

Rapid measurement of phytosterols in fortified food using gas chromatography with flame ionization detection

This is the Accepted version of the following publication

Modica, Samantha Huynh, Strobel, N, Buddhadasa, Saman, Stockham, Katherine, Auldist, Martin J, Wales, B, Orbell, John and Cran, Marlene (2016) Rapid measurement of phytosterols in fortified food using gas chromatography with flame ionization detection. Food Chemistry, 211. 570 - 576. ISSN 0308-8146

The publisher's official version can be found at http://www.sciencedirect.com/science/article/pii/S0308814616307932 Note that access to this version may require subscription.

Downloaded from VU Research Repository https://vuir.vu.edu.au/32860/

Supplementary Material

Rapid measurement of phytosterols in fortified food using gas chromatography with flame ionization detection

Samantha Duong^{1,3}, Norbert Strobel¹, Saman Buddhadasa¹, Katherine Stockham¹, Martin Auldist², Bill Wales², John Orbell³ and Marlene Cran³*

Figure S1. Structures of common phytosterols (Moreau et al., 2002).

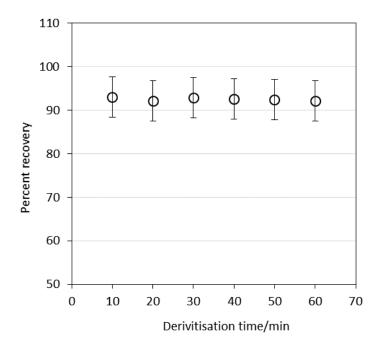
Stigmastanol (C29H52O)

Stigmasterol (C29H48O)

ß-sitosterol (C29H50O)

Campesterol (C28H48O)

 5α -cholestane (C27H48)


5 β -cholestan-3 α -ol (C27H48O)

Brassicasterol (C28H46O)

Table S1. Plackett Burnman experimental design to investigate critical method parameters.

Experiment	Extraction solvent	Incubation temperature /°C	Saponification mixture	Saturated NaCl	Aqueous HCl	Water
A	Toluene	100	2.3 M NaOH in methanol	Yes	Yes	
В	Toluene	80	2.3 M KOH in methanol	Yes	Yes	
С	Toluene	100	2.3 M NaOH in methanol	Yes	Yes	
D	Toluene	100	2.3 M NaOH in methanol	Yes	No	
E	Heptane	100	2.3 M NaOH in methanol	Yes	Yes	
F	Toluene	100	2.3 M NaOH in methanol	No	Yes	
G	Heptane	80	5M ethanolic KOH	No		Yes
Н	Heptane	80	5M ethanolic KOH	Yes		Yes
I	Heptane	80	5M ethanolic KOH	Yes		No

Figure S2. Effect of BSTFA/TCMS derivatisation time on sterol recovery.

Equation S1. Recovery calculation.

Recovery
$$\% = \frac{\text{sample value}}{\text{theorectical certified value}} \times 100$$