
An innovative approach for testing bioinformatics
programs using metamorphic testing

This is the Published version of the following publication

Chen, Tsongyueh, Ho, Joshua W K, Liu, Huai and Xie, Xiaoyuan (2009) An
innovative approach for testing bioinformatics programs using metamorphic
testing. BMC Bioinformatics, 10. 1 - 12. ISSN 1471-2105

The publisher’s official version can be found at
https://bmcbioinformatics.biomedcentral.com/articles/10.1186/1471-2105-10-24
Note that access to this version may require subscription.

Downloaded from VU Research Repository https://vuir.vu.edu.au/33051/

BMC Bioinformatics

Methodology article
An innovative approach for testing bioinformatics programs using
metamorphic testing
Tsong Yueh Chen1, Joshua WK Ho*2,3, Huai Liu1 and Xiaoyuan Xie1

Address: 1Centre for Software Analysis and Testing, Swinburne University of Technology, Hawthorn, VIC 3122, Australia, 2School of
Information Technologies, The University of Sydney, Sydney, NSW 2006, Australia and 3NICTA, Australian Technology Park, Eveleigh, NSW
2015, Australia

E-mail: Tsong Yueh Chen - tychen@swin.edu.au; Joshua WK Ho* - joshua@it.usyd.edu.au; Huai Liu - hliu@swin.edu.au;
Xiaoyuan Xie - xxie@swin.edu.au;
*Corresponding author

Published: 19 January 2009 Received: 29 May 2008

BMC Bioinformatics 2009, 10:24 doi: 10.1186/1471-2105-10-24 Accepted: 19 January 2009

This article is available from: http://www.biomedcentral.com/1471-2105/10/24

© 2009 Chen et al; licensee BioMed Central Ltd.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0),
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Background: Recent advances in experimental and computational technologies have fueled the
development of many sophisticated bioinformatics programs. The correctness of such programs is
crucial as incorrectly computed results may lead to wrong biological conclusion or misguide
downstream experimentation. Common software testing procedures involve executing the target
programwith a set of test inputs and then verifying the correctness of the test outputs. However, due
to the complexity of many bioinformatics programs, it is often difficult to verify the correctness of the
test outputs. Therefore our ability to perform systematic software testing is greatly hindered.

Results: We propose to use a novel software testing technique, metamorphic testing (MT), to
test a range of bioinformatics programs. Instead of requiring a mechanism to verify whether an
individual test output is correct, the MT technique verifies whether a pair of test outputs conform
to a set of domain specific properties, called metamorphic relations (MRs), thus greatly increases
the number and variety of test cases that can be applied. To demonstrate how MT is used in
practice, we applied MT to test two open-source bioinformatics programs, namely GNLab and
SeqMap. In particular we show that MT is simple to implement, and is effective in detecting faults in
a real-life program and some artificially fault-seeded programs. Further, we discuss how MT can be
applied to test programs from various domains of bioinformatics.

Conclusion: This paper describes the application of a simple, effective and automated technique
to systematically test a range of bioinformatics programs. We show how MT can be implemented in
practice through two real-life case studies. Since many bioinformatics programs, particularly those
for large scale simulation and data analysis, are hard to test systematically, their developers may
benefit from using MT as part of the testing strategy. Therefore our work represents a significant
step towards software reliability in bioinformatics.

Background
Software testing issues in bioinformatics
In this post-genomic era, we are experiencing an explosion
of biological data in terms of quantity and variety. To date,

a lot of bioinformatics programs have been, and are
continuously being, developed to support the analysis of
these data. Most of the research effort in the bioinformatics
community focuses on developing advanced

Page 1 of 12
(page number not for citation purposes)

BioMed Central

Open Access

http://creativecommons.org/licenses/by/2.0
http://creativecommons.org/licenses/by/2.0
http://creativecommons.org/licenses/by/2.0
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/

computational and statistical methods to support these
tools. However, very little work has been reported on how
to systematically and effectively test these programs.
Clearly the correctness of such programs is just as
important as using the best algorithm, as incorrectly
computed results may lead to wrong biological conclusion,
and subsequently misguide downstream experiments.

Currently, only a small amount of work has been devoted
to software engineering in bioinformatics [1, 2]. Further,
their main focus is on the management of large and
complex biological datasets, whereas issues related to the
correctness of bioinformatics software is largely ignored.

By its very nature, many bioinformatics programs are
developed to organize and to analyze large and complex
biological datasets. Many of these programs involve (1)
processing large amount of data, and (2) invoking
complex processing procedures to extract useful informa-
tion. In particular, due to the rapid accumulation of high-
throughput datasets and the increasing focus on systems-
level biological modeling, the size and complexity of
bioinformatics programs are growing rapidly. This poses
a great challenge in developing a good testing strategy to
ensure the reliability of the software implementation.

Software testing involves defining test objectives, select-
ing some inputs of the software under test as test cases,
executing the software with these test cases, and verifying
testing results [3]. A good testing strategy should actively
reveal as many faults as possible using a selected set of
test cases. To achieve this goal, many techniques have
been developed to guide how to generate good test
objectives and select good test cases. Some commonly
used testing techniques include random testing, domain
testing, control-flow testing, data-flow testing, and so on
[3, 4]. However, many of these techniques implicitly
assume that there is a means to verify whether the testing
result is correct, which is not necessarily the case in many
practical situations. In software testing, an oracle is a
mechanism to decide if the output of the target program
is correct given any possible input. When a test oracle
exists, we can apply a large number and variety of test
cases to test a program since the correctness of the output
can be verified using the oracle. Without a tangible
oracle, the choice of test cases is greatly limited to those
special test cases [5] where the expected outputs are
known or there exists a way to easily verify the
correctness of the testing results. In particular, an oracle
problem is said to exist when : (1) "there does not exist an
oracle" or (2) "it is theoretically possible, but practically
too difficult to determine the correct output" [6].

The existence of a tangible oracle is essential when
performing systematic program testing. Since an oracle is

a systematic mechanism to verify the testing outputs for
all possible program inputs, the presence of an oracle
enables a testing strategy to select diverse inputs for
testing in a systematic manner. In practice, it is possible
to test programs using some simple or special test cases
that are incrementally developed along the software
development process. However, these test cases most
likely only constitute a small portion of the whole input
domain, and therefore cannot substitute a systematic
oracle.

The oracle problem is a challenging topic for testing
programs. Unfortunately, many bioinformatics pro-
grams has the oracle problem as it is usually very
difficult to construct a practical oracle to verify the
results of all possible inputs of a program. Since most
commonly used testing techniques (such as random
testing, domain testing, and so on) assume the existence
of an oracle, they are not appropriate for testing
bioinformatics programs of which the oracles do not
exist. This problem is particularly relevant in the area of
biological network simulation. The challenge of objec-
tive testing of both deterministic and stochastic simu-
lators has been realized by the SBML community [7, 8].
To test the reliability of a new SBML capable simulator,
the current practice involves executing it with multiple
existing simulators on some well studied input models
and compare the consistency of the simulation results
[7]. Such a method is called N-version programming [9].
Although such effort seems to be satisfactory, it is not
universally applicable since it relies on the availability
of multiple implementations of a program with the
same input/output structure, which is often hard to
obtain. Further, it is difficult to judge what is the correct
output when different simulators generate very different
results. It has been noted that " [a]s no authoritative
result set exists, it is hard to devise a metric based on the
simulation results, that would tell us whether a given
simulation result is 'correct' or not" [7]. Visual inspec-
tion of the simulation results has been suggested to help
us distinguish unreasonable results from reasonable
ones. Nonetheless, this approach is not automatable,
subjective, and requires the tester to have expert
knowledge of the underlying algorithm. Therefore we
need an alternative testing strategy to address the oracle
problem.

Metamorphic testing
Metamorphic testing (MT) [5, 6, 10-13] is an innovative
testing approach to alleviate the oracle problem.
Instead of using the traditional test oracle, MT uses
some problem domain specific properties, namely
metamorphic relations (MRs), to verify the testing
outputs. The end-users, together with the testers or

BMC Bioinformatics 2009, 10:24 http://www.biomedcentral.com/1471-2105/10/24

Page 2 of 12
(page number not for citation purposes)

program developers, first need to identify some
properties of the software under test. Then, MRs can
be derived according to these properties. Some test
cases (namely source test cases in the context of MT) can
be selected according to some traditional testing
techniques. Further test cases (namely follow-up test
cases in the context of MT) can be generated based on
the source test cases and according to the MRs. All test
cases are executed, and then the outputs of the source
and follow-up test cases are checked against the MRs. If
any pair of source and follow-up test cases violates
(that is, does not satisfy) their corresponding MR, the
tester can say that a failure is detected and hence
conclude that the program has bugs.

Chen et al. [10] have used some examples to illustrate
how to use the MT technique. One example is to test a
program that searches for the shortest path between any
two nodes in an undirected graph. Given a weighted
graph G, a source node x, and a destination node y in G,
the target program is to output the shortest path and the
shortest distance, d(x, y, G), from x to y. In this problem,
a practically feasible test oracle does not exist due to the
combinatorially large number of possible paths between
x and y. Therefore testing such a program is difficult due
to the oracle problem. Using the MT technique, we can
define a number of MRs based on some well-known
properties in graph theory. Here we use two such
properties as examples: d(x, y, G) = d(y, x, G), and d(x,
y, G) = d(x, w, G) + d(w, y, G) where w is a node on the
shortest path identified by the program in running d(x, y,
G). The idea is that although it is difficult to verify the
correctness of each test case (that is, d(x, y, G), d(y, x, G),
d(x, w, G) and d(w, y, G)), it is much easier to test
whether these test cases and their corresponding outputs
satisfy the MRs. If the shortest path program violates any
of these MRs, we can conclude that the program is
incorrect.

Our contributions
The main contribution of our paper is to introduce the
use of MT as a simple, effective and automatable
technique for testing bioinformatics programs, particu-
larly for those bioinformatics programs which suffer
from the oracle problem. Through two case studies, we
give a step-by-step presentation on how MT is used in
practice. We explain how to derive MRs from the domain
knowledge and program specification, and subsequently
how to generate test cases based on these MRs. The
effectiveness of MT is demonstrated through analyzing
its ability to detect failures in some programs with faults
seeded by an automatic process. We also discuss the
applicability of MT to various important application
domains in bioinformatics.

Results
The general process of MT is very simple. First, the end user
and the tester need to come up with some properties
involving multiple pairs of inputs and outputs of the target
program. These properties are derived from the domain
knowledge of the target program. They are referred to as the
metamorphic relations (MRs). Second, the tester needs to
design a set of source test cases and their corresponding
follow-up test cases based on these MRs. In this study, the
source test inputs were either generated randomly, or taken
from some real-life cases. Finally, all test cases are executed
and the outputs of the source and follow-up test cases are
compared to check whether the corresponding MR is
satisfied. In this section, we demonstrate how MT can be
applied in practice through testing of two bioinformatics
programs, namely GNLab [14] and SeqMap [15]. In each
of our case studies, the intended behaviour of the target
program is briefly described, and the process of MR
derivation is explained. It should be noted that these two
programs are chosen because they are open-source and
represent two important application domains in bioinfor-
matics: network simulation and high-throughput data
processing.

Case study 1: Testing of GNLab
GNLab [14, 16] is a command-line tool for large-scale
analysis and simulation of gene regulatory networks
(GRNs). This program consists of separate components
for network generation, simulation, analysis, visualiza-
tion and comparison. Here we only focus on testing the
deterministic network simulation component of GNLab.
The network simulator of GNLab takes a directed
weighted graph as input where the type and strength of
gene-to-gene interactions are represented by the edge
weights. It assumes the following relationships between
the input graph structure and the network dynamics:

1. The weight of an edge represents the influence of the
regulator (the node at the tail of the edge) on the target
gene (the node pointed by the edge).

2. An edge should have a weight between -1 and 1
inclusively, where a positive weight represents activation
and a negative weight represents repression.

3. If two nodes are not connected by a directed path, the
expression dynamics of these two nodes should be
independent.

This set of GRN simulation rules and previous experience
in performing network simulation, which together form
the domain knowledge in this case study, indicate that
changes in the network structure should cause changes to
the execution path of the program. Therefore, we first

BMC Bioinformatics 2009, 10:24 http://www.biomedcentral.com/1471-2105/10/24

Page 3 of 12
(page number not for citation purposes)

aim to devise a set of MRs that capture the behaviours of
various types of network structure alteration:

1. Addition of a node
(a) Addition of a disconnected node. Given a network
G, we add to it a node P, which is not connected to any
node in G. The new network is referred to as G'. The
output of G should be fully subsumed in the output of
G'. That is, (the output of G') = (the output of G) + (the
output of P).

(b) Addition of a non-regulator node. Given a network
G, we add to it a node P, which is not the regulator to
any node in G. The new network is referred to as G'. The
output of G should be fully subsumed in the output of
G'. That is, (the output of G') = (the output of G) + (the
output of P).

2. Addition of an edge
(a) Addition of an edge with positive weight. Given a
network G and a non-regulator node P in G, we add an
edge, which is directed to P with a positive weight. The
new network is referred to as G'. In the output of G', only
the output of P would be increased, while output of the
other nodes should remain unchanged.

(b) Addition of an edge with negative weight. Given a
network G and a non-regulator node P in G, we add an
edge, which is directed to P with a negative weight. The
new network is referred to as G'. In the output of G', only
the output of P would be decreased, while output of the
other nodes should remain unchanged.

(c) Addition of an edge with zero weight. Given a
network G and a node P in G, we add an edge, which is
directed to P with zero weight. The new network is
referred to as G'. The output of G' should be identical to
the output of G.

3. Deletion of a node
(a) Deletion of a non-regulator node. Given a network
G and a non-regulator node P in G, we delete P from G to
produce a new network G'. The output of G' should be
fully subsumed in the output of G. That is, (the output of
G') = (the output of G) - (the output for P).

(b) Deletion of a regulator node. Given a network G
and a regulator node P in G, we delete P from G to
produce a new network G'. Such a deletion should affect
the outputs related to all P's descendant nodes, while the
outputs related to P's non-descendant nodes should remain
unchanged.

4. Duplication of a network
Given a network G, we duplicate G to produce a new
network G' (that is, G' = G + G). (The output of G') = (the
output of G) + (the output of G).

5. Modification of edge weight
(a) Increase of edge weight. Given a network G, a node
P in G and an edge E directed to P, we increase the weight
of E. Such a modification should increase all the
expression values associated with P.

(b) Decrease of edge weight. Given a network G, a node
P in G and an edge E directed to P, we decrease the
weight of E. Such a modification should decrease all the
expression values associated with P.

We used three batches of test cases to test GNLab. The
first batch contains some randomly generated input
networks as source test cases. The second and third batch
of test cases were generated using a yeast GRN [17] and a
E. coli GRN [18] as source test case respectively. The yeast
GRN has 477 nodes and 906 edges, while the E. coli GRN
has 1306 nodes and 2981 edges [16]. We shall refer to
the three batches as batch R (random network), batch Y
(yeast GRN) and batch E (E. coli GRN). For each of three
batches, one pair of source and follow-up test cases were
used for each MR (although in general several follow-up
test cases can be generated from one source test case, we
only used one follow-up test case here to simplify the
analysis). All test cases were executed by GNLab and the
results were checked against the MRs. The results (see the
column under "Original" in Table 1) indicate that
GNLab violates MR2(c), while satisfying all other MRs.

The initial program developer chose to use K = 2000 –

1950|w| to map the edge weight of a network into a
parameter of the Hill's kinetic equation (see Methods
for more details). Since the absolute value of the edge
weight |w| is restricted between 0 and 1, the kinetic
parameter K is mapped to a value between 2000 and
50. We note that this formula satisfies the intuition that
higher weight on a directed edge implies stronger
influence of the regulator to the regulated gene (by
having smaller K value in Hill's equation). However, by
using this formula, an edge with zero weight would still
allow the regulator (of this zero weight edge) to weakly
influence its target gene. To correct this problem, the
developer of GNLab either needs to add a conditional
clause around this formula, or uses a more appropriate
mapping formula. Therefore our results demonstrate
the effectiveness of MT by identifying a problem with
program specification that leads to a program beha-
viour which violates a basic network simulation
intuition.

BMC Bioinformatics 2009, 10:24 http://www.biomedcentral.com/1471-2105/10/24

Page 4 of 12
(page number not for citation purposes)

Case study 2: Testing of SeqMap
SeqMap is an efficient tool for mapping massive amount
of short sequence reads to a reference genome [15]. One
important application of SeqMap is the detection of
cross-hybridizing probes in an oligonucleotide micro-
array [19]. SeqMap performs short sequence mapping by
solving an approximate string matching problem, which
is defined as follows: Given a reference string p and a set
of target strings T = {t1, t2, ..., tk} where all strings are
made up of a finite number of characters taken from the
set of alphabets A = {a1, a2, ..., am}, the task is to find all
substrings in p such that each substring has an edit
distance equal to or less than the maximum number of
mismatches e against each ti Œ T. Edit distance refers to
the number of operations required to transform one
string to another. In short sequence mapping (SSM), p is
the genome and T is the set of short sequence reads
which we intend to map to the genome. In particular, the
set of allowable alphabets is A = {A, T, G, C}, and valid
edit operations are substitution, insertion and deletion.
If a sequence read ti matches any substring in genome p,
it is said to be mappable, otherwise, it is said to be
unmappable.

Although it is easy to verify whether the mapping of each
read at one genome location has a mismatch number
that is equal to or less than the maximum number of
mismatches, it is very hard to check whether this read has
been mapped to all possible matching positions in the
genome. Further it is also very hard to check whether all
unmappable reads are indeed truly unmappable to the
genome. In other words, soundness of the result is easy
to verify, but not the completeness of the result.
Therefore testing of SeqMap suffers from the oracle
problem, and may benefit from MT.

Based on the knowledge of the problem domain, we
have identified two important variables that most likely

affect the execution pattern of the program: the content
of the input sequences, both p and T, and the edit
distance constraint, e. We therefore derived a set of MRs
based on the properties of these variables:

1. Changes in read of T
(a) Addition of mismatches. Given a set of sequence
reads T = {t1, t2, ..., tn}, a genome p and a maximum
number of mismatches e, we map T to p and denote the
set of mappable reads as Tm = { , ,..., }′ ′ ′t t t k1 2 , where k ≤ n.
Define a subset M of Tm, where M = {m1, m2, ..., mq} and
q ≤ k. For any mi Œ M, assume l as one of its mismatch
numbers. We arbitrarily choose a l', such that l <l' ≤ e,
and introduce (l' - l) new mismatches on mi (denoted as

′mi). Then ′mi should still be mappable to p. Further-
more, there should exist at least one common location
for mi and ′mi .

(b) Removal of mismatches. Given a set of sequence
reads T = {t1, t2, ..., tn}, a genome p and a maximum
number of mismatches e, we map T to p and denote the
set of mappable reads as Tm = { , ,..., }′ ′ ′t t t k1 2 , where k ≤ n.
Define a subset M of Tm, where M = {m1, m2, ..., mq} and
q ≤ k. For any mi Œ M, assume l as one of its mismatch
numbers. We arbitrarily choose a l', such that 0 ≤ l' <l,
and delete (l - l') mismatches on mi (denoted as ′mi).
Then ′mi should still be mappable to p. Furthermore,
there should exist at least one common location for mi

and ′mi .

(c) Change the type of mismatch. Given a set of
sequence reads T = {t1, t2, ..., tn}, a genome p and a
maximum number of mismatches e, we map T to p and
denote the set of mappable reads as Tm = { , ,..., }′ ′ ′t t t k1 2 ,
where k ≤ n. Define a subset M of Tm, where M = {m1,
m2, ..., mq} and q ≤ k. For any mi Œ M, assume l as one of
its mismatch numbers. We arbitrarily replace several

Table 1: The results of testing GNLab with MT

MRs Original GM1 GM2 GM3 GM4 GM5 GM6 GM7 GM8 GM9

MR1(a)
MR1(b)
MR2(a) RYE RYE RY Y
MR2(b) RYE RYE RYE
MR2(c) RYE RYE RYE YE RYE YE RYE RYE RYE RYE
MR3(a)
MR3(b)
MR4 RYE RYE RYE
MR5(a) RYE E RY RYE RYE
MR5(b) RYE E RY RYE RYE

GNLab and nine of its mutants were tested against three batches of test cases, which are labeled as R (random), Y (yeast) and E (E. coli). Each pair of
test cases that detects a violation of a MR in a program is labeled by its batch in the respective cell in the table. For example, the label 'RY' in the cell
[GM6, MR2(a)] indicates that mutant 6 violates MR2(a) according to the test cases in batch R and batch Y.

BMC Bioinformatics 2009, 10:24 http://www.biomedcentral.com/1471-2105/10/24

Page 5 of 12
(page number not for citation purposes)

mismatches by different types of mismatch on mi

(denoted as ′mi), while keeping the same total number
of mismatches as l (for example, a substitution can be
replaced by a deletion without affecting the number of
mismatches). Then ′mi should still be mappable to p.
Furthermore, there should exist at least one common
location for mi and ′mi .

2. Changes in p
(a) Concatenation of subset of reads. Given a set of
sequence reads T = {t1, t2, ..., tn}, and a genome p, we
select a subset of sequence reads TS ⊂ T and concatenate
this subset of reads to the end of p to form a new genome
p'. After mapping T to both p and p' independently, the
following relations should hold: (1) all reads in T that
are mappable to p should also be mappable to p', and
(2) each read in TS that is mappable to p should have at
least one additional mapping location in the part of p',
which corresponds to the concatenated string. (3) each
read in TS that is unmappable to p should be mapped at
least once in the part of p', which corresponds to the
concatenated string.

(b) Deletion of p. Given a set of sequence reads T = {t1,
t2, ..., tn}, and a genome p, we form a new genome p' by
deleting an arbitrary portion of either the beginning or
ending of p. After mapping T to both p and p'
independently, all reads in T that are unmappable to p
should also be unmappable to p'.

3. Changes in both p and T
(a) Reversing the input p and T. Given a set of sequence
reads T = {t1, t2, ..., tn}, and a genome p, we form a new
set of sequence reads T' = { , ,..., }′ ′ ′t t t n1 2 and p' such that
each string ′t i is a reversed string of ti for 1 ≤ i ≤ n, and p'
is a reversed string of p. A string s' is a reversed string of s
if the first character of s' is the last character of s and the
second character of s' is the second last character of s, and
so on. We map T to p and independently map T' to p'.
The following relations should hold: (1) ti is mappable
to p if and only if ′t i is mappable to p' for 1 ≤ i ≤ n, and
(2) ti is unmappable to p if and only if ′t i is unmappable
to p' for 1 ≤ i ≤ n.

(b) Permutation of alphabets. Given a set of sequence
reads T = {t1, t2, ..., tn}, a genome p, and a one-to-one
permutation function on the set of alphabets, Permute.
For any string s, Permute(s) is used to denote the string
after permutation. We define a new set of sequence reads
T' = { , ,..., }′ ′ ′t t t n1 2 and p' such that ′t i = Permute(ti) for all
1 ≤ i ≤ n, and p' = Permute(p). We map T to p and
independently map T' to p'. The following relations
should hold: (1) ti is mappable to p if and only if ′t i is

mappable to p' for 1 ≤ i ≤ n, and (2) ti is unmappable to p
if and only if ′t i is unmappable to p' for 1 ≤ i ≤ n .

4. Changes in maximum number of mismatches (e)
(a) Decrease of e. Given a set of sequence reads T = {t1,
t2, ..., tn}, a genome p, and the maximum number of
mismatches e, we create a new e' such that 0 ≤ e' <e. We
map T to p with parameter e and denote the set of
mappable reads as M. We independently map T to p with
parameter e' and denote the set of mappable reads as M'.
The following relation should hold: M' ⊆ M.

(b) Increase of e. Given a set of sequence reads T = {t1,
t2, ..., tn}, a genome p, and the maximum number of
mismatches e, we create a new e' such that 0 ≤ e <e'. We
map T to p with parameter e and denote the set of
mappable reads as M. We independently map T to p with
parameter e' and denote the set of mappable reads as M'.
The following relation should hold: M ⊆ M'.

Using MT, we tested SeqMap (version 1.0.8) with five
batches of test cases. For each batch, we randomly
generated a source test case, from which one follow-up
test case is constructed based on each MR. The execution
results were checked against these MRs, and we did not
observe violation to any of them.

Mutation analysis of GNLab and SeqMap
To better demonstrate the applicability of MT, we
generated a number of fault-seeded variants of GNLab
and SeqMap, and measure how well our MT procedure
can detect them. This process is referred to as mutation
analysis [20, 21]. A program with a seeded fault is called a
mutant. All mutants are generated by applying some very
simple mutation operators to alter the source code of the
original program. Previous study shows that, despite the
simplicity of these mutation operators, the capability of
detecting failures from the generated mutants is a good
indicator of the effectiveness of a testing method [20]. It
should be noted that if a mutant produces the same
output as the original program for all possible inputs
with respect to the functionalities under test, such a
mutant is said to be equivalent to the original program.
Using an unbiased random mutant generation strategy
(as described in the Methods section), we initially
generated 25 mutants for GNLab and 20 mutants for
SeqMap. Since we only focus on testing certain func-
tionalities of GNLab and SeqMap (namely, deterministic
network simulation and approximate sequence match-
ing, respectively), many of the automatically mutated
statements in the source code do not affect the targeted
functionalities, and therefore many mutants are equiva-
lent mutants. As a result, there are nine non-equivalent
mutants for GNLab and three non-equivalent mutants

BMC Bioinformatics 2009, 10:24 http://www.biomedcentral.com/1471-2105/10/24

Page 6 of 12
(page number not for citation purposes)

for SeqMap. Although the pool of applicable (non-
equivalent) mutants is not very large, the results we
obtain here is sufficient for our purpose of demonstrat-
ing the applicability of MT in bioinformatics.

The nine non-equivalent mutants of GNLab (denoted by
GM1, GM2, ..., and GM9) were tested by three batches of
test cases used in the testing of the original GNLab
program. The results are shown in Table 1. We observe
that all mutants violate at least one MR. It is also worth
noting that different MRs are effective in revealing the
fault in different mutants. Moreover, different MRs have
different failure-detection capabilities. Test cases asso-
ciated with MRs 1(a), 1(b), 3(a) and 3(b) cannot detect
any failure. In other words, all the MRs related to the
modification of nodes in GNLab network are less
effective than other kinds of MRs. The MR violation
rate (the proportion of pairs of source and follow-up test
cases that violate a MR) of the three batches are: 0.267
(R), 0.3 (Y), and 0.278 (E). Further, for a given mutant, a
single batch of test cases may not violate all possible
MRs. For example, only batch E can reveal a violation of
MR5(a) and (b) in GM4, and only batch Y can reveal a
violation of MR2(a) in GM7. This shows the importance
of using various test cases when conducting testing.

The three non-equivalent mutants of SeqMap (denoted
by SM8, SM11 and SM18) were tested by the same five
batches of test cases used in testing the original SeqMap
program. The results (shown in Table 2) shows that our
test cases can effectively detect failures in all three
mutants. Similar to the testing of GNLab, we observe
that different sets of MRs are being violated when testing
the same mutant with different test cases. Also, we note
that for each mutant, at least one MR is violated by the
test cases.

Discussion
Applicability of metamorphic testing in bioinformatics
MT is a general technique to alleviate the oracle problem
The programs we used in our case studies belong to two
types of bioinformatics programs that are traditionally
very hard to test due to the lack of a tangible oracle. For
instance, the current approach to test a network
simulator involves visual inspection of the simulated
values as well as comparison among multiple imple-
mentations of a simulator [7]. Therefore it tries to tackle
the oracle problem by using multiple implementations.
Such multiple implementations are often hard to acquire
in practice, and the results of such testing may be hard to
interpret when different implementations give different
results. Our approach for alleviating the oracle problem
is through verifying relationships among multiple test
cases. As demonstrated by both of our case studies, as
well as many previous studies [5, 6, 11, 22], MT is
effective for testing programs that are traditionally
difficult to test due to the oracle problem. This allows
MT to be applicable for testing various bioinformatics
programs in which the oracle problem exists.

MT can test a program against its intended behaviour
For any program, MRs can be derived from the intended
program behaviour or the program specification. As
demonstrated in our case studies, all MRs are based on
the intended program behaviour (that is, from the
domain knowledge of network dynamics and approx-
imate string matching), and they do not make use of the
details of the implementations (for example, the under-
lying algorithm and data structure). Based on the ten
MRs derived from the intended behaviour of a GRN
simulator, we found a fault in GNLab. As explained in
the Results section, this fault is due to the mis-
specification of algorithm instead of a bug in the
implementation. This means, if test cases were derived
from the specification alone, this fault may not have
been detected. We believe this ability to test a program
against its intended behaviours is very important in
bioinformatics, as it allows us to focus our testing effort
on assessing whether the underlying biological questions
are being tackled correctly. Of course, we can easily
derive MRs from program specification as well.

MT can be combined with special test cases
It should be emphasized that MT is a general testing
technique for the situations where there is no tangible
oracle. It can be used to generate a large amount of test
cases based on an existing set of test cases. For example,
we can easily construct some artificial short sequence
reads with predefined mismatch patterns for the testing
of SeqMap. Such special test cases are useful and should
be used as far as possible. However, special test cases

Table 2: The results of testing SeqMap with MT

MRs Original SM8 SM11 SM18

MR1(a) 1,2,3,4,5 1,2,3,4,5 1,4,5
MR1(b) 1,2,3 1,2,3,4,5 5
MR1(c) 1,2,3,4,5 1,2,3,4,5 1,4
MR2(a) 1,2,3,4,5 1,2,3,4,5
MR2(b) 1,2,3,4,5 1,2,5
MR3(a) 1,2,3,4,5 1,2,3,4,5 1,4,5
MR3(b) 1,3,4,5 1,2,3,4,5
MR4(a) 2,3,4,5 1,2,3,4,5 1,2,3,4,5
MR4(b) 1,2,3,4,5 1,2,3,4,5

SeqMap and three of its mutants were tested against five batches of test
cases, which are labeled as 1, 2, 3, 4 and 5. Each pair of test cases that
detects a violation of a MR in a program is labeled by its batch in the
respective cell in the table. For example, the label '1,4' in the cell [SM18,
MR1(c)] indicates that SM18 violates MR1(c) according to the test cases
in batch 1 and batch 4.

BMC Bioinformatics 2009, 10:24 http://www.biomedcentral.com/1471-2105/10/24

Page 7 of 12
(page number not for citation purposes)

only cover a small portion of all possible inputs, and we
still need more test cases whose testing results are not
easy to verify. A straightforward method is to combine
MT technique with special test cases. This can be done by
using each special test case as a source test case to
generate follow-up test cases based on some MRs. Such
an approach has been shown to be very effective in
detecting non-trivial faults [5].

MT is simple and automatable
As demonstrated through the two case studies, the
process of MT is straightforward. Different subsets of
behaviours of the target program can be tested by
employing different MRs. Once the MRs are identified,
test cases can easily be automatically generated and their
outputs can be verified using simple scripts. A single
program can have a great number of MRs, and various
follow-up test cases can be defined based on one single
source test case. Moreover, the simplicity of MT allows us
to perform systematic automated testing using a simple
test script. The use of simple test script is important to
minimize the chance of introducing bugs into the test
script itself, which can subsequently confound the
interpretation of the testing result.

MT allows the use of real inputs as test cases
One implication of the ability to automatically generate
more test cases is that we can now use real-life program
inputs as test inputs. In the MT framework, it is easy to
treat a real-life input as a source test case, and generate
many follow-up test cases using a set of MRs. For
programs that lack a tangible oracle, test cases are usually
restricted to those that can easily be constructed and
verified. Such test cases may not have the same size and
characteristics as the real-life program inputs. For
instance, testing of real-life input is often not possible
for most network simulators since we have no objective
means to verify the large amount of simulation results.
Using MT, such difficulty is alleviated by testing the
outputs against a set of MRs instead of the oracle. In our
case study of GNLab, we can construct test cases based
on two real-life GRNs which are much larger and
complicated than the randomly generated ones. Many
bioinformatics programs deal with high-throughput
data, therefore the ability to test whether they can
correctly handle such real-life inputs is important.

MT is suitable for bioinformatics programmers
Compared to many other testing techniques, MT is much
easier to implement in practice because it relies mainly
on user domain knowledge rather than software testing
knowledge. Many bioinformatics programs are devel-
oped by the end-user – the researcher or research group
who uses this program. Chen et al. [13] have

demonstrated that MT is particularly suited to test end-
user programmers' own programs because (1) "end-user
programmers have the domain knowledge to identify
MRs" and (2) "end-user programmers can distinguish
good MRs based on program structures" [13]. In the
GNLab example, we only identified and used some MRs
related to the structure of the input networks because our
domain knowledge points out that changing the network
structure should induce the most changes in the
execution of the simulator. Other properties related to
the execution of the simulation, such as length of
simulation and output interval, are not covered by the
MRs. This feature of MT allows the tester to focus most of
the testing effort on the subset of functionalities that are
more important, or more frequently used by its intended
users.

MT is useful for testing diverse types of programs
Although both programs used in our case studies
implement deterministic procedures, some initial results
show that MT can also be used for testing other types of
procedure that are traditionally difficult to test, such as
heuristic methods, machine learning methods, stochastic
methods and so on [23, 24]. Since many bioinformatics
programs implement such procedures, we expect MT to
be applicable to them.

Limitations
It should be noted that satisfying all test cases based on a
set of MRs does not guarantee the correctness of the
program under test. MRs are necessary properties, hence
satisfying all of them is not sufficient to guarantee
program correctness. This problem is, in fact, a limita-
tion of all software testing methods. Nonetheless, the
ability to systematically produce a large number of test
cases should increase our chance of detecting a fault in
the target program, and hence improve its quality.

As this paper focuses on introducing the application of
MT in bioinformatics, there are other issues related to
MT that are not explicitly discussed here. First, the
success of MT greatly depends on defining a "good" set
of MRs. From the testing results of GNLab and SeqMap,
we observe that some MRs are less effective in detecting
faults than others. In particular, we note that all MRs
based on adding and removing nodes from a network is
not effective in detecting faults in our fault-seeded
mutants of GNLab. So far in this paper, we have not
explicitly addressed the issues of selecting effective MRs.
Some initial results suggest that those MRs which trigger
different execution paths for the source and follow-up
cases are more likely to reveal faults [25]. This means,
although deriving MRs is usually straightforward, select-
ing the most effective MRs requires good understanding

BMC Bioinformatics 2009, 10:24 http://www.biomedcentral.com/1471-2105/10/24

Page 8 of 12
(page number not for citation purposes)

of the problem domains. More specific guidelines in
choosing MRs is being actively investigated. Second, the
MT technique itself does not specify how source test
cases should be selected given a set of MRs. We have used
randomly generated inputs and real-life inputs for
generating source test cases in our study. However, as
shown in our case studies, the performance of MT also
depends on the number and variety of source test cases.
We expect that MT can be combined with other
established test case selection techniques to improve
the fault-revealing ability.

Further examples in bioinformatics
Beside programs for network simulation and short
sequence mapping, we notice that many other bioinfor-
matics programs can benefit from MT. Here we briefly
discuss how the testing of programs from several
important bioinformatics domains suffer from the oracle
problem, and how MT technique can be used in each
case. The list of applications presented here is by no
means exhaustive. Only very simple MRs are pointed out
here as we are not discussing any particular detailed
problem description. In general, more complex, and
potentially more fault revealing, MRs can be formulated
based on a more thorough understanding of the
problem domain or program specification [25].

Phylogenetics
One major endeavor in phylogenetics is to infer the
phylogeny (phylogenetic tree) of some species based on
their aligned nucleotide or amino acid sequences [26].
There are three main approaches to phylogenetic
inference: (1) parsimony methods, (2) distance based
methods, (3) model based methods. Broadly speaking,
all methods aim to group these species into a binary tree
according to different measures of sequence relatedness.
We commonly analyze large number of long bio-
sequences. Also, many of these methods involve
calculating distance matrix, or computing maximum-
likelihood estimates, which are difficult to verify except
for trivial inputs. Therefore the testing of phylogenetic
inference programs suffers from the oracle problem.

Let us denote a program that performs phylogenetic
inference as P. The input of P is a set of n aligned
sequences S = {S1, S2, ..., Sn}, and the output is a binary
tree T(S). One possible MR is that adding a sequence,
Sn+1, would not change the relative structure of the rest
of the tree. That is, the trees generated by the source case
T(S) and the follow-up case T(S ∪ Sn+1) only differ by
one additional leaf node representing Sn+1. For a P that
treats each alphabet independently and equally, we can
define another MR: replacing, or permuting, the alphabet
of the sequence with one another (for example, A ↦ C,

T ↦ A, G ↦ T, C ↦ G) does not change the final structure
of the tree. That is, T(S) = T(Permute(S)) where Permute()
is an alphabet permutation function.

Microarray analysis
Microarray analysis has become an indispensable tool in
modern biological and medical research. Many types of
analyses are available for analyzing microarray data.
They include differential expression (DE) [27], differ-
ential variability (DV) [28], hierarchical clustering [29],
gene set enrichment analysis [30] and Bayesian network
analysis [31]. Due to the difficulty in analyzing the high
dimensional input (microarray expression profiles), and
often also the high dimensional output (ranked gene list,
binary tree, and Bayesian network), the correctness of the
implementation is often difficult to verify. In this case,
MT technique can be useful. Let us take the identification
of DE genes between two sample classes as an example.
One simple approach is to use the t-statistics to obtain a
P value for each gene based on a two-sided hypothesis,
and call the genes with P less than a pre-specified
threshold significant DE genes. Since t-statistics is shift
independent, we can define a MR that adding a constant
value to all values in the input microarray profile does
not alter the resulting list of P values. The second MR is
that switching the class label of the samples also does
not alter the resulting P values as the t-distribution is
symmetrical.

Biological database retrieval
Many biomolecular databases are available, and most of
them are built to support fast data retrieval and database
mining [18, 32-34]. One major challenge is to ensure
that we can accurately and efficiently retrieve the desired
data item from the database. This is particularly
important as we begin to construct large scale gene
regulatory networks and metabolic networks using these
databases. Invalid retrieval results may lead to a false
positive or false negative edges in a reconstructed
network. Due to large size of the database, it is generally
difficult to test if a search engine can correctly retrieve all
data that exactly match a query. A potentially suitable
MR is that a query A ∩ B ∩ C should not contain more
results than query A ∩ B. Another MR is that executing
the query ¬(A ∪ B) should have the same effect as
executing the query (¬A) ∩ (¬B). Many more MRs along
this line are possible.

Conclusion
Issues related to proper software testing have been
largely overlooked in the bioinformatics community.
As discussed in this paper, systematic testing of many
bioinformatics programs is difficult due to the oracle
problem, that is, it is very difficult to verify the testing

BMC Bioinformatics 2009, 10:24 http://www.biomedcentral.com/1471-2105/10/24

Page 9 of 12
(page number not for citation purposes)

results of these programs. In this paper, we propose to
apply an innovative software testing technique, meta-
morphic testing (MT), to test these bioinformatics
programs. As a case study, we applied the MT technique
to test a network simulator and a short sequence
mapping program. The results demonstrate that MT is
simple to implement, and is effective in revealing faults
in a program.

We believe that our work have significant contributions.
As far as we are aware, this is the first paper that
systematically discusses the oracle problem in testing
bioinformatics programs, and how it can be alleviated.
As biologists increasingly rely on the results produced by
these bioinformatics programs, it is crucial to ensure that
they are of high quality. We wish this paper can raise the
awareness of proper software testing practice in the
bioinformatics community.

Methods
Specification of GNLab
For the simulation of expression dynamics, GNLab [14]
models a GRN as a system of ordinary differential
equations (ODEs) using Hill's kinetics [35, 36]. In
particular, Mendes et.al.'s multiplicative model [37] is
used. Assume that X(Gi) represents the level of mRNA of
gene Gi, and it is activated by genes G G Ga a am1 2

, , ..., and
repressed by genes G G Gr r rm1 2

, , ..., . Constants K ai
and

K rj represent the expression levels of Gai
and Grj

respectively at which the effect on the target gene is half
of its saturating value. The Hill's constant n controls the
sigmoidicity of the interaction curve. Vi represents the
basal transcriptional rate of gene Gi. The rate law for
mRNA synthesis can therefore be formulated as:

syn G V
X Gai

n

X Gai
n Kai

n

K r j
n

X Gr j
n K r j

ni i

j

n

i

m

() (
()

()
)

()
= +

+ +==
∏1

11
∏∏

(1)

The rate mRNA degradation is assumed to only depend
linearly on the current expression level, that is,

break(Gi) = b·X(Gi) (2)

Overall, the change of gene expression level for a gene Gi

is modeled by the following ODE:

dGi
dt

syn G break Gi i= −() () (3)

Based on the intended behaviours of GNLab, a graph is
converted to a collection of ODEs where each node in
the graph represents a gene and its associated ODE is

dependent on the incoming edges. The weight of each
edge is converted to a number of kinetic parameters in
the ODE model as described in Equations 1 and 2
(including K, V, n and b). GNLab uses the following
default parameter settings: V = 10, b = 0.01, and n = 4.
The relationship between arc weight w (where 0 ≤ |w|
≤ 1) and interaction strength K is encapsulated in the
function K = 2000 – 1950|w|. The initial value for all Gi

is set to be 50. The set of ODEs is simulated by the Euler
method.

Specification of SeqMap
To achieve the goal of efficient short sequence read
mapping, SeqMap [15] first builds an index of all the
short sequence reads. The genome is then scanned to
find candidate short sequence reads that can match to
each position. In particular, SeqMap uses a two-phase
strategy to speed up the matching process. In the first
phase, the short sequences are split into several parts
given the allowed edit distance constraints. Since the
allowable mismatches can only occur at some parts of a
sequence, SeqMap can quickly eliminate some non-
candidate by the pigeon-hole principle. In the second
phase, a local alignment algorithm is run to determine
the matching target.

Execution of GNLab and SeqMap
For GNLab, all test cases were executed by the command
'GNLab -t input d 150 0.1 150', which specifies that the
network input.gnl.txt is to be simulated by a determi-
nistic simulator with 150 output display using Euler
method with step-size of 0.1 and with no perturbation
during the simulation. For SeqMap, most test cases are
executed by the command 'seqmap 3 T.fa P.fa out.txt /
allow_insdel:3 /output_alignment /silent /output_all_-
matches /output_top_matches:6', which maps short
sequence reads in file T.fa to a reference genome in file
P.fa with a maximum of 3 mismatches allowed. The
maximum number of mismatches may change for testing
MR4(a) and 4(b).

Mutation analysis
To generate mutants for GNLab and SeqMap, we applied
four popular mutation operators to the source code of
the two programs: arithmetic operator replacement
(AOR), constant replacement (CR), relational operator
replacement (ROR), and scalar variable replacement
(SVR). In order to avoid any potential bias, the fault-
seeding process is not manually decided by a tester but
randomly selected by the following two steps: First, a
program statement is randomly selected as the target
statement for modification. Then, a mutation operator is
randomly chosen to apply to this target statement to
generate a mutant, with the constraint that this

BMC Bioinformatics 2009, 10:24 http://www.biomedcentral.com/1471-2105/10/24

Page 10 of 12
(page number not for citation purposes)

modification yields a syntactically correct statement. For
example, the statement if(x>0) may be changed to if
(x<0) by a ROR operator. Using this strategy, we
generated 25 mutants for GNLab and 20 mutants for
SeqMap. Among these mutants, there are nine mutants
for GNLab and three mutants for SeqMap that are not
equivalent to their respective original program in terms
of the investigated functionalities. We only used these
non-equivalent mutants as the target programs in our
study.

In particular, the process of selecting target statements to
be mutated is different between GNLab and SeqMap. All
statements in the source code of SeqMap can be selected
to become the target statement for mutation, but only a
portion of the complete GNLab source code could be
selected as target statements for mutation. This is
because GNLab is a large program that contains many
other additional functionalities (such as network analy-
sis and stochastic network simulation), so we decided to
exclude those statements that are definitely not related to
the deterministic simulator to avoid excessive number of
equivalent mutants. Such a difference contributed to the
apparent difference between the non-equivalent mutant
generation rate: 3/20 for SeqMap and 9/25 for GNLab.
However, as described in the Results section, this set of
mutants is sufficient for the purpose of our study.

Authors' contributions
TYC and JWKH conceived and initiated the project. All
authors contributed to the overall design and imple-
mentation of the experiment. HL, XX and JWKH
conducted the experiments and analyzed the results.
JWKH and HL wrote the first draft of the manuscript. All
authors contributed to, read, and approved the final
version of this manuscript.

Acknowledgements
This project is supported by a grant by the Australian Research Council
(ARC DP0771733). JWKH is supported by an Australian Postgraduate
Award and a NICTA Research Project Award. We thank Dr. Michael A.
Charleston for his constructive comments, and Prof. Wing Hung Wong
for allowing us to use SeqMap in our study.

References
1. Baker J and Thornton J: Software Engineering Challenges in

Bioinformatics. In Proceedings of International Conference on
Software Engineering 2004, 12–15.

2. Weston P: Bioinformatics Software Engineering: Delivering Effective
Applications Wiley; 2004.

3. Beizer B: Software Testing Techniques Van Nostrand Reinhold; 1990.
4. Ammann P and Offutt J: Introduction to Software Testing Cambridge

University Press; 2008.
5. Chen T, Kuo FC, Liu Y and Tang A: Metamorphic Testing and

Testing with Special Values. Proceedings of the 5th International
Conference on Software Engineering, Artificial Intelligence, Networking,
and Parallel/Distributed Computing (SNPD '04) 2004, 128–134.

6. Chen TY, Tse TH and Zhou ZQ: Fault-based testing without the
need of oracles. Inform Software Tech 2003, 45:1–9.

7. Bergmann FT and Sauro HM: Comparing simulation results of
SBML capable simulators. Bioinformatics 2008, 24(17):1963–
1965.

8. Evans TW, Gillespie CS and Wilkinson DJ: The SBML discrete
stochastic models test suite. Bioinformatics 2008, 24(2):285–286.

9. Knight JC and Leveson NG: An experimental evaluation of the
assumption of independence in multiversion programmings.
IEEE Transactions on Software Engineering 1986, 12:96–109.

10. Chen TY, Cheung SC and Yiu SM: Metamorphic testing: a new
approach for generating next test cases. Tech Rep HKUST-CS98-
01 Department of Computer Science, Hong Kong University of
Science and Technology, Hong Kong; 1998.

11. Chen TY, Feng J and Tse TH: Metamorphic testing of programs
on partial differential equations: a case study. Proceedings of the
26th Annual International Computer Software and Applications Con-
ference (COMPSAC 2002) IEEE Computer Society Press, Los
Alamitos, California; 2002, 327–333.

12. Gotlieb A and Botella B: Automated metamorphic testing.
Proceedings of the 27th Annual International Computer Software and
Applications Conference (COMPSAC 2003) IEEE Computer Society
Press, Los Alamitos, California; 2003, 34–40.

13. Chen TY, Kuo FC and Zhou ZQ: An Effective Testing Method
for End-User Programmer. In Proceedings of the First Workshop on
End-User Software Engineering 2005, 1–5.

14. Ho JWK and Charleston MA: GNLab: computational pipeline
for large-scale gene network analysis.2008 http://www.cs.usyd.
edu.au/~mcharles/software/gnlab/index.html.

15. Jiang H and Wong WH: SeqMap: mapping massive amount of
oligonucleotides to the genome. Bioinformatics 2008, 24
(20):2395–2396.

16. Ho JWK and Charleston MA: Modeling the Evolution of Gene
Regulatory Networks. Proceedings of the Eighth International
Conference on Systems Biology 2007, 44.

17. Guelzim N, Bottani S, Bourgine P and Képès F: Topological and
causal structure of the yeast transcriptional regulatory
network. Nat Genet 2002, 31(1):60–63.

18. Salgado H, Gamma-Castro S, Peralta-Gil M, Díaz-Peredo E, Sánchez-
Solano F, Santo-Zavaleta A, Martínez-Flores I, Jiménez-Jacinto V,
Bonavides-Martinez C, Segura-Salazar J, Martínez-Antonio A and
Collado-Vides J: RegulonDB (version 5.0): Escherichia coli K-
12 transcriptional regulatory network, operon organization,
and growth conditions. Nucleic Acids Res 2006, 34 (Database
issue):D394–D397.

19. Xing Y, Stoilov P, Kapur K, Han A, Jiang H, Shen S, Black DL and
Wong WH: MADS: a new and improved method for analysis
of differential alternative splicing by exon-tiling microar-
rays. RNA 2008, 14(8):1470–1479.

20. Andrews JH, Briand LC and Labiche Y: Is mutation an appro-
priate tool for testing experiments?. In Proceedings of the 27th
International Conference on Software Engineering (ICSE05) 2005, 402–
411.

21. Woodward MR and Halewood K: From weak to strong, deal or
alive? An analysis of some mutation testing issues. In
Proceedings of the 2nd Workshop on Software Testing, Verification and
Analysis 1988, 152–158.

22. Chen TY, Tse TH and Zhou ZQ: Semi-proving: an integrated
method based on global symbolic evaluation and meta-
morphic testing. Proceedings of the ACM SIGSOFT International
Symposium on Software Testing and Analysis (ISSTA 2002) ACM Press,
New York; 2002, 191–195.

23. Barus AC, Chen TY, Grant D, Kuo FC and Lau MF: Testing of
Heuristic Methods: A Case Study of Greedy Algorithm. In
Proceedings of the 3rd IFIP Central and Eastern European Conference on
Software Engineering Techniques (CEE-SET 08) 2008, 267–280.

24. Murphy C, Kaiser G, Hu L and Wu L: Properties of Machine
Learning Applications for Use in Metamorphic Testing. In
Proceedings of the 20th International Conference on Software Engineering
and Knowledge Engineering (SEKE08) 2008, 867–872.

25. Chen TY, Huang DH, Tse TH and Zhou ZQ: Case studies on the
selection of useful relations in metamorphic testing. Proceed-
ings of the 4th Ibero-American Symposium on Software Engineering and
Knowledge Engineering (JIISIC 2004) Madrid, Spain: Polytechnic
University of Madrid; 2004, 569–583.

26. Felsenstein J: Inferring Phylogenies Sinauer Associates; 2004.
27. Smyth GK: Linear Models and Empirical Bayes Methods for

Assessing Differential Expression in Microarray Experi-
ments. Stat Appl Genet Mol Biol 2004, 3:Article3.

28. Ho JWK, Stefani M, dos Remedios CG and Charleston MA:
Differential variability analysis of gene expression and its

BMC Bioinformatics 2009, 10:24 http://www.biomedcentral.com/1471-2105/10/24

Page 11 of 12
(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/pubmed/18579569?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18579569?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18025005?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18025005?dopt=Abstract
http://www.cs.usyd.edu.au/~mcharles/software/gnlab/index.html
http://www.cs.usyd.edu.au/~mcharles/software/gnlab/index.html
http://www.cs.usyd.edu.au/~mcharles/software/gnlab/index.html
http://www.cs.usyd.edu.au/~mcharles/software/gnlab/index.html
http://www.ncbi.nlm.nih.gov/pubmed/18697769?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18697769?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11967534?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11967534?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11967534?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16381895?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16381895?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16381895?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18566192?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18566192?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18566192?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16646809?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16646809?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16646809?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18586739?dopt=Abstract

application to human diseases. Bioinformatics 2008, 24(13):i390–
i398.

29. Eisen MB, Spellman PT, Browndagger PO and Botstein D: Cluster
analysis and display of genome-wide expression patterns.
Proc Natl Acad Sci U S A 1998, 95(25):14863–14868.

30. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL,
Gillette MA, Paulovich A, Pomeroy SL, Golub TR, Lander ES and
Mesirov JP: Gene set enrichment analysis: A knowledge-based
approach for interpreting genome-wide expression profiles.
Proc Natl Acad Sci U S A 2005, 102(43):15545–15550.

31. Friedman N, Linial M, Nachman I and Pe'er D: Using Bayesian
Networks to Analyze Expression Data. J Comput Biol 2000, 7
(3-4):601–620.

32. Ogata H, Goto S, Sato K, Fujibuchi W, Bono H and Kanehisa M:
KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic
Acids Res 1999, 27(1):29–34.

33. Keseler I, Collado-Vides J, Gama-Castro S, Ingraham J, Paley S,
Saulsen I, Peralta-Gil M and Karp P: EcoCyc: a comprehensive
database resource for Escherichia coli. Nucleic Acids Res 2005,
33 (Database issue):D334–D337.

34. Salwinski L, Miller CS, Smith AJ, Pettit FK, Bowie JU and Eisenberg D:
The Database of Interacting Proteins: 2004 update. Nucleic
Acids Res 2004, 32 (Database issue):D449–D451.

35. Hill AV: The possible effects of the aggregation of the
molecules of haemoglobin on its dissociation curves. J Physiol
1910, 40:iv–vii.

36. Hofmeyr JHS and Cornish-Bowden A: The reversible hill
equation: how to incorporate cooperative enzymes into
metabolic models. Comput Appl Biosci 1997, 13(4):377–385.

37. Mendes P, Sha W and Ye K: Artificial gene networks for
objective comparison of analysis algorithms. Bioinformatics
2003, 19 Suppl 2:ii122–ii129.

Publish with BioMed Central and every
scientist can read your work free of charge

"BioMed Central will be the most significant development for
disseminating the results of biomedical research in our lifetime."

Sir Paul Nurse, Cancer Research UK

Your research papers will be:

available free of charge to the entire biomedical community

peer reviewed and published immediately upon acceptance

cited in PubMed and archived on PubMed Central

yours — you keep the copyright

Submit your manuscript here:
http://www.biomedcentral.com/info/publishing_adv.asp

BioMedcentral

BMC Bioinformatics 2009, 10:24 http://www.biomedcentral.com/1471-2105/10/24

Page 12 of 12
(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/pubmed/18586739?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9843981?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9843981?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16199517?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16199517?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11108481?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11108481?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9847135?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15608210?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15608210?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14681454?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9283752?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9283752?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9283752?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14534181?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14534181?dopt=Abstract
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/publishing_adv.asp
http://www.biomedcentral.com/

	Abstract
	Background
	Results
	Conclusion

	Background
	Software testing issues in bioinformatics
	Metamorphic testing
	Our contributions

	Results
	Case study 1: Testing of GNLab
	1. Addition of a node
	2. Addition of an edge
	3. Deletion of a node
	4. Duplication of a network
	5. Modification of edge weight

	Case study 2: Testing of SeqMap
	1. Changes in read of T
	2. Changes in p
	3. Changes in both p and T
	4. Changes in maximum number of mismatches (e)

	Mutation analysis of GNLab and SeqMap

	Discussion
	Applicability of metamorphic testing in bioinformatics
	MT is a general technique to alleviate the oracle problem
	MT can test a program against its intended behaviour
	MT can be combined with special test cases
	MT is simple and automatable
	MT allows the use of real inputs as test cases
	MT is suitable for bioinformatics programmers
	MT is useful for testing diverse types of programs

	Limitations
	Further examples in bioinformatics
	Phylogenetics
	Microarray analysis
	Biological database retrieval

	Conclusion
	Methods
	Specification of GNLab
	Specification of SeqMap
	Execution of GNLab and SeqMap
	Mutation analysis

	Authors' contributions
	Acknowledgements
	References

