocks and the off-road measurement 

dataset is reliable for validation purposes.  
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Figure 98: Gaussian SVM’s PERFO curve of the validation measurement datasets 

The OOP calculated from the PERFO criterion gives a detection threshold for the asphalted and 

off-road circuit of − 0.96 and − 0.87 respectively. The SVM represents shocks in the positive 

space and the “no-shocks” in the negative space, so the smaller the detection threshold is, the 

more shock sensitive the classifier is. In theory, scores under − 1 represent the space where the 

“no shock” events of the training dataset are separated from the shocks. The detection threshold 

being very close to this value suggests that the shocks buried in the synthetic dataset were too 

easily identifiable. In other words, the artificial shocks superimposed on the synthetic 

nonstationary signal were too severe. This also explains why the synthetic calibration was not 

sensitive enough to detect real shocks.  

The difference between threshold values from both circuits is not great enough to affect the 

detection distributions. For both validation measurement datasets, the maximum amplitude 

distribution remains the same using either detection thresholds (Figure 99 and Figure 100). 

There are almost no errors on the high amplitude shocks encountered on the asphalted circuit. 

This high amplitude accuracy was expected as this circuit has a smooth pavement which does 

not generate high amplitude vibration that could be misclassified as shocks. The same level of 

high amplitude detection accuracy is almost achieved on the off-road measurement where only 

one shock above 16 m/s
2
 is misdetected. The low amplitude detections on the asphalted circuit 

are also very good with a maximum misdetection rate of 0.25 in the low amplitude range.  
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Figure 99: maximum absolute acceleration distributions of the detections and shocks of the asphalted circuit 

validation measurement dataset (left) and Misdetection/Over-detection graph based on these 

distributions (right) 

As the off-road measurement inherently contains more background vibration, its low amplitude 

detections are less accurate than its asphalted counterpart. Nonetheless, detection is still within 

the range of the synthetic validations (Figure 100). The maximum misdetection rate is 0.6 at the 

lowest acceleration bandwidth and the maximum over-detection rate is 0.3 at the second 

bandwidth. Considering the relative importance of detecting high amplitude shocks, the 

Gaussian SVM classifier performs very well on real RVV measurements. 
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Figure 100: maximum absolute acceleration distributions of the detections and shocks of the off-road circuit 

validation measurement dataset (left) and Misdetection/Over-detection graph based on these 

distributions (right) 

Another way to appreciate the accuracy of shock detections is to carry-out direct observation in 

the time domain. Figure 101 shows the location of the detected shocks in the asphalted circuit 

measurement dataset. The classifier missed shock number 5 four times out of seven, it was a 

‘small’ shock positioned 10 m before a big shock (shock 6). Other than that, it seems as if there 

are no patterns in the false and misdetection in this measurement dataset. 

The interpretation of the off-road measurement dataset’s detection in the time domain (Figure 

102) is interesting as the signal is noisier and the shocks do not clearly stand out as on the 

asphalted circuit. Most of the false-detections occurred in the last segment of the lap where the 

circuit surface was rougher and where there were more likely to be unidentified shocks. 

There are very few misdetections in the measurement dataset. Most of those occurred in the first 

five laps where shocks 2 and 4 were physically smaller than for the remaining five laps. Each of 

those smaller shocks was missed twice during the first five laps. This is remarkable because 

these shocks were detected most of the time even though these two smaller shocks were 

perceived as not severe enough for shock detection purposes by the experimenters present in the 

vehicle during the measurement. This suggests that the Gaussian SVM classifier could be better 

than humans at detecting shocks. The two other misdetections are the shocks numbered 3 and 4 

(in their more severe state). 
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Figure 101: position of the detections and shocks in the asphalted circuit validation measurement dataset, the 

false-detection, misdetection and true detection are based on the artificial shocks placed on the 

circuit 
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Figure 102: position of the detections and shocks in the off-road circuit validation measurement dataset, 

misdetection and true detection are based on the artificial shocks placed on the circuit 

9.5 Classifier Application 

Shock detections on validation measurement datasets being a success, the Gaussian SVM 

classifier can be applied to measurements made on the vehicle with the same payload. The 

machine learning approach presented in this chapter allowed the identification of shocks buried 

in the training measurement dataset. The classifier being trained on a synthetic reconstruction of 

the training measurement dataset, the classifier has not a priori any knowledge of the signal, 

there is no risk of bias of the detection made on the training measurement dataset. This is an 
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important benefit to this machine learning approach; the classifier can be trained and applied on 

the same signal (after a calibration from a short validation measurement dataset). 

The distribution of the absolute maximum acceleration of the shocks identified in the training 

measurement dataset is presented in Figure 103. Since this is a counting process, the distribution 

should in theory follow a Poisson distribution function. However, the overrepresentation of 

shocks in the 0 to 1.2 m/s
2
 and 8 m/s

2
 to 9.2 m/s

2
 bands distorts the Poisson fit and a Gaussian 

distribution function offers a better fit. This being said, the 160 shocks identified in the 

measurement dataset may not be sufficient to clearly describe the type of statistical distribution 

for the shock amplitudes. Probability Density Functions (PDF) of longer measurement datasets 

(i.e. with more shocks) should ideally be analysed to accurately model the shock amplitude 

distribution. 

 

Figure 103: maximum absolute acceleration distributions and Gaussian fit of the shock detections made by 

the Gaussian SVM classifier on the training measurement dataset 

The total number of shocks detected by the Gaussian SVM classifier (160) is 37 % more than 

the manual estimate (count) made during the measurement (117). This difference corroborates 

the humans’ low shock sensitivity observed on the off-road validation measurement dataset. 

This relatively small difference also suggests that the classifier’s calibration was adequate. 

The positions of the detected shocks within the signal are shown in Figure 104. It is worth 

noticing that the classifier does not base its detection on a sudden acceleration peak, as some of 

these peaks are not identified as shocks. For instance, the vehicle traversed four consecutive 

speed bumps between 790 and 880 s and only the first bump (as encountered by the front wheel) 

was detected as a shock (Figure 105). As those speed bumps were passed at relatively low speed 

(within 19 km/h and 24 km/h according to the GPS data), their duration was longer than the 
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maximum duration included in the learning. To include such events in the detections, the 

synthetic training signal should include shock pulses of larger width and higher amplitude to 

recreate the vehicle’s response to speed bumps. 

 

Figure 104: shock detections made by the Gaussian SVM classifier on the training measurement dataset 

 

Figure 105: segment of the training measurement dataset composed of four speed bumps 

It was mentioned in Chapter 4 that shocks can also be described in terms of distributions of the 

impulse durations and time interval between occurrences. Since the machine learning process 

fixes the detection duration at 1.4 s for a typical RVV, the impulse duration cannot be analysed. 

Nevertheless, the fixed detection duration does not affect the time interval between the shocks 

and its PDF can be computed from the analysis (Figure 106). The distribution has a similar 

shape to the distribution of the duration of RVV Gaussian segments studied by Rouillard 

(2007a) and presented in Section 4.1. The same hyperbolic function (eq. 9) was curve fitted to 

the distribution: 

  
 sinh


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p d
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where d is the segment duration and C and k empirical constants. These constants were 

estimated to 1.235c  and 0.0153k  by a least mean square regression. As for the absolute 

maximum acceleration distribution, this represents only one RVV signal and a large sample size 

should be studied before drawing any conclusion on the time interval between shocks 

distribution. 

 

Figure 106: time interval between the shock detections distribution made by the Gaussian SVM classifier on 

the training measurement dataset and hyperbolic fit 

9.5.1 Spectral Analysis 

Spectral analysis of RVV is broadly used to define efficiency of protective packaging. So it is 

interesting to look at the effect of the shocks on a RVV spectrum. The vibration created from 

the road pavement profile (nonstationary component) and the shocks do not have the same 

spectrum. The road pavement profile has a Brownian spectrum (ISO-8608), i.e. its amplitude 

decays in function of the frequency squared, which generates a greater vehicle response at low 

frequency. Shocks are different. They are created by short impulses or quasi-Dirac functions 

which have a response on a frequency bandwidth inversely proportional to their time width. For 

instance, short impulses can generate a vehicle response on a larger bandwidth. 

In an ideal scenario, this implies that RVV signals without shocks could have a lower spectral 

amplitude at high frequency than signals including shocks. However, this phenomenon cannot 

be observed in Figure 107 where the shock detections have been removed from the training 

measurement dataset recorded on public roads. The PDS of the signal with shocks has about a 

25 % higher response at 2.5 Hz and 11 Hz than the one sans-shocks. Except of these peaks, no 

other discrepancies are observed even on a logarithmic scale. This is due to the dynamic 
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behaviour vehicle including the enveloping effect of the pneumatic tire over the road 

aberrations. 

 

Figure 107: PSD of the training measurement dataset with and without shocks (respectively 1405 and 1228 

averages on a linear and log scale, Δf = 0.2 Hz, Hanning window) 

9.6 Future Validation Work 

It was shown that the Gaussian SVM classifier can detect shocks on real RVV measurements, 

but there are still more validations to be undertaken before applying it to real life distribution 

problems. For instance, the limits of the learning have to be defined and these questions must be 

addressed: how can the learning be extended? Can the same learning be applied to the same type 

of vehicle? To different payloads? Which type of shocks are detected (shocks duration)? 

The calibration limitations and requirements also have to be addressed. For instance, it may be 

possible to apply the same learning to different vehicles, but each of them may require a specific 

calibration. The optimal validation measurement dataset must also be defined as the type and 

number of shocks may affect the complexity of the calibration. 

This more comprehensive validation requires well-defined application contexts such as specific 

route distributions, transport vehicles and shipments. This would be the final step before the 

classifier implementation to model the RVV. Such work is however beyond the scope of the 

thesis, which is to explore how the different modes of RVV can be identified. This opens 

opportunities to researchers to apply this machine learning approach to study RVV in more 

depth. 
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9.7 Conclusion on Model Validation 

This chapter has demonstrated that at least one machine learning classifier can be used to detect 

shocks buried in real RVV measurements, namely, the Gaussian SVM. This classifier was 

trained from a synthetic dataset which was created from the dynamic behaviour of a specific 

vehicle. The vehicle’s dynamics were characterised with a training measurement dataset made 

during normal operation. Once trained, the classifier was calibrated and validated using 

measurement datasets made on closed circuits composed of artificially added shocks. From the 

classifiers optimised in Chapter 8, only the nonlinear classifier (Gaussian SVM) could 

accurately detect shocks and had an AUC above 0.5 (AUC = 0.94). 

As the training measurement dataset was not directly used in the classifier’s training, the 

training signal was analysed with the Gaussian SVM. The analysis revealed that the distribution 

of the shocks’ absolute maximum acceleration can be described with a Gaussian function. It was 

also shown that the classifier was not totally sensitive to the shocks created by speed bumps, 

which could more likely be changed by using a different synthetic training dataset. 
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 CONCLUSIONS Chapter 10: 

This thesis addressed the fundamental piece of the puzzle for packaging optimisation which is 

to characterise the modes of the vibration induced to freight during road transport. This 

characterisation is complex because the RVV (Road Vehicle Vibration) is composed of three 

different modes: i.e. the nonstationary random, transient and harmonic components. These 

modes are described by different statistics and mathematical models so they must be 

characterised separately. The problem is that the modes cannot be measured individually, as 

they coexist and are confounded in a single acceleration signal. Therefore, they must be 

identified and extracted from the signal prior to their characterisation. The main achievement of 

the thesis was to integrate many signal analysis methods in a machine learning algorithm to 

identify RVV modes. This proved the main thesis hypothesis stated in Chapter 3 that the distinct 

modes (or components) constituting the vibration produced by road vehicles can be reliably 

detected and separately identified. 

This novel approach has important advantages over the current RVV simulation methods 

because it detects the shocks present in RVV signals. The shocks and nonstationary random 

vibration can then be analysed separately. Packaging can therefore be optimised based on more 

reliable design criteria because the shocks and nonstationary random vibration can be more 

accurately characterised. Unnecessary cushioning material will be excluded in their design 

without the risks of damaging product thanks to realistic RVV simulation. 

One useful outcome of the thesis is the development of a RVV signal synthetiser. This tool was 

developed for the specific purpose of evaluating various signal analysis techniques as well as to 

train and validate the machine learning algorithms. The synthetiser uses a comprehensive RVV 

model where the contribution of each RVV mode can be purposely defined and individually 

controlled. Beyond its applications in algorithm validation, the signal synthetiser can be directly 

used in a numerical simulation model or to drive a vibration table in a physical simulation. 

Using the characterisation of each mode for typical transport route, the synthetiser can create a 

simulation signal that represents typical dynamic load of the typical route. 
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The review of the existing signal analysis methods showed their benefits and shortcomings and 

it turned out that there is no universal method which can identify the different RVV modes. The 

reviewed methods were found to complement each other. For instance, the Hilbert-Huang 

Transform (HHT) can detect nonstationary components but lacked sensitivity for shocks. On the 

other hand, the Discrete Wavelet Transform (DWT) detects shocks reasonably well, but it 

struggles with nonstationary components. It is from this complementarity that machine learning 

came into form. The ability of machine learning to analyse significant volume of data was 

perfectly suited to integrate many analysis methods to create a reliable shock classifier.  

As a first attempt to use machine learning to identify the RVV modes, the RVV signals were 

simplified and only the two principal modes were considered (i.e. the nonstationary and 

transient components). The shock classifiers were evaluated and optimised following the best 

machine learning practices. The existing evaluation methods gave a fair insight on the shocks 

classification performance, but a more specific method was developed to ensure the classifiers 

provide even better predictions. This new evaluation method is a significant contribution to 

machine learning as it could be applied on other classification problems where the detections 

have different relative importance. 

The four best performing machine algorithms were applied on real RVV measurement. The 

objective of the real vehicle implementation is twofold: the first part is to validate that 

classification on real RVV measurement is possible and second is to assess how machine 

learning process can be applied to real distribution environment context. This is the keystone of 

the thesis as it confirms that the proposed shock detection method works and that it can be 

applied to real measurement. The application is not as straight forward as one may believe. The 

machine learning algorithms need a large training dataset to base its predictions. As the location 

of the shocks encounter on the road is very difficult to precisely define, RVV measurements 

cannot be used to train the algorithm. To overcome this difficulty, the machine learning training 

was made from synthetic RVV signals generated to represent a specific vehicle using an 

unlimited training dataset from limited validation measurements (Figure 108). The 

implementation scheme showed very good classification accuracy with the Gaussian Support 

Vector Machine (Gaussian SVM) algorithm. As a result of the method presented in the thesis, 

Gaussian SVM algorithm could now be used on a larger measurement size in order to 

characterise actual distribution routes and create better RVV simulation. 

Outside packaging optimisation applications, this research also has a significant contribution to 

knowledge. The developed modelling method itself will be useful in mixed-modes signal 

processing which have a variety of applications outside packaging such as in advance control, 

noise filtering and stochastic analysis. Nonstationary, transient and harmonic components are 
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already well studied in other domains than distribution packaging, but they are rarely considered 

altogether. For instance, in radio-frequency signal processing, harmonic components are 

extracted from noise (Gaussian components) but nonstationary and transient components are not 

present in the signal. Therefore, identifying these three different modes in the same signal will 

be new in signal processing. 

 

Figure 108: flow chart on machine learning classification implementation to real vehicle 

Another outcome of the thesis is a better understanding of the RVV. Nowadays, there is very 

little information on the number and severity of the impacts incurred in typical journey because 

most of the tools used to analyse road degradation and roughness, such as the International 

Roughness Index, do not specifically take into account transient events (Bruscella et al., 1999). 

The relative importance of the harmonic components with the rest of the signal remains also 

unknown and only Charles (1993) pointed out this issue without really developing on it. The 

mixed modes model will provide answers to this gap which could have an important effect on 

packaging optimisation as other applications such as vehicle dynamic, passengers’ comfort and 

road maintenance. 
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APPENDIX A: HILBERT-HUANG TRANSFORM 

Developed in the late 90s by Huang et al. (1998), the Hilbert-Huang Transform (HHT) is a fully 

adaptive time-frequency analysis method that requires very few analysis parameter settings. 

Based on the Hilbert transform, the HHT is a very powerful tool to analyse nonlinear and 

nonstationary processes using a sum of narrow-band functions of varying instantaneous 

frequency and amplitude. However, this method does not yet have a strong theoretical 

foundation, this being the cost of being a highly adaptive data-analysis method. In that context, 

seven mathematical problems were stated to establish the theoretical framework of the HHT 

(Huang and Shen, 2005): 

1. adaptive data analysis methodologies in general; 

2. nonlinear system identification methods; 

3. prediction problems for nonstationary processes (end effects); 

4. spline problems (best spline implementation for the HHT, convergence and 2-D); 

5. optimization problems (the best IMF selection and uniqueness); 

6. approximation problems (Hilbert transform and quadrature); 

7. miscellaneous questions concerning the HHT. 

These problems might take many years to be resolved, though that does not mean the HHT 

cannot be used until they are fully resolved. The broadly-used Fourier analysis was in the same 

situation many years ago. Invented in 1807, it was only fully proven more than a hundred years 

later by Plancherel (1933). 

In order to assist judgement on the suitability of the HHT and its limitations, the mechanics of 

this empirical transform and how it can be used to analyses nonstationary and noisy signals is 

presented here. 

A.1. Hilbert Transform 

One method to overcome the Gabor limit principle is to formulate a signal with a varying 

frequency and amplitude modulation. In that case the frequency becomes the instantaneous 

frequency as it describes the signal frequency at a specific moment. The instantaneous 

frequency of a signal  x t  can be computed using its Hilbert transform  y t which is defined 

by the following convolution integral: 



 

Appendix A: Hilbert-Huang Transform  153 

 

    
 

 




 




   =H

x
y t x t d

t
.  (eq. 40) 

The Hilbert transform can be interpreted as a 90° phase shift of the signal, i.e. the signal is 

transformed in the frequency domain where its phase is shifted by 90° and brought back in the 

time domain. Using the Hilbert transform, the analytic signal can be defined as 
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where the magnitude function  a t  represents the envelope of the original signal, 

      2 2 a t x t y t ,  (eq. 42) 

and   t  represents the instantaneous phase function of  x t ,  
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As the analytic signal  z t  can be represented as a rotating vector,    
e
i t

a t , the time 

derivative of   t  corresponds to the instantaneous frequency of the vector. Thus the 

“instantaneous frequency”,  if t , of  x t is given by 
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The instantaneous frequency seems to easily overcome issues defined by the Gabor limit, but 

there is an important limitation: the Hilbert transform only works on narrow-band signals. This 

means it only works with signals with positive peaks and negative troughs (i.e. the signal 

crosses zero in between each peak and trough, Figure 109 a) but does not work on broad-band 

signals (e.g. Figure 109 b) which are a much more common type of signal in real applications. 

 

Figure 109: a) narrow-band signal; b) broad-band signal 
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A.2. Empirical Mode Decomposition 

To extend the application of the Hilbert transform to any signal, Huang et al. (1998) proposed 

the Empirical Mode Decomposition (EMD) technique to decompose a broad-band signal into a 

sum of narrow-band signals. These narrow-band decompositions, called Intrinsic Mode 

Functions (IMFs), have the following definitions: 

(1) in the whole dataset, the number of extrema and number of zero-crossings must be 

either equal or differ by, at most, one; 

(2) at any point, the mean value of the envelope defined by the local maxima and the 

envelope defined by the local minima is zero.  

The IMFs are computed via a sifting process, the first step being to create the upper and lower 

envelope of the signal by connecting all peaks together and all the troughs together using cubic 

splines, as shown in Figure 110.  

 

Figure 110: EMD sifting process 

The mean value of the upper and lower splines designated m1 is then subtracted from the signal, 

 x t , to give the first component, h1, called a Proto Mode Function (PMF); i.e., 

  1 1 h x t m .  (eq. 45) 

One sift is usually not enough to create a PMF that conforms to the IMF definition so the sifting 

process is repeated up to k times as follows 

 
 1 11 1

 k kk
h h m ,  (eq. 46) 

until the PMF reaches the stoppage criteria. Two criteria are typically used. The first one 

introduced by Huang et al. (1998) is a Cauchy convergence test. This test uses the normalised 

square difference between two successive siftings as 
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.  (eq. 47) 

The squared difference SDk has to be smaller than a predetermined value over the signal 

duration T. Huang and Shen (2005) propose that the value is typically between 0.2 and 0.3. 

However, this criterion does not ensure the first definition of the IMF on the number of extrema 

and zero-crossings. To correct this, Huang et al. (1999) introduced a second criterion on the 

agreement on the number of extrema and zero-crossings. According to this criterion, the sifting 

process should stop when the number of extrema and zero-crossings remain the same and are 

equal or differ, at most, by one for a predetermined S number of iterations. Studies on the EMD 

variance suggests a S number between 4 and 8 (Huang et al., 2003a).  

Only one of these criteria is usually selected to stop the sifting process but secondary stoppage 

criteria could also be added depending of the specific need of the analysis, such as: a maximum 

sifting time to limit the computation time, or a period bandwidth limitation specific for every 

IMF to eliminate any mixed-mode IMF (Huang et al., 2003a). 

Once the sifting process is stopped, the PMF becomes the first IMF designated as: 

 
1 1 kc h .  (eq. 48) 

This first IMF, c1, contains the finest scale component of the signal, i.e. the component with the 

higher instantaneous frequencies. The residue, r1, is calculated by subtracting, c1, to the signal,  

  1 1 r x t c .  (eq. 49) 

The sifting process is then performed again on r1 until the second IMF, c2, is found. This 

procedure is repeated, 

 

2 1 2

3 2 3

1

 

 

 n n n

r r c

r r c

r r c

 , (eq. 50) 

until the residue, rn, becomes a monotonic function or a function with only one extremum, i.e. 

when no more IMFs can be extracted. This residue represents the trend of the signal. The sum of 

the n IMFs and the remaining trend r corresponds to the original signal, as shown in Figure 111, 

      
1

 
n

j

j

x t c t r t . (eq. 51) 
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Figure 111: IMFs decomposition; the sum of the three IMFs is equal to the original signal  

A.3. Time-Frequency Analysis tools 

The analytic function (eq. 41) is computed on every IMF to provide the magnitude function 

(eq. 42) and the instantaneous frequency function (eq. 44). A common way to present these 

functions is the Hilbert spectrum,  ,H t , which presents the instantaneous frequency and 

amplitude of every IMF as a function of time. The frequency information of the signal can also 

be expressed, regardless of time, as the Marginal spectrum 

    
0

,  
T

h H t dt .  (eq. 52) 

This spectrum gives the amplitude distribution of the frequencies, ω, which is different from the 

Fourier spectrum for a nonstationary signal. The Fourier spectrum gives the average amplitude 

of a persistent frequency, 𝜔, when the Marginal spectrum gives the likelihood of a frequency 

component to exists. Therefore the Marginal spectrum has to be considered as a weighted 

nonnormalised joint amplitude-frequency-time distribution. 

This joint distribution can also lead to the degree of nonstationarity,  DS , of the signal:  

  
 

 

2

0

,1
1






 
  

 


T H t
DS dt

T n
,  (eq. 53) 

where  n  is the mean Marginal spectrum, 

  
 

 
h

n
T

 . (eq. 54) 
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When the signal is perfectly stationary, the Hilbert spectrum,  ,H t , is not a function of time, 

so  DS  is zero. In that case, the Fourier spectrum makes physical sense, but otherwise it 

does not, because the spectral content is time variant. 

A.4. Signal Detection and Noise Filtering 

The HHT shows interesting proprieties when applied to broad-band noises. Flandrin et al. 

(2004) have shown in a numerical study on fractional Gaussian noise (e.g. white, pink, red, grey 

noises) that the EMD acts as a dyadic filter bank (or simply called filter bank). In other words, 

the average frequency of an IMF is twice the value of the following IMF. So the PDS of the first 

IMF mainly covers half of the spectrum frequency range, the second a quarter, the third an 

eighth and so forth (Figure 112).  

 

Figure 112: PDS of IMFs of white noise signal 

The filter bank propriety of the EMD has an interesting application to signals affected by noise. 

In many applications, the measurement,  x t , of a signal,  s t , is spoiled by noise,  n t , such 

as: 

       x t s t n t .  (eq. 55) 

Several methods can be used to detect the presence of the signal and remove the noise from the 

measurement. However, most of them are based on linear and stationary hypotheses. Since the 

HHT and the EMD are not based on such hypotheses they can be useful where other methods 

are limited. The EMD can be used in two different ways to detect nonstationary and nonlinear 

signals and, ultimately, filter their noise component. The first one is a statistical significance test 

on the energy density and average period distribution of each IMF (Wu and Huang, 2004) and 

the second is a Fractional Resampling Technique (FRT) (Chen et al., 2013). 
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A.4.1 Energy Density/Average Period Significance Test 

When applied to different white noise samples with the same sampling frequency, the EMD 

results in IMFs with a linear relationship between the average period, T, and energy density, E. 

A 1000-sample Monte Carlo simulation shows this relationship within a relatively small 

confidence interval (Figure 113). This relationship can be used to detect an IMF with a mode 

that does not belong to white noise (i.e. a signal) if its energy density and average period are 

outside the confidence interval (Wu and Huang, 2004).  

 

Figure 113: relationship between energy density with respect to the average period of white noise signals’ 

IMFs. This Monte Carlo simulation represents 1000 samples. The IMFs are in ascending order 

starting from the left, the odd IMFs are in blue and the even in green. 

A.4.2 Fractional Resampling Technique 

The filter bank property of the EMD can be used as an alternate method to detect a signal buried 

in white noise; this is known as the Fractional Resampling Technique (FRT) (Chen et al., 2013). 

For fractional Gaussian noise, the average frequency of the k
th
 IMF can be calculated from the 

Marginal spectrum, 

 
 

 

  


 





k

k

k

h d

h d
 , (eq. 56) 

which depends on the sampling frequency of the signal. The average frequency of the first IMF 

is roughly 3/4 of the Nyquist frequency, that of the second is 3/8, the third 3/16 and so forth, 

because the EMD acts as a filter bank. When the noise is resampled by a factor between 1 and 2, 

the average frequencies gradually decrease as the Nyquist frequency decreases. At a resampling 

factor of 2, the average frequency of an IMF becomes the initial average frequency of the 
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subsequent IMF. This relation can be expressed by normalising the average frequency of the k
th
 

IMF at the resampling rate M with the average frequency of the corresponding IMF at the initial 

resampling rate: 

 
0





 Mk

Mk

k

 . (eq. 57) 

As seen in Figure 114, for Gaussian noise, the average frequency of the IMFs have a linear 

relationship with the resampling rate. However, the same resampling behaviour is not observed 

on a signal superimposed with red noise
viii

 because the IMFs containing the signal retain the 

same average frequency over resampling. So the average frequency of every IMF will follow 

the resampling rate, except those containing the signal, which can be used to detect the signal. 

 

Figure 114: normalised average frequencies of IMFs as a function of the resampling rate for a red noise 

signal, with the dashed line representing the theoretical relationship 

                                                      
viii

 Fractional Gaussian noise with PDS inversely proportional with the frequency squared 
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APPENDIX B: WAVELET TRANSFORM 

The historical origin of the wavelet is difficult to define because it comes from several domains 

and was used under different names. There were at least 15 distinct roots of the theory going as 

far back as the 1930s (Hubbard, 1998). It is more in the 1970s and 1980s that wavelet 

researchers in different domains have begun to exchange information, and the technical 

vocabulary became more consistent. Wavelet then became a discipline of its own. It became 

more used and its development was accelerated. Today new wavelets can still be created but as 

is the Fourier analysis, the wavelet transform is at a mature state, its mathematical framework is 

fully proven, its computation is fast and it can be embedded into chipsets. 

As described in the following sections, the wavelet transform is not strictly speaking a time-

frequency analysis tool because it decomposes the signal not into frequencies, but into scales. 

Both are very similar with the exception that the scales do not necessary have a physical 

meaning. Different techniques can be used to bring a physical meaning to the scales but these 

are only used in applications where frequency representation is required. 

B.1. Filter Bank 

There are many different ways to explain the basics of the wavelet transform. An easy way for 

engineers to approach it is to start with filter banks. As previously explained with the HHT, a 

filter bank is a series of filters that divide the signal into bandwidth sections. Essentially the first 

filter separates the signal into two sections; the second separates the low frequency sections into 

another two sections and so forth. The bandwidth proportion between the sections remains the 

same, e.g. the first is twice the frequency band of the second, the second twice the third and so 

forth. 

The relationship between the sections’ bandwidth are the same low pass, h0(n), and high pass, 

h1(n), filters are used throughout the filter bank analysis. The filter bandwidth changes between 

the iterations because the signal is first decimated after each filtering (Figure 115). In other 

words, at the first iteration, the original signal is filtered. Then the low and high pass sections 

are decimated. At the second iteration, the decimated low frequency section is filtered again 
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using the same filters and both resulting sections are decimated. This process is repeated until 

the desired scales (frequency bands) are obtained. 

 

Figure 115: filter bank structure 

B.2. Perfect Reconstruction 

Certain filter bank structures have an interesting property. Coupled with the matching synthesis 

filters, the original signal can be perfectly reconstructed from the bandwidth decomposition 

even if the sections are decimated. Surprising as it may seem, this is also correct for the high 

pass filtered and decimated segmentation (a(k), Figure 116). The frequency bandwidth of the 

signal is indeed above the Nyquist frequency, but since there are no low spectral contents in 

there, the synthesis filter, f1(n) , can recover the original signal, x(n), with a delay l. 

 

Figure 116: perfect reconstruction 

The conditions needed to obtain the perfect reconstruction are twofold: the analysis/synthesis 

process does not create any distortion, and the aliasing caused by the down-sampling 

(decimation) has to be cancelled. To avoid distortion, the sum of the product in the z domain 

(see B.2.1) of the corresponding analysis and synthesis filters should have only one component 

as follows: 

        0 0 1 1 2   lF z H z F z H z z  , (eq. 58) 

where l represents a delay between the original signal and the synthesis signal. 

The filtered segmentations are down-sampled which divides their Nysquist frequency by two. 

Because their frequency range is above Nyquist, an aliasing error is created. To perfectly 
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recreate the signal, this aliasing has to be cancelled by the synthesis. The condition for this 

aliasing cancellation can be formulated as: 

        0 0 1 0 0   F z H z F z H z  . (eq. 59) 

By combining those two conditions, the relationship between analysis and synthesis filters is 

therefore: 

 
   

   

0 1

1 0

 
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F z H z

F z H z
  (eq. 60) 

B.2.1 z Transform 

The z transform is a discrete representation of the Fourier transform commonly used for filter 

design. The discrete Fourier transform of a signal x(n) is: 

     






  i n

n

X x n e  . (eq. 61) 

To go from the frequency domain (Fourier) to the z domain, 
ie  is replaced by z. Therefore the 

z transform is: 

    






  n

n

X z x n z .  (eq. 62) 

The advantage of this form of filter design is that z directly gives the filter coefficients that are 

used in the convolution (filtering process). 

B.3. Multiresolution Synthesis 

The perfect reconstruction process can be performed on a multiresolution scale (Figure 117). As 

the analysis progresses, the number of coefficients (ai and bi) is halved at every level i up to 

level l. To reconstruct the signal the coefficients are first upsampled and then filtered until the 

signal is completely reconstructed. 
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Figure 117: multiresolution synthesis 

A signal can be encoded with a different resolution (scaling), such as the decimal system, when 

multiresolution synthesis respects these conditions: 

1- The scaling function is orthogonal to its translations, i.e. the scalar product of the 

scaling function and any of its translations is zero. 

2- The signal at a given resolution contains all the information of a signal at coarser 

resolution 

3- The function 0 is the only object common to all the scaling function spaces Vi, 

  lim 0


i i
i

V V   (eq. 63) 

4- Any signal can be approximated with arbitrary precision, 

  2lim


i
i

V L   (eq. 64) 

B.4. Wavelet Transform Formulation 

Wavelet transform (in the continuous time domain) can be formulated from the filter bank 

analysis using the ai and bi coefficients, so the signal decomposition of the analysis part is the 

sum of the convolution: 

          1

1

2  



   
l

l i

l i

i

x t a k t k b k w t k  . (eq. 65) 

  is the scaling function or mother wavelet associated with the signal average (low pass filter) 

and defined such as its integral equals one: 

   1  t dt  . (eq. 66) 

The scaling function is in the Hilbert space denoted by L
2
 where all functions have finite energy, 

such as: 

  
2

   t dt  . (eq. 67) 
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w is the wavelet function associated with the detail of the signal (high pass filter) and defined as 

its integral equals zero: 

   0w t dt  . (eq. 68) 

The essential characteristic of the wavelet transform is that every scale comes from the scaling 

function and the wavelet function. This relationship is called the refinement equation, which 

also makes the link between the low and high pass filters of the filter bank analysis. The 

refinement or dilatation equation is for the scaling function (using normalised filter coefficients 

to signal energy constant): 

      02 2  t h k t k   (eq. 69) 

and for the wavelet function: 

      12 2 w t h k t k  , (eq. 70) 

where the scaling function is normalised,  

 1  dt  . (eq. 71) 

The scaling space Vi is all the combinations of  2 i t k  and the wavelet space Wi is all the 

combinations of  2 iw t k . Considering the refinement equations means that the spaces of 

coarser scaling functions are a subset of the finer scaling functions. So only the empty space can 

be a subset of the coarser scaling space V1 and the finer scaling space Vl is a subset of L
2
, 

   2

1 20       i lV V V V L  . (eq. 72) 

Another way to represent a finer scaling space is to sum the coarser scaling and wavelet space, 

 
1 i i iV W V  . (eq. 73) 

 By extension, any scale can be represented as: 
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 . (eq. 74) 
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B.5. Wavelets Creation 

Those relationships can define any wavelet basis, from the simplest Haar wavelet to more recent 

and advanced wavelets. The wavelet creation process which starts from the scaling function can 

be simplified in 3 elements: 

1. Scaling function is expressed in terms of low pass filter coefficients  0h k  

2. The solution is defined in L
2
, 

 
22

     dt d   (eq. 75) 

3. The scaling function for N coefficients is computed from the following formula: 

   0

0

 




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j k

k

n h e  . (eq. 76) 

This equation comes from the Fourier transform of the refinement equation (eq. 69), 
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which can be extended to many scale: 
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 , (eq. 78) 

and since the scaling function is normalised in the time domain (eq. 71), 

  0 1   , (eq. 79) 

therefore the scaling function equation in the frequency domain is:  

  
1 2


 





 
  

 
 j

j

H  . (eq. 80) 

B.5.1 Haar Example 

An interesting way to illustrate the wavelet analysis is going through the creation processes of 

the Haar Wavelet. The Haar wavelet is the simplest wavelet because it is created from the two 

normalised coefficients low pass filter, 
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1 2  for 0,1
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n
h n  . (eq. 81) 

The filter is expressed in the frequency domain as: 
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j
e

H  . (eq. 82) 

From equation (eq. 80), the scaling function is: 

   0
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At i , the scaling function can be expressed as: 

  
 sin 

 


  . (eq. 84) 

The inverse Fourier transform of this expression is: 

  
1 for 0,1

0 anywhere else



 


n
t   (eq. 85) 

The scaling function respects the refinement equation (eq. 69), 

      2 2 1    t t t  , (eq. 86) 

which is illustrated at Figure 118. 

 

Figure 118: refinement equation of Haar scaling function 

The high pass filter coefficients are calculated from equations (eq. 58) and (eq. 60), 
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 . (eq. 87) 

In that case, the delay l = 1, so: 
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    1 10 1 2 h h   (eq. 88) 

Two normalised coefficients filters are used: 

    
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1 10 1 1 h h  , (eq. 89) 

therefore, 
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 . (eq. 90) 

These filter coefficients lead to the following wavelet function using the refinement equation 

(eq. 70): 

      2 2 1   w t t t  , (eq. 91) 

which is illustrated in Figure 119. 

 

Figure 119: Haar wavelet function 

As shown in Figure 120, the finer Haar scaling function, V1, is the sum of subsequent scaling 

and wavelet functions (V0 and W0) which is in respect with the multiresolution characteristic of 

wavelet transform. The area of the scaling functions remains 1 for any scales. 

 

Figure 120: Haar scaling and wavelet functions multiresolution 
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B.6. Signal Decomposition 

As stated by (eq. 65), any signal can be decomposed as a sum of scaling and wavelet functions 

at different scales. This is true with the Haar wavelet (Figure 121). Because only two filter 

coefficients are used, many scales are required to represent a smooth signal. This decomposition 

is equivalent to a digitalisation (binary decomposition). As the complexity and the number of 

filter coefficients increases, the shape of the wavelet becomes smooth and fewer scales are 

required to decompose a signal. 

 

Figure 121 signal decompostion using the Haar wavelet 

B.7. Wavelet Selection 

There is no such thing such as a perfect wavelet. All wavelets have their benefits and 

disadvantages. For instance, the Haar wavelet has the shortest support (two filters coefficients) 

but a very coarse resolution. Therefore, the wavelet selection depends on the signal analysed. 

This selection is made according to three elements: the number of vanishing points, the filter 

length and the orthogonality. 

B.7.1 Vanishing Points 

The wavelet vanishing points (eq. 18) correspond to the k
th
 moments where the following 

integral of the function,  f x , equals zero, 

  




 
k

km f x x dx  .  

The number of vanishing points p of the wavelet function gives an indication of the precision of 

every scale. In other words, any degree-p polynomial can be exactly reproduced in every scale. 

The more vanishing points there are, the more concentrated is the signal information in the 

coarser scales, so fewer coefficients are needed to analysis singularities and discontinuities. 

More vanishing points means that the wavelet filters need longer support (more filter 

coefficients). For example, a Daubechies wavelet with p vanishing moments has 2p − 1 filter 

coefficients. 
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B.7.2 Filter Length 

The filter length has an effect on the processing time. This is critical for real time application, 

but not for RVV analysis, especially because the multiresolution makes the fast wavelet analysis 

faster than the FFT (Fast Fourier Transform). 

The second advantage of a short filter is that it works best on short signals. Once again this 

advantage is worthless for RVV analysis because the signals are generally many times longer 

than the filter length. For instance, the Daubechies 10 wavelet only has 19 coefficients which is 

a long filter in the wavelet world. Compared to a RVV signal recorded at 1024 Hz, the filter 

length is less than 0.02 s which is very short in terms of road vehicle dynamics. 

B.7.3 Orthogonality, Biorthogonality, Symmetry 

Orthogonality is easily understood in two and three dimensional spaces. Two vectors are 

orthogonal in the two dimensional space if there is no projection possible of one vector on the 

other, i.e. they have a 90° angle between each other. The orthogonal vectors can be used as a 

basis in that dimension because there is no redundancy between the vectors. In other words, the 

sum of the energy of every component equals the total energy. 

The wavelet function (analysis high pass filter) can be orthogonal with the scaling function 

(analysis low pass filter). Therefore, there is no redundancy between the wavelet scales. This 

means that the minimum number of coefficients is used to describe a signal. However, except 

for the Haar wavelet, orthogonality is incompatible with another wavelet property: symmetry 

which is important for application such as image processing. This leads to the creation of a 

biorthogonal wavelet where the analysis high pass filter is orthogonal with the synthesis low 

pass filter and the analysis low pass filter with the synthesis high pass filter. 

For RVV analysis, symmetry is not necessarily needed, therefore the wavelet selection is not 

limited by the orthogonality type. 

B.8. Signal Compression 

Signal compression is nowadays the most common application of wavelet analysis. 

Compression is achieved using the wavelet coefficient ai. It is assumed that within a scale, 

coefficients with larger values are the most important. So the coefficients below a certain 

threshold are discarded to compress the signal.  The signal reconstruction is then made with the 

more valuable coefficients for every scale. 
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APPENDIX C: SAMPLING FREQUENCY CONDITIONING TO 
ENHANCE HHT PROCESSING  

The Hilbert-Huang Transform (HHT) is a powerful adaptive time-frequency analysis tool. An 

essential step of this transform is the Empirical Mode Decomposition (EMD), which attempts to 

decompose the analysed signal into narrow-banded components called Intrinsic Mode Functions 

(IMFs). This appendix shows how the sampling frequency of signals affects the EMD. It is 

revealed, using both synthetic and measured data, that oversampled signals significantly 

increase the EMD computing time and the ability to retrieve a unique signal component in a 

single IMF. This appendix demonstrates how down-sampling a signal to match its spectral 

characteristic enhances the efficacy of the EMD. 

C.1. Context 

Developed in the late 1990s by Huang et al. (1998), the HHT is a fully adaptive processing 

time-frequency analysis method that requires very few analysis configuration parameters. Based 

on the Hilbert transform, the HHT is a very powerful tool to analyse nonlinear and 

nonstationary processes using a sum of narrow-band functions of varying instantaneous 

frequency and amplitude. These sought after characteristics make the HHT very attractive. Its 

potential has been demonstrated across many disciplines such as geophysics (Huang and Shen, 

2005, Huang et al., 1999, Huang and Wu, 2008), structural health monitoring (Huang and Shen, 

2005), finance (Huang et al., 2003b), image processing (Huang and Shen, 2005), structural 

vibration (Rouillard and Sek, 2005, Peng et al., 2005, Ayenu-Prah and Attoh-Okine, 2009) and 

many more. 

Even if the HHT has a broad range of applications, it does not yet have a strong theoretical 

foundation. Therefore, guidelines on its usage are developed and published as the HHT is 

increasingly studied and understood. For instance there is little information as to the best 

sampling frequency to analyse signals even if it is known that behaviour of the EMD is affected 

by the signal sampling frequency (Chen et al., 2013, Flandrin et al., 2004, Mandic, 2011). 

Rilling and Flandrin (2006) showed that one performing EMD on signals with low sampling 

frequency relative to their frequency contents is subject to sampling error, i.e. the portion of the 
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signal that is lost in the sampling process. In some cases, this error for the first IMF can go up to 

5 % when it has components with a frequency close to Nyquist frequency (half the sampling 

frequency). It is therefore recommended to oversample a signal to minimise this error, but there 

is no available information on the effect of oversampling on the EMD.  

For many reasons, signals may be oversampled, i.e. recorded with a sampling frequency 

superior to the frequency bandwidth of interest. In shock and vibration analysis for instance, 

oversampled signals give better resolution around signals extrema which is useful for damping 

and natural frequency estimation in the time domain. However, this oversampling has a direct 

influence on the EMD and may require longer computing time and may also increase the mode-

mixing between IMFs. 

These shortcomings come from the sifting process used in the EMD. The sifting extracts the 

highest frequency component from the signal in the first IMF, and then the second highest 

component in second IMF and so on until there is only the signal trend left (see Appendix A for 

more detail on EMD). As Flandrin et al. (2004) have shown in a numerical study on fractional 

Gaussian noise (e.g. white, pink, red, grey noises), the EMD acts as a dyadic filter bank. In 

other words, the instantaneous frequency average of an IMF is twice the value of the following 

IMF. So the PDS of the first IMF mainly covers half of the spectrum frequency range, the 

second a quarter, the third an eighth and so forth (Figure 122).  

 

Figure 122: PDS of IMFs of white noise signal sampled at 1024 Hz (same as Figure 112) 

C.2. Effect on Mode-Mixing 

A limitation of the sifting process is that narrow-banded components buried in a low level of 

high-frequency content signal (such as measuring noise) cannot be easily extracted. This is 

because depending on the high-frequency content level of the signal, the first IMFs of an 

oversampled signal may include the narrow-banded component only, or a mix between the 

high-frequency content and narrow-banded signal. These different cases are demonstrated using 
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signals containing two harmonic components (narrow-banded) at 3.14 Hz and 10 Hz with the 

same amplitude. The signals have a sampling frequency of 1024 Hz and they are superimposed 

with white noise with an RMS level corresponding to 0.01 % (Figure 123), 0.1 % (Figure 124) 

and 1 % (Figure 125) of the harmonics amplitude. 

 

Figure 123: first three IMFs of a two harmonics 

signal with 0.01 % white noise with a 

sampling frequency of 1024 Hz 

 

 

Figure 124: first three IMFs of a two harmonics 

signal with 0.1 % white noise with a 

sampling frequency of 1024 Hz 

 

 

Figure 125: first three IMFs of a two harmonics 

signal with 1 % white noise with a 

sampling frequency of 1024 Hz 

 

 

Figure 126: first three IMFs of a two harmonics 

signal with 0.1 % white noise with a 

sampling frequency of 256 Hz 
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The worst case in this example is the 0.1 % noise because the harmonic components do not 

remain in a single IMF as, in theory, they should. This phenomenon is called mode-mixing and 

can be prevented with different methods. Huang et al. (2003a) proposed a bandwidth limit as an 

EMD stoppage criterion to ensure that a single component remains in the same IMF. However 

this implies subjective user intervention that limits the fully adaptive nature of the EMD. Wu 

and Huang (2009) propose the ensemble EMD to avoid mode-mixing between IMFs to maintain 

its adaptiveness. This method adds sufficient white noise to the analysed signal to ensure that 

the IMFs bandwidths act as a filter bank by adding energy throughout the frequency bandwidth. 

This process is repeated several times and the IMFs are retrieved by averaging the ensemble. 

However, the averaging process does not guarantee that the mean IMFs respect the definition 

with regard to the number of extrema and zero-crossings. More detail on these mixed-mode 

mitigation methods are presented in section 6.1.3. 

That being said, mode-mixing caused by signal oversampling can be easily avoided without 

using these exotic methods by simply reducing the sampling frequency to a range that closely 

matches the signal spectrum. For instance, mode-mixing between the IMFs of the 0.1 % white 

noise signal is eliminated when its sampling rate is reduced (resampled) to 256 Hz (Figure 126). 

The EMD process is also quicker as it does not have to deal with a large bandwidth noise. 

C.3. Effect on Computing Time 

Processing of oversampled signals takes more time because there are no clear components that 

fit the native frequency bandwidth of the first IMFs. The EMD process takes more siftings 

converging to narrow banded IMFs. This increase in computing speed is much more significant 

on larger data size. For instance, it takes 902 s for the EMD to retrieve the first 4 IMFs of a 

200 s acceleration signal recorded on a road vehicle sampled at 2500 Hz using a PC with an 

Intel® Xeon® E5-1650 v2 (6 cores) 3.50 GHz CPU and 32 GB of RAM (Table 9). This signal 

is considered oversampled because its PDS drops off at about 60 dB within 300 Hz (Figure 

127). This means that the sampling frequency can be reduced to 625 Hz and represents all the 

components bellow Nyquist (312.5 Hz) which is the highest frequency that can be represented 

in a signal according to the sampling theorem. It is also possible to use a low-pass filter prior to 

the resampling to avoid any aliasing. The EDM on the down-sampled signal is more than 

100 times quicker. This is essentially caused by the reduction of EMD iterations needed to sift 

the first IMFs. The down-sampled signal needs about 20 times less iterations to retrieve the first 

four IMF than the original signal (Table 9).  
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Table 9: performance of the EMD for the first four IMFs of a signal with two sampling frequencies 

Sampling 

Frequency 

[Hz] 

EMD time 

(4 IMFs) 

[s] 

IMF 1 

iterations 

[ ] 

IMF 2 

iterations 

[ ] 

IMF 3 

iterations 

[ ] 

IMF 4 

iterations 

[ ] 

2500 902 255 1563 3139 145 

625 8.01 98 69 26 65 

  

Figure 127: PDS of the acceleration recorded on a road vehicle 

C.4. RVV Example 

The first IMF of the down-sampled signal has a similar content to the subsequent IMF of the 

original signal. As shown in Figure 128, IMF 4 of the original signal is similar to IMF 1 of the 

down-sampled signal. The amplitude of IMFs 1 and 2 of the original signal is very low 

compared to IMF 4 and represents the noise in the signal. IMF 3 has a higher amplitude and its 

major components have a similar frequency to IMF 4, this suggests mode-mixing between them. 

It suggests that the IMF 4 of the original signal and IMF 1 of the down-sampled signal are the 

first narrow-banded component of the signal. 

As shown by Rilling and Flandrin (2006), EMD of an undersampled signal may lead to a 

theoretical 5 % sampling error. However this theoretical error does not affect this undersampled 

signal. The difference between the down-sampled signal and signal reconstruction from the IMF 

sum is practically zero (RMS level of −300 dB). This is because its first IMF has an 

instantaneous frequency range mostly between 30 Hz and 200 Hz averaging at 90 Hz which is at 

least 1.5 times bellow the Nyquist frequency. 
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Figure 128: first four IMFs of a 200 s acceleration signal record and their PDS of a road vehicle sampled at 

2500 Hz and first IMF of the same signal resampled at 625 Hz (bottom red dotted curve) 

C.5. Conclusion on Sampling Frequency Conditioning 

Oversampled signals have many advantages, their fine resolution gives better accuracy when 

analysing transient events or estimating natural frequency and damping of a structure using time 

domain techniques. However, oversampling adversely affects EDM and HHT analysis. Before 

using this time-frequency tool, it is therefore recommended to down-sample any signal to a 

sampling frequency that only covers the frequency bandwidth of interest with just enough range 

to avoid the small error that can be caused by undersampling. It was shown that resampling the 

signal with a Nyquist frequency 1.5 times higher than the expected highest frequency has all the 

benefits without creating any noticeable sampling error. This simple conditioning reduces the 

mode-mixing that can occur between IMFs. This also increases the EMD computing speed 

which is useful for real-time application. 
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APPENDIX D: BAYES’ CRITERION 

The Bayes’ criterion finds the Optimal Operation Point (OOP) of a classifier by optimising the 

detection cost function with the Bayesian theory. For a binary detection problem, a classifier 

based its prediction on two hypotheses; the null hypothesis and the alternate hypothesis H1. 

There are four possible decision cases when testing these hypotheses: 

1. decide H0 when H0 is true, called true rejection; 

2. decide H0 when H1 is true, called miss detection; 

3. decide H1 when H0 is true, called false detection; 

4. decide H1 when H1 is true, called true detection. 

The cost associated at each case which is respectively C00, C01, C10 and C11. Given that 

 ,i jP D H  is the joint probability to decide Di when Hj is true, the detection cost function is: 

        00 0 0 01 0 1 10 1 0 11 1 1, , , ,   C P D H C P D H C P D H C P D H  . (eq. 92) 

 

The equation can be simplified using Bayes’ rule, 

    , i j i j jP D H P D H P  , (eq. 93) 

where  i jP D H  is the conditional probability of deciding Hi when Hj is true and jP  is the a 

priori probability of Hj. For the four decision cases, the conditional probabilities are:  

1.  0 0P D H  ; 

2.  0 1P D H  also called probability of miss detection 
MP  ; 

3.  1 0P D H  also called probability of false alarm 
FP  ; 

4.  1 1P D H  also called probability of detection 
DP . 

Both hypotheses cannot coexist; hence the sum of their a priori probabilities equals one, 

 
0 1 1 P P .  (eq. 94) 

This also means that the conditional probabilities have the following relations: 
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 0 0 1

1

 
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F

M D

P D H P

P P
 . (eq. 95) 

The detection cost function can be simplified using (eq. 93) and (eq. 95): 

    00 0 01 1 10 0 11 11 1     F D F DC P P C P P C P P C P P  . (eq. 96) 

The probabilities of detection and false detection are variables that depend on each other. The 

dependence is represented by the Receiver Operating Characteristic (ROC) curve where the 

classifier sensitivity represents the probability of detection 
DP  and the fall-out represents the 

probability of false detection 
FP . The OOP ROC curve is therefore the point where the cost 

function is minimal, 

 0
 

 

 
  

F DP P
  (eq. 97) 

So the Bayes’ criterion (eq. 33) defined the OOP as the point where the ROC curve derivative 

equals: 

 
 

 
0 10 00

1 01 11






D

F

P C CdP

dP P C C
 .  

The case where 
00 11 0 C C  and 

10 10C C  is called MAP (Maximum A Posteriori) criterion 

which uses the ratio between the hypotheses a priori probabilities to find the OOP, 

 0

1

D

F

dP P

dP P
 . (eq. 98) 
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APPENDIX E:  MINIMAX CRITERION 

The Bayes’ criterion presented in the Appendix D is a powerful method to define the Optimal 

Operation Point (OOP) of a classifier. However, it cannot be used when the a priori probability 

of the classes P0 and P1 are unknown or could change once the classifier is designed. To 

overcome this issue, the OOP can be defined for the probability P1* where the detection cost 

function is maximum which means that the OOP would be really optimal for the worst case 

scenario. Minimising the maximal detection cost function is known as the minimax criterion. 

As developed in Appendix D, the detection cost function is: 

    00 0 01 1 10 0 11 11 1     F D F DC P P C P P C P P C P P   (eq. 99) 

where C00, C01, C10 and C11 are respectively the cost of true rejection and miss, false and true 

detections; PD and PF are the probability of true and false detection; and P0 and P1 are a priori 

probabilities of the null and alternate hypotheses. 

The hypotheses are mutually exclusive such as, 

 
0 11 P P  . (eq. 100) 

By substituting (eq. 100) in (eq. 99), the detection cost function is expressed as: 

        00 10 00 1 01 00 01 11 10 00          F D FC P C C P C C P C C P C C  . (eq. 101) 

Where maximal cost is the function derivative with respect to P1 which corresponds to the 

minimax equation, 

        01 00 01 11 10 00

1

, 0


       


D F D FL P P C C P C C P C C
P

 . (eq. 102) 

The OOP of the Receiver Operating Characteristic (ROC) curve is therefore the point where the 

minimax equation is minimal, 

  , 0
 

   
 

D F

D F

L L
L P P

P P
,  (eq. 103) 
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which corresponds to the point on the ROC curve where its derivative equals to (eq. 34): 

 
 

 
10 00

01 11






D

F

C CdP

dP C C
 .  

The case where the cost for miss and false detections is the same and no cost is attributed for 

correct detection is called the maximum-likelihood estimator which defines the optimal 

operation point as where the ROC curve derivative equal 1 (eq. 35), 

 1D

F

dP

dP
 .  

 

 




