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Abstract

Random testing techniques have been extensively usedabitigy assessment, as well as in debug
testing. When used to assess software reliability, ran@sting selects test cases based on an operational
profile; while in the context of debug testing, random tegtiften uses a uniform distribution. However,
generally neither an operational profile nor a uniform disiion is chosen from the perspective of max-
imizing the effectiveness of failure detection. Adaptisedom testing has been proposed to enhance the
failure detection capability of random testing by evenlyesaling test cases over the whole input domain.
In this paper, we propose a new test profile, which is diffefez’m both the uniform distribution, and
operational profiles. The aim of the new test profile is to nmaze the effectiveness of failure detection.
We integrate this new test profile with some existing ad&ptandom testing algorithms, and develop a
family of new random testing algorithms. These new algangimot only distribute test cases more evenly,
but also have better failure detection capabilities thacthrresponding original adaptive random testing
algorithms. As a consequence, they perform better thanureerandom testing.

Key Words: Random testing, adaptive random testing, test profilefoumi distribution, operational

profile.



Acronynt
RT Random Testing
ART Adaptive Random Testing
FSCS-ART Fixed-Sized-Candidate-Set Adaptive Randomirigest
RRT Restricted Random Testing

ART-DNC Adaptive Random Testing with Dynamic Non-Uniforna@lidate Distribution

pdf Probability Density Function

PDF Probability Distribution Function
Notation

E The set of all executed test cases

I The input domain

N The dimension of input domain
ND N-dimension, wher& =1,2.3,4,---
|| The size of a set

6 The failure rate of a program

F-measure  The expected number of test cases required t thetdirst program failure

FrT F-measure of random testing
FART F-measure of adaptive random testing
. F
ART F-ratio 28T
RT

1The singular and plural of an acronym are always spelledahees



1. Introduction

Random testin¢RT) is a standard software testing technique which simplyegatesest cases
(that is, program inputs for testing) at random from the whioput domain(that is, the set of all
possible inputs for the program under test) [15], [21]. R$ been widely used for assessing soft-
ware reliability [14], [23], where test cases are often sielé according to an operational profile.
The operational profile refers to a probability distribati@ver the input domain, which charac-
terizes how a program is operated by end-users [20]. Anatbglication of RT is debug testing,
which aims at detecting software failures so that progragslman be removed, and thus software
reliability can be improved [13]. When used as a debug tgstiethod, RT often selects test cases
based on a uniform distribution; that is, all program infhése the same probability to be selected
as test cases, to ensure that every possible bug could hxetbte

Inputs that cause the program under test to exhibit failereabiors are known dailure-causing
inputs A testing method is said to detect a failure if it picks adea-causing input as a test case.
When a testing method is capable of detecting softwarer&slmore effectively, it is more likely
that program bugs can be removed as early as possible, agimaany bugs may be removed as
possible, and hence we may be more confident of the softwatl&ibility. Some researchers [21]
argued that RT is a poor debug testing method because it dbesake use of any information to
guide the selection of test cases. The operational profilegiwis used by RT in reliability assess-
ment, is constructed with respect to the usage frequen€igsferent functions in the program,
not from the perspective of how likely the inputs are faiteerising. The uniform distribution,
the most commonly used test profile for RT in debug testirggts all possible program inputs

equally, regardless whether some inputs may have highéapiiities to be failure-causing than



other inputs. Briefly speaking, both test profiles for RT aséfailure oriented, and hence are not
expected to ensure an optimal failure detection capalddityRT. This lack has motivated us to
investigate whether different test profiles can enhanceffieetiveness of RT.

Several studies [1], [2], [12], [25] have independently madcommon observation that failure-
causing inputs tend to cluster into contiguous regions\knasfailure regions[1]) in the input
domain. Cheret al. [7] have attempted to improve the effectiveness of RT by meeaznthis
characteristic of failure-causing inputs. Their intuitis that, if a test casedoes not reveal any
software failure, then an input that is away from more likely to cause a failure thaés neighbors.
Based on such an intuition, they proposed a novel approanngly adaptive random testing
(ART), which not only randomly selects, but also more evespyeads test cases over the input
domain. Various algorithms have been developed to implétherbasic “even spread” intuition of
ART, such adixed-sized-candidate-set ARHFSCS-ART) [7],restricted random testin(RRT) [3],
and lattice-based ART17]. Most ART algorithms consist of two independent preass One
process (known asandidate generation procgsandomly generates program inputstest case
candidatesor briefly candidates The other process (known &sst case identification procgss
applies some criteria to identify test cases among thesgidates to ensure an even spread of
test cases across the input domain. Because ART was ohjgpraposed as a debug testing
method, the random generation of candidates has alwaysdoeeiicted according to a uniform
distribution.

In ART, the goal is to achieve an even spread of test caseghisuivas not fully realized in
previous studies. Therefore, some have attempted [5] tfl8lake test cases more evenly spread.
But all of these studies were focused on the enhancemenedéth case identification process,

either by developing new test case identification critenidyy improving the existing criteria. They



all used the uniform distribution as the test profile for thedidate generation process. However,
as mentioned before, such a uniform distribution is not ehaspecifically to help improve the
effectiveness of RT. We are motivated to look at what tedfileroan be used to enhance the failure
detection capability of RT/ART. In this paper, we proposelévelop another test profile, which
is different from the uniform distribution, and the opeoaial profile, for the candidate generation
process in ART. Our approach is to design a test profile foc#melidate generation process such
that the test case identification process would deliver aenegen distribution of test cases, and
consequently, a likely improvement of the failure detetto@pability. We call such a profile as
failure driven test profile We conduct investigations on two particular ART algorithnkFSCS-
ART [7], and RRT [3].

Section 2 introduces the background information on FSCS;ARd RRT. Some concepts used
in this paper are also discussed in this section. In Sectiome3nvestigate how to select a test
profile that can be used to guide the candidate generatioBGSFART, and RRT, while keeping
the test case identification criteria unchanged. The ra@sutiew algorithms are evaluated via some
simulations, whose results are also reported in this sect8ection 4 concludes the paper. The

appendix contains details of some calculations.

2. Background

In this paper, for convenience of illustration, we assune the program under test only has
numeric inputs. Applications of RT, and ART on non-numercgyams have been studied in [22],

[26], and [9], [10], [16], [19], respectively.



2.1. Fixed-sized-candidate-set adaptive random testing

Fixed-sized-candidate-set ART (FSCS-ART) [7] makes usevofsets of test cases: thex-
ecuted set E= {e1,ey,---,en}, which contains the executed test cases; andctralidate set
C = {cy,Cp, - ,Ck}, Which containsk randomly generated candidates. A candidatevill be

chosen as the next test case if forja# 1,2, --- K,

n n
mindist(cy, &) > mindist(c;, ), 1)
1= 1=

wheredist is the Euclidean distance between two points. The detailseoFSCS-ART algorithm
can be found in [7]. Although the performance of FSCS-ART riowes with the increase &f any
k > 10 will not significantly improve the effectiveness of FSBERT [7]. Therefore, in this paper,

we will use FSCS-ART wherk has a value of 10.

2.2. Restricted random testing

Restricted random testin@®RT) [3] creates aexclusion regioraround each element Bf Only
the randomly generated candidates that fall outside ofxalueed areas will be selected as test
cases. The exclusion zone for each elemeri of of the same siz%ﬁ'—"', whereR is defined as
the target exclusion ratio Some simulations [3] have shown that the failure deteatapability
of RRT improves with the increase B However, a largeR means that a larger part biwould
be excluded, and hence more computation is required to genattest case (that is, to generate a
random input outside the exclusion regions of all execlgstidases). Cheat al.[5] have proposed
a mechanism to dynamically adjudtto balance the computation time, and the performance. In

this paper, we will also adopt such an approach. In additienset the initial value oRat 1, 1.7,



3.3, and 6.4 for RRT in 1D, 2D, 3D, and 4D spaces, respectiasiguggested in [3].

2.3. Failure detection capability of adaptive random tesing

The F-measure, the expected number of test cases requaetetd the first software failure, has
been used for measuring the failure detection capabiliBfFF. This paper will follow all previous
studies of ART in using the F-measure as the effectivenessan®eaders may refer to [8] for
an explanation for why the F-measure is more appropriate ¢tider metrics in evaluating ART.
In this paper, F-measures of RT, and ART are denoteBryy andFarT, respectively. The ART
F-ratio, the ratio betweeRarT andFgT, is used to show the improvement of ART over RT.

Generally speaking, failure-causing inputs determine Ibasic features of a faulty program.
One feature is the failure rate (denoted @)y which refers to the ratio between the number of
failure-causing inputs, and the number of all possible iapuhefailure pattern the other ba-
sic feature, refers to the failure regions together withrtestribution overl. Both 8, and the
failure pattern are unknown before testing, although theyfixed after coding. Theoretically,
FrT = 1/6 when test cases are randomly selected according to unifestmbdtion, and with
replacement. Obviously, a theoretical analysisgtr is extremely difficult, and thus previous
studies of ART [4], [5], [6] have estimatdéhrT Via simulations, using the basic procedure as
follows.

For simulation studies, to simulate faulty prograignd the failure pattern are set first. Then,
failure regions, whose size, and shape are decide, laynd the failure pattern, respectively, are
then randomly placed inside An ART algorithm is applied to continuously select testesadf a
point inside the failure regions is picked up, it is said th&ilure is detected. The number of test

cases required to detect the first failure, referred to atbeunt [8], is recorded. Such a process



is repeated for a sufficiently large numb8&y ¢f times to ensure that the average value of F-counts
can be regarded as a reliable estimatd=igyr within a specified confidence level, and an accuracy
range (details of decidin§ can be found in [7]). In this paper, the default values of aterice
level, and accuracy range are set as 95%,8b%, respectively.

Previous studies [4], [6] showed that FSCS-ART, and RRTagerfbest when failure-causing
inputs are well clustered into one single compact regionvél@r, their failure detection capabil-
ities deteriorate a8 becomes higheN becomes higher, the failure region becomes less compact,

or the number of failure regions becomes larger.

2.4. Test case distribution of adaptive random testing

Because the basic intuition of ART is the even spread of &ests, some research [4], [19] has
been conducted to measure how evenly ART algorithms spesaddses from different perspec-
tives. In [19], the test case distributions of various AR§aalthms were coarsely described by
some 2D spatial distribution graphs. A more precise appré@momeasuring test case distributions
was proposed by Chest al. [4], where some distribution metrics were employed to meathe
evenness of test case distribution. Among these metrissigpancy, and dispersion are two com-
monly used measurement metrics for the equidistributicsaaiple points. Discrepancy indicates
the maximal difference of points’ densities for variousioeg inl, while dispersion indicates the
size of the largest empty spherical region (containing notpm |. Smaller discrepancy or smaller
dispersion implies better equidistribution of sample p&in

Chenet al.[4] found that all ART algorithms under their investigatierhibit various degrees
of uneven test case distribution. For example, FSCS-AR®, RRT usually have fairly small

dispersion, but the values of their discrepancy will becdarger whenN is higher, or|E| is



smaller. As mentioned in Section 2.3, FSCS-ART, and RRT pawe failure detection capabilities
for high N, or high 8 cases. Such a correlation between the ART effectivenedghantest case
distribution has motivated us to look at how to enhance tilaréadetection capability of ART

through the improvement of the evenness of test case distib

3. Adaptive Random Testing using a Non-Uniform Distribution as a Test Profile

As mentioned before, neither the uniform distribution (fi@bug testing), nor the operational
profile (for reliability assessment) is designed specifyctd help RT achieve an optimal failure
detection capability. ART improves the failure detecti@pability of RT by evenly spreading
random test cases. There are two independent processestirARD algorithms: the candidate
generation process, which ensures the randomness of t&st; @nd the test case identification
process, which ensures the even spread of random test adsesevious studies of ART were
focused on the test case identification process, while theidate generation process always used
a uniform distribution, just like RT as a debug testing methdhis study attempts to investigate
whether applying a different test profile in the candidateegation process can enhance the even
spread of test cases, aiming at improving the failure dietecapability of RT/ART.

FSCS-ART, and RRT have been found to have a bias of sele@sgases from certain parts
of I [4], [19]. Such a bias (hereafter referred totashiag may result in an uneven distribution
of test cases. Intuitively speaking, if the distributionaaindidates has a “reverse” effect to the
distribution of test cases in FSCS-ART, and RRT, the tc-bay be offset, and hence test case
distributions may become more even. However, neither tagadistribution graphs in [19] nor
the distribution metrics in [4] have given a precise measiemt for the tc-bias. In this paper, we

employ a new method to quantitatively describe the tc-bi@ndART algorithm.



3.1. Describing the tc-bias of an adaptive random testing gbrithm

If points are equidistributed, each coordinate of them Wl equidistributed. Hence, if the
projections of points in any dimension are non-equidisteld, we can say that these points are not
equidistributed. Therefore, if we check just one coordinatthe test cases selected by an ART
algorithm, and find any bias, then we may judge that the AR®rétlgm has tc-bias.

Our method for measuring the tc-bias is as follows. Supplat tis a unit square such that
each dimension of has the range of value 8 1). We choose a certain coordinate, say the 1
coordinate, and divide it intm equal-sized subdomaing,1/m),[1/m,2/m),---  [(m—1)/m, 1).
Then, a set of test cases are generated using an ART algofthmeach subdomain, we record the
number of test cases whos¥ doordinates are inside this subdomain. The normalizediénecy
of points inside each subdomain is then calculated. Suchaeps will be repeated for a sufficient
number of times so that reliable average values of freqesraie obtained within a 95% confi-
dence level, and &5% accuracy range. Based on the values of the collectedgeraamalized
frequencies for thesm subdomains, we calculate two more statistics: i) the stahdaviation
of thesem average normalized frequencies, denotedtaley and ii) the difference between the
maximal and minimal values of these average normalized frequencies, denotedriax—min.
The smallemax-minandstdevare, the lower tc-bias an ART algorithm has.

We used the above method to measure the tc-biases of FSCSRRRT and pure RT in 1D,
2D, 3D, and 4D spacesnis set to 128, an¢E| is set to 10, 100, 1000, and 10,000. Because the
frequency distributions of test cases of FSCS-ART and RRsemilar to each other, we only plot
the frequency distribution graph of FSCS-ART in Fig. 1. Thdues ofmax-min, andstdevfor

FSCS-ART, RRT, and RT (which quantitatively describe thgrdes of tc-biases for these three
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testing methods) are summarized in Table 1. In Fig. 1, themd, y-axes denote the locations
of the first dimension’s subdomains, and the normalizedueegies of test cases inside these
subdomains, respectively. We found that the test casdhiison of RT is always uniform no
matter how many test cases were generated, which is theadhgtexpected. Therefore, we only
plot the frequency distribution of RT whetE| = 10000. Note that, although RT does not have

any tc-bias, that does not mean that RT is better than ARTrmg®f the F-measure.

Table 1. Values of max-min, and stdevfor FSCS-ART, RRT, and RT

testing |[E| =10 |[E| =100 |E| = 1000 |E| = 10000
N - - - -
strategy max-min stdev | max-min stdev | max-min stdev| max-min stdev
RT 4.70E-04 | 8.70E-05| 1.60E-04| 3.04E-05| 9.90E-04| 1.86E-04| 3.47E-04| 6.14E-05
1 | FSCS-ART| 1.08E-02| 1.66E-03| 2.20E-03| 2.52E-04 | 4.45E-04| 8.55E-05| 1.00E-04| 2.07E-05
RRT 9.09E-03| 1.44E-03| 2.04E-03| 2.35E-04| 4.05E-04| 7.83E-05| 1.20E-04| 2.27E-05
RT 4.25E-04 | 9.01E-05| 1.58E-04| 2.68E-05| 9.20E-04| 2.20E-04| 3.50E-04| 5.78E-05
2 | FSCS-ART| 1.01E-02| 2.38E-03| 8.57E-03| 1.29E-03| 6.28E-03| 7.01E-04| 1.76E-03| 2.05E-04
RRT 1.14E-02| 2.65E-03| 1.34E-02| 1.88E-03| 1.01E-02| 1.06E-03| 2.09E-03| 2.50E-04
RT 3.31E-04| 7.42E-05| 1.72E-04| 3.20E-05| 1.02E-03| 1.93E-04| 3.12E-04| 5.89E-05
3 | FSCS-ART| 9.10E-03| 2.51E-03| 8.52E-03| 1.70E-03| 8.29E-03| 1.20E-03| 6.81E-03| 8.00E-04
RRT 1.20E-02| 3.22E-03| 1.78E-02| 3.18E-03| 1.79E-02| 2.37E-03| 1.38E-02| 1.52E-03
RT 4.90E-04 | 9.35E-05| 1.52E-04| 2.82E-05| 8.55E-04| 2.04E-04| 3.61E-04| 6.45E-05
4 | FSCS-ART| 9.31E-03| 2.59E-03| 8.14E-03| 1.89E-03| 8.26E-03| 1.48E-03| 7.86E-03| 1.13E-03
RRT 1.31E-02| 3.67E-03| 1.93E-02| 3.93E-03| 2.06E-02| 3.17E-03| 1.78E-02| 2.32E-03

The experimental data of Table 1, and Fig. 1 show that bothS-8RT, and RRT have certain
tc-biases, and the tc-biases become higher with the ireds, as well as with the decrease of
|E|. Further investigation of the frequency distribution drajghow that points from the boundary
part ofl have higher probabilities to be selected as test caseshbaa from the central part of
Moreover, all frequency distributions are symmetric wigspect to the center of

Having quantified the tc-biases of FSCS-ART, and RRT, we han tlesign a new test profile
for their candidate generation processes. The aim of suelstgtofile is to improve the even
distribution of test cases for FSCS-ART, and RRT, to impriher failure detection capabilities.

The following section describes how to design a proper testle for such a purpose.
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3.2. Designing a non-uniform distribution as a test profile

To offset the tc-biases of FSCS-ART, and RRT, the new tedii@ror the candidate generation

process should have the following essential features.

e The probability distribution in the test profile must be dgmathroughout the testing process;
that is, the test profile should be changeablg& ahanges because the amount of tc-bias to be

offset varies a& changes.

e The elements in the central part must have a higher probatbilbeing selected as candidates
than the elements in the boundary part because the canglitate the central part have a

lower probability of being selected as the next test case.

e The probability distribution must be symmetric with resptcthe center ot because the

distribution of test cases is also symmetric with respetié¢acenter of .

Many non-uniform distributions have the above propertesimple example is #inear com-
binationof two uniform-distributed random variables.

Y=aXi+(1-a)X, 2

where 0< a < 0.5. Xz, andX, are two random variables which are both uniformly distréalin

[0,1). The probability density function (pdf) of, denoted byfy (y), is

0O , when y<Oory>1

when 0<y<a

fy(y) = (3)
when a<y<l-a

when 1-a<y<l1

14



Appendix A describes how to derivig (y), and Fig. 2 shows distributions ¥ffor variousa.
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Figure 2. The probability density function of Y.

3.3. Our approach

We propose to generate candidates according to 2 instebd ohtform distribution; as a result,
more candidates are likely to be chosen from the centétladn from the edge. The parameter
in 2, and 3 decides how likely candidates are to be selected the center. In each dimension,
for each round of test case selectionis dynamically chosen as follows.

For ease of illustration, assume that each dimensidmas the value rangé, 1), and is equally
divided into two subranges: theentral subrangeconsisting of[0.25,0.75); and theboundary
subrangeconsisting ofl0, 0.25), and[0.75,1). We then define the following two parameters.

e The normalized ratio of the I™ coordinate of E (the set of all already executed test

cases) being located in the boundary subrange of thB" dimension of I (denoted by

p{cfboundan). For a non-empty set of executed test caSes {e;, &, -, ey}, their I co-

15



ordinates are denoted layj, ey, - - -, €, respectively, where & g <1 (i=12,---,n). We

defineE['C_boundary: {e1|0< g <0.250rQ75< g < 1}. p{c_boundaryis defined as

I
| ‘ Etc—boundar)J
Ptc—boundary= IE| (4)

Note that the values qi{cfboundaryfor FSCS-ART, and RRT are usually larger than 0.5.

e The probability of the 1™ coordinate of a random candidate to be selected from the
central subrange of thel™ dimension of | (denoted byP._. ...a)- FOr @ candidate
randomly generated according to 2, its coordinate is denoted by, where 0< ¢ < 1.

Pl central IS defined as the probability of.26 < ¢ < 0.75. The value ofP!

C an—central IS

decided bya in 2, and 3, as follows.

1
| 1) , when 0<a<0.25
I:‘can—centraI: ( _a) (5)
1
1-—— hen 025<a <05
16a(1—a)’ W - -

Appendix B contains the deduction of 5. Note tRaf., .o q IS Within [0.5,0.75).

Our approach uses the following three steps to decide thee\@la for each dimension, suc-

cessively after each new test case is selected.

1. For each coordinate, measm{gﬁboundaryalong the testing process, where 1,2,--- N.

2. We propose to offset the tc-biases of FSCS-ART, and RRhépias on the center brought
by our test profile. The value &, ..o (Which indicates how likely a candidate will be
selected from the central subrange) is set as clogg, 18oundary (Which indicates the ratio of
executed test cases in the boundary subrange) as possibieid€ring different value ranges

of P, we define thes-expected value d?!

|
an—central’ and ptc—boundary an-central &5

16



05 , when Pl poundary<0-5

s-expected value oP... contral =

| |
Ptc—boundary when 05< Picboundary < 0.75

075 , when pl._poungary™> 0-75.

(6)

3. Use 5 to calculate a value afsuch thaPl,, ..o Satisfies 6.

1. Input an integek, wherek > 1.
2. Setn=0,E = {},C={}, andreveal=false

3. Seta; = a; =--- = an = 0.5, whereN denotes the dimension bf

4. while (not revea)

5. if(n=0)

6 Randomly generate a test cageom |, according to a uniform distribution.

7. else

8. M =0.

9 Randomly generatecandidatesy, cy, - ,cx from |, where each coordinatg of a candidate

cj is generated based @n, and accordingto 2,=1,2,--- ,k, andl =1,2,--- ,N.
10. Store these candidates ito
11. for each candidate; € C, wherej =1,2,--- k

12. Calculatan= rinniPdist(cj,a), whereg € E.
13. if (m> M)

14. SetM =m, andb = j.

15. end.if

16. end_for

17. Set = ¢.

18. end.if

19. Use to test the target program.
20. if (t reveals a failure)

21. Setreveal=true.

22. else

23. Stord into E, and increment by 1.

24, CalcuIatqo{cmound‘alry and thes-expected value d?._. ... for each coordinate according to
4, and 6, respectively, whete=1,2,--- 'N.

25. Calculate the values of;, as, - - - , oy according to 5.

26. end.if

27.end while

28. Report the failure detected, and exit.

Figure 3. The algorithm of FSCS-ART-DNC.

The new approach generates candidates according to separatiniform distributions in each
dimension, which are dynamically tuned along the testirac@ss. We name the new approach

adaptive random testing with dynamic non-uniform candiddistribution(ART-DNC). Note that

17



1. Input an integemaxTrial, and a real numbenitialR, wheremaxTrial > 0 andinitialR > 0.
2. Setn=0, E = {}, andreveal= false

3. Seta; = ap, =--- = an = 0.5, whereN denotes the dimension bf

4. while (not reveal)

5. if(n=0)

6 Randomly generate a test caseom |, according to a uniform distribution.

7. else

8 SetnoTrial = 0, R=initialR, andoutside= false

9. for each elemerd € E, wherei=1,2,--- |n

10. Determine a circular exclusion zopewhose size is set e%%

11. end for

12. while (not outsidg

13. IncremenhoTrial by 1.

14. if (noTrial = maxTrial)

15. SetnoTrial = 0 andR= max{0,R— 0.1}.

16. for each elemenrd; € E, wherei =1,2,--- ,n

17. Determine a circular exclusion zopewhose size is set é%

18. end for

19. end.if

20. Randomly generate a candidafeom |, where each coordinatg of ¢ is generated based
ona;; and according to Equation 2, ahe- 1,2, --- | N.

2. if(c¢ U5, 2)

22. Setoutside= true, andt = c.

23. endLif

24, end_while

25. end.if

26. Usset to test the target program.
27. if (t reveals a failure)

28. Setreveal=true.

29. else

30. Stord into E, and increment by 1.

31. CalcuIatqo{cmound‘alry and thes-expected value d?._. ..., for each coordinate according
4, and 6, respectively, whete=1,2,--- |N.

32. Calculate the values of;, as, - - - , oy according to 5.

33. end.if

34.end.while

35. Report the failure detected, and exit.

Figure 4. The algorithm of RRT-DNC.
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there is a family of software testing methods, nansggtistical testind11],[24], which also ran-
domly generates program inputs according to some non+umiébstributions, which are in turn
based on some criteria of either the program structure diuthaionality. Although our approach
also generates random inputs non-uniformly, our purpose @stribute test cases more evenly,
and hence to detect software failures more effectivelyhawit aiming at achieving other criteria
(such as program function or structure).

We propose two ART-DNC algorithms, namdisCS-ART-DNCandRRT-DNGC as shown in
Figs. 3, and 4, respectively. As a reminder, the test castiidation processes of the new ART-
DNC algorithms remain the same as those of their countexpline aim of using the non-uniform
distribution in the candidate generation processes is pwone the failure detection capability of

ART, so we call this non-uniform profile a failure driven tesbfile.

3.4. Test case distributions of new algorithms

Prior to further research, we must check whether using theumiform test profile for candidate
generation results in a more even spread of test cases. l@mwiill it make sense to evaluate the
failure detection capabilities of ART-DNC. We therefor@eated the simulations in Section 3.1,
but instead using FSCS-ART-DNC, and RRT-DNC. The simutetghowed similar frequency dis-
tributions of test cases for FSCS-ART-DNC, and RRT-DNC.réfare, we only plot the frequency
distribution graph of FSCS-ART-DNC in Fig. 5. For ease of pamson, we replot the test case
distribution of pure RT (the same as that in Fig. 1), whichxigexted to be uniform. The values of
max-min, andstdevfor FSCS-ART-DNC,and RRT-DNC are summarized in Table 2.

We compared the normalized frequencies (Figs. 1, and 5)trendrelated values ahax-min,

andstdev(Tables 1, and 2), and observed that the test profile used TRIARC does offset the
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5.a Frequency distribution for 1D FSCS-ART-DNC
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5.b Frequency distribution for 2D FSCS-ART-DNC
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5.c Frequency distribution for 3D FSCS-ART-DNC
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5.d Frequency distribution for 4D FSCS-ART-DNC
Figure 5. Frequency distribution of one coordinate of test cases generated by FSCS-ART-

DNC
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tc-biases of FSCS-ART, and RRT.

Table 2. Values of max-min, and stdevfor FSCS-ART-DNC, and RRT-DNC

testing |[E| =10 |E| =100 |E| = 1000 |E| = 10000
N - - - -
strategy max-min stdev | max-min stdev | max-min stdev| max-min stdev
1 FSCS-ART-DNC| 7.63E-03| 1.16E-03| 1.64E-03| 1.52E-04| 7.00E-04| 9.52E-05| 3.03E-04| 3.71E-05
RRT-DNC 5.50E-03| 9.03E-04 | 1.42E-03| 1.30E-04| 5.70E-04| 8.19E-05| 2.29E-04| 3.03E-05
° FSCS-ART-DNC| 3.40E-03| 1.00E-03| 2.94E-03| 5.48E-04| 2.19E-03| 3.07E-04| 9.63E-04| 1.12E-04
RRT-DNC 4.60E-03| 1.42E-03| 5.53E-03| 9.68E-04| 5.11E-03| 5.62E-04| 1.37E-03| 1.60E-04
3 FSCS-ART-DNC| 2.65E-03| 8.88E-04| 3.38E-03| 8.20E-04| 4.58E-03| 7.00E-04| 3.77E-03| 4.18E-04
RRT-DNC 4.76E-03| 1.63E-03| 7.74E-03| 1.80E-03| 7.92E-03| 1.27E-03| 6.51E-03| 7.37E-04
4 FSCS-ART-DNC| 2.80E-03| 9.43E-04| 5.38E-03| 1.02E-03| 7.14E-03| 1.03E-03| 7.25E-03| 8.75E-04
RRT-DNC 6.49E-03| 2.27E-03| 9.08E-03| 2.06E-03| 9.80E-03| 1.73E-03| 7.76E-03| 1.25E-03

We further investigate the test case distribution of ART@&algorithms by repeating the simu-
lations in [4] on FSCS-ART-DNC, and RRT-DNC. They distribtiteir test cases similarly. There-
fore, we only plot discrepancy, and dispersion for FSCS-ARIC, with previous FSCS-ART’s
data for ease of comparison, in Figs. 6, and 7, respectiValy.simulations results show that ART-
DNC algorithms usually have smaller values of discrepahawy the original ART algorithms, and
they have similar values of dispersion.

In summary, the experimental results have demonstratédtinapproach achieves a more even
spread of test cases. By using such a simple failure driarptefile (linear combination of two
uniform-distributed variables) for candidate generatie are able to achieve a more even test

case distribution of ART.

3.5. Failure detection capabilities of new algorithms

We conducted a series of simulations to investigate whétieemore even test case distributions
would improve the failure detection capability. We folloletsimulation procedure as described
in Section 2.3. We first investigated the failure detectiapabilities of the new algorithms when

failure-causing inputs are well clustered into one regitime experimental settings are as follows.
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Figure 6. Comparison of discrepancy between FSCS-ART-DNC, and FSCS-ART.
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Figure 7. Comparison of dispersion between FSCS-ART-DNC, and FSCS-ART.

e N: 1,2, 3,and 4.

e 0: 0.75, 0.5, 0.25, 0.1, 0.075, 0.05, 0.025, 0.01, 0.0075)9).0.0025, 0.001, 0.00075,

0.0005, 0.00025, 0.0001, 0.000075, and 0.00005.

e Failure pattern: a single square/cubic failure regionmslcanly placed insidé.

The results of the simulations are reported in Figs. 8, arfeb®.ease of comparison, the simu-
lation results of FSCS-ART, and RRT under the same expetahsettings are also plotted.

Based on the experimental data, we have the following obsens.

e Compared with the original FSCS-ART, and RRT algorithmghldeSCS-ART-DNC, and
RRT-DNC algorithms have better or similar failure detestmapabilities. On average, in
1D, 2D, 3D, and 4D spaces, FSCS-ART-DNC improves the faitletection capability of
FSCS-ART by 1.65%, 6.66%, 10.35%, and 15.00%, respectiaslg the performance im-

provements of RRT-DNC over RRT are 0.73%, 4.00%, 10.84%1388%, respectively.

e The highem, or higher6, the better the performance improvement of ART-DNC aldponis

over their counterparts. In 1D space, FSCS-ART-DNC, andF=88T have similar failure
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Figure 9. Comparison of failure detection capability between RRT-DNC, and RRT
detection capabilities; but in 4D space, the performandeSES-ART-DNC is 14.64%, or

40.03% better than FSCS-ART whéris 0.0025, or 0.25, respectively.

Both ART-DNC algorithms can distribute their test cases enevenly than the original ART
algorithms, so it is intuitively expected that the formewédetter failure detection capabilities
than the latter. Thus, the first observation is consistettt wir expectation. It has been shown
in [4] that the test case distributions of the original alons are less even when eith@ror N
is higher. Therefore, it is understandable to have the sbobservation that the new ART-DNC
algorithms outperform their counterparts more under thetons of highef, and higheiN.

BesidesN and 0, the performance of ART algorithms also depends on: a) thepectness of
the failure region, b) the number of failure regions, andhe) size of any existing predominant
failure region [6]. We conducted further simulations toastigate the performance of ART-DNC
algorithms under various versions of such situations. Aswvshin Figs. 8, and 9, FSCS-ART-

DNC, and RRT-DNC have similar trends of failure detectiopatailities, so we only conducted

the simulations on FSCS-ART-DNC with the following expeeintal settings.
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e N: 2, 3, and 4.
e 0: 0.005, and 0.001.

e Experiment to investigate the impact of the compactnesaitfré region on the failure de-

tection capability.

— Failure pattern: a single rectangular/cuboid region isloanly placed insidé. The ratios
among edge lengths of the rectangular/cuboid region aye 1:y:y,and 1:y: y:yin

2D, 3D, and 4D spaces, respectively, whgre 1.

-v.1,4,7,10, 20, 30, 40, 50, 60, 70, 80, 90, and 100. As expdiam§5], the largery is,

the less compact the failure region is.

e Experiment to investigate the impact of the number of failkggions on the failure detection

capability.

— Failure pattern: a number of square/cubic regions are ratyplaced insidéd. Suppose

that there aren failure regions, denoted by, Ry, - - - , Ry, respectively. For all regions,
Pi
IRl =

> 1Pj
i=212---,n.

-0-|l|, wherep; is a random number uniformly distributed i@, 1), and

— The number of failure regions: 1, 4, 7, 10, 20, 30, 40, 50, 6080, 90, and 100.

e Experiment to investigate the impact of the existence, hrdsize of a predominant failure

region on the failure detection capability.

— Failure pattern: a number of square/cubic regions are ratyplaced insidéd. Suppose
that there are failure regions, denoted big;, Ry, - - - | Ry, respectively. For one region

Ry, set|Ry| =v-6-|l|, wherev = 0.3,0.5 and 08. For all the other regiongR| =

27



b (1—v)-0-]|l|, wherep; is a random number uniformly distributed[i® 1), and

2j-1Pi

--,n—1.

— The number of failure regions: 1, 4, 7, 10, 20, 30, 40, 50, 6080, 90, and 100.

The simulations showed that, similar to FSCS-ART, FSCS-BRIC has a poorer failure de-
tection capability when: a) the failure region is less coatpl) the number of failure regions
is larger, or c) the size of the predominant failure regiosnsaller. However, FSCS-ART-DNC
outperforms FSCS-ART in most scenarios, and the perforenamprovement becomes more sig-
nificant with the increase dfl or 6. Because the performance improvements of FSCS-ART-DNC
over FSCS-ART for the cases 8= 0.005, andd = 0.001 are similar to each other, we only report
the experimental results under the situatio®oef 0.005 in Figs. 10, 11, and 12.
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Figure 10. Failure detection capabilities of FSCS-ART-DNC on a rectangular/cuboid fail-
ure region when 6 = 0.005

4. Conclusions

RT, a fundamental software testing method, usually setestsases according to a uniform dis-
tribution (for debug testing), or an operational profiler (feliability assessment). Failure detection
capability is an important attribute of any testing meth@enerally speaking, the better failure

detection capability a testing method has, the more effelgtprogram bugs can be removed, and
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Figure 11. Failure detection capabilities of FSCS-ART-DNC on multiple failure regions
when 6 = 0.005

thus the more significantly the software reliability may bgroved. Neither the operational pro-
file nor the uniform distribution makes use of any informatebout the probability distribution
of failure-causing inputs. Therefore, RT has often beeticaed to be likely to have a poor fail-
ure detection capability. Recently, motivated by the obketgon that failure-causing inputs are
clustered into contiguous failure regions, Chetral. proposed adaptive random testing (ART)
to enhance the failure detection capability of RT. The basiaciple of ART is to evenly spread
random test cases over the input domain. Many ART algorittamdomly generate test case can-
didates according to uniform distribution, like RT in thentext of debug testing. But they further
use some criteria to identify test cases among candidagstecensure an even spread of executed
test cases. There have been studies to enhance ART by ulisigibest cases more evenly, but all
of them have adopted the approach of enhancing the testdms#ication process.

In this paper, motivated by the argument that the uniforstriiuted test profile is not designed
to ensure a good failure detection capability of RT, we pegabto use a different test profile
at the candidate generation process. As an example ofrdlimt, we selected a dynamic non-
uniform distribution as the failure driven test profile toidgithe random selection of candidates.
We integrated this new test profile with the test case ideatifin criteria of some existing ART

algorithms, and developed a family of new ART algorithmsnely adaptive random testing with
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Figure 12. Failure detection capabilities of FSCS-ART-DNC on multiple failure regions

with one predominant region when 6 = 0.005,
dynamic non-uniform candidate distribution (ART-DNC). iQexperimental results have shown

that test cases selected by the ART-DNC algorithms are nverdyedistributed than those selected
by the corresponding ART algorithms, and that ART-DNC alipons have better failure detection
capabilities than their counterparts.

Note that the basic idea of our approach is not restrictethfpaove FSCS-ART, and RRT, but
shall be applicable to enhance other ART algorithms. As @t giludy, we have only tried one
non-uniform distribution as the new test profile for ART/RiTis worthwhile to further investi-
gate whether, and to what extent, other distributions candgeel to enhance the failure detection

capability of ART/RT.
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A. Derivation of the probability density function of Y
The probability density functions (pdf) ¢, andX, are

i, (x1) = { 0, when x;<0orx;>1 () = { 0, when x<O0orx;>1 )
1, when 0<x;<1 1, when 0<x<1

Then, the probability distribution function (PDF) ¥f denoted by (y), can be calculated as

F(y) = Pr(Y<y)=Pr(aXi+(1-a)X<y)
o y—(1-a)xp
_ / / fe, (x0) i, (X2)Oa X = / [ / ’ fxl(xl)dx1] fr, (x2)d%2 (8)
axy+(1-a)x<y LT
Then, the pdf of, denoted byfy(y), can be calculated as

d 1 /= y—(1—a)x
fy(y) = @FY(V) =5 /_ fx {% fxp (X2)dX2 ©)
Obviously, when 0< y—(1=akx 1, i.e. )1/:2 <X < —La’ fx, [%_am =1,

—(1—
[% = 0. Therefore fy(y) can be calculated by the following steps.

otherwise,fx,
e Wheny <0, fy(y) =0.
e Wheny > 1, fy(y) =0.
When 0<y < a, fy(y) l/ dx
L - — T
Sy » Ty (Y a Jo 2 a(l—a)

e Whena <y<1l-a, fy(y) = %/yla dxp = i

1 _
e Whenl-a <y<l1, fy(y):g/ dxzzﬁ.

o |
B. Derivation of Pean_central

As defined in Section 3.3P. . ...a fefers to the probability of a point being within

0.25,0.75). 0.75 0.5
[ ) Ptl:arkcentral = /025 fy (y)dy: 2/025 fy (y)dy (10)
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e When 0< a < 0.25,P._ . ...+ Can be calculated as

| 05 1 1
Pean-central = 2/0.25 1_ ady: 2(1—a) (11)
e When 025< a <0.5,P. . ..o CAN be calculated as
a 05 1 y2 a 2y 0.5
P! = ZJ/ A ZJ/ —— dy= —2— =
can—central 0.250(1_51) Y+ a 1—a y a(l_a) 0.25+ l1-a o
__cﬂ—02§+1—2a_—a2+a—amm5
- a(l-a) l-a a(l—a)
1
= 1-— 12
160(1—a) (12)
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