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Abstract 

Computational fluid dynamics (CFD)-based three-dimensional predictive fire models are 

increasingly used for predicting fire growth and spread. The models provide information to fire 

safety engineers for designing fire protection systems in buildings. Although currently limited, in 

a generation CFD-based models are expected to be used by emergency organisations to obtain 

similar information during bushfires under a wide range of topographies, climates and types of 

vegetation for their resource allocation planning. To increase their accuracy, most promising 

CFD-based models are embedded with pyrolysis sub-models along with large eddy simulation 

(LES) schemes to account for turbulence. The fundamental idea of LES is to resolve the large 

energy containing eddies, and use sub-grid scale (SGS) model to simulate the effect of energy 

dissipation by small scale eddies on large eddies. 

Obtaining grid independent LES can be elusive. The filtering technique, along with the SGS 

model, plays an important role in grid sensitivity and accuracy of LES. It is known that grid 

sensitive simulations present a major problem with implicitly filtered LES and this can lead to 

poor grid convergence. In the last two decades, explicit filtering schemes have appeared as a 

viable option offer a promising solution, where the model (essentially the filter width) is 

maintained constant while the discretization error is reduced by refining the grid. Implicit filter 

tend not to separate discretization error from the modelling error because they do not separate the 

turbulence model from the grid refinement. This leads to grid sensitive results even at low 

Reynolds number for wall bounded flows. A growing body of literature is available in which it is 

argued that explicit schemes are more likely to provide grid independent solutions and reduce the 

numerical errors significantly compared to implicit schemes. In this study, a systematic approach 
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for wall bounded flows is proposed to obtain grid independence by combining an explicit LES 

scheme with a damped Smagorinsky sub-grid model. The aim is to separate modelling error from 

numerical error and thereby to obtain a grid independent result more readily. In this approach, 

emphasis is given to the selection of the filter width as a function of a physical parameter, 

namely boundary layer thickness (BLT). An analysis of the energy spectrum ensures that grid 

converged solutions at fixed filter are consistent with LES principles by setting fixed filter width 

within the inertial sub-range and accurately capturing all energy containing eddies.  

In this study, an open source implicitly filtered LES code, Fire Dynamics Simulator (FDS), is 

taken as the baseline source code. First, the elusiveness of the grid convergence with the baseline 

four implicitly filtered LES sub-models (standard Smagorinsky, dynamic Smagorinsky, 

Deardorff and Vremen) is demonstrated. Out of the four, standard Smagorinsky model is found 

to be most promising for a high Reynolds number (𝑅𝑒) flow. Then, this LES sub-model is 

modified to implement the explicitly filtered LES. This modified model and approach is 

successfully applied to two benchmark cases at two different two different 𝑅𝑒𝜆. A low 𝑅𝑒𝜆 case 

is realized in a buoyancy driven turbulent flow in a differentially heated cavity, and a high  𝑅𝑒𝜆 

flow occurs over a backward facing step. The proposed approach provides a possible alternative 

way of selecting the LES filter in the absence of DNS resolutions as references. This study 

provides guidelines on the selection of filter width to grid spacing ratio (ultimately BLT to grid 

spacing ratio) for the proposed numerical scheme for resolving turbulent flows. This study also 

shows that the performance of explicit LES with coarser resolution is better than the implicit 

LES with finer resolution to obtain accurate numerical solution.  
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𝑢(𝑙) characteristic velocity (m/s) 

𝑢𝑚𝑎𝑥 maximum velocity at the center line (m/s) 

𝑢0 velocity relates to integral length scale (m/s)  

𝑈0 free stream velocity (m/s) at reference location (3h upstream of the step) 

𝑢𝜂 velocity relates to Kolmogorov length scale (m/s) 

𝑢𝜏 friction velocity (m/s) 

𝑢̅, 𝑣̅, 𝑤̅ mean velocity component in three direction (m/s) 

𝑢′, 𝑣 ′, 𝑤′ fluctuating velocity component along three direction (m/s) 

𝑢′𝑣′̅̅ ̅̅ ̅ Reynolds stresses (m2/s2 )  

𝑢̅(𝑥, 𝑡) filtered resolved velocity component (m/s) 

𝑢′(𝑥, 𝑡) residual (or SGS) velocity component (m/s) 

𝑢̃𝑖 filtered velocity in explicit scheme (m/s) 
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〈𝑢̃𝑖〉 ensemble average of the filtered velocity (m/s) 

𝑢̂ filtered velocity in LES (m/s) 

𝑢′ fluctuating part of the velocity in LES (𝑢𝑅𝑒𝑠𝑜𝑙𝑣𝑒𝑑
′ + 𝑢𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙

′ ) (m/s) 

𝑊𝑗 given weights to the cell within the filter width 

𝑥 position (m) 

𝑦 Cartesian coordinate 

𝑦+ dimensionless wall normal unit 

𝑦𝑐𝑟𝑜𝑠𝑠𝑜𝑣𝑒𝑟 smallest distance which separates two layers of the boundary layer (m) 

Greek symbols 

𝛼 test and grid filter width ratio (∆̂/∆) 

𝛼 thermal diffusivity of fluid in cavity flow (m2/s) 

𝛼 closure coefficient in Cebeci-Smith model considered as 0.0168 

𝛼, 𝛽 arbitrary initial values in turbulent pipe flow 

𝛼𝑖𝑗 velocity gradient in Vreman’s model   

𝛽 thermal expansion coefficient in cavity flow (K−1) 

𝛽, 𝑐𝜂 constants in model spectrum based on Taylor scale Reynolds number (𝑅𝑒𝜆) 

𝛿 boundary layer thickness (m) 

𝛿𝑥, 𝛿𝑦, 𝛿𝑧 grid (or mesh) cell size in three direction (3-D) (m) 

 𝛿𝑖𝑗 Kronecker delta 

𝛿𝑣
∗ velocity thickness (m) 

Δ spatial filter width in LES (m) 

Δ̂ explicit filter width larger than the grid size (m) 
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𝜀 dissipation of turbulent kinetic energy (TKE) (m2/s3) 

𝜀𝑓 filtered dissipation energy (m2/s3) 

𝜉 relative error at an individual point 

𝜉𝑚 resultant mean relative error 

Φij(κ) velocity spectrum (m2/s2) 

ℒ𝑖𝑗 Leonard stress term known as ‘Germano identitity’ (N/m2) 

𝜆 Taylor microscale (m) 

𝜇 molecular viscosity of the fluid (kg/m. s) 

𝜇𝑇 turbulent molecular viscosity of the fluid (kg/m. s) 

𝜂 Kolmogorov length scale (m)  

𝜈 kinematic viscosity of fluid (m2/s) 

𝜈𝑇 turbulent kinematic viscosity of fluid (m2/s) 

𝜈𝑚𝑖𝑥 kinematic viscosity of mixing length (m2/s) 

𝜈𝑡𝑖𝑛𝑛𝑒𝑟 viscosity near the wall (m2/s) 

 𝜈𝑡𝑜𝑢𝑡𝑒𝑟 viscosity outer boundary layer (m2/s) 

𝜌 density (kg/m3) 

𝜎𝑘 turbulent Prandtl number for kinetic energy  

𝜎𝜀 turbulent Prandtl number for dissipation 

ℛ reference values  

𝜓 predicted values from numerical solution 

𝜏𝑖𝑗 shear stress tensor (N/m2) 

𝜏𝑖𝑗
𝑟  residual shear stress (N/m2) 
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𝜏(𝑙) characteristic timescale (s)  

𝜏𝜂  Kolmogorov timescale (s) 

𝜏0  integral length scale timescale(s) 

𝜏𝑤 wall shear stress (N/m2) 

𝜏𝑖𝑗
𝑠𝑔𝑠

 sub grid scale shear stress (N/m2) 

𝜏𝑖𝑗
𝑅𝑒𝑠𝑜𝑙𝑣𝑒𝑑 resolved stress part of SGS model (N/m2) 

𝜏𝑖𝑗
𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙 residual stress part of SGS model (N/m2) 

Superscripts 

〈. 〉 spatial averaging 

Acronyms 

𝐵𝐿𝑇 Boundary layer thickness 

𝐶𝐹𝐷 Computational fluid dynamics 

𝐷𝑁𝑆 Direct numerical simulation 

𝐹𝐺𝑅 Filter to grid spacing ratio 

𝐿𝐸𝑆 Large eddy simulation 

𝑁𝑆 Navier-Stokes equations 

𝑃𝐷𝐸 Partial differential equation 

𝑅𝐴𝑁𝑆 Reynolds averaged Navier-Stokes simulation 

𝑆𝐺𝑆 Sub-grid scale 

𝑆𝑆𝑀 Standard Smagorinsky model 

𝑇𝐷𝑀𝐴 Tri-diagonal matrix algorithm 
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1. Chapter 1 

Background Theory and Scope 
 

1.1 Introduction 

It is vital that fire safety engineers are able to predict the growth and spread of building-fires 

under a wide range of scenarios in order to design fire protection systems. It is also important for 

emergency organisations to predict similar effects during bushfires under a wide range of 

topographies, climates and types of vegetation for their resource allocation planning. 

Compuational fluid dynamics (CFD)-based three-dimensional predictive fire models are highly 

desirable for both groups of professionals. While pyrolysis (gasification of solid fuel) and 

combustion (chemical reaction between gasified fuel and oxygen) sub-models are distinguishing 

features of a CFD-based fire model, its background sub-models of mass, momentum and energy 

are fundamentally important.  

Numerical simulation becomes more complex when a flow field becomes turbulent. Almost 

every flow scenario of practical importance is turbulent in nature. Turbulent flow is characterized 

by random fluid motions from small scale to large scale motions at various frequencies. 

Although the largest scale in fire scenarios can be ranged from tens of meters (building fires) to 

many kilometers (bushfires), the phenomena that determine their behaviour and accuracy are 

dependent on the scales that may be tiny fractions of a millimeter. To capture these tiny motions 

the spatial and temporal resolutions in numerical simulation need to be extremely fine, which 

requires enormous computational resources. A simulation scheme to solve mass, momentum and 

energy equations with such fine resolution is known as direct numerical simulation (DNS). To 
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reduce the computational requirements, various numerical schemes have emerged. They fall into 

two broad categories, Reynolds averaged Navier-Stokes (RANS) simulation, and large eddy 

simulation (LES). More details of the mathematical formulation of the governing equations and 

numerical approaches to solving these governing equations in DNS, RANS and LES are 

discussed in several sections of this chapter. 

1.2 Numerical approaches to simulating turbulent flows 

The main concept of numerical simulation of turbulent flow using CFD is that it approximates 

fluid motions by solving a set of non-linear partial differential equations (PDEs). These 

differential equations consist of continuity equations (mass conservation) and momentum 

balance equations (Navier-Stokes equations) derived from Newton’s second law of motion. For 

compressible flow, an additional energy equation is required to extract the necessary information 

about the density and temperature (Pope 2000). In the momentum and energy equations, 

convective non-linear terms appear which make them intractable to solve analytically.  

In numerical approaches, these governing partial differential equations are discretized in space 

and time in the computational domain of a given physical problem using different types of 

numerical schemes. As mentioned above, there are three broad numerical approaches for solving 

Navier-Stokes equations: DNS, RANS and LES. 

1.2.1 Direct Numerical Simulation (DNS) 

DNS solves the Navier-Stokes equations by resolving all the spatial and temporal scales of 

turbulence present in the flow, and this results in particularly accurate solutions. The continuity 

and the Navier-Stokes equations for incompressible flow are as follows: 

 𝜕𝑢

𝜕𝑥
+
𝜕𝑣

𝜕𝑦
+
𝜕𝑤

𝜕𝑧
= 0 

(1.1) 
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𝜌 (
𝜕𝑢

𝜕𝑡
+ 𝑢

𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
+ 𝑤

𝜕𝑢

𝜕𝑧
) = 𝐹𝑥 −

𝜕𝑝

𝜕𝑥
+ 𝜇 (

𝜕2𝑢

𝜕𝑥2
+
𝜕2𝑢

𝜕𝑦2
+
𝜕2𝑢

𝜕𝑧2
) 

(1.2) 

 
𝜌 (
𝜕𝑣

𝜕𝑡
+ 𝑢

𝜕𝑣

𝜕𝑥
+ 𝑣

𝜕𝑣

𝜕𝑦
+ 𝑤

𝜕𝑣

𝜕𝑧
) = 𝐹𝑦 −

𝜕𝑝

𝜕𝑦
+ 𝜇 (

𝜕2𝑣

𝜕𝑥2
+
𝜕2𝑣

𝜕𝑦2
+
𝜕2𝑣

𝜕𝑧2
) 

(1.3) 

 
𝜌 (
𝜕𝑤

𝜕𝑡
+ 𝑢

𝜕𝑤

𝜕𝑥
+ 𝑣

𝜕𝑤

𝜕𝑦
+ 𝑤

𝜕𝑤

𝜕𝑧
) = 𝐹𝑧 −

𝜕𝑝

𝜕𝑧
+ 𝜇 (

𝜕2𝑤

𝜕𝑥2
+
𝜕2𝑤

𝜕𝑦2
+
𝜕2𝑤

𝜕𝑧2
) 

(1.4) 

Here, 𝑢, 𝑣 and 𝑤are the velocity components along three directions; 𝐹 is the external force, 𝑝 is 

the pressure and 𝜇 represents the molecular viscosity of the fluid. In tensor form, these governing 

equations can be simply expressed as 

 𝜕𝑢𝑖
𝜕𝑥𝑖

= 0 
(1.5) 

 
𝜌 (
𝜕𝑢𝑖
𝜕𝑡
+ 𝑢𝑗

𝜕𝑢𝑗

𝜕𝑥𝑗
) = 𝐹𝑖 −

𝜕𝑝

𝜕𝑥𝑖
+ 𝜇 (

𝜕2𝑢𝑖
𝜕𝑥𝑗𝜕𝑥𝑗

) 
(1.6) 

In DNS, neither turbulence modelling of effects of small scales on large scales nor the averaging 

approach to obtain mean and fluctuating components is involved. Since it is the most accurate 

numerical approach to capture the turbulence, in many cases it is considered as an alternative to 

physical experimentation. For instance, where experimental results are not available, the DNS 

results are considered as the most accurate numerically obtained solutions for validating the 

results from numerical simulations with turbulence modelling.   

The major issue that affects the practical use of DNS results is the higher computational 

requirements. In DNS the grid spacing must be on the same lengthscale as the smallest eddies. 

Hence, details of turbulent flows that occur in many practical situations can be captured only by 

using a very large number of grid points. This is computationally resource intensive. In addition, 

the required grid resolutions depend on the Reynolds number (𝑅𝑒) which is a dimensionless 

quantity defined as the ratio of inertial forces to viscous forces based on the system lengthscale. 
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When the 𝑅𝑒 increases, the ratio between the integral lengthscale and smallest lengthscale also 

increases (Pope 2000) (for more details about scales please refer to Section A.3 of Appendix A). 

To date the largest DNS performed of an idealised channel flow are of order 𝑅𝑒𝜏 ~ 5200 (Lee 

and Moser 2015).  

In DNS, all of the smallest scales that are responsible for energy dissipation are captured. In 

those cases, the computational grid size should be small enough to capture these viscous effects 

of flow. The grid size should be smaller than the size of the smallest eddies and this ranges from 

less than a millimetre (George 2005) in all practically important flows; the smallest length scale 

present in turbulent flows is known as the Kolmogorov scale, 𝜂 . If we consider 𝐿  as the 

characteristic length of the computational domain, so for DNS, the number of grid points in one 

direction will be in the order of,   

 
𝑁~
𝐿

𝜂
 

(1.7) 

The Kolmogorov lengthscale is represented in terms of the kinematic viscosity 𝜈 (𝑚2/𝑠) and 

dissipation (the rate at which turbulent kinetic energy is converted into internal energy) per unit 

mass of the fluid 𝜀(𝑚2/𝑠3). Therefore 𝜂 is represented as; 𝜂 = (𝜈3/𝜀)1/4. The dissipation per 

unit mass can be approximated as 𝜀~𝑢3/𝐿, where 𝑢 is the characteristic velocity of the flow. 

Using these relations, the number of grid points in a domain required for DNS can be estimated 

as, 

 
𝑁~(

𝐿

𝜂
)
3

~(
𝑢𝐿

𝜈
)
9/4

= 𝑅𝑒9/4 
(1.8) 

For this reason, DNS is not computationally feasible for high Reynolds numbers and is restricted 

to relatively low Reynolds numbers and is mostly used for comparatively simple fluid flow cases 

such as isotropic turbulence, channel and pipe flows etc. 𝑅𝑒  that are encountered in most 
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practical cases and complex engineering applications, DNS will not be able to provide numerical 

solutions by using high performance computational power that is presently available. For 

example, in atmospheric applications the 𝑅𝑒 is of order 𝑅𝑒𝜏~ 2.5 × 10
6 and the geometries can 

be quite complex such as flow over buildings (Bou-Zied et. al 2009). 

1.2.2 Reynolds Averaged Navier-Stokes Simulation (RANS) 

The Reynolds averaged Navies-Stokes simulation (RANS) is one of the most widely used 

numerical approaches to simulate turbulent flows. It takes the time averaged solution of Navier-

Stokes equations to solve the fluid flow. This idea was first introduced by Reynolds (1895).  The 

underlying concept behind RANS is the Reynolds decomposition which separates instantaneous 

fluid motions into two components, namely time averaged mean values and fluctuating 

quantities. The auto-correlation of fluctuating components are termed as ‘Reynolds stresses’ 

which are modelled using empirically determined relationships. The time averaged Navier-

Stokes equations in all three spatial directions can be written as, 

𝜌 (
𝜕𝑢̅

𝜕𝑡
+ 𝑢̅

𝜕𝑢̅

𝜕𝑥
+ 𝑣̅

𝜕𝑢̅

𝜕𝑦
+ 𝑤̅

𝜕𝑢̅

𝜕𝑧
) = 𝐹𝑥 −

𝜕𝑝̅

𝜕𝑥
+ 𝜇 (

𝜕2𝑢̅

𝜕𝑥2
+
𝜕2𝑢̅

𝜕𝑦2
+
𝜕2𝑢̅

𝜕𝑧2
) − 𝜌 (

𝜕𝑢′𝑢′̅̅ ̅̅ ̅

𝜕𝑥
+
𝜕𝑢′𝑣′̅̅ ̅̅ ̅

𝜕𝑦
+
𝜕𝑢′𝑤′̅̅ ̅̅ ̅

𝜕𝑧
) (1.9) 

𝜌 (
𝜕𝑣̅

𝜕𝑡
+ 𝑢̅

𝜕𝑣̅

𝜕𝑥
+ 𝑣̅

𝜕𝑣̅

𝜕𝑦
+ 𝑤̅

𝜕𝑣̅

𝜕𝑧
) = 𝐹𝑦 −

𝜕𝑝̅

𝜕𝑦
+ 𝜇 (

𝜕2𝑣̅

𝜕𝑥2
+
𝜕2𝑣̅

𝜕𝑦2
+
𝜕2𝑣̅

𝜕𝑧2
) − 𝜌 (

𝜕𝑢′𝑣′̅̅ ̅̅ ̅

𝜕𝑥
+
𝜕𝑣′𝑣′̅̅ ̅̅ ̅

𝜕𝑦
+
𝜕𝑣′𝑤′̅̅ ̅̅ ̅̅

𝜕𝑧
) (1.10) 

𝜌 (
𝜕𝑤̅

𝜕𝑡
+ 𝑢̅

𝜕𝑤̅

𝜕𝑥
+ 𝑣̅

𝜕𝑤̅

𝜕𝑦
+ 𝑤̅

𝜕𝑤̅

𝜕𝑧
) = 𝐹𝑧 −

𝜕𝑝̅

𝜕𝑧
+ 𝜇 (

𝜕2𝑤̅

𝜕𝑥2
+
𝜕2𝑤̅

𝜕𝑦2
+
𝜕2𝑤̅

𝜕𝑧2
) − 𝜌 (

𝜕𝑢′𝑤′̅̅ ̅̅ ̅̅

𝜕𝑥
+
𝜕𝑣′𝑤′̅̅ ̅̅ ̅̅

𝜕𝑦
+
𝜕𝑤′𝑤′̅̅ ̅̅ ̅̅

𝜕𝑧
) (1.11) 

In tensor form, thee equations can be expressed as 

 𝜕𝑢̅𝑖
𝜕𝑡
+ 𝑢̅𝑗

𝜕𝑢̅𝑗

𝜕𝑥𝑗
= 𝐹𝑖 −

1

𝜌

𝜕𝑝̅

𝜕𝑥𝑖
+ 𝜈

𝜕2𝑢̅𝑖
𝜕𝑥𝑗𝜕𝑥𝑗

−
𝜕𝑢𝑖
′𝑢𝑗
′̅̅ ̅̅ ̅̅

𝜕𝑥𝑗⏟  
𝑅𝑒𝑦𝑛𝑜𝑙𝑑𝑠  
𝑆𝑡𝑒𝑠𝑠𝑒𝑠

 
(1.12) 

where 𝜈 represents the kinematic viscosity; 𝜈 = 𝜇/𝜌. 

The process of averaging inevitably results in loses of information. As a result, RANS models 

lose detailed information of the flow, more specifically the details of the flow smeared as it 

involves averaging to derive the governing equations.  
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1.2.3 Large Eddy Simulations (LES) 

In LES, turbulence contained in large lengthscales is resolved and small scale turbulence is 

modelled. Comparing computational costs, LES lies between DNS and RANS. The levels of 

turbulence modelling employed in three numerical approaches in terms of computational cost are 

shown in Figure 1.1. DNS captures all turbulence down to small scales, and provides fully 

resolved solutions which increases the computational time and cost and has been shown in 

Figure 1.1 (a). On the other hand, RANS takes the shortest time for the simulation compared to 

LES and DNS, but is unable to give detailed information on turbulence. However, LES lies 

between DNS and RANS in terms of computational cost and time illustrated in Figure 1.1 (b). 

LES is capable of simulating complex flows and geometries such as flow over bluff bodies 

where flow separation and rotation both take place (You et. al. 2007). 

 
(a) 

 
(b) 

Figure 1.1. Comparison of DNS, RANS and LES in terms of (a) computational costs and (b) 

degree of modelling scales  

As capturing small scales is computationally very expensive, in LES, large scale eddies are 

resolved over a number of computational cells and small scale eddies are filtered by filter width 

which is generally of the same as the grid size. Figure 1.2 represents how LES separates large 

and small eddies in physical space by using a filtering technique through the filter width (∆). It 

appears from the illustrated figure that the large eddies larger than filter width (width is the same 
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as grid size here) are resolved and the dissipative motions of small eddies are filtered. Effects of 

dissipative motion of eddies (which are smaller than the filter size) on energy containing large 

eddies  are modelled by sub-grid scaling which saves computation time and cost compared to 

DNS. The resolved length scales are directly captured by the numerical scheme. On the other 

hand, various turbulence models (e.g. Smagorinsky model, dynamic models etc.) account for the 

effect that the unresolved scales has on the resolved scales. These models are also known as sub-

grid scale (SGS) models (Gullbrand 2004). 

 

Figure 1.2. Representation of resolved and sub-grid scales (SGS)in LES (Sagaut 2001) 

The filtering process plays an important role in LES. Generally, LES can be characterised by two 

types of filtering: implicit (where filter width is same as the grid size) and explicit (where filter 

width is explicitly set by the modeller). However, implicit LES has a significant implication; it 

directly depends on the grid size. If the grid changes the model changes with grid which results 

in different solutions. Moreover, it has less control over the discretization errors (Mahesh et. al. 

2006, Youet. al. 2007). Thus, grid convergence becomes elusive using implicit LES. Unless grid 

converged solutions are obtained the results of CFD simulations are of uncertain value.  

Subgrid-scale (SGS) models in LES 

Over the last two decades SGS models in LES have advanced significantly for complex 

geometries and wide variety of flows (boundary layers, wall jets, wakes, etc.). LES without SGS 
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models (referred to as coarse DNS) generate unphysical results due to the accumulation of 

energy at the high wavenumbers. Therefore, an appropriate SGS model ensures the fidelity of 

LES.  

The concept of SGS models was first introduced in meteorological simulations. Smagorinsky 

(1963) proposed an eddy viscosity model to simulate atmospheric boundary layer turbulence 

which was based on the Boussinesq hypothesis or approximation. This model captured the 

principal effects of the SGS stresses in flows. It relates turbulent shear stress to the mean flow 

strain rate. In some cases it is termed as gradient transport (Tennekes and Lumley 1972, Libby 

1996).  

 
𝑢′𝑣′̅̅ ̅̅ ̅~

1

2
(
𝜕𝑢̅

𝜕𝑦
+
𝜕𝑣̅

𝜕𝑥
) (1.13) 

This approximation is suggested in analogous to  Newton’s law of viscosity with the statement 

that ‘shear stress is proportional to strain rate’, where viscosity is the proportionality constant. 

 
𝜏 = 𝜇 (

𝜕𝑢

𝜕𝑥
) (1.14) 

where 𝜏 is the local shear stress. The important fact is that this statement holds for laminar flow 

and is well supported by experimental results. Turbulent flow generates additional mixing of 

momentum and turbulent shear stress can be expressed as 

 
−𝑢′𝑣′̅̅ ̅̅ ̅ = 𝜈𝑇 (

𝜕𝑢̅

𝜕𝑦
+
𝜕𝑣̅

𝜕𝑥
) (1.15) 

where,  𝜈𝑇  is the turbulent viscosity. From this expression it appears that the Boussinesq 

hypothesis relates the comparatively small scale statistical behaviour known as Reynolds stress 

to large scale behaviour (statistical information extracted from mean flow behaviour). 

Smagorinsky used an analogous idea to develop an eddy viscosity subgid-scale model based on 

this Boussinesq approximation which relates subgrid-scale stresses to the eddy viscosity. It is 

discussed in detail in chapter 2 section 2.2.1. The model coefficient (known as the Smagorinsky 
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constant) was derived by Lilly (1966) for homogeneous and isotropic turbulence. Performance of 

the Smagorinsky model was first explored by Deardorff (1970) for three-dimensional channel 

flow driven by a uniform pressure gradient at high Reynolds number (𝑅𝑒𝐻 ≈ 240,000 based 

upon the channel height). From the study, he concluded that the agreement between the 

computed statistics and the experimental data of Laufer (1954) was in poor agreement and the 

accuracy of the numerical approach was expected to be improved with an increase of numerical 

resolution.  

One of the challenges associated with LES is to model the effects of small scale eddies and to 

derive governing equations inclusive of them. To address the modelling problem, Leonard 

(1974) proposed the derivation of LES governing equations using the filtering concept. The 

concept of filter kernel is to separate small and large scale eddies by applying a spatial filter to 

the velocity field. A volume averaged filter was formulated by Schumann (1975) and applied to 

the simulation of incompressible turbulent channel flows. In his proposed model, SGS stresses 

are divided into two parts, one is accounting for isotropic turbulence and the other for anisotropic 

effects of turbulence. Schumann concluded that the results with the SGS model were in good 

agreement with the channel flow experimental data. The concept of spectral eddy viscosity was 

presented by Kraichnan (1976) and applied to isotropic turbulence. Using this model, he showed 

the limitations of the eddy viscosity concept to represent the effects of small scale turbulence. 

The extension of Kraichnan’s work was carried out by Leslie and Quarini (1979) where they 

presented a theoretical formulation of SGS modelling procedures. From this study, they 

supported Kraichnan’s findings that the effective eddy viscosity varies with the wavenumbers 

associated with different eddy lengthscales. They tested the SGS model for isotropic flow and 

found the results were consistent with that of Kraichnan (1976). Clark et al. (1979) studied SGS 
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tensor formulations for periodic homogeneous isotropic turbulence at low Reynolds number. 

They restricted their study to Reynolds number (based on the Taylor microscale) in the range of 

𝑅𝑒𝜆 ≤ 40  due to lack of computational capacity. Simulation results showed that large scale 

eddies were well captured by energy spectrum analysis but the performance of the SGS model 

was only moderately good. The idea of scale-similarity was first introduced by Bardina et al. 

(1980). This idea helps to express the sub-grid field quantities in terms of filtered quantities. The 

study indicates that information in the resolved scales is sufficient to describe some 

characteristics of the fluid flow and the argument 'production equals dissipation' does not 

applicable to small scale turbulence decay. Another feature of this model is that it produces 

backscatter (energy transfer from small scale to large scale eddies) of energy. However, from 

simulations it is found that the model does not dissipate enough energy which leads to inaccurate 

results. This problem was addressed by Germano et al.  (1991), and they proposed a dynamic 

SGS modelling approach where a model coefficient is not prescribed but it is computed 

dynamically. LES with the proposed dynamic SGS model was used to simulate a fully developed 

turbulent channel flow. Germano et al. (1991) found the results were in good agreement with the 

DNS results of Kim et al. (1987). However, the mathematical formulation of dynamic SGS 

model has some inconsistencies and it is restricted to flows that are statistically homogenous in 

at least one direction, a fact identified by Goshal and Moin (1995). They rectified the 

inconsistency of the mathematical formulation of Germano’s work and studied filter 

inhomogeneity for isotropic turbulence and found the obtained results are in good agreement 

with experiments. Goshal (1996) addressed the issues of discretization error (generated from 

finite differencing) and aliasing errors (generated from non-linear terms in SGS) in LES using a 

dynamic SGS model to simulate isotropic turbulence. As remedies for the problem of clipping 
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(cutoff or discard negative model coefficients) negative values and to minimise the singularities 

in dynamic modelling, Meneveau et al. (1996) proposed a dynamic SGS model in which SGS 

stresses are formulated in Lagrangian way by using first-order Euler time integration and linear 

interpolation in space. The constant and dynamic Smagorinsky models and their variations are 

most widely used SGS models. The interested reader can refer to the books of Sagaut (2001), 

Pope (2000) and Wilcox (1993) for an extensive review of SGS models used in LES.  

Numerical methods in LES 

Numerical methods play an important role in ensuring the accuracy of simulations. Numerical 

schemes that are used for LES often rely on finite-difference methods or spectral methods as 

they are computationally less expensive than finite element and finite volume methods (Goshal 

1996). LES is prone to numerical errors that arise from discretization and aliasing, that are 

directly dependent on the numerical schemes.  

Goshal (1996) studied numerical errors in LES for various finite difference methods (from 2
nd

 

order to 8
th

 order) and spectral methods. He found that higher order schemes lead to reduction in 

the numerical errors. Kravchenko and Moin (1997) studied the effects of numerical errors in LES 

by performing numerical simulation of turbulent channel flow using finite difference methods 

and spectral methods. Numerical and analytical studies show that aliasing errors are more 

destructive for spectral and fourth and sixth-order difference than for second-order finite-

difference simulations. They assumed the probable reason is aliasing errors (generated from the 

non-linear terms with finite differencing) may cause numerical instability and excessive 

turbulence decay for both spectral and higher-order numerical schemes compared to lower-order 

numerical scheme for the test case. Further investigations of Goshal (1996) were carried out by 

Moin and Chow (2003) where they gave emphasis to numerical as well as modelling errors that 

arise from LES. The authors studied decaying isotropic turbulence using a finite difference 
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method. Findings of their study are consistent with those of Goshal (1996) that higher order 

numerical schemes have more control over numerical errors. Gullbrand and Chow (2003) 

presented the effects of numerical errors of second and fourth order finite difference schemes to 

assess the performance of implicitly and explicitly filtered LES (discussed in Section 1.3.1 and 

1.3.2, respectively) for various SGS models. They observed the difference between the 

simulation results and reference data for different SGS models was larger for the fourth order 

than for the second order code. They assumed this may be due to the coarser resolution used in 

the fourth-order code compared to the resolution of the second-order code. Kempf et al. (2011) 

studied numerical error of the turbulent non-premixed bluff-body flame using the Smagorinsky 

model in LES, where the error is defined with respect to experimental data. From their study they 

suggested that second-order scheme can be used in anisotropic turbulence in complex geometries 

to obtain reasonable LES solutions. Keskinen et al. (2016) carried out numerical investigations 

using four different SGS approaches for a three-dimensional, turbulent pipe flow (𝑅𝑒𝜏 = 360). 

SGS models are the standard Smagorinsky, linear interpolation (non-dissipative), the Gamma 

limiter (dissipative), and the scale-selective discretization (slightly dissipative). In their study, 

they have used a second-order numerical scheme for the SGS models they considered. Out of 

four SGS models, the authors found that that Smagorinsky model shows the best agreement with 

the reference data. 

1.3 Contribution of filtering schemes in LES 

 

According to the classical theory of Kolmogorov, lengthscales of eddies in turbulent flows can 

be divided into three regions (Pope 2000). It is considered that the largest eddies are the same 

size as the characteristic lengthscales of the flow geometry, and should generally depend on  
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Figure 1.3. Energy cascading process from largest eddy scales to smallest eddy scales in terms of 

turbulent kinetic energy (vertical) and wavenumbers (inversely proportional to the length scales) 

plotted in log-log scales 

the fluid properties. This part in the energy spectrum of turbulence is known as the energy 

containing range. Kolmogorov lengthscales are the smallest eddy scales. In these scales the 

influence of viscosity is dominant and energy is transferred to surroundings by dissipation in the 

form of heat: the local Reynolds number (Reynolds numbers calculated on the basis of eddy 

length scales) is of the order of unity. Between these largest and smallest scales, other scales of 

eddy exist and these eddy length scales can be expressed by comparatively large local Reynolds 

numbers: they are independent of viscous effects. This intermediate class is known as inertial 

subrange scales; they depend on the dissipation rate only and are fully independent of the types 

of flow (whether wall bounded or free shear flow).  

The intermediate and smallest eddy length scales are universal and they show an isotropic nature 

in all types of flow. Illustrations of these three types of lengthscales are presented in Figure 1.3 
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in terms of wavenumbers (related to wavelength or eddy length scales and inversely proportional 

to the characteristic lengthscale of an eddy) and the specific kinetic energy spectrum plotted on 

logarithmic axes. This process of transferring energy from large eddies to smaller eddies is 

known as an energy cascading process. It illustrates how energy is transferred between eddies 

over a wide range of lengthscales. It was first introduced by Richardson (1922). Energy is 

produced in the largest scale (𝑙0)  eddies and is transferred via the inertial range to the 

Kolmogorov scale (𝜂) where it is dissipated in the form of heat. The dissipation range is highly 

influenced by viscous effects and occurs in the smallest scales. Whereas 𝑙𝐸𝐼 and 𝑙𝐷𝐼 presents the 

demarcation between the energy containing and dissipation range from the inertial subrange 

during the energy cascading process. According to Kolmogorov, the energy transferred from the 

large energy containing range to the inertial range is equal to the energy transferred from the 

inertial range to the dissipation range or Kolmogorov scales and further into heat (Pope 2000). 

Advantage of this energy cascading property is taken in LES of turbulent flows where the effects 

of the smallest scales on the largest scales are modelled as turbulent dissipation (Sagaut 2001). 

Extended studies of LES and their most important aspects to resolve turbulence in many practical 

and complex situations are discussed in the later sections of this chapter. 

1.3.1 Implicit LES schemes 

 

A large number of authors showed that implicit schemes are highly grid sensitive and fail to 

control numerical errors (more specifically discretization errors). Higher order numerical 

schemes in implicit LES were studied by Lund and Kaltenbench (1995) for turbulent flow inside 

a pipe. They observed grid sensitivity even with a high order numerical scheme applied to 

implicitly filtered LES. Sensitivity of implicitly filtered LES to the numerical grid due to the 

inherent dependence of the filtering operation on the discretized operators is assessed by 
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Kravchenko and Moin (2000) in their numerical studies of flow over a circular cylinder at a low 

Reynolds number (𝑅𝑒𝐷) 3900. They used both the dynamic and the standard Smagorinsky model 

to conduct the implicitly filtered LES simulations. After comparing their results with 

experimental data, they concluded that grid converged solutions are difficult to obtain by using 

implicit LES even at very low Reynolds number fluid flow. Meyers & Sagaut (2007) conducted 

a numerical study of channel flow at low Reynolds numbers (𝑅𝑒𝜏 = 298)  using implicitly 

filtered LES, and compared their results with DNS. After evaluating the performance of a 

number of SGS models, they concluded that grid sensitivity remained, even when the grid was 

very finely resolved.  

1.3.2 Explicit LES schemes 

Implicitly filtered LES can certainly converge to the limit of a DNS resolution, but it will in 

general not converge to that limit monotonically thus complicating convergence analysis as the 

literature reference above demonstrates. In the last two decades, explicit filtering schemes have 

been investigated by various researchers in which the filter width is maintained constant thus 

keeping the model unchanged while the numerical error is reduced by refining the grid (Carati et 

al. 2001; Winckelmans et al. 2001). Explicitly filtered LES converges monotonically allowing 

for a systematic approach to testing the grid sensitivity of the solutions (Matthew et al. 2003).  

Ghosal and Moin (1995) and Ghosal (1996) discuss the advantages of explicit filtering over 

implicit filtering in LES for isotropic turbulence inside a cubic configuration with periodic 

boundary conditions. Najjar and Tafti (1996) simulated turbulent channel flow using an explicit 

scheme. In their study, the focus was on the control of numerical errors that are generated due to 

using explicit LES. They used different test filters (top hat and Fourier cut-off filters) in a 

dynamic eddy viscosity model to account for the turbulence. The test filters were based on grid 
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spacing obtained from DNS resolution of a channel flow study conducted by Kim et al. (1987). 

Simulated results were compared with DNS where explicit LES was observed to provide more 

accurate solutions than implicit LES.   

Gullbrand (2002) studied grid independent LES for turbulent channel flow using explicit 

filtering. She concluded that an explicit filter is able to provide grid independent results for 

turbulent channel flow and to significantly reduce the numerical errors which are associated with 

high wavenumbers generated from the convective term of the Navier-Stokes equations. The case 

study was further expanded by Gullbrand and Chow (2003) to assess the errors associated with 

different numerical schemes as well as SGS turbulence closures. They provided guidelines on 

filter width to grid spacing ratio (FGR) for a number of numerical schemes. It was found that for 

fourth-order finite difference schemes, an explicit filter width should be at least twice that of the 

grid cell, and for second-order schemes it should be at least four times. These findings are 

consistent with those of Chow and Moin (2003). More recently, Radhakrishnan and Bellan 

(2012, 2013, 2015) have extensively studied grid independence of explicitly filtered LES for 

single- and two-phase compressible fluid flows with evaporation inside an internal combustion 

chamber. Prior to conducting grid independence tests, a DNS solution database was created 

which the authors termed a ‘trusted template’ for validating the LES results. A DNS study was 

carried out because it was not possible to conduct experiments of the proposed test cases due to 

complex boundary conditions.  

1.3.2.1 Selection of filter width in explicit LES scheme 

The selection of the filter width in explicit LES schemes has often been either inadequately 

addressed, or in some cases completely ignored by previous researchers. Some authors do, 

however, mention the selection of the filter width.  Gullbrand (2002) proposed a ‘true’ LES 
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approach which means that a grid-converged LES solution is obtained by refining the grid while 

the filter width (taken from a DNS study) is unchanged. From her study, it appears that she took 

the filter width as being eight times the DNS grid resolution (∆= 8𝜕𝑥𝐷𝑁𝑆) although the rationale 

for this is unclear. There were two computational grid resolutions selected for the simulation: 

one was taken as 𝜕𝑥𝑐𝑜𝑎𝑟𝑠𝑒 = 4𝜕𝑥𝐷𝑁𝑆  corresponding to an FGR of two, and the second was 

𝜕𝑥𝑓𝑖𝑛𝑒 = 2𝜕𝑥𝐷𝑁𝑆  corresponding to an FGR of four. A similar case study was performed by 

Gullbrand and Chow (2003) to assess the effect of numerical errors arising from different 

numerical schemes. They ran implicit LES simulations with four coarse grid resolutions: 

6𝜕𝑥𝐷𝑁𝑆, 4𝜕𝑥𝐷𝑁𝑆, 3𝜕𝑥𝐷𝑁𝑆 and 2𝜕𝑥𝐷𝑁𝑆 finding that 3𝜕𝑥𝐷𝑁𝑆 was the coarsest resolution that gave 

the same results as those given by DNS with the grid size resolved to the Kolmogorov length 

scale, and it was selected as the grid size required for explicit LES. However, based on the 

assumption that a fourth-order numerical scheme would be more accurate than the second-order 

scheme, a coarser grid, i.e. 4𝜕𝑥𝐷𝑁𝑆  was selected for the simulation in which a fourth order 

scheme was implemented, whereas for the second order scheme it was maintained at 3𝜕𝑥𝐷𝑁𝑆. In 

the cases of both numerical schemes they kept the filter width fixed at (8𝜕𝑥𝐷𝑁𝑆), leading to an 

FGR of two, and nearly three for the fourth- and second-order schemes, respectively. 

Radhakrishnan and Bellan (2012, 2013, 2015) followed a very similar approach in selecting the 

filter width in explicit LES schemes. They selected three different meshes (coarse, 𝜕𝑥𝑐𝑜𝑎𝑟𝑠𝑒 =

4𝜕𝑥𝐷𝑁𝑆  with an FGR of two, medium, 𝜕𝑥𝑚𝑒𝑑𝑖𝑢𝑚 = 2𝜕𝑥𝐷𝑁𝑆 , with an FGR of four and fine, 

𝜕𝑥𝑓𝑖𝑛𝑒 = 𝜕𝑥𝐷𝑁𝑆, with an FGR of eight).  For higher order numerical schemes the filter width was 

taken as 8 times that of the DNS grid resolution. The literature indicates that a similar approach 

has been adapted in almost every explicit scheme test case where filter widths are selected from 

existing or created DNS solutions. 
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1.3.2.2 Filter to grid spacing ratio (FGR) in explicit schemes 

Filter to grid spacing ratio (FGR) plays an important role in providing appropriate solutions in 

explicit LES schemes. This issue has been reported by several authors by performing various 

fluid flows using explicit schemes. Ghosal (1996) reported that significant numerical errors were 

generated when performing explicit LES for isotropic turbulence decay inside a cubic box. The 

author focused on the errors that were generated due to spatial discretization arising from finite 

differencing schemes of different orders. One of the notable findings of his study was that a 

significant portion of the numerical errors arose from the non-linear and sub-grid terms in LES. 

According to their approximation the aliasing errors (errors from non-linear terms) are 

independent of finite difference schemes. An extension of the work of Goshal (1996) was carried 

out by Chow and Moin (2003). They investigated the numerical errors for a similar case study 

using both low order (second order) and higher order (fourth and sixth order) explicit LES codes. 

Their suggestions were that for a second-order finite difference scheme, the desired filter-grid 

ratio is at least four and for a higher order (i.e. fourth or sixth order) numerical scheme an filter-

grid ratio of two is sufficient. Turbulent channel flow using explicit filtering was investigated by 

Gullbrand and Chow (2003) to assess the effect of numerical errors for second- and fourth-order 

numerical schemes. Furthermore, the case study was also investigated for various turbulence 

models and grid resolutions. In this work, for fourth-order finite difference schemes the explicit 

filter width an filter-grid ratio of two was found to be sufficient; for the second order it was four, 

which supported the findings of Chow and Moin (2003).  

1.4 Research gap and limitations 

From the above survey of the literature, it is found that almost all the case studies with explicit 

LES have been conducted for very simple fluid flow cases (such as channel flow, pipe flow, flow 
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over a circular cylinder, etc.) and have not been used in any practical cases or in engineering 

applications (Lee and Moser 2015). For simple flow cases, well-developed DNS reference data 

are either available or can be generated without much difficulty. Therefore, it was 

straightforward to choose the grids and/or filter width (explicit scheme) for LES, based on the 

available/required DNS grid resolutions. Furthermore, there are no guidelines available to select 

the filter width for other complex fluid flow cases where no reference resolutions (DNS) are 

available. DNS cannot be easily performed to determine the filter width for explicit LES for 

practical cases. An important question in the absence of DNS resolution is how to select the filter 

width which is a purely model parameter in explicitly filtered LES. Can it be based on a 

percentage of a physical parameter such as the boundary layer thickness (BLT), which is 

considered the same size as the largest eddy (Tennekes and Lumley 1972)? It then raises the 

second question: how can we select the percentage of a physical parameter and select an FGR 

consistent with the principles of LES and grid convergence? The main objective of this current 

work is to address the above issues and to develop an appropriate scheme to obtain a simulation 

result consistent with the principles of LES which are (a) the filter width lies within inertial range 

and (b) all energy containing  eddies are adequately captured and grid convergence is obtained in 

explicit schemes (Pope 2004).  

The CFD-based model fire dynamics simulator (FDS) is a promising model for simulating 

turbulent flows, arising from fire, with a reasonable degree of accuracy when the flow field is 

highly resolved (Abubakar 2015). FDS is a time-dependent, three-dimensional computational 

fluid dynamics CFD-based fire model used to solve the Navier-Stokes equations for turbulent 

flows. It is an open source LES code developed by McGrattan et al.(2011). In this study, FDS 

has been considered as the baseline code to simulate the test cases which is a non-iterative 
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pressure solver to couple the pressure and velocity fields using a predictor and corrector method. 

It employs a kinetic energy preserving, second-order central differencing scheme for spatial 

discretization of the momentum equation. FDS uses block structured staggered Cartesian grids 

and data storage for primitive variables (Harlow and Welch 1965) where scalar quantities are 

stored at cell centres and velocity components are stored at their respective face centres 

(Mcdermott 2014).  

It is known that higher order numerical schemes such as fourth order or sixth order numerical 

schemes increase the accuracy of LES by minimizing numerical errors (Ghosal 1996). However, 

as the higher numerical scheme is computationally very expensive, in CFD based fire models 

usually only a second-order scheme is used (McGrattanet al. 2011). This is fairly common 

throughout LES studies (Goshal 1996, Kravchenko and Moin 2000, Moin and Chow 2003, Chow 

and Gullbrand 2003, Radhakrishnan and Bellan 2013, Keskinen et al. 2016), the reasoning is it 

provides adequate solutions which converge significantly faster than higher-order numerical 

schemes. 

However, its default mode of operation is an implicit LES scheme and results are highly 

dependent on grid sizes making it very difficult to carry out validation studies for practical flows 

(Moinuddin et al. 2010). This research is aimed at reducing grid dependency by implementing an 

explicit LES scheme within it so that reliable validation studies of FDS can be carried out in 

order to use it as a predictive tool for fire risk, so that effective mitigation strategies can be 

undertaken. 

1.5 Aims and research objectives 

 

The principal objective of this work is to develop an explicit filtering scheme to obtain an 

appropriate solution in LES. In this way it will become feasible to simulate wall-bounded 
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turbulent flows that are practically important. This is achieved by defining the width of the filter 

as some function of the wall boundary layer. The aims of this research are achieved by 

implementing the following methodology: 

 Investigate four SGS models with a second-order numerical scheme and implicit filtering 

to identify the most promising SGS model despite the elusiveness of grid convergence. In 

the process, evaluate the adequacy of the selection of the baseline code. This is achieved 

through simulation of a selected benchmark case (flow over a backward facing step). 

 Develop an appropriate explicit filtering scheme and implement in FDS with special 

attention to: 

a. Selection of initial filter width as a function of a physical parameter. 

b. Identification of filter width to grid ratio for a second-order numerical scheme. 

 Apply a systematic approach to obtain an appropriate LES solution for wall-bounded 

flows by integrating an SGS model with an explicit LES scheme in FDS at two Reynolds 

numbers(𝑅𝑒𝜆): namely, buoyancy driven flow inside a differentially heated rectangular 

cavity and flow over a backward facing step have been considered as low and high 

Reynolds number flow test cases respectively. The models have been validated against 

published experimental data. 

FDS is appropriately modified (wherever needed) in this study to achieve these aims. Of the two 

cases studied, the first test case is flow over a backward facing step at a relatively high Reynolds 

number (𝑅𝑒𝜆 = 115) based on Taylor’s microscale (𝜆). The appropriate LES solution that is 

obtained is compared against the experimental work of Jovic and Driver (1992). The second case 

is a bouyancy driven rectangular cavity flow at a low Reynolds number (𝑅𝑒𝜆 = 25). The results 

of these simulations are compared with experimental results of Cheesewrightet al. (1986). In 
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both cases, the selection of the filter width for the explicit LES scheme is taken as a function of 

the boundary layer thickness (BLT). With detailed analysis of energy spectra for explicit LES 

results, a systematic approach is proposed for obtaining a simulation result consonant with the 

principles of LES and grid convergence in an LES explicit scheme.   
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2.Chapter 2 

Governing equations and numerical schemes 
 

2. 1 Introduction 

The physics of fluid flow can be characterized by equations representing the conservation of 

mass, momentum and energy. The equations generally assume the form of partial differential or 

integral equations that are solved numerically at discrete points in time and space (or 

computational domain). In this study, an LES scheme has been developed and used to simulate 

turbulent flows. In LES, the resolved scales that account for the production of energy are 

obtained by solving the Navier-Stokes equations directly: this allows the temporal and spatial 

evolution of eddies to be captured. However, the effect of unresolved small scale eddies, that 

account for the effect of dissipation of energy, on resolved scales are modelled. These models are 

known as sub-grid scale (SGS) models.  

2.2 SGS modelling of turbulence in the baseline code 

Turbulence contains a wide range of length and time scales in the flow. In LES, SGS modelling 

considers the effect of small scale eddies that are computationally intensive to be resolved on the 

computational mesh. SGS modelling represents the effect of these small scale motions on the 

resolved large scale fluid motions (Meneveau 1994). In LES, scales are resolved down to a pre-

defined lengthscale Δ.  

The resolved and unresolved fluid flow motions are delimited by spatial filtering (Δ) in the 

velocity field. Spatial filtering decomposes the velocity 𝑢(𝑥, 𝑡)  into resolved (or filtered) 

component 𝑢̂(𝑥, 𝑡) and residual (or SGS) component 𝑢′(𝑥, 𝑡) as shown in Figure 2.1. The filtered 
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velocity component is time dependent and represents the motion of large eddies. When spatial 

filtering is applied to the Navier-Stokes equations, the momentum equation produces a new term 

known as a residual stress tensor (or SGS stress tensor) which accounts for the interaction of 

small scale fluid motions. This SGS stress tensor is accounted for by modelling the eddy 

viscosity.  

 

Figure 2.1. Unfiltered and filtered turbulent field showing decomposition used in large eddy 

simulation 

The most widely used eddy viscosity model in LES was proposed by (Smagorinsky 1963). 

Deardorff (1972) also explored a Smagorinsky type model in meteorological applications. The 

main characteristic of the Smagorinsky model is its capacity to quantify the rate of energy 

transfer from large to small scale phenomena, and then to the smallest scales until viscous effects 

dominate. Moin et al. (1991) has identified several limitations of the Smagorinsky (1963) model, 

namely: 

1. The Smagorinsky constant is not universal and it varies with the nature of the turbulent 

flow being modelled 

2. The model does not display the correct limiting behaviour near the wall 
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3. Even in the limit of laminar flow, the Smagorinsky model suggests that turbulence 

continues to contribute to the effective viscosity of the fluid. As a result the Smagorinsky 

model is too dissipative in the laminar/turbulent regime 

4. The model does not account for backscatter of energy from small scales to large scales, 

which has been shown to be important in the transition regime 

5. Compressibility effects are not included in the model 

These limitations were focused on by many authors in their studies and they proposed 

modifications of the Smagorinsky model. Germano et al. (1991) introduced a dynamic 

Smagorinsky model which is capable of accounting for dissipative energy and change of model 

coefficients throughout the computational domain with flow variation (such as laminar to 

turbulent or the transition regime between laminar and turbulent flow). Vreman et al. (1994) 

noted that under certain flow condition the dynamic Smagorinsky coefficient goes negative. 

Germano et al. (1991) dealt with this condition by a clipping process that ensures the 

Smagorinsky coefficient remains positive. Vreman (1994) proposed an alternative eddy viscosity 

model that obviates this problem.  

The above mentioned LES models, namely the standard Smagorinsky model, the dynamic 

Smagorinsky model, and the Deardorff and Vreman models are available in the default version 

of FDS to simulate turbulent flows. Detailed descriptions to compute eddy viscosity using these 

SGS models are discussed in the following sections. 

2.2.1 Standard Smagorinsky model 

The standard Smagorinsky model was developed based on the concept of the Boussinesq 

hypothesis (see section 1.2.3) which is extensively used in RANS models to solve turbulence. 

The sub-grid stress model is expressed by, 
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Figure 2.2. Simulation of energy cascading process in DNS, LES and RANS. Vertical dashed 

line (𝒍𝑬𝑰
−𝟏) demarcates the inertial and the energy containing range and the dashed line 

(𝒍𝑫𝑰
−𝟏)demarcates the inertial and the dissipation range 

 𝜏𝑖𝑗
𝑠𝑔𝑠
≈ −2𝜈𝑡𝑆̂𝑖𝑗 = −2(𝐶𝑆∆)

2|𝑆̂|𝑆̂𝑖𝑗 (2.1) 

In this model, the SGS stress tensor 𝜏𝑖𝑗
𝑠𝑔𝑠

 is related to filtered rate of strain (analogous to the 

Boussinesq approximation) where  

 
𝑆̂𝑖𝑗 =

1

2
(
𝜕𝑢̂𝑖
𝜕𝑥𝑗
+
𝜕𝑢̂𝑗

𝜕𝑥𝑖
) 

(2.2) 

and, |𝑆̂| ≡ (2𝑆̂𝑖𝑗𝑆̂𝑖𝑗)
1/2 (2.3) 

where 𝜈𝑡 is the eddy viscosity, 𝑆̂ is the resolved component of the strain rate, and ∆ is the filter 

width, which is expressed as a function of the local grid spacing. The model coefficient, 𝐶𝑆 , 
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assumes typical values in the vicinity of  0.2. This value can be theoretically estimated for 

isotropic turbulence (Lilly 1966). However, the value of this model coefficient also depends on 

the types of filter and fluid flow. In the context of the energy cascading approach, the standard 

Smagorinsky model is completely dissipative in nature and assumes that the energy produced in 

large scales is completely transferred to small scales and that they dissipate the energy in the 

form of heat.  

The energy cascade within the fluid follows the process shown in fig 2.2. Ideally this should be 

captured by physical models such as RANS, LES, or DNS, used to simulate the flow (which is 

an expanded version of Figure 1.3). In Figure 2.2, vertical dashed lines 𝑙𝐸𝐼
−1 and 𝑙𝐷𝐼

−1 in different 

colours, demarcate the inertial sub-range from the energy containing range and from the 

dissipation range.  

 

𝑢 𝑢̅ 𝑢′ 
Figure 2.3.  Energy spectrum decomposition process in RANS 

As RANS has been used for several decades since the 1970’s, it may be useful describe SGS 

modelling (of LES) with respect to RANS. The difference between RANS and LES schemes can 

be demonstrated through Figures 2.3 and 2.4. The Reynolds shear stress in RANS can be 

constructed and expressed as, 

 𝜏𝑖𝑗 = 〈𝑢𝑖𝑢𝑗〉 − 〈𝑢𝑖〉〈𝑢𝑗〉 = 𝑢𝑖𝑢𝑗̅̅ ̅̅ ̅ − 𝑢̅𝑖𝑢̅𝑗 (2.4) 



28 
 

where, 𝑢̅𝑖 and 𝑢̅𝑗  are ensemble averages of the velocity components which can be decomposed 

into 𝑢̅ (the mean part) and 𝑢′(fluctuating part) as 𝑢 = 𝑢̅ + 𝑢′. 

The instantaneous energy decomposition of RANS is shown in Figure 2.3. In the case of RANS, 

only the energy containing scales are solved for by the Navier-Stokes equation; the temporal 

average of which are manifested as mean velocities and the remaining energy is dissipated 

through Reynolds stresses. There is a plethora of models of these stresses.  

In LES, sub-gird stress model in terms of velocity can be expressed as 

 𝜏𝑖𝑗
𝑠𝑔𝑠
= 𝑢𝑖𝑢𝑗̂ − 𝑢̂𝑖𝑢̂𝑗  (2.5) 

For LES, velocities can be decomposed into, 

 𝑢 = 𝑢̂ + 𝑢𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙
′  = 𝑢̅̂ + 𝑢𝑅𝑒𝑠𝑜𝑙𝑣𝑒𝑑

′ + 𝑢𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙
′  (2.6) 

where,𝑢  denote the velocity, 𝑢̂  represents the filtered velocity, 𝑢̅̂  represents mean part of the 

filtered velocity and  𝑢′ fluctuating part of the velocity for LES. It may be noticed that, in the 

case of LES, the fluctuating part of the velocity is further decomposed into components: 

 𝑢′ = 𝑢𝑅𝑒𝑠𝑜𝑙𝑣𝑒𝑑
′ + 𝑢𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙

′  (2.7) 

 
𝑢 𝑢̂ = 𝑢̅̂ + 𝑢𝑅𝑒𝑠𝑜𝑙𝑣𝑒𝑑

′  𝑢𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙
′  

Figure 2.4.  Energy spectrum decomposition process in LES  

The instantaneous energy decomposition of LES is shown in Figure 2.4. The scales are directly 

computed up to the inertial sub-range representing the filtered velocity field. The rest is modelled 

by means of SGS models. The filtered velocity field obtain by convolution (Pope 2000) is as 

follows, 
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𝑢̂(𝑥) = ∫ 𝐺(𝑟)

∞

−∞

𝑢(𝑥 − 𝑟)𝑑𝑟 
(2.8) 

Here, 𝐺(𝑟) is the filter function. 

For homogeneous turbulence flow, 𝐸(𝑘) is the energy spectrum function when all scales are 

resolved (such as DNS). The energy spectrum function for LES can be denoted as 𝐸̂(𝜅). 𝐺̂(𝑘)is 

the LES transfer function for converting the spatial domain into Fourier space expressed in terms 

of wavenumber 𝑘. So, the filtered energy spectrum can be written as (Pope 2000), 

 
𝐸̂(𝜅) = [𝐺̂(𝜅)]

2
𝐸(𝜅) 

(2.9) 

 
𝐺̂(𝜅) = [

𝐸̂(𝜅)

𝐸(𝜅)
]

1/2

 
(2.10) 

The filter functions for the box and Gaussian filters are, 

 Box filter:   𝐺̂(𝑟) =  
1

∆
 𝐻(

1

2
∆ − |𝑟|) (2.11) 

 
Gaussian filter:  𝐺̂(𝑟) =  (

6

𝜋∆2
)
1/2

exp (
6𝑟2

∆2
) 

(2.12) 

here, 𝐻 is the Heaviside function and 𝑟 is the radial coordinate in physical space.  

A comparison of filtered energy spectra for the box and the Gaussian filter is shown in Figure 

2.5. 

 

Figure 2.5. Filtered energy spectra for box and Gaussian filters 

file:///C:/Users/s3901391/Desktop/0_0_PhD%20Thesis%20Re-Write/00_Phd%20Thesis%20Chapter%20Compilations/Z_4_Phd%20Final%20Copies/2_Chapter%202.docx%23Pope_2000


30 
 

The turbulent kinetic energy (TKE) of the residual term in LES can be expressed as, 

 
1

2
𝜏𝑖𝑖
𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙 =

1

2
𝜏𝑖𝑖
𝑅 = 𝑇𝐾𝐸 = 𝑘𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙 = ∫ [1 − 𝐺̂(𝜅)2]

∞

0

𝐸(𝜅)𝑑𝜅 (2.13) 

From the filtered Navier-Stokes equation the turbulence stress for the resolved and residual parts 

can be written as,  

 𝜏𝑖𝑗
𝑅𝑒𝑠𝑜𝑙𝑣𝑒𝑑 = 𝑢𝑖𝑢𝑗̂ − 𝑢̅̂𝑖 𝑢̅̂𝑗  (2.14) 

 𝜏𝑖𝑗
𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙 = 𝑢̂𝑖𝑢̂𝑗̅̅ ̅̅ ̅ − 𝑢̅̂𝑖 𝑢̅̂𝑗  = 𝜏𝑖𝑗

𝑅  (2.15) 

Figure 2.5 represents the energy spectra comparison between the box and the Gaussian filtered 

LES as well as with DNS. The energy spectrum curve of LES is divided into two parts; the 

resolved portion and the residual portion. The resolved as well as the residual portion of the box 

and the Gaussian filtered LES are represented in terms of the turbulent kinetic energy(𝑘). Now, 

the anisotropic stress tensor for the actual residual part is, 

 
𝜏𝑖𝑗
𝑟 = 𝜏𝑖𝑗

𝑅 −
2

3
𝑘𝑟𝛿𝑖𝑗 

(2.16) 

Here, 𝜏𝑟  represents the deviatoric stress tensor and 𝜏𝑅  represents the residual stress tensor 

respectively, 𝑘𝑟  is the turbulent kinetic energy for the residual part, 𝑘𝑟 =
1

2
𝜏𝑖𝑖
𝑅 , and  𝛿𝑖𝑗 is the 

Kronecker delta included in residual part of the shear stress.   

The transfer of the kinetic energy between filtered velocity field and the residual motions can be 

expressed as follows,  

 
𝐸̂ =

1

2
𝑢̂𝑖𝑢̂𝑗̅̅ ̅̅ ̅ 

(2.17) 

The above equation can be decomposed into, 

 𝐸̂ = 𝐸𝑓 + 𝑘𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙 (2.18) 

Here, 𝐸𝑓 is the filtered kinetic energy from the filtered velocity field and 𝑘𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙 is the residual 

turbulent kinetic energy obtained from the residual motions of the velocity field. The filtered and 

the residual kinetic energy can be expressed as follows, 
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𝐸𝑓 =

1

2
𝑢̅̂𝑖 𝑢̅̂𝑖 (2.19) 

 

 
𝑘𝑟 =

1

2
𝜏𝑖𝑖
𝑅 =

1

2
(𝑢̂𝑖𝑢̂𝑖̅̅ ̅̅ ̅ − 𝑢̅̂𝑖 𝑢̅̂𝑖) (2.20) 

The filtered kinetic energy 𝐸𝑓 is obtained from the conservation of energy and can be expressed 

as (Pope 2000), 

 𝐷̂𝐸𝑓

𝐷̂𝑡
−
𝜕

𝜕𝑥𝑖
[𝑢̂𝑗 (𝜈𝑆̂𝑖𝑗 − 𝜏𝑖𝑗

𝑟 −
𝑝̂

ρ
𝛿𝑖𝑗)] = −𝜀𝑓 − 𝑃𝑟 (2.21) 

where, 𝑆̂𝑖𝑗 is the filtered strain rate that can be expressed as 

 
𝑆̂𝑖𝑗 =

1

2
(
𝜕𝑢̂𝑖
𝜕𝑥𝑗
+
𝜕𝑢̂𝑗

𝜕𝑥𝑖
) 

(2.22) 

From the conservation of energy, the viscous dissipation from the filtered field will be, 

 𝜀𝑓 = 2𝜈𝑆̂𝑖𝑗𝑆̂𝑖𝑗 (2.23) 

And the production rate from the residual kinetic energy is, 

 𝑃𝑟 = −𝜏𝑖𝑗
𝑟 𝑆̂𝑖𝑗 (2.24) 

 𝑃𝑟 = 2𝜈𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙𝑆̂𝑖𝑗𝑆̂𝑖𝑗 (2.25) 

where, the residual shear stress 𝜏𝑖𝑗
𝑟  (Pope 2000) can be expressed as, 

 𝜏𝑖𝑗
𝑟 = −2𝜈𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙𝑆̂𝑖𝑗 (2.26) 

Production rate (𝑃𝑟) acts as a sink for 𝐸𝑓 and as a source for 𝑘𝑟. The residual viscosity (Pope 

2000) is accounted for by the Smagorinsky model , 

 𝜈𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙 = 𝑙𝑠
2|𝑠̂| = (𝐶𝑠∆)

2|𝑠̂| (2.27) 

Here, 𝑙𝑠 is the Smagorinsky lengthscale which is analogous to mixing length and equivalent to 

𝐶𝑠∆. In addition, for the filtered pressure term, the residual part of the turbulent kinetic energy is 

included in it, 
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𝑝̂ = 𝑝̅ +

2

3
𝜌𝑘𝑟 

(2.28) 

The filtered momentum equation is obtained from Eq 2.21 by substituting Eqs 2.22-28 into it 

 𝐷̂𝑢̂𝑗

𝐷̂𝑡
= 𝜈

𝜕2𝑢̂𝑗

𝜕𝑥𝑖𝜕𝑥𝑗
−
𝜕𝜏𝑖𝑗
𝑟

𝜕𝑥𝑖
−
1

𝜌
 
𝜕𝑝̂

𝜕𝑥𝑗  
 

(2.29) 

After mathematical manipulation the momentum equation (Pope 2000) can be written as, 

 𝜕𝑢̂𝑗

𝜕𝑡
+ 𝑢̂𝑖

𝜕𝑢̂𝑗

𝜕𝑥𝑖
= −

1

𝜌

𝜕𝑝̂

𝜕𝑥𝑗
+   

𝜕

𝜕𝑥𝑖
[(𝜈 + 𝜈𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙)

𝜕𝑢̂𝑗

𝜕𝑥𝑗
] 

(2.30) 

where, 𝜈 + 𝜈𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙  is the effective viscosity, and contains the kinematic viscosity  𝜈  and 

residual SGS viscosity 𝜈𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙.  

Now a question arises, does the standard Smagorinsky closure coefficient remain constant for all 

types of filters, or does it vary? From the literature (Pope 2000), it is found that the value of the 

Smagorinsky constant (𝐶𝑠) depends on the types of filter. The recommended 𝐶𝑠 values for the 

different filter types for isotropic turbulence are listed in table 2.1. 

Table 2.1. Smagorinsky constant (Cs) for different types of filter 

Standard Smagorinsky model 

Types of filter Equation for 𝐶𝑠 value 𝐶𝑠 value 
Box filter Equation for 𝐶𝑠(Pope 2000) 

𝐶𝑠 =
𝑙𝑠
∆

 

Here, filter width ∆ =𝑉𝑐
1/3

,                      

cell volume 𝑉𝑐  =  𝛿𝑥 𝛿𝑦 𝛿𝑧 

0.20 

Gaussian filter 

Equation for 𝐶𝑠(Pope 2000) 

𝐶𝑠
2 =

7

72√15
(−𝑆)

〈𝑆̂2〉3/2

〈𝑆̂3〉
 

Here, velocity derivative skewness  

𝑆 ≈ −0.7 and 

〈𝑆̂3〉 ≈ 〈𝑆̂2〉3/2 

0.13 

Sharp spectral filter 

Equation for 𝐶𝑠(Pope 2000) 

𝐶𝑠 =
𝑙𝑠
∆
=
1

𝜋
(
2

3𝐶
)
3/4

 

Here, 𝐶 is Kolmogorov constant, 𝐶 ≈ 1.5 

0.17 

Pao filter 

Equation for 𝐶𝑠(Pope 2000) 

𝐶𝑠 =
𝑙𝑠
∆
=

𝜋1/2

(18𝐶)3/4
 

Here, 𝐶 is Kolmogorov constant, 𝐶 ≈ 1.5 

0.15 
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2.2.2 Dynamic Smagorinsky model 

Germano et al. (1991) introduced a dynamic procedure which eliminates the necessity to specify 

the model coefficients at the beginning of the simulation. In this SGS model two types of 

filtering are involved. The first one is known as a grid filter (∆)  where the filter width is 

expressed as a function of local grid spacing. The second one is termed as a test filter (∆̆) that 

needs to be larger than the grid filter. According to Germano et al. (1991), both filters are 

required to lie within the inertial sub-range. 

The sub grid stress from the filtered Navier-Stokes equation can be expressed as, 

 𝜏𝑖𝑗 = 𝑢𝑖𝑢𝑗̂ − 𝑢̂𝑖𝑢̂𝑗 = −2(𝐶𝑆∆)
2|𝑆̂|𝑆̂𝑖𝑗 (2.31) 

After applying the test filter in the Navier-Stokes equation, the residual stress at the test scale, 

 𝑇𝑖𝑗 = 𝑢𝑖𝑢𝑗̂̆ − 𝑢̆̂𝑖 𝑢̆̂𝑗 ≈ −2(𝐶𝑆∆̆)
2|𝑆̆̂|𝑆̆̂𝑖𝑗 

(2.32) 

where, the notation (∙)̆ is adoped for the test filter and ∆̆ represents the test filter width which is 

∆̆> ∆, and the strain rate can be defined as, 

 
𝑆̆̂𝑖𝑗 =

1

2
(
𝜕𝑢̆̂𝑖
𝜕𝑥𝑗
+
𝜕𝑢̆̂𝑗

𝜕𝑥𝑖
) 

(2.33) 

By test filtering the sub-grid stress term (𝜏𝑖𝑗) and combining it with the residual stress at a test 

scale, a new Leonard stress term (ℒ𝑖𝑗) can be constructed; this is also known as the ‘Germano 

identity’ and can be written as,  

 ℒ𝑖𝑗 = 𝑇𝑖𝑗 − 𝜏̆𝑖𝑗 = 𝑢𝑖𝑢𝑗̂̆ − 𝑢̆̂𝑖 𝑢̆̂𝑗 − (𝑢𝑖𝑢𝑗̂̆ − 𝑢̆̂𝑖𝑢̆̂𝑗
̆ ) = 𝑢̆̂𝑖𝑢̆̂𝑗

̆ − 𝑢̆̂𝑖 𝑢̆̂𝑗  
(2.34) 

The above equation for the Leonard stress term can also be expressed as, 

 ℒ𝑖𝑗 = 2(𝐶𝑆∆)
2|𝑆̂|𝑆̆̂𝑖𝑗 − 2(𝐶𝑆∆̆)

2
|𝑆̆̂|𝑆̆̂𝑖𝑗 

(2.35) 

The model coefficient 𝐶𝑆 can be easily extracted by applying test filtering to the sub-grid stress. 

After taking the average of both sides of the above equation, the length scale (Lilly 1992) of the 

dynamic model can be expressed as, 
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(𝐶𝑆∆)
2 =

ℒ𝑖𝑗𝑀𝑖𝑗̅̅ ̅̅ ̅̅ ̅̅

𝑀𝑖𝑗𝑀𝑖𝑗̅̅ ̅̅ ̅̅ ̅̅ ̅
 

(2.36) 

where,𝑀𝑖𝑗  represents a model parameter, after some mathematical manipulations it can be 

written as, 

 𝑀𝑖𝑗 = 2(|𝑆̂|𝑆̆̂𝑖𝑗 − 𝛼
2|𝑆̆̂|𝑆̆̂𝑖𝑗) (2.37) 

Here, 𝛼 = ∆̆/∆, the test to grid filter width ratio, usually takes a value of 2. 

Here, the bar (∙)̅ represent spatial averaging. In addition, the value of the eddy viscosity of the 

dynamic eddy model can be negative. The negative values of the mixing lengthscale of the 

model indicate a backscatter of energy; that means that the energy due to viscous effects may 

bounce back from the sub-grid scale to the resolved scales. Moreover, from the literature, it is 

found that the dynamic Smagorinsky model may produce large negative values of 𝐶𝑆  which 

render the simulation unstable (Sagaut 2001). The ‘clipping’ method is the common practice for 

the elimination of this problem. In this method, the closure coefficient of the dynamic 

Smagorinsky model is set zero when the denominator is zero or the numerator (ℒ𝑖𝑗𝑀𝑖𝑗̅̅ ̅̅ ̅̅ ̅̅ ) is 

negative.   

2.2.3 Deardorff model 

FDS6 incorporates the Deardorff (1973) eddy model as the default LES model. The eddy 

viscosity of the Deardorff model can be expressed as, 

 
𝜈𝑡 = 𝐶𝑣∆√𝑘𝑠𝑔𝑠 

(2.38) 

here, 

 
𝑘𝑠𝑔𝑠 = 

1

2
((𝑢̅̂ − 𝑢̂̂)

2
+ (𝑣̅ − 𝑣)

2
+ (𝑤̅̂ − 𝑤̂̂)

2
) 

(2.39) 

where,𝑢̅̂ is the average value of the filtered velocity 𝑢̂ at the grid cell centre and 𝑢̂̂ is a weighted 

average of 𝑢̅̂ over the adjacent cells that can be expressed as, 
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𝑢̅̂𝑖𝑗𝑘 = 

𝑢̂𝑖𝑗𝑘 + 𝑢̂𝑖−1,𝑗𝑘

2
 

(2.40) 

 
𝑢̂̂𝑖𝑗𝑘 = 

𝑢̅̂𝑖𝑗𝑘

2
+
𝑢̅̂𝑖−1,𝑗𝑘 + 𝑢̅̂𝑖+1,𝑗𝑘

4
 

(2.41) 

The Deardorff  model coefficient is defined as 𝐶𝑣 = 0.1. 

2.2.4 Vreman model 

Along with the other three eddy models, FDS also has the option of the Vreman model to 

simulate turbulent flows. To eliminate the drawback of ‘backscatter’ in the Smagorinsky model 

(Smagorinsky 1963), Vreman (2004) proposed a different kind of eddy viscosity model for LES. 

Vreman’s eddy viscosity is expressed as, 

 

𝜈𝑡 = 𝑐√
𝐵𝛽

𝛼𝑖𝑗𝛼𝑖𝑗
 

(2.42) 

where, 

 

𝛼𝑖𝑗 =
𝜕𝑢𝑗

𝜕𝑥𝑖
 

(2.43) 

 
𝛽𝑖𝑗 = ∆𝑚

2 𝛼𝑚𝑖𝛼𝑚𝑗 
(2.44) 

 𝐵𝛽 = 𝛽11𝛽22 − 𝛽12
2 + 𝛽11𝛽33 − 𝛽13

2 + 𝛽22𝛽33 − 𝛽23
2
 (2.45) 

Vreman’s constant, 𝑐 is closely related to the Smagorinsky constant 𝐶𝑆 and can be defined as 

𝑐 ≈ 2.5𝐶𝑆. The eddy viscosity is easy to compute as it only depends on local filter width and the 

first-order derivative of the velocity field. The basic concept behind the Vreman model is that the 

velocity field is expanded using the Taylor series, and the test filtering operation is done 

analytically to avoid the complexity of applying the fixed test filter as is done in the dynamic 

Smagorinsky model. Since the model does not require an additional fixed filtering operation, it is 

inexpensive compared to the dynamic Smagorinsky model for simulating turbulent flows. 
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LES is a powerful tool to simulate turbulence. In the context of LES applications, the SGS eddy 

models must accurately model the rate of dissipation. Recent version of FDS 6.2.0 consists these 

above mentioned four eddy models. Detailed review on wide variety SGS models are referred to 

section 1.2.3 where most of the authors adopted standards Smagorinsky model for their study as 

it is commonly used eddy viscosity model in practical applications and for research purposes. In 

the present study, we have selected the Smagorinsky eddy model to implement an explicit LES 

scheme based on the comparative study conducted using these four LES models which is 

presented in Chapter 3.  

2.3 A systematic approach to explicit scheme 

2.3.1 Overall concept 

The main objective of this work is to develop an explicit LES scheme which fulfils LES 

principles and for which the numerical error converges to an acceptably small value. According 

to LES principles, filter widths need to lie within the inertial sub-range of the energy spectra and 

the scheme needs to accurately capture the energy containing eddies (Chow and Moin 2003). 

Kolmogorov’s universal theoretical slope in the inertial sub-range (proportional to wavenumbers 

𝜅−5/3 ), provides a criterion for identifying this range and helps to demarcate the energy 

containing and dissipation ranges. However, in low Reynolds number flows the universal 

theoretical slope is scarcely observed, but this theoretical relationship becomes more apparent as 

the Reynolds number increases (Pope 2000).  

A systematic and sequential approach to obtaining an appropriate LES solution using explicit 

filtering is proposed. Firstly, a fixed filter width is determined based on a physical parameter for 

which an analytical expression is available in the literature. Here, the BLT is considered as a 

suitable parameter as it characterizes the size of large scale eddies in wall bounded flows  

file:///C:/Users/s3901391/Desktop/0_0_PhD%20Thesis%20Re-Write/00_Phd%20Thesis%20Chapter%20Compilations/Z_4_Phd%20Final%20Copies/2_Chapter%202.docx%23Chow_Moin_2003
file:///C:/Users/s3901391/Desktop/0_0_PhD%20Thesis%20Re-Write/00_Phd%20Thesis%20Chapter%20Compilations/Z_4_Phd%20Final%20Copies/2_Chapter%202.docx%23Pope_2004


37 
 

 

Figure 2.6. Grid convergence of a hypothetical energy spectrum with progressively larger filter 

to grid ratios (FGR) Δ/δx1 < Δ/δx2 < Δ/δx3. The dashed vertical line indicates the cut-off 

wavenumber for the fixed filter width Δ 

(Tennekes and Lumley 1972). BLT can be estimated from an analytical solution of idealized 

cases or empirical correlations. To reduce numerical errors (due to grid size) arising in the 

explicit schemes with respect to the fixed filter, the grid needs to be refined until the solution 

converges. A hypothetical example is shown by conducting a spectrum analysis (presented in 

Figures 2.6 and 2.7). In Figure 2.6  fixed filter width is chosen and the effect of reducing the grid 

size is investigated to obtain a grid-converged solution.  The simulation is grid converged when 

further reductions in grid size lead to insignificant changes in the result, and the filter width 

remains constant. When grid-converged the example shown in Figure 2.6 effectively captures the 

energy containing range as the turbulence is resolved well into the inertial subrange denoted by 

the region of the spectrum with constant slope. A larger explicit filter than the one used in Figure 

2.6 may not capture the energy containing range even when grid-converged. The effect of 

introducing a progressively smaller explicit filter is shown schematically in Figure 2.7. Energy 

spectra for four different filter widths with Δ1 > Δ2 > Δ3 > Δ4 are shown, each being grid-

converged. The LES (Δ1) filter width lies just within the inertial sub-range but the simulation is 
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unable to fully capture the energy containing eddies. Each of the three progressively smaller 

filter widths capture the energy containing range effectively and thus fulfils the LES principle. In 

this hypothetical example the spectra with filter widths Δ3 and Δ4 are the same; however, the 

pursuit of such filter-convergence can be elusive, computationally expensive and of minor 

importance. Therefore, when implementing explicit filtering a filter width should be selected 

which lies within the inertial sub-range and its grid-converged solution should be able to capture 

all energy containing scales. Although LES (Δ3) and LES (Δ4) may provide more accurate results 

than LES (Δ2), the LES (Δ2) results can be deemed acceptable in that it conforms to LES 

principles. 

 
Figure 2.7. Hypothetical scenario of selection of filter width in an explicit scheme. Schematic 

shows the LES solution for four different filter widths with Δ1 > Δ2 > Δ3 > Δ4 (all grid 

converged) and vertical lines are corresponding cut-off wavenumbers. 

2.3.2 Proposed explicit filter width 

In this study, the filter widths (∆) in the explicit scheme are taken as a function of the BLT (𝛿). 

Two filter widths are selected as being 20% and 10% of the BLT, respectively. These values 

have been chosen according to the suggestions of Wilcox (1997) and Pope (2000) that at least ten 

grid points are required to accurately capture features of the boundary layer. The grid size 
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𝛿𝑥 = 0.1𝛿 is therefore taken as the reference point for the coarsest grid width and the base filter 

width as twice that, ∆= 2𝛿𝑥, which is commonly adopted in contemporary literature (Gullbrand 

2002, Gullbrand and Chow 2003, Radhakrishnan and Bellan 2012, 2013 and 2015).  If necessary 

the filter width is refined and taken as 10% of the BLT to ensure the principles of LES (i.e. filter 

is within the inertial subrange and energy containing eddies are fully captured) are satisfied. 

Although not necessary in the present modelling, in general the filter could be further reduced by 

half (i.e. 5% of BLT) and so on. In the contemporary literature on implicitly filtered LES it is 

now common to see 20 or more grid points within the boundary layer; a situation that has been 

made possible by the growth in computing power. Such simulations can produce very detailed 

data sets of great value to the community. Here our approach is somewhat different. Our primary 

objective is to demonstrate a systematic approach to filter width selection in explicitly filtered 

LES. Accordance with LES principles is ensured but we do not attempt to produce super 

resolved LES, but acknowledge that higher resolution is possible and in some cases desirable. 

2.3.3 Filter width to grid spacing ratio 

As mentioned in Chapter 1, Gullbrand and Chow (2003) and Chow and Moin (2003) reported the 

importance of the FGR. They observed that higher order numerical schemes (fourth and sixth 

order), require two grids within the filter, while for second-order schemes at least four grids 

within the filter width are required. In the present work using a second-order code FGR values of 

2, 4, 8 and 16 are used and the suitability of this choice is discussed. 

2.4 Governing equations of explicit LES scheme 

2.4.1 Mass and momentum 

The LES equations are now rederived using an explicit filtering scheme. The instantaneous 

continuity and Navier-Stokes equations for variable density flow are (White 2006)    
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 𝜕𝜌

𝜕𝑡
+
𝜕𝜌𝑢𝑖
𝜕𝑥𝑖

= 0 (2.46) 

 𝜕𝜌𝑢𝑖
𝜕𝑡

+
𝜕

𝜕𝑥𝑗
(𝜌𝑢𝑖𝑢𝑗) = −

𝜕𝑝

𝜕𝑥𝑖
+ 𝜇

𝜕

𝜕𝑥𝑗
(
𝜕𝑢𝑖
𝜕𝑥𝑗
+
𝜕𝑢𝑗

𝜕𝑥𝑖
) + 𝜌𝑔𝑖 

(2.47) 

where, 𝑢, 𝑥, 𝜌, 𝑝, 𝜇 and 𝑔 denote the velocity, position coordinate, density, pressure, molecular 

viscosity and gravitational acceleration, respectively. The subscripts i and j are direction indices. 

In LES the governing Navier-Stokes and continuity equations are filtered in space, effectively 

applying a low pass filter to separate the large scale and small scale eddies (Sagaut 2001). The 

filtered velocity field can be defined as 

 
𝑢̂𝑖(𝑥) = ∫ 𝒢(𝑥 − 𝑥′, ∆ )

∞

−∞

𝑢𝑖(𝑥
′)𝑑𝑥′ (2.48) 

where, 𝒢  is the filter function and ∆  is the filter width. Applying the spatial filter to the 

instantaneous aforementioned governing equations (2.46) and (2.47) yields 

 𝜕𝜌̂

𝜕𝑡
+
𝜕𝜌𝑢𝑖̂
𝜕𝑥𝑖

= 0 (2.49) 

 𝜕𝜌𝑢𝑖̂
𝜕𝑡

+
𝜕

𝜕𝑥𝑗
(𝜌𝑢𝑖𝑢𝑗̂) = −

𝜕𝑝̂

𝜕𝑥𝑖
+ 𝜇

𝜕

𝜕𝑥𝑗
(
𝜕𝑢̂𝑖
𝜕𝑥𝑗

+
𝜕𝑢̂𝑗

𝜕𝑥𝑖
) + 𝜌̂𝑔𝑖 (2.50) 

In compressible flows, correlations of fluctuations of density and velocity are eliminated by 

applying  a Favre (mass-weighted) filter defined for the velocity as 𝑢̃𝑖 = 𝜌𝑢𝑖̂/𝜌̂ so that equations  

(2.49) and (2.50) become 

 𝜕𝜌̂

𝜕𝑡
+
𝜕𝜌̂𝑢̃𝑖
𝜕𝑥𝑖

= 0 (2.51) 

 𝜕𝜌̂𝑢̃𝑖
𝜕𝑡

+
𝜕

𝜕𝑥𝑗
(𝜌̂𝑢𝑖𝑢𝑗̃ ) = −

𝜕𝑝̂

𝜕𝑥𝑖
+ 𝜇

𝜕

𝜕𝑥𝑗
(
𝜕𝑢̃𝑖
𝜕𝑥𝑗
+
𝜕𝑢̃𝑗

𝜕𝑥𝑖
) + 𝜌̂𝑔𝑖. 

(2.52) 
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Since the mean of the square is not equal to the square of the mean a closure model is required 

for the convective term in equation (2.52) involving the non-linear correlation of velocity 𝑢𝑖𝑢𝑗̃ . A 

subgrid-scale (SGS) stress 𝜏𝑖𝑗
𝑠𝑔𝑠

 is introduced defined as   

 𝜏𝑖𝑗
𝑠𝑔𝑠
= 𝜌̂(𝑢𝑖𝑢𝑗̃ − 𝑢̃𝑖𝑢̃𝑗) (2.53) 

and after substitution equation (2.52) becomes  

 𝜕𝜌̂𝑢̃𝑖
𝜕𝑡

+
𝜕

𝜕𝑥𝑗
(𝜌̂𝑢̃𝑖𝑢̃𝑗) = −

𝜕𝑝̂

𝜕𝑥𝑖
+ 𝜇

𝜕

𝜕𝑥𝑗
(
𝜕𝑢̃𝑖
𝜕𝑥𝑗

+
𝜕𝑢̃𝑗

𝜕𝑥𝑖
) −

𝜕𝜏𝑖𝑗
𝑠𝑔𝑠

𝜕𝑥𝑗
+ 𝜌̂𝑔𝑖 . (2.54) 

Traditionally the filter width is defined implicitly and directly linked to the grid spacing. In that 

approach, the kernel function 𝒢 is not explicitly defined but is implicit within the discretized 

equations and the Favre filtered quantities in equations (2.51) and (2.54) may be obtained 

directly on a mesh (i.e. they are grid-based quantities) provided that a suitable SGS closure is 

available for 𝜏𝑖𝑗
𝑠𝑔𝑠

. As discussed in the review presented in section 1.3.2, such a linkage entangles 

modelling and numerical issues, making it difficult to obtain grid independent solutions. One can 

reformulate the LES equations by incorporating an explicit filter that is independent of the grid. 

This impacts on the non-linear convective terms so that the explicitly filtered version of equation 

(2.54) becomes (Radhakrishnan and Bellan 2012, 2013 and 2015) 

 𝜕𝜌̂𝑢̃𝑖
𝜕𝑡

+
𝜕

𝜕𝑥𝑗
(𝜌̂𝑢̃𝑖𝑢̃𝑗̂) = −

𝜕𝑝̂

𝜕𝑥𝑖
+ 𝜇

𝜕

𝜕𝑥𝑗
(
𝜕𝑢̃𝑖
𝜕𝑥𝑗

+
𝜕𝑢̃𝑗

𝜕𝑥𝑖
) −

𝜕𝜏𝑖𝑗
𝜉

𝜕𝑥𝑗
+ 𝜌̂𝑔𝑖 (2.55) 

where the new quantity 𝜏𝑖𝑗
𝜉

 is the explicitly filtered SGS term 

 𝜏𝑖𝑗
𝜉
= 𝜌𝑢𝑖𝑢𝑗̂ − 𝜌̂𝑢̃𝑖𝑢̃𝑗̂ (2.56) 

where the overhat denotes an explicitly filtered quantity, while the tilde now denotes grid-based 

(or implicitly filtered) quantities. According to Lund (1997), if the explicit filter width is larger 
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than the grid spacing the filter will damp fluid motions at scales which are smaller than the filter 

width but are captured by the grid. It thus ensures that the definition of the resolved length scales 

of fluid motions do not vary with the refinement of the grid.   

2.4.2 Sub-grid closure 

The filtered Navier-Stokes equations require closure as the sub-grid stress tensor cannot be 

expressed in terms of resolved scales (Gullbrand 2002). In this study, a damped standard 

Smagorinsky model accounts for the effect of the small scale eddies on the resolved scales. Other 

models, such as the dynamic Smagorinsky model (DSM), dynamic mixed model (DMM) and 

dynamic reconstruction model (DRM) (Gullbrand and Chow 2003) are commonly reported in the 

literature. 

In conventional LES that uses an implicit filtering scheme the standard Smagorinsky (1963) 

model SGS stresses are modelled as  

 𝜏𝑖𝑗
𝑠𝑔𝑠
= −2𝜌̂𝜈𝑡𝑆̃𝑖𝑗 (2.57) 

where the eddy viscosity may be defined as 

 𝜈𝑡 = (𝐶𝑆Δ)
2|𝑆̃| (2.58) 

 
|𝑆̃| ≡ (2𝑆̃𝑖𝑗𝑆̃𝑖𝑗)

1/2,    𝑆̃𝑖𝑗 =
1

2
(
𝜕𝑢̃𝑖
𝜕𝑥𝑗
+
𝜕𝑢̃𝑗

𝜕𝑥𝑖
) (2.59) 

where 𝐶𝑆 is a constant model coefficient, ∆= (𝛿𝑥𝛿𝑦𝛿𝑧)1/3 is taken as the implicit (grid-based) 

filter width, |𝑆̃|is the magnitude of the strain rate and, repeating to avoid ambiguity, 𝑢̃𝑖 is the 

resolved scale velocity on the grid. On the other hand, the explicit LES SGS stresses can be 

modelled as 

 𝜏𝑖𝑗
𝜉
= −2𝜌̂𝜈𝑡 𝑆̂̃𝑖𝑗 (2.60) 

where the eddy viscosity of the explicit LES scheme may be obtained as 
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 𝜈𝑡 = (𝐶𝑆Δ̂)
2 |𝑆̂̃| (2.61) 

 
|𝑆̂̃| = (2𝑆̂̃𝑖𝑗 𝑆̂̃𝑖𝑗)

1/2, 𝑆̂𝑖𝑗 =
1

2
(
𝜕𝑢̂̃𝑖
𝜕𝑥𝑗
+
𝜕𝑢̂̃𝑗

𝜕𝑥𝑖
) (2.62) 

where the explicit filter width Δ̂ is independently specified but larger than the grid size (here it is 

taken as a function of the BLT), 𝑢̂̃  is the explicitly filtered velocity obtained from the grid 

velocities (see section 2.4.4 below). 

2.4.3 Damping function for model coefficient 𝑪𝑺 

Turbulence is damped in proximity to solid walls.  This is accounted for by replacing the 

Smagorinsky constant, 𝐶𝑆, with the Van Driest damping (Van Driest 1956) function 𝐶𝑆_𝐷𝑎𝑚𝑝 , 

given by  

 𝐶𝑆_𝐷𝑎𝑚𝑝 = 𝐶𝑆1 [1 − 𝑒
−𝑦+/𝐴+] (2.63) 

where, 𝐴+ = 26 and model coefficients 𝐶𝑆1 = 0.2. The non-dimensional distance normal to the 

wall is defined as 𝑦+ = 𝑦𝑢𝜏/𝜈 where 𝑢𝜏 is the friction velocity calculated as 𝑢𝜏 = √𝜏𝑤/𝜌; 𝜏𝑤 is 

the local shear stress at the wall. The value 𝐶𝑆_𝐷𝑎𝑚𝑝  replaces the value of 𝐶𝑆  in the constant 

Smagorinsky model. 

2.4.4 Filter functions 

In this study, the filtered velocity in the explicit LES scheme is obtained using a one- 

dimensional filter function following the method developed by Lund (1997). The general 

formulation of the filter and weighting function can be expressed as 

 

𝑢̂̃𝑖 = ∑ 𝓌𝑗𝑢̃𝑖+𝑗

(𝑛−1)/2

𝑗=−(𝑛−1)/2

 (2.64) 

 

∑ 𝓌𝑗

(𝑛−1)/2

𝑗=−(𝑛−1)/2

= 1 (2.65) 
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where 𝑗 is the cell index, 𝑛 is the number of grid points (or nodes) within the filter and 𝓌𝑗  

represents the weighting factors given to the velocities in each node. Weighting factors are 

defined such that at the central grid point  𝓌0 =
1

2
, and the remaining half is equally distributed 

among neighbouring grid points.  

Half to the central grid point is applied as the trapezoidal rule is used. In effective filter width 

∆= 2𝑑𝑥 Case, weighting (1/4, 1/2, 1/4) is applied (Lund 1997) and the actual filter width is 

calculated as √6 ≈ 2.44 using the following equation, 

 

∆= √12 ∑ 𝑗2𝓌𝑗

(𝑛−1)/2

𝑗=−(𝑛−1)/2

 𝑑𝑥 

(2.66) 

Therefore, in this study when filter widths of 2, 4, 8 and 16 are stated, these effectively mean √6, 

√15, √45 and √153. Effective filter width is in fact increased by 1.6-1.85 times instead of 2. 

Similar procedure was adopted by Gullbrand and Chow (2003) for FGR 2 and 4. 

2.4.5 Energy equation 

Since one of the test cases we consider is a buoyancy driven flow in a differentially heated 

rectangular cavity, a filtered energy equation is required. The implicitly filtered (grid-based) 

equation for energy is 

 𝜕(𝜌̂𝐶𝑝𝑇̃)

𝜕𝑡
+ ∇ ∙ (𝜌̂𝑢̃𝐶𝑝𝑇̃ −

𝜌̂𝜇𝑡𝐶𝑝

𝑃𝑟𝑡
𝑇̃) =

D(𝑝̅)

D𝑡
− ∇ ∙ 𝑞̃" 

(2.67) 

where 𝐶𝑝 is the specific heat at constant pressure, 𝑇̃ is the Favre filtered temperature, 𝑝̅ is the 

Reynolds filtered thermodynamic pressure based on the ideal gas equation of state  

 𝑝̅

𝜌 ̂
 =  

𝑅

𝑊̅
 𝑇̃ 

(2.68) 
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where 𝑅 is the universal gas constant and 𝑊̅  is the Reynolds filtered molecular weight (here 

taken as the value for standard air), and 𝑞̃" is a source representing the resolved conductive, 

diffusive and radiative heat fluxes. Note that grid based filtering of equation 2.67 suffices 

because the subgrid thermal diffusivity is modelled from the subgrid viscosity and the turbulent 

Prandtl number as shown in the second term inside brackets. The subgrid viscosity is closed with 

an explicit filter according to equation 2.61. 

2.4.6 Pressure equation 

In this study, pressure is calculated by solving the Poisson equation given in equations (2.69-70). 

 
𝛻2 𝐻 =  − 

𝜕 (𝛻 .  𝑢̃)

𝜕𝑡
 −  𝛻 .  𝐹  

(2.69) 

 
𝐹 = − 𝑢̃  ×  𝜔 − 𝑝∇ (

1

𝜌̂
)  − (

1

𝜌̂
) [(𝜌̂  −  𝜌0) 𝑔 + 𝑓𝑏  +  ∇ .  𝜏𝑖𝑗

𝜉
] 

(2.70) 

here 𝐻 is the total pressure (also known as the stagnation energy per unit mass; |𝑢̃2|/2 − 𝑝/𝜌̂), 

F is referred to collectively as momentum flux. 𝑝  is the perturbation pressure (which is 

calculated from 𝐻  value from the previous time step), while 𝜔  represents vorticity, 𝜌̂  is the 

instantaneous density and 𝜌0 represents density at initial temperature, 𝑔 is the acceleration of 

gravity and 𝑓𝑏 is the external force vector (excluding gravity), 𝜏𝑖𝑗
𝜉

 is the explicitly filtered SGS 

stress tensor. The above approximation allows to have efficient solutions with fast, direct solvers 

optimized for uniform grids. 

2.5 Calculation of energy spectrum 

Energy spectra are a fundamental indicator of the conformance of the simulations to the 

principles of LES. Energy spectra 𝐸(𝜅) can be computed at a single instant in time by taking 

kinetic energies integrated throughout the system domain and plotting them against 

wavenumbers (𝜅) to carry out the energy spectrum analysis. Energy spectrum analysis of any 

turbulent flow system provides information on energy distribution among eddies with different 

length scales. The energy spectrum 𝐸(𝜅) is obtained by calculating the energy contained in the 
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wavenumber range (0,∞)  through ∫ 𝐸(𝜅)𝑑𝜅
∞

0
= 𝑇𝐾𝐸 . The turbulent kinetic energy are 

calculated as 𝑇𝐾𝐸 = 0.5(𝑢′2̅̅ ̅̅ + 𝑣′2̅̅ ̅̅ + 𝑤′2̅̅ ̅̅ ̅) ; where 𝑢′ , 𝑣′ and 𝑤′ are the velocity fluctuations 

along three Cartesian directions (see section 2.6.1) and the wavenumber is computed as 𝜅 =

√𝜅𝑥2 + 𝜅𝑦2 + 𝜅𝑧2. For more details on the energy spectrum 𝐸(𝜅) and its rigorous mathematical 

formulations, the reader is referred to the seminal text of LES (Pope 2000). A Matlab program is 

used to calculate the energy spectrum of test cases studied in this work. 

2.6 Defining nature of studied flows 

2.6.1 Estimation of Reynolds number(𝑹𝒆𝝀) 

The Reynolds number is an important parameter to quantify the nature of flows and whether they 

are laminar or turbulent. A Taylor scale Reynolds number (𝑅𝑒𝜆)can be used to quantify the 

nature of the flow. The literature of Mansour et al. (1994), Sreenivasan (1994) and Djenidiet al. 

(2013) considered the Reynolds number (𝑅𝑒𝜆) of 50 as being of critical value. These authors 

considered 𝑅𝑒𝜆 ≤ 50 as a low Reynolds number flow and 𝑅𝑒𝜆 > 50 as a high Reynolds number 

flow. The following equation has been used to estimate the Reynolds number, 

 
𝑅𝑒𝜆 =

𝑢′𝜆

𝜈
 (2.71) 

The Taylor microscale  𝜆 in the inertial sub range can be computed using the following equation, 

 
𝜆 = (

10𝜈𝑘

𝜀
)
1/2

 (2.72) 

with 𝑘 being the turbulent kinetic energy and 𝜀 its dissipation rate. In the inertial range the eddies 

are expected to be isotropic (Batchelor 1953; Saffman 1967) and the turbulence intensity scales 

according to 𝑢′ = (2/3 𝑘)1/2.  

2.6.2 Estimation of Rayleigh numbers (𝑹𝒂) 

The Rayleigh number is a dimensionless number associated with buoyancy driven flow. A 

Rayleigh number (𝑅𝑎) is valuable insofar as it provides information about the form of heat 
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transfer such as whether conduction is dominant over convection, or vice versa. Typically it is 

assumed that the flow becomes turbulent when the Rayleigh number is between 10
8 

and 10
9
 (Lau 

et al. 2013). It is defined as 

 
𝑅𝑎 =  

𝑔𝛽

𝜈𝛼
(𝑇𝑠 − 𝑇∞)𝐿

3 (2.73) 

where 𝐿 is a characteristic length, 𝑔 is the acceleration due to gravity, 𝛽 is the thermal volumetric 

expansion coefficient, 𝜈 and 𝛼 is the kinematic viscosity and thermal diffusivity of the fluid and, 

𝑇𝑠  and 𝑇∞  are the temperatures of the surface and the bulk of the fluid respectively. In the 

simulations is 𝑅𝑎 = 4.68 × 1010which is the same as in the experiment by Cheesewright et al. 

(1986). 

2.7 Solution algorithm 

The boundary conditions for the explicit LES scheme, such as velocity (𝑢̃𝑛), density (𝜌̂𝑛), and 

the fluctuating stagnation energy per unit mass (𝐻𝑛) are known for a specified grid cell and at a 

the 𝑛 th time step. The temperature (𝑇̃𝑛) is calculated in each grid cell using the equation of 

state. Furthermore, the background pressure (𝑝̂𝑛) is known for given computational domain. Let 

the superscripts, n, n +1, denote discrete time values, 𝑡𝑛+1 = 𝑡𝑛 + ∆𝑡 . The superscript (∗) 

denotes a predicted value at some intermediate 𝑡𝑛 < 𝑡∗ < 𝑡𝑛+1 . The governing equations are 

solved using an explicit second-order predictor/corrector scheme is given as follows: 

Predictor 

Step 1. transport and equation of state 

At the following time step the density (𝜌̂∗) is calculated using an explicit Euler method. The 

density is calculated by the following procedure, 

 𝜌̂∗ = 𝜌̂𝑛 + ∆𝑡[∇ ∙  𝜌̂𝑛  𝑢̃𝑛]  (2.74) 

The asterisk denotes a first order accurate estimate at the next time step.  

The thermodynamic pressure (𝑝̂∗) which is link to equation of sate is calculated as 
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𝑝̂∗ = 𝑝̂𝑛 + ∆𝑡 (

𝜕𝑝̂

𝜕𝑡
)
𝑛

  
(2.75) 

The temperature (𝑇̃∗) are computed using the equation of state. 

 
𝑇̃∗ = 

𝑝̂∗𝑊̅̅̅

𝜌̂∗𝑅
  

(2.76) 

Step 2. compute the divergence 

The divergence (∇ ∙ 𝑢̃)∗  is calculated from the equation (2.67) using the above estimated 

thermodynamic quantities. Here the parentheses is used to donate that the velocity vector (𝑢̃∗) 

has not yet been computed at the following time step, only its divergence is computed. 

Step 3. solve the Poisson equation 

The poisson equation is solved for the pressure term at the previous time level 

 
∇2 𝐻𝑛  =  −  

(∇ ∙  𝑢̃)∗  −  ∇ ∙ 𝑢̃𝑛

∆𝑡
 −  ∇ ∙ 𝐹𝑛 

(2.77) 

Step 4. update the velocity field 

The velocity is calculated at the intermediate time level using the following equation; 

 𝑢̃∗ = 𝑢̃𝑛  + ∆𝑡[𝐹𝑛  +  ∇𝐻𝑛]  (2.78) 

Note that this procedure guarantees that the divergence of the estimated velocity field, ∇ ∙ 𝑢̃∗, is 

identically equal to the divergence that is derived from the estimated thermodynamic quantities, 

(∇ ∙ 𝑢̃)∗, in Step 2. 

Step 5. Checking the CFL stability condition for the time step  

𝐶𝐹𝐿 = ∆𝑡 𝑚𝑎𝑥 (
𝑢̃𝑖
𝛿𝑥𝑖
) <  1 

If the CFL condition is not satisfied the timestep is reduced and the procedure returns to step 1 

(Transport and equation of state). If the CFL condition is satisfied, the procedure continues to the 

corrector step. 

Corrector 

Step 1. transport and equation of state for intermediate temperatre  
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The density is corrected at the next time step; 

 
 𝜌̂𝑛+1 = 

1

2
  (𝜌̂∗ + 𝜌̂𝑛) −

1

∆𝑡
[∇ ∙ 𝜌̂∗ 𝑢̃∗] 

(2.79) 

The background pressure is also corrected in the same way 

 
 𝑝̂𝑛+1 = 𝑝̂∗ + ∆𝑡 [(

𝜕𝑝̂

𝜕𝑡
)
∗

+ (
𝜕𝑝̂

𝜕𝑡
)
𝑛

] 
(2.80) 

The intermadiate temperature (𝑇̃∗) are calculated from the equation of state. 

 
𝑇̃∗ = 

𝑝̂𝑛+1𝑊̅̅̅
∗

𝜌̂𝑛+1𝑅
 

(2.81) 

Step 2. update the temperature field 

The final temperature (𝑇̃𝑛+1) is calculated using the equation of state considering the updated 

density and composition. 

 
𝑇̃𝑛+1 = 

𝑝̂𝑛+1𝑊̅̅̅
𝑛+1

𝜌̂𝑛+1𝑅
 

(2.82) 

Step 3. compute the divergence 

The divergence (𝛻 .  𝑢̃)𝑛+1 is calculated using the corrected thermodynamic quantites from the 

energy equation.  

Step 4. solve the Poisson equation 

The pressure is calculated using the following equation 

 

∇2 𝐻∗  =  −  [
(∇ ∙ 𝑢̃)𝑛+1 − 

1
2 (
(∇ ∙ 𝑢̃)∗ + (∇ ∙ 𝑢̃)𝑛)

∆𝑡  2⁄
 −  ∇ ∙ 𝐹∗] 

(2.83) 

Step 5. update the velocity field 

The velocity is corrected at the following time step, 

 
 𝑢̃𝑛+1 =  

1 

2
 (𝑢̃∗  +  𝑢̃𝑛) −

1

∆𝑡
 [𝐹∗  +  ∇𝐻∗]  

(2.84) 

Note again that the divergence of the corrected velocity field is identically equal to the 

divergence that was computed in Step 3. 
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2.7 Conclusions 

In LES, sub-grid scales (SGS) or eddy viscosity models play an important role predicting 

turbulent flows accurately. A recent version of FDS 6.2.0 contains four eddy models, namely a 

standard Smagorinsky model, a dynamic Smagorinsky model, and the Deardorff and Vreman 

models. Mathematical formulations of these models to compute eddy viscosity to account for 

turbulence have been reviewed in this chapter. Subsequently, a proposed overall concept of 

simulating wall-bounded turbulent flows, a selection of filter width as a function of the physical 

parameter of fluid flow such as boundary layer thickness (BLT), the importance of a filter to grid 

spacing ratio (FGR) in explicit LES schemes and the solution procedure of the governing 

equations have been reported.  
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3.Chapter 3 

Assessment of baseline code 

3.1 Introduction 

The development of FDS was motivated by the need to simulate building-fires.  It is a CFD 

based fire model initially developed to simulate low speed thermal buoyancy driven flows, 

namely flows of smoke and hot gases generated by fires. Subsequently, pyrolysis and 

combustion submodels have been added making it a state of the art fire model. FDS is an open 

source code which employs a second-order numerical scheme and it incorporates an LES model 

that is invoked by default. The version, FDS 6.2.0, offers the user a choice of four SGS models, 

namely the Standard Smagorinsky, the dynamic Smagorinsky, the Deardorff and the Vreman 

models.  As all of these are implicitly filtered schemes, it poses challenges to the adequacy and 

efficiency of these SGS models and their sensitivity to grids. The FDS source code (more 

specifically its standard Smagorinsky model) is chosen for implementing the explicit LES 

scheme described in Chapter 2. The reason for nominating this SGS model for conversion to an 

explicit LES scheme is demonstrated in this chapter. In this chapter, the grid sensitivity of FDS’ 

SGS models has been studied. In the process, the adequacy of the second-order numerical 

scheme (accurate in time and space) has also been assessed. A well-defined problem is studied 

namely turbulent flow over a backward facing step to compare the predicted flow fields with 

published experimental results. Those presented by Jovic and Driver (1994) for flow over a 

backward facing step are used for evaluating the various sub-grid scale models. 

The simulation of flow over a backward facing step was chosen for its simple geometry, but it 

contains relatively complex flow physics. This configuration is well suited to study the fluid flow 

behaviour that display separation, recirculation and reattachment phenomena, which have 
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important implication in many practical and engineering applications such as in internal flow 

systems like diffusers, combustors and channels with sudden expansions, and in external flows 

such as those around aerofoils and building (Le, Moin and Kim 1997). Moreover, a plethora of 

well-established numerical and experimental results are available in the literature (Kuehn 1980, 

Isomoto and Honami 1989, Neto, Metias and Lesieur 1993, Jovic and Driver 1994, Le, Moin and 

Kim 1997) for the case studied. 

 

Figure 3.1. Schematic view of backward facing step flow configuration (not to scale) 

3.2 Numerical simulation 

The computational domain of the numerical simulation of the backward facing step is set up 

exactly according to the well-established numerical study of Le Moin and Kim (1997). 

According to their study, it is found that the configuration under consideration is sufficient for 

capturing all the prominent flow features of turbulent flow over a backward facing step as also in 

the experiment conducted by Jovic and Driver (1992) and requires less computational resources.  

Figure 3.1 shows a schematic of the configuration, indicating the dividing streamline and 

recirculation zone that forms as the fluid flows over the step. It also shows the reattachment zone 

and redevelopment of the boundary layer after the fluid passes the reattachment zone 

downstream of the step. These complex flow features render it a useful and demanding 

benchmark case for validation of LES schemes. 

x
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The fluid is air at a temperature of 20° C, and the kinematic viscosity (𝜈) and density (𝜌) are 

taken to be 1.53 × 10−5 m2/s and 1.2 kg/m3, respectively. The step height (ℎ) is 9.6 × 10−3 m. 

The streamwise length of the upstream portion is 10ℎ and the length of the downstream outflow 

section is 20h. The flow width is  4ℎ. The height of the upstream and downstream sections 

are  5ℎ  and 6ℎ,  respectively, corresponding to an expansion ratio of 1.2 and calculated as 

𝐸𝑅 = 𝐿𝑧/(𝐿𝑧 − ℎ). The Reynolds number (𝑅𝑒ℎ = ℎ𝑈0/𝜈) is 5100 based on the step height ℎ 

and the reference velocity 𝑈0. In the experiment the reference flow speed (𝑈0) was maintained at 

7.72 ± 0.03 m/s at section 3ℎ upstream of the step. The difficulty to obtain desired reference 

velocity in the numerical simulation is well known. In this study, the overall velocity is 

maintained 7.96 m/s for different viscosity models which is almost 2.5% higher than ideally 

desired at location 3h upstream of the step. The streamwise velocities are normalized using the 

upstream free stream reference velocity  𝑈0 . The reference velocity fluctuation for different 

viscosity models is maintained within ±0.02 m/s. Mean velocities and turbulence statistics are 

analysed at two different stations (𝑥/ℎ =  4 and 𝑥/ℎ = 6) along the streamwise direction. The 

dimensionless mean(𝑢/𝑈𝑜) velocity components and turbulence intensities or Reynolds stresses 

(𝑢′𝑢′̅̅ ̅̅ ̅) normalized by the reference velocity 𝑈0
2 are compared against the vertical axis (𝑧/ℎ) in 

order to obtain agreement between the simulated and experimental data. Generally, energy is 

transferred from the largest eddies to the smallest ones on a timescale of about one large eddy 

turnover. In this flow case, one recirculation time (𝑡𝐸) near the step height (ℎ) is calculated as 

5 × 10−3𝑠 which is considered as unit eddy turnover time. The flow achieved statistically steady 

state at approximately 800𝑡𝐸. After an initial run of 800𝑡𝐸, the flow velocity is averaged over the 

time for another 2000𝑡𝐸. The average velocity data was obtained at 0.01s interval (that means 

nearly two eddy turnover time) and statistical average of 1000 data points was taken which is 

considered adequate. 

Three uniform computational resolutions namely coarse, medium and fine, are used along the 

streamwise(𝑁𝑥), spanwise (𝑁𝑦) and vertical (𝑁𝑧) directions. The grid resolved quantities are 



54 
 

physically interpreted as cell means. In implicit LES, the filter width is taken as the cube root of 

the cell volume, ∆ =𝑉𝑐
1/3

, the cell volume𝑉𝑐  =  𝛿𝑥 𝛿𝑦 𝛿𝑧; where 𝛿𝑥, 𝛿𝑦  and 𝛿𝑧  are the grid 

spacings along the three directions of the Cartesian coordinate system. The filter width to grid 

spacing (∆/𝛿𝑥) is considered as one since the filter width (∆) is equivalent to the grid spacing 

(𝛿𝑥). For the grid sensitivity study, instead of random grid selection, for the convenience grids 

are refined in terms of the step height to grid spacing ratios (ℎ/𝛿𝑧) in this study. This grid 

selection process is adopted from the LES study of flow over a backward facing step by 

Panjwani (2010) and Toms (2015). The step height to grid spacing ratios are considered as 

ℎ/𝛿𝑧 = 3 , 5 and 10. Table 3.1 presents the selected grid resolutions, considered model 

coefficients of SGS models implemented in the numerical simulation along with the measured 

wall unit (see section 2.4.2) 𝑛𝑚𝑖𝑛
+  values which represents the minimum grid spacing in the wall-

normal direction at the outflow test section. It can be observed that despite the same grid 

resolution, resolution in terms of nominal minimum wall can be different. 

Table 3.1. Considered model coefficients and estimated wall unit (n
+
) values of SGS models 

SGS models Smagorinsky Dynamic Smagorinsky Deardorff Vreman 

Model coefficients(𝑪∗) 0.20 -- 0.10 0.07 

Grid 𝑁𝑥 ×𝑁𝑦 × 𝑁𝑧 𝑛 𝑊𝑎𝑙𝑙
+  𝑛 𝑊𝑎𝑙𝑙

+  𝑛 𝑊𝑎𝑙𝑙
+  𝑛 𝑊𝑎𝑙𝑙

+  

Coarse (C) 90 × 40 × 60 ≤ 3.80 ≤ 3.98 ≤ 4.34 ≤ 4.45 
Medium (M) 150 × 60 × 100 ≤ 2.17 ≤ 2.32 ≤ 2.56 ≤ 2.71 

Fine (F) 300 × 120 × 200 ≤ 0.83 ≤ 1.02 ≤ 1.17 ≤ 1.28 

It is to be noted that in the DNS study of  Le, Moin & Kim (1997) the wall unit ranged from 

𝑛𝑚𝑖𝑛
+ ≈ 0.3 to 𝑛𝑚𝑎𝑥

+ ≈ 31. Furthermore, while Akselvoll and Moin (1993) performed a LES of 

backward facing step with 𝑅𝑒ℎ = 5100 (based on the step height, ℎ) which is similar to this 

study, they refined the resolution to a nominal wall unit, 𝑛+ = 0.8. 

3.3 Boundary conditions 

Boundary conditions play an important role in any numerical simulations and this is particularly 

true for LES to obtain appropriate solution. Inlet boundary conditions are important as in most of 
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the cases the downstream flow development is largely influenced by the inlet flow behavior. The 

boundary conditions for the backward facing step simulations are as follows. In figure 3.1, at the 

inflow on the left end of the domain a constant and uniform atmospheric pressure is applied. At 

the outlet on the right end of the domain gradients of pressure and velocity are prescribed as 

zero. The lower boundary is a solid wall with the near wall behaviour modelled by the Werner-

Wengle approximation to the log-law (Werner and Wengle 1991). Zero pressure gradient and a 

no-slip boundary condition is applied at the walls (side and bottom) while at the upper boundary 

the vertical velocity is 𝑤 = 0  while streamwise and vertical velocity gradients are 𝜕𝑢/𝜕𝑧 =

𝜕𝑤/𝜕𝑧 = 0 which is consistent with Le, Moin and Kim (1997). The turbulence was initialized 

by some random perturbation.  

 
(a) Constant Smagorinsky               (b) Dynamic Smagorinsky 

 
(c) Deardorff                                    (d) Vreman 

Figure 3.2. Mean velocity profiles at test section x/h=4 for the SGS models 
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3.4 Results and discussions - grid sensitivity 

With the implicitly filtered SGS models (the standard Smagorinsky, the dynamic Smagorinsky, 

the Deardorff and the Vreman SGS models), simulations of flow over a backward facing step 

were performed for the three grid resolutions (coarse, medium and fine) as shown in Table 3.1. 

All the simulations were carried out to examine the influence of refinement of grids on their 

solutions. The simulated results are analysed based on the mean velocity and the turbulence 

intensity. Results are compared at two different test locations 𝑥/ℎ = 4 and 6. The grid sensitivity 

is analysed both graphically and quantitatively. The main purpose of this analysis is to identify 

the most promising SGS model among the four for the conversion to an explicit LES model.  

 
(a) Constant Smagorinsky                   (b) Dynamic Smagorinsky 

 
(c) Deardorff                                     (d) Vreman 

Figure 3.3. Mean velocity profiles at test section x/h=6 for the SGS models 
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(a) Constant Smagorinsky                     (b) Dynamic Smagorinsky 

 
(c) Deardorff                                    (d) Vreman 

Figure 3.4. Turbulence intensities at test section x/h=4 for the SGS models 

3.4.1  Graphical comparison -mean velocity and turbulence intensity 

Figures 3.2 and 3.3 present the comparison of the mean velocity profiles from simulations with 

four SGS models at stations 𝑥/ℎ = 4 and 𝑥/ℎ = 6. This parameter was averaged in time and 

non-dimensionalised with the free stream reference velocity 𝑈0. As shown in Table 3.1, at fine 

grid resolutions, the wall units (𝑛𝑚𝑖𝑛
+ ) along the vertical direction are reported in the range of 0.8 

to 1.3 for all the four models. It also appears from the figures that the tendency of numerical 

convergence of the standard Smagorinsky model is relatively better compared to other three SGS 

models at both locations. It is to be noted that when a coarser grid is used, a thicker boundary 

layer is predicted near the surfaces compared to the simulations where a finer grid is used. An 
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example of contour plots is given as Figure C.1. in Appendix C. As a result to maintain the flow 

continuity, higher boundary layer edge velocity is predicted for coarser grid. 

Turbulent flows are highly diffusive in nature due to continuous three-dimensional fluctuations 

of the fluid throughout the computational domain. Turbulence intensity arises due to the non-

linear diffusive nature of fluid flow. It is an important flow parameter to quantify the nature of 

the turbulent flow.   

 
(a) Constant Smagorinsky                 (b) Dynamic Smagorinsky 

 
(c) Deardorff                                (d) Vreman 

Figure 3.5. Turbulence intensities at test section x/h=6 for the SGS models  

The 𝑟𝑚𝑠 profiles of the turbulence intensities or Reynolds stresses (𝑢′𝑢′̅̅ ̅̅ ̅) at different locations 

along the streamwise direction are normalized by the reference velocity 𝑈0
2. Figures 3.4 and 3.5 

present the turbulence intensities at two test locations 𝑥/ℎ = 4 and 𝑥/ℎ = 6 for the SGS models. 
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Similar to the mean velocity profile, it appears from the figure that SGS models turbulence 

intensity profiles at selected test locations are unable to achieve grid convergence. Out of four 

models, it also appears the tendency of grid convergence of the standard Smagorinsky model is 

relatively better compared to the other three models which is consistent with figures 3.1 and 3.2. 

From these figures, it is observed that although the grids are sufficiently refined ( up to 𝑛𝑚𝑖𝑛
+ ≈

1) but none of the SGS models is able to attain the numerical convergence. 

3.4.2 Quantitative comparison - mean velocity and turbulence intensity 

From the above graphical presentation of the grid sensitivity study of the mean velocity and 

turbulence intensity, it appears that none of the flow variables is able to attain grid convergence 

despite sufficient refinement of the grid resolution. Hence, it is important to evaluate the grid 

convergence tendency of the four models to identify the most promising one. In this section, the 

focus was given on estimation of grid convergence error of the mean velocity and the turbulence 

intensity to quantify their tendency towards the grid convergence. 

The grid convergence method was proposed by Roache (1992) to estimate the grid convergence 

error which is based on the Richardson extrapolation. They point out that a grid convergence 

study requires a minimum of three grid solutions. The grid convergence index (𝐺𝐶𝐼) provides a 

measure of convergence for grid refinement studies. 𝐺𝐶𝐼 (%) can be expressed as follows 

 𝐺𝐶𝐼 (%) = 𝐹𝑆
𝜖𝑟𝑚𝑠
𝑟𝑝 − 1

× 100 (3.1) 

Where, 𝑝 is the order of the numerical scheme and for second-order scheme 𝑝 = 2, 𝐹𝑠  is the 

factor of safety and the recommended value is 𝐹𝑠 = 3  (Roache 1992), 𝑟  represents the grid 

refinement ratio, can be calculated as 𝑟 = (𝑁𝑓𝑖𝑛𝑒/𝑁𝑐𝑜𝑎𝑟𝑠𝑒)
1/3, and 𝜖𝑟𝑚𝑠 is the 𝑟𝑚𝑠 value of the 

relative error which provide an initial measure of grid convergence for individual points 𝑛 as  
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𝜖𝑟𝑚𝑠 = (

∑ 𝜖𝑖
2𝑛

𝑖=1

𝑛
)

1/2

 
(3.2) 

where, the relative error (𝜖𝑖 ) at a certain point for a flow variable (say velocity 𝑢𝑖 ) can be 

calculated as the magnitude between the coarse and fine solutions  

 
𝜖𝑖 = |

𝑢𝑖,𝑐𝑜𝑎𝑟𝑠𝑒 − 𝑢𝑖,𝑓𝑖𝑛𝑒

𝑢𝑖,𝑓𝑖𝑛𝑒
| (3.3) 

 GCI has been calculated for three grid resolutions presented in Table 3.1. Results of this 

comparison in the form of grid convergence values (GCI) of the mean velocity and the 

turbulence intensity are reported in Tables 3.2 and 3.3. From the comparison, it is found that 

there is a reduction in 𝐺𝐶𝐼 values in the successive grid refinements (𝐺𝐶𝐼𝑀/𝐶 < 𝐺𝐶𝐼𝐹/𝑀) for 

each of the two variables for the SGS models. The GCI of finer grid (𝐺𝐶𝐼𝐹/𝑀) is relatively low 

compared to the coarser grid (𝐺𝐶𝐼𝑀/𝐶) which indicates that the dependency of the numerical 

solutions of the simulations on the grid size have been reduced.  

Table 3.2. Grid convergence measures (GCI) of the mean velocity profiles at stations x/h=4 and 

x/h=6 for flow over a backward facing step 

Grids 

Test  

sections 

(𝑥/ℎ) 

Grid convergence index (%) 

Smagorinsky  
Dynamics  

Smagorinsky  
Deardorff Vreman 

Medium- Coarse (M/C) 4 12.65 16.19 19.33 22.16 

Fine- Medium (F/M) 4 6.32 10.03 15.17 14.52 

Medium-Coarse (M/C) 6 13.12 15.94 16.87 19.57 

Fine-Medium (F/M) 6 6.45 10.31 12.68 14.11 

 

Table 3.3. Grid convergence measures (GCI) of the turbulence intensity at stations x/h= 4 and 

x/h=6 for flow over a backward facing step 

Grids 

Test  

sections 

(𝑥/ℎ) 

Grid convergence index (%) 

Smagorinsky  
Dynamics  

Smagorinsky  
Deardorff Vreman 

Medium-Coarse (M/C) 4 15.18 22.67 27.06 31.02 

Fine-Medium (F/M) 4 7.58 14.04 21.24 20.33 

Medium-Coarse (M/C) 6 15.74 22.32 23.62 27.40 

Fine-Medium (F/M) 6 7.38 14.43 14.75 19.75 
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From the comparison of 𝐺𝐶𝐼, it can be seen that the GCI value is almost halved for the standard 

Smagorinsky model between  (𝐺𝐶𝐼𝑀/𝐶 ) and (𝐺𝐶𝐼𝐹/𝑀 ), whereas other three SGS models only 

reduced the error by roughly one-third. This quantitatively shows that among the four SGS 

models the grid convergence tendency of the standard Smagorinsky model is relatively high 

compared to the other three models. Roy (2003) recommended that GCI is should be ≤ 4% for 

both higher and lower order numerical schemes to confirm the quality of simulations. However 

further grid refinement may provide reduction in  𝐺𝐶𝐼  leading to grid converged solutions 

(especially for the standard Smagorinsky model) which may fall in the DNS resolution range 

(𝑛𝑚𝑖𝑛
+ ≈ 0.3).  

3.5 Results and discussions - predicted outcomes 

The quality and efficiency of the SGS models can be justified by comparing the best converged 

LES solution (based on the grid convergence study shown above) with experimental results of 

Jovic and Driver (1994). This is done quantitatively and graphically in this section. 

3.5.1 Statistical analysis of predicted outcomes 

The results using the fine mesh have been selected to determine the statistical relative error 

between the numerical solution and the experimental data of Jovic and Driver (1994). The 

method of Ierardi et al. (2003) has been followed. According to this approach, the relative error 

(𝜉) can be calculated as,  

 
𝜉 =

(ℛ − 𝜓)

𝜓
 (3.4) 

where, ℛ and 𝜓 are the reference and predicted values respectively. The mean relative error (𝜉
𝑚
) 

can be calculated by the absolute values of error in individual points 𝑛. Therefore, the over-

predictions or under-predictions are of the same magnitude and the resultant error will not be 

zero, 
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𝜉𝑚 =
∑ (|

ℛ − 𝜓
𝜓 |)𝑛

𝑖=1

𝑛
 (3.5) 

The relative errors are presented in Tables 3.4 and 3.5 for the mean velocity and turbulence 

intensity profiles. Relative errors for the SGS models considered are calculated by taking average 

of the relative mean errors at each of the two stations. From the Table 3.4, as can be seen, the 

relative error of the Smagorinsky model at fine resolution is almost two fold less than those of 

the dynamic Smagorinsky and the Deardorff models and almost three folds less than the Vreman 

model. Therefore, on the basis of mean relative error analysis, it can be said that standard 

Smagorinsky is the most efficient model (in terms of obtaining closest to experimental results 

with the same grid resolution) among the four SGS models for the considered test case. Table 3.5 

results show a sharp increase of relative error in the turbulence intensities than the mean velocity 

components which indicate that the turbulence intensities are more sensitive to the SGS models. 

However, once again the standard Smagorinsky model  is found to be the most efficient model, 

this time in relation to the prediction of turbulence intensities. 

Table 3.4. Relative error analysis of the mean velocity profile (fine resolution) at stations x/h=4 

and x/h=6 for flow over a backward facing step 

Test Locations 

(𝑥/ℎ) 
Smagorinsky (%) 

Dynamics  

Smagorinsky (%) 
Deardorff (%) Vreman (%) 

4 9.32 18.18 22.21 27.59 

6 12.56 19.45 23.58 28.93 

Average 10.94 18.81 22.90 28.26 

 

Table 3.5. Relative error analysis of the turbulence intensity (fine resolution) at stations   x/h= 4 

and x/h=6 for flow over a backward facing step 

Test Locations 

(𝑥/ℎ) 
Smagorinsky (%) 

Dynamics  

Smagorinsky (%) 
Deardorff (%) Vreman (%) 

4 15.04 25.45 31.09 39.62 

6 17.62 28.33 33.01 36.50 

Average 16.33 26.89 32.05 38.06 
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(a) at section x/h=4                                                    (b) at section x/h=6 

Figure 3.6. Comparison of the mean velocity profile at test sections x/h=4 and x/h=6 for the SGS 

models 

3.5.2 Graphical Comparison 

Mean velocity 

Figure 3.6 represents the results for the dimensionless mean streamwise velocity at test sections 

x/h=4 and x/h=6 at a fine grid resolution. In Figure 3.6 (a), at section x/h=4, it appears that a 

reverse flow takes place between the step height level and wall region. It seems that the standard 

Smagorinsky model captures the secondary vortices near the step relatively better than other 

models and shows relatively better agreement with the experimental data. At the same location, 

among the other three eddy models, the Deardorff and the dynamic Smagorinsky model display 

almost the same phenomena except near the step height, but the Vreman model demonstrates 

poor agreement with experimental values compared to the other two models in the region near 

the step height and away from the wall. At section y/h=6 (Figure 3.6(b)), it is appears that the 

flow is attached to the wall. In that section the standard Smagorinsky model shows relatively 

better agreement with experimental data but other models exhibit moderate agreement along the 



64 
 

vertical axis. From the comparison, as can be clearly seen, the most accurate model (for the 

given absolute spatial resolution) overall is the standard Smagorinsky model, the dynamic 

Smagorinsky model is the intermediate and the Deardorff and the Vreman model are the least 

well performing SGS models.  

Turbulence intensity 

Figure 3.7 represents the results comparison for turbulence intensities at selected test locations at 

fine grid resolutions. At test sections x/h=4 (Figure 3.7(a)) and x/h=6 (Figure 3.7(b)), it is found 

that similar to the mean velocity profiles the overall agreement of the turbulence intensity 

profiles of the standard Smagorinsky model with experimental data is relatively better compared 

to the other models. From the comparison, it can be concluded that the most accurate model (for 

the given absolute spatial resolution) overall is the standard Smagorinsky model, the dynamic 

Smagorinsky model is the intermediate and the Deardorff and the Vreman model are the least 

performing SGS models at both test locations for the turbulent intensities which is consistent 

with the mean velocity profiles in figure 3.6.  

 
(a) at section x/h=4                                            (b) at section x/h=6 

Figure 3.7. Comparison of the turbulence intensity profile at test sections x/h=4 and x/h=6 for 

the SGS models 
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In summary, from the grid convergence study and the statistical relative error analysis along with 

graphical comparison of the mean velocity and the turbulence intensity profiles with 

experimental data, it appears that the standard Smagorinsky model is the most promising SGS 

model in FDS out of four despite it is unable to achieve grid convergence. Akselvoll and Moin 

(1993) application of LES to a backward facing step with 𝑅𝑒ℎ = 5100 (based on the step height; 

ℎ) shows that even with 𝑛𝑤𝑎𝑙𝑙
+ = 0.8  resolution,  they were unable to achieve a grid converged 

solution with  implicitly filtered LES. It seems the results of this present study are consistent 

with the findings of Akselvoll and Moin (1993) and Toms (2015) which also exhibit the elusive 

nature of grid convergence in implicitly filtered LES. However another simulation is conducted 

with the most promising standard Smagorinsky model when the grid resolution is further refined 

to   ℎ/𝛿𝑧 = 20. This is to assess the adequacy of the second-order scheme. 

3.6 Further simulation with standard Smagorinsky model  

 

(a) at section x/h=4                                                (b) at section x/h=6 

Figure 3.8. Comparison of the mean velocity profile at test sections x/h=4 and x/h=6 for the 

standard Smagorinsky model for h/δz=20 
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(a) at section x/h=4                                                (b) at section x/h=6 

Figure 3.9. Comparison of the turbulence intensity profile at test sections x/h=4 and x/h=6 for 

the standard Smagorinsky model for h/δz=20 

To assess the adequacy of second-order scheme, the grid is further refined as ℎ/𝛿𝑧 = 20 (very 

fine) where the grid resolution is 240 × 600 × 400 and the nominal wall unit is measured as 

𝑛𝑚𝑖𝑛
+ ≈ 0.46. Results of the mean velocity and the turbulence intensity of very fine grid (VF) are 

presented in the Figures 3.8 and 3.9 along with fine grid (F) to show VF’s tendency of grid 

converge and also compared with the experimental data. From the figures, it can be said that for 

both mean velocity and turbulence intensity, very fine grid shows relatively better agreement 

with experimental data compared to fine grid. In the similar way, grid convergence index and 

relative errors of the mean velocity and the turbulence intensity have been calculated to assess 

the grid convergence tendency and the relative accuracy of the model with VF grid that are 

presented in the Tables 3.6 and 3.7 respectively.  

As mentioned earlier Roy (2003) recommended a GCI  value of  ≤ 4% to confirm the quality of 

simulations. From the Table 3.6, it appears that GCI (%) of the flow variables are around this 

range, but still some grid sensitivity remains.   
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Table 3.6. GCI of the mean velocity and the turbulence intensity profiles of standard 

Smagorinsky model at stations x/h=4 and x/h=6 with very fine grid (h/δz=20) 

Grid 
Test section 

(x/h) 

Grid convergence index (%) 

Mean velocity Turbulence intensity 

Very fine-Fine (VF/F) 
4 3.27 4.18 

6 3.43 4.07 

Table 3.7. Relative errors of the mean velocity and the turbulence intensity profiles of standard 

Smagorinsky model at stations x/h=4 and x/h=6 with very fine grid (h/δz=20)  

Test section 

(x/h) 

Relative errors (%) 

Mean velocity Turbulence intensity 

4 4.38 6.58 

6 5.73 7.12 

Average 5.05 6.85 

Accuracy of the obtained solution of the mean velocity and the turbulence intensity is presented 

in the Table 3.7. Table 3.7 shows that average relative errors of the mean velocity and the 

turbulence intensity at two stations are approximately 5% and 7%. According to Roache (1998) 

and Roy (2003), for the numerical validation of turbulent flow cases errors are expected to be 

within 5%. Therefore it can be observed that obtained results of mean flow from very fine grid 

(VF) simulation are almost within acceptable range. The turbulence intensity failed to satisfy this 

condition. However from the trend, it can be expected that further refinement of grid may 

provide more accurate results but it will be similar or higher than that of grid resolution 

considered in DNS (Le, Moin and Kim 1997) in terms of nominal  𝑛𝑚𝑖𝑛
+  . This shows the 

elusiveness of grid convergence. This particular simulation using standard Smagorinsky model 

with very fine grid reduces the relative errors of both flow variables within the acceptable range 

and shows very good agreement with the experimental data which demonstrates the adequacy of 

the second-order numerical scheme. In the process, this study also shows the elusiveness of the 

grid convergence of implicitly filtered LES.   
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3.7 Conclusions 

For similar inlet boundary conditions fluid flow over a backward facing step is simulated using 

four different SGS models in FDS to identify the most promising SGS model and to assess the 

adequacy of a second-order numerical scheme. This chapter shows that grid resolutions have a 

stronger influence on the performance of the SGS models considered in implicitly filtered LES. 

According to the results of the GCI analysis, the standard Smagorinsky eddy viscosity model is 

found to be the most converging model compared to other three LES models considered. Based 

on this, an extra simulation with finer resolution (nominal 𝑛+ ≈ 0.46 ) with standard 

Smagorinsky model is conducted.  Analysis of the results of the further simulation with standard 

Smagorinsky model in terms of relative error and tendency of GCI justifies the adequacy of 

second-order numerical scheme. This study also demonstrates the elusiveness of grid 

convergence of implicitly filtered LES. A particular finding of this study is the justification of  

the modification of LES’s standard Smagorinsky eddy model to an explicitly filtered LES 

scheme as outlined in Chapter 2.  
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4.Chapter 4 
 

High Reynolds number turbulent flow 
 

 

The literature suggests that highly turbulent flows exhibit an inertial subrange in the energy 

spectrum (Mansour et al. 1993, Pope 2004). However, it is important to ensure that the explicit 

scheme can effectively capture this range. It is also important that filter widths selected on the 

basis of BLT in explicit schemes fulfil the criteria of the principle of LES for obtaining 

appropriate numerical solutions. The effectiveness of explicit filtering in high Reynolds number 

turbulent flow will be demonstrated in this chapter. A well-defined problem is studied, namely 

turbulent flow over a backward facing step, which has been studied in Chapter 3 with implicit 

LES schemes, to provide a comparator for investigating the effectiveness of the explicit scheme. 

4.1 Studied numerical configuration 

In this study, turbulent flow over a backward facing step is considered to study high Reynolds 

number flows. The Reynolds number based on Taylor’s scale (𝑅𝑒𝜆)  is calculated to be 

approximately 115. The computational domain and the boundary conditions of the numerical 

simulation of the backward facing step were set up as done in Chapter 3 and the rationale is 

provided there. In this chapter, the numerical results of turbulent flow over a backward facing 

step obtained using an explicit LES scheme are compared with the existing experimental results. 

Filter to grid spacing ratio (FGR) 

In this study, for the high Reynolds number flow over a backward facing step, the filter to grid 

spacing ratios (FGR) have been taken as 2, 4, 8 and 16. In Table 4.1, it is shown that a total of 

eight simulations need to be performed for two filter widths (Δ) that are selected as 10% and 
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20% of the boundary layer thickness (BLT). The intention is to select 5% of BLT as the filter 

width for further simulations if the selected two do not provide results consistent with the LES 

principles discussed in Chapter 2.  

The explicit filter width is directly linked to the BLT, the value of which must be estimated. The 

BLT is conventionally defined as the normal distance from the wall at which the local 

streamwise flow velocity (𝑢) reaches 99% that of the free stream velocity (𝑈𝑒). In the absence of 

experimental or DNS data, the BLT can be estimated from analytical expressions. In the absence 

of similar expressions for flow over a backward facing step this expression is used and a 

characteristic point is selected a distance 3ℎ  upstream of the step which corresponds to the 

experimental reference point. The analytical expression for a flat plate boundary layer given by 

Schlichting (1979) 

 𝛿

𝑥
=
0.382

𝑅𝑒𝑥
1/5

 (4.1) 

where 𝑥  is the streamwise distance from the start of the boundary layer and 𝑅𝑒𝑥 = 𝑈0𝑥/𝜈. It is 

recognized that the BLT is a function of the streamwise coordinate, however for the simplicity of 

the scheme, the BLT at a single reference point is considered in this study. The characteristic 

BLT is analytically estimated as  𝛿 = 2.1 × 10−2m  which is close to the experimentally 

observed value of 𝛿 = 2.4 × 10−2m by Jovic and Driver (1994).  

Table 4.1. Selected filter sizes Δ1and Δ2 for a turbulent flow at high Reynolds numbers 

Case 1 Case 2 Filter/grid ratio 

Fixed Filter width Δ1= 0.2δ Fixed Filter width Δ2= 0.1δ Δ/δx 

Case 11 δx=0.5Δ1 Case 21 δx=0.5Δ2 2 

Case 12 δx=0.25Δ1 Case 22 δx=0.25Δ2 4 

Case 13 δx=0.125Δ1 Case 23 δx=0.125Δ2 8 

Case 14 δx=0.0625Δ1 Case 24 δx=0.0625Δ2 16 
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The rationale behind the selection of the two filter widths as a fraction of the BLT was 

previously discussed in section 2.3. For each filter the base case FGR is 2 because this ratio has 

been commonly adopted (Gullbrand 2002, Gullbrand and Chow 2003, Radhakrishnan and Bellan 

2012, 2013 and 2015), and it provides a convenient starting point for our investigations. We 

subsequently refine the FGR to 4, 8 and 16 as we seek converged solutions. 

Grid resolutions of flow over a backward facing step 

For the high Reynolds number test case described in the previous section, a comprehensive set of 

eight explicitly filtered LES are conducted. This involves two different filter widths and four 

different FGR. These are summarised in Table 4.1. Table 4.2 presents the grid resolutions 

implemented in the numerical experiments on high Reynolds number flows. Grids presented in 

the Table 4.2 are different from the grids used in the Chapter 3 due to the grid selection 

procedure.  In Chapter 3 grids are based on step height to grid spacing ratio (ℎ/𝛿𝑧) whereas here 

grids are seleted based on a certain percentage of BLT. 

Table 4.2. Grid resolutions for flow over a backward facing step at a high Reynolds number, 

Reλ=115 

High Reynolds number turbulent flow over  a backward facing step 

(Estimated Reynolds number, 𝑅𝑒𝜆 = 115) 

Test cases 𝑁𝑥 × 𝑁𝑦 × 𝑁𝑧 𝑛 𝑊𝑎𝑙𝑙
+  

Case 11 60 × 20 × 40 ≤ 4.23 

Case 12 120 × 40 × 80 ≤ 2.49 

Case 13 240 × 80 × 160 ≤ 1.13 

Case 14 480 × 160 × 320 ≤ 0.93 

Case 21 120 × 40 × 80 ≤ 2.32 

Case 22 240 × 80 × 160 ≤ 1.04 

Case 23 480 × 160 × 320 ≤ 0.79 

Case 24 960 × 320 × 640 ≤ 0.43 

𝑁𝑥, 𝑁𝑦 and 𝑁𝑧 represents the number of grids (or meshes) along the spanwise (𝐿𝑥), streamwise 

(𝐿𝑦) and wall normal (𝐿𝑧) length directions. The resolutions are given in the Table is in the 

downstream of the step of the test case. A rectangular grid was used in all simulations. The 
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dimensionless wall units ( 𝑛+) are also presented in Table 4.2. It can be noted that due to the 

non-stretched grid, Case 23 and Case 24 have almost 3 and 20 times more grid cells than Le, 

Moin and Kim (1997).  

 
Figure 4.1.  Schematic diagram of grid used in Case 12 for a backward facing step 

In their DNS study grid resolution was 786 × 64 × 192 and non-uniform grid distribution is 

used along the vertical direction. They used fine grid near the bottom wall and coarse grid away 

from the wall and the wall unit ranging from 𝑛𝑚𝑖𝑛
+ ≈ 0.1 to 𝑛𝑚𝑎𝑥

+ ≈ 31. However, we have used 

uniform grid of equal sizes in all directions. Figure 4.1 presents the schematic of the 

computational domain and grid resolutions of Case 12 (presented in Table 4.2) to show the grid 

arrangement inside the test configuration during numerical simulation. 

4.2 Results and discussions 

The explicitly filtered LES solution is analysed in two ways. Firstly the energy spectra are 

examined to determine the explicit filter settings and grid resolutions required to achieve grid 

independent LES that captures the large scale energy containing range and the correct scaling in 

the inertial subrange.  Unlike GCI in Chapter 3, the energy spectrum analysis is used for its 

robustness. Gullbrand (2002) adopted the similar techniques.  Secondly the quality of the 

simulations is analysed by their ability to capture the prominent features of the flow and through 

a statistical comparison of the LES predictions against available experimental data for mean 

velocity and turbulent intensity. 
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4.2.1 Energy spectra analysis  

Figure 4.2 shows the grid convergence of energy spectra for the two sets of cases with different 

fixed filter widths: Case 1 with Δ1= 0.2𝛿 and Case 2 with Δ2= 0.1𝛿. The inertial subrange is 

identified in the figures by comparison to Kolmogorov’s universal scaling line with slope of -5/3. 

The probable demarcation of the energy-containing and inertial ranges is also indicated by the 

vertical dotted line. Results obtained from the four values of FGR presented in Table 4.1 are 

compared. It can be seen that the energy spectra obtained in Case 13 with FGR = 8 and Case 14 

with FGR = 16 are closely matched. Hence, it is considered that for a fixed filter Δ1 a grid-

converged solution is obtained in Case 13. Similarly, convergence for the cases with a filter 

width Δ2 occurs when the FGR is increased to 8 (Case 23). It seems that the grid converged 

spectra for both cases with filter widths at 10% and 20% of the characteristic BLT satisfy the 

LES principles in that the energy containing range is captured and the filter widths are within the 

inertial subrange. For this high Reynolds number flow the grid converged energy spectra indeed 

conform to the -5/3 relationship as expected. 

 

(a) Case 1 (Δ1= 0.2𝛿) (b) Case 2 (Δ2= 0.1𝛿) 

Figure 4.2. Grid-convergence of three-dimensional energy spectra for the high Reynolds number 

flow with two different fixed filter widths. 
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This apparent need for FGR = 8 is at odds with some of the literature. As discussed earlier 

Gullbrand and Chow (2003) found that FGR = 4 was sufficient in their second-order scheme. 

However, we see in Figure 4.2 that although Case 12 with FGR =  4 is a long way from the grid-

converged spectra, Case 22 also with FGR = 4 is actually quite close to being grid-converged 

although the effective cut-off wavenumber (corresponding to the point where the spectrum tail 

shows a sudden decrease) is slightly less than in Case 23 and Case 24. This more rapid 

convergence with increasing FGR for the finer filter width cases suggests that the required 

minimum FGR is filter width dependent, and that smaller explicit filter widths may not require as 

intensive a grid resolution as do wider filter width simulations. It is also interesting to compare 

the nominal cut-off wave numbers corresponding to the filter given by 𝜅𝑐 = 𝜋 ∆⁄ , which are 

indicated by vertical dashed-dotted lines in Figure 4.2 with the effective cut-off wave numbers. 

On the coarsest grid (Case 11), it is found that the first grid point (𝑛+) at selected test sections 

are located 4 plus-units (see Table 4.2) above the wall. It appears on such a grid it is  not possible 

to obtain reasonable results which is evident from the Figure 4.2(a). We see for both cases that 

when FGR = 4 (Case 12 and Case 22) the effective cut-off  is quite close to the nominal cut-off 

(𝜅𝑐 = 𝜋 ∆⁄ ) but at the same time some of the large energy containing eddies are also being 

filtered out as indicated by a failure of the Case 12 spectra to reach the peak low wave number 

energy. On the other hand when the FGR is increased, although the peak energy levels are being 

reached, the effective cut-off wave numbers are slightly above the nominal cut-off. This larger 

than expected cut-off is an artefact of the filtering method and the need to increase FGR to a 

sufficiently high level to capture the energy containing range at the expense of over-resolving the 

inertial subrange represents an inefficiency in the approach; albeit quite a small and tolerable 

inefficiency in these cases shown here. It is well known that spatial filtering operations are not 
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“sharp” and that some of the turbulent motions captured on the grid remain unfiltered due to the 

nature of the filtering (here that is a weighting of grid values). Spectral filters, although 

potentially difficult to implement, are more efficient as they may achieve a desired sharp cut-off 

(Ghosal 1996). 

  

(a) Grid converged energy spectra of Case 1 

(Δ1= 0.2𝛿) and Case 2 (Δ2= 0.1𝛿) 

(b) Energy spectra obtained using the finest grids 

of Case 1 (Δ1= 0.2𝛿) and Case 2 (Δ2= 0.1𝛿) 

 

(c) Equal grid resolutions for Case 1 (Δ1= 0.2𝛿) and  

Case 2 (Δ2= 0.1𝛿) 

Figure 4.3. Energy spectra analysis for cases in which the grid size is maintained constant and 

the filter width is varied.  Case 1 (Δ1= 0.2δ) and Case 2 (Δ2= 0.1δ) 
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Grid-converged spectra profiles of both filter width cases are compared in different combinations 

such as; (a) relatively coarse grids (Case 13 & Case 23), (b) finest grids (Case 14 & Case 24) and 

(c) same grid size but different filter widths (Case 14 & Case 23). A comparison of grid-

converged solutions of energy spectra taken from Figure 4.2 for filter width Δ1 and Δ2 is 

presented in Figure 4.3. From the figure, it is found that converged solutions of both fixed filter 

widths are in very good agreement with the plotted -5/3 slope. Moreover, taken filter widths are 

lying in the inertial subrange as expressed by dashed vertical lines and captured all the energy 

containing eddies are captured properly. It appears from Figure 4.3(a) that Case 23 is more likely 

to provide more accurate solution compared to Case 13, but Case 13 is deemed acceptable from 

the LES principle as well as the requirement for numerical convergence. The comparison for 

finest grid resolutions, Case 14 and Case 24, which are also grid-converged solutions of energy 

spectra for fixed filter widths Δ1 and Δ2 are presented in Figure 4.3(b). It is seen that the spectra 

profiles follow the same pattern as in the earlier comparison. However, from the comparison it 

appears that a comparatively fine grid captures higher wavenumbers compared to relatively 

coarse grid while the filter width is the same and the solutions with both grids appear to have 

negligible numerical error.  

The application of LES is often motivated by a desire to predict turbulent flows at as low a 

computational cost as possible; and certainly at a cost significantly below that of DNS. To this 

end it is interesting to compare results for two different filter widths but with the same grid 

resolution and hence approximately the same computational cost. Figure 4.3(c) shows the energy 

spectra for Cases 14 and 23. Both simulations are grid-converged, both cost about the same to 

compute and both conform to the principles of LES. The latter case has a higher effective cut-off 

wavenumber due to its having a smaller filter width. As shown in Figure 4.2, Case 13 produces 

the same spectral result as does Case 14 but at half the grid resolution in each coordinate 
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direction. When combined with a higher stable time step, Case 13 could cost up to 16 times less 

to compute than either Case 14 or Case 23. Producing energy spectra which conform to LES 

principles is but one criterion for judging LES quality. In Section 4.2.3.2 an error analysis 

relative to experimental data is conducted and further comment is made on both computational 

cost and the most appropriate filter width. Overall, the figure with all possible the grid converged 

solution combinations of Case 1 (Δ1= 0.2δ) and Case 2 (Δ2= 0.1δ) filter widths shows that all 

combinations satisfy the LES principle by capturing the energy containing range properly. 

Therefore no simulation is conducted taking 5% of BLT as the filter width. 

4.2.2 The congruence of energy spectra with flow variables 

Statistical quantities for this flow were collected by time averaging. In this flow case, it appears 

that the flow achieved statistically steady state at approximately 800 𝑡𝐸  with 5 × 10−3𝑠 

recirculation (eddy turnover) time near the step height (ℎ). After an initial run of 800𝑡𝐸, the flow 

velocity is averaged over the time for another 2000𝑡𝐸. The average velocity data was obtained at 

0.01s interval (that means nearly two eddy turnover time) and statistical averge of those 1000 

data points was taken which is considered adequate. The time averaged velocity field 

corresponding to approximately 270 characteristic domain flow throughs. The effect of the filter 

width and grid size on energy spectra has been analysed in detail. This prompts one to 

investigate whether or not seemingly accurate simulations of the energy spectrum are reflected in 

the accuracy of two dimensionless flow variables, namely mean velocity and turbulence 

intensity. Both of the variables are important for describing the nature of the flow qualitatively 

and quantitatively.  

Mean velocity 

Figure 4.4 presents the mean velocity, obtained from Cases 11-14, normalised by the reference 

velocity for fixed filter width Case 1 (Δ1= 0.2δ) at four different streamwise test locations. The 

overall reference velocity is maintained within 1% of the ideally desired value (7.77m/s) at a 
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distance of 3h upstream of the step. From Figure 4.4, it appears that mean velocity profiles at 

different test locations in Case 13 (δx=0.125Δ1 and FGR 8) and Case 14 (δx=0.0625Δ1 and FGR 

16) are closely matched to each other which is consistent with our findings on  the energy 

spectra shown in Figure 4.2(a). In both cases, 𝑛𝑚𝑖𝑛
+ is approximately 1. Therefore, it can be said 

that mean velocity profiles are numerically converged at grid resolutions Case 13. It can be seen 

in Figure 4.2(a) that for Case 11 and Case 12 some of the large energy containing eddies are 

being filtered out as indicated by a failure the spectra to reach the peak low wave number 

energy in these cases. This has a profound effect on the flow development and as a result the 

local Reynolds number is lower compared to those of Case 13 and Case 14.  

 
(a) At test section x/h=4                        b) At test section x/h=6 

 
(c) At test section x/h=10                        (d) At test section x/h=19 

Figure 4.4.  Mean velocity at four test sections for fixed filter Case 1 (Δ1= 0.2δ) 
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Figure 4.5 shows normalized mean velocity profiles, obtained from Cases 21–24 (where Δ2= 

0.1δ) at four streamwise test locations. It can be observed that Case 23 (δx=0.125Δ2 and FGR 8), 

and Case 24 (δx=0.0625Δ2 and FGR 16) completely collapse onto each other and furthermore 

that the solutions for Case 22 are also very close to the solutions for Cases 23 and 24. This 

reflects Figure 4.2 (b) where these three cases are consistent with the LES principle. 

Furthermore, the nominal 𝑛𝑚𝑖𝑛
+  value for these cases are 1 or below.  

 
(a) At test section x/h=4                       (b) At test section x/h=6 

 
(c) At test section x/h=10                 (d) At test section x/h=19 

Figure 4.5.  Mean velocity profiles at four test sections for fixed filter Case 2 (Δ2= 0.1δ) 

Turbulence intensity 

Similar to the mean velocity profile, reflection of energy spectra on turbulence intensities has 

been presented in Figure 4.6 and 4.7 for filter width Case 1 (Δ1= 0.2δ) and Case 2 (Δ2= 0.1δ) at 
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the same test locations of the backward facing step flow. From Figure 4.6, for Case 1(Δ1= 0.2δ), 

it appears that the numerical solutions obtained for Case 13 (grid δx=0.125Δ1 and FGR 8) and 

Case 14 (grid δx=0.0625Δ1 and FGR 16) almost match each other. This is consistent with 

Figures 4.2 (a) and 4.4. The turbulence intensities obtained from Case 11 (δx=0. 5Δ1 and FGR 2) 

and Case 12 (δx=0.25Δ1 and FGR 4) are significantly different from the other two cases. 

 
(a) At test section x/h=4                               (b) At test section x/h=6 

 
(c) At test section x/h=10                                (d) At test section x/h=19 

Figure 4.6. Turbulence intensities at selected test sections for fixed filter Case 1 (Δ1= 0.2δ) 
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On the other hand, Figure 4.7 shows the reflection of outcome of energy spectra analysis on 

turbulence intensities for fixed filter width Case 2 (Δ2= 0.1δ). It can be observed that the 

turbulence intensity profiles obtained from Case 23 (δx=0.125Δ2 and FGR 8) and Case 24 

(δx=0.0625Δ2 and FGR 16) completely collapse onto each other. It also appears that the solution 

for Case 22 (δx=0.25Δ2 and FGR 4) shows some marginal difference compared to the converged 

solutions. This is consistent with Figures 4.2 (b) and 4.5.  

 
(a) At test section x/h=4                                (b) At test section x/h=6 

 
(c) At test section x/h=10                                (d) At test section x/h=19 

Figure 4.7. Turbulence intensities at selected test sections for fixed filter Case 2 (Δ2= 0.1δ) 
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4.2.3 Validation of the proposed model 

For each filter width case, the simulation results of the two finest resolutions are first compared 

graphically. Then the results are then compared with the experimental results of Jovic and Driver 

(1994) using statistical relative error analysis. For the latter, the method of Ierardi et al. (2003) 

has been followed which is discussed in the Chapter 3.  

4.2.3.1 Graphical comparison 

Among the grid-converged solutions, mean normalised streamwise velocity and normalised 

streamwise velocity variance profiles generated in Case 13 and Case 23 are compared against 

experimental data first. Afterwards, the combinations of Cases 14 and 24, as the finest grid 

resolutions of each filter width cases, and Case 14 and 23 as the same grid resolutions but 

different filter width has been compared with the experimental results of both flow variables. 

Mean velocity  

Comparison of coarser grid resolutions 

Mean normalised streamwise velocity profiles generated in Case 13 (δx=0.125Δ1 and FGR 8) 

and Case 23 (δx=0.125Δ2 and FGR 8) are compared against experimental data in Figures 4.8. 

From the comparison it appears that predicted values are in good agreement with experimental 

data. From further observation, it also appears that Case 23 shows better qualitative agreement to 

experimental data compared with Case 13 at each of the selected locations. Overall the explicit 

LES predictions are in good agreement with the experimental data. As may be expected Case 23 

with the finer explicit filter width better captures some of the finer details of the flow, more 

accurately predicting the peak recirculating mean velocity upstream of the reattachment point at 

𝑥 ℎ⁄ = 4, and the transition of both the mean and variance at the outer edge of the boundary 
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layer. The relatively small differences between the predictions for the two filter widths diminish 

downstream at 𝑥 ℎ⁄ = 19 where the complex flow structures due to the step have dissipated. 

 
(a) At test section x/h=4                    (b) At test section x/h=6 

 
(c) At test section x/h=10                      (d) At test section x/h=19 

Figure 4.8. Mean velocity grid converged solution at relatively coarser grid resolution for fixed 

filter Case 1 (Δ1= 0.2δ) and Case 2 (Δ2= 0.1δ) 

Comparisons at the finest grid resolutions 

Figure 4.9 shows the results for a comparison of the grid converged solutions with the finest grid 

resolutions of each of the fixed filter width cases. For Case 1 and Case 2, these are Case 14 

(δx=0.0625Δ1 and FGR 16) and Case 24 (δx=0.0625Δ2 and FGR 16) respectively. From a 

comparison of the results, it appears that Case 24 shows better agreement to existing 
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experimental data compared to Case 14 at all selected test locations of flow over a backward 

facing step, especially at 𝑥/ℎ = 6  in the range of 1.5 < 𝑧/ℎ < 2  and at 𝑥/ℎ = 10  above 

𝑧/ℎ > 2. 

 
 (a) At test section x/h=4                          (b) At test section x/h=6 

 
(c) At test section x/h=10                        (d) At test section x/h=19 

 Figure 4.9. Mean velocity obtained with the finest grid resolution for fixed filter Case 1 (Δ1= 

0.2δ) and Case 2 (Δ2= 0.1δ) 

The effect of filter width 

Figure 4.10 shows a comparison of the grid-converged solutions of fixed filter Case 1 and Case 2 

for the same grid resolutions at different filter width. Presented in Table 4.2, the same grid 

resolutions at different filter widths and filter to grid spacing ratios (FGR) are Case 14 
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(δx=0.0625Δ1 and FGR 16) and Case 23 (δx=0.125Δ2 and FGR 8). From the comparison, it is 

found that Case 23 shows relatively better agreement to the experimental results compared to 

Case 14 at selected test sections. Moreover, it appears that for the same grid resolutions at 

different filter widths, relatively finer filter width is likely to provide more accurate numerical 

solutions. 

Overall it can be observed that of the results presented in figures 4.8, 4.9 and 4.10 are consistent 

with the findings of figures 4.3(a), 4.3 (b) and 4.3(c), respectively.  

 
(a) At test section x/h=4                      (b) At test section x/h=6 

 

(c) At test section x/h=10                    (d) At test section x/h=19 

Figure 4.10.  Mean velocity grid converged solution at same grid resolution for fixed filter    

Case 1 (Δ1= 0.2δ) and Case 2 (Δ2= 0.1δ) 
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Turbulence intensity 

Comparison of coarser grid resolutions 

Figure 4.11 shows a comparison of the results for turbulence intensity in the same test locations 

for fixed filter Case 1 and Case 2. For the purpose of validation of results the fluctuations are 

normalized using the square of the upstream reference velocity. From the comparison of 

predicted turbulence intensity, it appears that Case 23 (δx=0.125Δ2 and FGR 8) is in reasonably 

good agreement with the experimental results compared to Case 13 (δx=0.125Δ1 and FGR 8) at  

 
(a) At test section x/h=4                      (b) At test section x/h=6 

 
(c) At test section x/h=10                     (d) At test section x/h=19 

Figure 4.11. Grid converged solution of turbulence intensities at relatively coarse grid resolution 

for fixed filter Case 1 (Δ1= 0.2δ) and Case 2 (Δ2= 0.1δ) 
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the test locations. For the selected filter widths neither of the explicitly filtered LES cases 

accurately predicts the near wall peak velocity variance at test sections 𝑥 ℎ⁄ = 10 and 𝑥 ℎ⁄ = 19. 

It is also noted that the DNS of Le, Moin and Kim (1997) did not accurately predict the near wall 

peak at x/h = 10 but did agree well with the experimental data at x/h = 19. 

 
(a) At test section x/h=4                     (b) At test section x/h=6 

 

(c) At test section x/h=10                    (d) At test section x/h=19 

     Figure 4.12. Turbulence intensities obtained with the finest grid resolution for fixed filter 

Case 1 (Δ1= 0.2δ) and Case 2 (Δ2= 0.1δ) 

Comparisons at the finest grid resolutions 

Figure 4.12 shows the results for a comparison of grid-converged solutions of finest grid 

resolutions of fixed filter width cases for turbulent intensities at different test locations. The 



88 
 

finest grid resolutions of filter Case 1 and Case 2 are Case 14 (δx=0.0625Δ1 and FGR 16) and 

Case 24 (δx=0.0625Δ2 and FGR 16) respectively. From a comparison of the results, it appears 

that Case 24 shows better agreement against existing experimental data compared to Case 14, at 

all selected test locations, particularly at 𝑥/ℎ = 4 and 19 approximately in the range of 1.5 <

𝑧/ℎ < 2.5 , at 𝑥/ℎ = 6  and 𝑥/ℎ = 10  approximately in the range of 1.4 < 𝑧/ℎ < 2.2  and 

1.2 < 𝑧/ℎ < 2 respectively. 

The effect of filter width 

Figure 4.13 shows a comparison of the same grid resolutions at different filter widths for 

turbulence intensities at selected test locations for fixed filter width Case 1 and Case 2. The same 

grid resolutions at different filter width and filter to grid spacing ratios (FGR) are Case 14 

(δx=0.0625Δ1 and FGR 16) and Case 23 (δx=0.125Δ2 and FGR 8). From the comparison, it is 

found that Case 23 shows relatively better agreement to the experimental results compared to 

Case 14, at different test sections. Moreover, it appears that for the same grid resolutions at 

different filter widths, relatively finer filter width is likely to provide more accurate numerical 

solutions for turbulence intensities at selected test sections. 

Overall it can be observed that findings of Figures 4.11-13 are consistent with the findings of 

figure 4.3. 

Summary of the validation exercise  

Overall, grid-converged solutions with filter width Δ2 taken as 10% of the BLT show 

comparatively better agreement over filter width Δ1 taken as 20% of BLT. It also appears that 

Case 23 with filter width Δ2 10% of BLT and FGR 8 shows very good agreement to the existing 

reference data for mean velocity and turbulence intensity flow variables.  
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(a) At test section x/h=4                               (b) At test section x/h=6 

 

(c) At test section x/h=10                               (d) At test section x/h=19 

Figure 4.13. Grid converged solution of turbulence intensities at same grid resolution for fixed 

filter Case 1 (Δ1= 0.2δ) and Case 2 (Δ2= 0.1δ) 

4.2.3.2 Statistical analysis of predicted outcomes 

Tables 4.3 and 4.4 show the cross-stream averaged relative errors of mean and variance of 

streamwise velocity for all grid-converged cases (i.e. Cases 13, 14, 23 and 24). Relative errors 

are calculated for each of the four streamwise locations and the simple average of those four 

stations. A number of interesting observations can be made. Firstly, the error levels are not 

excessively high considering the small number of sample points and depending on available 

computational resources even the most inaccurate of the cases (Cases 13) may be deemed 
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acceptable (see more below). Secondly, as expected, due to filtering of high wave number 

fluctuations the velocity variance errors are generally higher than errors in the mean velocity. 

Table 4.3. Cross-stream averaged relative error of mean streamwise velocity in grid-converged 

cases with different filter widths for flow over a backward facing step 

Test locations 

(x/h) 

Mean velocity 

Case 13 (%) 
δx=0.125Δ1,FGR 8 

Case 14 (%) 
δx=0.0625Δ1,FGR 16 

Case 23 (%) 
δx=0.125Δ2,FGR 8 

Case 24 (%) 
δx=0.0625Δ2,FGR 16 

4 4.19 3.06 1.21 1.18 

6 2.79 1.29 1.25 1.12 

10 4.34 2.22 1.89 1.06 

19 3.73 1.13 0.67 0.93 

Average 3.76 1.93 1.26 1.07 

Relative cost 1 16 16 256 

Table 4.4. Cross-stream averaged relative error of streamwise velocity variance in grid-

converged cases with different filter widths for flow over a backward facing step 

Test locations 

(x/h) 

Turbulence intensity 

Case 13 (%) 
δx=0.125Δ1,FGR 8 

Case 14 (%) 
δx=0.0625Δ1,FGR 16 

Case 23 (%) 
δx=0.125Δ2,FGR 8 

Case 24 (%) 
δx=0.0625Δ2,FGR 16 

4 4.65 3.89 3.43 2.56 

6 5.93 5.33 4.89 4.37 

10 6.19 5.78 5.41 5.13 

19 5.63 5.29 5.08 4.81 

Average 5.60 5.07 4.70 4.22 

Relative cost 1 16 16 256 

Relative error analysis allows a more precise comment on the trade-off between accuracy and 

computational cost than was possible in the comparison of the energy spectra. The final rows in 

Tables 4.3 and 4.4 indicate the approximate cost of the simulations relative to Case 13 which is 

the coarsest grid-converged simulation. This cost is estimated from the number of grid points and 

the allowable stable time step. Comparison of Cases 14 and 23 indicates that for a fixed 

computational cost the accuracy may be improved by reducing the filter size. This is especially 

so for the mean velocity which is improved considerably in Case 23 relative to Case 14 in the 

separated flow region just downstream of the step. The improvement in the accuracy of velocity 

variance predictions (𝑟𝑚𝑠 profiles of the velocity fluctuations normalised by 𝑈0
2) is also apparent 

but smaller in magnitude due to it being a squared quantity. Case 24 is 16 times more 
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computationally expensive than Cases 14 and 23 yet achieves only a relatively modest 

improvement in accuracy largely because the filter width remains unchanged relative to Case 23 

and the near wall structures are not fully captured. If resources permit greater computational 

load, one would be better off reducing the filter width by half while maintaining FGR at 8. In 

fact with finer filters it may be possible to achieve grid convergence with even lower FGR thus 

not increasing the cost as much as might otherwise be expected (c.f. Figure 4.2(b) where Case 22 

with FGR = 4 is nearly, but not quite, grid converged). From a computational cost point of view, 

Case 24 requires sixteen times higher computational cost than Case 23, apart from having a 

reduced need for temporal resolution. Moreover averaged relative error for two flow variables 

are within within 5% which is good as per Roache (1998) and Roy (2003). Therefore, it can be 

considered as a practically viable case.  

From the overall statistical error analysis, it considered that obtained numerical results for both 

flow variables at selected test locations are in good agreement with experiment data. It is to be 

noted that in LES, the real velocity is not calculated, rather it is the filtered velocity. The 

simulations for one filter width is expected to converge to the real solution filtered with that filter 

width. Therefore, it is expected that Cases 14 and 24, being the converged solutions at two 

different filter widths, do not give the same results.  If we compare Case 14 and Case 24 in 

Figures 4.9 (especially b and c) and Table 4.3 we can see slight differences as expected. 

Comparing quantitative averaged mean errors Case 14 has 1.93% a compared to 1.07% of Case 

24. 

4.2.3.3 Comparison between simulation with implicit and explicit filtered LES 

The computational domains of Chapter 4 and Chapter 3 are same, but the physical resolutions are 

different due to the grid selection procedure.  In Chapter 3 grids are based on step height to grid 
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spacing ratio (ℎ/𝛿𝑧). On the other hand, grids in Chapter 4 are based on a certain percentage of 

the BLT.  

Table 4.5. Comparison of relative error of streamwise velocity and velocity variance between 

implicit and explicit filtered LES 

 

For implicit LES solution of very fine resolution (VF) with ℎ/𝛿𝑧 = 20, filter width Δ= 0.02δ and 

FGR=1 from Chapter 3 is taken to compare with explicitly filtered LES solution whose grid 

resolution lies between the resolution of Case 14 with filter width Δ= 0.2δ, Case 23 and Case 24 

with filter width Δ= 0.1δ. Table 4.5 presents the comparison of relative error of streamwise mean 

velocity and turbulence intensity at test sections x/h=4 and x/h=6 between implicit and explicit 

filtered LES.  From the table, it appears that explicit Case 14 and 23, despite having higher 

nominal 𝑛+ at relatively coarse grid than implicit case with VF resolution, provides quite good 

agreement with experimental data and relative errors are within acceptable range of 5% (Roache 

1998, Roy 2003) at selected test locations for both of the flow variables. It is also found that 

although 𝑛𝑚𝑖𝑛
+  of implicit VF is almost similar to the explicit Case 24, but the Case 24 provides 

much better agreement with the experimental data compared to the VF. The comparison between 

this two schemes shows explicit LES performs much better than implicit LES which clearly 

demonstrate the advantage of using explicitly filtered LES over implicit LES. 

Mn. Vel. Trb. Int. Mn. Vel. Trb. Int. Mn. Vel. Trb. Int. Mn. Vel. Trb. Int.

4 3.06 3.89 1.21 3.43

6 1.29 5.33 1.25 4.89

4 4.38 6.58

6 5.73 7.12

4 1.18 2.56

6 1.12 4.37

600×240×400 ≤0.46

960×320×640 ≤0.43

Test 

sec.

(x/h ) Relative error (%)
n

+
Relative error (%)

n
+

Relative error (%)

480×160×320 ≤0.93 ≤0.79

Grids

Implicit Explicit

Very fine (h/δz =20) Case 14 (Δ1= 0.2δ) Case 23 (Δ2= 0.1δ) Case 24 (Δ2= 0.1δ)

n
+

Relative error (%)
n

+
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4.2.4 Prominent features of the flow 

Figure 4.14 presents the instantaneous streamwise velocity at 12s along the midsection of the 

high Reynolds number flow over a backward facing step. Results are for Case 23 which is the 

finer filter width case with FGR = 8. The simulation exhibits the major features expected in such 

a flow, with the separation region downstream of the step, the reattachment point and 

redeveloping boundary layer clearly evident. The reattachment length from instantaneous filtered 

velocity for Case 23, calculated according to the method of Le, Moin and Kim (1997) is 𝑋𝑟 =

6ℎ ± 0.21ℎ which compares very well with the experimentally observed length of 6ℎ ± 0.15ℎ. 

The predicted reattachment length for Case 13 with the coarser filter width (Δ1=0.2𝛿) is also 

acceptably good although slightly less accurate at 𝑋𝑟 = 6ℎ ± 0.28ℎ. 

                           

              vel (m/s)  

Figure 4.14.  Instantaneous streamwise velocity at 12s along the midsection of the high Reynolds 

number flow over a backward facing step. Results are for Case 23 

4.3 Conclusions 

Flow over a backward facing step is a widely used benchmark case for its prominent flow 

features such as flow separation, reattachment, and redevelopment of the boundary layer. In this 

study, this benchmark case is considered as having a high Reynolds number turbulent flow with 

𝑅𝑒𝜆 115. A systematic approach to explicitly filtered large eddy simulations (LES) is used to 

simulate this flow case. Two filter widths Δ1 and Δ2 are selected as 10% and 20% of the 

Dividing streamline 

Reattachment point 

Redeveloping boundary layer 

Reattachment zone 
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boundary layer thickness respectively. While conducting the energy spectra analysis, focus is 

given on the necessity to consider the fact that whether selected filter widths Δ1 and Δ2 fulfil the 

criteria for satisfying the principle of LES by capturing the energy containing lengthscales of 

eddies. The cases with the finer filter width (Case 23 and Case 24) are more accurate than the 

cases with the coarser filter (Case 13 and 14) and increasing the FGR from 8 to 16 (i.e. 

comparing Case 13 with Case 14 and Case 23 with 24) leads to a reduction in the errors but less 

so for the finer filter width cases. It indicates that although deemed grid-converged from the 

perspective of the energy spectra some grid-sensitivity remains, albeit small and diminishing 

with refinement of the grid. From the energy spectrum analysis and comparison with 

experimental results, it appears that filter width taken as 10% of the BLT with filter to grid 

spacing ratio (FGR) 8 is more likely to provide an appropriate solution in an explicit scheme 

with optimal computational resources. It satisfies the LES principle by capturing the energy 

containing eddies. Moreover, it shows very good agreement with the -5/3 universal theoretical 

slope that is proportional to wavenumbers 𝜅−5/3 of energy spectra and the taken filter width lies 

within the inertial sub range. This study also shows that at sufficiently high Reynolds number 

turbulent flows the inertial subrange develops and clearly exists in the energy spectra. 

Furthermore, simulations outputs of other flow variables such as the mean velocity and 

turbulence intensities of the benchmark case show very good agreement with experimental data 

at selected test locations. This justifies the important fact that a filter width taken as 10% of the 

BLT with FGR 8 is adequate to obtain appropriate LES solutions using the explicit scheme for 

the test case considered. Comparison between the two LES schemes (implicitly and explicitly 

filtered) shows the explicitly filtered LES performs much better than the implicitly filtered LES 

at coarser grid resolution and the obtained numerical results with explicit LES are within the 
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acceptable range of 5%. Additionally, the prominent flow features of Case 23 show that the 

explicit scheme captures all the essential physics of the flow. Overall, this study demonstrates 

that an appropriate choice of filter width and grid resolution can be used to obtain numerically 

converged solution in the case of high Reynolds number flow. 
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5.Chapter 5 
 

Low Reynolds number turbulent flow 
 

Thus far, we have demonstrated that explicit filtering is highly effective for turbulent flows that 

exhibit a clearly defined inertial range. However, it is important to investigate the effectiveness 

of explicit filtering in flow regions in which turbulence is not fully established in the sense that 

an inertial subrange is not so distinct. Such flows are observed in differentially heated cavities. 

We have demonstrated that an appropriate choice of LES filter width and grid resolution can be 

used to obtain numerically converged solutions in the case of high Reynolds number flows.  We 

now turn our attention to a low Reynolds number turbulent flow. 

5.1 Studied numerical configuration 

Numerical and experimental studies in differentially heated cavities are a fruitful source of data 

on turbulent buoyancy driven flows. Here such a flow is used as our low Reynolds number test 

case. The computational domain conforms precisely to that of the experimental set up of 

Cheesewright et al. (1986). Figure 5.1 shows a schematic of the configuration indicating the hot 

and cold vertical walls and the remaining surfaces which are adiabatic. A detailed picture is 

given of the flow in the vicinity of the heated wall where both velocity and temperature boundary 

layers develop due to buoyancy effects. The schematic also shows the flow direction of the fluid 

and the development of anti-symmetric boundary layers driven by the temperature differential 

leading to an upward flow direction near the heated wall and downward flow direction near the 

cold wall. Due to changes in shear stress along the walls of the cavity turbulence occurs with 

different ranges of length and time scales, and this provides a useful test of the explicitly filtered 

LES method developed in this study. 
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The temperatures of the hot and cold walls are constant and uniform with the hot wall maintained 

at 77.2°C whereas the cold wall temperature is maintained at 31.4°C. The thermal diffusivity and 

volumetric expansion coefficient of the fluid, which is air, are 2.27 × 10−5m2/s and 3.30 ×

10−3K−1, respectively. The dimensions of the cavity are 𝑥 × 𝑦 × 𝑧 = 0.5m × 1.0m × 2.5m.  

 

Figure 5.1. Schematic of buoyancy driven flow inside a differentially heated rectangular cavity 

with particular emphasis is given to boundary layer development near the hot wall   

In this present study 𝑅𝑒𝜆 is found to be approximately 25 and the flow is therefore considered as 

having a low Reynolds number (Sreenivasan 1994). Unlike the momentum driven flow over the 

backward facing step, the cavity flow is buoyancy driven and transition to turbulence is 
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customarily characterised by the Rayleigh number (𝑅𝑎).  It is useful insofar as it indicates 

whether conduction is dominant over convection, or vice versa.  In this study, the Rayleigh 

number (Ra) in the simulations is 4.68 × 1010, the same as the experiment by Cheesewright et 

al. (1986).  

Table 5.1. Filter sizes Δ1 and Δ2 for a turbulent flow at low Reynolds numbers 

Case 1 Case 2 
Filter/grid 

ratio 

Fixed Filter width Δ1= 0.2δ Fixed Filter width Δ2= 0.1δ Δ/δx 

Case 11 δx=0.5Δ1 Case 21 δx=0.5Δ2 2 

Case 12 δx=0.25Δ1 Case 22 δx=0.25Δ2 4 

Case 13 δx=0.125Δ1 Case 23 δx=0.125Δ2 8 

Case 14 δx=0.0625Δ1 Case 24 δx=0.0625Δ2 16 

 

Boundary conditions 

For the numerical set up of the test case, a no-slip boundary condition was set for the velocities 

at the solid walls. For the temperature, a Dirichlet boundary condition was applied to the hot 

(𝑇𝐻 = 77.2°𝐶) and cold (𝑇𝐶 = 31.4°𝐶) walls. The top and the bottom walls are considered to be 

adiabatic, Neumann boundary condition was invoked for the temperature, i.e. 𝜕𝑇/𝜕𝑛 = 0, where 

𝑛 is representing the perpendicular direction to the wall.      

Filter to grid spacing ratio (FGR) 

In this study filter to grid spacing ratios (FGRs) of 2, 4, 8 and 16 are used for each filter width.  

Table 5.1 shows that a total of eight simulations need to be performed for two filter widths that 

are selected as 10% and 20% of the boundary layer thickness (BLT). The BLT of flows past a 

heated vertical plate can be estimated using an analytical expression based on the Grashof (𝐺𝑟𝑧) 

and Prandtl (𝑃𝑟) numbers (Holman 2004), 

 𝛿

𝑧
= 3.93 𝑃𝑟−

1
2(0.952 + 𝑃𝑟)1/4𝐺𝑟𝑧

−1/4
  (5.1) 
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where 𝑧 is the streamwise distance downstream from the start of the boundary layer, the Prandtl 

number (𝑃𝑟) is taken to be 0.7 and the Grashof number  is defined by, 

 
𝐺𝑟𝑧 = 

𝑔𝛽

𝜈2
(𝑇𝑠 − 𝑇∞)𝑧

3 (5.2) 

where, 𝑔 is the acceleration due to gravity (9.81 m/s
2
), 𝛽 is the thermal expansion coefficient 

(1/ 𝑇∞ ), 𝜈 = 1.8 × 10−5 kg/ms   is the kinematic viscosity of the fluid, 𝑇𝑠  is the surface 

temperature, 𝑇∞ is the ambient temperature. In the absence of a similar expression for flows in 

differentially heated cavities, above correlations are used and the characteristic BLT is calculated 

at the mid-height of the cavity. The analytically estimated typical BLT at the mid-height in the 

cavity flow is  𝛿 ≤ 7.8 × 10−2m which compares favourably with  𝛿 ≤ 8.5 × 10−2m measured 

by Cheesewright et al. (1986).    
 
 

Table 5.2. Grid resolutions for a buoyancy driven differentially heated cavity flow at a low 

Reynolds number, Reλ =25 

 

Low Reynolds number turbulent flow inside a Cavity  

(Estimated Reynolds number, 𝑅𝑒𝜆 = 25) 

Test cases 𝑁𝑥 ×𝑁𝑦 × 𝑁𝑧 𝑛ℎ𝑜𝑡 𝑊𝑎𝑙𝑙
+  𝑛𝐶𝑜𝑙𝑑 𝑊𝑎𝑙𝑙

+  

Case 11 40 × 20 × 100 ≤ 4.52 ≤5.22 

Case 12 80 × 40 × 200 ≤2.95 ≤3.15 

Case 13 160 × 80 × 400 ≤ 1.04 ≤ 1.16 

Case 14 320 × 160 × 800 ≤0.66 ≤0.73 

Case 21 80 × 40 × 200 ≤2.18 ≤2.31 

Case 22 160 × 80 × 400 ≤0.88 ≤0.98 

Case 23 320 × 160 × 800 ≤ 0.52 ≤0.63 

Case 24 640 × 320 × 1600 ≤0.21 ≤ 0.34 

The rationale behind the filter selection as a certain proportion of BLT has been described in the 

earlier part of the Chapter 2. Here, for fixed filters ∆1 and ∆2, the filter width is taken as twice of 

the grid size (considered as a coarse mesh), and this is the baseline case. We used a FGR of 2 for 
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the baseline cases because this ratio seems to be most commonly adopted in recently published 

studies (Gullbrand 2002, Gullbrand and Chow 2003, Radhakrishnan and Bellan 2012, 2013 and 

2015). Each fixed filter FGR is then refined progressively by 4, 8 and 16 times to obtain a grid-

converged solution. 

Grid resolutions of flow inside a rectangular cavity 

Table 5.2 presents the grid resolutions for buoyancy driven rectangular cavity flow taken for two 

selected fixed filter widths Case 1 (Δ1= 0.2δ) and Case 2 (Δ2= 0.1δ) which are taken as 20% and 

10%  of the boundary layer thickness (δ) respectively. 𝑁𝑥, 𝑁𝑦 and 𝑁𝑧 represents the number of 

grids (or meshes) along the wall normal (𝐿𝑥 ), spanwise (𝐿𝑦 ) and streamwise (𝐿𝑧 ) length 

directions. A rectangular grid spacing was used in all simulations. Since buoyancy driven cavity 

flow consists of complex flow patterns near the walls, the grid was refined as 0.5, 0.25, 0.125 

and 0.0625 of the filter widths for Case 1 and Case 2 (refer to Table 5.1 and 5.2) in the vicinity 

of the wall surfaces up to 2𝛿. In the domain beyond 2𝛿the cell sizes were increased  normal to 

the horizontal and vertical directions. The expansion  ratio is 2.  

 
(a) 

 
(b) 

Figure 5.2. Schematic diagram of grid resolutions for (a) Case 12 (b) Enlarged view near the top 

wall of rectangular cavity 
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The nominal dimensionless wall units 𝑛𝑚𝑖𝑛
+  of the grid points closest to the walls are also 

presented in Table 5.2. Figure 5.2(a) presents the schematic of the complete computational 

domain and grid resolutions of Case 12 (80 × 40 × 200) (from Table 5.2) and Figure 5.2(b) 

presents  the enlarged version of partial configuration near the top wall to show the grid 

arrangement more clearly. The total simulation time for the buoyancy driven cavity case was set 

at 300s. The flow achieved statistically-steady state at approximately 300𝑡𝐸 where unit turnover 

time is 1.7 × 10−1s considering the maximum BLT as same size as the largest eddy (Tennekes 

and Lumley 1972). After an initial run of 300𝑡𝐸, the flow velocity and temperature is averaged 

over the time for another 1500𝑡𝐸 . The average velocity data was obtained  at 0.01s interval 

(nearly one eddy turnover time in each interval) and statistical average of 25000 data points was 

taken which is considered adequate. 

5.2 Results and discussions 

5.2.1 Energy spectra analysis  

An important feature of buoyant flow in an enclosure is that flow evolves continuously along the 

walls due to the effect of shear stress and convective heat transfer. Furthermore, depending on 

the Rayleigh number(𝑅𝑎), the flow can be laminar or turbulent. Paolucci et al. (1989) report that 

the transition from laminar to turbulent flow occurs at Rayleigh number between 10
8
 and 10

9
 and 

increasing the Ra renders the flow increasingly turbulent. The Ra in this study is 

considered 4.68 × 1010. Moreover, due to wall shear stress turbulence occurs at different ranges 

of length and time scales in the flow. For these reasons, the flow field is quite complex in the 

cavity flow. In this section results are analysed based on energy spectra to ensure that the results 

obtained from cavity flow which is considered as low Reynolds number flow are consistent with 

the proposed approach in the explicit scheme.  

Figure 5.3 shows the grid-convergence of the three-dimensional energy spectra obtained for 

fixed filter Case 1 (Δ1= 0.2𝛿) and Case 2 (Δ2= 0.1𝛿). The Kolmogorov’s theoretical -5/3 scaling 
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for the inertial sub-range is observed tangential to the energy spectra. The beginning of the 

inertial subrange is shown along with short vertical dotted lines separating the energy containing 

and inertial ranges. Vertical lines have also been included to locate the nominal cut-off wave 

number corresponding to the filters (𝜅𝑐 = 𝜋 ∆⁄ ). From the figure, for fixed filter width Δ1, it 

found that the three-dimensional energy spectrum profile of Case 13 (grid δx=0.125Δ1 and FGR 

8) and Case 14 (grid δx=0.0625Δ1 and FGR 16) are almost identical and appears that numerical 

solution converged at Case 13. Similarly, for fixed filter width Δ2 it appears that Case 23 (grid 

δx=0.125Δ2 and FGR 8) and Case 24 (grid δx=0.0625Δ2 and FGR 16) are almost collapse onto 

each other except in the high wavenumber region and the numerical convergence can be 

considered to be occurred at Case 23. For both filter width cases, it appears that relatively coarse 

grids (low FGRs) are unable to capture the energy containing eddies properly especially in Case 

1. However increased resolution within the fixed filter width captures the energy containing 

eddies well. Moreover it resolves the small scale eddies at higher wavenumbers. 

  

(a) Case 1 (Δ1= 0.2𝛿) (b) Case 2 (Δ2= 0.1𝛿) 

 

Figure 5.3.  Grid-convergence of three-dimensional energy spectra for the low Reynolds number 

flow with two different fixed filter widths 
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(a) Grid converged energy spectra of Case 1 

(Δ1= 0.2𝛿) and Case 2 (Δ2= 0.1𝛿) 

(b) Energy spectra with finest grids of Case 1 

(Δ1= 0.2𝛿) and Case 2 (Δ2= 0.1𝛿) 

 

(c) Same grid resolution of Case 1 (Δ1= 0.2𝛿) and  

Case 2 (Δ2= 0.1𝛿) 

Figure 5.4.  Energy spectra analysis with various grid and fixed filter combination for Case 1 

(Δ1= 0.2δ) and Case 2 (Δ2= 0.1δ) 

As for the high Reynolds number flow over the backward facing step, grid-convergence appears 

to occur when FGR is increased to 8 (i.e. Case 13 and Case 23 are both converged). The 

convergence is once again more rapid with increasing FGR when a finer filter is used. These 

numerical similarities between the grid-convergence of low and high Reynolds number energy 
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spectra are overshadowed by the very obvious differences between the shapes of those spectra. 

While the energy containing range is well captured, it is quite apparent that the inertial sub-range 

does not approach the same theoretical scaling as does the high Reynolds number case, this 

phenomenon is also due to the fact that one flow is forced convection and the other one is natural 

convection. This makes it somewhat difficult to determine if the simulations conform to LES 

principles. 

Grid converged spectra profiles of both filter width cases are compared in different combinations 

such as; (a) relatively coarse grids (Case 13 & Case 23), (b) same grid size but different filter 

widths (Case 14 & Case 23) and (c) finest grids (Case 14 & Case 24). Comparison of grid 

converged solutions of energy spectra taken from figure 5.3 for filter width Δ1 and Δ2 are 

presented in figure 5.4(a). The comparison for finest grid resolutions Case 14 and Case 24 which 

are also grid converged solution of energy spectra for fixed filter widths Δ1 and Δ2 are presented 

in figure 5.4(b) but computationally 16 times expensive than Case 13 and Case 23. From the 

comparison, it is found that spectra profiles are following same pattern as in the earlier 

comparison. However, from the comparison it appears that a comparatively fine grid captures 

higher wavenumbers compared to relatively coarse grid while the filter width is the same and 

solution with both grids are free from numerical error. In a similar way, for same grid size but 

different filter widths, numerical solutions are compared between Case 14 and Case 23 is shown 

in figure 5.4(c). Comparison shows that relatively finer filter width Δ2= 0.1δ captures more 

wavenumbers along the -5/3 slope compared to the coarser filter width Δ1= 0.2δ. It shows 

definite advantage of smaller filter width while the computational requirements will be the same.  

Like figure 5.3, the theoretical -5/3 slope is plotted in the figure 5.4 to identify the inertial sub 

range and a small vertical demarcation to separate energy containing and inertial range. It is seen 

that the inertial range is very small in both cases (presented in figure 5.3 and figure 5.4). It is 

assumed that in energy spectra profiles, the reason that the inertial slope is not developing 
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properly is due to low Reynolds number. Several authors (Mansour et al. 1994, Sreenivasan 1994 

and Djenidi et al. 2013) suggest that inertial range in low Reynolds number (𝑅𝑒𝜆 < 50)  is 

scarcely manifest in the energy spectra because the lengthscale separation among the large scale 

and small scale eddies is too small.  

 
Figure 5.5. The model spectra at various Reynolds numbers (Pope 2000) 

To justify this above mentioned fact, Pope (2000) suggests the model energy spectrum at 

different Reynolds numbers as shown in figure 5.5 where values of spectra 𝐸(𝜅)  and 

wavenumbers 𝜅 are normalized by the integral lengthscale (𝑙) and turbulent kinetic energy (𝑘) 

respectively and presented as universal form. The expression for model spectra function is,  

 𝐸(𝜅) = 𝐶𝜀2/3𝜅−5/3𝑓𝑙(𝜅𝑙)𝑓𝜂(𝜅𝜂) (5.3) 

For large 𝜅𝑙, the function of wavenumbers based on integral lengthscale 𝑓𝑙(𝜅𝑙) will become unity 

in the above expression. Here, 𝐶  is the Kolmogorov constant and  𝑓𝜂(𝜅𝜂)  is function of 

wavenumbers normalized by the Kolmogorov lengthscale (𝜂) can expressed as, 

    𝑓𝜂(𝜅𝜂) = exp [−𝛽([(𝜅𝜂)
4 + 𝑐𝜂

4]1/4 − 𝑐𝜂)] (5.4) 

where, 𝛽 and 𝑐𝜂 are constants.  
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It clearly appears from the figure 5.5 that at low Reynolds number energy spectra do not 

necessarily follow the Kolmogorov universal scaling in the inertial subrange and the range is 

very small so that it hardly exists in the spectra. It also shows that the theoretical universal slope 

-5/3 which is proportional to the wavenumbers  𝜅−5/3  develops at relatively high Reynolds 

numbers where the energy containing range (eddies are more anisotropic in nature) and universal 

equilibrium range (eddies are isotropic in nature) exist clearly. This inertial range can be 

expressed as a constant slope on the spectrum.   

If we again examine figure 5.4 it appears that the results of combinations of grid-converged 

solutions of energy spectra of selected filter widths of cavity flow are clearly in agreement and 

following the same trend with the model spectra for low Reynolds number flows. We could say 

that it may have a very small -5/3 slope region that would just be a tangent to the profile of 

spectra which separates the energy containing and inertial subrange that has been presented by a 

small demarcation line in both Figures 5.3 and 5.4. From the figures it appears that the cut off 

wavenumbers (𝜅𝑐) corresponding to the selected filter widths taken as 20% and 10% of the BLT 

are within the inertial subrange and are capturing the energy containing range very well, which 

also satisfies the principle of LES. From Reynolds number dependent model spectra such as 

those shown in Figure 5.5 it is found that the spectrum corresponding to a Taylor Reynolds 

number of 30 is very similar in shape to that obtained here for 𝑅𝑒𝜆. A similar configuration 

studied by Lau et al. (2013) also produced similar spectra to those shown below. Although 

analytically difficult to determine convergence to LES principles at such low Reynolds numbers 

the supporting literature gives us reasonable confidence that our simulations are in fact LES 

compliant. Therefore no simulation is conducted taking 5% of BLT as the filter width. 
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5.2.2 The congruence of energy spectra results with flow variables 

The accurate modelling of energy spectra is congruent with the accuracy of two dimensionless 

flow variables, namely mean velocity and non-dimensional mean temperature is presented in this 

section. Both of the variables are equally important for describing the nature of the flow 

qualitatively and quantitatively inside the cavity.  

Mean velocity 

 
(a) At test section z/H=0.765                                   (b) At test section z/H=0.5 

 

(c) At test section z/H=0.229                                  (d) At test section z/H=0.096 

Figure 5.6.  Mean velocity at four test sections for fixed filter Case 1 (Δ1= 0.2δ) 
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Figure 5.6 presents the mean velocity, obtained from Cases 11–14 for fixed filter width Case 1 

(Δ1= 0.2δ), at four locations along the cavity height. From Figure 5.6, it appears that mean 

velocity profiles at different test locations in Case 13 (δx=0.125Δ1 and FGR 8) and Case 14 

(δx=0.0625Δ1 and FGR 16) are closely matched to each other, similar to the energy spectra in 

Figure 5.3(a). In both cases, the estimated 𝑛𝑚𝑖𝑛
+  value is approximately 0.65-1.15. These are also 

closely followed by Case 12 profiles. Therefore, mean velocity profiles demonstrate the 

numerically converged solution at grid resolutions of Case 13.  

 
(a) At test section z/H=0.765                                (b) At test section z/H=0.05 

 
(c) At test section z/H=0.229                                  (d) At test section z/H=0.096 

Figure 5.7. Mean velocity at four test sections for fixed filter Case 2 (Δ2= 0.1δ) 
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Figure 5.7 shows mean velocity profiles obtained from Cases 21-24 (where Δ2= 0.1δ) at four 

locations. It can be observed that Case 23 (δx=0.125Δ2 and FGR 8) and Case 24 (δx=0.0625Δ2 

and FGR 16) completely collapse onto each other and furthermore the Case 22 solutions are also 

very close to these solutions. This reflects Figure 5.3 (b) and 𝑛𝑚𝑖𝑛
+ value for these cases are 0.65 

or below.  

 
(a) At test section z/H=0.765                                  (b) At test section z/H=0.5 

 
(c) At test section z/H=0.229                                    (d) At test section z/H=0.096 

Figure 5.8. Mean temperatures at four test sections for fixed filter Case 1 (Δ1= 0.2δ) 
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Non dimensional mean temperature  

In Figures 5.8 and 5.9, the non-dimensional mean temperature inside the cavity have been 

presented which is calculated by using the following equation, 

 < 𝑇 >= (𝑇̃ − 𝑇𝑐𝑜𝑙𝑑)/(𝑇ℎ𝑜𝑡 − 𝑇𝑐𝑜𝑙𝑑) (5.5) 

where, 𝑇̃ is the Favre averaged temperature of fluid and the temperature of cold and hot walls are 

presented by 𝑇𝑐𝑜𝑙𝑑 and 𝑇ℎ𝑜𝑡 respectively.  

 
(a) At test section z/H=0.765                           (b) At test section z/H=0. 5 

 
(c) At test section z/H=0.229                                 (d) At test section z/H=0.096 

Figure 5.9. Mean temperature at four test sections for fixed filter Case 2 (Δ2= 0.1δ) 
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Similar to the mean velocity profile, reflection of energy spectra on non-dimensional mean 

temperature has been presented in Figures 5.8 and 5.9 for filter width Case 1 (Δ1= 0.2δ) and Case 

2 (Δ2= 0.1δ) at the same test locations inside the cavity. It is to be noted that data right on the 

walls have not been included, therefore although according to definition (5.5) <T> should be 

equal to 1 at the hot wall and zero at the cold wall, these are not presented. From Figure 5.8, for 

Case 1 (Δ1= 0.2δ), it appears that the numerical solution obtained for Case 13 (grid δx=0.125Δ1 

and FGR 8) and Case 14 (grid δx=0.0625Δ1 and FGR 16) completely match each other. This is 

consistent with Figures 5.3 (a) and 5.6. This is evident from Figure 5.3 that larger filter width 

with low FGR is not capable to capture all energy containing eddies. This effects other flow 

variables therefore mean temperatures obtained from Case 11 (δx=0. 5Δ1 and FGR 2) and Case 

12 (δx=0.25Δ1 and FGR 4) are significantly different from the other two cases.  

On the other hand, Figure 5.9 shows reflection of energy spectra on mean temperature for fixed 

filter width Case 2 (Δ2= 0.1δ). It can be observed that dimensionless mean temperature profiles 

obtained from Case 23 (δx=0.125Δ2 and FGR 8) and Case 24 (δx=0.0625Δ2 and FGR 16) 

completely collapse onto each other. It also appears that the Case 22 (δx=0.25Δ2 and FGR 4) 

solution shows very marginal difference compared to the converged solutions. This is consistent 

with Figures 5.3 (b) and 5.7. 

5.2.3 Validation of the proposed model 

For each filter width case, first, the simulations results with two finest resolutions are compared 

graphically. Then the results are compared with the experimental results of Cheesewright et al. 

(1986) using statistical relative error analysis. For the latter, the method of Ierardi et al. (2003) 

has been followed which is described in Chapter 3. 
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5.2.3.1 Graphical comparison 

Grid-converged solutions of Case 13 and Case 23 are considered as the most accurate of the 

fixed filter widths Δ1 and Δ2 respectively, graphical comparison of mean velocity and 

dimensionless mean temperature is made for these two cases first. Afterwards, the combinations 

of Case 14 and Case 24 are considered as the finest grid resolutions of each of the filter width 

cases, and Cases 14 and 23 as the same grid resolutions but different filter width has been 

discussed for validations of results of both flow variables. 

 
(a) At test section z/H=0.765                              (b) At test section z/H=0.5 

 
(c) At test section z/H=0.229                           (d) At test section z/H=0.096 

Figure 5.10. Mean velocity grid converged solution at relatively coarser grid resolution                

for fixed filter Case 1 (Δ1= 0.2δ) and Case 2 (Δ2= 0.1δ) 
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Mean velocity  

Comparison of coarser grid resolutions 

Figure 5.10, portrays a comparison of the mean velocity profiles of Case 13 (δx=0.125Δ1 and 

FGR 8) and Case 23 (δx=0.125Δ2 and FGR 8) with the experimental data of Cheesewright et al. 

(1986). It can be seen that the predicted values are in overall good agreement with the 

experiments. Both simulations correctly capture the trend for increasing buoyant velocity and 

corresponding boundary layer thickening with height in the cavity. Case 23 with the finer filter 

width predicts the magnitude of the peak velocities a little better than does simulate Case 13. 

Comparisons at the finest grid resolutions 

 
(a) At test section z/H=0.765                      (b) At test section z/H=0.5 

 
(c) At test section z/H=0.229                        (d) At test section z/H=0.096 

         Figure 5.11.  Mean velocity obtained with the finest grid resolution for fixed filter Case 1 

(Δ1= 0.2δ) and Case 2 (Δ2= 0.1δ) 
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Figure 5.11 shows a comparison of the results of grid-converged solutions with the finest grid 

resolution of each of the fixed filter width cases. For Case 1 and Case 2, these are Case 14 

(δx=0.0625Δ1 and FGR 16) and Case 24 (δx=0.0625Δ2 and FGR 16) respectively. From a 

comparison of the results, it appears that Case 24 shows better agreement to the existing 

experimental data compared to Case 14 at all selected test locations inside the differentially 

heated cavity. 

 
(a) At test section z/H=0.765                               (b) At test section z/H=0.5 

 
(c) At test section z/H=0.229                                   (d) At test section z/H=0.096 

Figure 5.12. Mean velocity grid converged solution at same grid resolution for fixed filter Case 1 

(Δ1= 0.2δ) and Case 2 (Δ2= 0.1δ) 
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The effect of filter width 

Figure 5.12 shows a comparison of the grid-converged solution of fixed filter Case 1 and Case 2 

for the same grid resolutions at different filter width. Presented in Table 5.2, the same grid 

resolutions at different filter width and filter to grid spacing ratios (FGR), are Case 14 

(δx=0.0625Δ1 and FGR 16) and Case 23 (δx=0.125Δ2 and FGR 8).  

       
 (a) At test section z/H=0.765                    (b) At test section z/H=0. 5 

 
(c) At test section z/H=0.229                                 (d) At test section z/H=0.096 

Figure 5.13. Mean temperature grid-converged solutions at relatively coarser grid resolutions for 

fixed filter Case 1 (Δ1= 0.2δ) and Case 2 (Δ2= 0.1δ) 

From the comparisons, it is found that Case 23 shows relatively better agreement with the 

experimental results compared to Case 14 at selected test sections. Moreover, it appears that for 

the same grid resolutions at different filter widths, relatively a finer filter width is likely to 

provide more accurate numerical solutions. 
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Overall it can be observed that findings of figures 5.10, 5.11 and 5.12 are consistent with the 

findings of figures 5.4(a), 5.4 (b) and 5.4(c), respectively.  

Non dimensional mean temperature 

Comparison of coarser grid resolutions 

Figure 5.13 shows comparisons of the mean dimensionless temperature at the same test locations 

and also for Case 13 and Case 23. Here both simulations capture the thermal boundary layer  

accurately while the finer filter case produces slightly more accurate results across the middle of 

the cavity where uniform temperature distributions are found.  

 
(a) At test section z/H=0.765                                (b) At test section z/H=0.5 

 

(c) At test section z/H=0.229                           (d) At test section z/H=0.096 

Figure 5.14. Mean temperature obtained with the finest grid resolution for fixed filter Case 1 

(Δ1= 0.2δ) and Case 2 (Δ2= 0.1δ) 
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Comparisons at the finest grid resolutions 

Figure 5.14 shows the results for comparison of grid-converged solutions with the finest grid 

resolution of each fixed filter width cases. For, Case 1 and Case 2, these are Case 14 

(δx=0.0625Δ1 and FGR 16) and Case 24 (δx=0.0625Δ2 and FGR 16) respectively. From a 

comparison of the results, it appears that Case 24 shows relatively better agreement to the 

existing experimental data compared to Case 14 at selected test locations except at 𝑧/𝐻 = 0.765 

inside the cavity. 

 
(a) At test section z/H=0.765                             (b) At test section z/H=0.5 

 
(c) At test section z/H=0.229                              (d) At test section z/H=0.096 

Figure 5.15. Mean temperature grid converged solution at same grid resolution for fixed filter 

Case 1 (Δ1= 0.2δ) and Case 2 (Δ2= 0.1δ) 
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The effect of filter width 

Figure 5.15 shows a comparison of the grid-converged solution of fixed filter Case 1 and Case 2 

for the same grid resolutions but different filter widths. The same grid resolutions at different 

filter widths and filter to grid spacing ratios (FGR) are Case 14 (δx=0.0625Δ1 and FGR 16) and 

Case 23 (δx=0.125Δ2 and FGR 8). From the comparison, it is found that Case 23 shows slightly 

better agreement to the experimental results compared to Case 14 at selected test sections except 

at 𝑧/𝐻 = 0.765. Moreover, similarly to the mean velocity profiles, it appears that for mean 

temperature for the same grid resolutions at different filter widths, relatively finer filter width is 

likely to provide more accurate numerical solutions. 

Overall, it can be observed that findings of figures 5.13-15 are consistent with the findings of 

figure 5.4. 

Summary of results validation  

For buoyancy driven cavity flow overall grid-converged solutions with filter width Δ2 taken as 

10% of the BLT, show comparatively better agreement over filter width Δ1 taken as 20% of 

BLT. It also appears that Case 23 with filter width Δ2 10% of BLT and FGR 8 shows very good 

agreement to the existing reference data for flow variables such as mean velocity and mean 

temperature. From a computational resource point of view, it requires eight times fewer grid cells 

than Case 24 apart from having reduced temporal resolution need. More details about the 

computational cost is discussed in section 5.2.3.2. 

5.2.3.2 Statistical analysis of predicted outcomes 

Tables 5.3 and 5.4 show the cross-stream averaged relative errors of mean velocity and mean 

dimensionless temperature, respectively. The results are for all grid-converged cases (i.e. Cases 

13, 14, 23 and 24) at each of the four vertical locations followed by the simple average of those 

four stations. The final rows of the tables show the approximate computational cost relative to 
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Case 13 which is the coarsest of the grid-converged simulations. Observations to be made from 

the error tables for this low Reynolds number flow are very similar to those previously discussed 

for the high Reynolds number flow. Overall the errors are quite small (for tubulence intensity 

even smaller than for the backward facing step cases) but the same trends exist; namely that 

errors decrease with a decrease in the filter width, and for a fixed computational cost (c.f. Cases 

14 and 23) one is better off by choosing a smaller filter width while maintaining the FGR at the 

minimum value required to achieve grid convergence. More so than in the high Reynolds 

number simulations, there appears to be very little benefit in this cavity case to increase FGR 

beyond a value of 8 as seen by Case 24 which produces much the same overall error as Case 23 

while costing 16 times as much.  

Table 5.3. Relative mean error analysis of mean velocity and dimensionless temperature for  

Case 13 and Case 14 for cavity flow 

Test locations 

(z/H) 

Mean velocity 

Case 13 (%) 
δx=0.125Δ1,FGR 8 

Case 14 (%) 
δx=0.0625Δ1,FGR 16 

Case 23 (%) 
δx=0.125Δ2,FGR 8 

Case 24 (%) 
δx=0.0625Δ2,FGR 16 

0.765 2.88 3.02 3.15 3.11 

0. 50 3.79 3.12 3.13 2.91 

0.229 4.25 3.91 2.46 2.38 

0.096 4.13 3.83 3.18 3.18 

Average 3.76 3.47 2.98 2.90 

Relative cost 1 16 16 256 

 

Table 5.4. Relative mean error analysis of mean velocity and dimensionless temperature for  

Case 23 and Case 24 for cavity flow 

Test locations 

(z/H) 

Non-dimensional temperature 

Case 13 (%) 
δx=0.125Δ1,FGR 8 

Case 14 (%) 
δx=0.0625Δ1,FGR 16 

Case 23 (%) 
δx=0.125Δ2,FGR 8 

Case 24 (%) 
δx=0.0625Δ2,FGR 16 

0.765 2.87 2.35 2.41 2.93 

0. 50 3.51 3.47 2.83 2.81 

0.229 3.39 2.76 2.65 2.12 

0.096 2.39 2.41 2.17 2.15 

Average 3.04 2.75 2.52 2.50 

Relative cost 1 16 16 256 
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5.2.4 Prominent flow features 

Figures 5.16 and 5.17 present snapshots of the velocity and temperature fields in the low 

Reynolds number flow as it develops in the differentially heated cavity. Results are for Case 23 

which is the finer filter width case with FGR = 8. Turbulent buoyancy driven flows in 

differentially heated cavities exhibit several regions in which the flow separates from the walls 

and is becomes recirculatory.  This has a profound effect on the overall dynamics of the cavity, 

and it provides a somewhat demanding test of the effectiveness of the explicit approach to LES 

taken in this work. Lau et al. (2013) formulated dynamic sub-grid LES models to simulate 

Cheesewright et al. (1986) experiments on the flow described in this work.  Their work indicated 

the presence of a small eddy in the upper corner of the enclosure, and located between the heated 

wall and the upper adiabatic surface.  The average diameter of the eddy is about 0.02W.  This 

small eddy is clearly captured in our work, as can be seen from the instantaneous flow field 

presented in figure 5.16(c), and it has dimensions that are of a similar magnitude to that 

described by Lau et al. (2013).   

The reversal in the direction and the changes in magnitude of the velocity vectors also evident in 

figure 5.16(c) indicate that a second recirculation region exists in close proximity to the upper 

wall of the cavity.  At the instant represented in the figure it is in the vicinity of about 0.3W from 

the heated wall and 0.2W from the upper adiabatic surface.  This is very close agreement with the 

findings of Lau et al. (2013) who observed a similar phenomenon and this further vindicates the 

validity of the explicit filtering scheme presented in this paper.  As the fluid flows in the upper 

region of the cavity towards the cooled vertical wall it relaminarises before it descends under the 

influence of gravity.  This general behaviour is reflected in figure 5.16, and it is interpreted by 

Lau et al. (2013) as resulting from the upper adiabatic surface acting as a sink for turbulence, 

thus reducing the production of turbulent kinetic energy.   
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(a) 

 
(b) 

     
(c) 

Figure 5.16. Snapshot of the shaded streamline plot (a) and vector plots (b) & (c) of velocity inside the differentially heated cavity 

along the midsection at quasi-steady state after approximately 150 s. Results are for Case 23 
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(a) 

 
(b) 

 
(c) 

        
(d) 

Figure 5.17. A snapshot of the isotherms plots obtained after 2s of initiating the experiment,   (b) depicts the temperature distribution 

at the quasi steady state. (c) & (d) that also indicate the quasi-steady state temperature and flow field on the mid-section of a 

differentially heated cavity. Results are for Case 23 after approximately 150s 

 

Hot wall 

Cold wall 
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The experimental studies of Ozoe et al. (1985) demonstrate that eddies form close to the heated 

wall of differentially heated cavities (they did not present data for flow adjacent to the cooled 

wall).  In their work they studied buoyancy driven flows of water at a Rayleigh number of 

6.3×10
10

 and they observed that perturbations in the mean flow, indicating the formation of 

eddies, occurring up to 20mm from the heated wall.  Figure 5.16(c) shows that in our work large 

eddies are predicted to be generated along both the heated and cooled walls, and it can be 

observed that the centres of the eddies are approximately 0.2W from the walls.  This is in close 

agreement with the observations made by Lau et al. (2013), which again by the principle of 

consilience provides support for the explicit filtering process presented in this work.  The 

production of eddies, particularly in the upper region of the heated wall and lower region of the 

cooled wall as indicated in figure 5.17(c)  promotes the thermal stratification that is also evident  

in figure 5.17. Overall, it appears that solution with the smaller filter width 10% of BLT and 

FGR 8 i.e. Case 23, captures the detailed physics of prominent flow features within the 

differentially heated cavity.  

5.3 Conclusions 

A systematic explicitly filtered large eddy simulation (LES) is used to simulate buoyancy driven 

turbulent flow due to natural convection inside a differentially heated rectangular cavity. This 

widely used benchmark is considered a low Reynolds number test case with 𝑅𝑒𝜆  25. While 

conducting energy spectra analysis, focus is given on the necessity to consider whether selected 

filter widths Δ1 and Δ2 fulfil the criteria for satisfying the principle of LES by capturing the 

energy containing length scales of eddies. In this test case, inertial subrange does not approach 

the theoretical slope like high 𝑅𝑒 case which shows somewhat lack of LES principle. From the 

energy spectrum analysis and comparison with experimental results, it appears that solution with 
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the smaller filter width 10% of BLT and FGR 8 i.e. Case 23 is more likely to provide an 

appropriate solution in an explicit scheme with optimal computational resources. By presenting 

energy spectra analysis it also justifies the important fact that low Reynolds number turbulent 

flow do not necessarily follow the -5/3 Kolmogorov universal scaling for inertial subrange and 

the range is very small that hardly exist in the spectra as the large and small scale lengthscales 

are difficult to separate. Overall error analysis and good agreement of simulation flow variables 

(i.e. mean velocity and temperature) results with experimental reference data also justifies that 

the smaller filter width with 10% of BLT and FGR 8 is sufficient for obtaining an appropriate 

solution for low Reynolds number turbulent flow inside the cavity. In addition to these, the 

prominent flows feature presentation of this flow shows that all essential physics of the flow can 

be captured properly.   
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6.Chapter 6 

Conclusions and future work 
 

6.1 Conclusions 

The inexorable progress of engineering science enables us to analyse systems in increasing 

spatial and temporal detail. For example large eddy simulation (LES) provides engineers and 

scientists with a powerful practical tool to evaluate the effects of eddies generated by turbulent 

flows. This is particularly important when we wish to study in detail how heat mass and 

momentum are transformed by eddies in the flow. The significant contribution of this study is the 

introduction of a new concept to select the filter in an explicit LES scheme based on physical 

parameter boundary layer thickness (BLT) to simulate wall-bounded turbulent flows. A 

systematic approach consistent with LES principles to obtain flow solutions using an explicit 

scheme integrating a damped standard Smagorinsky model is proposed and successfully applied 

to the benchmark case studies of high and low Reynolds number turbulent flows.  

In this study, a second-order implicitly filtered LES code, Fire Dynamics Simulator (FDS), is 

taken as the baseline source code. A numerical study of a flow over a backward facing step has 

been simulated using four different SGS models in FDS to identify the most promising SGS 

model and to address the adequacy of a second-order numerical scheme. According to the 

results, the standard Smagorinsky eddy viscosity model is appeared to be the most accurate 

model out of four. It is shown that the Smagorinsky model has the highest degree of accuracy for 

a given mesh size. Analysis of the results of the further simulation with standard Smagorinsky 

model in terms of relative error and tendency of GCI justifies the adequacy of second-order 

numerical scheme. Having gained confidence in the second-order numerical scheme with the 
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standard Smagorinsky model, this LES sub model with the addition of damped wall function 

along with the second-order scheme is modified to implement the explicitly filtered LES scheme 

discussed above.  

Explicitly filtered LES offers the possibility of refining the numerical grid while maintaining the 

filter width constant, allowing for numerical errors to be minimised so that model performance 

may be assessed independently of the numerical error. While explicitly filtered LES schemes 

have been presented in the past they have often been for simple flows and the explicit filter width 

has been selected based on a priori DNS. In the present study explicitly filtered LES has been 

presented for two, relatively complex wall bounded flows. The first being a high Reynolds 

number flow over a backward facing step and the second a low Reynolds number flow in a 

differentially heated cavity. A systematic approach based on independent refinement of the 

explicit filter width and the grid resolution was suggested. In the absence of a priori DNS data, 

the filter for these wall bounded flows was initially set at 20% of a characteristic boundary layer 

thickness (BLT) and later refined to 10%. This choice was made based on the boundary layer 

resolution suggestions found in the literature. As the BLT is a function of a streamwise 

coordinate, a particular reference point is chosen to determine BLT for each Re cases. For each 

of the two explicit filter settings the grid was progressively refined from a filter to grid size ratio 

(FGR) of two through to an FGR of 16.  

Analysis of the energy spectra reveal, that for the two flow regimes, both explicit filter width 

settings can produce grid-converged results that are consistent with the principles of LES; 

namely that the filter lies within the inertial sub-range and the energy containing range is 

resolved. The former principle could be not be achieved for low Re flow due to the nature of the 

flow itself. From the energy spectrum analysis and comparison with experimental results, it 
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appears that an appropriate solution can be obtained. For both filter widths this was achieved 

with an FGR of eight. This finding is at odds with some of the literature which suggests that for 

second-order numerical schemes an FGR of four is sufficient.  The near-convergence of our 

simulations using an explicit filter of 10% of the BLT and FGR of four indicates that the 

required FGR is in fact filter width dependent with the possibility that smaller filters will permit 

lower values of the FGR. 

Comparison against experimental data shows that the explicit LES scheme using a filter width of 

either 10% or 20% of BLT can capture the major features of the flow quite well with relative 

errors generally less than 5%. The only shortcoming of note was the failure to accurately predict 

the near-wall velocity variance maxima downstream of the backward facing step. Comparison of 

the relative errors and computational load for the two different filter widths reveals that there is 

little benefit from increasing FGR above eight and that if resources permit greater grid-resolution 

then from the point of view of accuracy one is best off reducing the filter width while 

maintaining (or even slightly reducing) the FGR. Furthermore, this study shows the performance 

of explicit LES is much better than the implicit LES at coarser grid resolution which clearly 

demonstrate the advantage of using explicit LES over implicit LES to obtain accurate numerical 

solution.   

6.2 Future work and recommendations 

The two test cases numerically simulated in this study are important for their prominent flow 

features where fire is not involved. Hence, it is important to check the capability of the 

systematic explicit scheme that was developed for obtaining an appropriate and practical 

numerical solution for important flows where fire involved such as building-fires, grass fires and 

the lofting of firebrands by convection currents that arise from wildfires etc. Explicit filter width 
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taken as 10% of BLT and FGR of 8 is a good choice to obtain grid converged solution. However 

it is observed that one is best off reducing the filter width while maintaining (or even slightly 

reducing) the FGR, explicit filter width as 5% of BLT and FGR of 4 can be explored.  It is 

recommended that these suggested combinations of the filter with and FGR can be applied to 

small to medium scale scenarios involving compartment fires as well as vegetative fuel burning 

in landscapes. In landscape fire scenarios, the Australian grassfire experiment (Mell et al. 2007) 

can be considered as a relatively simple case to check the proposed scheme’s ability to reproduce 

the experimental data. Furthermore, Simpson’s rule with discrete and/ or Gaussian distribution to 

set the grid point weighting within filter width can be explored.  

6.3 Applications 

In the medium term, if the outcome of this study can lead to use the state-of-the art CFD-based 

fire model FDS for post fire analysis (both building and wildland fires) to obtain appropriate 

numerically grid converged solution without compromising accuracy, it will have a significant 

practical impact.  Similarly, fire safety engineers may benefit by having a model capable of 

predicting the rate of spread and intensity of fires in buildings under a wide range of fire 

scenarios for designing fire protection systems. In the long term (the next generation), this study 

can lead to development of a real time bushfire modelling version to facilitate developing an 

early detection and warning system, as opposed to using simple empirical fire models. In future, 

this real time fire modelling tool can be used by first responders for tactical information on fire 

spread.  
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Appendix A 
 

Details of Energy Spectra 

A.1 Introduction 

The concept of energy spectra plays a crucial role in developing an LES scheme. Energy spectra 

provide detailed information on how the eddies evolve and transfer kinetic energies among 

themselves with different ranges of lengthscales in a system. Moreover, the effectiveness of LES 

schemes to obtain appropriate solutions are closely related to energy spectra analysis. In this 

appendix, the concepts of Reynolds number and energy spectra in turbulent flow are discussed in 

detail. 

 

Figure A.1. Evolving lengthscales of an eddy in a system 

A.2 Concept of Reynolds number in turbulent flows 

Reynolds number is the most important parameter to define the nature of the flow and whether it 

is laminar or turbulent. In the case of laminar flow, the fluctuations of flow fields die out because 

of its steady and stable nature. On the other hand, in turbulent flow it originates because of its 

random nature. Turbulent flows are lumps of rotating fluid masses which are also known as 
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eddies. There are eddies of different sizes in a turbulent flow. For example, if we consider a pipe 

flow like the one presented in Figure A.1, then we have a large eddy that will be of system 

lengthscale (here, it will be the equivalent of pipe diameter) and we can have small eddies of 

molecular lengthscale. 

The large eddy extracts the energy from the mean flow because of instabilities in the mean flow. 

It can be said that mean flow has fluctuations with respect to time which actually triggers the 

turbulence. Because of these instabilities, the large eddy extracts energy from the mean flow. 

When the large eddy extracts energy from the mean flow, it will evolve into smaller and smaller 

eddies to which energy is subsequently passed. That means the energy will pass from the large 

eddy to the smaller eddy and the smaller eddy to smallest eddy of the molecular lengthscale. 

And, the entire energy cascade goes through smaller and smaller eddies till it is mopped up by 

the smallest eddies due to viscous dissipation. This energy cascading process is properly 

illustrated by the graphical representation among different eddy lengthscales (Figure 1.3) in 

section 1.3 of Chapter 1.  

An important question to ask now is, why cannot large eddy energy be mopped up due to viscous 

dissipation and why do we have to go to the smallest eddy scale? Before we try to obtain an 

answer, we will first have to understand the differences in large scale and small scale eddies 

(presented in Table A.1). 

Table A.1. Different parameters related to eddy scales 

Scales Largest eddy Smallest eddy 

Length scale 𝑙0 𝜂 

Velocity scale 𝑢0 𝑢𝜂 

Time scale 𝑡0 𝑡𝜂 

Here, if we know the lengthscale and velocity scale of different eddy scales we can easily 

determine the time scale. And, the lengthscale of the large eddy is the order of the system 
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lengthscale. In addition to these, the transition behaviour from laminar to turbulent flow can be 

illustrated with the help of a Reynolds number which qualitatively represents the inertia to 

viscous forces. So, in this energy cascading process what is the significance of the Reynolds 

number? If the Reynolds number is either high or low, what does it actually mean? 

What is meant is that with respect to the system lengthscale, the inertia force is dominant over 

the viscous force. Over the large eddy lengthscale the inertia force is much more dominant over 

the viscous force. That is, whatever the energy large eddy extracts from the mean flow that 

cannot be dissipated by the large eddy in the form of viscous dissipation. The viscous effects are 

negligible compared to the inertial effects for the large eddy. But when it comes to smaller and 

smaller eddies, the size or lengthscale of the eddy is small. That means the inertial force with the 

lengthscale will become smaller and smaller.  

Compared to these, the Reynolds number is also becoming smaller with the reduced lengthscale. 

When we examine the smallest eddy, the Reynolds number will be just good enough to dissipate 

all the energy that has been cascaded from the larger eddy scale to the smaller eddy scale. So, it 

can be said that smallest eddies are good enough to dissipate all the energy through viscous 

dissipation. That means the smallest eddies will be characterized by a Reynolds number based on 

that lengthscale of the first order where the inertial force will be balance by the viscous force. So 

the Reynolds number will be to the order of 1. 

This can be by explained by the energy cascading process where the energy cascades down from 

the largest eddy to the smallest eddy. Let us first consider the rate of extraction of turbulent 

kinetic energy (TKE) from the mean flow, 

 
𝜋 ~ 

𝑇𝑢𝑟𝑏𝑢𝑙𝑒𝑛𝑡𝑘𝑖𝑛𝑒𝑡𝑖𝑐𝑒𝑛𝑒𝑟𝑔𝑦

𝑇𝑖𝑚𝑒𝑠𝑐𝑎𝑙𝑒
 

(A.1) 
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where, the largest eddies which will have energy of order 𝑢0
2 and the turn-over time scale will be 

𝑡0 = 𝑙0/𝑢0, and it is a dynamically evolving phenomena. So, 

 𝜋 ~ 𝑢0
3/𝑙0 (A.2) 

And the rate of dissipation of turbulent kinetic energy at the smallest eddy scale, 

 𝜀~𝜈𝑒𝑖𝑗𝑒𝑖𝑗 (A.3) 

where, 𝜈 is the kinematic viscosity and 𝑒𝑖𝑗 is the rate of deformation tensor associated with the 

smallest eddy and the rate of deformation is given by velocity gradient at smallest eddy scale. 

 
𝜀~𝜈 (

𝑢𝜂

𝜂
)
2

 (A.4) 

For having a dynamic balance, it must have the rate of extraction of turbulent kinetic energy 

(TKE) from the mean flow (𝜋) of the order of the rate of dissipation of turbulent kinetic energy 

(𝜀) at the smallest eddy scale. So, whatever energy has been extracted from the large eddy scale 

the same energy will be dissipated and this process goes on in a repetitive way. So, 

 𝜋 ~𝜀 (A.5) 

another consideration is that the Reynolds number based on the smallest eddy lengthscale is the 

order of 1. So, it can be written as,  

𝑅𝑒𝜂~ 1 

 𝑢𝜂𝜂

𝜈
~ 1 

(A.6) 

By performing some algebraic manipulation in the above equations it is possible to determine the 

lengthscale of the largest and smallest scale eddy. The smallest scale of eddies can be seen as, 

 
𝜂~(

𝜈3

𝜀
)

1/4

 (A.7) 

So it can be said that the smallest eddy lengthscale does not depend on the characteristics of the 

largest eddy lengthscale; it only depends on the rate of dissipation of turbulent kinetic energy and 

the kinematic viscosity. This lengthscale is known as the Kolmogorov lengthscale. 
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This Kolmogorov lengthscale can be related to the system lengthscale in the following way, from 

equation (A.4)   

 𝑢0
3

𝑙0
~𝜈 (

𝑢𝜂

𝜂
)
2

 (A.8) 

After performing some algebraic manipulation the above equation can be presented as, 

 𝜂

𝑙0
~𝑅𝑒𝑙

−3/4
 (A.9) 

where, 𝑅𝑒𝑙 is based on the system or largest eddy length scale. Now, from the above equation, 

in a similar way, for the velocity scales and the time scales of the smallest eddies compared to 

largest eddies it can be found that  

 𝑢𝜂

𝑢0
~𝑅𝑒𝑙

−1/4
 

(A.10) 

 𝑡𝜂

𝑡0
~𝑅𝑒𝑙

−1/2
 

(A.11) 

So, from the above correlations between the length, velocity and time scales compared to 

Reynolds number based on largest eddy, it appears that the higher the Reynolds number, the 

length, velocity and time scales will be varied with respect to the largest and smallest scales 

(Kolmogorov) of eddy. It also appears that with an increasing Reynolds number, fluid flows 

become more turbulent and lengthscales of eddies quickly evolve with respect to time. 

Therefore, it is important to capture all the length- and time scales to obtain the appropriate 

solutions during simulation of turbulent flows. 

A.3 The energy cascades  

In fluid flows, turbulence can take place in different scales ranging from large to smaller scales. 

And, these eddy scales decrease with the increase of the Reynolds number. Turbulent flow 

contains energy and distributes it in various scale levels of fluid flow motions. This is also 

known as the energy cascade system of turbulence.  
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The idea of an energy cascade system was first introduced by Richardson (1922). Based on 

energy cascade theory, large eddies contain kinetic energy and they transfer this kinetic energy to 

the smallest scales. This process continues right up to the smallest scales of turbulence and at this 

stage energy is dissipated due to viscous action. According to Richardson, large eddies are 

unstable in nature and these eddies break up and form small eddies. During this time large eddies 

transfer energy into the small eddies. Similarly, these small eddies again break up and transfer 

their energy to comparatively smaller eddies. This process continues up to the smallest scale 

when the eddy motion becomes stable and the viscous effect is dominant. For instance, 

comparatively smaller eddies continue to transfer the energy until the Reynolds number 𝑅𝑒(𝑙) ≡

𝑢(𝑙) ∗ 𝑙/ 𝜈 is small enough that eddies are stable in nature.  

The energy from the large eddies is transferred between the resolved and unresolved scales of 

motion, that means the net transfer of energy is from large to small scales. In addition, the 

smallest scale eddies of fluid motions are transferring energy by dissipation in the form of heat 

due to viscous effect. A question to raise here: where is the heat is going? The heat which is 

produced, which is hardly noticeable, is going into raising the temperature of the system.   

In LES, dissipation of energy from the small scale eddies due to viscous effect can be considered 

as a source of energy and this phenomena is known as backscatter (Pope 2000). It is a 

challenging issue while designing the sub-grid closures in LES and it is often critical to account 

for the effect of these small scales in the large scale motions. In most simple LES cases, the sub-

grid closures consider that the production of sub-grid kinetic energy is equal to the total kinetic 

energy from dissipation.   

The waves (in Fourier space) or eddies (in physical space) of different size, exchange energy 

with each other and they vary along three directions in space and time (Tennekes and Lumley 
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1972). For example, eddies of size 𝑙, will have characteristic velocity 𝑢(𝑙) and the time scale is 

𝜏(𝑙) = 𝑙/𝑢(𝑙). The rate of dissipation (𝜀) can be obtained by counting the total amount of energy 

that is transferred by the largest eddies which will have energy of order 𝑢0
2 and the time scale 

will be 𝜏0 = 𝑙0/𝑢0  and the rate of energy transfer is equivalent to  𝑢0
2/𝜏0 . So, the rate of 

dissipation can be defined as 𝑢0
3/𝑙0. At a high Reynolds number the effect of turbulent viscosity 

is ignored to predict the dissipation. 

The energy cascade theory demonstrates how energy is transferred from large scale to small 

scale eddies though many questions about the size of eddies are unanswered. Moreover, the 

energy cascade theory is unable to answer which lengthscale of the smallest eddies is responsible 

for dissipating energy and cannot provide an answer for the relationship of velocity and time-

scale with decreased eddy length 𝑙. These questions are answered by Kolmogorov (1941) in 

stating three hypotheses. These three hypotheses are known as: the Kolmogorov’s hypothesis of 

local isotropy, the first similarity hypothesis and the second similarity hypothesis. 

A.3.1 Hypothesis of local isotropy 

According to this hypothesis, at high Reynolds numbers, the small-scale eddies are isotropic in 

nature. It assumes that large scale eddies are anisotropic in nature and lie in the energy 

containing range: and the lengthscale of eddies is known as the integral lengthscale. If the large 

scale eddies length is considered as 𝑙, then it should be 𝑙 > 𝑙𝐸𝐼 , where the demarcation of 𝑙𝐸𝐼 

separates the energy containing and inertial sub-range region. It is believed that, in the universal 

equilibrium range (𝑙 < 𝑙𝐸𝐼) large eddies break down and transfer the energy to the small eddies. 

In effect, in that range, all small eddies show a similar nature. 

Moreover, they lose all directional information like turbulent flow at a high Reynolds number. In 

addition, this universal state can be explained by the two dominant processes of energy cascade 
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theory. That means, large scale eddies break down successively transferring energy to the small 

scale and it takes place in the inertial sub-range. Whereas comparatively small scale eddies 

dissipate energy due to viscous (𝜈) effect which is more clearly demonstrated by his second 

hypothesis. 

 

 

Figure A.2.Various ranges of turbulence at different lengthscales. 

A.3.2 First similarity hypothesis 

First similarity hypothesis presents the importance of small scale eddies in turbulent flow that 

can be uniquely defined by the viscosity of fluids and energy dissipated by the small eddies in 

the dissipation range. At a relatively high Reynolds number, eddies are more isotropic nature in 

the dissipation range.   

‘In every turbulent flow at sufficiently high Reynolds number, the statistics of the small scale 

motion (𝑙 < 𝑙𝐸𝐼) have a universal form that is uniquely determined by the viscosity 𝜈 and rate of 

energy dissipation 𝜀’ (Pope 2000). 

From Figure A.2, the demarcation line 𝑙𝐸𝐼  separates the energy containing range and the 

universal range. The large scale waves or eddies are consistent in the energy containing range 

and are anisotropic in nature along different directions with time. On the other hand, the energy 
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cascading takes place in the universal range. Here, the large scale eddies break down and become 

smaller and smaller. These small eddies are isotropic in nature and exchange energy between 

each other. This eddy lengthscale is known as the Taylor’s microscale. The Taylor microscale is 

an intermediate scale that is larger than the Kolmogorov scale but is small enough to be 

influenced by the viscous effect. DNS resolves up to the Kolmogorov scale but in practice that 

may not be possible. So, the DNS resolves down to the Taylor microscale. On the other hand, the 

LES must resolve down to the inertial subrange which is larger than the Taylor microscale. It 

assumes that at inertial sub-range viscous effect is negligible for dissipating kinetic energy. 

In this range (𝑙 < 𝑙𝐸𝐼), the Kolmogorov length, velocity and time-scale can be determined by 

using viscosity and rate of dissipation. These parameters are also known as Kolmogorov’s scales. 

 𝜂 ≡ (𝜈3/𝜀)1/4 (A.12) 

 𝑢𝜂 ≡ (𝜀𝜈)
1/4 (A.13) 

 𝜏𝜂 ≡ (𝜈/𝜀)
1/2 (A.14) 

Moreover, these scales also provide the correlation between the dissipation and viscosity and 

characterize the velocity of the dissipative eddies (Pope 2000). 

 𝜀 =  𝜈(𝑢𝜂/𝜂)
2
=  𝜈/𝜏𝜂

2 (A.15) 

 𝑢𝜂 =  𝜂/𝜏𝜂 (A.16) 

From Kolmogorov’s scale, the ratios between the small scale and large scale eddies can be 

estimated in terms of a Reynolds number. Therefore, the following equations are again recalled 

from the previous section, 

𝜂/𝑙0~ 𝑅𝑒
−3/4 

𝑢𝜂/𝑢0 ~ 𝑅𝑒
−1/4 

𝜏𝜂/𝜏0 ~ 𝑅𝑒
−1/2 
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It is clear from the above correlations that, at a high Reynolds number, velocity and time scales 

of the small eddies will be too small compared to large eddies. Moreover, the lengthscale 𝑙 in this 

range is small compared to 𝑙0 (equivalent to system characteristic length) but relatively too large 

compared to the Kolmogorov’s lengthscale. This hypothesis demonstrates that with increasing 

system lengthscale, fluid flows inherently become more turbulent in nature.    

A.3.3 Second similarity hypothesis 

This hypothesis provides information on the intermittent lengthscale of eddies in the universal 

equilibrium range which also separates the energy containing and dissipation range in the energy 

cascading process.   

‘In every turbulent flow at sufficiently high Reynolds number, the statistics of the motions of 

scale 𝑙  in the range 𝑙0 ≫ 𝑙 ≫ 𝜂  have a universal form that is uniquely determined by the 

viscosity 𝜈 and rate of energy dissipation 𝜀’ (Pope 2000). 

 

Figure A.3. Energy cascading with spectrum of eddies with different scales. 
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From Figure A.2, it is found that in the universal equilibrium range, the length scale 𝑙𝐷𝐼 separates 

the inertial and the dissipation range assumed 𝑙𝐷𝐼 = 60𝜂 at high Reynolds number. So, the eddy 

with a lengthscale of 𝑙 in the inertial sub-range can be written as 𝑙𝐸𝐼 > 𝑙 > 𝑙𝐷𝐼 and the dissipation 

range as 𝑙 < 𝑙𝐷𝐼 . The inertial sub-range considers the inertial effects of the flow which is 

independent of viscous effect. On the other hand, in the dissipation range, the viscous effects are 

dominant for all of the dissipation. Moreover, it assumes that the eddy size 𝑙  in the energy 

containing range would be  𝑙𝐸𝐼 =
1

6
𝑙0 < 𝑙 < 6𝑙0 . This region consists of large eddies which 

contain bulk energy.  

 𝑙𝐸𝐼 ≡ 𝑇(𝑙𝐸𝐼) = 𝑇(𝑙) = 𝑇𝐷𝐼 ≡ 𝑇(𝑙𝐷𝐼) = 𝜀 (A.17) 

The different range of eddy scales shown in Figure A.3, shows how the energy is produced in the 

energy containing range and is distributed through the viscous effect in the dissipation range. It 

assumes that the rate of energy transfer from the large scale 𝑇𝐸𝐼  to the small scale eddies is 

equivalent to the energy transfer to the inertial range𝑇(𝑙). Furthermore, the energy leaving from 

the inertial range is equivalent to the energy entered in the dissipation range 𝑇𝐷𝐼 and dissipated 

with rate  𝜀  (Pope 2004). This hypothesis demonstrates an important fact: that production of 

energy in the largest scales in the energy containing range must be dissipated by the smallest 

scale eddies in the dissipation range by the viscous effect. The amount of energy production in 

the energy containing range should be equal to the amount of energy dissipation in the 

dissipation range. The inertial range is the intermittent range or universal range which helps to 

transfer the energy from large scale eddies to small scale eddies. Moreover, this hypothesis helps 

to simulate the turbulent flows with sufficient accuracy. It is believed that almost 80% energy is 

resolved if large scale eddies or the energy containing range is captured properly of any system 
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(Pope 2000). Therefore, the LES principle encompasses requirements for setting its filter width 

in the inertial subrange and capturing all energy containing eddies properly. 

A.4 Kolmogorov’s -5/3 law (theoretical slope) 

In turbulent flows, it is important to estimate how the turbulent kinetic energy due to velocity 

fluctuations is distributed among eddies with different lengthscales. An eddy with lengthscale 𝑙 

and the corresponding wavenumber to this lengthscale of 𝜅 = 2𝜋/𝑙, and the energy contained 

among the wavenumbers that range from 𝜅𝑎 to 𝜅𝑏 can be expressed as, 

 
𝑘(𝜅𝑎,𝜅𝑏 ) = ∫ 𝐸(𝜅)𝑑𝜅

𝜅𝑏

𝜅𝑎

 
(A.18) 

The contribution of the total dissipation rate 𝜀 from the fluctuating part can be expressed as 

 
𝜀(𝜅𝑎,𝜅𝑏 ) = ∫ 2𝜈𝜅2𝐸(𝜅)𝑑𝜅

𝜅𝑏

𝜅𝑎

 
(A.19) 

The first similarity of Kolmogorov’s hypothesis (Kolmogorov 1941) for the condition 𝜅 > 𝜅𝐸𝐼 ≡

2𝜋/𝑙𝐸𝐼 which falls in the universal equilibrium range and the energy spectrum function depends 

on the 𝜈 and 𝜀 in this range. And, according to the second hypothesis the wavenumbers that fall 

in the inertial subrange 𝜅𝐸𝐼 < 𝜅 < 𝜅𝐷𝐼 ≡ 2𝜋/𝑙𝐷𝐼, the energy spectrum function is 

 𝐸(𝜅) ∝  𝜀2/3𝜅−5/3 (A.20) 

 𝐸(𝜅) = 𝐶𝜀2/3𝜅−5/3 (A.21) 

The above equation describes the famous Kolmogorov -5/3 spectrum. Where, 𝐶  is the 

Kolmogorov constant which was experimentally determined as 1.5. For a deeper understanding 

of Kolmogorov’s -5/3 law, let us consider the power law of a spectrum that can be written as 

 𝐸(𝜅) = 𝐴𝜅−𝑝 (A.22) 

where, 𝐴 and 𝑝 are constant. Now, the total energy contained by the wavenumbers that is greater 

than 𝜅 is 
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𝑘(𝜅,∞ ) = ∫ 𝐸(𝜅′)𝑑𝜅′

∞

𝜅

=
𝐴

𝑝 − 1
𝜅−(𝑝−1) 

(A.23) 

The equation is for 𝑝 > 1, but the integration diverges if 𝑝 ≤ 1.  

On the other hand, the total dissipation for the wavenumbers less than 𝜅 is 

 
𝜀(0,𝜅 ) = ∫ 2𝜈𝜅

′2𝐸(𝜅′)𝑑𝜅′
𝜅

0

=
2𝜈𝐴

3 − 𝑝
𝜅3−𝑝 

(A.24) 

The above equation converges for the condition 𝑝 < 3, while the integration diverges for 𝑝 ≥ 3. 

In that case 𝑝 =
5

3
 which lies in the middle of the range (1,3) of the Kolmogorov spectrum will 

converge the integrals for both turbulent kinetic energy, 𝜅(𝜅,∞ ) and the amount of dissipation, 

𝜀(0,𝜅 ) will converge.  
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Appendix B 

Simulation of Turbulent Pipe Flow 

 

B.1 Introduction 

To solve the fluid flow problems numerically, three key elements are involved in computational 

fluid dynamics (CFD): numerical schemes and grid generation; algorithm development; and 

turbulence modelling. While for the first two elements rigorous mathematical formulations exist, 

turbulence modelling is less precise due to the complex nature of turbulent flows. Simulating 

turbulence is a fundamental problem of fluid dynamics. Therefore, before implementing an 

explicit scheme in a default version of FDS to simulate turbulent flows for preliminary 

simulations, two numerical algorithms (RANS codes) have been developed to solve a simple 

one-dimensional turbulent pipe flow. It is believed that the quality of turbulent flow simulations 

depend on the accuracy of eddy models to obtain appropriate numerical solutions. Two eddy 

models namely the Cebeci-Smith (1974) and 𝑘 − 𝜀 models are used in this study to account for 

the turbulence in the pipe flow. Furthermore, this study demonstrates the importance of eddy 

models along with numerical schemes for obtaining appropriate solutions of turbulent flows.  

B.2 Governing equations and boundary conditions 

Figure B.1 presents a fully developed flow inside a circular pipe. In the two-dimensional 

schematic diagram, 𝑥  and 𝑦  represents the streamwise and radial direction of the pipe. Flow 

inside the pipe can be laminar or turbulent depending upon the Reynolds number. For the 

preliminary simulations of one-dimensional turbulent flow inside the pipe, two Reynolds 

numbers (𝑅𝑒𝜏) based upon friction velocity (𝑢𝜏) are considered: 180 and 395 respectively.  
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Figure B.1. Fully developed turbulent flow inside a circular pipe  

The governing equation and the boundary conditions for the one-dimensional turbulent pipe flow 

are as follows, 

 (𝜈 + 𝜈𝑡)
𝜕𝑢

𝜕𝑦
= 1 − 𝑦,           0 ≤ 𝑦 ≤ 𝛼 (B.1) 

 Boundary conditions are, 

 
𝑎𝑡  𝑦 = 0,      𝑢(0) = 0,             

𝜕𝑢

𝜕𝑦
= 0; (B.2) 

And,  

 𝑎𝑡  𝑦 = 𝛼,      𝑢(𝛼) = 𝛽; (B.3) 

where, 𝜈 is the kinematic viscosity, 𝜈𝑡 is the turbulent kinematic viscosity, 𝑢 is the velocity along 

the flow direction, 𝛼  and  𝛽  are initial values that can be taken arbitrarily. Static kinematic 

viscosities are considered 0.00556 m2/s  and 0.002532 m2/s  for Reynolds numbers taken 

(𝑅𝑒𝜏)  180 and 395 respectively. The Reynolds number based on the frictional velocity is 

computed as 𝑅𝑒𝜏 = 𝑢𝜏𝑅/𝜈; 𝑅 is the radius or centre line of the pipe where streamwise velocity is 

maximum (𝑢𝑚𝑎𝑥) . In these preliminary simulations, for the given Reynolds number, non-

dimensional velocity 𝑢+ has been plotted as a function of dimensionless distance (𝑦+) to the 

wall as, 
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 𝑢+ = 𝑓(𝑦+) (B.4) 

where, 𝑢+ = 𝑢/𝑢𝜏; mean velocity (𝑢)scaled to the wall friction velocity (𝑢𝜏) and dimensionless 

wall unit 𝑦+ is computed as 𝑦𝑢𝜏/𝜈. Here, the wall friction velocity is defined as 𝑢𝜏 = √𝜏𝑤𝑎𝑙𝑙/𝜌; 

where 𝜏𝑤𝑎𝑙𝑙 is wall shear stress and 𝜌 is the density of the fluid which is considered unity for all 

simulations. Surface roughness is ignored and for all simulation inside the pipe surface is 

assumed smooth. The turbulent pipe flow is driven by the constant streamwise pressure gradient 

(−𝜕𝑝/𝜕𝑥) which is considered 1 for all simulations.  

B.3 Numerical method 

For the simulations of turbulent pipe flow at various Reynolds numbers, non-uniform grid is 

used. To capture the detailed physics of fluid near the wall relatively fine meshes are used near 

the pipe wall and coarsen towards the radial direction of the pipe. The governing equation 

second-order finite difference scheme for one-dimensional grid points (presented in Figure B.2) 

is solved as follows,  

 

Figure B.2. Geometric arrangement of one-dimensional grid points  

Derivatives in the partial differential equation are commonly computed by the linear combination 

of the function values at each of the assigned grid points and that can be written as, 

 𝑢𝑖 = 𝑢(𝑥𝑖),              𝑖 = 0,1…… .𝑁 (B.5) 

For non-uniform grids, the following approximation of second-order derivatives of finite 

difference scheme has been used, 

 
(
𝜕2𝑢

𝜕𝑥2
)
𝑖

= [
𝜕

𝜕𝑥
(
𝜕𝑢

𝜕𝑥
)]
𝑖
=

(
𝜕𝑢
𝜕𝑥
)
𝑖+1/2

− (
𝜕𝑢
𝜕𝑥
)
𝑖−1/2

𝜕𝑥
 

(B.6) 

After mathematical manipulation the above equation can be expressed as, 
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 (
𝜕2𝑢

𝜕𝑥2
)
𝑖

=
1

(
ℎ1
2 +

ℎ2
2 )
(
𝑢𝑖+1 − 𝑢𝑖
ℎ2

−
𝑢𝑖 − 𝑢𝑖−1
ℎ1

) (B.7) 

In addition, the following equation is used for grid stretching near the wall region, 

 
𝑦(𝑖) =

𝑦+(𝑖)

𝑅𝑒𝜏
 

(B.8) 

where, 

 
𝑦+(𝑖) = 𝐸𝑥𝑝(log[𝑦+(1)] + (𝑖 − 1) (

log [𝑅𝑒𝜏/𝑦
+(1)]

𝑁 − 1
) 

(B.9) 

For all the simulations, first grid point (𝑦+)  adjacent to the wall is considered as 0.025 

(presented in Table B.1). Moreover, the tri-diagonal matrix algorithm (TDMA) method is used to 

solve the linear values of partial differential equations. Moreover, iterative method has been used 

to solve the governing equations. In simulations, for the primary guess the following initial 

velocity profiles are considered in the laminar (near the wall) and the turbulent (far off the wall) 

region, 

 𝑢+ = 𝑦+                                                for  𝑦+ < 10 (B.10) 

and 

 
𝑢+ =

1

𝜅
𝑙𝑛(𝑦+) + 𝐵                              for  𝑦+ ≥ 10 

(B.11) 

where, 𝜅 = 0.41  is the von Karman constant and 𝐵  is the integration constant which is 

considered 5.2. 

Table B.1. Considered 𝑦+ values for Cebeci-Smith and 𝑘 − 𝜀 model 

RANS Models (𝒚+) values 

Cebeci-Smith 0.025 

𝑘 − 𝜀 model 0.025 

B.4 Cebeci-Smith model 

To account for the eddy viscosity in one-dimensional turbulent flow inside the pipe, the Cebeci-

Smith (Cebeci and Smith 1974), which is also known as the zero equation turbulence model, has 
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been implemented in the RANS code accordingly. During calculation of eddy viscosity it divides 

the boundary layer in two different zones (Wilcox 1993).  

 
𝜈𝑡 = {

𝜈𝑡𝑖𝑛𝑛𝑒𝑟     for   𝑦 ≤ 𝑦𝑐𝑟𝑜𝑠𝑠𝑜𝑣𝑒𝑟
𝜈𝑡𝑜𝑢𝑡𝑒𝑟     for   𝑦 ≤ 𝑦𝑐𝑟𝑜𝑠𝑠𝑜𝑣𝑒𝑟

 
(B.12) 

Here, 𝑦𝑐𝑟𝑜𝑠𝑠𝑜𝑣𝑒𝑟 is the smallest distance which separates two layers of the boundary layer (inner 

and outer) where  𝜈𝑡𝑖𝑛𝑛𝑒𝑟  is equal to 𝜈𝑡𝑜𝑢𝑡𝑒𝑟 . Additionally, 𝜈𝑡𝑖𝑛𝑛𝑒𝑟  represents the turbulent 

viscosity near the wall and 𝜈𝑡𝑜𝑢𝑡𝑒𝑟 computes the outer boundary layer and can be expressed as 

follows,  

 

𝜈𝑡𝑖𝑛𝑛𝑒𝑟 = 𝑙𝑚𝑖𝑥
2 [(

𝜕𝑢

𝜕𝑦
)
2

+ (
𝜕𝑣

𝜕𝑥
)
2

]

1/2

 

(B.13) 

where, 

 𝑙𝑚𝑖𝑥 = 𝜅𝑦[1 − 𝑒
−𝑦+/𝐴+] (B.14) 

Here, 𝜅 = 0.41, and 𝐴+ = 26[1 + 𝑦(𝑑𝑝/𝑑𝑥)/𝜌𝑢𝜏
2]−1/2 are closure coefficients respectively. 

And  

 𝜈𝑡𝑜𝑢𝑡𝑒𝑟 = 𝛼𝑢𝑒𝛿𝑣
∗𝐹𝐾𝑙𝑒𝑏(𝑦; 𝛿) 

 

(B.15) 

where,  𝛼 = 0.0168 is closure coefficient and 𝑢𝑒is boundary layer edge velocity. The term 𝐹𝐾𝑙𝑒𝑏 

is the Klebanoff intermittency function and 𝛿𝑣
∗ is the velocity thickness that can be defined as, 

 
𝐹𝐾𝑙𝑒𝑏(𝑦; 𝛿) = [1 + 5.5 (

𝑦

𝛿
)
6

]
−1

 
(B.16) 

And 

 
𝛿𝑣
∗ = ∫ (1 − 𝑢/𝑢𝑒)𝑑𝑦

𝛿

0

 
(B.17) 

all these closure coefficients and additional terminology are incorporated in the code properly to 

compute the eddy viscosity using the Cebeci-Smith zero equation turbulence model. Later, the 

numerical results obtained are compared to the DNS results.   
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Figure B.3. Dimensionless velocity profile at Reynolds number (𝑅𝑒𝜏 = 180) 

 

Figure B.4. Dimensionless velocity profile at Reynolds number (𝑅𝑒𝜏 = 395) 
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B.5 𝒌 − 𝜺 model 

For simulations of fully developed turbulent channel flow, turbulence is also accounted for by 

using the 𝑘 − 𝜀  model.  The  𝑘 − 𝜀  eddy model is the widely used two-equations turbulence 

model. The detailed description 𝑘 − 𝜀  model has been discussed in the Reynolds averaged 

Navier-Stokes (RANS) section of Chapter 1. The following equation has been used to account 

for the eddy viscosity, 

 
𝜈𝑇 =

𝐶𝜇𝑘
2

𝜀
 

(B.18) 

To compute the turbulent kinetic energy (𝑘) and the dissipation (𝜀), the following equations 

have been used, 

 𝜕𝑘

𝜕𝑡
+ 𝑢̅𝑗

𝜕𝑘

𝜕𝑥𝑗
= −𝑢𝑖′𝑢𝑗′̅̅ ̅̅ ̅̅

𝜕𝑢𝑖̅
𝜕𝑥𝑗
− 𝜀 +

𝜕

𝜕𝑥𝑗
[(𝜈 + 𝜈𝑇/𝜎𝑘)

𝜕𝑘

𝜕𝑥𝑗
] 

(B.19) 

 

 𝜕𝜀

𝜕𝑡
+ 𝑢̅𝑗

𝜕𝜀

𝜕𝑥𝑗
= −𝐶𝜀1

𝜀

𝑘
𝑢𝑖′𝑢𝑗′̅̅ ̅̅ ̅̅

𝜕𝑢𝑖̅
𝜕𝑥𝑗
− 𝐶𝜀2

𝜀2

𝑘
+
𝜕

𝜕𝑥𝑗
[(𝜈 + 𝜈𝑇/𝜎𝜀)

𝜕𝜀

𝜕𝑥𝑗
] 

(B.20) 

 

Here, 𝐶𝜀1 = 1.44, 𝐶𝜀2 = 1.92, 𝐶𝜇 = 0.09, 𝜎𝑘 = 1.0, 𝜎𝜀 = 1.3  are closure coefficients and 

constants that are implemented in the RANS code. Moreover, the numerical solution obtained 

using the 𝑘 − 𝜀 model has been compared to the existing DNS results for the taken Reynolds 

numbers to check the accuracy of the model. 

B.6 Results and discussion 

For one-dimensional turbulent pipe flow, the dimensionless velocity profile (𝑢+) is compared to 

normalized distance from the wall (𝑦+) for Reynolds numbers (𝑅𝑒𝜏) 180 and 395 based on wall 

friction velocity. Obtained numerical results of pipe flow from Cebeci-Smith and 𝑘 − 𝜀 models 

are compared to the DNS results of Kim et al. (1987) for 𝑅𝑒𝜏 = 180 and Moser et al. (1998) for 

𝑅𝑒𝜏 = 395. Here, Figure B.3 shows a comparison of the Cebeci-Smith and the 𝑘 − 𝜀 models to 
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the DNS results of 𝑅𝑒𝜏 = 180. From the comparison it appears that 𝑘 − 𝜀  shows very good 

agreement with the DNS data whereas the Cebeci-Smith model shows a significant variation. In 

Figure B.4, the numerical solution of the Cebeci-Smith and 𝑘 − 𝜀 models are compared to DNS 

data for Reynolds number 𝑅𝑒𝜏 = 395. Similar to the comparison of 𝑅𝑒𝜏 = 180, it appears that at 

a high Reynolds, number 𝑅𝑒𝜏 = 395, once again the 𝑘 − 𝜀 model shows very good agreement to 

the DNS data compared to the Cebeci-Smith model. In both Reynolds number cases Cebeci-

Smith shows marginal deviation compared to DNS data.  

The most probable reason is that the Cebeci-Smith model is an algebraic model which uses 

mixing length theory to compute eddy viscosity. Moreover, it does not solve any partial 

differential equations (PDE’s) to correlate the eddy viscosity to lengthscales of the mean flow. 

For this reason, these types of algebraic models are defined as ‘incomplete’ eddy models for 

accounting for turbulent viscosity. Hence, algebraic models are not used for turbulence 

modelling of practical applications. On the other hand, the 𝑘 − 𝜀 model solves two additional 

PDE’s for turbulent kinetic energy (𝑘) and the dissipation (𝜀) to account for turbulent viscosity 

and correlates the obtained eddy viscosity to the mean flows. These features make the 𝑘 − 𝜀 

model more powerful to account for the turbulence in many practical applications where 

secondary fluid flow motions such as vortices and flow separation take place. Another important 

feature of the 𝑘 − 𝜀 model is that it is also able to predict the transition from laminar to turbulent 

flow. Moreover, due to all of these features, the 𝑘 − 𝜀 model is capable of predicting turbulent 

flow relatively more accurately compared to the algebraic or zero equation turbulence models.      

B.7 Conclusions 

The one-dimensional turbulent pipe flow case study focuses on the importance of eddy viscosity 

models to predict turbulent flows accurately. This study also shows the accuracy of the second-
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order numerical scheme which has been used to solve the Navier-Stokes equations. Moreover, 

this numerical study gives emphasis on grid generation and their contribution to obtain numerical 

solutions of turbulent flow with sufficient accuracy. Grids are stretched along the radial direction 

using exponential grid generation processes. Near the wall, grids are kept sufficiently small to 

capture the wall effect on turbulence properly. The 𝑦+ value adjacent to the wall is considered as 

0.025 for both RANS models. From an analysis of the result it appears that the assigned 𝑦+ value 

is sufficiently small to capture the turbulence near the wall properly. Moreover, the numerical 

results obtained using the Cebeci-Smith and the 𝑘 − 𝜀 models at different Reynolds number are 

compared to the DNS results. From the comparison, it appears that compared to Cebeci-Smith 

model,  𝑘 − 𝜀 model is in very good agreement with the DNS results. Moreover, outcomes of 

this numerical study demonstrate that the second-order numerical code (default version of FDS 

uses a second-order numerical scheme to solve the governing equations) is capable of 

reproducing the DNS results with sufficient accuracy.  
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Appendix C 

Relation between grid and 𝑼𝒆  

To maintain the flow continuity, higher boundary layer edge velocity is predicted for coarser 

grids compared to the simulations where finer grid is used (refer to Chapter 3 velocity profile 

Figures 3.2 and 3.3). The following velocity contour diagrams with coarse and fine grids (refer to 

Table 3.1) at location x/h=4 is presented here to demonstrate this rationale,  

 
(a) Coarse grid 

 
(b) Fine grid 

Figure C.1. Velocity contour plots at location x/h=4 where black lines represent predicted 0.9𝑈𝑒 

contours for coarse and fine grids   




